stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 1 | /* |
| 2 | * CDDL HEADER START |
| 3 | * |
| 4 | * The contents of this file are subject to the terms of the |
rsb | ddfcde8 | 2006-05-02 13:03:35 -0700 | [diff] [blame] | 5 | * Common Development and Distribution License (the "License"). |
| 6 | * You may not use this file except in compliance with the License. |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 7 | * |
| 8 | * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE |
| 9 | * or http://www.opensolaris.org/os/licensing. |
| 10 | * See the License for the specific language governing permissions |
| 11 | * and limitations under the License. |
| 12 | * |
| 13 | * When distributing Covered Code, include this CDDL HEADER in each |
| 14 | * file and include the License file at usr/src/OPENSOLARIS.LICENSE. |
| 15 | * If applicable, add the following below this CDDL HEADER, with the |
| 16 | * fields enclosed by brackets "[]" replaced with your own identifying |
| 17 | * information: Portions Copyright [yyyy] [name of copyright owner] |
| 18 | * |
| 19 | * CDDL HEADER END |
| 20 | */ |
| 21 | /* |
batschul | 572901d | 2009-09-15 03:38:42 -0600 | [diff] [blame] | 22 | * Copyright 2009 Sun Microsystems, Inc. All rights reserved. |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 23 | * Use is subject to license terms. |
| 24 | */ |
| 25 | |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 26 | |
| 27 | #include <sys/debug.h> |
| 28 | #include <sys/types.h> |
| 29 | #include <sys/file.h> |
| 30 | #include <sys/errno.h> |
| 31 | #include <sys/uio.h> |
| 32 | #include <sys/open.h> |
| 33 | #include <sys/cred.h> |
| 34 | #include <sys/kmem.h> |
| 35 | #include <sys/conf.h> |
| 36 | #include <sys/cmn_err.h> |
| 37 | #include <sys/modctl.h> |
| 38 | #include <sys/disp.h> |
| 39 | #include <sys/atomic.h> |
| 40 | #include <sys/filio.h> |
| 41 | #include <sys/stat.h> /* needed for S_IFBLK and S_IFCHR */ |
| 42 | #include <sys/kstat.h> |
| 43 | |
| 44 | #include <sys/ddi.h> |
| 45 | #include <sys/devops.h> |
| 46 | #include <sys/sunddi.h> |
cth | 184cd04 | 2007-07-02 21:43:54 -0700 | [diff] [blame] | 47 | #include <sys/esunddi.h> |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 48 | #include <sys/priv_names.h> |
| 49 | |
| 50 | #include <sys/fssnap.h> |
| 51 | #include <sys/fssnap_if.h> |
| 52 | |
| 53 | /* |
| 54 | * This module implements the file system snapshot code, which provides a |
| 55 | * point-in-time image of a file system for the purposes of online backup. |
| 56 | * There are essentially two parts to this project: the driver half and the |
| 57 | * file system half. The driver half is a pseudo device driver called |
| 58 | * "fssnap" that represents the snapshot. Each snapshot is assigned a |
| 59 | * number that corresponds to the minor number of the device, and a control |
| 60 | * device with a high minor number is used to initiate snapshot creation and |
| 61 | * deletion. For all practical purposes the driver half acts like a |
| 62 | * read-only disk device whose contents are exactly the same as the master |
| 63 | * file system at the time the snapshot was created. |
| 64 | * |
| 65 | * The file system half provides interfaces necessary for performing the |
| 66 | * file system dependent operations required to create and delete snapshots |
| 67 | * and a special driver strategy routine that must always be used by the file |
| 68 | * system for snapshots to work correctly. |
| 69 | * |
| 70 | * When a snapshot is to be created, the user utility will send an ioctl to |
| 71 | * the control device of the driver half specifying the file system to be |
| 72 | * snapshotted, the file descriptor of a backing-store file which is used to |
| 73 | * hold old data before it is overwritten, and other snapshot parameters. |
| 74 | * This ioctl is passed on to the file system specified in the original |
| 75 | * ioctl request. The file system is expected to be able to flush |
| 76 | * everything out to make the file system consistent and lock it to ensure |
| 77 | * no changes occur while the snapshot is being created. It then calls |
| 78 | * fssnap_create() to create state for a new snapshot, from which an opaque |
| 79 | * handle is returned with the snapshot locked. Next, the file system must |
| 80 | * populate the "candidate bitmap", which tells the snapshot code which |
| 81 | * "chunks" should be considered for copy-on-write (a chunk is the unit of |
| 82 | * granularity used for copy-on-write, which is independent of the device |
| 83 | * and file system block sizes). This is typically done by scanning the |
| 84 | * file system allocation bitmaps to determine which chunks contain |
| 85 | * allocated blocks in the file system at the time the snapshot was created. |
| 86 | * If a chunk has no allocated blocks, it does not need to be copied before |
| 87 | * being written to. Once the candidate bitmap is populated with |
| 88 | * fssnap_set_candidate(), the file system calls fssnap_create_done() to |
| 89 | * complete the snapshot creation and unlock the snapshot. The file system |
| 90 | * may now be unlocked and modifications to it resumed. |
| 91 | * |
| 92 | * Once a snapshot is created, the file system must perform all writes |
| 93 | * through a special strategy routine, fssnap_strategy(). This strategy |
| 94 | * routine determines whether the chunks contained by the write must be |
| 95 | * copied before being overwritten by consulting the candidate bitmap |
| 96 | * described above, and the "hastrans bitmap" which tells it whether the chunk |
| 97 | * has been copied already or not. If the chunk is a candidate but has not |
| 98 | * been copied, it reads the old data in and adds it to a queue. The |
| 99 | * old data can then be overwritten with the new data. An asynchronous |
| 100 | * task queue is dispatched for each old chunk read in which writes the old |
| 101 | * data to the backing file specified at snapshot creation time. The |
| 102 | * backing file is a sparse file the same size as the file system that |
| 103 | * contains the old data at the offset that data originally had in the |
| 104 | * file system. If the queue containing in-memory chunks gets too large, |
| 105 | * writes to the file system may be throttled by a semaphore until the |
| 106 | * task queues have a chance to push some of the chunks to the backing file. |
| 107 | * |
| 108 | * With the candidate bitmap, the hastrans bitmap, the data on the master |
| 109 | * file system, and the old data in memory and in the backing file, the |
| 110 | * snapshot pseudo-driver can piece together the original file system |
| 111 | * information to satisfy read requests. If the requested chunk is not a |
| 112 | * candidate, it returns a zeroed buffer. If the chunk is a candidate but |
| 113 | * has not been copied it reads it from the master file system. If it is a |
| 114 | * candidate and has been copied, it either copies the data from the |
| 115 | * in-memory queue or it reads it in from the backing file. The result is |
| 116 | * a replication of the original file system that can be backed up, mounted, |
| 117 | * or manipulated by other file system utilities that work on a read-only |
| 118 | * device. |
| 119 | * |
| 120 | * This module is divided into three roughly logical sections: |
| 121 | * |
| 122 | * - The snapshot driver, which is a character/block driver |
| 123 | * representing the snapshot itself. These routines are |
| 124 | * prefixed with "snap_". |
| 125 | * |
| 126 | * - The library routines that are defined in fssnap_if.h that |
| 127 | * are used by file systems that use this snapshot implementation. |
| 128 | * These functions are prefixed with "fssnap_" and are called through |
| 129 | * a function vector from the file system. |
| 130 | * |
| 131 | * - The helper routines used by the snapshot driver and the fssnap |
| 132 | * library routines for managing the translation table and other |
| 133 | * useful functions. These routines are all static and are |
| 134 | * prefixed with either "fssnap_" or "transtbl_" if they |
| 135 | * are specifically used for translation table activities. |
| 136 | */ |
| 137 | |
| 138 | static dev_info_t *fssnap_dip = NULL; |
| 139 | static struct snapshot_id *snapshot = NULL; |
| 140 | static struct snapshot_id snap_ctl; |
| 141 | static int num_snapshots = 0; |
| 142 | static kmutex_t snapshot_mutex; |
| 143 | static char snapname[] = SNAP_NAME; |
| 144 | |
| 145 | /* "tunable" parameters */ |
| 146 | static int fssnap_taskq_nthreads = FSSNAP_TASKQ_THREADS; |
| 147 | static uint_t fssnap_max_mem_chunks = FSSNAP_MAX_MEM_CHUNKS; |
| 148 | static int fssnap_taskq_maxtasks = FSSNAP_TASKQ_MAXTASKS; |
| 149 | |
| 150 | /* static function prototypes */ |
| 151 | |
| 152 | /* snapshot driver */ |
| 153 | static int snap_getinfo(dev_info_t *, ddi_info_cmd_t, void *, void **); |
| 154 | static int snap_attach(dev_info_t *dip, ddi_attach_cmd_t cmd); |
| 155 | static int snap_detach(dev_info_t *dip, ddi_detach_cmd_t cmd); |
| 156 | static int snap_open(dev_t *devp, int flag, int otyp, cred_t *cred); |
| 157 | static int snap_close(dev_t dev, int flag, int otyp, cred_t *cred); |
| 158 | static int snap_strategy(struct buf *bp); |
| 159 | static int snap_read(dev_t dev, struct uio *uiop, cred_t *credp); |
| 160 | static int snap_print(dev_t dev, char *str); |
| 161 | static int snap_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, |
| 162 | cred_t *credp, int *rvalp); |
| 163 | static int snap_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, |
| 164 | int flags, char *name, caddr_t valuep, int *lengthp); |
| 165 | static int snap_getchunk(struct snapshot_id *sidp, chunknumber_t chunk, |
| 166 | int offset, int len, char *buffer); |
| 167 | |
| 168 | |
| 169 | /* fssnap interface implementations (see fssnap_if.h) */ |
| 170 | static void fssnap_strategy_impl(void *, struct buf *); |
| 171 | static void *fssnap_create_impl(chunknumber_t, uint_t, u_offset_t, |
| 172 | struct vnode *, int, struct vnode **, char *, u_offset_t); |
| 173 | static void fssnap_set_candidate_impl(void *, chunknumber_t); |
| 174 | static int fssnap_is_candidate_impl(void *, u_offset_t); |
| 175 | static int fssnap_create_done_impl(void *); |
| 176 | static int fssnap_delete_impl(void *); |
| 177 | |
| 178 | /* fssnap interface support routines */ |
| 179 | static int fssnap_translate(struct snapshot_id **, struct buf *); |
| 180 | static void fssnap_write_taskq(void *); |
| 181 | static void fssnap_create_kstats(snapshot_id_t *, int, const char *, |
| 182 | const char *); |
| 183 | static int fssnap_update_kstat_num(kstat_t *, int); |
| 184 | static void fssnap_delete_kstats(struct cow_info *); |
| 185 | |
| 186 | /* translation table prototypes */ |
| 187 | static cow_map_node_t *transtbl_add(cow_map_t *, chunknumber_t, caddr_t); |
| 188 | static cow_map_node_t *transtbl_get(cow_map_t *, chunknumber_t); |
| 189 | static void transtbl_delete(cow_map_t *, cow_map_node_t *); |
| 190 | static void transtbl_free(cow_map_t *); |
| 191 | |
| 192 | static kstat_t *fssnap_highwater_kstat; |
| 193 | |
| 194 | /* ************************************************************************ */ |
| 195 | |
| 196 | /* Device and Module Structures */ |
| 197 | |
| 198 | static struct cb_ops snap_cb_ops = { |
| 199 | snap_open, |
| 200 | snap_close, |
| 201 | snap_strategy, |
| 202 | snap_print, |
| 203 | nodev, /* no snap_dump */ |
| 204 | snap_read, |
| 205 | nodev, /* no snap_write */ |
| 206 | snap_ioctl, |
| 207 | nodev, /* no snap_devmap */ |
| 208 | nodev, /* no snap_mmap */ |
| 209 | nodev, /* no snap_segmap */ |
| 210 | nochpoll, |
| 211 | snap_prop_op, |
| 212 | NULL, /* streamtab */ |
| 213 | D_64BIT | D_NEW | D_MP, /* driver compatibility */ |
| 214 | CB_REV, |
| 215 | nodev, /* async I/O read entry point */ |
| 216 | nodev /* async I/O write entry point */ |
| 217 | }; |
| 218 | |
| 219 | static struct dev_ops snap_ops = { |
| 220 | DEVO_REV, |
| 221 | 0, /* ref count */ |
| 222 | snap_getinfo, |
| 223 | nulldev, /* snap_identify obsolete */ |
| 224 | nulldev, /* no snap_probe */ |
| 225 | snap_attach, |
| 226 | snap_detach, |
| 227 | nodev, /* no snap_reset */ |
| 228 | &snap_cb_ops, |
| 229 | (struct bus_ops *)NULL, |
Sherry Moore | 1939740 | 2008-09-22 16:30:26 -0700 | [diff] [blame] | 230 | nulldev, /* no snap_power() */ |
| 231 | ddi_quiesce_not_needed, /* quiesce */ |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 232 | }; |
| 233 | |
| 234 | extern struct mod_ops mod_driverops; |
| 235 | |
| 236 | static struct modldrv md = { |
| 237 | &mod_driverops, /* Type of module. This is a driver */ |
Sherry Moore | 1939740 | 2008-09-22 16:30:26 -0700 | [diff] [blame] | 238 | "snapshot driver", /* Name of the module */ |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 239 | &snap_ops, |
| 240 | }; |
| 241 | |
| 242 | static struct modlinkage ml = { |
| 243 | MODREV_1, |
| 244 | &md, |
| 245 | NULL |
| 246 | }; |
| 247 | |
| 248 | static void *statep; |
| 249 | |
| 250 | int |
| 251 | _init(void) |
| 252 | { |
| 253 | int error; |
| 254 | kstat_t *ksp; |
| 255 | kstat_named_t *ksdata; |
| 256 | |
| 257 | error = ddi_soft_state_init(&statep, sizeof (struct snapshot_id *), 1); |
| 258 | if (error) { |
| 259 | cmn_err(CE_WARN, "_init: failed to init ddi_soft_state."); |
| 260 | return (error); |
| 261 | } |
| 262 | |
| 263 | error = mod_install(&ml); |
| 264 | |
| 265 | if (error) { |
| 266 | cmn_err(CE_WARN, "_init: failed to mod_install."); |
| 267 | ddi_soft_state_fini(&statep); |
| 268 | return (error); |
| 269 | } |
| 270 | |
| 271 | /* |
| 272 | * Fill in the snapshot operations vector for file systems |
| 273 | * (defined in fssnap_if.c) |
| 274 | */ |
| 275 | |
| 276 | snapops.fssnap_create = fssnap_create_impl; |
| 277 | snapops.fssnap_set_candidate = fssnap_set_candidate_impl; |
| 278 | snapops.fssnap_is_candidate = fssnap_is_candidate_impl; |
| 279 | snapops.fssnap_create_done = fssnap_create_done_impl; |
| 280 | snapops.fssnap_delete = fssnap_delete_impl; |
| 281 | snapops.fssnap_strategy = fssnap_strategy_impl; |
| 282 | |
| 283 | mutex_init(&snapshot_mutex, NULL, MUTEX_DEFAULT, NULL); |
| 284 | |
| 285 | /* |
| 286 | * Initialize the fssnap highwater kstat |
| 287 | */ |
| 288 | ksp = kstat_create(snapname, 0, FSSNAP_KSTAT_HIGHWATER, "misc", |
| 289 | KSTAT_TYPE_NAMED, 1, 0); |
| 290 | if (ksp != NULL) { |
| 291 | ksdata = (kstat_named_t *)ksp->ks_data; |
| 292 | kstat_named_init(ksdata, FSSNAP_KSTAT_HIGHWATER, |
| 293 | KSTAT_DATA_UINT32); |
| 294 | ksdata->value.ui32 = 0; |
| 295 | kstat_install(ksp); |
| 296 | } else { |
| 297 | cmn_err(CE_WARN, "_init: failed to create highwater kstat."); |
| 298 | } |
| 299 | fssnap_highwater_kstat = ksp; |
| 300 | |
| 301 | return (0); |
| 302 | } |
| 303 | |
| 304 | int |
| 305 | _info(struct modinfo *modinfop) |
| 306 | { |
| 307 | return (mod_info(&ml, modinfop)); |
| 308 | } |
| 309 | |
| 310 | int |
| 311 | _fini(void) |
| 312 | { |
| 313 | int error; |
| 314 | |
| 315 | error = mod_remove(&ml); |
| 316 | if (error) |
| 317 | return (error); |
| 318 | ddi_soft_state_fini(&statep); |
| 319 | |
| 320 | /* |
| 321 | * delete the fssnap highwater kstat |
| 322 | */ |
| 323 | kstat_delete(fssnap_highwater_kstat); |
| 324 | |
| 325 | mutex_destroy(&snapshot_mutex); |
| 326 | |
| 327 | /* Clear out the file system operations vector */ |
| 328 | snapops.fssnap_create = NULL; |
| 329 | snapops.fssnap_set_candidate = NULL; |
| 330 | snapops.fssnap_create_done = NULL; |
| 331 | snapops.fssnap_delete = NULL; |
| 332 | snapops.fssnap_strategy = NULL; |
| 333 | |
| 334 | return (0); |
| 335 | } |
| 336 | |
| 337 | /* ************************************************************************ */ |
| 338 | |
| 339 | /* |
| 340 | * Snapshot Driver Routines |
| 341 | * |
| 342 | * This section implements the snapshot character and block drivers. The |
| 343 | * device will appear to be a consistent read-only file system to |
| 344 | * applications that wish to back it up or mount it. The snapshot driver |
| 345 | * communicates with the file system through the translation table, which |
| 346 | * tells the snapshot driver where to find the data necessary to piece |
| 347 | * together the frozen file system. The data may either be on the master |
| 348 | * device (no translation exists), in memory (a translation exists but has |
| 349 | * not been flushed to the backing store), or in the backing store file. |
amw | da6c28a | 2007-10-25 16:34:29 -0700 | [diff] [blame] | 350 | * The read request may require the snapshot driver to retrieve data from |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 351 | * several different places and piece it together to look like a single |
| 352 | * contiguous read. |
| 353 | * |
| 354 | * The device minor number corresponds to the snapshot number in the list of |
| 355 | * snapshot identifiers. The soft state for each minor number is simply a |
| 356 | * pointer to the snapshot id, which holds all of the snapshot state. One |
| 357 | * minor number is designated as the control device. All snapshot create |
| 358 | * and delete requests go through the control device to ensure this module |
| 359 | * is properly loaded and attached before the file system starts calling |
| 360 | * routines defined here. |
| 361 | */ |
| 362 | |
| 363 | |
| 364 | /* |
| 365 | * snap_getinfo() - snapshot driver getinfo(9E) routine |
| 366 | * |
| 367 | */ |
| 368 | /*ARGSUSED*/ |
| 369 | static int |
| 370 | snap_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) |
| 371 | { |
| 372 | switch (infocmd) { |
| 373 | case DDI_INFO_DEVT2DEVINFO: |
| 374 | *result = fssnap_dip; |
| 375 | return (DDI_SUCCESS); |
| 376 | case DDI_INFO_DEVT2INSTANCE: |
| 377 | *result = 0; /* we only have one instance */ |
| 378 | return (DDI_SUCCESS); |
| 379 | } |
| 380 | return (DDI_FAILURE); |
| 381 | } |
| 382 | |
| 383 | /* |
| 384 | * snap_attach() - snapshot driver attach(9E) routine |
| 385 | * |
| 386 | * sets up snapshot control device and control state. The control state |
| 387 | * is a pointer to an "anonymous" snapshot_id for tracking opens and closes |
| 388 | */ |
| 389 | static int |
| 390 | snap_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) |
| 391 | { |
| 392 | int error; |
| 393 | |
| 394 | switch (cmd) { |
| 395 | case DDI_ATTACH: |
| 396 | /* create the control device */ |
| 397 | error = ddi_create_priv_minor_node(dip, SNAP_CTL_NODE, S_IFCHR, |
| 398 | SNAP_CTL_MINOR, DDI_PSEUDO, PRIVONLY_DEV, |
| 399 | PRIV_SYS_CONFIG, PRIV_SYS_CONFIG, 0666); |
| 400 | if (error == DDI_FAILURE) { |
| 401 | return (DDI_FAILURE); |
| 402 | } |
| 403 | |
| 404 | rw_init(&snap_ctl.sid_rwlock, NULL, RW_DEFAULT, NULL); |
| 405 | rw_enter(&snap_ctl.sid_rwlock, RW_WRITER); |
| 406 | fssnap_dip = dip; |
| 407 | snap_ctl.sid_snapnumber = SNAP_CTL_MINOR; |
| 408 | /* the control sid is not linked into the snapshot list */ |
| 409 | snap_ctl.sid_next = NULL; |
| 410 | snap_ctl.sid_cowinfo = NULL; |
| 411 | snap_ctl.sid_flags = 0; |
| 412 | rw_exit(&snap_ctl.sid_rwlock); |
| 413 | ddi_report_dev(dip); |
| 414 | |
| 415 | return (DDI_SUCCESS); |
| 416 | case DDI_PM_RESUME: |
| 417 | return (DDI_SUCCESS); |
| 418 | |
| 419 | case DDI_RESUME: |
| 420 | return (DDI_SUCCESS); |
| 421 | |
| 422 | default: |
| 423 | return (DDI_FAILURE); |
| 424 | } |
| 425 | } |
| 426 | |
| 427 | /* |
| 428 | * snap_detach() - snapshot driver detach(9E) routine |
| 429 | * |
| 430 | * destroys snapshot control device and control state. If any snapshots |
| 431 | * are active (ie. num_snapshots != 0), the device will refuse to detach. |
| 432 | */ |
| 433 | static int |
| 434 | snap_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) |
| 435 | { |
| 436 | struct snapshot_id *sidp, *sidnextp; |
| 437 | |
| 438 | switch (cmd) { |
| 439 | case DDI_DETACH: |
| 440 | /* do not detach if the device is active */ |
| 441 | mutex_enter(&snapshot_mutex); |
| 442 | if ((num_snapshots != 0) || |
| 443 | ((snap_ctl.sid_flags & SID_CHAR_BUSY) != 0)) { |
| 444 | mutex_exit(&snapshot_mutex); |
| 445 | return (DDI_FAILURE); |
| 446 | } |
| 447 | |
| 448 | /* free up the snapshot list */ |
| 449 | for (sidp = snapshot; sidp != NULL; sidp = sidnextp) { |
| 450 | ASSERT(SID_AVAILABLE(sidp) && |
| 451 | !RW_LOCK_HELD(&sidp->sid_rwlock)); |
| 452 | sidnextp = sidp->sid_next; |
| 453 | rw_destroy(&sidp->sid_rwlock); |
| 454 | kmem_free(sidp, sizeof (struct snapshot_id)); |
| 455 | } |
| 456 | snapshot = NULL; |
| 457 | |
| 458 | /* delete the control device */ |
| 459 | ddi_remove_minor_node(dip, SNAP_CTL_NODE); |
| 460 | fssnap_dip = NULL; |
| 461 | |
| 462 | ASSERT((snap_ctl.sid_flags & SID_CHAR_BUSY) == 0); |
| 463 | rw_destroy(&snap_ctl.sid_rwlock); |
| 464 | mutex_exit(&snapshot_mutex); |
| 465 | |
| 466 | return (DDI_SUCCESS); |
| 467 | |
| 468 | default: |
| 469 | return (DDI_FAILURE); |
| 470 | } |
| 471 | } |
| 472 | |
| 473 | /* |
| 474 | * snap_open() - snapshot driver open(9E) routine |
| 475 | * |
| 476 | * marks the snapshot id as busy so it will not be recycled when deleted |
| 477 | * until the snapshot is closed. |
| 478 | */ |
| 479 | /* ARGSUSED */ |
| 480 | static int |
| 481 | snap_open(dev_t *devp, int flag, int otyp, cred_t *cred) |
| 482 | { |
| 483 | minor_t minor; |
| 484 | struct snapshot_id **sidpp, *sidp; |
| 485 | |
| 486 | /* snapshots are read-only */ |
| 487 | if (flag & FWRITE) |
| 488 | return (EROFS); |
| 489 | |
| 490 | minor = getminor(*devp); |
| 491 | |
| 492 | if (minor == SNAP_CTL_MINOR) { |
| 493 | /* control device must be opened exclusively */ |
| 494 | if (((flag & FEXCL) != FEXCL) || (otyp != OTYP_CHR)) |
| 495 | return (EINVAL); |
| 496 | |
| 497 | rw_enter(&snap_ctl.sid_rwlock, RW_WRITER); |
| 498 | if ((snap_ctl.sid_flags & SID_CHAR_BUSY) != 0) { |
| 499 | rw_exit(&snap_ctl.sid_rwlock); |
| 500 | return (EBUSY); |
| 501 | } |
| 502 | |
| 503 | snap_ctl.sid_flags |= SID_CHAR_BUSY; |
| 504 | rw_exit(&snap_ctl.sid_rwlock); |
| 505 | |
| 506 | return (0); |
| 507 | } |
| 508 | |
| 509 | sidpp = ddi_get_soft_state(statep, minor); |
| 510 | if (sidpp == NULL || *sidpp == NULL) |
| 511 | return (ENXIO); |
| 512 | sidp = *sidpp; |
| 513 | rw_enter(&sidp->sid_rwlock, RW_WRITER); |
| 514 | |
| 515 | if ((flag & FEXCL) && SID_BUSY(sidp)) { |
| 516 | rw_exit(&sidp->sid_rwlock); |
| 517 | return (EAGAIN); |
| 518 | } |
| 519 | |
| 520 | ASSERT(sidpp != NULL && sidp != NULL); |
| 521 | /* check to see if this snapshot has been killed on us */ |
| 522 | if (SID_INACTIVE(sidp)) { |
| 523 | cmn_err(CE_WARN, "snap_open: snapshot %d does not exist.", |
| 524 | minor); |
| 525 | rw_exit(&sidp->sid_rwlock); |
| 526 | return (ENXIO); |
| 527 | } |
| 528 | |
| 529 | switch (otyp) { |
| 530 | case OTYP_CHR: |
| 531 | sidp->sid_flags |= SID_CHAR_BUSY; |
| 532 | break; |
| 533 | case OTYP_BLK: |
| 534 | sidp->sid_flags |= SID_BLOCK_BUSY; |
| 535 | break; |
| 536 | default: |
| 537 | rw_exit(&sidp->sid_rwlock); |
| 538 | return (EINVAL); |
| 539 | } |
| 540 | |
| 541 | rw_exit(&sidp->sid_rwlock); |
| 542 | |
| 543 | /* |
| 544 | * at this point if a valid snapshot was found then it has |
| 545 | * been marked busy and we can use it. |
| 546 | */ |
| 547 | return (0); |
| 548 | } |
| 549 | |
| 550 | /* |
| 551 | * snap_close() - snapshot driver close(9E) routine |
| 552 | * |
| 553 | * unsets the busy bits in the snapshot id. If the snapshot has been |
| 554 | * deleted while the snapshot device was open, the close call will clean |
| 555 | * up the remaining state information. |
| 556 | */ |
| 557 | /* ARGSUSED */ |
| 558 | static int |
| 559 | snap_close(dev_t dev, int flag, int otyp, cred_t *cred) |
| 560 | { |
| 561 | struct snapshot_id **sidpp, *sidp; |
| 562 | minor_t minor; |
| 563 | char name[20]; |
| 564 | |
| 565 | minor = getminor(dev); |
| 566 | |
| 567 | /* if this is the control device, close it and return */ |
| 568 | if (minor == SNAP_CTL_MINOR) { |
| 569 | rw_enter(&snap_ctl.sid_rwlock, RW_WRITER); |
| 570 | snap_ctl.sid_flags &= ~(SID_CHAR_BUSY); |
| 571 | rw_exit(&snap_ctl.sid_rwlock); |
| 572 | return (0); |
| 573 | } |
| 574 | |
| 575 | sidpp = ddi_get_soft_state(statep, minor); |
| 576 | if (sidpp == NULL || *sidpp == NULL) { |
| 577 | cmn_err(CE_WARN, "snap_close: could not find state for " |
| 578 | "snapshot %d.", minor); |
| 579 | return (ENXIO); |
| 580 | } |
| 581 | sidp = *sidpp; |
| 582 | mutex_enter(&snapshot_mutex); |
| 583 | rw_enter(&sidp->sid_rwlock, RW_WRITER); |
| 584 | |
| 585 | /* Mark the snapshot as not being busy anymore */ |
| 586 | switch (otyp) { |
| 587 | case OTYP_CHR: |
| 588 | sidp->sid_flags &= ~(SID_CHAR_BUSY); |
| 589 | break; |
| 590 | case OTYP_BLK: |
| 591 | sidp->sid_flags &= ~(SID_BLOCK_BUSY); |
| 592 | break; |
| 593 | default: |
| 594 | mutex_exit(&snapshot_mutex); |
| 595 | rw_exit(&sidp->sid_rwlock); |
| 596 | return (EINVAL); |
| 597 | } |
| 598 | |
| 599 | if (SID_AVAILABLE(sidp)) { |
| 600 | /* |
| 601 | * if this is the last close on a snapshot that has been |
| 602 | * deleted, then free up the soft state. The snapdelete |
| 603 | * ioctl does not free this when the device is in use so |
| 604 | * we do it here after the last reference goes away. |
| 605 | */ |
| 606 | |
| 607 | /* remove the device nodes */ |
| 608 | ASSERT(fssnap_dip != NULL); |
| 609 | (void) snprintf(name, sizeof (name), "%d", |
| 610 | sidp->sid_snapnumber); |
| 611 | ddi_remove_minor_node(fssnap_dip, name); |
| 612 | (void) snprintf(name, sizeof (name), "%d,raw", |
| 613 | sidp->sid_snapnumber); |
| 614 | ddi_remove_minor_node(fssnap_dip, name); |
| 615 | |
| 616 | /* delete the state structure */ |
| 617 | ddi_soft_state_free(statep, sidp->sid_snapnumber); |
| 618 | num_snapshots--; |
| 619 | } |
| 620 | |
| 621 | mutex_exit(&snapshot_mutex); |
| 622 | rw_exit(&sidp->sid_rwlock); |
| 623 | |
| 624 | return (0); |
| 625 | } |
| 626 | |
| 627 | /* |
| 628 | * snap_read() - snapshot driver read(9E) routine |
| 629 | * |
| 630 | * reads data from the snapshot by calling snap_strategy() through physio() |
| 631 | */ |
| 632 | /* ARGSUSED */ |
| 633 | static int |
| 634 | snap_read(dev_t dev, struct uio *uiop, cred_t *credp) |
| 635 | { |
| 636 | minor_t minor; |
| 637 | struct snapshot_id **sidpp; |
| 638 | |
| 639 | minor = getminor(dev); |
| 640 | sidpp = ddi_get_soft_state(statep, minor); |
| 641 | if (sidpp == NULL || *sidpp == NULL) { |
| 642 | cmn_err(CE_WARN, |
| 643 | "snap_read: could not find state for snapshot %d.", minor); |
| 644 | return (ENXIO); |
| 645 | } |
| 646 | return (physio(snap_strategy, NULL, dev, B_READ, minphys, uiop)); |
| 647 | } |
| 648 | |
| 649 | /* |
| 650 | * snap_strategy() - snapshot driver strategy(9E) routine |
| 651 | * |
| 652 | * cycles through each chunk in the requested buffer and calls |
| 653 | * snap_getchunk() on each chunk to retrieve it from the appropriate |
| 654 | * place. Once all of the parts are put together the requested buffer |
| 655 | * is returned. The snapshot driver is read-only, so a write is invalid. |
| 656 | */ |
| 657 | static int |
| 658 | snap_strategy(struct buf *bp) |
| 659 | { |
| 660 | struct snapshot_id **sidpp, *sidp; |
| 661 | minor_t minor; |
| 662 | chunknumber_t chunk; |
| 663 | int off, len; |
| 664 | u_longlong_t reqptr; |
| 665 | int error = 0; |
| 666 | size_t chunksz; |
| 667 | caddr_t buf; |
| 668 | |
| 669 | /* snapshot device is read-only */ |
| 670 | if (bp->b_flags & B_WRITE) { |
| 671 | bioerror(bp, EROFS); |
| 672 | bp->b_resid = bp->b_bcount; |
| 673 | biodone(bp); |
| 674 | return (0); |
| 675 | } |
| 676 | |
| 677 | minor = getminor(bp->b_edev); |
| 678 | sidpp = ddi_get_soft_state(statep, minor); |
| 679 | if (sidpp == NULL || *sidpp == NULL) { |
| 680 | cmn_err(CE_WARN, |
| 681 | "snap_strategy: could not find state for snapshot %d.", |
| 682 | minor); |
| 683 | bioerror(bp, ENXIO); |
| 684 | bp->b_resid = bp->b_bcount; |
| 685 | biodone(bp); |
| 686 | return (0); |
| 687 | } |
| 688 | sidp = *sidpp; |
| 689 | ASSERT(sidp); |
| 690 | rw_enter(&sidp->sid_rwlock, RW_READER); |
| 691 | |
| 692 | if (SID_INACTIVE(sidp)) { |
| 693 | bioerror(bp, ENXIO); |
| 694 | bp->b_resid = bp->b_bcount; |
| 695 | biodone(bp); |
| 696 | rw_exit(&sidp->sid_rwlock); |
| 697 | return (0); |
| 698 | } |
| 699 | |
| 700 | if (bp->b_flags & (B_PAGEIO|B_PHYS)) |
| 701 | bp_mapin(bp); |
| 702 | |
| 703 | bp->b_resid = bp->b_bcount; |
| 704 | ASSERT(bp->b_un.b_addr); |
| 705 | buf = bp->b_un.b_addr; |
| 706 | |
| 707 | chunksz = sidp->sid_cowinfo->cow_map.cmap_chunksz; |
| 708 | |
| 709 | /* reqptr is the current DEV_BSIZE offset into the device */ |
| 710 | /* chunk is the chunk containing reqptr */ |
| 711 | /* len is the length of the request (in the current chunk) in bytes */ |
| 712 | /* off is the byte offset into the current chunk */ |
| 713 | reqptr = bp->b_lblkno; |
| 714 | while (bp->b_resid > 0) { |
| 715 | chunk = dbtocowchunk(&sidp->sid_cowinfo->cow_map, reqptr); |
| 716 | off = (reqptr % (chunksz >> DEV_BSHIFT)) << DEV_BSHIFT; |
| 717 | len = min(chunksz - off, bp->b_resid); |
| 718 | ASSERT((off + len) <= chunksz); |
| 719 | |
| 720 | if ((error = snap_getchunk(sidp, chunk, off, len, buf)) != 0) { |
| 721 | /* |
| 722 | * EINVAL means the user tried to go out of range. |
| 723 | * Anything else means it's likely that we're |
| 724 | * confused. |
| 725 | */ |
| 726 | if (error != EINVAL) { |
| 727 | cmn_err(CE_WARN, "snap_strategy: error " |
| 728 | "calling snap_getchunk, chunk = %llu, " |
| 729 | "offset = %d, len = %d, resid = %lu, " |
| 730 | "error = %d.", |
| 731 | chunk, off, len, bp->b_resid, error); |
| 732 | } |
| 733 | bioerror(bp, error); |
| 734 | biodone(bp); |
| 735 | rw_exit(&sidp->sid_rwlock); |
| 736 | return (0); |
| 737 | } |
| 738 | bp->b_resid -= len; |
| 739 | reqptr += (len >> DEV_BSHIFT); |
| 740 | buf += len; |
| 741 | } |
| 742 | |
| 743 | ASSERT(bp->b_resid == 0); |
| 744 | biodone(bp); |
| 745 | |
| 746 | rw_exit(&sidp->sid_rwlock); |
| 747 | return (0); |
| 748 | } |
| 749 | |
| 750 | /* |
| 751 | * snap_getchunk() - helper function for snap_strategy() |
| 752 | * |
| 753 | * gets the requested data from the appropriate place and fills in the |
| 754 | * buffer. chunk is the chunk number of the request, offset is the |
| 755 | * offset into that chunk and must be less than the chunk size. len is |
| 756 | * the length of the request starting at offset, and must not exceed a |
| 757 | * chunk boundary. buffer is the address to copy the data to. len |
| 758 | * bytes are copied into the buffer starting at the location specified. |
| 759 | * |
| 760 | * A chunk is located according to the following algorithm: |
| 761 | * - If the chunk does not have a translation or is not a candidate |
| 762 | * for translation, it is read straight from the master device. |
| 763 | * - If the chunk does have a translation, then it is either on |
| 764 | * disk or in memory: |
| 765 | * o If it is in memory the requested data is simply copied out |
| 766 | * of the in-memory buffer. |
| 767 | * o If it is in the backing store, it is read from there. |
| 768 | * |
| 769 | * This function does the real work of the snapshot driver. |
| 770 | */ |
| 771 | static int |
| 772 | snap_getchunk(struct snapshot_id *sidp, chunknumber_t chunk, int offset, |
| 773 | int len, char *buffer) |
| 774 | { |
| 775 | cow_map_t *cmap = &sidp->sid_cowinfo->cow_map; |
| 776 | cow_map_node_t *cmn; |
| 777 | struct buf *snapbuf; |
| 778 | int error = 0; |
| 779 | char *newbuffer; |
| 780 | int newlen = 0; |
| 781 | int partial = 0; |
| 782 | |
| 783 | ASSERT(RW_READ_HELD(&sidp->sid_rwlock)); |
| 784 | ASSERT(offset + len <= cmap->cmap_chunksz); |
| 785 | |
| 786 | /* |
| 787 | * Check if the chunk number is out of range and if so bail out |
| 788 | */ |
| 789 | if (chunk >= (cmap->cmap_bmsize * NBBY)) { |
| 790 | return (EINVAL); |
| 791 | } |
| 792 | |
| 793 | /* |
| 794 | * If the chunk is not a candidate for translation, then the chunk |
| 795 | * was not allocated when the snapshot was taken. Since it does |
| 796 | * not contain data associated with this snapshot, just return a |
| 797 | * zero buffer instead. |
| 798 | */ |
| 799 | if (isclr(cmap->cmap_candidate, chunk)) { |
| 800 | bzero(buffer, len); |
| 801 | return (0); |
| 802 | } |
| 803 | |
| 804 | /* |
| 805 | * if the chunk is a candidate for translation but a |
| 806 | * translation does not exist, then read through to the |
| 807 | * original file system. The rwlock is held until the read |
| 808 | * completes if it hasn't been translated to make sure the |
| 809 | * file system does not translate the block before we |
| 810 | * access it. If it has already been translated we don't |
| 811 | * need the lock, because the translation will never go away. |
| 812 | */ |
| 813 | rw_enter(&cmap->cmap_rwlock, RW_READER); |
| 814 | if (isclr(cmap->cmap_hastrans, chunk)) { |
| 815 | snapbuf = getrbuf(KM_SLEEP); |
| 816 | /* |
| 817 | * Reading into the buffer saves having to do a copy, |
| 818 | * but gets tricky if the request size is not a |
| 819 | * multiple of DEV_BSIZE. However, we are filling the |
| 820 | * buffer left to right, so future reads will write |
| 821 | * over any extra data we might have read. |
| 822 | */ |
| 823 | |
| 824 | partial = len % DEV_BSIZE; |
| 825 | |
| 826 | snapbuf->b_bcount = len; |
| 827 | snapbuf->b_lblkno = lbtodb(chunk * cmap->cmap_chunksz + offset); |
| 828 | snapbuf->b_un.b_addr = buffer; |
| 829 | |
| 830 | snapbuf->b_iodone = NULL; |
| 831 | snapbuf->b_proc = NULL; /* i.e. the kernel */ |
| 832 | snapbuf->b_flags = B_READ | B_BUSY; |
| 833 | snapbuf->b_edev = sidp->sid_fvp->v_vfsp->vfs_dev; |
| 834 | |
| 835 | if (partial) { |
| 836 | /* |
| 837 | * Partial block read in progress. |
| 838 | * This is bad as modules further down the line |
| 839 | * assume buf's are exact multiples of DEV_BSIZE |
| 840 | * and we end up with fewer, or zero, bytes read. |
| 841 | * To get round this we need to round up to the |
| 842 | * nearest full block read and then return only |
| 843 | * len bytes. |
| 844 | */ |
| 845 | newlen = (len - partial) + DEV_BSIZE; |
| 846 | newbuffer = kmem_alloc(newlen, KM_SLEEP); |
| 847 | |
| 848 | snapbuf->b_bcount = newlen; |
| 849 | snapbuf->b_un.b_addr = newbuffer; |
| 850 | } |
| 851 | |
| 852 | (void) bdev_strategy(snapbuf); |
| 853 | (void) biowait(snapbuf); |
| 854 | |
| 855 | error = geterror(snapbuf); |
| 856 | |
| 857 | if (partial) { |
| 858 | /* |
| 859 | * Partial block read. Now we need to bcopy the |
| 860 | * correct number of bytes back into the |
| 861 | * supplied buffer, and tidy up our temp |
| 862 | * buffer. |
| 863 | */ |
| 864 | bcopy(newbuffer, buffer, len); |
| 865 | kmem_free(newbuffer, newlen); |
| 866 | } |
| 867 | |
| 868 | freerbuf(snapbuf); |
| 869 | rw_exit(&cmap->cmap_rwlock); |
| 870 | |
| 871 | return (error); |
| 872 | } |
| 873 | |
| 874 | /* |
| 875 | * finally, if the chunk is a candidate for translation and it |
| 876 | * has been translated, then we clone the chunk of the buffer |
| 877 | * that was copied aside by the file system. |
| 878 | * The cmap_rwlock does not need to be held after we know the |
| 879 | * data has already been copied. Once a chunk has been copied |
| 880 | * to the backing file, it is stable read only data. |
| 881 | */ |
| 882 | cmn = transtbl_get(cmap, chunk); |
| 883 | |
| 884 | /* check whether the data is in memory or in the backing file */ |
| 885 | if (cmn != NULL) { |
| 886 | ASSERT(cmn->cmn_buf); |
| 887 | /* already in memory */ |
| 888 | bcopy(cmn->cmn_buf + offset, buffer, len); |
| 889 | rw_exit(&cmap->cmap_rwlock); |
| 890 | } else { |
| 891 | ssize_t resid = len; |
| 892 | int bf_index; |
| 893 | /* |
| 894 | * can cause deadlock with writer if we don't drop the |
| 895 | * cmap_rwlock before trying to get the backing store file |
| 896 | * vnode rwlock. |
| 897 | */ |
| 898 | rw_exit(&cmap->cmap_rwlock); |
| 899 | |
| 900 | bf_index = chunk / cmap->cmap_chunksperbf; |
| 901 | |
| 902 | /* read buffer from backing file */ |
| 903 | error = vn_rdwr(UIO_READ, |
| 904 | (sidp->sid_cowinfo->cow_backfile_array)[bf_index], |
| 905 | buffer, len, ((chunk % cmap->cmap_chunksperbf) * |
| 906 | cmap->cmap_chunksz) + offset, UIO_SYSSPACE, 0, |
| 907 | RLIM64_INFINITY, kcred, &resid); |
| 908 | } |
| 909 | |
| 910 | return (error); |
| 911 | } |
| 912 | |
| 913 | /* |
| 914 | * snap_print() - snapshot driver print(9E) routine |
| 915 | * |
| 916 | * prints the device identification string. |
| 917 | */ |
| 918 | static int |
| 919 | snap_print(dev_t dev, char *str) |
| 920 | { |
| 921 | struct snapshot_id **sidpp; |
| 922 | minor_t minor; |
| 923 | |
| 924 | minor = getminor(dev); |
| 925 | sidpp = ddi_get_soft_state(statep, minor); |
| 926 | if (sidpp == NULL || *sidpp == NULL) { |
| 927 | cmn_err(CE_WARN, |
| 928 | "snap_print: could not find state for snapshot %d.", minor); |
| 929 | return (ENXIO); |
| 930 | } |
| 931 | |
| 932 | cmn_err(CE_NOTE, "snap_print: snapshot %d: %s", minor, str); |
| 933 | |
| 934 | return (0); |
| 935 | } |
| 936 | |
| 937 | /* |
| 938 | * snap_prop_op() - snapshot driver prop_op(9E) routine |
| 939 | * |
| 940 | * get 32-bit and 64-bit values for size (character driver) and nblocks |
| 941 | * (block driver). |
| 942 | */ |
| 943 | static int |
| 944 | snap_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, |
| 945 | int flags, char *name, caddr_t valuep, int *lengthp) |
| 946 | { |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 947 | int minor; |
cth | 184cd04 | 2007-07-02 21:43:54 -0700 | [diff] [blame] | 948 | struct snapshot_id **sidpp; |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 949 | dev_t mdev; |
cth | 184cd04 | 2007-07-02 21:43:54 -0700 | [diff] [blame] | 950 | dev_info_t *mdip; |
| 951 | int error; |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 952 | |
| 953 | minor = getminor(dev); |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 954 | |
batschul | 572901d | 2009-09-15 03:38:42 -0600 | [diff] [blame] | 955 | /* |
| 956 | * If this is the control device just check for .conf properties, |
| 957 | * if the wildcard DDI_DEV_T_ANY was passed in via the dev_t |
| 958 | * just fall back to the defaults. |
| 959 | */ |
| 960 | if ((minor == SNAP_CTL_MINOR) || (dev == DDI_DEV_T_ANY)) |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 961 | return (ddi_prop_op(dev, dip, prop_op, flags, name, |
cth | 184cd04 | 2007-07-02 21:43:54 -0700 | [diff] [blame] | 962 | valuep, lengthp)); |
| 963 | |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 964 | /* check to see if there is a master device plumbed */ |
| 965 | sidpp = ddi_get_soft_state(statep, minor); |
| 966 | if (sidpp == NULL || *sidpp == NULL) { |
| 967 | cmn_err(CE_WARN, |
| 968 | "snap_prop_op: could not find state for " |
| 969 | "snapshot %d.", minor); |
| 970 | return (DDI_PROP_NOT_FOUND); |
| 971 | } |
| 972 | |
| 973 | if (((*sidpp)->sid_fvp == NULL) || ((*sidpp)->sid_fvp->v_vfsp == NULL)) |
| 974 | return (ddi_prop_op(dev, dip, prop_op, flags, name, |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 975 | valuep, lengthp)); |
cth | 184cd04 | 2007-07-02 21:43:54 -0700 | [diff] [blame] | 976 | |
| 977 | /* hold master device and pass operation down */ |
| 978 | mdev = (*sidpp)->sid_fvp->v_vfsp->vfs_dev; |
| 979 | if (mdip = e_ddi_hold_devi_by_dev(mdev, 0)) { |
| 980 | |
| 981 | /* get size information from the master device. */ |
| 982 | error = cdev_prop_op(mdev, mdip, |
| 983 | prop_op, flags, name, valuep, lengthp); |
| 984 | ddi_release_devi(mdip); |
| 985 | if (error == DDI_PROP_SUCCESS) |
| 986 | return (error); |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 987 | } |
| 988 | |
cth | 184cd04 | 2007-07-02 21:43:54 -0700 | [diff] [blame] | 989 | /* master device did not service the request, try framework */ |
| 990 | return (ddi_prop_op(dev, dip, prop_op, flags, name, valuep, lengthp)); |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 991 | |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 992 | } |
| 993 | |
| 994 | /* |
| 995 | * snap_ioctl() - snapshot driver ioctl(9E) routine |
| 996 | * |
| 997 | * only applies to the control device. The control device accepts two |
| 998 | * ioctl requests: create a snapshot or delete a snapshot. In either |
| 999 | * case, the vnode for the requested file system is extracted, and the |
| 1000 | * request is passed on to the file system via the same ioctl. The file |
| 1001 | * system is responsible for doing the things necessary for creating or |
| 1002 | * destroying a snapshot, including any file system specific operations |
| 1003 | * that must be performed as well as setting up and deleting the snapshot |
| 1004 | * state through the fssnap interfaces. |
| 1005 | */ |
| 1006 | static int |
| 1007 | snap_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, |
| 1008 | int *rvalp) |
| 1009 | { |
| 1010 | minor_t minor; |
| 1011 | int error = 0; |
| 1012 | |
| 1013 | minor = getminor(dev); |
| 1014 | |
| 1015 | if (minor != SNAP_CTL_MINOR) { |
| 1016 | return (EINVAL); |
| 1017 | } |
| 1018 | |
| 1019 | switch (cmd) { |
| 1020 | case _FIOSNAPSHOTCREATE: |
| 1021 | { |
| 1022 | struct fiosnapcreate fc; |
| 1023 | struct file *fp; |
| 1024 | struct vnode *vp; |
| 1025 | |
| 1026 | if (ddi_copyin((void *)arg, &fc, sizeof (fc), mode)) |
| 1027 | return (EFAULT); |
| 1028 | |
| 1029 | /* get vnode for file system mount point */ |
| 1030 | if ((fp = getf(fc.rootfiledesc)) == NULL) |
| 1031 | return (EBADF); |
| 1032 | |
| 1033 | ASSERT(fp->f_vnode); |
| 1034 | vp = fp->f_vnode; |
| 1035 | VN_HOLD(vp); |
| 1036 | releasef(fc.rootfiledesc); |
| 1037 | |
| 1038 | /* pass ioctl request to file system */ |
amw | da6c28a | 2007-10-25 16:34:29 -0700 | [diff] [blame] | 1039 | error = VOP_IOCTL(vp, cmd, arg, 0, credp, rvalp, NULL); |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 1040 | VN_RELE(vp); |
| 1041 | break; |
| 1042 | } |
| 1043 | case _FIOSNAPSHOTCREATE_MULTI: |
| 1044 | { |
| 1045 | struct fiosnapcreate_multi fc; |
| 1046 | struct file *fp; |
| 1047 | struct vnode *vp; |
| 1048 | |
| 1049 | if (ddi_copyin((void *)arg, &fc, sizeof (fc), mode)) |
| 1050 | return (EFAULT); |
| 1051 | |
| 1052 | /* get vnode for file system mount point */ |
| 1053 | if ((fp = getf(fc.rootfiledesc)) == NULL) |
| 1054 | return (EBADF); |
| 1055 | |
| 1056 | ASSERT(fp->f_vnode); |
| 1057 | vp = fp->f_vnode; |
| 1058 | VN_HOLD(vp); |
| 1059 | releasef(fc.rootfiledesc); |
| 1060 | |
| 1061 | /* pass ioctl request to file system */ |
amw | da6c28a | 2007-10-25 16:34:29 -0700 | [diff] [blame] | 1062 | error = VOP_IOCTL(vp, cmd, arg, 0, credp, rvalp, NULL); |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 1063 | VN_RELE(vp); |
| 1064 | break; |
| 1065 | } |
| 1066 | case _FIOSNAPSHOTDELETE: |
| 1067 | { |
| 1068 | major_t major; |
| 1069 | struct fiosnapdelete fc; |
| 1070 | snapshot_id_t *sidp = NULL; |
| 1071 | snapshot_id_t *sidnextp = NULL; |
| 1072 | struct file *fp = NULL; |
| 1073 | struct vnode *vp = NULL; |
| 1074 | struct vfs *vfsp = NULL; |
| 1075 | vfsops_t *vfsops = EIO_vfsops; |
| 1076 | |
| 1077 | if (ddi_copyin((void *)arg, &fc, sizeof (fc), mode)) |
| 1078 | return (EFAULT); |
| 1079 | |
| 1080 | /* get vnode for file system mount point */ |
| 1081 | if ((fp = getf(fc.rootfiledesc)) == NULL) |
| 1082 | return (EBADF); |
| 1083 | |
| 1084 | ASSERT(fp->f_vnode); |
| 1085 | vp = fp->f_vnode; |
| 1086 | VN_HOLD(vp); |
| 1087 | releasef(fc.rootfiledesc); |
| 1088 | /* |
| 1089 | * Test for two formats of delete and set correct minor/vp: |
| 1090 | * pseudo device: |
| 1091 | * fssnap -d [/dev/fssnap/x] |
| 1092 | * or |
| 1093 | * mount point: |
| 1094 | * fssnap -d [/mntpt] |
| 1095 | * Note that minor is verified to be equal to SNAP_CTL_MINOR |
| 1096 | * at this point which is an invalid minor number. |
| 1097 | */ |
| 1098 | ASSERT(fssnap_dip != NULL); |
| 1099 | major = ddi_driver_major(fssnap_dip); |
| 1100 | mutex_enter(&snapshot_mutex); |
| 1101 | for (sidp = snapshot; sidp != NULL; sidp = sidnextp) { |
| 1102 | rw_enter(&sidp->sid_rwlock, RW_READER); |
| 1103 | sidnextp = sidp->sid_next; |
| 1104 | /* pseudo device: */ |
| 1105 | if (major == getmajor(vp->v_rdev)) { |
| 1106 | minor = getminor(vp->v_rdev); |
| 1107 | if (sidp->sid_snapnumber == (uint_t)minor && |
| 1108 | sidp->sid_fvp) { |
| 1109 | VN_RELE(vp); |
| 1110 | vp = sidp->sid_fvp; |
| 1111 | VN_HOLD(vp); |
| 1112 | rw_exit(&sidp->sid_rwlock); |
| 1113 | break; |
| 1114 | } |
| 1115 | /* Mount point: */ |
| 1116 | } else { |
| 1117 | if (sidp->sid_fvp == vp) { |
| 1118 | minor = sidp->sid_snapnumber; |
| 1119 | rw_exit(&sidp->sid_rwlock); |
| 1120 | break; |
| 1121 | } |
| 1122 | } |
| 1123 | rw_exit(&sidp->sid_rwlock); |
| 1124 | } |
| 1125 | mutex_exit(&snapshot_mutex); |
| 1126 | /* Verify minor got set correctly above */ |
| 1127 | if (minor == SNAP_CTL_MINOR) { |
| 1128 | VN_RELE(vp); |
| 1129 | return (EINVAL); |
| 1130 | } |
| 1131 | dev = makedevice(major, minor); |
| 1132 | /* |
| 1133 | * Create dummy vfs entry |
| 1134 | * to use as a locking semaphore across the IOCTL |
| 1135 | * for mount in progress cases... |
| 1136 | */ |
amw | da6c28a | 2007-10-25 16:34:29 -0700 | [diff] [blame] | 1137 | vfsp = vfs_alloc(KM_SLEEP); |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 1138 | VFS_INIT(vfsp, vfsops, NULL); |
rsb | ddfcde8 | 2006-05-02 13:03:35 -0700 | [diff] [blame] | 1139 | VFS_HOLD(vfsp); |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 1140 | vfs_addmip(dev, vfsp); |
| 1141 | if ((vfs_devmounting(dev, vfsp)) || |
| 1142 | (vfs_devismounted(dev))) { |
| 1143 | vfs_delmip(vfsp); |
rsb | ddfcde8 | 2006-05-02 13:03:35 -0700 | [diff] [blame] | 1144 | VFS_RELE(vfsp); |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 1145 | VN_RELE(vp); |
| 1146 | return (EBUSY); |
| 1147 | } |
| 1148 | /* |
| 1149 | * Nobody mounted but do not release mount in progress lock |
| 1150 | * until IOCTL complete to prohibit a mount sneaking |
| 1151 | * in |
| 1152 | */ |
amw | da6c28a | 2007-10-25 16:34:29 -0700 | [diff] [blame] | 1153 | error = VOP_IOCTL(vp, cmd, arg, 0, credp, rvalp, NULL); |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 1154 | vfs_delmip(vfsp); |
rsb | ddfcde8 | 2006-05-02 13:03:35 -0700 | [diff] [blame] | 1155 | VFS_RELE(vfsp); |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 1156 | VN_RELE(vp); |
| 1157 | break; |
| 1158 | } |
| 1159 | default: |
| 1160 | cmn_err(CE_WARN, "snap_ioctl: Invalid ioctl cmd %d, minor %d.", |
| 1161 | cmd, minor); |
| 1162 | return (EINVAL); |
| 1163 | } |
| 1164 | |
| 1165 | return (error); |
| 1166 | } |
| 1167 | |
| 1168 | |
| 1169 | /* ************************************************************************ */ |
| 1170 | |
| 1171 | /* |
| 1172 | * Translation Table Routines |
| 1173 | * |
| 1174 | * These support routines implement a simple doubly linked list |
| 1175 | * to keep track of chunks that are currently in memory. The maximum |
| 1176 | * size of the list is determined by the fssnap_max_mem_chunks variable. |
| 1177 | * The cmap_rwlock is used to protect the linkage of the list. |
| 1178 | */ |
| 1179 | |
| 1180 | /* |
| 1181 | * transtbl_add() - add a node to the translation table |
| 1182 | * |
| 1183 | * allocates a new node and points it at the buffer passed in. The node |
| 1184 | * is added to the beginning of the doubly linked list and the head of |
| 1185 | * the list is moved. The cmap_rwlock must be held as a writer through |
| 1186 | * this operation. |
| 1187 | */ |
| 1188 | static cow_map_node_t * |
| 1189 | transtbl_add(cow_map_t *cmap, chunknumber_t chunk, caddr_t buf) |
| 1190 | { |
| 1191 | cow_map_node_t *cmnode; |
| 1192 | |
| 1193 | ASSERT(RW_WRITE_HELD(&cmap->cmap_rwlock)); |
| 1194 | |
| 1195 | cmnode = kmem_alloc(sizeof (cow_map_node_t), KM_SLEEP); |
| 1196 | |
| 1197 | /* |
| 1198 | * insert new translations at the beginning so cmn_table is always |
| 1199 | * the first node. |
| 1200 | */ |
| 1201 | cmnode->cmn_chunk = chunk; |
| 1202 | cmnode->cmn_buf = buf; |
| 1203 | cmnode->cmn_prev = NULL; |
| 1204 | cmnode->cmn_next = cmap->cmap_table; |
| 1205 | if (cmnode->cmn_next) |
| 1206 | cmnode->cmn_next->cmn_prev = cmnode; |
| 1207 | cmap->cmap_table = cmnode; |
| 1208 | |
| 1209 | return (cmnode); |
| 1210 | } |
| 1211 | |
| 1212 | /* |
| 1213 | * transtbl_get() - look up a node in the translation table |
| 1214 | * |
| 1215 | * called by the snapshot driver to find data that has been translated. |
| 1216 | * The lookup is done by the chunk number, and the node is returned. |
| 1217 | * If the node was not found, NULL is returned. |
| 1218 | */ |
| 1219 | static cow_map_node_t * |
| 1220 | transtbl_get(cow_map_t *cmap, chunknumber_t chunk) |
| 1221 | { |
| 1222 | cow_map_node_t *cmn; |
| 1223 | |
| 1224 | ASSERT(RW_READ_HELD(&cmap->cmap_rwlock)); |
| 1225 | ASSERT(cmap); |
| 1226 | |
| 1227 | /* search the translation table */ |
| 1228 | for (cmn = cmap->cmap_table; cmn != NULL; cmn = cmn->cmn_next) { |
| 1229 | if (cmn->cmn_chunk == chunk) |
| 1230 | return (cmn); |
| 1231 | } |
| 1232 | |
| 1233 | /* not found */ |
| 1234 | return (NULL); |
| 1235 | } |
| 1236 | |
| 1237 | /* |
| 1238 | * transtbl_delete() - delete a node from the translation table |
| 1239 | * |
| 1240 | * called when a node's data has been written out to disk. The |
| 1241 | * cmap_rwlock must be held as a writer for this operation. If the node |
| 1242 | * being deleted is the head of the list, then the head is moved to the |
| 1243 | * next node. Both the node's data and the node itself are freed. |
| 1244 | */ |
| 1245 | static void |
| 1246 | transtbl_delete(cow_map_t *cmap, cow_map_node_t *cmn) |
| 1247 | { |
| 1248 | ASSERT(RW_WRITE_HELD(&cmap->cmap_rwlock)); |
| 1249 | ASSERT(cmn); |
| 1250 | ASSERT(cmap->cmap_table); |
| 1251 | |
| 1252 | /* if the head of the list is being deleted, then move the head up */ |
| 1253 | if (cmap->cmap_table == cmn) { |
| 1254 | ASSERT(cmn->cmn_prev == NULL); |
| 1255 | cmap->cmap_table = cmn->cmn_next; |
| 1256 | } |
| 1257 | |
| 1258 | |
| 1259 | /* make previous node's next pointer skip over current node */ |
| 1260 | if (cmn->cmn_prev != NULL) { |
| 1261 | ASSERT(cmn->cmn_prev->cmn_next == cmn); |
| 1262 | cmn->cmn_prev->cmn_next = cmn->cmn_next; |
| 1263 | } |
| 1264 | |
| 1265 | /* make next node's previous pointer skip over current node */ |
| 1266 | if (cmn->cmn_next != NULL) { |
| 1267 | ASSERT(cmn->cmn_next->cmn_prev == cmn); |
| 1268 | cmn->cmn_next->cmn_prev = cmn->cmn_prev; |
| 1269 | } |
| 1270 | |
| 1271 | /* free the data and the node */ |
| 1272 | ASSERT(cmn->cmn_buf); |
| 1273 | kmem_free(cmn->cmn_buf, cmap->cmap_chunksz); |
| 1274 | kmem_free(cmn, sizeof (cow_map_node_t)); |
| 1275 | } |
| 1276 | |
| 1277 | /* |
| 1278 | * transtbl_free() - free the entire translation table |
| 1279 | * |
| 1280 | * called when the snapshot is deleted. This frees all of the nodes in |
| 1281 | * the translation table (but not the bitmaps). |
| 1282 | */ |
| 1283 | static void |
| 1284 | transtbl_free(cow_map_t *cmap) |
| 1285 | { |
| 1286 | cow_map_node_t *curnode; |
| 1287 | cow_map_node_t *tempnode; |
| 1288 | |
| 1289 | for (curnode = cmap->cmap_table; curnode != NULL; curnode = tempnode) { |
| 1290 | tempnode = curnode->cmn_next; |
| 1291 | |
| 1292 | kmem_free(curnode->cmn_buf, cmap->cmap_chunksz); |
| 1293 | kmem_free(curnode, sizeof (cow_map_node_t)); |
| 1294 | } |
| 1295 | } |
| 1296 | |
| 1297 | |
| 1298 | /* ************************************************************************ */ |
| 1299 | |
| 1300 | /* |
| 1301 | * Interface Implementation Routines |
| 1302 | * |
| 1303 | * The following functions implement snapshot interface routines that are |
| 1304 | * called by the file system to create, delete, and use a snapshot. The |
| 1305 | * interfaces are defined in fssnap_if.c and are filled in by this driver |
| 1306 | * when it is loaded. This technique allows the file system to depend on |
| 1307 | * the interface module without having to load the full implementation and |
| 1308 | * snapshot device drivers. |
| 1309 | */ |
| 1310 | |
| 1311 | /* |
| 1312 | * fssnap_strategy_impl() - strategy routine called by the file system |
| 1313 | * |
| 1314 | * called by the file system to handle copy-on-write when necessary. All |
| 1315 | * reads and writes that the file system performs should go through this |
| 1316 | * function. If the file system calls the underlying device's strategy |
| 1317 | * routine without going through fssnap_strategy() (eg. by calling |
| 1318 | * bdev_strategy()), the snapshot may not be consistent. |
| 1319 | * |
| 1320 | * This function starts by doing significant sanity checking to insure |
| 1321 | * the snapshot was not deleted out from under it or deleted and then |
| 1322 | * recreated. To do this, it checks the actual pointer passed into it |
| 1323 | * (ie. the handle held by the file system). NOTE that the parameter is |
| 1324 | * a POINTER TO A POINTER to the snapshot id. Once the snapshot id is |
| 1325 | * locked, it knows things are ok and that this snapshot is really for |
| 1326 | * this file system. |
| 1327 | * |
| 1328 | * If the request is a write, fssnap_translate() is called to determine |
| 1329 | * whether a copy-on-write is required. If it is a read, the read is |
| 1330 | * simply passed on to the underlying device. |
| 1331 | */ |
| 1332 | static void |
| 1333 | fssnap_strategy_impl(void *snapshot_id, buf_t *bp) |
| 1334 | { |
| 1335 | struct snapshot_id **sidpp; |
| 1336 | struct snapshot_id *sidp; |
| 1337 | int error; |
| 1338 | |
| 1339 | /* read requests are always passed through */ |
| 1340 | if (bp->b_flags & B_READ) { |
| 1341 | (void) bdev_strategy(bp); |
| 1342 | return; |
| 1343 | } |
| 1344 | |
| 1345 | /* |
| 1346 | * Because we were not able to take the snapshot read lock BEFORE |
| 1347 | * checking for a snapshot back in the file system, things may have |
| 1348 | * drastically changed out from under us. For instance, the snapshot |
| 1349 | * may have been deleted, deleted and recreated, or worse yet, deleted |
| 1350 | * for this file system but now the snapshot number is in use by another |
| 1351 | * file system. |
| 1352 | * |
| 1353 | * Having a pointer to the file system's snapshot id pointer allows us |
| 1354 | * to sanity check most of this, though it assumes the file system is |
| 1355 | * keeping track of a pointer to the snapshot_id somewhere. |
| 1356 | */ |
| 1357 | sidpp = (struct snapshot_id **)snapshot_id; |
| 1358 | sidp = *sidpp; |
| 1359 | |
| 1360 | /* |
| 1361 | * if this file system's snapshot was disabled, just pass the |
| 1362 | * request through. |
| 1363 | */ |
| 1364 | if (sidp == NULL) { |
| 1365 | (void) bdev_strategy(bp); |
| 1366 | return; |
| 1367 | } |
| 1368 | |
| 1369 | /* |
| 1370 | * Once we have the reader lock the snapshot will not magically go |
| 1371 | * away. But things may have changed on us before this so double check. |
| 1372 | */ |
| 1373 | rw_enter(&sidp->sid_rwlock, RW_READER); |
| 1374 | |
| 1375 | /* |
| 1376 | * if an error was founds somewhere the DELETE flag will be |
| 1377 | * set to indicate the snapshot should be deleted and no new |
| 1378 | * translations should occur. |
| 1379 | */ |
| 1380 | if (sidp->sid_flags & SID_DELETE) { |
| 1381 | rw_exit(&sidp->sid_rwlock); |
| 1382 | (void) fssnap_delete_impl(sidpp); |
| 1383 | (void) bdev_strategy(bp); |
| 1384 | return; |
| 1385 | } |
| 1386 | |
| 1387 | /* |
| 1388 | * If the file system is no longer pointing to the snapshot we were |
| 1389 | * called with, then it should not attempt to translate this buffer as |
| 1390 | * it may be going to a snapshot for a different file system. |
| 1391 | * Even if the file system snapshot pointer is still the same, the |
| 1392 | * snapshot may have been disabled before we got the reader lock. |
| 1393 | */ |
| 1394 | if (sidp != *sidpp || SID_INACTIVE(sidp)) { |
| 1395 | rw_exit(&sidp->sid_rwlock); |
| 1396 | (void) bdev_strategy(bp); |
| 1397 | return; |
| 1398 | } |
| 1399 | |
| 1400 | /* |
| 1401 | * At this point we're sure the snapshot will not go away while the |
| 1402 | * reader lock is held, and we are reasonably certain that we are |
| 1403 | * writing to the correct snapshot. |
| 1404 | */ |
| 1405 | if ((error = fssnap_translate(sidpp, bp)) != 0) { |
| 1406 | /* |
| 1407 | * fssnap_translate can release the reader lock if it |
| 1408 | * has to wait for a semaphore. In this case it is possible |
| 1409 | * for the snapshot to be deleted in this time frame. If this |
| 1410 | * happens just sent the buf thru to the filesystems device. |
| 1411 | */ |
| 1412 | if (sidp != *sidpp || SID_INACTIVE(sidp)) { |
| 1413 | rw_exit(&sidp->sid_rwlock); |
| 1414 | (void) bdev_strategy(bp); |
| 1415 | return; |
| 1416 | } |
| 1417 | bioerror(bp, error); |
| 1418 | biodone(bp); |
| 1419 | } |
| 1420 | rw_exit(&sidp->sid_rwlock); |
| 1421 | } |
| 1422 | |
| 1423 | /* |
| 1424 | * fssnap_translate() - helper function for fssnap_strategy() |
| 1425 | * |
| 1426 | * performs the actual copy-on-write for write requests, if required. |
| 1427 | * This function does the real work of the file system side of things. |
| 1428 | * |
| 1429 | * It first checks the candidate bitmap to quickly determine whether any |
| 1430 | * action is necessary. If the candidate bitmap indicates the chunk was |
| 1431 | * allocated when the snapshot was created, then it checks to see whether |
| 1432 | * a translation already exists. If a translation already exists then no |
| 1433 | * action is required. If the chunk is a candidate for copy-on-write, |
| 1434 | * and a translation does not already exist, then the chunk is read in |
| 1435 | * and a node is added to the translation table. |
| 1436 | * |
| 1437 | * Once all of the chunks in the request range have been copied (if they |
| 1438 | * needed to be), then the original request can be satisfied and the old |
| 1439 | * data can be overwritten. |
| 1440 | */ |
| 1441 | static int |
| 1442 | fssnap_translate(struct snapshot_id **sidpp, struct buf *wbp) |
| 1443 | { |
| 1444 | snapshot_id_t *sidp = *sidpp; |
| 1445 | struct buf *oldbp; /* buffer to store old data in */ |
| 1446 | struct cow_info *cowp = sidp->sid_cowinfo; |
| 1447 | cow_map_t *cmap = &cowp->cow_map; |
| 1448 | cow_map_node_t *cmn; |
| 1449 | chunknumber_t cowchunk, startchunk, endchunk; |
| 1450 | int error; |
| 1451 | int throttle_write = 0; |
| 1452 | |
| 1453 | /* make sure the snapshot is active */ |
| 1454 | ASSERT(RW_READ_HELD(&sidp->sid_rwlock)); |
| 1455 | |
| 1456 | startchunk = dbtocowchunk(cmap, wbp->b_lblkno); |
| 1457 | endchunk = dbtocowchunk(cmap, wbp->b_lblkno + |
| 1458 | ((wbp->b_bcount-1) >> DEV_BSHIFT)); |
| 1459 | |
| 1460 | /* |
| 1461 | * Do not throttle the writes of the fssnap taskq thread and |
| 1462 | * the log roll (trans_roll) thread. Furthermore the writes to |
| 1463 | * the on-disk log are also not subject to throttling. |
| 1464 | * The fssnap_write_taskq thread's write can block on the throttling |
| 1465 | * semaphore which leads to self-deadlock as this same thread |
| 1466 | * releases the throttling semaphore after completing the IO. |
| 1467 | * If the trans_roll thread's write is throttled then we can deadlock |
| 1468 | * because the fssnap_taskq_thread which releases the throttling |
| 1469 | * semaphore can block waiting for log space which can only be |
| 1470 | * released by the trans_roll thread. |
| 1471 | */ |
| 1472 | |
| 1473 | throttle_write = !(taskq_member(cowp->cow_taskq, curthread) || |
cth | 184cd04 | 2007-07-02 21:43:54 -0700 | [diff] [blame] | 1474 | tsd_get(bypass_snapshot_throttle_key)); |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 1475 | |
| 1476 | /* |
| 1477 | * Iterate through all chunks covered by this write and perform the |
| 1478 | * copy-aside if necessary. Once all chunks have been safely |
| 1479 | * stowed away, the new data may be written in a single sweep. |
| 1480 | * |
| 1481 | * For each chunk in the range, the following sequence is performed: |
| 1482 | * - Is the chunk a candidate for translation? |
| 1483 | * o If not, then no translation is necessary, continue |
| 1484 | * - If it is a candidate, then does it already have a translation? |
| 1485 | * o If so, then no translation is necessary, continue |
| 1486 | * - If it is a candidate, but does not yet have a translation, |
| 1487 | * then read the old data and schedule an asynchronous taskq |
| 1488 | * to write the old data to the backing file. |
| 1489 | * |
| 1490 | * Once this has been performed over the entire range of chunks, then |
| 1491 | * it is safe to overwrite the data that is there. |
| 1492 | * |
| 1493 | * Note that no lock is required to check the candidate bitmap because |
| 1494 | * it never changes once the snapshot is created. The reader lock is |
| 1495 | * taken to check the hastrans bitmap since it may change. If it |
| 1496 | * turns out a copy is required, then the lock is upgraded to a |
| 1497 | * writer, and the bitmap is re-checked as it may have changed while |
| 1498 | * the lock was released. Finally, the write lock is held while |
| 1499 | * reading the old data to make sure it is not translated out from |
| 1500 | * under us. |
| 1501 | * |
| 1502 | * This locking mechanism should be sufficient to handle multiple |
| 1503 | * threads writing to overlapping chunks simultaneously. |
| 1504 | */ |
| 1505 | for (cowchunk = startchunk; cowchunk <= endchunk; cowchunk++) { |
| 1506 | /* |
| 1507 | * If the cowchunk is outside of the range of our |
| 1508 | * candidate maps, then simply break out of the |
| 1509 | * loop and pass the I/O through to bdev_strategy. |
| 1510 | * This would occur if the file system has grown |
| 1511 | * larger since the snapshot was taken. |
| 1512 | */ |
| 1513 | if (cowchunk >= (cmap->cmap_bmsize * NBBY)) |
| 1514 | break; |
| 1515 | |
| 1516 | /* |
| 1517 | * If no disk blocks were allocated in this chunk when the |
| 1518 | * snapshot was created then no copy-on-write will be |
| 1519 | * required. Since this bitmap is read-only no locks are |
| 1520 | * necessary. |
| 1521 | */ |
| 1522 | if (isclr(cmap->cmap_candidate, cowchunk)) { |
| 1523 | continue; |
| 1524 | } |
| 1525 | |
| 1526 | /* |
| 1527 | * If a translation already exists, the data can be written |
| 1528 | * through since the old data has already been saved off. |
| 1529 | */ |
| 1530 | if (isset(cmap->cmap_hastrans, cowchunk)) { |
| 1531 | continue; |
| 1532 | } |
| 1533 | |
| 1534 | |
| 1535 | /* |
| 1536 | * Throttle translations if there are too many outstanding |
| 1537 | * chunks in memory. The semaphore is sema_v'd by the taskq. |
| 1538 | * |
| 1539 | * You can't keep the sid_rwlock if you would go to sleep. |
| 1540 | * This will result in deadlock when someone tries to delete |
| 1541 | * the snapshot (wants the sid_rwlock as a writer, but can't |
| 1542 | * get it). |
| 1543 | */ |
| 1544 | if (throttle_write) { |
| 1545 | if (sema_tryp(&cmap->cmap_throttle_sem) == 0) { |
| 1546 | rw_exit(&sidp->sid_rwlock); |
Josef 'Jeff' Sipek | 1a5e258 | 2014-08-08 10:50:14 -0400 | [diff] [blame] | 1547 | atomic_inc_32(&cmap->cmap_waiters); |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 1548 | sema_p(&cmap->cmap_throttle_sem); |
Josef 'Jeff' Sipek | 1a5e258 | 2014-08-08 10:50:14 -0400 | [diff] [blame] | 1549 | atomic_dec_32(&cmap->cmap_waiters); |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 1550 | rw_enter(&sidp->sid_rwlock, RW_READER); |
| 1551 | |
| 1552 | /* |
| 1553 | * Now since we released the sid_rwlock the state may |
| 1554 | * have transitioned underneath us. so check that again. |
| 1555 | */ |
| 1556 | if (sidp != *sidpp || SID_INACTIVE(sidp)) { |
| 1557 | sema_v(&cmap->cmap_throttle_sem); |
| 1558 | return (ENXIO); |
| 1559 | } |
| 1560 | } |
| 1561 | } |
| 1562 | |
| 1563 | /* |
| 1564 | * Acquire the lock as a writer and check to see if a |
| 1565 | * translation has been added in the meantime. |
| 1566 | */ |
| 1567 | rw_enter(&cmap->cmap_rwlock, RW_WRITER); |
| 1568 | if (isset(cmap->cmap_hastrans, cowchunk)) { |
| 1569 | if (throttle_write) |
| 1570 | sema_v(&cmap->cmap_throttle_sem); |
| 1571 | rw_exit(&cmap->cmap_rwlock); |
| 1572 | continue; /* go to the next chunk */ |
| 1573 | } |
| 1574 | |
| 1575 | /* |
| 1576 | * read a full chunk of data from the requested offset rounded |
| 1577 | * down to the nearest chunk size. |
| 1578 | */ |
| 1579 | oldbp = getrbuf(KM_SLEEP); |
| 1580 | oldbp->b_lblkno = cowchunktodb(cmap, cowchunk); |
| 1581 | oldbp->b_edev = wbp->b_edev; |
| 1582 | oldbp->b_bcount = cmap->cmap_chunksz; |
| 1583 | oldbp->b_bufsize = cmap->cmap_chunksz; |
| 1584 | oldbp->b_iodone = NULL; |
| 1585 | oldbp->b_proc = NULL; |
| 1586 | oldbp->b_flags = B_READ; |
| 1587 | oldbp->b_un.b_addr = kmem_alloc(cmap->cmap_chunksz, KM_SLEEP); |
| 1588 | |
| 1589 | (void) bdev_strategy(oldbp); |
| 1590 | (void) biowait(oldbp); |
| 1591 | |
| 1592 | /* |
| 1593 | * It's ok to bail in the middle of translating the range |
| 1594 | * because the extra copy-asides will not hurt anything |
| 1595 | * (except by using extra space in the backing store). |
| 1596 | */ |
| 1597 | if ((error = geterror(oldbp)) != 0) { |
| 1598 | cmn_err(CE_WARN, "fssnap_translate: error reading " |
| 1599 | "old data for snapshot %d, chunk %llu, disk block " |
| 1600 | "%lld, size %lu, error %d.", sidp->sid_snapnumber, |
| 1601 | cowchunk, oldbp->b_lblkno, oldbp->b_bcount, error); |
| 1602 | kmem_free(oldbp->b_un.b_addr, cmap->cmap_chunksz); |
| 1603 | freerbuf(oldbp); |
| 1604 | rw_exit(&cmap->cmap_rwlock); |
| 1605 | if (throttle_write) |
| 1606 | sema_v(&cmap->cmap_throttle_sem); |
| 1607 | return (error); |
| 1608 | } |
| 1609 | |
| 1610 | /* |
| 1611 | * add the node to the translation table and save a reference |
| 1612 | * to pass to the taskq for writing out to the backing file |
| 1613 | */ |
| 1614 | cmn = transtbl_add(cmap, cowchunk, oldbp->b_un.b_addr); |
| 1615 | freerbuf(oldbp); |
| 1616 | |
| 1617 | /* |
| 1618 | * Add a reference to the snapshot id so the lower level |
| 1619 | * processing (ie. the taskq) can get back to the state |
| 1620 | * information. |
| 1621 | */ |
| 1622 | cmn->cmn_sid = sidp; |
| 1623 | cmn->release_sem = throttle_write; |
| 1624 | setbit(cmap->cmap_hastrans, cowchunk); |
| 1625 | |
| 1626 | rw_exit(&cmap->cmap_rwlock); |
| 1627 | |
| 1628 | /* |
| 1629 | * schedule the asynchronous write to the backing file |
| 1630 | */ |
| 1631 | if (cowp->cow_backfile_array != NULL) |
| 1632 | (void) taskq_dispatch(cowp->cow_taskq, |
| 1633 | fssnap_write_taskq, cmn, TQ_SLEEP); |
| 1634 | } |
| 1635 | |
| 1636 | /* |
| 1637 | * Write new data in place of the old data. At this point all of the |
| 1638 | * chunks touched by this write have been copied aside and so the new |
| 1639 | * data can be written out all at once. |
| 1640 | */ |
| 1641 | (void) bdev_strategy(wbp); |
| 1642 | |
| 1643 | return (0); |
| 1644 | } |
| 1645 | |
| 1646 | /* |
| 1647 | * fssnap_write_taskq() - write in-memory translations to the backing file |
| 1648 | * |
| 1649 | * writes in-memory translations to the backing file asynchronously. A |
| 1650 | * task is dispatched each time a new translation is created. The task |
| 1651 | * writes the data to the backing file and removes it from the memory |
| 1652 | * list. The throttling semaphore is released only if the particular |
| 1653 | * translation was throttled in fssnap_translate. |
| 1654 | */ |
| 1655 | static void |
| 1656 | fssnap_write_taskq(void *arg) |
| 1657 | { |
| 1658 | cow_map_node_t *cmn = (cow_map_node_t *)arg; |
| 1659 | snapshot_id_t *sidp = cmn->cmn_sid; |
| 1660 | cow_info_t *cowp = sidp->sid_cowinfo; |
| 1661 | cow_map_t *cmap = &cowp->cow_map; |
| 1662 | int error; |
| 1663 | int bf_index; |
| 1664 | int release_sem = cmn->release_sem; |
| 1665 | |
| 1666 | /* |
| 1667 | * The sid_rwlock does not need to be held here because the taskqs |
| 1668 | * are destroyed explicitly by fssnap_delete (with the sid_rwlock |
| 1669 | * held as a writer). taskq_destroy() will flush all of the tasks |
| 1670 | * out before fssnap_delete frees up all of the structures. |
| 1671 | */ |
| 1672 | |
| 1673 | /* if the snapshot was disabled from under us, drop the request. */ |
| 1674 | rw_enter(&sidp->sid_rwlock, RW_READER); |
| 1675 | if (SID_INACTIVE(sidp)) { |
| 1676 | rw_exit(&sidp->sid_rwlock); |
| 1677 | if (release_sem) |
| 1678 | sema_v(&cmap->cmap_throttle_sem); |
| 1679 | return; |
| 1680 | } |
| 1681 | rw_exit(&sidp->sid_rwlock); |
| 1682 | |
Josef 'Jeff' Sipek | 1a5e258 | 2014-08-08 10:50:14 -0400 | [diff] [blame] | 1683 | atomic_inc_64((uint64_t *)&cmap->cmap_nchunks); |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 1684 | |
| 1685 | if ((cmap->cmap_maxsize != 0) && |
| 1686 | ((cmap->cmap_nchunks * cmap->cmap_chunksz) > cmap->cmap_maxsize)) { |
| 1687 | cmn_err(CE_WARN, "fssnap_write_taskq: snapshot %d (%s) has " |
| 1688 | "reached the maximum backing file size specified (%llu " |
| 1689 | "bytes) and will be deleted.", sidp->sid_snapnumber, |
| 1690 | (char *)cowp->cow_kstat_mntpt->ks_data, |
| 1691 | cmap->cmap_maxsize); |
| 1692 | if (release_sem) |
| 1693 | sema_v(&cmap->cmap_throttle_sem); |
| 1694 | atomic_or_uint(&sidp->sid_flags, SID_DELETE); |
| 1695 | return; |
| 1696 | } |
| 1697 | |
| 1698 | /* perform the write */ |
| 1699 | bf_index = cmn->cmn_chunk / cmap->cmap_chunksperbf; |
| 1700 | |
| 1701 | if (error = vn_rdwr(UIO_WRITE, (cowp->cow_backfile_array)[bf_index], |
| 1702 | cmn->cmn_buf, cmap->cmap_chunksz, |
| 1703 | (cmn->cmn_chunk % cmap->cmap_chunksperbf) * cmap->cmap_chunksz, |
| 1704 | UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, (ssize_t *)NULL)) { |
| 1705 | cmn_err(CE_WARN, "fssnap_write_taskq: error writing to " |
| 1706 | "backing file. DELETING SNAPSHOT %d, backing file path " |
| 1707 | "%s, offset %llu bytes, error %d.", sidp->sid_snapnumber, |
| 1708 | (char *)cowp->cow_kstat_bfname->ks_data, |
| 1709 | cmn->cmn_chunk * cmap->cmap_chunksz, error); |
| 1710 | if (release_sem) |
| 1711 | sema_v(&cmap->cmap_throttle_sem); |
| 1712 | atomic_or_uint(&sidp->sid_flags, SID_DELETE); |
| 1713 | return; |
| 1714 | } |
| 1715 | |
| 1716 | /* |
| 1717 | * now remove the node and buffer from memory |
| 1718 | */ |
| 1719 | rw_enter(&cmap->cmap_rwlock, RW_WRITER); |
| 1720 | transtbl_delete(cmap, cmn); |
| 1721 | rw_exit(&cmap->cmap_rwlock); |
| 1722 | |
| 1723 | /* Allow more translations */ |
| 1724 | if (release_sem) |
| 1725 | sema_v(&cmap->cmap_throttle_sem); |
| 1726 | |
| 1727 | } |
| 1728 | |
| 1729 | /* |
| 1730 | * fssnap_create_impl() - called from the file system to create a new snapshot |
| 1731 | * |
| 1732 | * allocates and initializes the structures needed for a new snapshot. |
| 1733 | * This is called by the file system when it receives an ioctl request to |
| 1734 | * create a new snapshot. An unused snapshot identifier is either found |
| 1735 | * or created, and eventually returned as the opaque handle the file |
| 1736 | * system will use to identify this snapshot. The snapshot number |
| 1737 | * associated with the snapshot identifier is the same as the minor |
| 1738 | * number for the snapshot device that is used to access that snapshot. |
| 1739 | * |
| 1740 | * The snapshot can not be used until the candidate bitmap is populated |
| 1741 | * by the file system (see fssnap_set_candidate_impl()), and the file |
| 1742 | * system finishes the setup process by calling fssnap_create_done(). |
| 1743 | * Nearly all of the snapshot locks are held for the duration of the |
| 1744 | * create, and are not released until fssnap_create_done is called(). |
| 1745 | */ |
| 1746 | static void * |
| 1747 | fssnap_create_impl(chunknumber_t nchunks, uint_t chunksz, u_offset_t maxsize, |
| 1748 | struct vnode *fsvp, int backfilecount, struct vnode **bfvpp, char *backpath, |
| 1749 | u_offset_t max_backfile_size) |
| 1750 | { |
| 1751 | refstr_t *mountpoint; |
| 1752 | char taskqname[50]; |
| 1753 | struct cow_info *cowp; |
| 1754 | struct cow_map *cmap; |
| 1755 | struct snapshot_id *sidp; |
| 1756 | int lastsnap; |
| 1757 | |
| 1758 | /* |
| 1759 | * Sanity check the parameters we care about |
| 1760 | * (we don't care about the informational parameters) |
| 1761 | */ |
| 1762 | if ((nchunks == 0) || |
| 1763 | ((chunksz % DEV_BSIZE) != 0) || |
| 1764 | (bfvpp == NULL)) { |
| 1765 | return (NULL); |
| 1766 | } |
| 1767 | |
| 1768 | /* |
| 1769 | * Look for unused snapshot identifiers. Snapshot ids are never |
| 1770 | * freed, but deleted snapshot ids will be recycled as needed. |
| 1771 | */ |
| 1772 | mutex_enter(&snapshot_mutex); |
| 1773 | |
| 1774 | findagain: |
| 1775 | lastsnap = 0; |
| 1776 | for (sidp = snapshot; sidp != NULL; sidp = sidp->sid_next) { |
| 1777 | if (sidp->sid_snapnumber > lastsnap) |
| 1778 | lastsnap = sidp->sid_snapnumber; |
| 1779 | |
| 1780 | /* |
| 1781 | * The sid_rwlock is taken as a reader initially so that |
| 1782 | * activity on each snapshot is not stalled while searching |
| 1783 | * for a free snapshot id. |
| 1784 | */ |
| 1785 | rw_enter(&sidp->sid_rwlock, RW_READER); |
| 1786 | |
| 1787 | /* |
| 1788 | * If the snapshot has been deleted and nobody is using the |
| 1789 | * snapshot device than we can reuse this snapshot_id. If |
| 1790 | * the snapshot is marked to be deleted (SID_DELETE), then |
| 1791 | * it hasn't been deleted yet so don't reuse it. |
| 1792 | */ |
| 1793 | if (SID_AVAILABLE(sidp)) |
| 1794 | break; /* This spot is unused, so take it */ |
| 1795 | rw_exit(&sidp->sid_rwlock); |
| 1796 | } |
| 1797 | |
| 1798 | /* |
| 1799 | * add a new snapshot identifier if there are no deleted |
| 1800 | * entries. Since it doesn't matter what order the entries |
| 1801 | * are in we can just add it to the beginning of the list. |
| 1802 | */ |
| 1803 | if (sidp) { |
| 1804 | if (rw_tryupgrade(&sidp->sid_rwlock) == 0) { |
| 1805 | /* someone else grabbed it as a writer, try again */ |
| 1806 | rw_exit(&sidp->sid_rwlock); |
| 1807 | goto findagain; |
| 1808 | } |
| 1809 | } else { |
| 1810 | /* Create a new node if we didn't find an unused one */ |
| 1811 | sidp = kmem_alloc(sizeof (struct snapshot_id), KM_SLEEP); |
| 1812 | rw_init(&sidp->sid_rwlock, NULL, RW_DEFAULT, NULL); |
| 1813 | rw_enter(&sidp->sid_rwlock, RW_WRITER); |
| 1814 | sidp->sid_snapnumber = (snapshot == NULL) ? 0 : lastsnap + 1; |
| 1815 | sidp->sid_cowinfo = NULL; |
| 1816 | sidp->sid_flags = 0; |
| 1817 | sidp->sid_next = snapshot; |
| 1818 | snapshot = sidp; |
| 1819 | } |
| 1820 | |
| 1821 | ASSERT(RW_WRITE_HELD(&sidp->sid_rwlock)); |
| 1822 | ASSERT(sidp->sid_cowinfo == NULL); |
| 1823 | ASSERT(sidp->sid_snapnumber <= (lastsnap + 1)); |
| 1824 | |
| 1825 | sidp->sid_flags |= SID_CREATING; |
| 1826 | /* The root vnode is held until snap_delete_impl() is called */ |
| 1827 | VN_HOLD(fsvp); |
| 1828 | sidp->sid_fvp = fsvp; |
| 1829 | num_snapshots++; |
| 1830 | |
| 1831 | /* allocate and initialize structures */ |
| 1832 | |
| 1833 | cowp = kmem_zalloc(sizeof (struct cow_info), KM_SLEEP); |
| 1834 | |
| 1835 | cowp->cow_backfile_array = bfvpp; |
| 1836 | cowp->cow_backcount = backfilecount; |
| 1837 | cowp->cow_backfile_sz = max_backfile_size; |
| 1838 | |
| 1839 | /* |
| 1840 | * Initialize task queues for this snapshot. Only a small number |
| 1841 | * of threads are required because they will be serialized on the |
| 1842 | * backing file's reader/writer lock anyway. |
| 1843 | */ |
| 1844 | (void) snprintf(taskqname, sizeof (taskqname), "%s_taskq_%d", snapname, |
| 1845 | sidp->sid_snapnumber); |
| 1846 | cowp->cow_taskq = taskq_create(taskqname, fssnap_taskq_nthreads, |
| 1847 | minclsyspri, 1, fssnap_taskq_maxtasks, 0); |
| 1848 | |
| 1849 | /* don't allow tasks to start until after everything is ready */ |
| 1850 | taskq_suspend(cowp->cow_taskq); |
| 1851 | |
| 1852 | /* initialize translation table */ |
| 1853 | cmap = &cowp->cow_map; |
| 1854 | rw_init(&cmap->cmap_rwlock, NULL, RW_DEFAULT, NULL); |
| 1855 | rw_enter(&cmap->cmap_rwlock, RW_WRITER); |
| 1856 | |
| 1857 | sema_init(&cmap->cmap_throttle_sem, fssnap_max_mem_chunks, NULL, |
| 1858 | SEMA_DEFAULT, NULL); |
| 1859 | |
| 1860 | cmap->cmap_chunksz = chunksz; |
| 1861 | cmap->cmap_maxsize = maxsize; |
| 1862 | cmap->cmap_chunksperbf = max_backfile_size / chunksz; |
| 1863 | |
| 1864 | /* |
| 1865 | * allocate one bit per chunk for the bitmaps, round up |
| 1866 | */ |
| 1867 | cmap->cmap_bmsize = (nchunks + (NBBY - 1)) / NBBY; |
| 1868 | cmap->cmap_hastrans = kmem_zalloc(cmap->cmap_bmsize, KM_SLEEP); |
| 1869 | cmap->cmap_candidate = kmem_zalloc(cmap->cmap_bmsize, KM_SLEEP); |
| 1870 | |
| 1871 | sidp->sid_cowinfo = cowp; |
| 1872 | |
| 1873 | /* initialize kstats for this snapshot */ |
| 1874 | mountpoint = vfs_getmntpoint(fsvp->v_vfsp); |
| 1875 | fssnap_create_kstats(sidp, sidp->sid_snapnumber, |
| 1876 | refstr_value(mountpoint), backpath); |
| 1877 | refstr_rele(mountpoint); |
| 1878 | |
| 1879 | mutex_exit(&snapshot_mutex); |
| 1880 | |
| 1881 | /* |
| 1882 | * return with snapshot id rwlock held as a writer until |
| 1883 | * fssnap_create_done is called |
| 1884 | */ |
| 1885 | return (sidp); |
| 1886 | } |
| 1887 | |
| 1888 | /* |
| 1889 | * fssnap_set_candidate_impl() - mark a chunk as a candidate for copy-on-write |
| 1890 | * |
| 1891 | * sets a bit in the candidate bitmap that indicates that a chunk is a |
| 1892 | * candidate for copy-on-write. Typically, chunks that are allocated on |
| 1893 | * the file system at the time the snapshot is taken are candidates, |
| 1894 | * while chunks that have no allocated data do not need to be copied. |
| 1895 | * Chunks containing metadata must be marked as candidates as well. |
| 1896 | */ |
| 1897 | static void |
| 1898 | fssnap_set_candidate_impl(void *snapshot_id, chunknumber_t chunknumber) |
| 1899 | { |
| 1900 | struct snapshot_id *sid = snapshot_id; |
| 1901 | struct cow_info *cowp = sid->sid_cowinfo; |
| 1902 | struct cow_map *cmap = &cowp->cow_map; |
| 1903 | |
| 1904 | /* simple bitmap operation for now */ |
| 1905 | ASSERT(chunknumber < (cmap->cmap_bmsize * NBBY)); |
| 1906 | setbit(cmap->cmap_candidate, chunknumber); |
| 1907 | } |
| 1908 | |
| 1909 | /* |
| 1910 | * fssnap_is_candidate_impl() - check whether a chunk is a candidate |
| 1911 | * |
| 1912 | * returns 0 if the chunk is not a candidate and 1 if the chunk is a |
| 1913 | * candidate. This can be used by the file system to change behavior for |
| 1914 | * chunks that might induce a copy-on-write. The offset is specified in |
| 1915 | * bytes since the chunk size may not be known by the file system. |
| 1916 | */ |
| 1917 | static int |
| 1918 | fssnap_is_candidate_impl(void *snapshot_id, u_offset_t off) |
| 1919 | { |
| 1920 | struct snapshot_id *sid = snapshot_id; |
| 1921 | struct cow_info *cowp = sid->sid_cowinfo; |
| 1922 | struct cow_map *cmap = &cowp->cow_map; |
| 1923 | ulong_t chunknumber = off / cmap->cmap_chunksz; |
| 1924 | |
| 1925 | /* simple bitmap operation for now */ |
| 1926 | ASSERT(chunknumber < (cmap->cmap_bmsize * NBBY)); |
| 1927 | return (isset(cmap->cmap_candidate, chunknumber)); |
| 1928 | } |
| 1929 | |
| 1930 | /* |
| 1931 | * fssnap_create_done_impl() - complete the snapshot setup process |
| 1932 | * |
| 1933 | * called when the file system is done populating the candidate bitmap |
| 1934 | * and it is ready to start using the snapshot. This routine releases |
| 1935 | * the snapshot locks, allows taskq tasks to start processing, and |
| 1936 | * creates the device minor nodes associated with the snapshot. |
| 1937 | */ |
| 1938 | static int |
| 1939 | fssnap_create_done_impl(void *snapshot_id) |
| 1940 | { |
| 1941 | struct snapshot_id **sidpp, *sidp = snapshot_id; |
| 1942 | struct cow_info *cowp; |
| 1943 | struct cow_map *cmap; |
| 1944 | int snapnumber = -1; |
| 1945 | char name[20]; |
| 1946 | |
| 1947 | /* sid rwlock and cmap rwlock should be taken from fssnap_create */ |
| 1948 | ASSERT(sidp); |
| 1949 | ASSERT(RW_WRITE_HELD(&sidp->sid_rwlock)); |
| 1950 | ASSERT(sidp->sid_cowinfo); |
| 1951 | |
| 1952 | cowp = sidp->sid_cowinfo; |
| 1953 | cmap = &cowp->cow_map; |
| 1954 | |
| 1955 | ASSERT(RW_WRITE_HELD(&cmap->cmap_rwlock)); |
| 1956 | |
| 1957 | sidp->sid_flags &= ~(SID_CREATING | SID_DISABLED); |
| 1958 | snapnumber = sidp->sid_snapnumber; |
| 1959 | |
| 1960 | /* allocate state structure and find new snapshot id */ |
| 1961 | if (ddi_soft_state_zalloc(statep, snapnumber) != DDI_SUCCESS) { |
| 1962 | cmn_err(CE_WARN, |
| 1963 | "snap_ioctl: create: could not allocate " |
| 1964 | "state for snapshot %d.", snapnumber); |
| 1965 | snapnumber = -1; |
| 1966 | goto out; |
| 1967 | } |
| 1968 | |
| 1969 | sidpp = ddi_get_soft_state(statep, snapnumber); |
| 1970 | *sidpp = sidp; |
| 1971 | |
| 1972 | /* create minor node based on snapshot number */ |
| 1973 | ASSERT(fssnap_dip != NULL); |
| 1974 | (void) snprintf(name, sizeof (name), "%d", snapnumber); |
| 1975 | if (ddi_create_minor_node(fssnap_dip, name, S_IFBLK, |
| 1976 | snapnumber, DDI_PSEUDO, 0) != DDI_SUCCESS) { |
| 1977 | cmn_err(CE_WARN, "snap_ioctl: could not create " |
| 1978 | "block minor node for snapshot %d.", snapnumber); |
| 1979 | snapnumber = -1; |
| 1980 | goto out; |
| 1981 | } |
| 1982 | |
| 1983 | (void) snprintf(name, sizeof (name), "%d,raw", snapnumber); |
| 1984 | if (ddi_create_minor_node(fssnap_dip, name, S_IFCHR, |
| 1985 | snapnumber, DDI_PSEUDO, 0) != DDI_SUCCESS) { |
| 1986 | cmn_err(CE_WARN, "snap_ioctl: could not create " |
| 1987 | "character minor node for snapshot %d.", snapnumber); |
| 1988 | snapnumber = -1; |
| 1989 | } |
| 1990 | |
| 1991 | out: |
| 1992 | rw_exit(&sidp->sid_rwlock); |
| 1993 | rw_exit(&cmap->cmap_rwlock); |
| 1994 | |
| 1995 | /* let the taskq threads start processing */ |
| 1996 | taskq_resume(cowp->cow_taskq); |
| 1997 | |
| 1998 | return (snapnumber); |
| 1999 | } |
| 2000 | |
| 2001 | /* |
| 2002 | * fssnap_delete_impl() - delete a snapshot |
| 2003 | * |
| 2004 | * used when a snapshot is no longer needed. This is called by the file |
| 2005 | * system when it receives an ioctl request to delete a snapshot. It is |
| 2006 | * also called internally when error conditions such as disk full, errors |
| 2007 | * writing to the backing file, or backing file maxsize exceeded occur. |
| 2008 | * If the snapshot device is busy when the delete request is received, |
| 2009 | * all state will be deleted except for the soft state and device files |
| 2010 | * associated with the snapshot; they will be deleted when the snapshot |
| 2011 | * device is closed. |
| 2012 | * |
| 2013 | * NOTE this function takes a POINTER TO A POINTER to the snapshot id, |
| 2014 | * and expects to be able to set the handle held by the file system to |
| 2015 | * NULL. This depends on the file system checking that variable for NULL |
| 2016 | * before calling fssnap_strategy(). |
| 2017 | */ |
| 2018 | static int |
| 2019 | fssnap_delete_impl(void *snapshot_id) |
| 2020 | { |
| 2021 | struct snapshot_id **sidpp = (struct snapshot_id **)snapshot_id; |
| 2022 | struct snapshot_id *sidp; |
| 2023 | struct snapshot_id **statesidpp; |
| 2024 | struct cow_info *cowp; |
| 2025 | struct cow_map *cmap; |
| 2026 | char name[20]; |
| 2027 | int snapnumber = -1; |
| 2028 | vnode_t **vpp; |
| 2029 | |
| 2030 | /* |
| 2031 | * sidp is guaranteed to be valid if sidpp is valid because |
| 2032 | * the snapshot list is append-only. |
| 2033 | */ |
| 2034 | if (sidpp == NULL) { |
| 2035 | return (-1); |
| 2036 | } |
| 2037 | |
| 2038 | sidp = *sidpp; |
| 2039 | rw_enter(&sidp->sid_rwlock, RW_WRITER); |
| 2040 | |
| 2041 | ASSERT(RW_WRITE_HELD(&sidp->sid_rwlock)); |
| 2042 | |
| 2043 | /* |
| 2044 | * double check that the snapshot is still valid for THIS file system |
| 2045 | */ |
| 2046 | if (*sidpp == NULL) { |
| 2047 | rw_exit(&sidp->sid_rwlock); |
| 2048 | return (-1); |
| 2049 | } |
| 2050 | |
| 2051 | /* |
| 2052 | * Now we know the snapshot is still valid and will not go away |
| 2053 | * because we have the write lock. Once the state is transitioned |
| 2054 | * to "disabling", the sid_rwlock can be released. Any pending I/O |
| 2055 | * waiting for the lock as a reader will check for this state and |
| 2056 | * abort without touching data that may be getting freed. |
| 2057 | */ |
| 2058 | sidp->sid_flags |= SID_DISABLING; |
| 2059 | if (sidp->sid_flags & SID_DELETE) { |
| 2060 | cmn_err(CE_WARN, "Snapshot %d automatically deleted.", |
| 2061 | sidp->sid_snapnumber); |
| 2062 | sidp->sid_flags &= ~(SID_DELETE); |
| 2063 | } |
| 2064 | |
| 2065 | |
| 2066 | /* |
| 2067 | * This is pointing into file system specific data! The assumption is |
| 2068 | * that fssnap_strategy() gets called from the file system based on |
| 2069 | * whether this reference to the snapshot_id is NULL or not. So |
| 2070 | * setting this to NULL should disable snapshots for the file system. |
| 2071 | */ |
| 2072 | *sidpp = NULL; |
| 2073 | |
| 2074 | /* remove cowinfo */ |
| 2075 | cowp = sidp->sid_cowinfo; |
| 2076 | if (cowp == NULL) { |
| 2077 | rw_exit(&sidp->sid_rwlock); |
| 2078 | return (-1); |
| 2079 | } |
| 2080 | rw_exit(&sidp->sid_rwlock); |
| 2081 | |
| 2082 | /* destroy task queues first so they don't reference freed data. */ |
| 2083 | if (cowp->cow_taskq) { |
| 2084 | taskq_destroy(cowp->cow_taskq); |
| 2085 | cowp->cow_taskq = NULL; |
| 2086 | } |
| 2087 | |
| 2088 | if (cowp->cow_backfile_array != NULL) { |
| 2089 | for (vpp = cowp->cow_backfile_array; *vpp; vpp++) |
| 2090 | VN_RELE(*vpp); |
| 2091 | kmem_free(cowp->cow_backfile_array, |
| 2092 | (cowp->cow_backcount + 1) * sizeof (vnode_t *)); |
| 2093 | cowp->cow_backfile_array = NULL; |
| 2094 | } |
| 2095 | |
| 2096 | sidp->sid_cowinfo = NULL; |
| 2097 | |
| 2098 | /* remove cmap */ |
| 2099 | cmap = &cowp->cow_map; |
| 2100 | ASSERT(cmap); |
| 2101 | |
| 2102 | if (cmap->cmap_candidate) |
| 2103 | kmem_free(cmap->cmap_candidate, cmap->cmap_bmsize); |
| 2104 | |
| 2105 | if (cmap->cmap_hastrans) |
| 2106 | kmem_free(cmap->cmap_hastrans, cmap->cmap_bmsize); |
| 2107 | |
| 2108 | if (cmap->cmap_table) |
| 2109 | transtbl_free(&cowp->cow_map); |
| 2110 | |
| 2111 | rw_destroy(&cmap->cmap_rwlock); |
| 2112 | |
| 2113 | while (cmap->cmap_waiters) { |
| 2114 | sema_p(&cmap->cmap_throttle_sem); |
| 2115 | sema_v(&cmap->cmap_throttle_sem); |
| 2116 | } |
| 2117 | sema_destroy(&cmap->cmap_throttle_sem); |
| 2118 | |
| 2119 | /* remove kstats */ |
| 2120 | fssnap_delete_kstats(cowp); |
| 2121 | |
| 2122 | kmem_free(cowp, sizeof (struct cow_info)); |
| 2123 | |
| 2124 | statesidpp = ddi_get_soft_state(statep, sidp->sid_snapnumber); |
| 2125 | if (statesidpp == NULL || *statesidpp == NULL) { |
| 2126 | cmn_err(CE_WARN, |
| 2127 | "fssnap_delete_impl: could not find state for snapshot %d.", |
| 2128 | sidp->sid_snapnumber); |
| 2129 | } |
| 2130 | ASSERT(*statesidpp == sidp); |
| 2131 | |
| 2132 | /* |
| 2133 | * Leave the node in the list marked DISABLED so it can be reused |
| 2134 | * and avoid many race conditions. Return the snapshot number |
| 2135 | * that was deleted. |
| 2136 | */ |
| 2137 | mutex_enter(&snapshot_mutex); |
| 2138 | rw_enter(&sidp->sid_rwlock, RW_WRITER); |
| 2139 | sidp->sid_flags &= ~(SID_DISABLING); |
| 2140 | sidp->sid_flags |= SID_DISABLED; |
| 2141 | VN_RELE(sidp->sid_fvp); |
| 2142 | sidp->sid_fvp = NULL; |
| 2143 | snapnumber = sidp->sid_snapnumber; |
| 2144 | |
| 2145 | /* |
| 2146 | * If the snapshot is not busy, free the device info now. Otherwise |
| 2147 | * the device nodes are freed in snap_close() when the device is |
| 2148 | * closed. The sid will not be reused until the device is not busy. |
| 2149 | */ |
| 2150 | if (SID_AVAILABLE(sidp)) { |
| 2151 | /* remove the device nodes */ |
| 2152 | ASSERT(fssnap_dip != NULL); |
| 2153 | (void) snprintf(name, sizeof (name), "%d", |
| 2154 | sidp->sid_snapnumber); |
| 2155 | ddi_remove_minor_node(fssnap_dip, name); |
| 2156 | (void) snprintf(name, sizeof (name), "%d,raw", |
| 2157 | sidp->sid_snapnumber); |
| 2158 | ddi_remove_minor_node(fssnap_dip, name); |
| 2159 | |
| 2160 | /* delete the state structure */ |
| 2161 | ddi_soft_state_free(statep, sidp->sid_snapnumber); |
| 2162 | num_snapshots--; |
| 2163 | } |
| 2164 | |
| 2165 | mutex_exit(&snapshot_mutex); |
| 2166 | rw_exit(&sidp->sid_rwlock); |
| 2167 | |
| 2168 | return (snapnumber); |
| 2169 | } |
| 2170 | |
| 2171 | /* |
| 2172 | * fssnap_create_kstats() - allocate and initialize snapshot kstats |
| 2173 | * |
| 2174 | */ |
| 2175 | static void |
| 2176 | fssnap_create_kstats(snapshot_id_t *sidp, int snapnum, |
| 2177 | const char *mountpoint, const char *backfilename) |
| 2178 | { |
| 2179 | kstat_t *num, *mntpoint, *bfname; |
| 2180 | kstat_named_t *hw; |
| 2181 | struct cow_info *cowp = sidp->sid_cowinfo; |
| 2182 | struct cow_kstat_num *stats; |
| 2183 | |
| 2184 | /* update the high water mark */ |
| 2185 | if (fssnap_highwater_kstat == NULL) { |
| 2186 | cmn_err(CE_WARN, "fssnap_create_kstats: failed to lookup " |
| 2187 | "high water mark kstat."); |
| 2188 | return; |
| 2189 | } |
| 2190 | |
| 2191 | hw = (kstat_named_t *)fssnap_highwater_kstat->ks_data; |
| 2192 | if (hw->value.ui32 < snapnum) |
| 2193 | hw->value.ui32 = snapnum; |
| 2194 | |
| 2195 | /* initialize the mount point kstat */ |
| 2196 | kstat_delete_byname(snapname, snapnum, FSSNAP_KSTAT_MNTPT); |
| 2197 | |
| 2198 | if (mountpoint != NULL) { |
| 2199 | mntpoint = kstat_create(snapname, snapnum, FSSNAP_KSTAT_MNTPT, |
| 2200 | "misc", KSTAT_TYPE_RAW, strlen(mountpoint) + 1, 0); |
| 2201 | if (mntpoint == NULL) { |
| 2202 | cowp->cow_kstat_mntpt = NULL; |
| 2203 | cmn_err(CE_WARN, "fssnap_create_kstats: failed to " |
| 2204 | "create mount point kstat"); |
| 2205 | } else { |
| 2206 | (void) strncpy(mntpoint->ks_data, mountpoint, |
| 2207 | strlen(mountpoint)); |
| 2208 | cowp->cow_kstat_mntpt = mntpoint; |
| 2209 | kstat_install(mntpoint); |
| 2210 | } |
| 2211 | } else { |
| 2212 | cowp->cow_kstat_mntpt = NULL; |
| 2213 | cmn_err(CE_WARN, "fssnap_create_kstats: mount point not " |
| 2214 | "specified."); |
| 2215 | } |
| 2216 | |
| 2217 | /* initialize the backing file kstat */ |
| 2218 | kstat_delete_byname(snapname, snapnum, FSSNAP_KSTAT_BFNAME); |
| 2219 | |
| 2220 | if (backfilename == NULL) { |
| 2221 | cowp->cow_kstat_bfname = NULL; |
| 2222 | } else { |
| 2223 | bfname = kstat_create(snapname, snapnum, FSSNAP_KSTAT_BFNAME, |
| 2224 | "misc", KSTAT_TYPE_RAW, strlen(backfilename) + 1, 0); |
| 2225 | if (bfname != NULL) { |
| 2226 | (void) strncpy(bfname->ks_data, backfilename, |
| 2227 | strlen(backfilename)); |
| 2228 | cowp->cow_kstat_bfname = bfname; |
| 2229 | kstat_install(bfname); |
| 2230 | } else { |
| 2231 | cowp->cow_kstat_bfname = NULL; |
| 2232 | cmn_err(CE_WARN, "fssnap_create_kstats: failed to " |
| 2233 | "create backing file name kstat"); |
| 2234 | } |
| 2235 | } |
| 2236 | |
| 2237 | /* initialize numeric kstats */ |
| 2238 | kstat_delete_byname(snapname, snapnum, FSSNAP_KSTAT_NUM); |
| 2239 | |
| 2240 | num = kstat_create(snapname, snapnum, FSSNAP_KSTAT_NUM, |
| 2241 | "misc", KSTAT_TYPE_NAMED, |
| 2242 | sizeof (struct cow_kstat_num) / sizeof (kstat_named_t), |
| 2243 | 0); |
| 2244 | if (num == NULL) { |
| 2245 | cmn_err(CE_WARN, "fssnap_create_kstats: failed to create " |
| 2246 | "numeric kstats"); |
| 2247 | cowp->cow_kstat_num = NULL; |
| 2248 | return; |
| 2249 | } |
| 2250 | |
| 2251 | cowp->cow_kstat_num = num; |
| 2252 | stats = num->ks_data; |
| 2253 | num->ks_update = fssnap_update_kstat_num; |
| 2254 | num->ks_private = sidp; |
| 2255 | |
| 2256 | kstat_named_init(&stats->ckn_state, FSSNAP_KSTAT_NUM_STATE, |
| 2257 | KSTAT_DATA_INT32); |
| 2258 | kstat_named_init(&stats->ckn_bfsize, FSSNAP_KSTAT_NUM_BFSIZE, |
| 2259 | KSTAT_DATA_UINT64); |
| 2260 | kstat_named_init(&stats->ckn_maxsize, FSSNAP_KSTAT_NUM_MAXSIZE, |
| 2261 | KSTAT_DATA_UINT64); |
| 2262 | kstat_named_init(&stats->ckn_createtime, FSSNAP_KSTAT_NUM_CREATETIME, |
| 2263 | KSTAT_DATA_LONG); |
| 2264 | kstat_named_init(&stats->ckn_chunksize, FSSNAP_KSTAT_NUM_CHUNKSIZE, |
| 2265 | KSTAT_DATA_UINT32); |
| 2266 | |
| 2267 | /* initialize the static kstats */ |
| 2268 | stats->ckn_chunksize.value.ui32 = cowp->cow_map.cmap_chunksz; |
| 2269 | stats->ckn_maxsize.value.ui64 = cowp->cow_map.cmap_maxsize; |
| 2270 | stats->ckn_createtime.value.l = gethrestime_sec(); |
| 2271 | |
| 2272 | kstat_install(num); |
| 2273 | } |
| 2274 | |
| 2275 | /* |
| 2276 | * fssnap_update_kstat_num() - update a numerical snapshot kstat value |
| 2277 | * |
| 2278 | */ |
| 2279 | int |
| 2280 | fssnap_update_kstat_num(kstat_t *ksp, int rw) |
| 2281 | { |
| 2282 | snapshot_id_t *sidp = (snapshot_id_t *)ksp->ks_private; |
| 2283 | struct cow_info *cowp = sidp->sid_cowinfo; |
| 2284 | struct cow_kstat_num *stats = ksp->ks_data; |
| 2285 | |
| 2286 | if (rw == KSTAT_WRITE) |
| 2287 | return (EACCES); |
| 2288 | |
| 2289 | /* state */ |
| 2290 | if (sidp->sid_flags & SID_CREATING) |
| 2291 | stats->ckn_state.value.i32 = COWSTATE_CREATING; |
| 2292 | else if (SID_INACTIVE(sidp)) |
| 2293 | stats->ckn_state.value.i32 = COWSTATE_DISABLED; |
| 2294 | else if (SID_BUSY(sidp)) |
| 2295 | stats->ckn_state.value.i32 = COWSTATE_ACTIVE; |
| 2296 | else |
| 2297 | stats->ckn_state.value.i32 = COWSTATE_IDLE; |
| 2298 | |
| 2299 | /* bfsize */ |
| 2300 | stats->ckn_bfsize.value.ui64 = cowp->cow_map.cmap_nchunks * |
| 2301 | cowp->cow_map.cmap_chunksz; |
| 2302 | |
| 2303 | return (0); |
| 2304 | } |
| 2305 | |
| 2306 | /* |
| 2307 | * fssnap_delete_kstats() - deallocate snapshot kstats |
| 2308 | * |
| 2309 | */ |
| 2310 | void |
| 2311 | fssnap_delete_kstats(struct cow_info *cowp) |
| 2312 | { |
| 2313 | if (cowp->cow_kstat_num != NULL) { |
| 2314 | kstat_delete(cowp->cow_kstat_num); |
| 2315 | cowp->cow_kstat_num = NULL; |
| 2316 | } |
| 2317 | if (cowp->cow_kstat_mntpt != NULL) { |
| 2318 | kstat_delete(cowp->cow_kstat_mntpt); |
| 2319 | cowp->cow_kstat_mntpt = NULL; |
| 2320 | } |
| 2321 | if (cowp->cow_kstat_bfname != NULL) { |
| 2322 | kstat_delete(cowp->cow_kstat_bfname); |
| 2323 | cowp->cow_kstat_bfname = NULL; |
| 2324 | } |
| 2325 | } |