stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 1 | /* |
Peter Shoults | 35e1025 | 2010-02-18 12:22:26 -0500 | [diff] [blame] | 2 | * Copyright 2010 Sun Microsystems, Inc. All rights reserved. |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 3 | * Use is subject to license terms. |
| 4 | * |
| 5 | * STREAMS Crypto Module |
| 6 | * |
| 7 | * This module is used to facilitate Kerberos encryption |
| 8 | * operations for the telnet daemon and rlogin daemon. |
| 9 | * Because the Solaris telnet and rlogin daemons run mostly |
| 10 | * in-kernel via 'telmod' and 'rlmod', this module must be |
| 11 | * pushed on the STREAM *below* telmod or rlmod. |
| 12 | * |
| 13 | * Parts of the 3DES key derivation code are covered by the |
| 14 | * following copyright. |
| 15 | * |
| 16 | * Copyright (C) 1998 by the FundsXpress, INC. |
| 17 | * |
| 18 | * All rights reserved. |
| 19 | * |
| 20 | * Export of this software from the United States of America may require |
| 21 | * a specific license from the United States Government. It is the |
| 22 | * responsibility of any person or organization contemplating export to |
| 23 | * obtain such a license before exporting. |
| 24 | * |
| 25 | * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and |
| 26 | * distribute this software and its documentation for any purpose and |
| 27 | * without fee is hereby granted, provided that the above copyright |
| 28 | * notice appear in all copies and that both that copyright notice and |
| 29 | * this permission notice appear in supporting documentation, and that |
| 30 | * the name of FundsXpress. not be used in advertising or publicity pertaining |
| 31 | * to distribution of the software without specific, written prior |
| 32 | * permission. FundsXpress makes no representations about the suitability of |
| 33 | * this software for any purpose. It is provided "as is" without express |
| 34 | * or implied warranty. |
| 35 | * |
| 36 | * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR |
| 37 | * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED |
| 38 | * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. |
| 39 | */ |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 40 | |
| 41 | #include <sys/types.h> |
| 42 | #include <sys/sysmacros.h> |
| 43 | #include <sys/errno.h> |
| 44 | #include <sys/debug.h> |
| 45 | #include <sys/time.h> |
| 46 | #include <sys/stropts.h> |
| 47 | #include <sys/stream.h> |
| 48 | #include <sys/strsubr.h> |
| 49 | #include <sys/strlog.h> |
| 50 | #include <sys/cmn_err.h> |
| 51 | #include <sys/conf.h> |
| 52 | #include <sys/sunddi.h> |
| 53 | #include <sys/kmem.h> |
| 54 | #include <sys/strsun.h> |
| 55 | #include <sys/random.h> |
| 56 | #include <sys/types.h> |
| 57 | #include <sys/byteorder.h> |
| 58 | #include <sys/cryptmod.h> |
| 59 | #include <sys/crc32.h> |
| 60 | #include <sys/policy.h> |
| 61 | |
| 62 | #include <sys/crypto/api.h> |
| 63 | |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 64 | /* |
| 65 | * Function prototypes. |
| 66 | */ |
| 67 | static int cryptmodopen(queue_t *, dev_t *, int, int, cred_t *); |
| 68 | static void cryptmodrput(queue_t *, mblk_t *); |
| 69 | static void cryptmodwput(queue_t *, mblk_t *); |
| 70 | static int cryptmodclose(queue_t *); |
| 71 | static int cryptmodwsrv(queue_t *); |
| 72 | static int cryptmodrsrv(queue_t *); |
| 73 | |
| 74 | static mblk_t *do_encrypt(queue_t *q, mblk_t *mp); |
| 75 | static mblk_t *do_decrypt(queue_t *q, mblk_t *mp); |
| 76 | |
| 77 | #define CRYPTMOD_ID 5150 |
| 78 | |
| 79 | #define CFB_BLKSZ 8 |
| 80 | |
| 81 | #define K5CLENGTH 5 |
| 82 | |
| 83 | static struct module_info cryptmod_minfo = { |
| 84 | CRYPTMOD_ID, /* mi_idnum */ |
| 85 | "cryptmod", /* mi_idname */ |
| 86 | 0, /* mi_minpsz */ |
| 87 | INFPSZ, /* mi_maxpsz */ |
| 88 | 65536, /* mi_hiwat */ |
| 89 | 1024 /* mi_lowat */ |
| 90 | }; |
| 91 | |
| 92 | static struct qinit cryptmod_rinit = { |
| 93 | (int (*)())cryptmodrput, /* qi_putp */ |
| 94 | cryptmodrsrv, /* qi_svc */ |
| 95 | cryptmodopen, /* qi_qopen */ |
| 96 | cryptmodclose, /* qi_qclose */ |
| 97 | NULL, /* qi_qadmin */ |
| 98 | &cryptmod_minfo, /* qi_minfo */ |
| 99 | NULL /* qi_mstat */ |
| 100 | }; |
| 101 | |
| 102 | static struct qinit cryptmod_winit = { |
| 103 | (int (*)())cryptmodwput, /* qi_putp */ |
| 104 | cryptmodwsrv, /* qi_srvp */ |
| 105 | NULL, /* qi_qopen */ |
| 106 | NULL, /* qi_qclose */ |
| 107 | NULL, /* qi_qadmin */ |
| 108 | &cryptmod_minfo, /* qi_minfo */ |
| 109 | NULL /* qi_mstat */ |
| 110 | }; |
| 111 | |
| 112 | static struct streamtab cryptmod_info = { |
| 113 | &cryptmod_rinit, /* st_rdinit */ |
| 114 | &cryptmod_winit, /* st_wrinit */ |
| 115 | NULL, /* st_muxrinit */ |
| 116 | NULL /* st_muxwinit */ |
| 117 | }; |
| 118 | |
| 119 | typedef struct { |
| 120 | uint_t hash_len; |
| 121 | uint_t confound_len; |
| 122 | int (*hashfunc)(); |
| 123 | } hash_info_t; |
| 124 | |
| 125 | #define MAX_CKSUM_LEN 20 |
| 126 | #define CONFOUNDER_LEN 8 |
| 127 | |
| 128 | #define SHA1_HASHSIZE 20 |
| 129 | #define MD5_HASHSIZE 16 |
| 130 | #define CRC32_HASHSIZE 4 |
pk193450 | 1509e10 | 2007-01-31 01:16:08 -0800 | [diff] [blame] | 131 | #define MSGBUF_SIZE 4096 |
| 132 | #define CONFOUNDER_BYTES 128 |
| 133 | |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 134 | |
| 135 | static int crc32_calc(uchar_t *, uchar_t *, uint_t); |
| 136 | static int md5_calc(uchar_t *, uchar_t *, uint_t); |
| 137 | static int sha1_calc(uchar_t *, uchar_t *, uint_t); |
| 138 | |
| 139 | static hash_info_t null_hash = {0, 0, NULL}; |
| 140 | static hash_info_t crc32_hash = {CRC32_HASHSIZE, CONFOUNDER_LEN, crc32_calc}; |
| 141 | static hash_info_t md5_hash = {MD5_HASHSIZE, CONFOUNDER_LEN, md5_calc}; |
| 142 | static hash_info_t sha1_hash = {SHA1_HASHSIZE, CONFOUNDER_LEN, sha1_calc}; |
| 143 | |
| 144 | static crypto_mech_type_t sha1_hmac_mech = CRYPTO_MECH_INVALID; |
| 145 | static crypto_mech_type_t md5_hmac_mech = CRYPTO_MECH_INVALID; |
| 146 | static crypto_mech_type_t sha1_hash_mech = CRYPTO_MECH_INVALID; |
| 147 | static crypto_mech_type_t md5_hash_mech = CRYPTO_MECH_INVALID; |
| 148 | |
| 149 | static int kef_crypt(struct cipher_data_t *, void *, |
| 150 | crypto_data_format_t, size_t, int); |
| 151 | static mblk_t * |
| 152 | arcfour_hmac_md5_encrypt(queue_t *, struct tmodinfo *, |
| 153 | mblk_t *, hash_info_t *); |
| 154 | static mblk_t * |
| 155 | arcfour_hmac_md5_decrypt(queue_t *, struct tmodinfo *, |
| 156 | mblk_t *, hash_info_t *); |
| 157 | |
| 158 | static int |
| 159 | do_hmac(crypto_mech_type_t, crypto_key_t *, char *, int, char *, int); |
| 160 | |
| 161 | /* |
| 162 | * This is the loadable module wrapper. |
| 163 | */ |
| 164 | #include <sys/modctl.h> |
| 165 | |
| 166 | static struct fmodsw fsw = { |
| 167 | "cryptmod", |
| 168 | &cryptmod_info, |
| 169 | D_MP | D_MTQPAIR |
| 170 | }; |
| 171 | |
| 172 | /* |
| 173 | * Module linkage information for the kernel. |
| 174 | */ |
| 175 | static struct modlstrmod modlstrmod = { |
| 176 | &mod_strmodops, |
ps57422 | 0e1923d | 2008-07-30 12:49:10 -0700 | [diff] [blame] | 177 | "STREAMS encryption module", |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 178 | &fsw |
| 179 | }; |
| 180 | |
| 181 | static struct modlinkage modlinkage = { |
| 182 | MODREV_1, |
| 183 | &modlstrmod, |
| 184 | NULL |
| 185 | }; |
| 186 | |
| 187 | int |
| 188 | _init(void) |
| 189 | { |
| 190 | return (mod_install(&modlinkage)); |
| 191 | } |
| 192 | |
| 193 | int |
| 194 | _fini(void) |
| 195 | { |
| 196 | return (mod_remove(&modlinkage)); |
| 197 | } |
| 198 | |
| 199 | int |
| 200 | _info(struct modinfo *modinfop) |
| 201 | { |
| 202 | return (mod_info(&modlinkage, modinfop)); |
| 203 | } |
| 204 | |
| 205 | static void |
| 206 | cleanup(struct cipher_data_t *cd) |
| 207 | { |
| 208 | if (cd->key != NULL) { |
| 209 | bzero(cd->key, cd->keylen); |
| 210 | kmem_free(cd->key, cd->keylen); |
| 211 | cd->key = NULL; |
| 212 | } |
| 213 | |
| 214 | if (cd->ckey != NULL) { |
| 215 | /* |
| 216 | * ckey is a crypto_key_t structure which references |
| 217 | * "cd->key" for its raw key data. Since that was already |
| 218 | * cleared out, we don't need another "bzero" here. |
| 219 | */ |
| 220 | kmem_free(cd->ckey, sizeof (crypto_key_t)); |
| 221 | cd->ckey = NULL; |
| 222 | } |
| 223 | |
| 224 | if (cd->block != NULL) { |
| 225 | kmem_free(cd->block, cd->blocklen); |
| 226 | cd->block = NULL; |
| 227 | } |
| 228 | |
| 229 | if (cd->saveblock != NULL) { |
| 230 | kmem_free(cd->saveblock, cd->blocklen); |
| 231 | cd->saveblock = NULL; |
| 232 | } |
| 233 | |
| 234 | if (cd->ivec != NULL) { |
| 235 | kmem_free(cd->ivec, cd->ivlen); |
| 236 | cd->ivec = NULL; |
| 237 | } |
| 238 | |
| 239 | if (cd->d_encr_key.ck_data != NULL) { |
| 240 | bzero(cd->d_encr_key.ck_data, cd->keylen); |
| 241 | kmem_free(cd->d_encr_key.ck_data, cd->keylen); |
| 242 | } |
| 243 | |
| 244 | if (cd->d_hmac_key.ck_data != NULL) { |
| 245 | bzero(cd->d_hmac_key.ck_data, cd->keylen); |
| 246 | kmem_free(cd->d_hmac_key.ck_data, cd->keylen); |
| 247 | } |
| 248 | |
| 249 | if (cd->enc_tmpl != NULL) |
| 250 | (void) crypto_destroy_ctx_template(cd->enc_tmpl); |
| 251 | |
| 252 | if (cd->hmac_tmpl != NULL) |
| 253 | (void) crypto_destroy_ctx_template(cd->hmac_tmpl); |
| 254 | |
| 255 | if (cd->ctx != NULL) { |
| 256 | crypto_cancel_ctx(cd->ctx); |
| 257 | cd->ctx = NULL; |
| 258 | } |
| 259 | } |
| 260 | |
| 261 | /* ARGSUSED */ |
| 262 | static int |
| 263 | cryptmodopen(queue_t *rq, dev_t *dev, int oflag, int sflag, cred_t *crp) |
| 264 | { |
| 265 | struct tmodinfo *tmi; |
| 266 | ASSERT(rq); |
| 267 | |
| 268 | if (sflag != MODOPEN) |
| 269 | return (EINVAL); |
| 270 | |
| 271 | (void) (STRLOG(CRYPTMOD_ID, 0, 5, SL_TRACE|SL_NOTE, |
| 272 | "cryptmodopen: opening module(PID %d)", |
| 273 | ddi_get_pid())); |
| 274 | |
| 275 | if (rq->q_ptr != NULL) { |
| 276 | cmn_err(CE_WARN, "cryptmodopen: already opened"); |
| 277 | return (0); |
| 278 | } |
| 279 | |
| 280 | /* |
| 281 | * Allocate and initialize per-Stream structure. |
| 282 | */ |
| 283 | tmi = (struct tmodinfo *)kmem_zalloc(sizeof (struct tmodinfo), |
| 284 | KM_SLEEP); |
| 285 | |
| 286 | tmi->enc_data.method = CRYPT_METHOD_NONE; |
| 287 | tmi->dec_data.method = CRYPT_METHOD_NONE; |
| 288 | |
| 289 | tmi->ready = (CRYPT_READ_READY | CRYPT_WRITE_READY); |
| 290 | |
| 291 | rq->q_ptr = WR(rq)->q_ptr = tmi; |
| 292 | |
| 293 | sha1_hmac_mech = crypto_mech2id(SUN_CKM_SHA1_HMAC); |
| 294 | md5_hmac_mech = crypto_mech2id(SUN_CKM_MD5_HMAC); |
| 295 | sha1_hash_mech = crypto_mech2id(SUN_CKM_SHA1); |
| 296 | md5_hash_mech = crypto_mech2id(SUN_CKM_MD5); |
| 297 | |
| 298 | qprocson(rq); |
| 299 | |
| 300 | return (0); |
| 301 | } |
| 302 | |
| 303 | static int |
| 304 | cryptmodclose(queue_t *rq) |
| 305 | { |
| 306 | struct tmodinfo *tmi = (struct tmodinfo *)rq->q_ptr; |
| 307 | ASSERT(tmi); |
| 308 | |
| 309 | qprocsoff(rq); |
| 310 | |
| 311 | cleanup(&tmi->enc_data); |
| 312 | cleanup(&tmi->dec_data); |
| 313 | |
| 314 | kmem_free(tmi, sizeof (struct tmodinfo)); |
| 315 | rq->q_ptr = WR(rq)->q_ptr = NULL; |
| 316 | |
| 317 | return (0); |
| 318 | } |
| 319 | |
| 320 | /* |
| 321 | * plaintext_offset |
| 322 | * |
| 323 | * Calculate exactly how much space is needed in front |
| 324 | * of the "plaintext" in an mbuf so it can be positioned |
| 325 | * 1 time instead of potentially moving the data multiple |
| 326 | * times. |
| 327 | */ |
| 328 | static int |
| 329 | plaintext_offset(struct cipher_data_t *cd) |
| 330 | { |
| 331 | int headspace = 0; |
| 332 | |
| 333 | /* 4 byte length prepended to all RCMD msgs */ |
| 334 | if (ANY_RCMD_MODE(cd->option_mask)) |
| 335 | headspace += RCMD_LEN_SZ; |
| 336 | |
| 337 | /* RCMD V2 mode adds an additional 4 byte plaintext length */ |
| 338 | if (cd->option_mask & CRYPTOPT_RCMD_MODE_V2) |
| 339 | headspace += RCMD_LEN_SZ; |
| 340 | |
| 341 | /* Need extra space for hash and counfounder */ |
| 342 | switch (cd->method) { |
| 343 | case CRYPT_METHOD_DES_CBC_NULL: |
| 344 | headspace += null_hash.hash_len + null_hash.confound_len; |
| 345 | break; |
| 346 | case CRYPT_METHOD_DES_CBC_CRC: |
| 347 | headspace += crc32_hash.hash_len + crc32_hash.confound_len; |
| 348 | break; |
| 349 | case CRYPT_METHOD_DES_CBC_MD5: |
| 350 | headspace += md5_hash.hash_len + md5_hash.confound_len; |
| 351 | break; |
| 352 | case CRYPT_METHOD_DES3_CBC_SHA1: |
| 353 | headspace += sha1_hash.confound_len; |
| 354 | break; |
| 355 | case CRYPT_METHOD_ARCFOUR_HMAC_MD5: |
| 356 | headspace += md5_hash.hash_len + md5_hash.confound_len; |
| 357 | break; |
| 358 | case CRYPT_METHOD_AES128: |
| 359 | case CRYPT_METHOD_AES256: |
| 360 | headspace += DEFAULT_AES_BLOCKLEN; |
| 361 | break; |
| 362 | case CRYPT_METHOD_DES_CFB: |
| 363 | case CRYPT_METHOD_NONE: |
| 364 | break; |
| 365 | } |
| 366 | |
| 367 | return (headspace); |
| 368 | } |
| 369 | /* |
| 370 | * encrypt_size |
| 371 | * |
| 372 | * Calculate the resulting size when encrypting 'plainlen' bytes |
| 373 | * of data. |
| 374 | */ |
| 375 | static size_t |
| 376 | encrypt_size(struct cipher_data_t *cd, size_t plainlen) |
| 377 | { |
| 378 | size_t cipherlen; |
| 379 | |
| 380 | switch (cd->method) { |
| 381 | case CRYPT_METHOD_DES_CBC_NULL: |
| 382 | cipherlen = (size_t)P2ROUNDUP(null_hash.hash_len + |
| 383 | plainlen, 8); |
| 384 | break; |
| 385 | case CRYPT_METHOD_DES_CBC_MD5: |
| 386 | cipherlen = (size_t)P2ROUNDUP(md5_hash.hash_len + |
| 387 | md5_hash.confound_len + |
| 388 | plainlen, 8); |
| 389 | break; |
| 390 | case CRYPT_METHOD_DES_CBC_CRC: |
| 391 | cipherlen = (size_t)P2ROUNDUP(crc32_hash.hash_len + |
| 392 | crc32_hash.confound_len + |
| 393 | plainlen, 8); |
| 394 | break; |
| 395 | case CRYPT_METHOD_DES3_CBC_SHA1: |
| 396 | cipherlen = (size_t)P2ROUNDUP(sha1_hash.confound_len + |
| 397 | plainlen, 8) + |
| 398 | sha1_hash.hash_len; |
| 399 | break; |
| 400 | case CRYPT_METHOD_ARCFOUR_HMAC_MD5: |
| 401 | cipherlen = (size_t)P2ROUNDUP(md5_hash.confound_len + |
| 402 | plainlen, 1) + md5_hash.hash_len; |
| 403 | break; |
| 404 | case CRYPT_METHOD_AES128: |
| 405 | case CRYPT_METHOD_AES256: |
| 406 | /* No roundup for AES-CBC-CTS */ |
| 407 | cipherlen = DEFAULT_AES_BLOCKLEN + plainlen + |
| 408 | AES_TRUNCATED_HMAC_LEN; |
| 409 | break; |
| 410 | case CRYPT_METHOD_DES_CFB: |
| 411 | case CRYPT_METHOD_NONE: |
| 412 | cipherlen = plainlen; |
| 413 | break; |
| 414 | } |
| 415 | |
| 416 | return (cipherlen); |
| 417 | } |
| 418 | |
| 419 | /* |
| 420 | * des_cfb_encrypt |
| 421 | * |
| 422 | * Encrypt the mblk data using DES with cipher feedback. |
| 423 | * |
| 424 | * Given that V[i] is the initial 64 bit vector, V[n] is the nth 64 bit |
| 425 | * vector, D[n] is the nth chunk of 64 bits of data to encrypt |
| 426 | * (decrypt), and O[n] is the nth chunk of 64 bits of encrypted |
| 427 | * (decrypted) data, then: |
| 428 | * |
| 429 | * V[0] = DES(V[i], key) |
| 430 | * O[n] = D[n] <exclusive or > V[n] |
| 431 | * V[n+1] = DES(O[n], key) |
| 432 | * |
| 433 | * The size of the message being encrypted does not change in this |
| 434 | * algorithm, num_bytes in == num_bytes out. |
| 435 | */ |
| 436 | static mblk_t * |
| 437 | des_cfb_encrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp) |
| 438 | { |
| 439 | int savedbytes; |
| 440 | char *iptr, *optr, *lastoutput; |
| 441 | |
| 442 | lastoutput = optr = (char *)mp->b_rptr; |
| 443 | iptr = (char *)mp->b_rptr; |
| 444 | savedbytes = tmi->enc_data.bytes % CFB_BLKSZ; |
| 445 | |
| 446 | while (iptr < (char *)mp->b_wptr) { |
| 447 | /* |
| 448 | * Do DES-ECB. |
| 449 | * The first time this runs, the 'tmi->enc_data.block' will |
| 450 | * contain the initialization vector that should have been |
| 451 | * passed in with the SETUP ioctl. |
| 452 | * |
| 453 | * V[n] = DES(V[n-1], key) |
| 454 | */ |
| 455 | if (!(tmi->enc_data.bytes % CFB_BLKSZ)) { |
| 456 | int retval = 0; |
| 457 | retval = kef_crypt(&tmi->enc_data, |
| 458 | tmi->enc_data.block, |
| 459 | CRYPTO_DATA_RAW, |
| 460 | tmi->enc_data.blocklen, |
| 461 | CRYPT_ENCRYPT); |
| 462 | |
| 463 | if (retval != CRYPTO_SUCCESS) { |
| 464 | #ifdef DEBUG |
| 465 | cmn_err(CE_WARN, "des_cfb_encrypt: kef_crypt " |
| 466 | "failed - error 0x%0x", retval); |
| 467 | #endif |
| 468 | mp->b_datap->db_type = M_ERROR; |
| 469 | mp->b_rptr = mp->b_datap->db_base; |
| 470 | *mp->b_rptr = EIO; |
| 471 | mp->b_wptr = mp->b_rptr + sizeof (char); |
| 472 | freemsg(mp->b_cont); |
| 473 | mp->b_cont = NULL; |
| 474 | qreply(WR(q), mp); |
| 475 | return (NULL); |
| 476 | } |
| 477 | } |
| 478 | |
| 479 | /* O[n] = I[n] ^ V[n] */ |
| 480 | *(optr++) = *(iptr++) ^ |
| 481 | tmi->enc_data.block[tmi->enc_data.bytes % CFB_BLKSZ]; |
| 482 | |
| 483 | tmi->enc_data.bytes++; |
| 484 | /* |
| 485 | * Feedback the encrypted output as the input to next DES call. |
| 486 | */ |
| 487 | if (!(tmi->enc_data.bytes % CFB_BLKSZ)) { |
| 488 | char *dbptr = tmi->enc_data.block; |
| 489 | /* |
| 490 | * Get the last bits of input from the previous |
| 491 | * msg block that we haven't yet used as feedback input. |
| 492 | */ |
| 493 | if (savedbytes > 0) { |
| 494 | bcopy(tmi->enc_data.saveblock, |
| 495 | dbptr, (size_t)savedbytes); |
| 496 | dbptr += savedbytes; |
| 497 | } |
| 498 | |
| 499 | /* |
| 500 | * Now copy the correct bytes from the current input |
| 501 | * stream and update the 'lastoutput' ptr |
| 502 | */ |
| 503 | bcopy(lastoutput, dbptr, |
| 504 | (size_t)(CFB_BLKSZ - savedbytes)); |
| 505 | |
| 506 | lastoutput += (CFB_BLKSZ - savedbytes); |
| 507 | savedbytes = 0; |
| 508 | } |
| 509 | } |
| 510 | /* |
| 511 | * If there are bytes of input here that we need in the next |
| 512 | * block to build an ivec, save them off here. |
| 513 | */ |
| 514 | if (lastoutput < optr) { |
| 515 | bcopy(lastoutput, |
| 516 | tmi->enc_data.saveblock + savedbytes, |
| 517 | (uint_t)(optr - lastoutput)); |
| 518 | } |
| 519 | return (mp); |
| 520 | } |
| 521 | |
| 522 | /* |
| 523 | * des_cfb_decrypt |
| 524 | * |
| 525 | * Decrypt the data in the mblk using DES in Cipher Feedback mode |
| 526 | * |
| 527 | * # bytes in == # bytes out, no padding, confounding, or hashing |
| 528 | * is added. |
| 529 | * |
| 530 | */ |
| 531 | static mblk_t * |
| 532 | des_cfb_decrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp) |
| 533 | { |
| 534 | uint_t len; |
| 535 | uint_t savedbytes; |
| 536 | char *iptr; |
| 537 | char *lastinput; |
| 538 | uint_t cp; |
| 539 | |
| 540 | len = MBLKL(mp); |
| 541 | |
| 542 | /* decrypted output goes into the new data buffer */ |
| 543 | lastinput = iptr = (char *)mp->b_rptr; |
| 544 | |
| 545 | savedbytes = tmi->dec_data.bytes % tmi->dec_data.blocklen; |
| 546 | |
| 547 | /* |
| 548 | * Save the input CFB_BLKSZ bytes at a time. |
| 549 | * We are trying to decrypt in-place, but need to keep |
| 550 | * a small sliding window of encrypted text to be |
| 551 | * used to construct the feedback buffer. |
| 552 | */ |
| 553 | cp = ((tmi->dec_data.blocklen - savedbytes) > len ? len : |
| 554 | tmi->dec_data.blocklen - savedbytes); |
| 555 | |
| 556 | bcopy(lastinput, tmi->dec_data.saveblock + savedbytes, cp); |
| 557 | savedbytes += cp; |
| 558 | |
| 559 | lastinput += cp; |
| 560 | |
| 561 | while (iptr < (char *)mp->b_wptr) { |
| 562 | /* |
| 563 | * Do DES-ECB. |
| 564 | * The first time this runs, the 'tmi->dec_data.block' will |
| 565 | * contain the initialization vector that should have been |
| 566 | * passed in with the SETUP ioctl. |
| 567 | */ |
| 568 | if (!(tmi->dec_data.bytes % CFB_BLKSZ)) { |
| 569 | int retval; |
| 570 | retval = kef_crypt(&tmi->dec_data, |
| 571 | tmi->dec_data.block, |
| 572 | CRYPTO_DATA_RAW, |
| 573 | tmi->dec_data.blocklen, |
| 574 | CRYPT_ENCRYPT); |
| 575 | |
| 576 | if (retval != CRYPTO_SUCCESS) { |
| 577 | #ifdef DEBUG |
| 578 | cmn_err(CE_WARN, "des_cfb_decrypt: kef_crypt " |
| 579 | "failed - status 0x%0x", retval); |
| 580 | #endif |
| 581 | mp->b_datap->db_type = M_ERROR; |
| 582 | mp->b_rptr = mp->b_datap->db_base; |
| 583 | *mp->b_rptr = EIO; |
| 584 | mp->b_wptr = mp->b_rptr + sizeof (char); |
| 585 | freemsg(mp->b_cont); |
| 586 | mp->b_cont = NULL; |
| 587 | qreply(WR(q), mp); |
| 588 | return (NULL); |
| 589 | } |
| 590 | } |
| 591 | |
| 592 | /* |
| 593 | * To decrypt, XOR the input with the output from the DES call |
| 594 | */ |
| 595 | *(iptr++) ^= tmi->dec_data.block[tmi->dec_data.bytes % |
| 596 | CFB_BLKSZ]; |
| 597 | |
| 598 | tmi->dec_data.bytes++; |
| 599 | |
| 600 | /* |
| 601 | * Feedback the encrypted input for next DES call. |
| 602 | */ |
| 603 | if (!(tmi->dec_data.bytes % tmi->dec_data.blocklen)) { |
| 604 | char *dbptr = tmi->dec_data.block; |
| 605 | /* |
| 606 | * Get the last bits of input from the previous block |
| 607 | * that we haven't yet processed. |
| 608 | */ |
| 609 | if (savedbytes > 0) { |
| 610 | bcopy(tmi->dec_data.saveblock, |
| 611 | dbptr, savedbytes); |
| 612 | dbptr += savedbytes; |
| 613 | } |
| 614 | |
| 615 | savedbytes = 0; |
| 616 | |
| 617 | /* |
| 618 | * This block makes sure that our local |
| 619 | * buffer of input data is full and can |
| 620 | * be accessed from the beginning. |
| 621 | */ |
| 622 | if (lastinput < (char *)mp->b_wptr) { |
| 623 | |
| 624 | /* How many bytes are left in the mblk? */ |
| 625 | cp = (((char *)mp->b_wptr - lastinput) > |
| 626 | tmi->dec_data.blocklen ? |
| 627 | tmi->dec_data.blocklen : |
| 628 | (char *)mp->b_wptr - lastinput); |
| 629 | |
| 630 | /* copy what we need */ |
| 631 | bcopy(lastinput, tmi->dec_data.saveblock, |
| 632 | cp); |
| 633 | |
| 634 | lastinput += cp; |
| 635 | savedbytes = cp; |
| 636 | } |
| 637 | } |
| 638 | } |
| 639 | |
| 640 | return (mp); |
| 641 | } |
| 642 | |
| 643 | /* |
| 644 | * crc32_calc |
| 645 | * |
| 646 | * Compute a CRC32 checksum on the input |
| 647 | */ |
| 648 | static int |
| 649 | crc32_calc(uchar_t *buf, uchar_t *input, uint_t len) |
| 650 | { |
| 651 | uint32_t crc; |
| 652 | |
| 653 | CRC32(crc, input, len, 0, crc32_table); |
| 654 | |
| 655 | buf[0] = (uchar_t)(crc & 0xff); |
| 656 | buf[1] = (uchar_t)((crc >> 8) & 0xff); |
| 657 | buf[2] = (uchar_t)((crc >> 16) & 0xff); |
| 658 | buf[3] = (uchar_t)((crc >> 24) & 0xff); |
| 659 | |
| 660 | return (CRYPTO_SUCCESS); |
| 661 | } |
| 662 | |
| 663 | static int |
| 664 | kef_digest(crypto_mech_type_t digest_type, |
| 665 | uchar_t *input, uint_t inlen, |
| 666 | uchar_t *output, uint_t hashlen) |
| 667 | { |
| 668 | iovec_t v1, v2; |
| 669 | crypto_data_t d1, d2; |
| 670 | crypto_mechanism_t mech; |
| 671 | int rv; |
| 672 | |
| 673 | mech.cm_type = digest_type; |
| 674 | mech.cm_param = 0; |
| 675 | mech.cm_param_len = 0; |
| 676 | |
| 677 | v1.iov_base = (void *)input; |
| 678 | v1.iov_len = inlen; |
| 679 | |
| 680 | d1.cd_format = CRYPTO_DATA_RAW; |
| 681 | d1.cd_offset = 0; |
| 682 | d1.cd_length = v1.iov_len; |
| 683 | d1.cd_raw = v1; |
| 684 | |
| 685 | v2.iov_base = (void *)output; |
| 686 | v2.iov_len = hashlen; |
| 687 | |
| 688 | d2.cd_format = CRYPTO_DATA_RAW; |
| 689 | d2.cd_offset = 0; |
| 690 | d2.cd_length = v2.iov_len; |
| 691 | d2.cd_raw = v2; |
| 692 | |
| 693 | rv = crypto_digest(&mech, &d1, &d2, NULL); |
| 694 | |
| 695 | return (rv); |
| 696 | } |
| 697 | |
| 698 | /* |
| 699 | * sha1_calc |
| 700 | * |
| 701 | * Get a SHA1 hash on the input data. |
| 702 | */ |
| 703 | static int |
| 704 | sha1_calc(uchar_t *output, uchar_t *input, uint_t inlen) |
| 705 | { |
| 706 | int rv; |
| 707 | |
| 708 | rv = kef_digest(sha1_hash_mech, input, inlen, output, SHA1_HASHSIZE); |
| 709 | |
| 710 | return (rv); |
| 711 | } |
| 712 | |
| 713 | /* |
| 714 | * Get an MD5 hash on the input data. |
| 715 | * md5_calc |
| 716 | * |
| 717 | */ |
| 718 | static int |
| 719 | md5_calc(uchar_t *output, uchar_t *input, uint_t inlen) |
| 720 | { |
| 721 | int rv; |
| 722 | |
| 723 | rv = kef_digest(md5_hash_mech, input, inlen, output, MD5_HASHSIZE); |
| 724 | |
| 725 | return (rv); |
| 726 | } |
| 727 | |
| 728 | /* |
| 729 | * nfold |
| 730 | * duplicate the functionality of the krb5_nfold function from |
| 731 | * the userland kerberos mech. |
| 732 | * This is needed to derive keys for use with 3DES/SHA1-HMAC |
| 733 | * ciphers. |
| 734 | */ |
| 735 | static void |
| 736 | nfold(int inbits, uchar_t *in, int outbits, uchar_t *out) |
| 737 | { |
| 738 | int a, b, c, lcm; |
| 739 | int byte, i, msbit; |
| 740 | |
| 741 | inbits >>= 3; |
| 742 | outbits >>= 3; |
| 743 | |
| 744 | /* first compute lcm(n,k) */ |
| 745 | a = outbits; |
| 746 | b = inbits; |
| 747 | |
| 748 | while (b != 0) { |
| 749 | c = b; |
| 750 | b = a%b; |
| 751 | a = c; |
| 752 | } |
| 753 | |
| 754 | lcm = outbits*inbits/a; |
| 755 | |
| 756 | /* now do the real work */ |
| 757 | |
| 758 | bzero(out, outbits); |
| 759 | byte = 0; |
| 760 | |
| 761 | /* |
| 762 | * Compute the msbit in k which gets added into this byte |
| 763 | * first, start with the msbit in the first, unrotated byte |
| 764 | * then, for each byte, shift to the right for each repetition |
| 765 | * last, pick out the correct byte within that shifted repetition |
| 766 | */ |
| 767 | for (i = lcm-1; i >= 0; i--) { |
| 768 | msbit = (((inbits<<3)-1) |
| 769 | +(((inbits<<3)+13)*(i/inbits)) |
| 770 | +((inbits-(i%inbits))<<3)) %(inbits<<3); |
| 771 | |
| 772 | /* pull out the byte value itself */ |
| 773 | byte += (((in[((inbits-1)-(msbit>>3))%inbits]<<8)| |
| 774 | (in[((inbits)-(msbit>>3))%inbits])) |
| 775 | >>((msbit&7)+1))&0xff; |
| 776 | |
| 777 | /* do the addition */ |
| 778 | byte += out[i%outbits]; |
| 779 | out[i%outbits] = byte&0xff; |
| 780 | |
| 781 | byte >>= 8; |
| 782 | } |
| 783 | |
| 784 | /* if there's a carry bit left over, add it back in */ |
| 785 | if (byte) { |
| 786 | for (i = outbits-1; i >= 0; i--) { |
| 787 | /* do the addition */ |
| 788 | byte += out[i]; |
| 789 | out[i] = byte&0xff; |
| 790 | |
| 791 | /* keep around the carry bit, if any */ |
| 792 | byte >>= 8; |
| 793 | } |
| 794 | } |
| 795 | } |
| 796 | |
| 797 | #define smask(step) ((1<<step)-1) |
| 798 | #define pstep(x, step) (((x)&smask(step))^(((x)>>step)&smask(step))) |
| 799 | #define parity_char(x) pstep(pstep(pstep((x), 4), 2), 1) |
| 800 | |
| 801 | /* |
| 802 | * Duplicate the functionality of the "dk_derive_key" function |
| 803 | * in the Kerberos mechanism. |
| 804 | */ |
| 805 | static int |
| 806 | derive_key(struct cipher_data_t *cdata, uchar_t *constdata, |
| 807 | int constlen, char *dkey, int keybytes, |
| 808 | int blocklen) |
| 809 | { |
| 810 | int rv = 0; |
| 811 | int n = 0, i; |
| 812 | char *inblock; |
| 813 | char *rawkey; |
| 814 | char *zeroblock; |
| 815 | char *saveblock; |
| 816 | |
| 817 | inblock = kmem_zalloc(blocklen, KM_SLEEP); |
| 818 | rawkey = kmem_zalloc(keybytes, KM_SLEEP); |
| 819 | zeroblock = kmem_zalloc(blocklen, KM_SLEEP); |
| 820 | |
| 821 | if (constlen == blocklen) |
| 822 | bcopy(constdata, inblock, blocklen); |
| 823 | else |
| 824 | nfold(constlen * 8, constdata, |
| 825 | blocklen * 8, (uchar_t *)inblock); |
| 826 | |
| 827 | /* |
| 828 | * zeroblock is an IV of all 0's. |
| 829 | * |
| 830 | * The "block" section of the cdata record is used as the |
| 831 | * IV for crypto operations in the kef_crypt function. |
| 832 | * |
| 833 | * We use 'block' as a generic IV data buffer because it |
| 834 | * is attached to the stream state data and thus can |
| 835 | * be used to hold information that must carry over |
| 836 | * from processing of one mblk to another. |
| 837 | * |
| 838 | * Here, we save the current IV and replace it with |
| 839 | * and empty IV (all 0's) for use when deriving the |
| 840 | * keys. Once the key derivation is done, we swap the |
| 841 | * old IV back into place. |
| 842 | */ |
| 843 | saveblock = cdata->block; |
| 844 | cdata->block = zeroblock; |
| 845 | |
| 846 | while (n < keybytes) { |
| 847 | rv = kef_crypt(cdata, inblock, CRYPTO_DATA_RAW, |
| 848 | blocklen, CRYPT_ENCRYPT); |
| 849 | if (rv != CRYPTO_SUCCESS) { |
| 850 | /* put the original IV block back in place */ |
| 851 | cdata->block = saveblock; |
| 852 | cmn_err(CE_WARN, "failed to derive a key: %0x", rv); |
| 853 | goto cleanup; |
| 854 | } |
| 855 | |
| 856 | if (keybytes - n < blocklen) { |
| 857 | bcopy(inblock, rawkey+n, (keybytes-n)); |
| 858 | break; |
| 859 | } |
| 860 | bcopy(inblock, rawkey+n, blocklen); |
| 861 | n += blocklen; |
| 862 | } |
| 863 | /* put the original IV block back in place */ |
| 864 | cdata->block = saveblock; |
| 865 | |
| 866 | /* finally, make the key */ |
| 867 | if (cdata->method == CRYPT_METHOD_DES3_CBC_SHA1) { |
| 868 | /* |
| 869 | * 3DES key derivation requires that we make sure the |
| 870 | * key has the proper parity. |
| 871 | */ |
| 872 | for (i = 0; i < 3; i++) { |
| 873 | bcopy(rawkey+(i*7), dkey+(i*8), 7); |
| 874 | |
| 875 | /* 'dkey' is our derived key output buffer */ |
| 876 | dkey[i*8+7] = (((dkey[i*8]&1)<<1) | |
| 877 | ((dkey[i*8+1]&1)<<2) | |
| 878 | ((dkey[i*8+2]&1)<<3) | |
| 879 | ((dkey[i*8+3]&1)<<4) | |
| 880 | ((dkey[i*8+4]&1)<<5) | |
| 881 | ((dkey[i*8+5]&1)<<6) | |
| 882 | ((dkey[i*8+6]&1)<<7)); |
| 883 | |
| 884 | for (n = 0; n < 8; n++) { |
| 885 | dkey[i*8 + n] &= 0xfe; |
| 886 | dkey[i*8 + n] |= 1^parity_char(dkey[i*8 + n]); |
| 887 | } |
| 888 | } |
| 889 | } else if (IS_AES_METHOD(cdata->method)) { |
| 890 | bcopy(rawkey, dkey, keybytes); |
| 891 | } |
| 892 | cleanup: |
| 893 | kmem_free(inblock, blocklen); |
| 894 | kmem_free(zeroblock, blocklen); |
| 895 | kmem_free(rawkey, keybytes); |
| 896 | return (rv); |
| 897 | } |
| 898 | |
| 899 | /* |
| 900 | * create_derived_keys |
| 901 | * |
| 902 | * Algorithm for deriving a new key and an HMAC key |
| 903 | * before computing the 3DES-SHA1-HMAC operation on the plaintext |
| 904 | * This algorithm matches the work done by Kerberos mechanism |
| 905 | * in userland. |
| 906 | */ |
| 907 | static int |
| 908 | create_derived_keys(struct cipher_data_t *cdata, uint32_t usage, |
| 909 | crypto_key_t *enckey, crypto_key_t *hmackey) |
| 910 | { |
| 911 | uchar_t constdata[K5CLENGTH]; |
| 912 | int keybytes; |
| 913 | int rv; |
| 914 | |
| 915 | constdata[0] = (usage>>24)&0xff; |
| 916 | constdata[1] = (usage>>16)&0xff; |
| 917 | constdata[2] = (usage>>8)&0xff; |
| 918 | constdata[3] = usage & 0xff; |
| 919 | /* Use "0xAA" for deriving encryption key */ |
| 920 | constdata[4] = 0xAA; /* from MIT Kerberos code */ |
| 921 | |
| 922 | enckey->ck_length = cdata->keylen * 8; |
| 923 | enckey->ck_format = CRYPTO_KEY_RAW; |
| 924 | enckey->ck_data = kmem_zalloc(cdata->keylen, KM_SLEEP); |
| 925 | |
| 926 | switch (cdata->method) { |
| 927 | case CRYPT_METHOD_DES_CFB: |
| 928 | case CRYPT_METHOD_DES_CBC_NULL: |
| 929 | case CRYPT_METHOD_DES_CBC_MD5: |
| 930 | case CRYPT_METHOD_DES_CBC_CRC: |
| 931 | keybytes = 8; |
| 932 | break; |
| 933 | case CRYPT_METHOD_DES3_CBC_SHA1: |
| 934 | keybytes = CRYPT_DES3_KEYBYTES; |
| 935 | break; |
| 936 | case CRYPT_METHOD_ARCFOUR_HMAC_MD5: |
| 937 | case CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP: |
| 938 | keybytes = CRYPT_ARCFOUR_KEYBYTES; |
| 939 | break; |
| 940 | case CRYPT_METHOD_AES128: |
| 941 | keybytes = CRYPT_AES128_KEYBYTES; |
| 942 | break; |
| 943 | case CRYPT_METHOD_AES256: |
| 944 | keybytes = CRYPT_AES256_KEYBYTES; |
| 945 | break; |
| 946 | } |
| 947 | |
| 948 | /* derive main crypto key */ |
| 949 | rv = derive_key(cdata, constdata, sizeof (constdata), |
| 950 | enckey->ck_data, keybytes, cdata->blocklen); |
| 951 | |
| 952 | if (rv == CRYPTO_SUCCESS) { |
| 953 | |
| 954 | /* Use "0x55" for deriving mac key */ |
| 955 | constdata[4] = 0x55; |
| 956 | |
| 957 | hmackey->ck_length = cdata->keylen * 8; |
| 958 | hmackey->ck_format = CRYPTO_KEY_RAW; |
| 959 | hmackey->ck_data = kmem_zalloc(cdata->keylen, KM_SLEEP); |
| 960 | |
| 961 | rv = derive_key(cdata, constdata, sizeof (constdata), |
| 962 | hmackey->ck_data, keybytes, |
| 963 | cdata->blocklen); |
| 964 | } else { |
| 965 | cmn_err(CE_WARN, "failed to derive crypto key: %02x", rv); |
| 966 | } |
| 967 | |
| 968 | return (rv); |
| 969 | } |
| 970 | |
| 971 | /* |
| 972 | * Compute 3-DES crypto and HMAC. |
| 973 | */ |
| 974 | static int |
| 975 | kef_decr_hmac(struct cipher_data_t *cdata, |
| 976 | mblk_t *mp, int length, |
| 977 | char *hmac, int hmaclen) |
| 978 | { |
| 979 | int rv = CRYPTO_FAILED; |
| 980 | |
| 981 | crypto_mechanism_t encr_mech; |
| 982 | crypto_mechanism_t mac_mech; |
| 983 | crypto_data_t dd; |
| 984 | crypto_data_t mac; |
| 985 | iovec_t v1; |
| 986 | |
| 987 | ASSERT(cdata != NULL); |
| 988 | ASSERT(mp != NULL); |
| 989 | ASSERT(hmac != NULL); |
| 990 | |
| 991 | bzero(&dd, sizeof (dd)); |
| 992 | dd.cd_format = CRYPTO_DATA_MBLK; |
| 993 | dd.cd_offset = 0; |
| 994 | dd.cd_length = length; |
| 995 | dd.cd_mp = mp; |
| 996 | |
| 997 | v1.iov_base = hmac; |
| 998 | v1.iov_len = hmaclen; |
| 999 | |
| 1000 | mac.cd_format = CRYPTO_DATA_RAW; |
| 1001 | mac.cd_offset = 0; |
| 1002 | mac.cd_length = hmaclen; |
| 1003 | mac.cd_raw = v1; |
| 1004 | |
| 1005 | /* |
| 1006 | * cdata->block holds the IVEC |
| 1007 | */ |
| 1008 | encr_mech.cm_type = cdata->mech_type; |
| 1009 | encr_mech.cm_param = cdata->block; |
| 1010 | |
| 1011 | if (cdata->block != NULL) |
| 1012 | encr_mech.cm_param_len = cdata->blocklen; |
| 1013 | else |
| 1014 | encr_mech.cm_param_len = 0; |
| 1015 | |
| 1016 | rv = crypto_decrypt(&encr_mech, &dd, &cdata->d_encr_key, |
| 1017 | cdata->enc_tmpl, NULL, NULL); |
| 1018 | if (rv != CRYPTO_SUCCESS) { |
| 1019 | cmn_err(CE_WARN, "crypto_decrypt failed: %0x", rv); |
| 1020 | return (rv); |
| 1021 | } |
| 1022 | |
| 1023 | mac_mech.cm_type = sha1_hmac_mech; |
| 1024 | mac_mech.cm_param = NULL; |
| 1025 | mac_mech.cm_param_len = 0; |
| 1026 | |
| 1027 | /* |
| 1028 | * Compute MAC of the plaintext decrypted above. |
| 1029 | */ |
| 1030 | rv = crypto_mac(&mac_mech, &dd, &cdata->d_hmac_key, |
| 1031 | cdata->hmac_tmpl, &mac, NULL); |
| 1032 | |
| 1033 | if (rv != CRYPTO_SUCCESS) { |
| 1034 | cmn_err(CE_WARN, "crypto_mac failed: %0x", rv); |
| 1035 | } |
| 1036 | |
| 1037 | return (rv); |
| 1038 | } |
| 1039 | |
| 1040 | /* |
| 1041 | * Compute 3-DES crypto and HMAC. |
| 1042 | */ |
| 1043 | static int |
| 1044 | kef_encr_hmac(struct cipher_data_t *cdata, |
| 1045 | mblk_t *mp, int length, |
| 1046 | char *hmac, int hmaclen) |
| 1047 | { |
| 1048 | int rv = CRYPTO_FAILED; |
| 1049 | |
| 1050 | crypto_mechanism_t encr_mech; |
| 1051 | crypto_mechanism_t mac_mech; |
| 1052 | crypto_data_t dd; |
| 1053 | crypto_data_t mac; |
| 1054 | iovec_t v1; |
| 1055 | |
| 1056 | ASSERT(cdata != NULL); |
| 1057 | ASSERT(mp != NULL); |
| 1058 | ASSERT(hmac != NULL); |
| 1059 | |
| 1060 | bzero(&dd, sizeof (dd)); |
| 1061 | dd.cd_format = CRYPTO_DATA_MBLK; |
| 1062 | dd.cd_offset = 0; |
| 1063 | dd.cd_length = length; |
| 1064 | dd.cd_mp = mp; |
| 1065 | |
| 1066 | v1.iov_base = hmac; |
| 1067 | v1.iov_len = hmaclen; |
| 1068 | |
| 1069 | mac.cd_format = CRYPTO_DATA_RAW; |
| 1070 | mac.cd_offset = 0; |
| 1071 | mac.cd_length = hmaclen; |
| 1072 | mac.cd_raw = v1; |
| 1073 | |
| 1074 | /* |
| 1075 | * cdata->block holds the IVEC |
| 1076 | */ |
| 1077 | encr_mech.cm_type = cdata->mech_type; |
| 1078 | encr_mech.cm_param = cdata->block; |
| 1079 | |
| 1080 | if (cdata->block != NULL) |
| 1081 | encr_mech.cm_param_len = cdata->blocklen; |
| 1082 | else |
| 1083 | encr_mech.cm_param_len = 0; |
| 1084 | |
| 1085 | mac_mech.cm_type = sha1_hmac_mech; |
| 1086 | mac_mech.cm_param = NULL; |
| 1087 | mac_mech.cm_param_len = 0; |
| 1088 | |
| 1089 | rv = crypto_mac(&mac_mech, &dd, &cdata->d_hmac_key, |
| 1090 | cdata->hmac_tmpl, &mac, NULL); |
| 1091 | |
| 1092 | if (rv != CRYPTO_SUCCESS) { |
| 1093 | cmn_err(CE_WARN, "crypto_mac failed: %0x", rv); |
| 1094 | return (rv); |
| 1095 | } |
| 1096 | |
| 1097 | rv = crypto_encrypt(&encr_mech, &dd, &cdata->d_encr_key, |
| 1098 | cdata->enc_tmpl, NULL, NULL); |
| 1099 | if (rv != CRYPTO_SUCCESS) { |
| 1100 | cmn_err(CE_WARN, "crypto_encrypt failed: %0x", rv); |
| 1101 | } |
| 1102 | |
| 1103 | return (rv); |
| 1104 | } |
| 1105 | |
| 1106 | /* |
| 1107 | * kef_crypt |
| 1108 | * |
| 1109 | * Use the Kernel encryption framework to provide the |
| 1110 | * crypto operations for the indicated data. |
| 1111 | */ |
| 1112 | static int |
| 1113 | kef_crypt(struct cipher_data_t *cdata, |
| 1114 | void *indata, crypto_data_format_t fmt, |
| 1115 | size_t length, int mode) |
| 1116 | { |
| 1117 | int rv = CRYPTO_FAILED; |
| 1118 | |
| 1119 | crypto_mechanism_t mech; |
| 1120 | crypto_key_t crkey; |
| 1121 | iovec_t v1; |
| 1122 | crypto_data_t d1; |
| 1123 | |
| 1124 | ASSERT(cdata != NULL); |
| 1125 | ASSERT(indata != NULL); |
| 1126 | ASSERT(fmt == CRYPTO_DATA_RAW || fmt == CRYPTO_DATA_MBLK); |
| 1127 | |
| 1128 | bzero(&crkey, sizeof (crkey)); |
| 1129 | bzero(&d1, sizeof (d1)); |
| 1130 | |
| 1131 | crkey.ck_format = CRYPTO_KEY_RAW; |
| 1132 | crkey.ck_data = cdata->key; |
| 1133 | |
| 1134 | /* keys are measured in bits, not bytes, so multiply by 8 */ |
| 1135 | crkey.ck_length = cdata->keylen * 8; |
| 1136 | |
| 1137 | if (fmt == CRYPTO_DATA_RAW) { |
| 1138 | v1.iov_base = (char *)indata; |
| 1139 | v1.iov_len = length; |
| 1140 | } |
| 1141 | |
| 1142 | d1.cd_format = fmt; |
| 1143 | d1.cd_offset = 0; |
| 1144 | d1.cd_length = length; |
| 1145 | if (fmt == CRYPTO_DATA_RAW) |
| 1146 | d1.cd_raw = v1; |
| 1147 | else if (fmt == CRYPTO_DATA_MBLK) |
| 1148 | d1.cd_mp = (mblk_t *)indata; |
| 1149 | |
| 1150 | mech.cm_type = cdata->mech_type; |
| 1151 | mech.cm_param = cdata->block; |
| 1152 | /* |
| 1153 | * cdata->block holds the IVEC |
| 1154 | */ |
| 1155 | if (cdata->block != NULL) |
| 1156 | mech.cm_param_len = cdata->blocklen; |
| 1157 | else |
| 1158 | mech.cm_param_len = 0; |
| 1159 | |
| 1160 | /* |
| 1161 | * encrypt and decrypt in-place |
| 1162 | */ |
| 1163 | if (mode == CRYPT_ENCRYPT) |
| 1164 | rv = crypto_encrypt(&mech, &d1, &crkey, NULL, NULL, NULL); |
| 1165 | else |
| 1166 | rv = crypto_decrypt(&mech, &d1, &crkey, NULL, NULL, NULL); |
| 1167 | |
| 1168 | if (rv != CRYPTO_SUCCESS) { |
| 1169 | cmn_err(CE_WARN, "%s returned error %08x", |
| 1170 | (mode == CRYPT_ENCRYPT ? "crypto_encrypt" : |
| 1171 | "crypto_decrypt"), rv); |
| 1172 | return (CRYPTO_FAILED); |
| 1173 | } |
| 1174 | |
| 1175 | return (rv); |
| 1176 | } |
| 1177 | |
| 1178 | static int |
| 1179 | do_hmac(crypto_mech_type_t mech, |
| 1180 | crypto_key_t *key, |
| 1181 | char *data, int datalen, |
| 1182 | char *hmac, int hmaclen) |
| 1183 | { |
| 1184 | int rv = 0; |
| 1185 | crypto_mechanism_t mac_mech; |
| 1186 | crypto_data_t dd; |
| 1187 | crypto_data_t mac; |
| 1188 | iovec_t vdata, vmac; |
| 1189 | |
| 1190 | mac_mech.cm_type = mech; |
| 1191 | mac_mech.cm_param = NULL; |
| 1192 | mac_mech.cm_param_len = 0; |
| 1193 | |
| 1194 | vdata.iov_base = data; |
| 1195 | vdata.iov_len = datalen; |
| 1196 | |
| 1197 | bzero(&dd, sizeof (dd)); |
| 1198 | dd.cd_format = CRYPTO_DATA_RAW; |
| 1199 | dd.cd_offset = 0; |
| 1200 | dd.cd_length = datalen; |
| 1201 | dd.cd_raw = vdata; |
| 1202 | |
| 1203 | vmac.iov_base = hmac; |
| 1204 | vmac.iov_len = hmaclen; |
| 1205 | |
| 1206 | mac.cd_format = CRYPTO_DATA_RAW; |
| 1207 | mac.cd_offset = 0; |
| 1208 | mac.cd_length = hmaclen; |
| 1209 | mac.cd_raw = vmac; |
| 1210 | |
| 1211 | /* |
| 1212 | * Compute MAC of the plaintext decrypted above. |
| 1213 | */ |
| 1214 | rv = crypto_mac(&mac_mech, &dd, key, NULL, &mac, NULL); |
| 1215 | |
| 1216 | if (rv != CRYPTO_SUCCESS) { |
| 1217 | cmn_err(CE_WARN, "crypto_mac failed: %0x", rv); |
| 1218 | } |
| 1219 | |
| 1220 | return (rv); |
| 1221 | } |
| 1222 | |
| 1223 | #define XOR_BLOCK(src, dst) \ |
| 1224 | (dst)[0] ^= (src)[0]; \ |
| 1225 | (dst)[1] ^= (src)[1]; \ |
| 1226 | (dst)[2] ^= (src)[2]; \ |
| 1227 | (dst)[3] ^= (src)[3]; \ |
| 1228 | (dst)[4] ^= (src)[4]; \ |
| 1229 | (dst)[5] ^= (src)[5]; \ |
| 1230 | (dst)[6] ^= (src)[6]; \ |
| 1231 | (dst)[7] ^= (src)[7]; \ |
| 1232 | (dst)[8] ^= (src)[8]; \ |
| 1233 | (dst)[9] ^= (src)[9]; \ |
| 1234 | (dst)[10] ^= (src)[10]; \ |
| 1235 | (dst)[11] ^= (src)[11]; \ |
| 1236 | (dst)[12] ^= (src)[12]; \ |
| 1237 | (dst)[13] ^= (src)[13]; \ |
| 1238 | (dst)[14] ^= (src)[14]; \ |
| 1239 | (dst)[15] ^= (src)[15] |
| 1240 | |
| 1241 | #define xorblock(x, y) XOR_BLOCK(y, x) |
| 1242 | |
| 1243 | static int |
| 1244 | aes_cbc_cts_encrypt(struct tmodinfo *tmi, uchar_t *plain, size_t length) |
| 1245 | { |
| 1246 | int result = CRYPTO_SUCCESS; |
| 1247 | unsigned char tmp[DEFAULT_AES_BLOCKLEN]; |
| 1248 | unsigned char tmp2[DEFAULT_AES_BLOCKLEN]; |
| 1249 | unsigned char tmp3[DEFAULT_AES_BLOCKLEN]; |
| 1250 | int nblocks = 0, blockno; |
| 1251 | crypto_data_t ct, pt; |
| 1252 | crypto_mechanism_t mech; |
| 1253 | |
| 1254 | mech.cm_type = tmi->enc_data.mech_type; |
| 1255 | if (tmi->enc_data.ivlen > 0 && tmi->enc_data.ivec != NULL) { |
| 1256 | bcopy(tmi->enc_data.ivec, tmp, DEFAULT_AES_BLOCKLEN); |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 1257 | } else { |
| 1258 | bzero(tmp, sizeof (tmp)); |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 1259 | } |
Peter Shoults | e682dfa | 2008-11-18 15:42:56 -0500 | [diff] [blame] | 1260 | mech.cm_param = NULL; |
| 1261 | mech.cm_param_len = 0; |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 1262 | |
| 1263 | nblocks = (length + DEFAULT_AES_BLOCKLEN - 1) / DEFAULT_AES_BLOCKLEN; |
| 1264 | |
| 1265 | bzero(&ct, sizeof (crypto_data_t)); |
| 1266 | bzero(&pt, sizeof (crypto_data_t)); |
| 1267 | |
| 1268 | if (nblocks == 1) { |
| 1269 | pt.cd_format = CRYPTO_DATA_RAW; |
| 1270 | pt.cd_length = length; |
| 1271 | pt.cd_raw.iov_base = (char *)plain; |
| 1272 | pt.cd_raw.iov_len = length; |
| 1273 | |
| 1274 | result = crypto_encrypt(&mech, &pt, |
| 1275 | &tmi->enc_data.d_encr_key, NULL, NULL, NULL); |
| 1276 | |
| 1277 | if (result != CRYPTO_SUCCESS) { |
| 1278 | cmn_err(CE_WARN, "aes_cbc_cts_encrypt: " |
| 1279 | "crypto_encrypt failed: %0x", result); |
| 1280 | } |
| 1281 | } else { |
| 1282 | size_t nleft; |
| 1283 | |
| 1284 | ct.cd_format = CRYPTO_DATA_RAW; |
| 1285 | ct.cd_offset = 0; |
| 1286 | ct.cd_length = DEFAULT_AES_BLOCKLEN; |
| 1287 | |
| 1288 | pt.cd_format = CRYPTO_DATA_RAW; |
| 1289 | pt.cd_offset = 0; |
| 1290 | pt.cd_length = DEFAULT_AES_BLOCKLEN; |
| 1291 | |
| 1292 | result = crypto_encrypt_init(&mech, |
| 1293 | &tmi->enc_data.d_encr_key, |
| 1294 | tmi->enc_data.enc_tmpl, |
| 1295 | &tmi->enc_data.ctx, NULL); |
| 1296 | |
| 1297 | if (result != CRYPTO_SUCCESS) { |
| 1298 | cmn_err(CE_WARN, "aes_cbc_cts_encrypt: " |
| 1299 | "crypto_encrypt_init failed: %0x", result); |
| 1300 | goto cleanup; |
| 1301 | } |
| 1302 | |
| 1303 | for (blockno = 0; blockno < nblocks - 2; blockno++) { |
| 1304 | xorblock(tmp, plain + blockno * DEFAULT_AES_BLOCKLEN); |
| 1305 | |
| 1306 | pt.cd_raw.iov_base = (char *)tmp; |
| 1307 | pt.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN; |
| 1308 | |
| 1309 | ct.cd_raw.iov_base = (char *)plain + |
| 1310 | blockno * DEFAULT_AES_BLOCKLEN; |
| 1311 | ct.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN; |
| 1312 | |
| 1313 | result = crypto_encrypt_update(tmi->enc_data.ctx, |
| 1314 | &pt, &ct, NULL); |
| 1315 | |
| 1316 | if (result != CRYPTO_SUCCESS) { |
| 1317 | cmn_err(CE_WARN, "aes_cbc_cts_encrypt: " |
| 1318 | "crypto_encrypt_update failed: %0x", |
| 1319 | result); |
| 1320 | goto cleanup; |
| 1321 | } |
| 1322 | /* copy result over original bytes */ |
| 1323 | /* make another copy for the next XOR step */ |
| 1324 | bcopy(plain + blockno * DEFAULT_AES_BLOCKLEN, |
| 1325 | tmp, DEFAULT_AES_BLOCKLEN); |
| 1326 | } |
| 1327 | /* XOR cipher text from n-3 with plain text from n-2 */ |
| 1328 | xorblock(tmp, plain + (nblocks - 2) * DEFAULT_AES_BLOCKLEN); |
| 1329 | |
| 1330 | pt.cd_raw.iov_base = (char *)tmp; |
| 1331 | pt.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN; |
| 1332 | |
| 1333 | ct.cd_raw.iov_base = (char *)tmp2; |
| 1334 | ct.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN; |
| 1335 | |
| 1336 | /* encrypt XOR-ed block N-2 */ |
| 1337 | result = crypto_encrypt_update(tmi->enc_data.ctx, |
| 1338 | &pt, &ct, NULL); |
| 1339 | if (result != CRYPTO_SUCCESS) { |
| 1340 | cmn_err(CE_WARN, "aes_cbc_cts_encrypt: " |
| 1341 | "crypto_encrypt_update(2) failed: %0x", |
| 1342 | result); |
| 1343 | goto cleanup; |
| 1344 | } |
| 1345 | nleft = length - (nblocks - 1) * DEFAULT_AES_BLOCKLEN; |
| 1346 | |
| 1347 | bzero(tmp3, sizeof (tmp3)); |
| 1348 | /* Save final plaintext bytes from n-1 */ |
| 1349 | bcopy(plain + (nblocks - 1) * DEFAULT_AES_BLOCKLEN, tmp3, |
| 1350 | nleft); |
| 1351 | |
| 1352 | /* Overwrite n-1 with cipher text from n-2 */ |
| 1353 | bcopy(tmp2, plain + (nblocks - 1) * DEFAULT_AES_BLOCKLEN, |
| 1354 | nleft); |
| 1355 | |
| 1356 | bcopy(tmp2, tmp, DEFAULT_AES_BLOCKLEN); |
| 1357 | /* XOR cipher text from n-1 with plain text from n-1 */ |
| 1358 | xorblock(tmp, tmp3); |
| 1359 | |
| 1360 | pt.cd_raw.iov_base = (char *)tmp; |
| 1361 | pt.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN; |
| 1362 | |
| 1363 | ct.cd_raw.iov_base = (char *)tmp2; |
| 1364 | ct.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN; |
| 1365 | |
| 1366 | /* encrypt block N-2 */ |
| 1367 | result = crypto_encrypt_update(tmi->enc_data.ctx, |
| 1368 | &pt, &ct, NULL); |
| 1369 | |
| 1370 | if (result != CRYPTO_SUCCESS) { |
| 1371 | cmn_err(CE_WARN, "aes_cbc_cts_encrypt: " |
| 1372 | "crypto_encrypt_update(3) failed: %0x", |
| 1373 | result); |
| 1374 | goto cleanup; |
| 1375 | } |
| 1376 | |
| 1377 | bcopy(tmp2, plain + (nblocks - 2) * DEFAULT_AES_BLOCKLEN, |
| 1378 | DEFAULT_AES_BLOCKLEN); |
| 1379 | |
| 1380 | |
| 1381 | ct.cd_raw.iov_base = (char *)tmp2; |
| 1382 | ct.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN; |
| 1383 | |
| 1384 | /* |
| 1385 | * Ignore the output on the final step. |
| 1386 | */ |
| 1387 | result = crypto_encrypt_final(tmi->enc_data.ctx, &ct, NULL); |
| 1388 | if (result != CRYPTO_SUCCESS) { |
| 1389 | cmn_err(CE_WARN, "aes_cbc_cts_encrypt: " |
| 1390 | "crypto_encrypt_final(3) failed: %0x", |
| 1391 | result); |
| 1392 | } |
| 1393 | tmi->enc_data.ctx = NULL; |
| 1394 | } |
| 1395 | cleanup: |
| 1396 | bzero(tmp, sizeof (tmp)); |
| 1397 | bzero(tmp2, sizeof (tmp)); |
| 1398 | bzero(tmp3, sizeof (tmp)); |
| 1399 | bzero(tmi->enc_data.block, tmi->enc_data.blocklen); |
| 1400 | return (result); |
| 1401 | } |
| 1402 | |
| 1403 | static int |
| 1404 | aes_cbc_cts_decrypt(struct tmodinfo *tmi, uchar_t *buff, size_t length) |
| 1405 | { |
| 1406 | int result = CRYPTO_SUCCESS; |
| 1407 | unsigned char tmp[DEFAULT_AES_BLOCKLEN]; |
| 1408 | unsigned char tmp2[DEFAULT_AES_BLOCKLEN]; |
| 1409 | unsigned char tmp3[DEFAULT_AES_BLOCKLEN]; |
| 1410 | int nblocks = 0, blockno; |
| 1411 | crypto_data_t ct, pt; |
| 1412 | crypto_mechanism_t mech; |
| 1413 | |
| 1414 | mech.cm_type = tmi->enc_data.mech_type; |
| 1415 | |
| 1416 | if (tmi->dec_data.ivec_usage != IVEC_NEVER && |
| 1417 | tmi->dec_data.ivlen > 0 && tmi->dec_data.ivec != NULL) { |
| 1418 | bcopy(tmi->dec_data.ivec, tmp, DEFAULT_AES_BLOCKLEN); |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 1419 | } else { |
| 1420 | bzero(tmp, sizeof (tmp)); |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 1421 | } |
Peter Shoults | e682dfa | 2008-11-18 15:42:56 -0500 | [diff] [blame] | 1422 | mech.cm_param_len = 0; |
| 1423 | mech.cm_param = NULL; |
| 1424 | |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 1425 | nblocks = (length + DEFAULT_AES_BLOCKLEN - 1) / DEFAULT_AES_BLOCKLEN; |
| 1426 | |
| 1427 | bzero(&pt, sizeof (pt)); |
| 1428 | bzero(&ct, sizeof (ct)); |
| 1429 | |
| 1430 | if (nblocks == 1) { |
| 1431 | ct.cd_format = CRYPTO_DATA_RAW; |
| 1432 | ct.cd_length = length; |
| 1433 | ct.cd_raw.iov_base = (char *)buff; |
| 1434 | ct.cd_raw.iov_len = length; |
| 1435 | |
| 1436 | result = crypto_decrypt(&mech, &ct, |
| 1437 | &tmi->dec_data.d_encr_key, NULL, NULL, NULL); |
| 1438 | |
| 1439 | if (result != CRYPTO_SUCCESS) { |
| 1440 | cmn_err(CE_WARN, "aes_cbc_cts_decrypt: " |
| 1441 | "crypto_decrypt failed: %0x", result); |
| 1442 | goto cleanup; |
| 1443 | } |
| 1444 | } else { |
| 1445 | ct.cd_format = CRYPTO_DATA_RAW; |
| 1446 | ct.cd_offset = 0; |
| 1447 | ct.cd_length = DEFAULT_AES_BLOCKLEN; |
| 1448 | |
| 1449 | pt.cd_format = CRYPTO_DATA_RAW; |
| 1450 | pt.cd_offset = 0; |
| 1451 | pt.cd_length = DEFAULT_AES_BLOCKLEN; |
| 1452 | |
Peter Shoults | e682dfa | 2008-11-18 15:42:56 -0500 | [diff] [blame] | 1453 | result = crypto_decrypt_init(&mech, |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 1454 | &tmi->dec_data.d_encr_key, |
| 1455 | tmi->dec_data.enc_tmpl, |
| 1456 | &tmi->dec_data.ctx, NULL); |
| 1457 | |
| 1458 | if (result != CRYPTO_SUCCESS) { |
| 1459 | cmn_err(CE_WARN, "aes_cbc_cts_decrypt: " |
| 1460 | "crypto_decrypt_init failed: %0x", result); |
| 1461 | goto cleanup; |
| 1462 | } |
| 1463 | for (blockno = 0; blockno < nblocks - 2; blockno++) { |
| 1464 | ct.cd_raw.iov_base = (char *)buff + |
| 1465 | (blockno * DEFAULT_AES_BLOCKLEN); |
| 1466 | ct.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN; |
| 1467 | |
| 1468 | pt.cd_raw.iov_base = (char *)tmp2; |
| 1469 | pt.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN; |
| 1470 | |
| 1471 | /* |
| 1472 | * Save the input to the decrypt so it can |
| 1473 | * be used later for an XOR operation |
| 1474 | */ |
| 1475 | bcopy(buff + (blockno * DEFAULT_AES_BLOCKLEN), |
| 1476 | tmi->dec_data.block, DEFAULT_AES_BLOCKLEN); |
| 1477 | |
ethindra | c877ffe | 2006-02-07 17:48:46 -0800 | [diff] [blame] | 1478 | result = crypto_decrypt_update(tmi->dec_data.ctx, |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 1479 | &ct, &pt, NULL); |
| 1480 | if (result != CRYPTO_SUCCESS) { |
| 1481 | cmn_err(CE_WARN, "aes_cbc_cts_decrypt: " |
| 1482 | "crypto_decrypt_update(1) error - " |
| 1483 | "result = 0x%08x", result); |
| 1484 | goto cleanup; |
| 1485 | } |
| 1486 | xorblock(tmp2, tmp); |
| 1487 | bcopy(tmp2, buff + blockno * DEFAULT_AES_BLOCKLEN, |
| 1488 | DEFAULT_AES_BLOCKLEN); |
| 1489 | /* |
| 1490 | * The original cipher text is used as the xor |
| 1491 | * for the next block, save it here. |
| 1492 | */ |
| 1493 | bcopy(tmi->dec_data.block, tmp, DEFAULT_AES_BLOCKLEN); |
| 1494 | } |
| 1495 | ct.cd_raw.iov_base = (char *)buff + |
| 1496 | ((nblocks - 2) * DEFAULT_AES_BLOCKLEN); |
| 1497 | ct.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN; |
| 1498 | pt.cd_raw.iov_base = (char *)tmp2; |
| 1499 | pt.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN; |
| 1500 | |
| 1501 | result = crypto_decrypt_update(tmi->dec_data.ctx, |
| 1502 | &ct, &pt, NULL); |
| 1503 | if (result != CRYPTO_SUCCESS) { |
| 1504 | cmn_err(CE_WARN, |
| 1505 | "aes_cbc_cts_decrypt: " |
| 1506 | "crypto_decrypt_update(2) error -" |
| 1507 | " result = 0x%08x", result); |
| 1508 | goto cleanup; |
| 1509 | } |
| 1510 | bzero(tmp3, sizeof (tmp3)); |
| 1511 | bcopy(buff + (nblocks - 1) * DEFAULT_AES_BLOCKLEN, tmp3, |
| 1512 | length - ((nblocks - 1) * DEFAULT_AES_BLOCKLEN)); |
| 1513 | |
| 1514 | xorblock(tmp2, tmp3); |
| 1515 | bcopy(tmp2, buff + (nblocks - 1) * DEFAULT_AES_BLOCKLEN, |
| 1516 | length - ((nblocks - 1) * DEFAULT_AES_BLOCKLEN)); |
| 1517 | |
| 1518 | /* 2nd to last block ... */ |
| 1519 | bcopy(tmp3, tmp2, |
| 1520 | length - ((nblocks - 1) * DEFAULT_AES_BLOCKLEN)); |
| 1521 | |
| 1522 | ct.cd_raw.iov_base = (char *)tmp2; |
| 1523 | ct.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN; |
| 1524 | pt.cd_raw.iov_base = (char *)tmp3; |
| 1525 | pt.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN; |
| 1526 | |
| 1527 | result = crypto_decrypt_update(tmi->dec_data.ctx, |
| 1528 | &ct, &pt, NULL); |
| 1529 | if (result != CRYPTO_SUCCESS) { |
| 1530 | cmn_err(CE_WARN, |
| 1531 | "aes_cbc_cts_decrypt: " |
| 1532 | "crypto_decrypt_update(3) error - " |
| 1533 | "result = 0x%08x", result); |
| 1534 | goto cleanup; |
| 1535 | } |
| 1536 | xorblock(tmp3, tmp); |
| 1537 | |
| 1538 | |
| 1539 | /* Finally, update the 2nd to last block and we are done. */ |
| 1540 | bcopy(tmp3, buff + (nblocks - 2) * DEFAULT_AES_BLOCKLEN, |
| 1541 | DEFAULT_AES_BLOCKLEN); |
| 1542 | |
| 1543 | /* Do Final step, but ignore output */ |
| 1544 | pt.cd_raw.iov_base = (char *)tmp2; |
| 1545 | pt.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN; |
| 1546 | result = crypto_decrypt_final(tmi->dec_data.ctx, &pt, NULL); |
| 1547 | if (result != CRYPTO_SUCCESS) { |
| 1548 | cmn_err(CE_WARN, "aes_cbc_cts_decrypt: " |
| 1549 | "crypto_decrypt_final error - " |
| 1550 | "result = 0x%0x", result); |
| 1551 | } |
| 1552 | tmi->dec_data.ctx = NULL; |
| 1553 | } |
| 1554 | |
| 1555 | cleanup: |
| 1556 | bzero(tmp, sizeof (tmp)); |
| 1557 | bzero(tmp2, sizeof (tmp)); |
| 1558 | bzero(tmp3, sizeof (tmp)); |
| 1559 | bzero(tmi->dec_data.block, tmi->dec_data.blocklen); |
| 1560 | return (result); |
| 1561 | } |
| 1562 | |
| 1563 | /* |
| 1564 | * AES decrypt |
| 1565 | * |
| 1566 | * format of ciphertext when using AES |
| 1567 | * +-------------+------------+------------+ |
| 1568 | * | confounder | msg-data | hmac | |
| 1569 | * +-------------+------------+------------+ |
| 1570 | */ |
| 1571 | static mblk_t * |
| 1572 | aes_decrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp, |
| 1573 | hash_info_t *hash) |
| 1574 | { |
| 1575 | int result; |
| 1576 | size_t enclen; |
| 1577 | size_t inlen; |
| 1578 | uchar_t hmacbuff[64]; |
| 1579 | uchar_t tmpiv[DEFAULT_AES_BLOCKLEN]; |
| 1580 | |
| 1581 | inlen = (size_t)MBLKL(mp); |
| 1582 | |
| 1583 | enclen = inlen - AES_TRUNCATED_HMAC_LEN; |
| 1584 | if (tmi->dec_data.ivec_usage != IVEC_NEVER && |
| 1585 | tmi->dec_data.ivec != NULL && tmi->dec_data.ivlen > 0) { |
| 1586 | int nblocks = (enclen + DEFAULT_AES_BLOCKLEN - 1) / |
| 1587 | DEFAULT_AES_BLOCKLEN; |
| 1588 | bcopy(mp->b_rptr + DEFAULT_AES_BLOCKLEN * (nblocks - 2), |
| 1589 | tmpiv, DEFAULT_AES_BLOCKLEN); |
| 1590 | } |
| 1591 | |
| 1592 | /* AES Decrypt */ |
| 1593 | result = aes_cbc_cts_decrypt(tmi, mp->b_rptr, enclen); |
| 1594 | |
| 1595 | if (result != CRYPTO_SUCCESS) { |
| 1596 | cmn_err(CE_WARN, |
| 1597 | "aes_decrypt: aes_cbc_cts_decrypt " |
| 1598 | "failed - error %0x", result); |
| 1599 | goto cleanup; |
| 1600 | } |
| 1601 | |
| 1602 | /* Verify the HMAC */ |
| 1603 | result = do_hmac(sha1_hmac_mech, |
| 1604 | &tmi->dec_data.d_hmac_key, |
| 1605 | (char *)mp->b_rptr, enclen, |
| 1606 | (char *)hmacbuff, hash->hash_len); |
| 1607 | |
| 1608 | if (result != CRYPTO_SUCCESS) { |
| 1609 | cmn_err(CE_WARN, |
| 1610 | "aes_decrypt: do_hmac failed - error %0x", result); |
| 1611 | goto cleanup; |
| 1612 | } |
| 1613 | |
| 1614 | if (bcmp(hmacbuff, mp->b_rptr + enclen, |
| 1615 | AES_TRUNCATED_HMAC_LEN) != 0) { |
| 1616 | result = -1; |
| 1617 | cmn_err(CE_WARN, "aes_decrypt: checksum verification failed"); |
| 1618 | goto cleanup; |
| 1619 | } |
| 1620 | |
| 1621 | /* truncate the mblk at the end of the decrypted text */ |
| 1622 | mp->b_wptr = mp->b_rptr + enclen; |
| 1623 | |
| 1624 | /* Adjust the beginning of the buffer to skip the confounder */ |
| 1625 | mp->b_rptr += DEFAULT_AES_BLOCKLEN; |
| 1626 | |
| 1627 | if (tmi->dec_data.ivec_usage != IVEC_NEVER && |
| 1628 | tmi->dec_data.ivec != NULL && tmi->dec_data.ivlen > 0) |
| 1629 | bcopy(tmpiv, tmi->dec_data.ivec, DEFAULT_AES_BLOCKLEN); |
| 1630 | |
| 1631 | cleanup: |
| 1632 | if (result != CRYPTO_SUCCESS) { |
| 1633 | mp->b_datap->db_type = M_ERROR; |
| 1634 | mp->b_rptr = mp->b_datap->db_base; |
| 1635 | *mp->b_rptr = EIO; |
| 1636 | mp->b_wptr = mp->b_rptr + sizeof (char); |
| 1637 | freemsg(mp->b_cont); |
| 1638 | mp->b_cont = NULL; |
| 1639 | qreply(WR(q), mp); |
| 1640 | return (NULL); |
| 1641 | } |
| 1642 | return (mp); |
| 1643 | } |
| 1644 | |
| 1645 | /* |
| 1646 | * AES encrypt |
| 1647 | * |
| 1648 | * format of ciphertext when using AES |
| 1649 | * +-------------+------------+------------+ |
| 1650 | * | confounder | msg-data | hmac | |
| 1651 | * +-------------+------------+------------+ |
| 1652 | */ |
| 1653 | static mblk_t * |
| 1654 | aes_encrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp, |
| 1655 | hash_info_t *hash) |
| 1656 | { |
| 1657 | int result; |
| 1658 | size_t cipherlen; |
| 1659 | size_t inlen; |
| 1660 | uchar_t hmacbuff[64]; |
| 1661 | |
| 1662 | inlen = (size_t)MBLKL(mp); |
| 1663 | |
| 1664 | cipherlen = encrypt_size(&tmi->enc_data, inlen); |
| 1665 | |
| 1666 | ASSERT(MBLKSIZE(mp) >= cipherlen); |
| 1667 | |
| 1668 | /* |
| 1669 | * Shift the rptr back enough to insert the confounder. |
| 1670 | */ |
| 1671 | mp->b_rptr -= DEFAULT_AES_BLOCKLEN; |
| 1672 | |
| 1673 | /* Get random data for confounder */ |
| 1674 | (void) random_get_pseudo_bytes((uint8_t *)mp->b_rptr, |
| 1675 | DEFAULT_AES_BLOCKLEN); |
| 1676 | |
| 1677 | /* |
| 1678 | * Because we encrypt in-place, we need to calculate |
| 1679 | * the HMAC of the plaintext now, then stick it on |
| 1680 | * the end of the ciphertext down below. |
| 1681 | */ |
| 1682 | result = do_hmac(sha1_hmac_mech, |
| 1683 | &tmi->enc_data.d_hmac_key, |
| 1684 | (char *)mp->b_rptr, DEFAULT_AES_BLOCKLEN + inlen, |
| 1685 | (char *)hmacbuff, hash->hash_len); |
| 1686 | |
| 1687 | if (result != CRYPTO_SUCCESS) { |
| 1688 | cmn_err(CE_WARN, "aes_encrypt: do_hmac failed - error %0x", |
| 1689 | result); |
| 1690 | goto cleanup; |
| 1691 | } |
| 1692 | /* Encrypt using AES-CBC-CTS */ |
| 1693 | result = aes_cbc_cts_encrypt(tmi, mp->b_rptr, |
| 1694 | inlen + DEFAULT_AES_BLOCKLEN); |
| 1695 | |
| 1696 | if (result != CRYPTO_SUCCESS) { |
| 1697 | cmn_err(CE_WARN, "aes_encrypt: aes_cbc_cts_encrypt " |
| 1698 | "failed - error %0x", result); |
| 1699 | goto cleanup; |
| 1700 | } |
| 1701 | |
| 1702 | /* copy the truncated HMAC to the end of the mblk */ |
| 1703 | bcopy(hmacbuff, mp->b_rptr + DEFAULT_AES_BLOCKLEN + inlen, |
| 1704 | AES_TRUNCATED_HMAC_LEN); |
| 1705 | |
| 1706 | mp->b_wptr = mp->b_rptr + cipherlen; |
| 1707 | |
| 1708 | /* |
| 1709 | * The final block of cipher text (not the HMAC) is used |
| 1710 | * as the next IV. |
| 1711 | */ |
| 1712 | if (tmi->enc_data.ivec_usage != IVEC_NEVER && |
| 1713 | tmi->enc_data.ivec != NULL) { |
| 1714 | int nblocks = (inlen + 2 * DEFAULT_AES_BLOCKLEN - 1) / |
| 1715 | DEFAULT_AES_BLOCKLEN; |
| 1716 | |
| 1717 | bcopy(mp->b_rptr + (nblocks - 2) * DEFAULT_AES_BLOCKLEN, |
| 1718 | tmi->enc_data.ivec, DEFAULT_AES_BLOCKLEN); |
| 1719 | } |
| 1720 | |
| 1721 | cleanup: |
| 1722 | if (result != CRYPTO_SUCCESS) { |
| 1723 | mp->b_datap->db_type = M_ERROR; |
| 1724 | mp->b_rptr = mp->b_datap->db_base; |
| 1725 | *mp->b_rptr = EIO; |
| 1726 | mp->b_wptr = mp->b_rptr + sizeof (char); |
| 1727 | freemsg(mp->b_cont); |
| 1728 | mp->b_cont = NULL; |
| 1729 | qreply(WR(q), mp); |
| 1730 | return (NULL); |
| 1731 | } |
| 1732 | return (mp); |
| 1733 | } |
| 1734 | |
| 1735 | /* |
| 1736 | * ARCFOUR-HMAC-MD5 decrypt |
| 1737 | * |
| 1738 | * format of ciphertext when using ARCFOUR-HMAC-MD5 |
| 1739 | * +-----------+------------+------------+ |
| 1740 | * | hmac | confounder | msg-data | |
| 1741 | * +-----------+------------+------------+ |
| 1742 | * |
| 1743 | */ |
| 1744 | static mblk_t * |
| 1745 | arcfour_hmac_md5_decrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp, |
| 1746 | hash_info_t *hash) |
| 1747 | { |
| 1748 | int result; |
| 1749 | size_t cipherlen; |
| 1750 | size_t inlen; |
| 1751 | size_t saltlen; |
| 1752 | crypto_key_t k1, k2; |
| 1753 | crypto_data_t indata; |
| 1754 | iovec_t v1; |
| 1755 | uchar_t ms_exp[9] = {0xab, 0xab, 0xab, 0xab, 0xab, |
| 1756 | 0xab, 0xab, 0xab, 0xab }; |
| 1757 | uchar_t k1data[CRYPT_ARCFOUR_KEYBYTES]; |
| 1758 | uchar_t k2data[CRYPT_ARCFOUR_KEYBYTES]; |
| 1759 | uchar_t cksum[MD5_HASHSIZE]; |
| 1760 | uchar_t saltdata[CRYPT_ARCFOUR_KEYBYTES]; |
| 1761 | crypto_mechanism_t mech; |
| 1762 | int usage; |
| 1763 | |
Peter Shoults | 35e1025 | 2010-02-18 12:22:26 -0500 | [diff] [blame] | 1764 | bzero(&indata, sizeof (indata)); |
| 1765 | |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 1766 | /* The usage constant is 1026 for all "old" rcmd mode operations */ |
| 1767 | if (tmi->dec_data.option_mask & CRYPTOPT_RCMD_MODE_V1) |
| 1768 | usage = RCMDV1_USAGE; |
| 1769 | else |
| 1770 | usage = ARCFOUR_DECRYPT_USAGE; |
| 1771 | |
| 1772 | /* |
| 1773 | * The size at this point should be the size of |
| 1774 | * all the plaintext plus the optional plaintext length |
| 1775 | * needed for RCMD V2 mode. There should also be room |
| 1776 | * at the head of the mblk for the confounder and hash info. |
| 1777 | */ |
| 1778 | inlen = (size_t)MBLKL(mp); |
| 1779 | |
| 1780 | /* |
| 1781 | * The cipherlen does not include the HMAC at the |
| 1782 | * head of the buffer. |
| 1783 | */ |
| 1784 | cipherlen = inlen - hash->hash_len; |
| 1785 | |
| 1786 | ASSERT(MBLKSIZE(mp) >= cipherlen); |
| 1787 | if (tmi->dec_data.method == CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP) { |
| 1788 | bcopy(ARCFOUR_EXP_SALT, saltdata, strlen(ARCFOUR_EXP_SALT)); |
| 1789 | saltdata[9] = 0; |
| 1790 | saltdata[10] = usage & 0xff; |
| 1791 | saltdata[11] = (usage >> 8) & 0xff; |
| 1792 | saltdata[12] = (usage >> 16) & 0xff; |
| 1793 | saltdata[13] = (usage >> 24) & 0xff; |
| 1794 | saltlen = 14; |
| 1795 | } else { |
| 1796 | saltdata[0] = usage & 0xff; |
| 1797 | saltdata[1] = (usage >> 8) & 0xff; |
| 1798 | saltdata[2] = (usage >> 16) & 0xff; |
| 1799 | saltdata[3] = (usage >> 24) & 0xff; |
| 1800 | saltlen = 4; |
| 1801 | } |
| 1802 | /* |
| 1803 | * Use the salt value to create a key to be used |
| 1804 | * for subsequent HMAC operations. |
| 1805 | */ |
| 1806 | result = do_hmac(md5_hmac_mech, |
| 1807 | tmi->dec_data.ckey, |
| 1808 | (char *)saltdata, saltlen, |
| 1809 | (char *)k1data, sizeof (k1data)); |
| 1810 | if (result != CRYPTO_SUCCESS) { |
| 1811 | cmn_err(CE_WARN, |
| 1812 | "arcfour_hmac_md5_decrypt: do_hmac(k1)" |
| 1813 | "failed - error %0x", result); |
| 1814 | goto cleanup; |
| 1815 | } |
| 1816 | bcopy(k1data, k2data, sizeof (k1data)); |
| 1817 | |
| 1818 | /* |
| 1819 | * For the neutered MS RC4 encryption type, |
| 1820 | * set the trailing 9 bytes to 0xab per the |
| 1821 | * RC4-HMAC spec. |
| 1822 | */ |
| 1823 | if (tmi->dec_data.method == CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP) { |
| 1824 | bcopy((void *)&k1data[7], ms_exp, sizeof (ms_exp)); |
| 1825 | } |
| 1826 | |
| 1827 | mech.cm_type = tmi->dec_data.mech_type; |
| 1828 | mech.cm_param = NULL; |
| 1829 | mech.cm_param_len = 0; |
| 1830 | |
| 1831 | /* |
| 1832 | * If we have not yet initialized the decryption key, |
| 1833 | * context, and template, do it now. |
| 1834 | */ |
| 1835 | if (tmi->dec_data.ctx == NULL || |
| 1836 | (tmi->dec_data.option_mask & CRYPTOPT_RCMD_MODE_V1)) { |
| 1837 | k1.ck_format = CRYPTO_KEY_RAW; |
| 1838 | k1.ck_length = CRYPT_ARCFOUR_KEYBYTES * 8; |
| 1839 | k1.ck_data = k1data; |
| 1840 | |
| 1841 | tmi->dec_data.d_encr_key.ck_format = CRYPTO_KEY_RAW; |
| 1842 | tmi->dec_data.d_encr_key.ck_length = k1.ck_length; |
| 1843 | if (tmi->dec_data.d_encr_key.ck_data == NULL) |
| 1844 | tmi->dec_data.d_encr_key.ck_data = kmem_zalloc( |
| 1845 | CRYPT_ARCFOUR_KEYBYTES, KM_SLEEP); |
| 1846 | |
| 1847 | /* |
| 1848 | * HMAC operation creates the encryption |
| 1849 | * key to be used for the decrypt operations. |
| 1850 | */ |
| 1851 | result = do_hmac(md5_hmac_mech, &k1, |
| 1852 | (char *)mp->b_rptr, hash->hash_len, |
| 1853 | (char *)tmi->dec_data.d_encr_key.ck_data, |
| 1854 | CRYPT_ARCFOUR_KEYBYTES); |
| 1855 | |
| 1856 | |
| 1857 | if (result != CRYPTO_SUCCESS) { |
| 1858 | cmn_err(CE_WARN, |
| 1859 | "arcfour_hmac_md5_decrypt: do_hmac(k3)" |
| 1860 | "failed - error %0x", result); |
| 1861 | goto cleanup; |
| 1862 | } |
| 1863 | } |
| 1864 | |
| 1865 | tmi->dec_data.enc_tmpl = NULL; |
| 1866 | |
| 1867 | if (tmi->dec_data.ctx == NULL && |
| 1868 | (tmi->dec_data.option_mask & CRYPTOPT_RCMD_MODE_V2)) { |
| 1869 | /* |
| 1870 | * Only create a template if we are doing |
| 1871 | * chaining from block to block. |
| 1872 | */ |
| 1873 | result = crypto_create_ctx_template(&mech, |
| 1874 | &tmi->dec_data.d_encr_key, |
| 1875 | &tmi->dec_data.enc_tmpl, |
| 1876 | KM_SLEEP); |
| 1877 | if (result == CRYPTO_NOT_SUPPORTED) { |
| 1878 | tmi->dec_data.enc_tmpl = NULL; |
| 1879 | } else if (result != CRYPTO_SUCCESS) { |
| 1880 | cmn_err(CE_WARN, |
| 1881 | "arcfour_hmac_md5_decrypt: " |
| 1882 | "failed to create dec template " |
| 1883 | "for RC4 encrypt: %0x", result); |
| 1884 | goto cleanup; |
| 1885 | } |
| 1886 | |
| 1887 | result = crypto_decrypt_init(&mech, |
| 1888 | &tmi->dec_data.d_encr_key, |
| 1889 | tmi->dec_data.enc_tmpl, |
| 1890 | &tmi->dec_data.ctx, NULL); |
| 1891 | |
| 1892 | if (result != CRYPTO_SUCCESS) { |
| 1893 | cmn_err(CE_WARN, "crypto_decrypt_init failed:" |
| 1894 | " %0x", result); |
| 1895 | goto cleanup; |
| 1896 | } |
| 1897 | } |
| 1898 | |
| 1899 | /* adjust the rptr so we don't decrypt the original hmac field */ |
| 1900 | |
| 1901 | v1.iov_base = (char *)mp->b_rptr + hash->hash_len; |
| 1902 | v1.iov_len = cipherlen; |
| 1903 | |
| 1904 | indata.cd_format = CRYPTO_DATA_RAW; |
| 1905 | indata.cd_offset = 0; |
| 1906 | indata.cd_length = cipherlen; |
| 1907 | indata.cd_raw = v1; |
| 1908 | |
| 1909 | if (tmi->dec_data.option_mask & CRYPTOPT_RCMD_MODE_V2) |
| 1910 | result = crypto_decrypt_update(tmi->dec_data.ctx, |
| 1911 | &indata, NULL, NULL); |
| 1912 | else |
| 1913 | result = crypto_decrypt(&mech, &indata, |
| 1914 | &tmi->dec_data.d_encr_key, NULL, NULL, NULL); |
| 1915 | |
| 1916 | if (result != CRYPTO_SUCCESS) { |
| 1917 | cmn_err(CE_WARN, "crypto_decrypt_update failed:" |
| 1918 | " %0x", result); |
| 1919 | goto cleanup; |
| 1920 | } |
| 1921 | |
| 1922 | k2.ck_format = CRYPTO_KEY_RAW; |
| 1923 | k2.ck_length = sizeof (k2data) * 8; |
| 1924 | k2.ck_data = k2data; |
| 1925 | |
| 1926 | result = do_hmac(md5_hmac_mech, |
| 1927 | &k2, |
| 1928 | (char *)mp->b_rptr + hash->hash_len, cipherlen, |
| 1929 | (char *)cksum, hash->hash_len); |
| 1930 | |
| 1931 | if (result != CRYPTO_SUCCESS) { |
| 1932 | cmn_err(CE_WARN, |
| 1933 | "arcfour_hmac_md5_decrypt: do_hmac(k2)" |
| 1934 | "failed - error %0x", result); |
| 1935 | goto cleanup; |
| 1936 | } |
| 1937 | |
| 1938 | if (bcmp(cksum, mp->b_rptr, hash->hash_len) != 0) { |
| 1939 | cmn_err(CE_WARN, "arcfour_decrypt HMAC comparison failed"); |
| 1940 | result = -1; |
| 1941 | goto cleanup; |
| 1942 | } |
| 1943 | |
| 1944 | /* |
| 1945 | * adjust the start of the mblk to skip over the |
| 1946 | * hash and confounder. |
| 1947 | */ |
| 1948 | mp->b_rptr += hash->hash_len + hash->confound_len; |
| 1949 | |
| 1950 | cleanup: |
| 1951 | bzero(k1data, sizeof (k1data)); |
| 1952 | bzero(k2data, sizeof (k2data)); |
| 1953 | bzero(cksum, sizeof (cksum)); |
| 1954 | bzero(saltdata, sizeof (saltdata)); |
| 1955 | if (result != CRYPTO_SUCCESS) { |
| 1956 | mp->b_datap->db_type = M_ERROR; |
| 1957 | mp->b_rptr = mp->b_datap->db_base; |
| 1958 | *mp->b_rptr = EIO; |
| 1959 | mp->b_wptr = mp->b_rptr + sizeof (char); |
| 1960 | freemsg(mp->b_cont); |
| 1961 | mp->b_cont = NULL; |
| 1962 | qreply(WR(q), mp); |
| 1963 | return (NULL); |
| 1964 | } |
| 1965 | return (mp); |
| 1966 | } |
| 1967 | |
| 1968 | /* |
| 1969 | * ARCFOUR-HMAC-MD5 encrypt |
| 1970 | * |
| 1971 | * format of ciphertext when using ARCFOUR-HMAC-MD5 |
| 1972 | * +-----------+------------+------------+ |
| 1973 | * | hmac | confounder | msg-data | |
| 1974 | * +-----------+------------+------------+ |
| 1975 | * |
| 1976 | */ |
| 1977 | static mblk_t * |
| 1978 | arcfour_hmac_md5_encrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp, |
| 1979 | hash_info_t *hash) |
| 1980 | { |
| 1981 | int result; |
| 1982 | size_t cipherlen; |
| 1983 | size_t inlen; |
| 1984 | size_t saltlen; |
| 1985 | crypto_key_t k1, k2; |
| 1986 | crypto_data_t indata; |
| 1987 | iovec_t v1; |
| 1988 | uchar_t ms_exp[9] = {0xab, 0xab, 0xab, 0xab, 0xab, |
| 1989 | 0xab, 0xab, 0xab, 0xab }; |
| 1990 | uchar_t k1data[CRYPT_ARCFOUR_KEYBYTES]; |
| 1991 | uchar_t k2data[CRYPT_ARCFOUR_KEYBYTES]; |
| 1992 | uchar_t saltdata[CRYPT_ARCFOUR_KEYBYTES]; |
| 1993 | crypto_mechanism_t mech; |
| 1994 | int usage; |
| 1995 | |
ps57422 | 0e1923d | 2008-07-30 12:49:10 -0700 | [diff] [blame] | 1996 | bzero(&indata, sizeof (indata)); |
| 1997 | |
stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 1998 | /* The usage constant is 1026 for all "old" rcmd mode operations */ |
| 1999 | if (tmi->enc_data.option_mask & CRYPTOPT_RCMD_MODE_V1) |
| 2000 | usage = RCMDV1_USAGE; |
| 2001 | else |
| 2002 | usage = ARCFOUR_ENCRYPT_USAGE; |
| 2003 | |
| 2004 | mech.cm_type = tmi->enc_data.mech_type; |
| 2005 | mech.cm_param = NULL; |
| 2006 | mech.cm_param_len = 0; |
| 2007 | |
| 2008 | /* |
| 2009 | * The size at this point should be the size of |
| 2010 | * all the plaintext plus the optional plaintext length |
| 2011 | * needed for RCMD V2 mode. There should also be room |
| 2012 | * at the head of the mblk for the confounder and hash info. |
| 2013 | */ |
| 2014 | inlen = (size_t)MBLKL(mp); |
| 2015 | |
| 2016 | cipherlen = encrypt_size(&tmi->enc_data, inlen); |
| 2017 | |
| 2018 | ASSERT(MBLKSIZE(mp) >= cipherlen); |
| 2019 | |
| 2020 | /* |
| 2021 | * Shift the rptr back enough to insert |
| 2022 | * the confounder and hash. |
| 2023 | */ |
| 2024 | mp->b_rptr -= (hash->confound_len + hash->hash_len); |
| 2025 | |
| 2026 | /* zero out the hash area */ |
| 2027 | bzero(mp->b_rptr, (size_t)hash->hash_len); |
| 2028 | |
| 2029 | if (cipherlen > inlen) { |
| 2030 | bzero(mp->b_wptr, MBLKTAIL(mp)); |
| 2031 | } |
| 2032 | |
| 2033 | if (tmi->enc_data.method == CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP) { |
| 2034 | bcopy(ARCFOUR_EXP_SALT, saltdata, strlen(ARCFOUR_EXP_SALT)); |
| 2035 | saltdata[9] = 0; |
| 2036 | saltdata[10] = usage & 0xff; |
| 2037 | saltdata[11] = (usage >> 8) & 0xff; |
| 2038 | saltdata[12] = (usage >> 16) & 0xff; |
| 2039 | saltdata[13] = (usage >> 24) & 0xff; |
| 2040 | saltlen = 14; |
| 2041 | } else { |
| 2042 | saltdata[0] = usage & 0xff; |
| 2043 | saltdata[1] = (usage >> 8) & 0xff; |
| 2044 | saltdata[2] = (usage >> 16) & 0xff; |
| 2045 | saltdata[3] = (usage >> 24) & 0xff; |
| 2046 | saltlen = 4; |
| 2047 | } |
| 2048 | /* |
| 2049 | * Use the salt value to create a key to be used |
| 2050 | * for subsequent HMAC operations. |
| 2051 | */ |
| 2052 | result = do_hmac(md5_hmac_mech, |
| 2053 | tmi->enc_data.ckey, |
| 2054 | (char *)saltdata, saltlen, |
| 2055 | (char *)k1data, sizeof (k1data)); |
| 2056 | if (result != CRYPTO_SUCCESS) { |
| 2057 | cmn_err(CE_WARN, |
| 2058 | "arcfour_hmac_md5_encrypt: do_hmac(k1)" |
| 2059 | "failed - error %0x", result); |
| 2060 | goto cleanup; |
| 2061 | } |
| 2062 | |
| 2063 | bcopy(k1data, k2data, sizeof (k2data)); |
| 2064 | |
| 2065 | /* |
| 2066 | * For the neutered MS RC4 encryption type, |
| 2067 | * set the trailing 9 bytes to 0xab per the |
| 2068 | * RC4-HMAC spec. |
| 2069 | */ |
| 2070 | if (tmi->enc_data.method == CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP) { |
| 2071 | bcopy((void *)&k1data[7], ms_exp, sizeof (ms_exp)); |
| 2072 | } |
| 2073 | |
| 2074 | /* |
| 2075 | * Get the confounder bytes. |
| 2076 | */ |
| 2077 | (void) random_get_pseudo_bytes( |
| 2078 | (uint8_t *)(mp->b_rptr + hash->hash_len), |
| 2079 | (size_t)hash->confound_len); |
| 2080 | |
| 2081 | k2.ck_data = k2data; |
| 2082 | k2.ck_format = CRYPTO_KEY_RAW; |
| 2083 | k2.ck_length = sizeof (k2data) * 8; |
| 2084 | |
| 2085 | /* |
| 2086 | * This writes the HMAC to the hash area in the |
| 2087 | * mblk. The key used is the one just created by |
| 2088 | * the previous HMAC operation. |
| 2089 | * The data being processed is the confounder bytes |
| 2090 | * PLUS the input plaintext. |
| 2091 | */ |
| 2092 | result = do_hmac(md5_hmac_mech, &k2, |
| 2093 | (char *)mp->b_rptr + hash->hash_len, |
| 2094 | hash->confound_len + inlen, |
| 2095 | (char *)mp->b_rptr, hash->hash_len); |
| 2096 | if (result != CRYPTO_SUCCESS) { |
| 2097 | cmn_err(CE_WARN, |
| 2098 | "arcfour_hmac_md5_encrypt: do_hmac(k2)" |
| 2099 | "failed - error %0x", result); |
| 2100 | goto cleanup; |
| 2101 | } |
| 2102 | /* |
| 2103 | * Because of the odd way that MIT uses RC4 keys |
| 2104 | * on the rlogin stream, we only need to create |
| 2105 | * this key once. |
| 2106 | * However, if using "old" rcmd mode, we need to do |
| 2107 | * it every time. |
| 2108 | */ |
| 2109 | if (tmi->enc_data.ctx == NULL || |
| 2110 | (tmi->enc_data.option_mask & CRYPTOPT_RCMD_MODE_V1)) { |
| 2111 | crypto_key_t *key = &tmi->enc_data.d_encr_key; |
| 2112 | |
| 2113 | k1.ck_data = k1data; |
| 2114 | k1.ck_format = CRYPTO_KEY_RAW; |
| 2115 | k1.ck_length = sizeof (k1data) * 8; |
| 2116 | |
| 2117 | key->ck_format = CRYPTO_KEY_RAW; |
| 2118 | key->ck_length = k1.ck_length; |
| 2119 | if (key->ck_data == NULL) |
| 2120 | key->ck_data = kmem_zalloc( |
| 2121 | CRYPT_ARCFOUR_KEYBYTES, KM_SLEEP); |
| 2122 | |
| 2123 | /* |
| 2124 | * The final HMAC operation creates the encryption |
| 2125 | * key to be used for the encrypt operation. |
| 2126 | */ |
| 2127 | result = do_hmac(md5_hmac_mech, &k1, |
| 2128 | (char *)mp->b_rptr, hash->hash_len, |
| 2129 | (char *)key->ck_data, CRYPT_ARCFOUR_KEYBYTES); |
| 2130 | |
| 2131 | if (result != CRYPTO_SUCCESS) { |
| 2132 | cmn_err(CE_WARN, |
| 2133 | "arcfour_hmac_md5_encrypt: do_hmac(k3)" |
| 2134 | "failed - error %0x", result); |
| 2135 | goto cleanup; |
| 2136 | } |
| 2137 | } |
| 2138 | |
| 2139 | /* |
| 2140 | * If the context has not been initialized, do it now. |
| 2141 | */ |
| 2142 | if (tmi->enc_data.ctx == NULL && |
| 2143 | (tmi->enc_data.option_mask & CRYPTOPT_RCMD_MODE_V2)) { |
| 2144 | /* |
| 2145 | * Only create a template if we are doing |
| 2146 | * chaining from block to block. |
| 2147 | */ |
| 2148 | result = crypto_create_ctx_template(&mech, |
| 2149 | &tmi->enc_data.d_encr_key, |
| 2150 | &tmi->enc_data.enc_tmpl, |
| 2151 | KM_SLEEP); |
| 2152 | if (result == CRYPTO_NOT_SUPPORTED) { |
| 2153 | tmi->enc_data.enc_tmpl = NULL; |
| 2154 | } else if (result != CRYPTO_SUCCESS) { |
| 2155 | cmn_err(CE_WARN, "failed to create enc template " |
| 2156 | "for RC4 encrypt: %0x", result); |
| 2157 | goto cleanup; |
| 2158 | } |
| 2159 | |
| 2160 | result = crypto_encrypt_init(&mech, |
| 2161 | &tmi->enc_data.d_encr_key, |
| 2162 | tmi->enc_data.enc_tmpl, |
| 2163 | &tmi->enc_data.ctx, NULL); |
| 2164 | if (result != CRYPTO_SUCCESS) { |
| 2165 | cmn_err(CE_WARN, "crypto_encrypt_init failed:" |
| 2166 | " %0x", result); |
| 2167 | goto cleanup; |
| 2168 | } |
| 2169 | } |
| 2170 | v1.iov_base = (char *)mp->b_rptr + hash->hash_len; |
| 2171 | v1.iov_len = hash->confound_len + inlen; |
| 2172 | |
| 2173 | indata.cd_format = CRYPTO_DATA_RAW; |
| 2174 | indata.cd_offset = 0; |
| 2175 | indata.cd_length = hash->confound_len + inlen; |
| 2176 | indata.cd_raw = v1; |
| 2177 | |
| 2178 | if (tmi->enc_data.option_mask & CRYPTOPT_RCMD_MODE_V2) |
| 2179 | result = crypto_encrypt_update(tmi->enc_data.ctx, |
| 2180 | &indata, NULL, NULL); |
| 2181 | else |
| 2182 | result = crypto_encrypt(&mech, &indata, |
| 2183 | &tmi->enc_data.d_encr_key, NULL, |
| 2184 | NULL, NULL); |
| 2185 | |
| 2186 | if (result != CRYPTO_SUCCESS) { |
| 2187 | cmn_err(CE_WARN, "crypto_encrypt_update failed: 0x%0x", |
| 2188 | result); |
| 2189 | } |
| 2190 | |
| 2191 | cleanup: |
| 2192 | bzero(k1data, sizeof (k1data)); |
| 2193 | bzero(k2data, sizeof (k2data)); |
| 2194 | bzero(saltdata, sizeof (saltdata)); |
| 2195 | if (result != CRYPTO_SUCCESS) { |
| 2196 | mp->b_datap->db_type = M_ERROR; |
| 2197 | mp->b_rptr = mp->b_datap->db_base; |
| 2198 | *mp->b_rptr = EIO; |
| 2199 | mp->b_wptr = mp->b_rptr + sizeof (char); |
| 2200 | freemsg(mp->b_cont); |
| 2201 | mp->b_cont = NULL; |
| 2202 | qreply(WR(q), mp); |
| 2203 | return (NULL); |
| 2204 | } |
| 2205 | return (mp); |
| 2206 | } |
| 2207 | |
| 2208 | /* |
| 2209 | * DES-CBC-[HASH] encrypt |
| 2210 | * |
| 2211 | * Needed to support userland apps that must support Kerberos V5 |
| 2212 | * encryption DES-CBC encryption modes. |
| 2213 | * |
| 2214 | * The HASH values supported are RAW(NULL), MD5, CRC32, and SHA1 |
| 2215 | * |
| 2216 | * format of ciphertext for DES-CBC functions, per RFC1510 is: |
| 2217 | * +-----------+----------+-------------+-----+ |
| 2218 | * |confounder | cksum | msg-data | pad | |
| 2219 | * +-----------+----------+-------------+-----+ |
| 2220 | * |
| 2221 | * format of ciphertext when using DES3-SHA1-HMAC |
| 2222 | * +-----------+----------+-------------+-----+ |
| 2223 | * |confounder | msg-data | hmac | pad | |
| 2224 | * +-----------+----------+-------------+-----+ |
| 2225 | * |
| 2226 | * The confounder is 8 bytes of random data. |
| 2227 | * The cksum depends on the hash being used. |
| 2228 | * 4 bytes for CRC32 |
| 2229 | * 16 bytes for MD5 |
| 2230 | * 20 bytes for SHA1 |
| 2231 | * 0 bytes for RAW |
| 2232 | * |
| 2233 | */ |
| 2234 | static mblk_t * |
| 2235 | des_cbc_encrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp, hash_info_t *hash) |
| 2236 | { |
| 2237 | int result; |
| 2238 | size_t cipherlen; |
| 2239 | size_t inlen; |
| 2240 | size_t plainlen; |
| 2241 | |
| 2242 | /* |
| 2243 | * The size at this point should be the size of |
| 2244 | * all the plaintext plus the optional plaintext length |
| 2245 | * needed for RCMD V2 mode. There should also be room |
| 2246 | * at the head of the mblk for the confounder and hash info. |
| 2247 | */ |
| 2248 | inlen = (size_t)MBLKL(mp); |
| 2249 | |
| 2250 | /* |
| 2251 | * The output size will be a multiple of 8 because this algorithm |
| 2252 | * only works on 8 byte chunks. |
| 2253 | */ |
| 2254 | cipherlen = encrypt_size(&tmi->enc_data, inlen); |
| 2255 | |
| 2256 | ASSERT(MBLKSIZE(mp) >= cipherlen); |
| 2257 | |
| 2258 | if (cipherlen > inlen) { |
| 2259 | bzero(mp->b_wptr, MBLKTAIL(mp)); |
| 2260 | } |
| 2261 | |
| 2262 | /* |
| 2263 | * Shift the rptr back enough to insert |
| 2264 | * the confounder and hash. |
| 2265 | */ |
| 2266 | if (tmi->enc_data.method == CRYPT_METHOD_DES3_CBC_SHA1) { |
| 2267 | mp->b_rptr -= hash->confound_len; |
| 2268 | } else { |
| 2269 | mp->b_rptr -= (hash->confound_len + hash->hash_len); |
| 2270 | |
| 2271 | /* zero out the hash area */ |
| 2272 | bzero(mp->b_rptr + hash->confound_len, (size_t)hash->hash_len); |
| 2273 | } |
| 2274 | |
| 2275 | /* get random confounder from our friend, the 'random' module */ |
| 2276 | if (hash->confound_len > 0) { |
| 2277 | (void) random_get_pseudo_bytes((uint8_t *)mp->b_rptr, |
| 2278 | (size_t)hash->confound_len); |
| 2279 | } |
| 2280 | |
| 2281 | /* |
| 2282 | * For 3DES we calculate an HMAC later. |
| 2283 | */ |
| 2284 | if (tmi->enc_data.method != CRYPT_METHOD_DES3_CBC_SHA1) { |
| 2285 | /* calculate chksum of confounder + input */ |
| 2286 | if (hash->hash_len > 0 && hash->hashfunc != NULL) { |
| 2287 | uchar_t cksum[MAX_CKSUM_LEN]; |
| 2288 | |
| 2289 | result = hash->hashfunc(cksum, mp->b_rptr, |
| 2290 | cipherlen); |
| 2291 | if (result != CRYPTO_SUCCESS) { |
| 2292 | goto failure; |
| 2293 | } |
| 2294 | |
| 2295 | /* put hash in place right after the confounder */ |
| 2296 | bcopy(cksum, (mp->b_rptr + hash->confound_len), |
| 2297 | (size_t)hash->hash_len); |
| 2298 | } |
| 2299 | } |
| 2300 | /* |
| 2301 | * In order to support the "old" Kerberos RCMD protocol, |
| 2302 | * we must use the IVEC 3 different ways: |
| 2303 | * IVEC_REUSE = keep using the same IV each time, this is |
| 2304 | * ugly and insecure, but necessary for |
| 2305 | * backwards compatibility with existing MIT code. |
| 2306 | * IVEC_ONETIME = Use the ivec as initialized when the crypto |
| 2307 | * was setup (see setup_crypto routine). |
| 2308 | * IVEC_NEVER = never use an IVEC, use a bunch of 0's as the IV (yuk). |
| 2309 | */ |
| 2310 | if (tmi->enc_data.ivec_usage == IVEC_NEVER) { |
| 2311 | bzero(tmi->enc_data.block, tmi->enc_data.blocklen); |
| 2312 | } else if (tmi->enc_data.ivec_usage == IVEC_REUSE) { |
| 2313 | bcopy(tmi->enc_data.ivec, tmi->enc_data.block, |
| 2314 | tmi->enc_data.blocklen); |
| 2315 | } |
| 2316 | |
| 2317 | if (tmi->enc_data.method == CRYPT_METHOD_DES3_CBC_SHA1) { |
| 2318 | /* |
| 2319 | * The input length already included the hash size, |
| 2320 | * don't include this in the plaintext length |
| 2321 | * calculations. |
| 2322 | */ |
| 2323 | plainlen = cipherlen - hash->hash_len; |
| 2324 | |
| 2325 | mp->b_wptr = mp->b_rptr + plainlen; |
| 2326 | |
| 2327 | result = kef_encr_hmac(&tmi->enc_data, |
| 2328 | (void *)mp, (size_t)plainlen, |
| 2329 | (char *)(mp->b_rptr + plainlen), |
| 2330 | hash->hash_len); |
| 2331 | } else { |
| 2332 | ASSERT(mp->b_rptr + cipherlen <= DB_LIM(mp)); |
| 2333 | mp->b_wptr = mp->b_rptr + cipherlen; |
| 2334 | result = kef_crypt(&tmi->enc_data, (void *)mp, |
| 2335 | CRYPTO_DATA_MBLK, (size_t)cipherlen, |
| 2336 | CRYPT_ENCRYPT); |
| 2337 | } |
| 2338 | failure: |
| 2339 | if (result != CRYPTO_SUCCESS) { |
| 2340 | #ifdef DEBUG |
| 2341 | cmn_err(CE_WARN, |
| 2342 | "des_cbc_encrypt: kef_crypt encrypt " |
| 2343 | "failed (len: %ld) - error %0x", |
| 2344 | cipherlen, result); |
| 2345 | #endif |
| 2346 | mp->b_datap->db_type = M_ERROR; |
| 2347 | mp->b_rptr = mp->b_datap->db_base; |
| 2348 | *mp->b_rptr = EIO; |
| 2349 | mp->b_wptr = mp->b_rptr + sizeof (char); |
| 2350 | freemsg(mp->b_cont); |
| 2351 | mp->b_cont = NULL; |
| 2352 | qreply(WR(q), mp); |
| 2353 | return (NULL); |
| 2354 | } else if (tmi->enc_data.ivec_usage == IVEC_ONETIME) { |
| 2355 | /* |
| 2356 | * Because we are using KEF, we must manually |
| 2357 | * update our IV. |
| 2358 | */ |
| 2359 | bcopy(mp->b_wptr - tmi->enc_data.ivlen, |
| 2360 | tmi->enc_data.block, tmi->enc_data.ivlen); |
| 2361 | } |
| 2362 | if (tmi->enc_data.method == CRYPT_METHOD_DES3_CBC_SHA1) { |
| 2363 | mp->b_wptr = mp->b_rptr + cipherlen; |
| 2364 | } |
| 2365 | |
| 2366 | return (mp); |
| 2367 | } |
| 2368 | |
| 2369 | /* |
| 2370 | * des_cbc_decrypt |
| 2371 | * |
| 2372 | * |
| 2373 | * Needed to support userland apps that must support Kerberos V5 |
| 2374 | * encryption DES-CBC decryption modes. |
| 2375 | * |
| 2376 | * The HASH values supported are RAW(NULL), MD5, CRC32, and SHA1 |
| 2377 | * |
| 2378 | * format of ciphertext for DES-CBC functions, per RFC1510 is: |
| 2379 | * +-----------+----------+-------------+-----+ |
| 2380 | * |confounder | cksum | msg-data | pad | |
| 2381 | * +-----------+----------+-------------+-----+ |
| 2382 | * |
| 2383 | * format of ciphertext when using DES3-SHA1-HMAC |
| 2384 | * +-----------+----------+-------------+-----+ |
| 2385 | * |confounder | msg-data | hmac | pad | |
| 2386 | * +-----------+----------+-------------+-----+ |
| 2387 | * |
| 2388 | * The confounder is 8 bytes of random data. |
| 2389 | * The cksum depends on the hash being used. |
| 2390 | * 4 bytes for CRC32 |
| 2391 | * 16 bytes for MD5 |
| 2392 | * 20 bytes for SHA1 |
| 2393 | * 0 bytes for RAW |
| 2394 | * |
| 2395 | */ |
| 2396 | static mblk_t * |
| 2397 | des_cbc_decrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp, hash_info_t *hash) |
| 2398 | { |
| 2399 | uint_t inlen, datalen; |
| 2400 | int result = 0; |
| 2401 | uchar_t *optr = NULL; |
| 2402 | uchar_t cksum[MAX_CKSUM_LEN], newcksum[MAX_CKSUM_LEN]; |
| 2403 | uchar_t nextiv[DEFAULT_DES_BLOCKLEN]; |
| 2404 | |
| 2405 | /* Compute adjusted size */ |
| 2406 | inlen = MBLKL(mp); |
| 2407 | |
| 2408 | optr = mp->b_rptr; |
| 2409 | |
| 2410 | /* |
| 2411 | * In order to support the "old" Kerberos RCMD protocol, |
| 2412 | * we must use the IVEC 3 different ways: |
| 2413 | * IVEC_REUSE = keep using the same IV each time, this is |
| 2414 | * ugly and insecure, but necessary for |
| 2415 | * backwards compatibility with existing MIT code. |
| 2416 | * IVEC_ONETIME = Use the ivec as initialized when the crypto |
| 2417 | * was setup (see setup_crypto routine). |
| 2418 | * IVEC_NEVER = never use an IVEC, use a bunch of 0's as the IV (yuk). |
| 2419 | */ |
| 2420 | if (tmi->dec_data.ivec_usage == IVEC_NEVER) |
| 2421 | bzero(tmi->dec_data.block, tmi->dec_data.blocklen); |
| 2422 | else if (tmi->dec_data.ivec_usage == IVEC_REUSE) |
| 2423 | bcopy(tmi->dec_data.ivec, tmi->dec_data.block, |
| 2424 | tmi->dec_data.blocklen); |
| 2425 | |
| 2426 | if (tmi->dec_data.method == CRYPT_METHOD_DES3_CBC_SHA1) { |
| 2427 | /* |
| 2428 | * Do not decrypt the HMAC at the end |
| 2429 | */ |
| 2430 | int decrypt_len = inlen - hash->hash_len; |
| 2431 | |
| 2432 | /* |
| 2433 | * Move the wptr so the mblk appears to end |
| 2434 | * BEFORE the HMAC section. |
| 2435 | */ |
| 2436 | mp->b_wptr = mp->b_rptr + decrypt_len; |
| 2437 | |
| 2438 | /* |
| 2439 | * Because we are using KEF, we must manually update our |
| 2440 | * IV. |
| 2441 | */ |
| 2442 | if (tmi->dec_data.ivec_usage == IVEC_ONETIME) { |
| 2443 | bcopy(mp->b_rptr + decrypt_len - tmi->dec_data.ivlen, |
| 2444 | nextiv, tmi->dec_data.ivlen); |
| 2445 | } |
| 2446 | |
| 2447 | result = kef_decr_hmac(&tmi->dec_data, mp, decrypt_len, |
| 2448 | (char *)newcksum, hash->hash_len); |
| 2449 | } else { |
| 2450 | /* |
| 2451 | * Because we are using KEF, we must manually update our |
| 2452 | * IV. |
| 2453 | */ |
| 2454 | if (tmi->dec_data.ivec_usage == IVEC_ONETIME) { |
| 2455 | bcopy(mp->b_wptr - tmi->enc_data.ivlen, nextiv, |
| 2456 | tmi->dec_data.ivlen); |
| 2457 | } |
| 2458 | result = kef_crypt(&tmi->dec_data, (void *)mp, |
| 2459 | CRYPTO_DATA_MBLK, (size_t)inlen, CRYPT_DECRYPT); |
| 2460 | } |
| 2461 | if (result != CRYPTO_SUCCESS) { |
| 2462 | #ifdef DEBUG |
| 2463 | cmn_err(CE_WARN, |
| 2464 | "des_cbc_decrypt: kef_crypt decrypt " |
| 2465 | "failed - error %0x", result); |
| 2466 | #endif |
| 2467 | mp->b_datap->db_type = M_ERROR; |
| 2468 | mp->b_rptr = mp->b_datap->db_base; |
| 2469 | *mp->b_rptr = EIO; |
| 2470 | mp->b_wptr = mp->b_rptr + sizeof (char); |
| 2471 | freemsg(mp->b_cont); |
| 2472 | mp->b_cont = NULL; |
| 2473 | qreply(WR(q), mp); |
| 2474 | return (NULL); |
| 2475 | } |
| 2476 | |
| 2477 | /* |
| 2478 | * Manually update the IV, KEF does not track this for us. |
| 2479 | */ |
| 2480 | if (tmi->dec_data.ivec_usage == IVEC_ONETIME) { |
| 2481 | bcopy(nextiv, tmi->dec_data.block, tmi->dec_data.ivlen); |
| 2482 | } |
| 2483 | |
| 2484 | /* Verify the checksum(if necessary) */ |
| 2485 | if (hash->hash_len > 0) { |
| 2486 | if (tmi->dec_data.method == CRYPT_METHOD_DES3_CBC_SHA1) { |
| 2487 | bcopy(mp->b_rptr + inlen - hash->hash_len, cksum, |
| 2488 | hash->hash_len); |
| 2489 | } else { |
| 2490 | bcopy(optr + hash->confound_len, cksum, hash->hash_len); |
| 2491 | |
| 2492 | /* zero the cksum in the buffer */ |
| 2493 | ASSERT(optr + hash->confound_len + hash->hash_len <= |
| 2494 | DB_LIM(mp)); |
| 2495 | bzero(optr + hash->confound_len, hash->hash_len); |
| 2496 | |
| 2497 | /* calculate MD5 chksum of confounder + input */ |
| 2498 | if (hash->hashfunc) { |
| 2499 | (void) hash->hashfunc(newcksum, optr, inlen); |
| 2500 | } |
| 2501 | } |
| 2502 | |
| 2503 | if (bcmp(cksum, newcksum, hash->hash_len)) { |
| 2504 | #ifdef DEBUG |
| 2505 | cmn_err(CE_WARN, "des_cbc_decrypt: checksum " |
| 2506 | "verification failed"); |
| 2507 | #endif |
| 2508 | mp->b_datap->db_type = M_ERROR; |
| 2509 | mp->b_rptr = mp->b_datap->db_base; |
| 2510 | *mp->b_rptr = EIO; |
| 2511 | mp->b_wptr = mp->b_rptr + sizeof (char); |
| 2512 | freemsg(mp->b_cont); |
| 2513 | mp->b_cont = NULL; |
| 2514 | qreply(WR(q), mp); |
| 2515 | return (NULL); |
| 2516 | } |
| 2517 | } |
| 2518 | |
| 2519 | datalen = inlen - hash->confound_len - hash->hash_len; |
| 2520 | |
| 2521 | /* Move just the decrypted input into place if necessary */ |
| 2522 | if (hash->confound_len > 0 || hash->hash_len > 0) { |
| 2523 | if (tmi->dec_data.method == CRYPT_METHOD_DES3_CBC_SHA1) |
| 2524 | mp->b_rptr += hash->confound_len; |
| 2525 | else |
| 2526 | mp->b_rptr += hash->confound_len + hash->hash_len; |
| 2527 | } |
| 2528 | |
| 2529 | ASSERT(mp->b_rptr + datalen <= DB_LIM(mp)); |
| 2530 | mp->b_wptr = mp->b_rptr + datalen; |
| 2531 | |
| 2532 | return (mp); |
| 2533 | } |
| 2534 | |
| 2535 | static mblk_t * |
| 2536 | do_decrypt(queue_t *q, mblk_t *mp) |
| 2537 | { |
| 2538 | struct tmodinfo *tmi = (struct tmodinfo *)q->q_ptr; |
| 2539 | mblk_t *outmp; |
| 2540 | |
| 2541 | switch (tmi->dec_data.method) { |
| 2542 | case CRYPT_METHOD_DES_CFB: |
| 2543 | outmp = des_cfb_decrypt(q, tmi, mp); |
| 2544 | break; |
| 2545 | case CRYPT_METHOD_NONE: |
| 2546 | outmp = mp; |
| 2547 | break; |
| 2548 | case CRYPT_METHOD_DES_CBC_NULL: |
| 2549 | outmp = des_cbc_decrypt(q, tmi, mp, &null_hash); |
| 2550 | break; |
| 2551 | case CRYPT_METHOD_DES_CBC_MD5: |
| 2552 | outmp = des_cbc_decrypt(q, tmi, mp, &md5_hash); |
| 2553 | break; |
| 2554 | case CRYPT_METHOD_DES_CBC_CRC: |
| 2555 | outmp = des_cbc_decrypt(q, tmi, mp, &crc32_hash); |
| 2556 | break; |
| 2557 | case CRYPT_METHOD_DES3_CBC_SHA1: |
| 2558 | outmp = des_cbc_decrypt(q, tmi, mp, &sha1_hash); |
| 2559 | break; |
| 2560 | case CRYPT_METHOD_ARCFOUR_HMAC_MD5: |
| 2561 | case CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP: |
| 2562 | outmp = arcfour_hmac_md5_decrypt(q, tmi, mp, &md5_hash); |
| 2563 | break; |
| 2564 | case CRYPT_METHOD_AES128: |
| 2565 | case CRYPT_METHOD_AES256: |
| 2566 | outmp = aes_decrypt(q, tmi, mp, &sha1_hash); |
| 2567 | break; |
| 2568 | } |
| 2569 | return (outmp); |
| 2570 | } |
| 2571 | |
| 2572 | /* |
| 2573 | * do_encrypt |
| 2574 | * |
| 2575 | * Generic encryption routine for a single message block. |
| 2576 | * The input mblk may be replaced by some encrypt routines |
| 2577 | * because they add extra data in some cases that may exceed |
| 2578 | * the input mblk_t size limit. |
| 2579 | */ |
| 2580 | static mblk_t * |
| 2581 | do_encrypt(queue_t *q, mblk_t *mp) |
| 2582 | { |
| 2583 | struct tmodinfo *tmi = (struct tmodinfo *)q->q_ptr; |
| 2584 | mblk_t *outmp; |
| 2585 | |
| 2586 | switch (tmi->enc_data.method) { |
| 2587 | case CRYPT_METHOD_DES_CFB: |
| 2588 | outmp = des_cfb_encrypt(q, tmi, mp); |
| 2589 | break; |
| 2590 | case CRYPT_METHOD_DES_CBC_NULL: |
| 2591 | outmp = des_cbc_encrypt(q, tmi, mp, &null_hash); |
| 2592 | break; |
| 2593 | case CRYPT_METHOD_DES_CBC_MD5: |
| 2594 | outmp = des_cbc_encrypt(q, tmi, mp, &md5_hash); |
| 2595 | break; |
| 2596 | case CRYPT_METHOD_DES_CBC_CRC: |
| 2597 | outmp = des_cbc_encrypt(q, tmi, mp, &crc32_hash); |
| 2598 | break; |
| 2599 | case CRYPT_METHOD_DES3_CBC_SHA1: |
| 2600 | outmp = des_cbc_encrypt(q, tmi, mp, &sha1_hash); |
| 2601 | break; |
| 2602 | case CRYPT_METHOD_ARCFOUR_HMAC_MD5: |
| 2603 | case CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP: |
| 2604 | outmp = arcfour_hmac_md5_encrypt(q, tmi, mp, &md5_hash); |
| 2605 | break; |
| 2606 | case CRYPT_METHOD_AES128: |
| 2607 | case CRYPT_METHOD_AES256: |
| 2608 | outmp = aes_encrypt(q, tmi, mp, &sha1_hash); |
| 2609 | break; |
| 2610 | case CRYPT_METHOD_NONE: |
| 2611 | outmp = mp; |
| 2612 | break; |
| 2613 | } |
| 2614 | return (outmp); |
| 2615 | } |
| 2616 | |
| 2617 | /* |
| 2618 | * setup_crypto |
| 2619 | * |
| 2620 | * This takes the data from the CRYPTIOCSETUP ioctl |
| 2621 | * and sets up a cipher_data_t structure for either |
| 2622 | * encryption or decryption. This is where the |
| 2623 | * key and initialization vector data get stored |
| 2624 | * prior to beginning any crypto functions. |
| 2625 | * |
| 2626 | * Special note: |
| 2627 | * Some applications(e.g. telnetd) have ability to switch |
| 2628 | * crypto on/off periodically. Thus, the application may call |
| 2629 | * the CRYPTIOCSETUP ioctl many times for the same stream. |
| 2630 | * If the CRYPTIOCSETUP is called with 0 length key or ivec fields |
| 2631 | * assume that the key, block, and saveblock fields that are already |
| 2632 | * set from a previous CRIOCSETUP call are still valid. This helps avoid |
| 2633 | * a rekeying error that could occur if we overwrite these fields |
| 2634 | * with each CRYPTIOCSETUP call. |
| 2635 | * In short, sometimes, CRYPTIOCSETUP is used to simply toggle on/off |
| 2636 | * without resetting the original crypto parameters. |
| 2637 | * |
| 2638 | */ |
| 2639 | static int |
| 2640 | setup_crypto(struct cr_info_t *ci, struct cipher_data_t *cd, int encrypt) |
| 2641 | { |
| 2642 | uint_t newblocklen; |
| 2643 | uint32_t enc_usage = 0, dec_usage = 0; |
| 2644 | int rv; |
| 2645 | |
| 2646 | /* |
| 2647 | * Initial sanity checks |
| 2648 | */ |
| 2649 | if (!CR_METHOD_OK(ci->crypto_method)) { |
| 2650 | cmn_err(CE_WARN, "Illegal crypto method (%d)", |
| 2651 | ci->crypto_method); |
| 2652 | return (EINVAL); |
| 2653 | } |
| 2654 | if (!CR_OPTIONS_OK(ci->option_mask)) { |
| 2655 | cmn_err(CE_WARN, "Illegal crypto options (%d)", |
| 2656 | ci->option_mask); |
| 2657 | return (EINVAL); |
| 2658 | } |
| 2659 | if (!CR_IVUSAGE_OK(ci->ivec_usage)) { |
| 2660 | cmn_err(CE_WARN, "Illegal ivec usage value (%d)", |
| 2661 | ci->ivec_usage); |
| 2662 | return (EINVAL); |
| 2663 | } |
| 2664 | |
| 2665 | cd->method = ci->crypto_method; |
| 2666 | cd->bytes = 0; |
| 2667 | |
| 2668 | if (ci->keylen > 0) { |
| 2669 | if (cd->key != NULL) { |
| 2670 | kmem_free(cd->key, cd->keylen); |
| 2671 | cd->key = NULL; |
| 2672 | cd->keylen = 0; |
| 2673 | } |
| 2674 | /* |
| 2675 | * cd->key holds the copy of the raw key bytes passed in |
| 2676 | * from the userland app. |
| 2677 | */ |
| 2678 | cd->key = (char *)kmem_alloc((size_t)ci->keylen, KM_SLEEP); |
| 2679 | |
| 2680 | cd->keylen = ci->keylen; |
| 2681 | bcopy(ci->key, cd->key, (size_t)ci->keylen); |
| 2682 | } |
| 2683 | |
| 2684 | /* |
| 2685 | * Configure the block size based on the type of cipher. |
| 2686 | */ |
| 2687 | switch (cd->method) { |
| 2688 | case CRYPT_METHOD_NONE: |
| 2689 | newblocklen = 0; |
| 2690 | break; |
| 2691 | case CRYPT_METHOD_DES_CFB: |
| 2692 | newblocklen = DEFAULT_DES_BLOCKLEN; |
| 2693 | cd->mech_type = crypto_mech2id(SUN_CKM_DES_ECB); |
| 2694 | break; |
| 2695 | case CRYPT_METHOD_DES_CBC_NULL: |
| 2696 | case CRYPT_METHOD_DES_CBC_MD5: |
| 2697 | case CRYPT_METHOD_DES_CBC_CRC: |
| 2698 | newblocklen = DEFAULT_DES_BLOCKLEN; |
| 2699 | cd->mech_type = crypto_mech2id(SUN_CKM_DES_CBC); |
| 2700 | break; |
| 2701 | case CRYPT_METHOD_DES3_CBC_SHA1: |
| 2702 | newblocklen = DEFAULT_DES_BLOCKLEN; |
| 2703 | cd->mech_type = crypto_mech2id(SUN_CKM_DES3_CBC); |
| 2704 | /* 3DES always uses the old usage constant */ |
| 2705 | enc_usage = RCMDV1_USAGE; |
| 2706 | dec_usage = RCMDV1_USAGE; |
| 2707 | break; |
| 2708 | case CRYPT_METHOD_ARCFOUR_HMAC_MD5: |
| 2709 | case CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP: |
| 2710 | newblocklen = 0; |
| 2711 | cd->mech_type = crypto_mech2id(SUN_CKM_RC4); |
| 2712 | break; |
| 2713 | case CRYPT_METHOD_AES128: |
| 2714 | case CRYPT_METHOD_AES256: |
| 2715 | newblocklen = DEFAULT_AES_BLOCKLEN; |
| 2716 | cd->mech_type = crypto_mech2id(SUN_CKM_AES_ECB); |
| 2717 | enc_usage = AES_ENCRYPT_USAGE; |
| 2718 | dec_usage = AES_DECRYPT_USAGE; |
| 2719 | break; |
| 2720 | } |
| 2721 | if (cd->mech_type == CRYPTO_MECH_INVALID) { |
| 2722 | return (CRYPTO_FAILED); |
| 2723 | } |
| 2724 | |
| 2725 | /* |
| 2726 | * If RC4, initialize the master crypto key used by |
| 2727 | * the RC4 algorithm to derive the final encrypt and decrypt keys. |
| 2728 | */ |
| 2729 | if (cd->keylen > 0 && IS_RC4_METHOD(cd->method)) { |
| 2730 | /* |
| 2731 | * cd->ckey is a kernel crypto key structure used as the |
| 2732 | * master key in the RC4-HMAC crypto operations. |
| 2733 | */ |
| 2734 | if (cd->ckey == NULL) { |
| 2735 | cd->ckey = (crypto_key_t *)kmem_zalloc( |
| 2736 | sizeof (crypto_key_t), KM_SLEEP); |
| 2737 | } |
| 2738 | |
| 2739 | cd->ckey->ck_format = CRYPTO_KEY_RAW; |
| 2740 | cd->ckey->ck_data = cd->key; |
| 2741 | |
| 2742 | /* key length for EF is measured in bits */ |
| 2743 | cd->ckey->ck_length = cd->keylen * 8; |
| 2744 | } |
| 2745 | |
| 2746 | /* |
| 2747 | * cd->block and cd->saveblock are used as temporary storage for |
| 2748 | * data that must be carried over between encrypt/decrypt operations |
| 2749 | * in some of the "feedback" modes. |
| 2750 | */ |
| 2751 | if (newblocklen != cd->blocklen) { |
| 2752 | if (cd->block != NULL) { |
| 2753 | kmem_free(cd->block, cd->blocklen); |
| 2754 | cd->block = NULL; |
| 2755 | } |
| 2756 | |
| 2757 | if (cd->saveblock != NULL) { |
| 2758 | kmem_free(cd->saveblock, cd->blocklen); |
| 2759 | cd->saveblock = NULL; |
| 2760 | } |
| 2761 | |
| 2762 | cd->blocklen = newblocklen; |
| 2763 | if (cd->blocklen) { |
| 2764 | cd->block = (char *)kmem_zalloc((size_t)cd->blocklen, |
| 2765 | KM_SLEEP); |
| 2766 | } |
| 2767 | |
| 2768 | if (cd->method == CRYPT_METHOD_DES_CFB) |
| 2769 | cd->saveblock = (char *)kmem_zalloc(cd->blocklen, |
| 2770 | KM_SLEEP); |
| 2771 | else |
| 2772 | cd->saveblock = NULL; |
| 2773 | } |
| 2774 | |
| 2775 | if (ci->iveclen != cd->ivlen) { |
| 2776 | if (cd->ivec != NULL) { |
| 2777 | kmem_free(cd->ivec, cd->ivlen); |
| 2778 | cd->ivec = NULL; |
| 2779 | } |
| 2780 | if (ci->ivec_usage != IVEC_NEVER && ci->iveclen > 0) { |
| 2781 | cd->ivec = (char *)kmem_zalloc((size_t)ci->iveclen, |
| 2782 | KM_SLEEP); |
| 2783 | cd->ivlen = ci->iveclen; |
| 2784 | } else { |
| 2785 | cd->ivlen = 0; |
| 2786 | cd->ivec = NULL; |
| 2787 | } |
| 2788 | } |
| 2789 | cd->option_mask = ci |