stevel@tonic-gate | 7c478bd | 2005-06-14 00:00:00 -0700 | [diff] [blame] | 1 | /* |
| 2 | * CDDL HEADER START |
| 3 | * |
| 4 | * The contents of this file are subject to the terms of the |
| 5 | * Common Development and Distribution License, Version 1.0 only |
| 6 | * (the "License"). You may not use this file except in compliance |
| 7 | * with the License. |
| 8 | * |
| 9 | * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE |
| 10 | * or http://www.opensolaris.org/os/licensing. |
| 11 | * See the License for the specific language governing permissions |
| 12 | * and limitations under the License. |
| 13 | * |
| 14 | * When distributing Covered Code, include this CDDL HEADER in each |
| 15 | * file and include the License file at usr/src/OPENSOLARIS.LICENSE. |
| 16 | * If applicable, add the following below this CDDL HEADER, with the |
| 17 | * fields enclosed by brackets "[]" replaced with your own identifying |
| 18 | * information: Portions Copyright [yyyy] [name of copyright owner] |
| 19 | * |
| 20 | * CDDL HEADER END |
| 21 | */ |
| 22 | /* |
| 23 | * Copyright 2004 Sun Microsystems, Inc. All rights reserved. |
| 24 | * Use is subject to license terms. |
| 25 | */ |
| 26 | |
| 27 | #pragma ident "%Z%%M% %I% %E% SMI" |
| 28 | |
| 29 | /* |
| 30 | * STREAMS Buffering module |
| 31 | * |
| 32 | * This streams module collects incoming messages from modules below |
| 33 | * it on the stream and buffers them up into a smaller number of |
| 34 | * aggregated messages. Its main purpose is to reduce overhead by |
| 35 | * cutting down on the number of read (or getmsg) calls its client |
| 36 | * user process makes. |
| 37 | * - only M_DATA is buffered. |
| 38 | * - multithreading assumes configured as D_MTQPAIR |
| 39 | * - packets are lost only if flag SB_NO_HEADER is clear and buffer |
| 40 | * allocation fails. |
| 41 | * - in order message transmission. This is enforced for messages other |
| 42 | * than high priority messages. |
| 43 | * - zero length messages on the read side are not passed up the |
| 44 | * stream but used internally for synchronization. |
| 45 | * FLAGS: |
| 46 | * - SB_NO_PROTO_CVT - no conversion of M_PROTO messages to M_DATA. |
| 47 | * (conversion is the default for backwards compatibility |
| 48 | * hence the negative logic). |
| 49 | * - SB_NO_HEADER - no headers in buffered data. |
| 50 | * (adding headers is the default for backwards compatibility |
| 51 | * hence the negative logic). |
| 52 | * - SB_DEFER_CHUNK - provides improved response time in question-answer |
| 53 | * applications. Buffering is not enabled until the second message |
| 54 | * is received on the read side within the sb_ticks interval. |
| 55 | * This option will often be used in combination with flag SB_SEND_ON_WRITE. |
| 56 | * - SB_SEND_ON_WRITE - a write message results in any pending buffered read |
| 57 | * data being immediately sent upstream. |
| 58 | * - SB_NO_DROPS - bufmod behaves transparently in flow control and propagates |
| 59 | * the blocked flow condition downstream. If this flag is clear (default) |
| 60 | * messages will be dropped if the upstream flow is blocked. |
| 61 | */ |
| 62 | |
| 63 | |
| 64 | #include <sys/types.h> |
| 65 | #include <sys/errno.h> |
| 66 | #include <sys/debug.h> |
| 67 | #include <sys/stropts.h> |
| 68 | #include <sys/time.h> |
| 69 | #include <sys/stream.h> |
| 70 | #include <sys/conf.h> |
| 71 | #include <sys/ddi.h> |
| 72 | #include <sys/sunddi.h> |
| 73 | #include <sys/kmem.h> |
| 74 | #include <sys/strsun.h> |
| 75 | #include <sys/bufmod.h> |
| 76 | #include <sys/modctl.h> |
| 77 | #include <sys/isa_defs.h> |
| 78 | |
| 79 | /* |
| 80 | * Per-Stream state information. |
| 81 | * |
| 82 | * If sb_ticks is negative, we don't deliver chunks until they're |
| 83 | * full. If it's zero, we deliver every packet as it arrives. (In |
| 84 | * this case we force sb_chunk to zero, to make the implementation |
| 85 | * easier.) Otherwise, sb_ticks gives the number of ticks in a |
| 86 | * buffering interval. The interval begins when the a read side data |
| 87 | * message is received and a timeout is not active. If sb_snap is |
| 88 | * zero, no truncation of the msg is done. |
| 89 | */ |
| 90 | struct sb { |
| 91 | queue_t *sb_rq; /* our rq */ |
| 92 | mblk_t *sb_mp; /* partial chunk */ |
| 93 | mblk_t *sb_head; /* pre-allocated space for the next header */ |
| 94 | mblk_t *sb_tail; /* first mblk of last message appended */ |
| 95 | uint_t sb_mlen; /* sb_mp length */ |
| 96 | uint_t sb_mcount; /* input msg count in sb_mp */ |
| 97 | uint_t sb_chunk; /* max chunk size */ |
| 98 | clock_t sb_ticks; /* timeout interval */ |
| 99 | timeout_id_t sb_timeoutid; /* qtimeout() id */ |
| 100 | uint_t sb_drops; /* cumulative # discarded msgs */ |
| 101 | uint_t sb_snap; /* snapshot length */ |
| 102 | uint_t sb_flags; /* flags field */ |
| 103 | uint_t sb_state; /* state variable */ |
| 104 | }; |
| 105 | |
| 106 | /* |
| 107 | * Function prototypes. |
| 108 | */ |
| 109 | static int sbopen(queue_t *, dev_t *, int, int, cred_t *); |
| 110 | static int sbclose(queue_t *, int, cred_t *); |
| 111 | static void sbwput(queue_t *, mblk_t *); |
| 112 | static void sbrput(queue_t *, mblk_t *); |
| 113 | static void sbrsrv(queue_t *); |
| 114 | static void sbioctl(queue_t *, mblk_t *); |
| 115 | static void sbaddmsg(queue_t *, mblk_t *); |
| 116 | static void sbtick(void *); |
| 117 | static void sbclosechunk(struct sb *); |
| 118 | static void sbsendit(queue_t *, mblk_t *); |
| 119 | |
| 120 | static struct module_info sb_minfo = { |
| 121 | 21, /* mi_idnum */ |
| 122 | "bufmod", /* mi_idname */ |
| 123 | 0, /* mi_minpsz */ |
| 124 | INFPSZ, /* mi_maxpsz */ |
| 125 | 1, /* mi_hiwat */ |
| 126 | 0 /* mi_lowat */ |
| 127 | }; |
| 128 | |
| 129 | static struct qinit sb_rinit = { |
| 130 | (int (*)())sbrput, /* qi_putp */ |
| 131 | (int (*)())sbrsrv, /* qi_srvp */ |
| 132 | sbopen, /* qi_qopen */ |
| 133 | sbclose, /* qi_qclose */ |
| 134 | NULL, /* qi_qadmin */ |
| 135 | &sb_minfo, /* qi_minfo */ |
| 136 | NULL /* qi_mstat */ |
| 137 | }; |
| 138 | |
| 139 | static struct qinit sb_winit = { |
| 140 | (int (*)())sbwput, /* qi_putp */ |
| 141 | NULL, /* qi_srvp */ |
| 142 | NULL, /* qi_qopen */ |
| 143 | NULL, /* qi_qclose */ |
| 144 | NULL, /* qi_qadmin */ |
| 145 | &sb_minfo, /* qi_minfo */ |
| 146 | NULL /* qi_mstat */ |
| 147 | }; |
| 148 | |
| 149 | static struct streamtab sb_info = { |
| 150 | &sb_rinit, /* st_rdinit */ |
| 151 | &sb_winit, /* st_wrinit */ |
| 152 | NULL, /* st_muxrinit */ |
| 153 | NULL /* st_muxwinit */ |
| 154 | }; |
| 155 | |
| 156 | |
| 157 | /* |
| 158 | * This is the loadable module wrapper. |
| 159 | */ |
| 160 | |
| 161 | static struct fmodsw fsw = { |
| 162 | "bufmod", |
| 163 | &sb_info, |
| 164 | D_MTQPAIR | D_MP |
| 165 | }; |
| 166 | |
| 167 | /* |
| 168 | * Module linkage information for the kernel. |
| 169 | */ |
| 170 | |
| 171 | static struct modlstrmod modlstrmod = { |
| 172 | &mod_strmodops, "streams buffer mod", &fsw |
| 173 | }; |
| 174 | |
| 175 | static struct modlinkage modlinkage = { |
| 176 | MODREV_1, &modlstrmod, NULL |
| 177 | }; |
| 178 | |
| 179 | |
| 180 | int |
| 181 | _init(void) |
| 182 | { |
| 183 | return (mod_install(&modlinkage)); |
| 184 | } |
| 185 | |
| 186 | int |
| 187 | _fini(void) |
| 188 | { |
| 189 | return (mod_remove(&modlinkage)); |
| 190 | } |
| 191 | |
| 192 | int |
| 193 | _info(struct modinfo *modinfop) |
| 194 | { |
| 195 | return (mod_info(&modlinkage, modinfop)); |
| 196 | } |
| 197 | |
| 198 | |
| 199 | /* ARGSUSED */ |
| 200 | static int |
| 201 | sbopen(queue_t *rq, dev_t *dev, int oflag, int sflag, cred_t *crp) |
| 202 | { |
| 203 | struct sb *sbp; |
| 204 | ASSERT(rq); |
| 205 | |
| 206 | if (sflag != MODOPEN) |
| 207 | return (EINVAL); |
| 208 | |
| 209 | if (rq->q_ptr) |
| 210 | return (0); |
| 211 | |
| 212 | /* |
| 213 | * Allocate and initialize per-Stream structure. |
| 214 | */ |
| 215 | sbp = kmem_alloc(sizeof (struct sb), KM_SLEEP); |
| 216 | sbp->sb_rq = rq; |
| 217 | sbp->sb_ticks = -1; |
| 218 | sbp->sb_chunk = SB_DFLT_CHUNK; |
| 219 | sbp->sb_tail = sbp->sb_mp = sbp->sb_head = NULL; |
| 220 | sbp->sb_mlen = 0; |
| 221 | sbp->sb_mcount = 0; |
| 222 | sbp->sb_timeoutid = 0; |
| 223 | sbp->sb_drops = 0; |
| 224 | sbp->sb_snap = 0; |
| 225 | sbp->sb_flags = 0; |
| 226 | sbp->sb_state = 0; |
| 227 | |
| 228 | rq->q_ptr = WR(rq)->q_ptr = sbp; |
| 229 | |
| 230 | qprocson(rq); |
| 231 | |
| 232 | |
| 233 | return (0); |
| 234 | } |
| 235 | |
| 236 | /* ARGSUSED1 */ |
| 237 | static int |
| 238 | sbclose(queue_t *rq, int flag, cred_t *credp) |
| 239 | { |
| 240 | struct sb *sbp = (struct sb *)rq->q_ptr; |
| 241 | |
| 242 | ASSERT(sbp); |
| 243 | |
| 244 | qprocsoff(rq); |
| 245 | /* |
| 246 | * Cancel an outstanding timeout |
| 247 | */ |
| 248 | if (sbp->sb_timeoutid != 0) { |
| 249 | (void) quntimeout(rq, sbp->sb_timeoutid); |
| 250 | sbp->sb_timeoutid = 0; |
| 251 | } |
| 252 | /* |
| 253 | * Free the current chunk. |
| 254 | */ |
| 255 | if (sbp->sb_mp) { |
| 256 | freemsg(sbp->sb_mp); |
| 257 | sbp->sb_tail = sbp->sb_mp = sbp->sb_head = NULL; |
| 258 | sbp->sb_mlen = 0; |
| 259 | } |
| 260 | |
| 261 | /* |
| 262 | * Free the per-Stream structure. |
| 263 | */ |
| 264 | kmem_free((caddr_t)sbp, sizeof (struct sb)); |
| 265 | rq->q_ptr = WR(rq)->q_ptr = NULL; |
| 266 | |
| 267 | return (0); |
| 268 | } |
| 269 | |
| 270 | /* |
| 271 | * the correction factor is introduced to compensate for |
| 272 | * whatever assumptions the modules below have made about |
| 273 | * how much traffic is flowing through the stream and the fact |
| 274 | * that bufmod may be snipping messages with the sb_snap length. |
| 275 | */ |
| 276 | #define SNIT_HIWAT(msgsize, fudge) ((4 * msgsize * fudge) + 512) |
| 277 | #define SNIT_LOWAT(msgsize, fudge) ((2 * msgsize * fudge) + 256) |
| 278 | |
| 279 | |
| 280 | static void |
| 281 | sbioc(queue_t *wq, mblk_t *mp) |
| 282 | { |
| 283 | struct iocblk *iocp; |
| 284 | struct sb *sbp = (struct sb *)wq->q_ptr; |
| 285 | clock_t ticks; |
| 286 | mblk_t *mop; |
| 287 | |
| 288 | iocp = (struct iocblk *)mp->b_rptr; |
| 289 | |
| 290 | switch (iocp->ioc_cmd) { |
| 291 | case SBIOCGCHUNK: |
| 292 | case SBIOCGSNAP: |
| 293 | case SBIOCGFLAGS: |
| 294 | case SBIOCGTIME: |
| 295 | miocack(wq, mp, 0, 0); |
| 296 | return; |
| 297 | |
| 298 | case SBIOCSTIME: |
| 299 | #ifdef _SYSCALL32_IMPL |
| 300 | if ((iocp->ioc_flag & IOC_MODELS) != IOC_NATIVE) { |
| 301 | struct timeval32 *t32; |
| 302 | |
| 303 | t32 = (struct timeval32 *)mp->b_cont->b_rptr; |
| 304 | if (t32->tv_sec < 0 || t32->tv_usec < 0) { |
| 305 | miocnak(wq, mp, 0, EINVAL); |
| 306 | break; |
| 307 | } |
| 308 | ticks = TIMEVAL_TO_TICK(t32); |
| 309 | } else |
| 310 | #endif /* _SYSCALL32_IMPL */ |
| 311 | { |
| 312 | struct timeval *tb; |
| 313 | |
| 314 | tb = (struct timeval *)mp->b_cont->b_rptr; |
| 315 | |
| 316 | if (tb->tv_sec < 0 || tb->tv_usec < 0) { |
| 317 | miocnak(wq, mp, 0, EINVAL); |
| 318 | break; |
| 319 | } |
| 320 | ticks = TIMEVAL_TO_TICK(tb); |
| 321 | } |
| 322 | sbp->sb_ticks = ticks; |
| 323 | if (ticks == 0) |
| 324 | sbp->sb_chunk = 0; |
| 325 | miocack(wq, mp, 0, 0); |
| 326 | sbclosechunk(sbp); |
| 327 | return; |
| 328 | |
| 329 | case SBIOCSCHUNK: |
| 330 | /* |
| 331 | * set up hi/lo water marks on stream head read queue. |
| 332 | * unlikely to run out of resources. Fix at later date. |
| 333 | */ |
| 334 | if ((mop = allocb(sizeof (struct stroptions), |
| 335 | BPRI_MED)) != NULL) { |
| 336 | struct stroptions *sop; |
| 337 | uint_t chunk; |
| 338 | |
| 339 | chunk = *(uint_t *)mp->b_cont->b_rptr; |
| 340 | mop->b_datap->db_type = M_SETOPTS; |
| 341 | mop->b_wptr += sizeof (struct stroptions); |
| 342 | sop = (struct stroptions *)mop->b_rptr; |
| 343 | sop->so_flags = SO_HIWAT | SO_LOWAT; |
| 344 | sop->so_hiwat = SNIT_HIWAT(chunk, 1); |
| 345 | sop->so_lowat = SNIT_LOWAT(chunk, 1); |
| 346 | qreply(wq, mop); |
| 347 | } |
| 348 | |
| 349 | sbp->sb_chunk = *(uint_t *)mp->b_cont->b_rptr; |
| 350 | miocack(wq, mp, 0, 0); |
| 351 | sbclosechunk(sbp); |
| 352 | return; |
| 353 | |
| 354 | case SBIOCSFLAGS: |
| 355 | sbp->sb_flags = *(uint_t *)mp->b_cont->b_rptr; |
| 356 | miocack(wq, mp, 0, 0); |
| 357 | return; |
| 358 | |
| 359 | case SBIOCSSNAP: |
| 360 | /* |
| 361 | * if chunking dont worry about effects of |
| 362 | * snipping of message size on head flow control |
| 363 | * since it has a relatively small bearing on the |
| 364 | * data rate onto the streamn head. |
| 365 | */ |
| 366 | if (!sbp->sb_chunk) { |
| 367 | /* |
| 368 | * set up hi/lo water marks on stream head read queue. |
| 369 | * unlikely to run out of resources. Fix at later date. |
| 370 | */ |
| 371 | if ((mop = allocb(sizeof (struct stroptions), |
| 372 | BPRI_MED)) != NULL) { |
| 373 | struct stroptions *sop; |
| 374 | uint_t snap; |
| 375 | int fudge; |
| 376 | |
| 377 | snap = *(uint_t *)mp->b_cont->b_rptr; |
| 378 | mop->b_datap->db_type = M_SETOPTS; |
| 379 | mop->b_wptr += sizeof (struct stroptions); |
| 380 | sop = (struct stroptions *)mop->b_rptr; |
| 381 | sop->so_flags = SO_HIWAT | SO_LOWAT; |
| 382 | fudge = snap <= 100 ? 4 : |
| 383 | snap <= 400 ? 2 : |
| 384 | 1; |
| 385 | sop->so_hiwat = SNIT_HIWAT(snap, fudge); |
| 386 | sop->so_lowat = SNIT_LOWAT(snap, fudge); |
| 387 | qreply(wq, mop); |
| 388 | } |
| 389 | } |
| 390 | |
| 391 | sbp->sb_snap = *(uint_t *)mp->b_cont->b_rptr; |
| 392 | miocack(wq, mp, 0, 0); |
| 393 | return; |
| 394 | |
| 395 | default: |
| 396 | ASSERT(0); |
| 397 | return; |
| 398 | } |
| 399 | } |
| 400 | |
| 401 | /* |
| 402 | * Write-side put procedure. Its main task is to detect ioctls |
| 403 | * for manipulating the buffering state and hand them to sbioctl. |
| 404 | * Other message types are passed on through. |
| 405 | */ |
| 406 | static void |
| 407 | sbwput(queue_t *wq, mblk_t *mp) |
| 408 | { |
| 409 | struct sb *sbp = (struct sb *)wq->q_ptr; |
| 410 | struct copyresp *resp; |
| 411 | |
| 412 | if (sbp->sb_flags & SB_SEND_ON_WRITE) |
| 413 | sbclosechunk(sbp); |
| 414 | switch (mp->b_datap->db_type) { |
| 415 | case M_IOCTL: |
| 416 | sbioctl(wq, mp); |
| 417 | break; |
| 418 | |
| 419 | case M_IOCDATA: |
| 420 | resp = (struct copyresp *)mp->b_rptr; |
| 421 | if (resp->cp_rval) { |
| 422 | /* |
| 423 | * Just free message on failure. |
| 424 | */ |
| 425 | freemsg(mp); |
| 426 | break; |
| 427 | } |
| 428 | |
| 429 | switch (resp->cp_cmd) { |
| 430 | case SBIOCSTIME: |
| 431 | case SBIOCSCHUNK: |
| 432 | case SBIOCSFLAGS: |
| 433 | case SBIOCSSNAP: |
| 434 | case SBIOCGTIME: |
| 435 | case SBIOCGCHUNK: |
| 436 | case SBIOCGSNAP: |
| 437 | case SBIOCGFLAGS: |
| 438 | sbioc(wq, mp); |
| 439 | break; |
| 440 | |
| 441 | default: |
| 442 | putnext(wq, mp); |
| 443 | break; |
| 444 | } |
| 445 | break; |
| 446 | |
| 447 | default: |
| 448 | putnext(wq, mp); |
| 449 | break; |
| 450 | } |
| 451 | } |
| 452 | |
| 453 | /* |
| 454 | * Read-side put procedure. It's responsible for buffering up incoming |
| 455 | * messages and grouping them into aggregates according to the current |
| 456 | * buffering parameters. |
| 457 | */ |
| 458 | static void |
| 459 | sbrput(queue_t *rq, mblk_t *mp) |
| 460 | { |
| 461 | struct sb *sbp = (struct sb *)rq->q_ptr; |
| 462 | |
| 463 | ASSERT(sbp); |
| 464 | |
| 465 | switch (mp->b_datap->db_type) { |
| 466 | case M_PROTO: |
| 467 | if (sbp->sb_flags & SB_NO_PROTO_CVT) { |
| 468 | sbclosechunk(sbp); |
| 469 | sbsendit(rq, mp); |
| 470 | break; |
| 471 | } else { |
| 472 | /* |
| 473 | * Convert M_PROTO to M_DATA. |
| 474 | */ |
| 475 | mp->b_datap->db_type = M_DATA; |
| 476 | } |
| 477 | /* FALLTHRU */ |
| 478 | |
| 479 | case M_DATA: |
| 480 | if ((sbp->sb_flags & SB_DEFER_CHUNK) && |
| 481 | !(sbp->sb_state & SB_FRCVD)) { |
| 482 | sbclosechunk(sbp); |
| 483 | sbsendit(rq, mp); |
| 484 | sbp->sb_state |= SB_FRCVD; |
| 485 | } else |
| 486 | sbaddmsg(rq, mp); |
| 487 | |
| 488 | if ((sbp->sb_ticks > 0) && !(sbp->sb_timeoutid)) |
| 489 | sbp->sb_timeoutid = qtimeout(sbp->sb_rq, sbtick, |
| 490 | sbp, sbp->sb_ticks); |
| 491 | |
| 492 | break; |
| 493 | |
| 494 | case M_FLUSH: |
| 495 | if (*mp->b_rptr & FLUSHR) { |
| 496 | /* |
| 497 | * Reset timeout, flush the chunk currently in |
| 498 | * progress, and start a new chunk. |
| 499 | */ |
| 500 | if (sbp->sb_timeoutid) { |
| 501 | (void) quntimeout(sbp->sb_rq, |
| 502 | sbp->sb_timeoutid); |
| 503 | sbp->sb_timeoutid = 0; |
| 504 | } |
| 505 | if (sbp->sb_mp) { |
| 506 | freemsg(sbp->sb_mp); |
| 507 | sbp->sb_tail = sbp->sb_mp = sbp->sb_head = NULL; |
| 508 | sbp->sb_mlen = 0; |
| 509 | sbp->sb_mcount = 0; |
| 510 | } |
| 511 | flushq(rq, FLUSHALL); |
| 512 | } |
| 513 | putnext(rq, mp); |
| 514 | break; |
| 515 | |
| 516 | case M_CTL: |
| 517 | /* |
| 518 | * Zero-length M_CTL means our timeout() popped. |
| 519 | */ |
| 520 | if (MBLKL(mp) == 0) { |
| 521 | freemsg(mp); |
| 522 | sbclosechunk(sbp); |
| 523 | } else { |
| 524 | sbclosechunk(sbp); |
| 525 | sbsendit(rq, mp); |
| 526 | } |
| 527 | break; |
| 528 | |
| 529 | default: |
| 530 | if (mp->b_datap->db_type <= QPCTL) { |
| 531 | sbclosechunk(sbp); |
| 532 | sbsendit(rq, mp); |
| 533 | } else { |
| 534 | /* Note: out of band */ |
| 535 | putnext(rq, mp); |
| 536 | } |
| 537 | break; |
| 538 | } |
| 539 | } |
| 540 | |
| 541 | /* |
| 542 | * read service procedure. |
| 543 | */ |
| 544 | /* ARGSUSED */ |
| 545 | static void |
| 546 | sbrsrv(queue_t *rq) |
| 547 | { |
| 548 | mblk_t *mp; |
| 549 | |
| 550 | /* |
| 551 | * High priority messages shouldn't get here but if |
| 552 | * one does, jam it through to avoid infinite loop. |
| 553 | */ |
| 554 | while ((mp = getq(rq)) != NULL) { |
| 555 | if (!canputnext(rq) && (mp->b_datap->db_type <= QPCTL)) { |
| 556 | /* should only get here if SB_NO_SROPS */ |
| 557 | (void) putbq(rq, mp); |
| 558 | return; |
| 559 | } |
| 560 | putnext(rq, mp); |
| 561 | } |
| 562 | } |
| 563 | |
| 564 | /* |
| 565 | * Handle write-side M_IOCTL messages. |
| 566 | */ |
| 567 | static void |
| 568 | sbioctl(queue_t *wq, mblk_t *mp) |
| 569 | { |
| 570 | struct sb *sbp = (struct sb *)wq->q_ptr; |
| 571 | struct iocblk *iocp = (struct iocblk *)mp->b_rptr; |
| 572 | struct timeval *t; |
| 573 | clock_t ticks; |
| 574 | mblk_t *mop; |
| 575 | int transparent = iocp->ioc_count; |
| 576 | mblk_t *datamp; |
| 577 | int error; |
| 578 | |
| 579 | switch (iocp->ioc_cmd) { |
| 580 | case SBIOCSTIME: |
| 581 | if (iocp->ioc_count == TRANSPARENT) { |
| 582 | #ifdef _SYSCALL32_IMPL |
| 583 | if ((iocp->ioc_flag & IOC_MODELS) != IOC_NATIVE) { |
| 584 | mcopyin(mp, NULL, sizeof (struct timeval32), |
| 585 | NULL); |
| 586 | } else |
| 587 | #endif /* _SYSCALL32_IMPL */ |
| 588 | { |
| 589 | mcopyin(mp, NULL, sizeof (*t), NULL); |
| 590 | } |
| 591 | qreply(wq, mp); |
| 592 | } else { |
| 593 | /* |
| 594 | * Verify argument length. |
| 595 | */ |
| 596 | #ifdef _SYSCALL32_IMPL |
| 597 | if ((iocp->ioc_flag & IOC_MODELS) != IOC_NATIVE) { |
| 598 | struct timeval32 *t32; |
| 599 | |
| 600 | error = miocpullup(mp, |
| 601 | sizeof (struct timeval32)); |
| 602 | if (error != 0) { |
| 603 | miocnak(wq, mp, 0, error); |
| 604 | break; |
| 605 | } |
| 606 | t32 = (struct timeval32 *)mp->b_cont->b_rptr; |
| 607 | if (t32->tv_sec < 0 || t32->tv_usec < 0) { |
| 608 | miocnak(wq, mp, 0, EINVAL); |
| 609 | break; |
| 610 | } |
| 611 | ticks = TIMEVAL_TO_TICK(t32); |
| 612 | } else |
| 613 | #endif /* _SYSCALL32_IMPL */ |
| 614 | { |
| 615 | error = miocpullup(mp, sizeof (struct timeval)); |
| 616 | if (error != 0) { |
| 617 | miocnak(wq, mp, 0, error); |
| 618 | break; |
| 619 | } |
| 620 | |
| 621 | t = (struct timeval *)mp->b_cont->b_rptr; |
| 622 | if (t->tv_sec < 0 || t->tv_usec < 0) { |
| 623 | miocnak(wq, mp, 0, EINVAL); |
| 624 | break; |
| 625 | } |
| 626 | ticks = TIMEVAL_TO_TICK(t); |
| 627 | } |
| 628 | sbp->sb_ticks = ticks; |
| 629 | if (ticks == 0) |
| 630 | sbp->sb_chunk = 0; |
| 631 | miocack(wq, mp, 0, 0); |
| 632 | sbclosechunk(sbp); |
| 633 | } |
| 634 | break; |
| 635 | |
| 636 | case SBIOCGTIME: { |
| 637 | struct timeval *t; |
| 638 | |
| 639 | /* |
| 640 | * Verify argument length. |
| 641 | */ |
| 642 | if (transparent != TRANSPARENT) { |
| 643 | #ifdef _SYSCALL32_IMPL |
| 644 | if ((iocp->ioc_flag & IOC_MODELS) != IOC_NATIVE) { |
| 645 | error = miocpullup(mp, |
| 646 | sizeof (struct timeval32)); |
| 647 | if (error != 0) { |
| 648 | miocnak(wq, mp, 0, error); |
| 649 | break; |
| 650 | } |
| 651 | } else |
| 652 | #endif /* _SYSCALL32_IMPL */ |
| 653 | error = miocpullup(mp, sizeof (struct timeval)); |
| 654 | if (error != 0) { |
| 655 | miocnak(wq, mp, 0, error); |
| 656 | break; |
| 657 | } |
| 658 | } |
| 659 | |
| 660 | /* |
| 661 | * If infinite timeout, return range error |
| 662 | * for the ioctl. |
| 663 | */ |
| 664 | if (sbp->sb_ticks < 0) { |
| 665 | miocnak(wq, mp, 0, ERANGE); |
| 666 | break; |
| 667 | } |
| 668 | |
| 669 | #ifdef _SYSCALL32_IMPL |
| 670 | if ((iocp->ioc_flag & IOC_MODELS) != IOC_NATIVE) { |
| 671 | struct timeval32 *t32; |
| 672 | |
| 673 | if (transparent == TRANSPARENT) { |
| 674 | datamp = allocb(sizeof (*t32), BPRI_MED); |
| 675 | if (datamp == NULL) { |
| 676 | miocnak(wq, mp, 0, EAGAIN); |
| 677 | break; |
| 678 | } |
| 679 | mcopyout(mp, NULL, sizeof (*t32), NULL, datamp); |
| 680 | } |
| 681 | |
| 682 | t32 = (struct timeval32 *)mp->b_cont->b_rptr; |
| 683 | TICK_TO_TIMEVAL32(sbp->sb_ticks, t32); |
| 684 | |
| 685 | if (transparent == TRANSPARENT) |
| 686 | qreply(wq, mp); |
| 687 | else |
| 688 | miocack(wq, mp, sizeof (*t32), 0); |
| 689 | } else |
| 690 | #endif /* _SYSCALL32_IMPL */ |
| 691 | { |
| 692 | if (transparent == TRANSPARENT) { |
| 693 | datamp = allocb(sizeof (*t), BPRI_MED); |
| 694 | if (datamp == NULL) { |
| 695 | miocnak(wq, mp, 0, EAGAIN); |
| 696 | break; |
| 697 | } |
| 698 | mcopyout(mp, NULL, sizeof (*t), NULL, datamp); |
| 699 | } |
| 700 | |
| 701 | t = (struct timeval *)mp->b_cont->b_rptr; |
| 702 | TICK_TO_TIMEVAL(sbp->sb_ticks, t); |
| 703 | |
| 704 | if (transparent == TRANSPARENT) |
| 705 | qreply(wq, mp); |
| 706 | else |
| 707 | miocack(wq, mp, sizeof (*t), 0); |
| 708 | } |
| 709 | break; |
| 710 | } |
| 711 | |
| 712 | case SBIOCCTIME: |
| 713 | sbp->sb_ticks = -1; |
| 714 | miocack(wq, mp, 0, 0); |
| 715 | break; |
| 716 | |
| 717 | case SBIOCSCHUNK: |
| 718 | if (iocp->ioc_count == TRANSPARENT) { |
| 719 | mcopyin(mp, NULL, sizeof (uint_t), NULL); |
| 720 | qreply(wq, mp); |
| 721 | } else { |
| 722 | /* |
| 723 | * Verify argument length. |
| 724 | */ |
| 725 | error = miocpullup(mp, sizeof (uint_t)); |
| 726 | if (error != 0) { |
| 727 | miocnak(wq, mp, 0, error); |
| 728 | break; |
| 729 | } |
| 730 | |
| 731 | /* |
| 732 | * set up hi/lo water marks on stream head read queue. |
| 733 | * unlikely to run out of resources. Fix at later date. |
| 734 | */ |
| 735 | if ((mop = allocb(sizeof (struct stroptions), |
| 736 | BPRI_MED)) != NULL) { |
| 737 | struct stroptions *sop; |
| 738 | uint_t chunk; |
| 739 | |
| 740 | chunk = *(uint_t *)mp->b_cont->b_rptr; |
| 741 | mop->b_datap->db_type = M_SETOPTS; |
| 742 | mop->b_wptr += sizeof (struct stroptions); |
| 743 | sop = (struct stroptions *)mop->b_rptr; |
| 744 | sop->so_flags = SO_HIWAT | SO_LOWAT; |
| 745 | sop->so_hiwat = SNIT_HIWAT(chunk, 1); |
| 746 | sop->so_lowat = SNIT_LOWAT(chunk, 1); |
| 747 | qreply(wq, mop); |
| 748 | } |
| 749 | |
| 750 | sbp->sb_chunk = *(uint_t *)mp->b_cont->b_rptr; |
| 751 | miocack(wq, mp, 0, 0); |
| 752 | sbclosechunk(sbp); |
| 753 | } |
| 754 | break; |
| 755 | |
| 756 | case SBIOCGCHUNK: |
| 757 | /* |
| 758 | * Verify argument length. |
| 759 | */ |
| 760 | if (transparent != TRANSPARENT) { |
| 761 | error = miocpullup(mp, sizeof (uint_t)); |
| 762 | if (error != 0) { |
| 763 | miocnak(wq, mp, 0, error); |
| 764 | break; |
| 765 | } |
| 766 | } |
| 767 | |
| 768 | if (transparent == TRANSPARENT) { |
| 769 | datamp = allocb(sizeof (uint_t), BPRI_MED); |
| 770 | if (datamp == NULL) { |
| 771 | miocnak(wq, mp, 0, EAGAIN); |
| 772 | break; |
| 773 | } |
| 774 | mcopyout(mp, NULL, sizeof (uint_t), NULL, datamp); |
| 775 | } |
| 776 | |
| 777 | *(uint_t *)mp->b_cont->b_rptr = sbp->sb_chunk; |
| 778 | |
| 779 | if (transparent == TRANSPARENT) |
| 780 | qreply(wq, mp); |
| 781 | else |
| 782 | miocack(wq, mp, sizeof (uint_t), 0); |
| 783 | break; |
| 784 | |
| 785 | case SBIOCSSNAP: |
| 786 | if (iocp->ioc_count == TRANSPARENT) { |
| 787 | mcopyin(mp, NULL, sizeof (uint_t), NULL); |
| 788 | qreply(wq, mp); |
| 789 | } else { |
| 790 | /* |
| 791 | * Verify argument length. |
| 792 | */ |
| 793 | error = miocpullup(mp, sizeof (uint_t)); |
| 794 | if (error != 0) { |
| 795 | miocnak(wq, mp, 0, error); |
| 796 | break; |
| 797 | } |
| 798 | |
| 799 | /* |
| 800 | * if chunking dont worry about effects of |
| 801 | * snipping of message size on head flow control |
| 802 | * since it has a relatively small bearing on the |
| 803 | * data rate onto the streamn head. |
| 804 | */ |
| 805 | if (!sbp->sb_chunk) { |
| 806 | /* |
| 807 | * set up hi/lo water marks on stream |
| 808 | * head read queue. unlikely to run out |
| 809 | * of resources. Fix at later date. |
| 810 | */ |
| 811 | if ((mop = allocb(sizeof (struct stroptions), |
| 812 | BPRI_MED)) != NULL) { |
| 813 | struct stroptions *sop; |
| 814 | uint_t snap; |
| 815 | int fudge; |
| 816 | |
| 817 | snap = *(uint_t *)mp->b_cont->b_rptr; |
| 818 | mop->b_datap->db_type = M_SETOPTS; |
| 819 | mop->b_wptr += sizeof (*sop); |
| 820 | sop = (struct stroptions *)mop->b_rptr; |
| 821 | sop->so_flags = SO_HIWAT | SO_LOWAT; |
| 822 | fudge = (snap <= 100) ? 4 : |
| 823 | (snap <= 400) ? 2 : 1; |
| 824 | sop->so_hiwat = SNIT_HIWAT(snap, fudge); |
| 825 | sop->so_lowat = SNIT_LOWAT(snap, fudge); |
| 826 | qreply(wq, mop); |
| 827 | } |
| 828 | } |
| 829 | |
| 830 | sbp->sb_snap = *(uint_t *)mp->b_cont->b_rptr; |
| 831 | |
| 832 | miocack(wq, mp, 0, 0); |
| 833 | } |
| 834 | break; |
| 835 | |
| 836 | case SBIOCGSNAP: |
| 837 | /* |
| 838 | * Verify argument length |
| 839 | */ |
| 840 | if (transparent != TRANSPARENT) { |
| 841 | error = miocpullup(mp, sizeof (uint_t)); |
| 842 | if (error != 0) { |
| 843 | miocnak(wq, mp, 0, error); |
| 844 | break; |
| 845 | } |
| 846 | } |
| 847 | |
| 848 | if (transparent == TRANSPARENT) { |
| 849 | datamp = allocb(sizeof (uint_t), BPRI_MED); |
| 850 | if (datamp == NULL) { |
| 851 | miocnak(wq, mp, 0, EAGAIN); |
| 852 | break; |
| 853 | } |
| 854 | mcopyout(mp, NULL, sizeof (uint_t), NULL, datamp); |
| 855 | } |
| 856 | |
| 857 | *(uint_t *)mp->b_cont->b_rptr = sbp->sb_snap; |
| 858 | |
| 859 | if (transparent == TRANSPARENT) |
| 860 | qreply(wq, mp); |
| 861 | else |
| 862 | miocack(wq, mp, sizeof (uint_t), 0); |
| 863 | break; |
| 864 | |
| 865 | case SBIOCSFLAGS: |
| 866 | /* |
| 867 | * set the flags. |
| 868 | */ |
| 869 | if (iocp->ioc_count == TRANSPARENT) { |
| 870 | mcopyin(mp, NULL, sizeof (uint_t), NULL); |
| 871 | qreply(wq, mp); |
| 872 | } else { |
| 873 | error = miocpullup(mp, sizeof (uint_t)); |
| 874 | if (error != 0) { |
| 875 | miocnak(wq, mp, 0, error); |
| 876 | break; |
| 877 | } |
| 878 | sbp->sb_flags = *(uint_t *)mp->b_cont->b_rptr; |
| 879 | miocack(wq, mp, 0, 0); |
| 880 | } |
| 881 | break; |
| 882 | |
| 883 | case SBIOCGFLAGS: |
| 884 | /* |
| 885 | * Verify argument length |
| 886 | */ |
| 887 | if (transparent != TRANSPARENT) { |
| 888 | error = miocpullup(mp, sizeof (uint_t)); |
| 889 | if (error != 0) { |
| 890 | miocnak(wq, mp, 0, error); |
| 891 | break; |
| 892 | } |
| 893 | } |
| 894 | |
| 895 | if (transparent == TRANSPARENT) { |
| 896 | datamp = allocb(sizeof (uint_t), BPRI_MED); |
| 897 | if (datamp == NULL) { |
| 898 | miocnak(wq, mp, 0, EAGAIN); |
| 899 | break; |
| 900 | } |
| 901 | mcopyout(mp, NULL, sizeof (uint_t), NULL, datamp); |
| 902 | } |
| 903 | |
| 904 | *(uint_t *)mp->b_cont->b_rptr = sbp->sb_flags; |
| 905 | |
| 906 | if (transparent == TRANSPARENT) |
| 907 | qreply(wq, mp); |
| 908 | else |
| 909 | miocack(wq, mp, sizeof (uint_t), 0); |
| 910 | break; |
| 911 | |
| 912 | |
| 913 | default: |
| 914 | putnext(wq, mp); |
| 915 | break; |
| 916 | } |
| 917 | } |
| 918 | |
| 919 | /* |
| 920 | * Given a length l, calculate the amount of extra storage |
| 921 | * required to round it up to the next multiple of the alignment a. |
| 922 | */ |
| 923 | #define RoundUpAmt(l, a) ((l) % (a) ? (a) - ((l) % (a)) : 0) |
| 924 | /* |
| 925 | * Calculate additional amount of space required for alignment. |
| 926 | */ |
| 927 | #define Align(l) RoundUpAmt(l, sizeof (ulong_t)) |
| 928 | /* |
| 929 | * Smallest possible message size when headers are enabled. |
| 930 | * This is used to calculate whether a chunk is nearly full. |
| 931 | */ |
| 932 | #define SMALLEST_MESSAGE sizeof (struct sb_hdr) + _POINTER_ALIGNMENT |
| 933 | |
| 934 | /* |
| 935 | * Process a read-side M_DATA message. |
| 936 | * |
| 937 | * If the currently accumulating chunk doesn't have enough room |
| 938 | * for the message, close off the chunk, pass it upward, and start |
| 939 | * a new one. Then add the message to the current chunk, taking |
| 940 | * account of the possibility that the message's size exceeds the |
| 941 | * chunk size. |
| 942 | * |
| 943 | * If headers are enabled add an sb_hdr header and trailing alignment padding. |
| 944 | * |
| 945 | * To optimise performance the total number of msgbs should be kept |
| 946 | * to a minimum. This is achieved by using any remaining space in message N |
| 947 | * for both its own padding as well as the header of message N+1 if possible. |
| 948 | * If there's insufficient space we allocate one message to hold this 'wrapper'. |
| 949 | * (there's likely to be space beyond message N, since allocb would have |
| 950 | * rounded up the required size to one of the dblk_sizes). |
| 951 | * |
| 952 | */ |
| 953 | static void |
| 954 | sbaddmsg(queue_t *rq, mblk_t *mp) |
| 955 | { |
| 956 | struct sb *sbp; |
| 957 | struct timeval t; |
| 958 | struct sb_hdr hp; |
| 959 | mblk_t *wrapper; /* padding for msg N, header for msg N+1 */ |
| 960 | mblk_t *last; /* last mblk of current message */ |
| 961 | size_t wrapperlen; /* length of header + padding */ |
| 962 | size_t origlen; /* data length before truncation */ |
| 963 | size_t pad; /* bytes required to align header */ |
| 964 | |
| 965 | sbp = (struct sb *)rq->q_ptr; |
| 966 | |
| 967 | origlen = msgdsize(mp); |
| 968 | |
| 969 | /* |
| 970 | * Truncate the message. |
| 971 | */ |
| 972 | if ((sbp->sb_snap > 0) && (origlen > sbp->sb_snap) && |
| 973 | (adjmsg(mp, -(origlen - sbp->sb_snap)) == 1)) |
| 974 | hp.sbh_totlen = hp.sbh_msglen = sbp->sb_snap; |
| 975 | else |
| 976 | hp.sbh_totlen = hp.sbh_msglen = origlen; |
| 977 | |
| 978 | if (sbp->sb_flags & SB_NO_HEADER) { |
| 979 | |
| 980 | /* |
| 981 | * Would the inclusion of this message overflow the current |
| 982 | * chunk? If so close the chunk off and start a new one. |
| 983 | */ |
| 984 | if ((hp.sbh_totlen + sbp->sb_mlen) > sbp->sb_chunk) |
| 985 | sbclosechunk(sbp); |
| 986 | /* |
| 987 | * First message too big for chunk - just send it up. |
| 988 | * This will always be true when we're not chunking. |
| 989 | */ |
| 990 | if (hp.sbh_totlen > sbp->sb_chunk) { |
| 991 | sbsendit(rq, mp); |
| 992 | return; |
| 993 | } |
| 994 | |
| 995 | /* |
| 996 | * We now know that the msg will fit in the chunk. |
| 997 | * Link it onto the end of the chunk. |
| 998 | * Since linkb() walks the entire chain, we keep a pointer to |
| 999 | * the first mblk of the last msgb added and call linkb on that |
| 1000 | * that last message, rather than performing the |
| 1001 | * O(n) linkb() operation on the whole chain. |
| 1002 | * sb_head isn't needed in this SB_NO_HEADER mode. |
| 1003 | */ |
| 1004 | if (sbp->sb_mp) |
| 1005 | linkb(sbp->sb_tail, mp); |
| 1006 | else |
| 1007 | sbp->sb_mp = mp; |
| 1008 | |
| 1009 | sbp->sb_tail = mp; |
| 1010 | sbp->sb_mlen += hp.sbh_totlen; |
| 1011 | sbp->sb_mcount++; |
| 1012 | } else { |
| 1013 | /* Timestamp must be done immediately */ |
| 1014 | uniqtime(&t); |
| 1015 | TIMEVAL_TO_TIMEVAL32(&hp.sbh_timestamp, &t); |
| 1016 | |
| 1017 | pad = Align(hp.sbh_totlen); |
| 1018 | hp.sbh_totlen += sizeof (hp); |
| 1019 | hp.sbh_totlen += pad; |
| 1020 | |
| 1021 | /* |
| 1022 | * Would the inclusion of this message overflow the current |
| 1023 | * chunk? If so close the chunk off and start a new one. |
| 1024 | */ |
| 1025 | if ((hp.sbh_totlen + sbp->sb_mlen) > sbp->sb_chunk) |
| 1026 | sbclosechunk(sbp); |
| 1027 | |
| 1028 | if (sbp->sb_head == NULL) { |
| 1029 | /* Allocate leading header of new chunk */ |
| 1030 | sbp->sb_head = allocb(sizeof (hp), BPRI_MED); |
| 1031 | if (sbp->sb_head == NULL) { |
| 1032 | /* |
| 1033 | * Memory allocation failure. |
| 1034 | * This will need to be revisited |
| 1035 | * since using certain flag combinations |
| 1036 | * can result in messages being dropped |
| 1037 | * silently. |
| 1038 | */ |
| 1039 | freemsg(mp); |
| 1040 | sbp->sb_drops++; |
| 1041 | return; |
| 1042 | } |
| 1043 | sbp->sb_mp = sbp->sb_head; |
| 1044 | } |
| 1045 | |
| 1046 | /* |
| 1047 | * Copy header into message |
| 1048 | */ |
| 1049 | hp.sbh_drops = sbp->sb_drops; |
| 1050 | hp.sbh_origlen = origlen; |
| 1051 | (void) memcpy(sbp->sb_head->b_wptr, (char *)&hp, sizeof (hp)); |
| 1052 | sbp->sb_head->b_wptr += sizeof (hp); |
| 1053 | |
| 1054 | ASSERT(sbp->sb_head->b_wptr <= sbp->sb_head->b_datap->db_lim); |
| 1055 | |
| 1056 | /* |
| 1057 | * Join message to the chunk |
| 1058 | */ |
| 1059 | linkb(sbp->sb_head, mp); |
| 1060 | |
| 1061 | sbp->sb_mcount++; |
| 1062 | sbp->sb_mlen += hp.sbh_totlen; |
| 1063 | |
| 1064 | /* |
| 1065 | * If the first message alone is too big for the chunk close |
| 1066 | * the chunk now. |
| 1067 | * If the next message would immediately cause the chunk to |
| 1068 | * overflow we may as well close the chunk now. The next |
| 1069 | * message is certain to be at least SMALLEST_MESSAGE size. |
| 1070 | */ |
| 1071 | if (hp.sbh_totlen + SMALLEST_MESSAGE > sbp->sb_chunk) { |
| 1072 | sbclosechunk(sbp); |
| 1073 | return; |
| 1074 | } |
| 1075 | |
| 1076 | /* |
| 1077 | * Find space for the wrapper. The wrapper consists of: |
| 1078 | * |
| 1079 | * 1) Padding for this message (this is to ensure each header |
| 1080 | * begins on an 8 byte boundary in the userland buffer). |
| 1081 | * |
| 1082 | * 2) Space for the next message's header, in case the next |
| 1083 | * next message will fit in this chunk. |
| 1084 | * |
| 1085 | * It may be possible to append the wrapper to the last mblk |
| 1086 | * of the message, but only if we 'own' the data. If the dblk |
| 1087 | * has been shared through dupmsg() we mustn't alter it. |
| 1088 | */ |
| 1089 | |
| 1090 | wrapperlen = (sizeof (hp) + pad); |
| 1091 | |
| 1092 | /* Is there space for the wrapper beyond the message's data ? */ |
| 1093 | for (last = mp; last->b_cont; last = last->b_cont) |
| 1094 | ; |
| 1095 | |
| 1096 | if ((wrapperlen <= MBLKTAIL(last)) && |
| 1097 | (last->b_datap->db_ref == 1)) { |
| 1098 | if (pad > 0) { |
| 1099 | /* |
| 1100 | * Pad with zeroes to the next pointer boundary |
| 1101 | * (we don't want to disclose kernel data to |
| 1102 | * users), then advance wptr. |
| 1103 | */ |
| 1104 | (void) memset(last->b_wptr, 0, pad); |
| 1105 | last->b_wptr += pad; |
| 1106 | } |
| 1107 | /* Remember where to write the header information */ |
| 1108 | sbp->sb_head = last; |
| 1109 | } else { |
| 1110 | /* Have to allocate additional space for the wrapper */ |
| 1111 | wrapper = allocb(wrapperlen, BPRI_MED); |
| 1112 | if (wrapper == NULL) { |
| 1113 | sbclosechunk(sbp); |
| 1114 | return; |
| 1115 | } |
| 1116 | if (pad > 0) { |
| 1117 | /* |
| 1118 | * Pad with zeroes (we don't want to disclose |
| 1119 | * kernel data to users). |
| 1120 | */ |
| 1121 | (void) memset(wrapper->b_wptr, 0, pad); |
| 1122 | wrapper->b_wptr += pad; |
| 1123 | } |
| 1124 | /* Link the wrapper msg onto the end of the chunk */ |
| 1125 | linkb(mp, wrapper); |
| 1126 | /* Remember to write the next header in this wrapper */ |
| 1127 | sbp->sb_head = wrapper; |
| 1128 | } |
| 1129 | } |
| 1130 | } |
| 1131 | |
| 1132 | /* |
| 1133 | * Called from timeout(). |
| 1134 | * Signal a timeout by passing a zero-length M_CTL msg in the read-side |
| 1135 | * to synchronize with any active module threads (open, close, wput, rput). |
| 1136 | */ |
| 1137 | static void |
| 1138 | sbtick(void *arg) |
| 1139 | { |
| 1140 | struct sb *sbp = arg; |
| 1141 | queue_t *rq; |
| 1142 | |
| 1143 | ASSERT(sbp); |
| 1144 | |
| 1145 | rq = sbp->sb_rq; |
| 1146 | sbp->sb_timeoutid = 0; /* timeout has fired */ |
| 1147 | |
| 1148 | if (putctl(rq, M_CTL) == 0) /* failure */ |
| 1149 | sbp->sb_timeoutid = qtimeout(rq, sbtick, sbp, sbp->sb_ticks); |
| 1150 | } |
| 1151 | |
| 1152 | /* |
| 1153 | * Close off the currently accumulating chunk and pass |
| 1154 | * it upward. Takes care of resetting timers as well. |
| 1155 | * |
| 1156 | * This routine is called both directly and as a result |
| 1157 | * of the chunk timeout expiring. |
| 1158 | */ |
| 1159 | static void |
| 1160 | sbclosechunk(struct sb *sbp) |
| 1161 | { |
| 1162 | mblk_t *mp; |
| 1163 | queue_t *rq; |
| 1164 | |
| 1165 | ASSERT(sbp); |
| 1166 | |
| 1167 | if (sbp->sb_timeoutid) { |
| 1168 | (void) quntimeout(sbp->sb_rq, sbp->sb_timeoutid); |
| 1169 | sbp->sb_timeoutid = 0; |
| 1170 | } |
| 1171 | |
| 1172 | mp = sbp->sb_mp; |
| 1173 | rq = sbp->sb_rq; |
| 1174 | |
| 1175 | /* |
| 1176 | * If there's currently a chunk in progress, close it off |
| 1177 | * and try to send it up. |
| 1178 | */ |
| 1179 | if (mp) { |
| 1180 | sbsendit(rq, mp); |
| 1181 | } |
| 1182 | |
| 1183 | /* |
| 1184 | * Clear old chunk. Ready for new msgs. |
| 1185 | */ |
| 1186 | sbp->sb_tail = sbp->sb_mp = sbp->sb_head = NULL; |
| 1187 | sbp->sb_mlen = 0; |
| 1188 | sbp->sb_mcount = 0; |
| 1189 | if (sbp->sb_flags & SB_DEFER_CHUNK) |
| 1190 | sbp->sb_state &= ~SB_FRCVD; |
| 1191 | |
| 1192 | } |
| 1193 | |
| 1194 | static void |
| 1195 | sbsendit(queue_t *rq, mblk_t *mp) |
| 1196 | { |
| 1197 | struct sb *sbp = (struct sb *)rq->q_ptr; |
| 1198 | |
| 1199 | if (!canputnext(rq)) { |
| 1200 | if (sbp->sb_flags & SB_NO_DROPS) |
| 1201 | (void) putq(rq, mp); |
| 1202 | else { |
| 1203 | freemsg(mp); |
| 1204 | sbp->sb_drops += sbp->sb_mcount; |
| 1205 | } |
| 1206 | return; |
| 1207 | } |
| 1208 | /* |
| 1209 | * If there are messages on the q already, keep |
| 1210 | * queueing them since they need to be processed in order. |
| 1211 | */ |
| 1212 | if (qsize(rq) > 0) { |
| 1213 | /* should only get here if SB_NO_DROPS */ |
| 1214 | (void) putq(rq, mp); |
| 1215 | } |
| 1216 | else |
| 1217 | putnext(rq, mp); |
| 1218 | } |