Robert Mustacchi | 047043c | 2020-04-08 21:35:09 -0700 | [diff] [blame] | 1 | /* |
| 2 | * This file and its contents are supplied under the terms of the |
| 3 | * Common Development and Distribution License ("CDDL"), version 1.0. |
| 4 | * You may only use this file in accordance with the terms of version |
| 5 | * 1.0 of the CDDL. |
| 6 | * |
| 7 | * A full copy of the text of the CDDL should have accompanied this |
| 8 | * source. A copy of the CDDL is also available via the Internet at |
| 9 | * http://www.illumos.org/license/CDDL. |
| 10 | */ |
| 11 | |
| 12 | /* |
| 13 | * Copyright 2019, Joyent, Inc. |
Robert Mustacchi | 71815ce | 2022-02-28 09:46:53 +0000 | [diff] [blame] | 14 | * Copyright 2022 Oxide Computer Company |
Robert Mustacchi | 047043c | 2020-04-08 21:35:09 -0700 | [diff] [blame] | 15 | */ |
| 16 | |
| 17 | /* |
| 18 | * Nexus Driver for AMD Zen family systems. The purpose of this driver is to |
| 19 | * provide access to the following resources in a single, centralized fashion: |
| 20 | * |
| 21 | * - The per-chip Data Fabric |
| 22 | * - The North Bridge |
| 23 | * - The System Management Network (SMN) |
| 24 | * |
| 25 | * This is a nexus driver as once we have attached to all the requisite |
| 26 | * components, we will enumerate child devices which consume this functionality. |
| 27 | * |
| 28 | * ------------------------ |
| 29 | * Mapping Devices Together |
| 30 | * ------------------------ |
| 31 | * |
| 32 | * The operating system needs to expose things like temperature sensors and DRAM |
| 33 | * configuration registers in terms that are meaningful to the system such as |
| 34 | * logical CPUs, cores, etc. This driver attaches to the PCI IDs that represent |
| 35 | * the northbridge and data fabric; however, there are multiple PCI devices (one |
| 36 | * per die) that exist. This driver does manage to map all of these three things |
| 37 | * together; however, it requires some acrobatics. Unfortunately, there's no |
| 38 | * direct way to map a northbridge to its corresponding die. However, we can map |
| 39 | * a CPU die to a data fabric PCI device and a data fabric PCI device to a |
| 40 | * corresponding northbridge PCI device. |
| 41 | * |
| 42 | * In current Zen based products, there is a direct mapping between processor |
| 43 | * nodes and a data fabric PCI device. All of the devices are on PCI Bus 0 and |
| 44 | * start from Device 0x18. Device 0x18 maps to processor node 0, 0x19 to |
| 45 | * processor node 1, etc. This means that to map a logical CPU to a data fabric |
| 46 | * device, we take its processor node id, add it to 0x18 and find the PCI device |
| 47 | * that is on bus 0, device 0x18. As each data fabric device is attached based |
| 48 | * on its PCI ID, we add it to the global list, amd_nbdf_dfs that is in the |
| 49 | * amd_f17nbdf_t structure. |
| 50 | * |
| 51 | * The northbridge PCI device has a defined device and function, but the PCI bus |
| 52 | * that it's on can vary. Each die has its own series of PCI buses that are |
| 53 | * assigned to it and the northbridge PCI device is on the first of die-specific |
| 54 | * PCI bus for each die. This also means that the northbridge will not show up |
| 55 | * on PCI bus 0, which is the PCI bus that all of the data fabric devices are |
| 56 | * on. While conventionally the northbridge with the lowest PCI bus value |
| 57 | * would correspond to processor node zero, hardware does not guarantee that at |
| 58 | * all. Because we don't want to be at the mercy of firmware, we don't rely on |
| 59 | * this ordering, even though we have yet to find a system that deviates from |
| 60 | * this scheme. |
| 61 | * |
| 62 | * One of the registers in the data fabric device's function 0 |
| 63 | * (AMDZEN_DF_F0_CFG_ADDR_CTL) happens to have the first PCI bus that is |
| 64 | * associated with the processor node. This means that we can map a data fabric |
| 65 | * device to a northbridge by finding the northbridge whose PCI bus matches the |
| 66 | * value in the corresponding data fabric's AMDZEN_DF_F0_CFG_ADDR_CTL. |
| 67 | * |
| 68 | * We can map a northbridge to a data fabric device and a data fabric device to |
| 69 | * a die. Because these are generally 1:1 mappings, there is a transitive |
| 70 | * relationship and therefore we know which northbridge is associated with which |
| 71 | * processor die. This is summarized in the following image: |
| 72 | * |
| 73 | * +-------+ +-----------------------------------+ +--------------+ |
| 74 | * | Die 0 |--->| Data Fabric PCI BDF 0/18/0 |------->| Northbridge | |
| 75 | * +-------+ | AMDZEN_DF_F0_CFG_ADDR_CTL: bus 10 | | PCI 10/0/0 | |
| 76 | * ... +-----------------------------------+ +--------------+ |
| 77 | * +-------+ +------------------------------------+ +--------------+ |
| 78 | * | Die n |---->| Data Fabric PCI BDF 0/18+n/0 |------->| Northbridge | |
| 79 | * +-------+ | AMDZEN_DF_F0_CFG_ADDR_CTL: bus 133 | | PCI 133/0/0 | |
| 80 | * +------------------------------------+ +--------------+ |
| 81 | * |
| 82 | * Note, the PCI buses used by the northbridges here are arbitrary. They do not |
| 83 | * reflect the actual values by hardware; however, the bus/device/function (BDF) |
| 84 | * of the data fabric accurately models hardware. All of the BDF values are in |
| 85 | * hex. |
| 86 | * |
| 87 | * Starting with the Rome generation of processors (Family 17h Model 30-3Fh), |
| 88 | * AMD has multiple northbridges that exist on a given die. All of these |
| 89 | * northbridges share the same data fabric and system management network port. |
| 90 | * From our perspective this means that some of the northbridge devices will be |
| 91 | * redundant and that we will no longer have a 1:1 mapping between the |
| 92 | * northbridge and the data fabric devices. Every data fabric will have a |
| 93 | * northbridge, but not every northbridge will have a data fabric device mapped. |
| 94 | * Because we're always trying to map from a die to a northbridge and not the |
| 95 | * reverse, the fact that there are extra northbridge devices hanging around |
| 96 | * that we don't know about shouldn't be a problem. |
| 97 | * |
| 98 | * ------------------------------- |
| 99 | * Attach and Detach Complications |
| 100 | * ------------------------------- |
| 101 | * |
| 102 | * Because we need to map different PCI devices together, this means that we |
| 103 | * have multiple dev_info_t structures that we need to manage. Each of these is |
| 104 | * independently attached and detached. While this is easily managed for attach, |
| 105 | * it is not for detach. Each of these devices is a 'stub'. |
| 106 | * |
| 107 | * Once a device has been detached it will only come back if we have an active |
| 108 | * minor node that will be accessed. This means that if they are detached, |
| 109 | * nothing would ever cause them to be reattached. The system also doesn't |
| 110 | * provide us a way or any guarantees around making sure that we're attached to |
| 111 | * all such devices before we detach. As a result, unfortunately, it's easier to |
| 112 | * basically have detach always fail. |
| 113 | * |
| 114 | * --------------- |
| 115 | * Exposed Devices |
| 116 | * --------------- |
| 117 | * |
| 118 | * Rather than try and have all of the different functions that could be |
| 119 | * provided by one driver, we instead have created a nexus driver that will |
| 120 | * itself try and load children. Children are all pseudo-device drivers that |
| 121 | * provide different pieces of functionality that use this. |
Robert Mustacchi | 71815ce | 2022-02-28 09:46:53 +0000 | [diff] [blame] | 122 | * |
| 123 | * ------- |
| 124 | * Locking |
| 125 | * ------- |
| 126 | * |
| 127 | * The amdzen_data structure contains a single lock, azn_mutex. The various |
| 128 | * client functions are intended for direct children of our nexus, but have been |
| 129 | * designed in case someone else depends on this driver despite not being a |
| 130 | * child. Once a DF has been discovered, the set of entities inside of it |
| 131 | * (adf_nents, adf_ents[]) is considered static, constant data. This means that |
| 132 | * iterating over it in and of itself does not require locking; however, the |
| 133 | * discovery of the amd_df_t does. In addition, whenever performing register |
| 134 | * accesses to the DF or SMN, those require locking. This means that one must |
| 135 | * hold the lock in the following circumstances: |
| 136 | * |
| 137 | * o Looking up DF structures |
| 138 | * o Reading or writing to DF registers |
| 139 | * o Reading or writing to SMN registers |
| 140 | * |
| 141 | * In general, it is preferred that the lock be held across an entire client |
| 142 | * operation if possible. The only time this becomes an issue are when we have |
| 143 | * callbacks into our callers (ala amdzen_c_df_iter()) as they will likely |
| 144 | * recursively call into us. |
Robert Mustacchi | 047043c | 2020-04-08 21:35:09 -0700 | [diff] [blame] | 145 | */ |
| 146 | |
| 147 | #include <sys/modctl.h> |
| 148 | #include <sys/conf.h> |
| 149 | #include <sys/devops.h> |
| 150 | #include <sys/ddi.h> |
| 151 | #include <sys/sunddi.h> |
| 152 | #include <sys/pci.h> |
| 153 | #include <sys/sysmacros.h> |
| 154 | #include <sys/sunndi.h> |
| 155 | #include <sys/x86_archext.h> |
| 156 | #include <sys/cpuvar.h> |
| 157 | |
Robert Mustacchi | 71815ce | 2022-02-28 09:46:53 +0000 | [diff] [blame] | 158 | #include <sys/amdzen/df.h> |
| 159 | #include "amdzen_client.h" |
Robert Mustacchi | 047043c | 2020-04-08 21:35:09 -0700 | [diff] [blame] | 160 | #include "amdzen.h" |
| 161 | |
| 162 | amdzen_t *amdzen_data; |
| 163 | |
| 164 | /* |
| 165 | * Array of northbridge IDs that we care about. |
| 166 | */ |
| 167 | static const uint16_t amdzen_nb_ids[] = { |
| 168 | /* Family 17h Ryzen, Epyc Models 00h-0fh (Zen uarch) */ |
| 169 | 0x1450, |
Robert Mustacchi | becd642 | 2020-09-26 10:32:30 -0700 | [diff] [blame] | 170 | /* Family 17h Raven Ridge, Kestrel, Dali Models 10h-2fh (Zen uarch) */ |
Robert Mustacchi | 047043c | 2020-04-08 21:35:09 -0700 | [diff] [blame] | 171 | 0x15d0, |
Robert Mustacchi | e9abe9d | 2020-09-26 11:16:12 -0700 | [diff] [blame] | 172 | /* Family 17h/19h Rome, Milan, Matisse, Vermeer Zen 2/Zen 3 uarch */ |
Robert Mustacchi | becd642 | 2020-09-26 10:32:30 -0700 | [diff] [blame] | 173 | 0x1480, |
Robert Mustacchi | f8e9c7b | 2022-08-06 23:58:01 +0000 | [diff] [blame] | 174 | /* Family 17h/19h Renoir, Cezanne, Van Gogh Zen 2/3 uarch */ |
| 175 | 0x1630, |
| 176 | /* Family 19h Genoa */ |
| 177 | 0x14a4, |
| 178 | /* Family 17h Mendocino, Family 19h Rembrandt */ |
| 179 | 0x14b5, |
| 180 | /* Family 19h Raphael */ |
| 181 | 0x14d8 |
Robert Mustacchi | 047043c | 2020-04-08 21:35:09 -0700 | [diff] [blame] | 182 | }; |
| 183 | |
| 184 | typedef struct { |
| 185 | char *acd_name; |
| 186 | amdzen_child_t acd_addr; |
| 187 | } amdzen_child_data_t; |
| 188 | |
| 189 | static const amdzen_child_data_t amdzen_children[] = { |
| 190 | { "smntemp", AMDZEN_C_SMNTEMP }, |
Robert Mustacchi | 549e0fd | 2020-10-07 12:00:39 -0700 | [diff] [blame] | 191 | { "usmn", AMDZEN_C_USMN }, |
Robert Mustacchi | 71815ce | 2022-02-28 09:46:53 +0000 | [diff] [blame] | 192 | { "zen_udf", AMDZEN_C_ZEN_UDF }, |
| 193 | { "zen_umc", AMDZEN_C_ZEN_UMC } |
Robert Mustacchi | 047043c | 2020-04-08 21:35:09 -0700 | [diff] [blame] | 194 | }; |
| 195 | |
Keith M Wesolowski | 4adf43b | 2022-11-09 07:00:30 +0000 | [diff] [blame^] | 196 | static uint8_t |
| 197 | amdzen_stub_get8(amdzen_stub_t *stub, off_t reg) |
| 198 | { |
| 199 | return (pci_config_get8(stub->azns_cfgspace, reg)); |
| 200 | } |
| 201 | |
| 202 | static uint16_t |
| 203 | amdzen_stub_get16(amdzen_stub_t *stub, off_t reg) |
| 204 | { |
| 205 | return (pci_config_get16(stub->azns_cfgspace, reg)); |
| 206 | } |
| 207 | |
Robert Mustacchi | 047043c | 2020-04-08 21:35:09 -0700 | [diff] [blame] | 208 | static uint32_t |
| 209 | amdzen_stub_get32(amdzen_stub_t *stub, off_t reg) |
| 210 | { |
| 211 | return (pci_config_get32(stub->azns_cfgspace, reg)); |
| 212 | } |
| 213 | |
Robert Mustacchi | 549e0fd | 2020-10-07 12:00:39 -0700 | [diff] [blame] | 214 | static uint64_t |
| 215 | amdzen_stub_get64(amdzen_stub_t *stub, off_t reg) |
| 216 | { |
| 217 | return (pci_config_get64(stub->azns_cfgspace, reg)); |
| 218 | } |
| 219 | |
Robert Mustacchi | 047043c | 2020-04-08 21:35:09 -0700 | [diff] [blame] | 220 | static void |
Keith M Wesolowski | 4adf43b | 2022-11-09 07:00:30 +0000 | [diff] [blame^] | 221 | amdzen_stub_put8(amdzen_stub_t *stub, off_t reg, uint8_t val) |
| 222 | { |
| 223 | pci_config_put8(stub->azns_cfgspace, reg, val); |
| 224 | } |
| 225 | |
| 226 | static void |
| 227 | amdzen_stub_put16(amdzen_stub_t *stub, off_t reg, uint16_t val) |
| 228 | { |
| 229 | pci_config_put16(stub->azns_cfgspace, reg, val); |
| 230 | } |
| 231 | |
| 232 | static void |
Robert Mustacchi | 047043c | 2020-04-08 21:35:09 -0700 | [diff] [blame] | 233 | amdzen_stub_put32(amdzen_stub_t *stub, off_t reg, uint32_t val) |
| 234 | { |
| 235 | pci_config_put32(stub->azns_cfgspace, reg, val); |
| 236 | } |
| 237 | |
Robert Mustacchi | 71815ce | 2022-02-28 09:46:53 +0000 | [diff] [blame] | 238 | static uint64_t |
| 239 | amdzen_df_read_regdef(amdzen_t *azn, amdzen_df_t *df, const df_reg_def_t def, |
| 240 | uint8_t inst, boolean_t do_64) |
| 241 | { |
| 242 | df_reg_def_t ficaa; |
| 243 | df_reg_def_t ficad; |
| 244 | uint32_t val = 0; |
| 245 | df_rev_t df_rev = azn->azn_dfs[0].adf_rev; |
| 246 | |
| 247 | VERIFY(MUTEX_HELD(&azn->azn_mutex)); |
| 248 | ASSERT3U(def.drd_gens & df_rev, ==, df_rev); |
| 249 | val = DF_FICAA_V2_SET_TARG_INST(val, 1); |
| 250 | val = DF_FICAA_V2_SET_FUNC(val, def.drd_func); |
| 251 | val = DF_FICAA_V2_SET_INST(val, inst); |
| 252 | val = DF_FICAA_V2_SET_64B(val, do_64 ? 1 : 0); |
| 253 | |
| 254 | switch (df_rev) { |
| 255 | case DF_REV_2: |
| 256 | case DF_REV_3: |
| 257 | case DF_REV_3P5: |
| 258 | ficaa = DF_FICAA_V2; |
| 259 | ficad = DF_FICAD_LO_V2; |
| 260 | /* |
| 261 | * Both here and in the DFv4 case, the register ignores the |
| 262 | * lower 2 bits. That is we can only address and encode things |
| 263 | * in units of 4 bytes. |
| 264 | */ |
| 265 | val = DF_FICAA_V2_SET_REG(val, def.drd_reg >> 2); |
| 266 | break; |
| 267 | case DF_REV_4: |
| 268 | ficaa = DF_FICAA_V4; |
| 269 | ficad = DF_FICAD_LO_V4; |
| 270 | val = DF_FICAA_V4_SET_REG(val, def.drd_reg >> 2); |
| 271 | break; |
| 272 | default: |
| 273 | panic("encountered unexpected DF rev: %u", df_rev); |
| 274 | } |
| 275 | |
| 276 | amdzen_stub_put32(df->adf_funcs[ficaa.drd_func], ficaa.drd_reg, val); |
| 277 | if (do_64) { |
| 278 | return (amdzen_stub_get64(df->adf_funcs[ficad.drd_func], |
| 279 | ficad.drd_reg)); |
| 280 | } else { |
| 281 | return (amdzen_stub_get32(df->adf_funcs[ficad.drd_func], |
| 282 | ficad.drd_reg)); |
| 283 | } |
| 284 | } |
| 285 | |
Robert Mustacchi | 047043c | 2020-04-08 21:35:09 -0700 | [diff] [blame] | 286 | /* |
| 287 | * Perform a targeted 32-bit indirect read to a specific instance and function. |
| 288 | */ |
| 289 | static uint32_t |
Robert Mustacchi | 71815ce | 2022-02-28 09:46:53 +0000 | [diff] [blame] | 290 | amdzen_df_read32(amdzen_t *azn, amdzen_df_t *df, uint8_t inst, |
| 291 | const df_reg_def_t def) |
Robert Mustacchi | 047043c | 2020-04-08 21:35:09 -0700 | [diff] [blame] | 292 | { |
Robert Mustacchi | 71815ce | 2022-02-28 09:46:53 +0000 | [diff] [blame] | 293 | return (amdzen_df_read_regdef(azn, df, def, inst, B_FALSE)); |
Robert Mustacchi | 047043c | 2020-04-08 21:35:09 -0700 | [diff] [blame] | 294 | } |
| 295 | |
Robert Mustacchi | 549e0fd | 2020-10-07 12:00:39 -0700 | [diff] [blame] | 296 | /* |
Robert Mustacchi | 71815ce | 2022-02-28 09:46:53 +0000 | [diff] [blame] | 297 | * For a broadcast read, just go to the underlying PCI function and perform a |
| 298 | * read. At this point in time, we don't believe we need to use the FICAA/FICAD |
| 299 | * to access it (though it does have a broadcast mode). |
Robert Mustacchi | 549e0fd | 2020-10-07 12:00:39 -0700 | [diff] [blame] | 300 | */ |
Robert Mustacchi | 71815ce | 2022-02-28 09:46:53 +0000 | [diff] [blame] | 301 | static uint32_t |
| 302 | amdzen_df_read32_bcast(amdzen_t *azn, amdzen_df_t *df, const df_reg_def_t def) |
Robert Mustacchi | 549e0fd | 2020-10-07 12:00:39 -0700 | [diff] [blame] | 303 | { |
Robert Mustacchi | 549e0fd | 2020-10-07 12:00:39 -0700 | [diff] [blame] | 304 | VERIFY(MUTEX_HELD(&azn->azn_mutex)); |
Robert Mustacchi | 71815ce | 2022-02-28 09:46:53 +0000 | [diff] [blame] | 305 | return (amdzen_stub_get32(df->adf_funcs[def.drd_func], def.drd_reg)); |
Robert Mustacchi | 549e0fd | 2020-10-07 12:00:39 -0700 | [diff] [blame] | 306 | } |
| 307 | |
Robert Mustacchi | 047043c | 2020-04-08 21:35:09 -0700 | [diff] [blame] | 308 | static uint32_t |
Keith M Wesolowski | 4adf43b | 2022-11-09 07:00:30 +0000 | [diff] [blame^] | 309 | amdzen_smn_read(amdzen_t *azn, amdzen_df_t *df, const smn_reg_t reg) |
Robert Mustacchi | 047043c | 2020-04-08 21:35:09 -0700 | [diff] [blame] | 310 | { |
Keith M Wesolowski | 4adf43b | 2022-11-09 07:00:30 +0000 | [diff] [blame^] | 311 | const uint32_t base_addr = SMN_REG_ADDR_BASE(reg); |
| 312 | const uint32_t addr_off = SMN_REG_ADDR_OFF(reg); |
| 313 | |
| 314 | VERIFY(SMN_REG_IS_NATURALLY_ALIGNED(reg)); |
Robert Mustacchi | 047043c | 2020-04-08 21:35:09 -0700 | [diff] [blame] | 315 | VERIFY(MUTEX_HELD(&azn->azn_mutex)); |
Keith M Wesolowski | 4adf43b | 2022-11-09 07:00:30 +0000 | [diff] [blame^] | 316 | amdzen_stub_put32(df->adf_nb, AMDZEN_NB_SMN_ADDR, base_addr); |
| 317 | |
| 318 | switch (SMN_REG_SIZE(reg)) { |
| 319 | case 1: |
| 320 | return ((uint32_t)amdzen_stub_get8(df->adf_nb, |
| 321 | AMDZEN_NB_SMN_DATA + addr_off)); |
| 322 | case 2: |
| 323 | return ((uint32_t)amdzen_stub_get16(df->adf_nb, |
| 324 | AMDZEN_NB_SMN_DATA + addr_off)); |
| 325 | case 4: |
| 326 | return (amdzen_stub_get32(df->adf_nb, AMDZEN_NB_SMN_DATA)); |
| 327 | default: |
| 328 | panic("unreachable invalid SMN register size %u", |
| 329 | SMN_REG_SIZE(reg)); |
| 330 | } |
Robert Mustacchi | 047043c | 2020-04-08 21:35:09 -0700 | [diff] [blame] | 331 | } |
| 332 | |
Robert Mustacchi | f198607 | 2021-07-29 22:27:35 -0700 | [diff] [blame] | 333 | static void |
Keith M Wesolowski | 4adf43b | 2022-11-09 07:00:30 +0000 | [diff] [blame^] | 334 | amdzen_smn_write(amdzen_t *azn, amdzen_df_t *df, const smn_reg_t reg, |
Keith M Wesolowski | ba215ef | 2022-07-21 06:57:54 -0700 | [diff] [blame] | 335 | const uint32_t val) |
Robert Mustacchi | f198607 | 2021-07-29 22:27:35 -0700 | [diff] [blame] | 336 | { |
Keith M Wesolowski | 4adf43b | 2022-11-09 07:00:30 +0000 | [diff] [blame^] | 337 | const uint32_t base_addr = SMN_REG_ADDR_BASE(reg); |
| 338 | const uint32_t addr_off = SMN_REG_ADDR_OFF(reg); |
| 339 | |
| 340 | VERIFY(SMN_REG_IS_NATURALLY_ALIGNED(reg)); |
| 341 | VERIFY(SMN_REG_VALUE_FITS(reg, val)); |
Robert Mustacchi | f198607 | 2021-07-29 22:27:35 -0700 | [diff] [blame] | 342 | VERIFY(MUTEX_HELD(&azn->azn_mutex)); |
Keith M Wesolowski | 4adf43b | 2022-11-09 07:00:30 +0000 | [diff] [blame^] | 343 | amdzen_stub_put32(df->adf_nb, AMDZEN_NB_SMN_ADDR, base_addr); |
| 344 | |
| 345 | switch (SMN_REG_SIZE(reg)) { |
| 346 | case 1: |
| 347 | amdzen_stub_put8(df->adf_nb, AMDZEN_NB_SMN_DATA + addr_off, |
| 348 | (uint8_t)val); |
| 349 | break; |
| 350 | case 2: |
| 351 | amdzen_stub_put16(df->adf_nb, AMDZEN_NB_SMN_DATA + addr_off, |
| 352 | (uint16_t)val); |
| 353 | break; |
| 354 | case 4: |
| 355 | amdzen_stub_put32(df->adf_nb, AMDZEN_NB_SMN_DATA, val); |
| 356 | break; |
| 357 | default: |
| 358 | panic("unreachable invalid SMN register size %u", |
| 359 | SMN_REG_SIZE(reg)); |
| 360 | } |
Robert Mustacchi | f198607 | 2021-07-29 22:27:35 -0700 | [diff] [blame] | 361 | } |
| 362 | |
Robert Mustacchi | 047043c | 2020-04-08 21:35:09 -0700 | [diff] [blame] | 363 | static amdzen_df_t * |
| 364 | amdzen_df_find(amdzen_t *azn, uint_t dfno) |
| 365 | { |
| 366 | uint_t i; |
| 367 | |
| 368 | ASSERT(MUTEX_HELD(&azn->azn_mutex)); |
| 369 | if (dfno >= azn->azn_ndfs) { |
| 370 | return (NULL); |
| 371 | } |
| 372 | |
| 373 | for (i = 0; i < azn->azn_ndfs; i++) { |
| 374 | amdzen_df_t *df = &azn->azn_dfs[i]; |
| 375 | if ((df->adf_flags & AMDZEN_DF_F_VALID) == 0) { |
| 376 | continue; |
| 377 | } |
| 378 | |
| 379 | if (dfno == 0) { |
| 380 | return (df); |
| 381 | } |
| 382 | dfno--; |
| 383 | } |
| 384 | |
| 385 | return (NULL); |
| 386 | } |
| 387 | |
| 388 | /* |
| 389 | * Client functions that are used by nexus children. |
| 390 | */ |
| 391 | int |
Keith M Wesolowski | 4adf43b | 2022-11-09 07:00:30 +0000 | [diff] [blame^] | 392 | amdzen_c_smn_read(uint_t dfno, const smn_reg_t reg, uint32_t *valp) |
Robert Mustacchi | 047043c | 2020-04-08 21:35:09 -0700 | [diff] [blame] | 393 | { |
| 394 | amdzen_df_t *df; |
| 395 | amdzen_t *azn = amdzen_data; |
| 396 | |
Keith M Wesolowski | 4adf43b | 2022-11-09 07:00:30 +0000 | [diff] [blame^] | 397 | if (!SMN_REG_SIZE_IS_VALID(reg)) |
| 398 | return (EINVAL); |
| 399 | if (!SMN_REG_IS_NATURALLY_ALIGNED(reg)) |
| 400 | return (EINVAL); |
| 401 | |
Robert Mustacchi | 047043c | 2020-04-08 21:35:09 -0700 | [diff] [blame] | 402 | mutex_enter(&azn->azn_mutex); |
| 403 | df = amdzen_df_find(azn, dfno); |
| 404 | if (df == NULL) { |
| 405 | mutex_exit(&azn->azn_mutex); |
| 406 | return (ENOENT); |
| 407 | } |
| 408 | |
| 409 | if ((df->adf_flags & AMDZEN_DF_F_FOUND_NB) == 0) { |
| 410 | mutex_exit(&azn->azn_mutex); |
| 411 | return (ENXIO); |
| 412 | } |
| 413 | |
Keith M Wesolowski | 4adf43b | 2022-11-09 07:00:30 +0000 | [diff] [blame^] | 414 | *valp = amdzen_smn_read(azn, df, reg); |
Robert Mustacchi | 047043c | 2020-04-08 21:35:09 -0700 | [diff] [blame] | 415 | mutex_exit(&azn->azn_mutex); |
| 416 | return (0); |
| 417 | } |
| 418 | |
Robert Mustacchi | f198607 | 2021-07-29 22:27:35 -0700 | [diff] [blame] | 419 | int |
Keith M Wesolowski | 4adf43b | 2022-11-09 07:00:30 +0000 | [diff] [blame^] | 420 | amdzen_c_smn_write(uint_t dfno, const smn_reg_t reg, const uint32_t val) |
Robert Mustacchi | f198607 | 2021-07-29 22:27:35 -0700 | [diff] [blame] | 421 | { |
| 422 | amdzen_df_t *df; |
| 423 | amdzen_t *azn = amdzen_data; |
| 424 | |
Keith M Wesolowski | 4adf43b | 2022-11-09 07:00:30 +0000 | [diff] [blame^] | 425 | if (!SMN_REG_SIZE_IS_VALID(reg)) |
| 426 | return (EINVAL); |
| 427 | if (!SMN_REG_IS_NATURALLY_ALIGNED(reg)) |
| 428 | return (EINVAL); |
| 429 | if (!SMN_REG_VALUE_FITS(reg, val)) |
| 430 | return (EOVERFLOW); |
| 431 | |
Robert Mustacchi | f198607 | 2021-07-29 22:27:35 -0700 | [diff] [blame] | 432 | mutex_enter(&azn->azn_mutex); |
| 433 | df = amdzen_df_find(azn, dfno); |
| 434 | if (df == NULL) { |
| 435 | mutex_exit(&azn->azn_mutex); |
| 436 | return (ENOENT); |
| 437 | } |
| 438 | |
| 439 | if ((df->adf_flags & AMDZEN_DF_F_FOUND_NB) == 0) { |
| 440 | mutex_exit(&azn->azn_mutex); |
| 441 | return (ENXIO); |
| 442 | } |
| 443 | |
Keith M Wesolowski | 4adf43b | 2022-11-09 07:00:30 +0000 | [diff] [blame^] | 444 | amdzen_smn_write(azn, df, reg, val); |
Robert Mustacchi | f198607 | 2021-07-29 22:27:35 -0700 | [diff] [blame] | 445 | mutex_exit(&azn->azn_mutex); |
| 446 | return (0); |
| 447 | } |
| 448 | |
Robert Mustacchi | 047043c | 2020-04-08 21:35:09 -0700 | [diff] [blame] | 449 | uint_t |
| 450 | amdzen_c_df_count(void) |
| 451 | { |
| 452 | uint_t ret; |
| 453 | amdzen_t *azn = amdzen_data; |
| 454 | |
| 455 | mutex_enter(&azn->azn_mutex); |
| 456 | ret = azn->azn_ndfs; |
| 457 | mutex_exit(&azn->azn_mutex); |
| 458 | return (ret); |
| 459 | } |
| 460 | |
Robert Mustacchi | 71815ce | 2022-02-28 09:46:53 +0000 | [diff] [blame] | 461 | df_rev_t |
| 462 | amdzen_c_df_rev(void) |
| 463 | { |
| 464 | amdzen_df_t *df; |
| 465 | amdzen_t *azn = amdzen_data; |
| 466 | df_rev_t rev; |
| 467 | |
| 468 | /* |
| 469 | * Always use the first DF instance to determine what we're using. Our |
| 470 | * current assumption, which seems to generally be true, is that the |
| 471 | * given DF revisions are the same in a given system when the DFs are |
| 472 | * directly connected. |
| 473 | */ |
| 474 | mutex_enter(&azn->azn_mutex); |
| 475 | df = amdzen_df_find(azn, 0); |
| 476 | if (df == NULL) { |
| 477 | rev = DF_REV_UNKNOWN; |
| 478 | } else { |
| 479 | rev = df->adf_rev; |
| 480 | } |
| 481 | mutex_exit(&azn->azn_mutex); |
| 482 | |
| 483 | return (rev); |
| 484 | } |
| 485 | |
Robert Mustacchi | 549e0fd | 2020-10-07 12:00:39 -0700 | [diff] [blame] | 486 | int |
Robert Mustacchi | 71815ce | 2022-02-28 09:46:53 +0000 | [diff] [blame] | 487 | amdzen_c_df_read32(uint_t dfno, uint8_t inst, const df_reg_def_t def, |
| 488 | uint32_t *valp) |
Robert Mustacchi | 549e0fd | 2020-10-07 12:00:39 -0700 | [diff] [blame] | 489 | { |
| 490 | amdzen_df_t *df; |
| 491 | amdzen_t *azn = amdzen_data; |
| 492 | |
| 493 | mutex_enter(&azn->azn_mutex); |
| 494 | df = amdzen_df_find(azn, dfno); |
| 495 | if (df == NULL) { |
| 496 | mutex_exit(&azn->azn_mutex); |
| 497 | return (ENOENT); |
| 498 | } |
| 499 | |
Robert Mustacchi | 71815ce | 2022-02-28 09:46:53 +0000 | [diff] [blame] | 500 | *valp = amdzen_df_read_regdef(azn, df, def, inst, B_FALSE); |
Robert Mustacchi | 549e0fd | 2020-10-07 12:00:39 -0700 | [diff] [blame] | 501 | mutex_exit(&azn->azn_mutex); |
| 502 | |
| 503 | return (0); |
| 504 | } |
| 505 | |
| 506 | int |
Robert Mustacchi | 71815ce | 2022-02-28 09:46:53 +0000 | [diff] [blame] | 507 | amdzen_c_df_read64(uint_t dfno, uint8_t inst, const df_reg_def_t def, |
| 508 | uint64_t *valp) |
Robert Mustacchi | 549e0fd | 2020-10-07 12:00:39 -0700 | [diff] [blame] | 509 | { |
| 510 | amdzen_df_t *df; |
| 511 | amdzen_t *azn = amdzen_data; |
| 512 | |
| 513 | mutex_enter(&azn->azn_mutex); |
| 514 | df = amdzen_df_find(azn, dfno); |
| 515 | if (df == NULL) { |
| 516 | mutex_exit(&azn->azn_mutex); |
| 517 | return (ENOENT); |
| 518 | } |
| 519 | |
Robert Mustacchi | 71815ce | 2022-02-28 09:46:53 +0000 | [diff] [blame] | 520 | *valp = amdzen_df_read_regdef(azn, df, def, inst, B_TRUE); |
Robert Mustacchi | 549e0fd | 2020-10-07 12:00:39 -0700 | [diff] [blame] | 521 | mutex_exit(&azn->azn_mutex); |
| 522 | |
| 523 | return (0); |
| 524 | } |
Robert Mustacchi | 047043c | 2020-04-08 21:35:09 -0700 | [diff] [blame] | 525 | |
Robert Mustacchi | 71815ce | 2022-02-28 09:46:53 +0000 | [diff] [blame] | 526 | int |
| 527 | amdzen_c_df_iter(uint_t dfno, zen_df_type_t type, amdzen_c_iter_f func, |
| 528 | void *arg) |
| 529 | { |
| 530 | amdzen_df_t *df; |
| 531 | amdzen_t *azn = amdzen_data; |
| 532 | df_type_t df_type; |
| 533 | uint8_t df_subtype; |
| 534 | |
| 535 | /* |
| 536 | * Unlike other calls here, we hold our lock only to find the DF here. |
| 537 | * The main reason for this is the nature of the callback function. |
| 538 | * Folks are iterating over instances so they can call back into us. If |
| 539 | * you look at the locking statement, the thing that is most volatile |
| 540 | * right here and what we need to protect is the DF itself and |
| 541 | * subsequent register accesses to it. The actual data about which |
| 542 | * entities exist is static and so once we have found a DF we should |
| 543 | * hopefully be in good shape as they only come, but don't go. |
| 544 | */ |
| 545 | mutex_enter(&azn->azn_mutex); |
| 546 | df = amdzen_df_find(azn, dfno); |
| 547 | if (df == NULL) { |
| 548 | mutex_exit(&azn->azn_mutex); |
| 549 | return (ENOENT); |
| 550 | } |
| 551 | mutex_exit(&azn->azn_mutex); |
| 552 | |
| 553 | switch (type) { |
| 554 | case ZEN_DF_TYPE_CS_UMC: |
| 555 | df_type = DF_TYPE_CS; |
| 556 | /* |
| 557 | * In the original Zeppelin DFv2 die there was no subtype field |
| 558 | * used for the CS. The UMC is the only type and has a subtype |
| 559 | * of zero. |
| 560 | */ |
| 561 | if (df->adf_rev != DF_REV_2) { |
| 562 | df_subtype = DF_CS_SUBTYPE_UMC; |
| 563 | } else { |
| 564 | df_subtype = 0; |
| 565 | } |
| 566 | break; |
| 567 | case ZEN_DF_TYPE_CCM_CPU: |
Robert Mustacchi | 71815ce | 2022-02-28 09:46:53 +0000 | [diff] [blame] | 568 | /* |
Robert Mustacchi | f8e9c7b | 2022-08-06 23:58:01 +0000 | [diff] [blame] | 569 | * While the wording of the PPR is a little weird, the CCM still |
| 570 | * has subtype 0 in DFv4 systems; however, what's said to be for |
| 571 | * the CPU appears to apply to the ACM. |
Robert Mustacchi | 71815ce | 2022-02-28 09:46:53 +0000 | [diff] [blame] | 572 | */ |
Robert Mustacchi | f8e9c7b | 2022-08-06 23:58:01 +0000 | [diff] [blame] | 573 | df_type = DF_TYPE_CCM; |
| 574 | df_subtype = 0; |
Robert Mustacchi | 71815ce | 2022-02-28 09:46:53 +0000 | [diff] [blame] | 575 | break; |
| 576 | default: |
| 577 | return (EINVAL); |
| 578 | } |
| 579 | |
| 580 | for (uint_t i = 0; i < df->adf_nents; i++) { |
| 581 | amdzen_df_ent_t *ent = &df->adf_ents[i]; |
| 582 | |
| 583 | /* |
| 584 | * Some DF components are not considered enabled and therefore |
| 585 | * will end up having bogus values in their ID fields. If we do |
| 586 | * not have an enable flag set, we must skip this node. |
| 587 | */ |
| 588 | if ((ent->adfe_flags & AMDZEN_DFE_F_ENABLED) == 0) |
| 589 | continue; |
| 590 | |
| 591 | if (ent->adfe_type == df_type && |
| 592 | ent->adfe_subtype == df_subtype) { |
| 593 | int ret = func(dfno, ent->adfe_fabric_id, |
| 594 | ent->adfe_inst_id, arg); |
| 595 | if (ret != 0) { |
| 596 | return (ret); |
| 597 | } |
| 598 | } |
| 599 | } |
| 600 | |
| 601 | return (0); |
| 602 | } |
| 603 | |
| 604 | int |
| 605 | amdzen_c_df_fabric_decomp(df_fabric_decomp_t *decomp) |
| 606 | { |
| 607 | const amdzen_df_t *df; |
| 608 | amdzen_t *azn = amdzen_data; |
| 609 | |
| 610 | mutex_enter(&azn->azn_mutex); |
| 611 | df = amdzen_df_find(azn, 0); |
| 612 | if (df == NULL) { |
| 613 | mutex_exit(&azn->azn_mutex); |
| 614 | return (ENOENT); |
| 615 | } |
| 616 | |
| 617 | *decomp = df->adf_decomp; |
| 618 | mutex_exit(&azn->azn_mutex); |
| 619 | return (0); |
| 620 | } |
| 621 | |
Robert Mustacchi | 047043c | 2020-04-08 21:35:09 -0700 | [diff] [blame] | 622 | static boolean_t |
| 623 | amdzen_create_child(amdzen_t *azn, const amdzen_child_data_t *acd) |
| 624 | { |
| 625 | int ret; |
| 626 | dev_info_t *child; |
| 627 | |
| 628 | if (ndi_devi_alloc(azn->azn_dip, acd->acd_name, |
| 629 | (pnode_t)DEVI_SID_NODEID, &child) != NDI_SUCCESS) { |
Robert Mustacchi | 549e0fd | 2020-10-07 12:00:39 -0700 | [diff] [blame] | 630 | dev_err(azn->azn_dip, CE_WARN, "!failed to allocate child " |
Robert Mustacchi | 047043c | 2020-04-08 21:35:09 -0700 | [diff] [blame] | 631 | "dip for %s", acd->acd_name); |
| 632 | return (B_FALSE); |
| 633 | } |
| 634 | |
| 635 | ddi_set_parent_data(child, (void *)acd); |
| 636 | if ((ret = ndi_devi_online(child, 0)) != NDI_SUCCESS) { |
Robert Mustacchi | 549e0fd | 2020-10-07 12:00:39 -0700 | [diff] [blame] | 637 | dev_err(azn->azn_dip, CE_WARN, "!failed to online child " |
Robert Mustacchi | 047043c | 2020-04-08 21:35:09 -0700 | [diff] [blame] | 638 | "dip %s: %d", acd->acd_name, ret); |
| 639 | return (B_FALSE); |
| 640 | } |
| 641 | |
| 642 | return (B_TRUE); |
| 643 | } |
| 644 | |
| 645 | static boolean_t |
| 646 | amdzen_map_dfs(amdzen_t *azn) |
| 647 | { |
| 648 | amdzen_stub_t *stub; |
| 649 | |
| 650 | ASSERT(MUTEX_HELD(&azn->azn_mutex)); |
| 651 | |
| 652 | for (stub = list_head(&azn->azn_df_stubs); stub != NULL; |
| 653 | stub = list_next(&azn->azn_df_stubs, stub)) { |
| 654 | amdzen_df_t *df; |
| 655 | uint_t dfno; |
| 656 | |
| 657 | dfno = stub->azns_dev - AMDZEN_DF_FIRST_DEVICE; |
| 658 | if (dfno > AMDZEN_MAX_DFS) { |
| 659 | dev_err(stub->azns_dip, CE_WARN, "encountered df " |
| 660 | "device with illegal DF PCI b/d/f: 0x%x/%x/%x", |
| 661 | stub->azns_bus, stub->azns_dev, stub->azns_func); |
| 662 | goto err; |
| 663 | } |
| 664 | |
| 665 | df = &azn->azn_dfs[dfno]; |
| 666 | |
| 667 | if (stub->azns_func >= AMDZEN_MAX_DF_FUNCS) { |
| 668 | dev_err(stub->azns_dip, CE_WARN, "encountered df " |
| 669 | "device with illegal DF PCI b/d/f: 0x%x/%x/%x", |
| 670 | stub->azns_bus, stub->azns_dev, stub->azns_func); |
| 671 | goto err; |
| 672 | } |
| 673 | |
| 674 | if (df->adf_funcs[stub->azns_func] != NULL) { |
| 675 | dev_err(stub->azns_dip, CE_WARN, "encountered " |
| 676 | "duplicate df device with DF PCI b/d/f: 0x%x/%x/%x", |
| 677 | stub->azns_bus, stub->azns_dev, stub->azns_func); |
| 678 | goto err; |
| 679 | } |
| 680 | df->adf_funcs[stub->azns_func] = stub; |
| 681 | } |
| 682 | |
| 683 | return (B_TRUE); |
| 684 | |
| 685 | err: |
| 686 | azn->azn_flags |= AMDZEN_F_DEVICE_ERROR; |
| 687 | return (B_FALSE); |
| 688 | } |
| 689 | |
| 690 | static boolean_t |
| 691 | amdzen_check_dfs(amdzen_t *azn) |
| 692 | { |
| 693 | uint_t i; |
| 694 | boolean_t ret = B_TRUE; |
| 695 | |
| 696 | for (i = 0; i < AMDZEN_MAX_DFS; i++) { |
| 697 | amdzen_df_t *df = &azn->azn_dfs[i]; |
| 698 | uint_t count = 0; |
| 699 | |
| 700 | /* |
| 701 | * We require all platforms to have DFs functions 0-6. Not all |
| 702 | * platforms have DF function 7. |
| 703 | */ |
| 704 | for (uint_t func = 0; func < AMDZEN_MAX_DF_FUNCS - 1; func++) { |
| 705 | if (df->adf_funcs[func] != NULL) { |
| 706 | count++; |
| 707 | } |
| 708 | } |
| 709 | |
| 710 | if (count == 0) |
| 711 | continue; |
| 712 | |
| 713 | if (count != 7) { |
| 714 | ret = B_FALSE; |
| 715 | dev_err(azn->azn_dip, CE_WARN, "df %u devices " |
| 716 | "incomplete", i); |
| 717 | } else { |
| 718 | df->adf_flags |= AMDZEN_DF_F_VALID; |
| 719 | azn->azn_ndfs++; |
| 720 | } |
| 721 | } |
| 722 | |
| 723 | return (ret); |
| 724 | } |
| 725 | |
| 726 | static const uint8_t amdzen_df_rome_ids[0x2b] = { |
| 727 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 17, 18, 19, 20, 21, 22, 23, |
| 728 | 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, |
| 729 | 44, 45, 46, 47, 48 |
| 730 | }; |
| 731 | |
| 732 | /* |
Robert Mustacchi | e9abe9d | 2020-09-26 11:16:12 -0700 | [diff] [blame] | 733 | * Check the first df entry to see if it belongs to Rome or Milan. If so, then |
| 734 | * it uses the disjoint ID space. |
| 735 | */ |
| 736 | static boolean_t |
| 737 | amdzen_is_rome_style(uint_t id) |
| 738 | { |
| 739 | return (id == 0x1490 || id == 0x1650); |
| 740 | } |
| 741 | |
| 742 | /* |
Robert Mustacchi | 71815ce | 2022-02-28 09:46:53 +0000 | [diff] [blame] | 743 | * To be able to do most other things we want to do, we must first determine |
| 744 | * what revision of the DF (data fabric) that we're using. |
| 745 | * |
| 746 | * Snapshot the df version. This was added explicitly in DFv4.0, around the Zen |
| 747 | * 4 timeframe and allows us to tell apart different version of the DF register |
| 748 | * set, most usefully when various subtypes were added. |
| 749 | * |
| 750 | * Older versions can theoretically be told apart based on usage of reserved |
| 751 | * registers. We walk these in the following order, starting with the newest rev |
| 752 | * and walking backwards to tell things apart: |
| 753 | * |
| 754 | * o v3.5 -> Check function 1, register 0x150. This was reserved prior |
| 755 | * to this point. This is actually DF_FIDMASK0_V3P5. We are supposed |
| 756 | * to check bits [7:0]. |
| 757 | * |
| 758 | * o v3.0 -> Check function 1, register 0x208. The low byte (7:0) was |
| 759 | * changed to indicate a component mask. This is non-zero |
| 760 | * in the 3.0 generation. This is actually DF_FIDMASK_V2. |
| 761 | * |
| 762 | * o v2.0 -> This is just the not that case. Presumably v1 wasn't part |
| 763 | * of the Zen generation. |
| 764 | * |
| 765 | * Because we don't know what version we are yet, we do not use the normal |
| 766 | * versioned register accesses which would check what DF version we are and |
| 767 | * would want to use the normal indirect register accesses (which also require |
| 768 | * us to know the version). We instead do direct broadcast reads. |
| 769 | */ |
| 770 | static void |
| 771 | amdzen_determine_df_vers(amdzen_t *azn, amdzen_df_t *df) |
| 772 | { |
| 773 | uint32_t val; |
| 774 | df_reg_def_t rd = DF_FBICNT; |
| 775 | |
| 776 | val = amdzen_stub_get32(df->adf_funcs[rd.drd_func], rd.drd_reg); |
| 777 | df->adf_major = DF_FBICNT_V4_GET_MAJOR(val); |
| 778 | df->adf_minor = DF_FBICNT_V4_GET_MINOR(val); |
| 779 | if (df->adf_major == 0 && df->adf_minor == 0) { |
| 780 | rd = DF_FIDMASK0_V3P5; |
| 781 | val = amdzen_stub_get32(df->adf_funcs[rd.drd_func], rd.drd_reg); |
| 782 | if (bitx32(val, 7, 0) != 0) { |
| 783 | df->adf_major = 3; |
| 784 | df->adf_minor = 5; |
| 785 | df->adf_rev = DF_REV_3P5; |
| 786 | } else { |
| 787 | rd = DF_FIDMASK_V2; |
| 788 | val = amdzen_stub_get32(df->adf_funcs[rd.drd_func], |
| 789 | rd.drd_reg); |
| 790 | if (bitx32(val, 7, 0) != 0) { |
| 791 | df->adf_major = 3; |
| 792 | df->adf_minor = 0; |
| 793 | df->adf_rev = DF_REV_3; |
| 794 | } else { |
| 795 | df->adf_major = 2; |
| 796 | df->adf_minor = 0; |
| 797 | df->adf_rev = DF_REV_2; |
| 798 | } |
| 799 | } |
| 800 | } else if (df->adf_major == 4 && df->adf_minor == 0) { |
| 801 | df->adf_rev = DF_REV_4; |
| 802 | } else { |
| 803 | df->adf_rev = DF_REV_UNKNOWN; |
| 804 | } |
| 805 | } |
| 806 | |
| 807 | /* |
| 808 | * All of the different versions of the DF have different ways of getting at and |
| 809 | * answering the question of how do I break a fabric ID into a corresponding |
| 810 | * socket, die, and component. Importantly the goal here is to obtain, cache, |
| 811 | * and normalize: |
| 812 | * |
| 813 | * o The DF System Configuration |
| 814 | * o The various Mask registers |
| 815 | * o The Node ID |
| 816 | */ |
| 817 | static void |
| 818 | amdzen_determine_fabric_decomp(amdzen_t *azn, amdzen_df_t *df) |
| 819 | { |
| 820 | uint32_t mask; |
| 821 | df_fabric_decomp_t *decomp = &df->adf_decomp; |
| 822 | |
| 823 | switch (df->adf_rev) { |
| 824 | case DF_REV_2: |
| 825 | df->adf_syscfg = amdzen_df_read32_bcast(azn, df, DF_SYSCFG_V2); |
| 826 | switch (DF_SYSCFG_V2_GET_MY_TYPE(df->adf_syscfg)) { |
| 827 | case DF_DIE_TYPE_CPU: |
| 828 | mask = amdzen_df_read32_bcast(azn, df, |
| 829 | DF_DIEMASK_CPU_V2); |
| 830 | break; |
| 831 | case DF_DIE_TYPE_APU: |
| 832 | mask = amdzen_df_read32_bcast(azn, df, |
| 833 | DF_DIEMASK_APU_V2); |
| 834 | break; |
| 835 | default: |
| 836 | panic("DF thinks we're not on a CPU!"); |
| 837 | } |
| 838 | df->adf_mask0 = mask; |
| 839 | |
| 840 | /* |
| 841 | * DFv2 is a bit different in how the fabric mask register is |
| 842 | * phrased. Logically a fabric ID is broken into something that |
| 843 | * uniquely identifies a "node" (a particular die on a socket) |
| 844 | * and something that identifies a "component", e.g. a memory |
| 845 | * controller. |
| 846 | * |
| 847 | * Starting with DFv3, these registers logically called out how |
| 848 | * to separate the fabric ID first into a node and a component. |
| 849 | * Then the node was then broken down into a socket and die. In |
| 850 | * DFv2, there is no separate mask and shift of a node. Instead |
| 851 | * the socket and die are absolute offsets into the fabric ID |
| 852 | * rather than relative offsets into the node ID. As such, when |
| 853 | * we encounter DFv2, we fake up a node mask and shift and make |
| 854 | * it look like DFv3+. |
| 855 | */ |
| 856 | decomp->dfd_node_mask = DF_DIEMASK_V2_GET_SOCK_MASK(mask) | |
| 857 | DF_DIEMASK_V2_GET_DIE_MASK(mask); |
| 858 | decomp->dfd_node_shift = DF_DIEMASK_V2_GET_DIE_SHIFT(mask); |
| 859 | decomp->dfd_comp_mask = DF_DIEMASK_V2_GET_COMP_MASK(mask); |
| 860 | decomp->dfd_comp_shift = 0; |
| 861 | |
| 862 | decomp->dfd_sock_mask = DF_DIEMASK_V2_GET_SOCK_MASK(mask) >> |
| 863 | decomp->dfd_node_shift; |
| 864 | decomp->dfd_die_mask = DF_DIEMASK_V2_GET_DIE_MASK(mask) >> |
| 865 | decomp->dfd_node_shift; |
| 866 | decomp->dfd_sock_shift = DF_DIEMASK_V2_GET_SOCK_SHIFT(mask) - |
| 867 | decomp->dfd_node_shift; |
| 868 | decomp->dfd_die_shift = DF_DIEMASK_V2_GET_DIE_SHIFT(mask) - |
| 869 | decomp->dfd_node_shift; |
| 870 | ASSERT3U(decomp->dfd_die_shift, ==, 0); |
| 871 | break; |
| 872 | case DF_REV_3: |
| 873 | df->adf_syscfg = amdzen_df_read32_bcast(azn, df, DF_SYSCFG_V3); |
| 874 | df->adf_mask0 = amdzen_df_read32_bcast(azn, df, |
| 875 | DF_FIDMASK0_V3); |
| 876 | df->adf_mask1 = amdzen_df_read32_bcast(azn, df, |
| 877 | DF_FIDMASK1_V3); |
| 878 | |
| 879 | decomp->dfd_sock_mask = |
| 880 | DF_FIDMASK1_V3_GET_SOCK_MASK(df->adf_mask1); |
| 881 | decomp->dfd_sock_shift = |
| 882 | DF_FIDMASK1_V3_GET_SOCK_SHIFT(df->adf_mask1); |
| 883 | decomp->dfd_die_mask = |
| 884 | DF_FIDMASK1_V3_GET_DIE_MASK(df->adf_mask1); |
| 885 | decomp->dfd_die_shift = 0; |
| 886 | decomp->dfd_node_mask = |
| 887 | DF_FIDMASK0_V3_GET_NODE_MASK(df->adf_mask0); |
| 888 | decomp->dfd_node_shift = |
| 889 | DF_FIDMASK1_V3_GET_NODE_SHIFT(df->adf_mask1); |
| 890 | decomp->dfd_comp_mask = |
| 891 | DF_FIDMASK0_V3_GET_COMP_MASK(df->adf_mask0); |
| 892 | decomp->dfd_comp_shift = 0; |
| 893 | break; |
| 894 | case DF_REV_3P5: |
| 895 | df->adf_syscfg = amdzen_df_read32_bcast(azn, df, |
| 896 | DF_SYSCFG_V3P5); |
| 897 | df->adf_mask0 = amdzen_df_read32_bcast(azn, df, |
| 898 | DF_FIDMASK0_V3P5); |
| 899 | df->adf_mask1 = amdzen_df_read32_bcast(azn, df, |
| 900 | DF_FIDMASK1_V3P5); |
| 901 | df->adf_mask2 = amdzen_df_read32_bcast(azn, df, |
| 902 | DF_FIDMASK2_V3P5); |
| 903 | |
| 904 | decomp->dfd_sock_mask = |
| 905 | DF_FIDMASK2_V3P5_GET_SOCK_MASK(df->adf_mask2); |
| 906 | decomp->dfd_sock_shift = |
| 907 | DF_FIDMASK1_V3P5_GET_SOCK_SHIFT(df->adf_mask1); |
| 908 | decomp->dfd_die_mask = |
| 909 | DF_FIDMASK2_V3P5_GET_DIE_MASK(df->adf_mask2); |
| 910 | decomp->dfd_die_shift = 0; |
| 911 | decomp->dfd_node_mask = |
| 912 | DF_FIDMASK0_V3P5_GET_NODE_MASK(df->adf_mask0); |
| 913 | decomp->dfd_node_shift = |
| 914 | DF_FIDMASK1_V3P5_GET_NODE_SHIFT(df->adf_mask1); |
| 915 | decomp->dfd_comp_mask = |
| 916 | DF_FIDMASK0_V3P5_GET_COMP_MASK(df->adf_mask0); |
| 917 | decomp->dfd_comp_shift = 0; |
| 918 | break; |
| 919 | case DF_REV_4: |
| 920 | df->adf_syscfg = amdzen_df_read32_bcast(azn, df, DF_SYSCFG_V4); |
| 921 | df->adf_mask0 = amdzen_df_read32_bcast(azn, df, |
| 922 | DF_FIDMASK0_V4); |
| 923 | df->adf_mask1 = amdzen_df_read32_bcast(azn, df, |
| 924 | DF_FIDMASK1_V4); |
| 925 | df->adf_mask2 = amdzen_df_read32_bcast(azn, df, |
| 926 | DF_FIDMASK2_V4); |
| 927 | |
| 928 | /* |
| 929 | * The DFv4 registers are at a different location in the DF; |
| 930 | * however, the actual layout of fields is the same as DFv3.5. |
| 931 | * This is why you see V3P5 below. |
| 932 | */ |
| 933 | decomp->dfd_sock_mask = |
| 934 | DF_FIDMASK2_V3P5_GET_SOCK_MASK(df->adf_mask2); |
| 935 | decomp->dfd_sock_shift = |
| 936 | DF_FIDMASK1_V3P5_GET_SOCK_SHIFT(df->adf_mask1); |
| 937 | decomp->dfd_die_mask = |
| 938 | DF_FIDMASK2_V3P5_GET_DIE_MASK(df->adf_mask2); |
| 939 | decomp->dfd_die_shift = 0; |
| 940 | decomp->dfd_node_mask = |
| 941 | DF_FIDMASK0_V3P5_GET_NODE_MASK(df->adf_mask0); |
| 942 | decomp->dfd_node_shift = |
| 943 | DF_FIDMASK1_V3P5_GET_NODE_SHIFT(df->adf_mask1); |
| 944 | decomp->dfd_comp_mask = |
| 945 | DF_FIDMASK0_V3P5_GET_COMP_MASK(df->adf_mask0); |
| 946 | decomp->dfd_comp_shift = 0; |
| 947 | break; |
| 948 | default: |
| 949 | panic("encountered suspicious, previously rejected DF " |
| 950 | "rev: 0x%x", df->adf_rev); |
| 951 | } |
| 952 | } |
| 953 | |
| 954 | /* |
Robert Mustacchi | 047043c | 2020-04-08 21:35:09 -0700 | [diff] [blame] | 955 | * Initialize our knowledge about a given series of nodes on the data fabric. |
| 956 | */ |
| 957 | static void |
| 958 | amdzen_setup_df(amdzen_t *azn, amdzen_df_t *df) |
| 959 | { |
| 960 | uint_t i; |
| 961 | uint32_t val; |
| 962 | |
Robert Mustacchi | 71815ce | 2022-02-28 09:46:53 +0000 | [diff] [blame] | 963 | amdzen_determine_df_vers(azn, df); |
| 964 | |
| 965 | switch (df->adf_rev) { |
| 966 | case DF_REV_2: |
| 967 | case DF_REV_3: |
| 968 | case DF_REV_3P5: |
| 969 | val = amdzen_df_read32_bcast(azn, df, DF_CFG_ADDR_CTL_V2); |
| 970 | break; |
| 971 | case DF_REV_4: |
| 972 | val = amdzen_df_read32_bcast(azn, df, DF_CFG_ADDR_CTL_V4); |
| 973 | break; |
| 974 | default: |
| 975 | dev_err(azn->azn_dip, CE_WARN, "encountered unsupported DF " |
| 976 | "revision: 0x%x", df->adf_rev); |
| 977 | return; |
| 978 | } |
| 979 | df->adf_nb_busno = DF_CFG_ADDR_CTL_GET_BUS_NUM(val); |
| 980 | val = amdzen_df_read32_bcast(azn, df, DF_FBICNT); |
| 981 | df->adf_nents = DF_FBICNT_GET_COUNT(val); |
Robert Mustacchi | 047043c | 2020-04-08 21:35:09 -0700 | [diff] [blame] | 982 | if (df->adf_nents == 0) |
| 983 | return; |
| 984 | df->adf_ents = kmem_zalloc(sizeof (amdzen_df_ent_t) * df->adf_nents, |
| 985 | KM_SLEEP); |
| 986 | |
| 987 | for (i = 0; i < df->adf_nents; i++) { |
| 988 | amdzen_df_ent_t *dfe = &df->adf_ents[i]; |
| 989 | uint8_t inst = i; |
| 990 | |
| 991 | /* |
| 992 | * Unfortunately, Rome uses a discontinuous instance ID pattern |
| 993 | * while everything else we can find uses a contiguous instance |
| 994 | * ID pattern. This means that for Rome, we need to adjust the |
| 995 | * indexes that we iterate over, though the total number of |
Robert Mustacchi | 71815ce | 2022-02-28 09:46:53 +0000 | [diff] [blame] | 996 | * entries is right. This was carried over into Milan, but not |
| 997 | * Genoa. |
Robert Mustacchi | 047043c | 2020-04-08 21:35:09 -0700 | [diff] [blame] | 998 | */ |
Robert Mustacchi | e9abe9d | 2020-09-26 11:16:12 -0700 | [diff] [blame] | 999 | if (amdzen_is_rome_style(df->adf_funcs[0]->azns_did)) { |
Robert Mustacchi | 047043c | 2020-04-08 21:35:09 -0700 | [diff] [blame] | 1000 | if (inst > ARRAY_SIZE(amdzen_df_rome_ids)) { |
| 1001 | dev_err(azn->azn_dip, CE_WARN, "Rome family " |
| 1002 | "processor reported more ids than the PPR, " |
Robert Mustacchi | e9abe9d | 2020-09-26 11:16:12 -0700 | [diff] [blame] | 1003 | "resetting %u to instance zero", inst); |
Robert Mustacchi | 047043c | 2020-04-08 21:35:09 -0700 | [diff] [blame] | 1004 | inst = 0; |
| 1005 | } else { |
| 1006 | inst = amdzen_df_rome_ids[inst]; |
| 1007 | } |
| 1008 | } |
| 1009 | |
| 1010 | dfe->adfe_drvid = inst; |
Robert Mustacchi | 71815ce | 2022-02-28 09:46:53 +0000 | [diff] [blame] | 1011 | dfe->adfe_info0 = amdzen_df_read32(azn, df, inst, DF_FBIINFO0); |
| 1012 | dfe->adfe_info1 = amdzen_df_read32(azn, df, inst, DF_FBIINFO1); |
| 1013 | dfe->adfe_info2 = amdzen_df_read32(azn, df, inst, DF_FBIINFO2); |
| 1014 | dfe->adfe_info3 = amdzen_df_read32(azn, df, inst, DF_FBIINFO3); |
Robert Mustacchi | 047043c | 2020-04-08 21:35:09 -0700 | [diff] [blame] | 1015 | |
Robert Mustacchi | 71815ce | 2022-02-28 09:46:53 +0000 | [diff] [blame] | 1016 | dfe->adfe_type = DF_FBIINFO0_GET_TYPE(dfe->adfe_info0); |
| 1017 | dfe->adfe_subtype = DF_FBIINFO0_GET_SUBTYPE(dfe->adfe_info0); |
| 1018 | |
| 1019 | /* |
| 1020 | * The enabled flag was not present in Zen 1. Simulate it by |
| 1021 | * checking for a non-zero register instead. |
| 1022 | */ |
| 1023 | if (DF_FBIINFO0_V3_GET_ENABLED(dfe->adfe_info0) || |
| 1024 | (df->adf_rev == DF_REV_2 && dfe->adfe_info0 != 0)) { |
Robert Mustacchi | 047043c | 2020-04-08 21:35:09 -0700 | [diff] [blame] | 1025 | dfe->adfe_flags |= AMDZEN_DFE_F_ENABLED; |
| 1026 | } |
Robert Mustacchi | 71815ce | 2022-02-28 09:46:53 +0000 | [diff] [blame] | 1027 | if (DF_FBIINFO0_GET_HAS_MCA(dfe->adfe_info0)) { |
Robert Mustacchi | 047043c | 2020-04-08 21:35:09 -0700 | [diff] [blame] | 1028 | dfe->adfe_flags |= AMDZEN_DFE_F_MCA; |
| 1029 | } |
Robert Mustacchi | 71815ce | 2022-02-28 09:46:53 +0000 | [diff] [blame] | 1030 | dfe->adfe_inst_id = DF_FBIINFO3_GET_INSTID(dfe->adfe_info3); |
| 1031 | switch (df->adf_rev) { |
| 1032 | case DF_REV_2: |
| 1033 | dfe->adfe_fabric_id = |
| 1034 | DF_FBIINFO3_V2_GET_BLOCKID(dfe->adfe_info3); |
| 1035 | break; |
| 1036 | case DF_REV_3: |
| 1037 | dfe->adfe_fabric_id = |
| 1038 | DF_FBIINFO3_V3_GET_BLOCKID(dfe->adfe_info3); |
| 1039 | break; |
| 1040 | case DF_REV_3P5: |
| 1041 | dfe->adfe_fabric_id = |
| 1042 | DF_FBIINFO3_V3P5_GET_BLOCKID(dfe->adfe_info3); |
| 1043 | break; |
| 1044 | case DF_REV_4: |
| 1045 | dfe->adfe_fabric_id = |
| 1046 | DF_FBIINFO3_V4_GET_BLOCKID(dfe->adfe_info3); |
| 1047 | break; |
| 1048 | default: |
| 1049 | panic("encountered suspicious, previously rejected DF " |
| 1050 | "rev: 0x%x", df->adf_rev); |
| 1051 | } |
Robert Mustacchi | 047043c | 2020-04-08 21:35:09 -0700 | [diff] [blame] | 1052 | } |
| 1053 | |
Robert Mustacchi | 71815ce | 2022-02-28 09:46:53 +0000 | [diff] [blame] | 1054 | amdzen_determine_fabric_decomp(azn, df); |
Robert Mustacchi | 047043c | 2020-04-08 21:35:09 -0700 | [diff] [blame] | 1055 | } |
| 1056 | |
| 1057 | static void |
| 1058 | amdzen_find_nb(amdzen_t *azn, amdzen_df_t *df) |
| 1059 | { |
| 1060 | amdzen_stub_t *stub; |
| 1061 | |
| 1062 | for (stub = list_head(&azn->azn_nb_stubs); stub != NULL; |
| 1063 | stub = list_next(&azn->azn_nb_stubs, stub)) { |
| 1064 | if (stub->azns_bus == df->adf_nb_busno) { |
| 1065 | df->adf_flags |= AMDZEN_DF_F_FOUND_NB; |
| 1066 | df->adf_nb = stub; |
| 1067 | return; |
| 1068 | } |
| 1069 | } |
| 1070 | } |
| 1071 | |
| 1072 | static void |
| 1073 | amdzen_nexus_init(void *arg) |
| 1074 | { |
| 1075 | uint_t i; |
| 1076 | amdzen_t *azn = arg; |
| 1077 | |
| 1078 | /* |
| 1079 | * First go through all of the stubs and assign the DF entries. |
| 1080 | */ |
| 1081 | mutex_enter(&azn->azn_mutex); |
| 1082 | if (!amdzen_map_dfs(azn) || !amdzen_check_dfs(azn)) { |
| 1083 | azn->azn_flags |= AMDZEN_F_MAP_ERROR; |
| 1084 | goto done; |
| 1085 | } |
| 1086 | |
| 1087 | for (i = 0; i < AMDZEN_MAX_DFS; i++) { |
| 1088 | amdzen_df_t *df = &azn->azn_dfs[i]; |
| 1089 | |
| 1090 | if ((df->adf_flags & AMDZEN_DF_F_VALID) == 0) |
| 1091 | continue; |
| 1092 | amdzen_setup_df(azn, df); |
| 1093 | amdzen_find_nb(azn, df); |
| 1094 | } |
| 1095 | |
| 1096 | /* |
| 1097 | * Not all children may be installed. As such, we do not treat the |
| 1098 | * failure of a child as fatal to the driver. |
| 1099 | */ |
| 1100 | mutex_exit(&azn->azn_mutex); |
| 1101 | for (i = 0; i < ARRAY_SIZE(amdzen_children); i++) { |
| 1102 | (void) amdzen_create_child(azn, &amdzen_children[i]); |
| 1103 | } |
| 1104 | mutex_enter(&azn->azn_mutex); |
| 1105 | |
| 1106 | done: |
| 1107 | azn->azn_flags &= ~AMDZEN_F_ATTACH_DISPATCHED; |
| 1108 | azn->azn_flags |= AMDZEN_F_ATTACH_COMPLETE; |
| 1109 | azn->azn_taskqid = TASKQID_INVALID; |
| 1110 | cv_broadcast(&azn->azn_cv); |
| 1111 | mutex_exit(&azn->azn_mutex); |
| 1112 | } |
| 1113 | |
| 1114 | static int |
| 1115 | amdzen_stub_scan_cb(dev_info_t *dip, void *arg) |
| 1116 | { |
| 1117 | amdzen_t *azn = arg; |
| 1118 | uint16_t vid, did; |
| 1119 | int *regs; |
| 1120 | uint_t nregs, i; |
| 1121 | boolean_t match = B_FALSE; |
| 1122 | |
| 1123 | if (dip == ddi_root_node()) { |
| 1124 | return (DDI_WALK_CONTINUE); |
| 1125 | } |
| 1126 | |
| 1127 | /* |
| 1128 | * If a node in question is not a pci node, then we have no interest in |
| 1129 | * it as all the stubs that we care about are related to pci devices. |
| 1130 | */ |
| 1131 | if (strncmp("pci", ddi_get_name(dip), 3) != 0) { |
| 1132 | return (DDI_WALK_PRUNECHILD); |
| 1133 | } |
| 1134 | |
| 1135 | /* |
| 1136 | * If we can't get a device or vendor ID and prove that this is an AMD |
| 1137 | * part, then we don't care about it. |
| 1138 | */ |
| 1139 | vid = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, |
| 1140 | "vendor-id", PCI_EINVAL16); |
| 1141 | did = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, |
| 1142 | "device-id", PCI_EINVAL16); |
| 1143 | if (vid == PCI_EINVAL16 || did == PCI_EINVAL16) { |
| 1144 | return (DDI_WALK_CONTINUE); |
| 1145 | } |
| 1146 | |
Pu Wen | 9b0429a | 2020-11-26 19:50:37 +0800 | [diff] [blame] | 1147 | if (vid != AMDZEN_PCI_VID_AMD && vid != AMDZEN_PCI_VID_HYGON) { |
Robert Mustacchi | 047043c | 2020-04-08 21:35:09 -0700 | [diff] [blame] | 1148 | return (DDI_WALK_CONTINUE); |
| 1149 | } |
| 1150 | |
| 1151 | for (i = 0; i < ARRAY_SIZE(amdzen_nb_ids); i++) { |
| 1152 | if (amdzen_nb_ids[i] == did) { |
| 1153 | match = B_TRUE; |
| 1154 | } |
| 1155 | } |
| 1156 | |
| 1157 | if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, |
| 1158 | "reg", ®s, &nregs) != DDI_PROP_SUCCESS) { |
| 1159 | return (DDI_WALK_CONTINUE); |
| 1160 | } |
| 1161 | |
| 1162 | if (nregs == 0) { |
| 1163 | ddi_prop_free(regs); |
| 1164 | return (DDI_WALK_CONTINUE); |
| 1165 | } |
| 1166 | |
| 1167 | if (PCI_REG_BUS_G(regs[0]) == AMDZEN_DF_BUSNO && |
| 1168 | PCI_REG_DEV_G(regs[0]) >= AMDZEN_DF_FIRST_DEVICE) { |
| 1169 | match = B_TRUE; |
| 1170 | } |
| 1171 | |
| 1172 | ddi_prop_free(regs); |
| 1173 | if (match) { |
| 1174 | mutex_enter(&azn->azn_mutex); |
| 1175 | azn->azn_nscanned++; |
| 1176 | mutex_exit(&azn->azn_mutex); |
| 1177 | } |
| 1178 | |
| 1179 | return (DDI_WALK_CONTINUE); |
| 1180 | } |
| 1181 | |
| 1182 | static void |
| 1183 | amdzen_stub_scan(void *arg) |
| 1184 | { |
| 1185 | amdzen_t *azn = arg; |
| 1186 | |
| 1187 | mutex_enter(&azn->azn_mutex); |
| 1188 | azn->azn_nscanned = 0; |
| 1189 | mutex_exit(&azn->azn_mutex); |
| 1190 | |
| 1191 | ddi_walk_devs(ddi_root_node(), amdzen_stub_scan_cb, azn); |
| 1192 | |
| 1193 | mutex_enter(&azn->azn_mutex); |
| 1194 | azn->azn_flags &= ~AMDZEN_F_SCAN_DISPATCHED; |
| 1195 | azn->azn_flags |= AMDZEN_F_SCAN_COMPLETE; |
| 1196 | |
| 1197 | if (azn->azn_nscanned == 0) { |
| 1198 | azn->azn_flags |= AMDZEN_F_UNSUPPORTED; |
| 1199 | azn->azn_taskqid = TASKQID_INVALID; |
| 1200 | cv_broadcast(&azn->azn_cv); |
| 1201 | } else if (azn->azn_npresent == azn->azn_nscanned) { |
| 1202 | azn->azn_flags |= AMDZEN_F_ATTACH_DISPATCHED; |
| 1203 | azn->azn_taskqid = taskq_dispatch(system_taskq, |
| 1204 | amdzen_nexus_init, azn, TQ_SLEEP); |
| 1205 | } |
| 1206 | mutex_exit(&azn->azn_mutex); |
| 1207 | } |
| 1208 | |
| 1209 | /* |
| 1210 | * Unfortunately we can't really let the stubs detach as we may need them to be |
| 1211 | * available for client operations. We may be able to improve this if we know |
| 1212 | * that the actual nexus is going away. However, as long as it's active, we need |
| 1213 | * all the stubs. |
| 1214 | */ |
| 1215 | int |
| 1216 | amdzen_detach_stub(dev_info_t *dip, ddi_detach_cmd_t cmd) |
| 1217 | { |
| 1218 | if (cmd == DDI_SUSPEND) { |
| 1219 | return (DDI_SUCCESS); |
| 1220 | } |
| 1221 | |
| 1222 | return (DDI_FAILURE); |
| 1223 | } |
| 1224 | |
| 1225 | int |
| 1226 | amdzen_attach_stub(dev_info_t *dip, ddi_attach_cmd_t cmd) |
| 1227 | { |
| 1228 | int *regs, reg; |
| 1229 | uint_t nregs, i; |
| 1230 | uint16_t vid, did; |
| 1231 | amdzen_stub_t *stub; |
| 1232 | amdzen_t *azn = amdzen_data; |
| 1233 | boolean_t valid = B_FALSE; |
| 1234 | boolean_t nb = B_FALSE; |
| 1235 | |
| 1236 | if (cmd == DDI_RESUME) { |
| 1237 | return (DDI_SUCCESS); |
| 1238 | } else if (cmd != DDI_ATTACH) { |
| 1239 | return (DDI_FAILURE); |
| 1240 | } |
| 1241 | |
| 1242 | /* |
| 1243 | * Make sure that the stub that we've been asked to attach is a pci type |
| 1244 | * device. If not, then there is no reason for us to proceed. |
| 1245 | */ |
| 1246 | if (strncmp("pci", ddi_get_name(dip), 3) != 0) { |
| 1247 | dev_err(dip, CE_WARN, "asked to attach a bad AMD Zen nexus " |
| 1248 | "stub: %s", ddi_get_name(dip)); |
| 1249 | return (DDI_FAILURE); |
| 1250 | } |
| 1251 | vid = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, |
| 1252 | "vendor-id", PCI_EINVAL16); |
| 1253 | did = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, |
| 1254 | "device-id", PCI_EINVAL16); |
| 1255 | if (vid == PCI_EINVAL16 || did == PCI_EINVAL16) { |
| 1256 | dev_err(dip, CE_WARN, "failed to get PCI ID properties"); |
| 1257 | return (DDI_FAILURE); |
| 1258 | } |
| 1259 | |
Pu Wen | 9b0429a | 2020-11-26 19:50:37 +0800 | [diff] [blame] | 1260 | if (vid != AMDZEN_PCI_VID_AMD && vid != AMDZEN_PCI_VID_HYGON) { |
| 1261 | dev_err(dip, CE_WARN, "expected vendor ID (0x%x), found 0x%x", |
| 1262 | cpuid_getvendor(CPU) == X86_VENDOR_HYGON ? |
| 1263 | AMDZEN_PCI_VID_HYGON : AMDZEN_PCI_VID_AMD, vid); |
Robert Mustacchi | 047043c | 2020-04-08 21:35:09 -0700 | [diff] [blame] | 1264 | return (DDI_FAILURE); |
| 1265 | } |
| 1266 | |
| 1267 | if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, |
| 1268 | "reg", ®s, &nregs) != DDI_PROP_SUCCESS) { |
| 1269 | dev_err(dip, CE_WARN, "failed to get 'reg' property"); |
| 1270 | return (DDI_FAILURE); |
| 1271 | } |
| 1272 | |
| 1273 | if (nregs == 0) { |
| 1274 | ddi_prop_free(regs); |
| 1275 | dev_err(dip, CE_WARN, "missing 'reg' property values"); |
| 1276 | return (DDI_FAILURE); |
| 1277 | } |
| 1278 | reg = *regs; |
| 1279 | ddi_prop_free(regs); |
| 1280 | |
| 1281 | for (i = 0; i < ARRAY_SIZE(amdzen_nb_ids); i++) { |
| 1282 | if (amdzen_nb_ids[i] == did) { |
| 1283 | valid = B_TRUE; |
| 1284 | nb = B_TRUE; |
| 1285 | } |
| 1286 | } |
| 1287 | |
| 1288 | if (!valid && PCI_REG_BUS_G(reg) == AMDZEN_DF_BUSNO && |
| 1289 | PCI_REG_DEV_G(reg) >= AMDZEN_DF_FIRST_DEVICE) { |
| 1290 | valid = B_TRUE; |
| 1291 | nb = B_FALSE; |
| 1292 | } |
| 1293 | |
| 1294 | if (!valid) { |
| 1295 | dev_err(dip, CE_WARN, "device %s didn't match the nexus list", |
| 1296 | ddi_get_name(dip)); |
| 1297 | return (DDI_FAILURE); |
| 1298 | } |
| 1299 | |
| 1300 | stub = kmem_alloc(sizeof (amdzen_stub_t), KM_SLEEP); |
| 1301 | if (pci_config_setup(dip, &stub->azns_cfgspace) != DDI_SUCCESS) { |
| 1302 | dev_err(dip, CE_WARN, "failed to set up config space"); |
| 1303 | kmem_free(stub, sizeof (amdzen_stub_t)); |
| 1304 | return (DDI_FAILURE); |
| 1305 | } |
| 1306 | |
| 1307 | stub->azns_dip = dip; |
| 1308 | stub->azns_vid = vid; |
| 1309 | stub->azns_did = did; |
| 1310 | stub->azns_bus = PCI_REG_BUS_G(reg); |
| 1311 | stub->azns_dev = PCI_REG_DEV_G(reg); |
| 1312 | stub->azns_func = PCI_REG_FUNC_G(reg); |
| 1313 | ddi_set_driver_private(dip, stub); |
| 1314 | |
| 1315 | mutex_enter(&azn->azn_mutex); |
| 1316 | azn->azn_npresent++; |
| 1317 | if (nb) { |
| 1318 | list_insert_tail(&azn->azn_nb_stubs, stub); |
| 1319 | } else { |
| 1320 | list_insert_tail(&azn->azn_df_stubs, stub); |
| 1321 | } |
| 1322 | |
| 1323 | if ((azn->azn_flags & AMDZEN_F_TASKQ_MASK) == AMDZEN_F_SCAN_COMPLETE && |
| 1324 | azn->azn_nscanned == azn->azn_npresent) { |
| 1325 | azn->azn_flags |= AMDZEN_F_ATTACH_DISPATCHED; |
| 1326 | azn->azn_taskqid = taskq_dispatch(system_taskq, |
| 1327 | amdzen_nexus_init, azn, TQ_SLEEP); |
| 1328 | } |
| 1329 | mutex_exit(&azn->azn_mutex); |
| 1330 | |
| 1331 | return (DDI_SUCCESS); |
| 1332 | } |
| 1333 | |
| 1334 | static int |
| 1335 | amdzen_bus_ctl(dev_info_t *dip, dev_info_t *rdip, ddi_ctl_enum_t ctlop, |
| 1336 | void *arg, void *result) |
| 1337 | { |
| 1338 | char buf[32]; |
| 1339 | dev_info_t *child; |
| 1340 | const amdzen_child_data_t *acd; |
| 1341 | |
| 1342 | switch (ctlop) { |
| 1343 | case DDI_CTLOPS_REPORTDEV: |
| 1344 | if (rdip == NULL) { |
| 1345 | return (DDI_FAILURE); |
| 1346 | } |
| 1347 | cmn_err(CE_CONT, "amdzen nexus: %s@%s, %s%d\n", |
| 1348 | ddi_node_name(rdip), ddi_get_name_addr(rdip), |
| 1349 | ddi_driver_name(rdip), ddi_get_instance(rdip)); |
| 1350 | break; |
| 1351 | case DDI_CTLOPS_INITCHILD: |
| 1352 | child = arg; |
| 1353 | if (child == NULL) { |
| 1354 | dev_err(dip, CE_WARN, "!no child passed for " |
| 1355 | "DDI_CTLOPS_INITCHILD"); |
| 1356 | } |
| 1357 | |
| 1358 | acd = ddi_get_parent_data(child); |
| 1359 | if (acd == NULL) { |
| 1360 | dev_err(dip, CE_WARN, "!missing child parent data"); |
| 1361 | return (DDI_FAILURE); |
| 1362 | } |
| 1363 | |
| 1364 | if (snprintf(buf, sizeof (buf), "%d", acd->acd_addr) >= |
| 1365 | sizeof (buf)) { |
| 1366 | dev_err(dip, CE_WARN, "!failed to construct device " |
| 1367 | "addr due to overflow"); |
| 1368 | return (DDI_FAILURE); |
| 1369 | } |
| 1370 | |
| 1371 | ddi_set_name_addr(child, buf); |
| 1372 | break; |
| 1373 | case DDI_CTLOPS_UNINITCHILD: |
| 1374 | child = arg; |
| 1375 | if (child == NULL) { |
| 1376 | dev_err(dip, CE_WARN, "!no child passed for " |
| 1377 | "DDI_CTLOPS_UNINITCHILD"); |
| 1378 | } |
| 1379 | |
| 1380 | ddi_set_name_addr(child, NULL); |
| 1381 | break; |
| 1382 | default: |
| 1383 | return (ddi_ctlops(dip, rdip, ctlop, arg, result)); |
| 1384 | } |
| 1385 | return (DDI_SUCCESS); |
| 1386 | } |
| 1387 | |
| 1388 | static int |
| 1389 | amdzen_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) |
| 1390 | { |
| 1391 | amdzen_t *azn = amdzen_data; |
| 1392 | |
| 1393 | if (cmd == DDI_RESUME) { |
| 1394 | return (DDI_SUCCESS); |
| 1395 | } else if (cmd != DDI_ATTACH) { |
| 1396 | return (DDI_FAILURE); |
| 1397 | } |
| 1398 | |
| 1399 | mutex_enter(&azn->azn_mutex); |
| 1400 | if (azn->azn_dip != NULL) { |
| 1401 | dev_err(dip, CE_WARN, "driver is already attached!"); |
| 1402 | mutex_exit(&azn->azn_mutex); |
| 1403 | return (DDI_FAILURE); |
| 1404 | } |
| 1405 | |
| 1406 | azn->azn_dip = dip; |
| 1407 | azn->azn_taskqid = taskq_dispatch(system_taskq, amdzen_stub_scan, |
| 1408 | azn, TQ_SLEEP); |
| 1409 | azn->azn_flags |= AMDZEN_F_SCAN_DISPATCHED; |
| 1410 | mutex_exit(&azn->azn_mutex); |
| 1411 | |
| 1412 | return (DDI_SUCCESS); |
| 1413 | } |
| 1414 | |
| 1415 | static int |
| 1416 | amdzen_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) |
| 1417 | { |
| 1418 | amdzen_t *azn = amdzen_data; |
| 1419 | |
| 1420 | if (cmd == DDI_SUSPEND) { |
| 1421 | return (DDI_SUCCESS); |
| 1422 | } else if (cmd != DDI_DETACH) { |
| 1423 | return (DDI_FAILURE); |
| 1424 | } |
| 1425 | |
| 1426 | mutex_enter(&azn->azn_mutex); |
| 1427 | while (azn->azn_taskqid != TASKQID_INVALID) { |
| 1428 | cv_wait(&azn->azn_cv, &azn->azn_mutex); |
| 1429 | } |
| 1430 | |
| 1431 | /* |
| 1432 | * If we've attached any stub drivers, e.g. this platform is important |
| 1433 | * for us, then we fail detach. |
| 1434 | */ |
| 1435 | if (!list_is_empty(&azn->azn_df_stubs) || |
| 1436 | !list_is_empty(&azn->azn_nb_stubs)) { |
| 1437 | mutex_exit(&azn->azn_mutex); |
| 1438 | return (DDI_FAILURE); |
| 1439 | } |
| 1440 | |
| 1441 | azn->azn_dip = NULL; |
| 1442 | mutex_exit(&azn->azn_mutex); |
| 1443 | |
| 1444 | return (DDI_SUCCESS); |
| 1445 | } |
| 1446 | |
| 1447 | static void |
| 1448 | amdzen_free(void) |
| 1449 | { |
| 1450 | if (amdzen_data == NULL) { |
| 1451 | return; |
| 1452 | } |
| 1453 | |
| 1454 | VERIFY(list_is_empty(&amdzen_data->azn_df_stubs)); |
| 1455 | list_destroy(&amdzen_data->azn_df_stubs); |
| 1456 | VERIFY(list_is_empty(&amdzen_data->azn_nb_stubs)); |
| 1457 | list_destroy(&amdzen_data->azn_nb_stubs); |
| 1458 | cv_destroy(&amdzen_data->azn_cv); |
| 1459 | mutex_destroy(&amdzen_data->azn_mutex); |
| 1460 | kmem_free(amdzen_data, sizeof (amdzen_t)); |
| 1461 | amdzen_data = NULL; |
| 1462 | } |
| 1463 | |
| 1464 | static void |
| 1465 | amdzen_alloc(void) |
| 1466 | { |
| 1467 | amdzen_data = kmem_zalloc(sizeof (amdzen_t), KM_SLEEP); |
| 1468 | mutex_init(&amdzen_data->azn_mutex, NULL, MUTEX_DRIVER, NULL); |
| 1469 | list_create(&amdzen_data->azn_df_stubs, sizeof (amdzen_stub_t), |
| 1470 | offsetof(amdzen_stub_t, azns_link)); |
| 1471 | list_create(&amdzen_data->azn_nb_stubs, sizeof (amdzen_stub_t), |
| 1472 | offsetof(amdzen_stub_t, azns_link)); |
| 1473 | cv_init(&amdzen_data->azn_cv, NULL, CV_DRIVER, NULL); |
| 1474 | } |
| 1475 | |
| 1476 | struct bus_ops amdzen_bus_ops = { |
| 1477 | .busops_rev = BUSO_REV, |
| 1478 | .bus_map = nullbusmap, |
| 1479 | .bus_dma_map = ddi_no_dma_map, |
| 1480 | .bus_dma_allochdl = ddi_no_dma_allochdl, |
| 1481 | .bus_dma_freehdl = ddi_no_dma_freehdl, |
| 1482 | .bus_dma_bindhdl = ddi_no_dma_bindhdl, |
| 1483 | .bus_dma_unbindhdl = ddi_no_dma_unbindhdl, |
| 1484 | .bus_dma_flush = ddi_no_dma_flush, |
| 1485 | .bus_dma_win = ddi_no_dma_win, |
| 1486 | .bus_dma_ctl = ddi_no_dma_mctl, |
| 1487 | .bus_prop_op = ddi_bus_prop_op, |
| 1488 | .bus_ctl = amdzen_bus_ctl |
| 1489 | }; |
| 1490 | |
| 1491 | static struct dev_ops amdzen_dev_ops = { |
| 1492 | .devo_rev = DEVO_REV, |
| 1493 | .devo_refcnt = 0, |
| 1494 | .devo_getinfo = nodev, |
| 1495 | .devo_identify = nulldev, |
| 1496 | .devo_probe = nulldev, |
| 1497 | .devo_attach = amdzen_attach, |
| 1498 | .devo_detach = amdzen_detach, |
| 1499 | .devo_reset = nodev, |
| 1500 | .devo_quiesce = ddi_quiesce_not_needed, |
| 1501 | .devo_bus_ops = &amdzen_bus_ops |
| 1502 | }; |
| 1503 | |
| 1504 | static struct modldrv amdzen_modldrv = { |
| 1505 | .drv_modops = &mod_driverops, |
| 1506 | .drv_linkinfo = "AMD Zen Nexus Driver", |
| 1507 | .drv_dev_ops = &amdzen_dev_ops |
| 1508 | }; |
| 1509 | |
| 1510 | static struct modlinkage amdzen_modlinkage = { |
| 1511 | .ml_rev = MODREV_1, |
| 1512 | .ml_linkage = { &amdzen_modldrv, NULL } |
| 1513 | }; |
| 1514 | |
| 1515 | int |
| 1516 | _init(void) |
| 1517 | { |
| 1518 | int ret; |
| 1519 | |
Pu Wen | 9b0429a | 2020-11-26 19:50:37 +0800 | [diff] [blame] | 1520 | if (cpuid_getvendor(CPU) != X86_VENDOR_AMD && |
| 1521 | cpuid_getvendor(CPU) != X86_VENDOR_HYGON) { |
Robert Mustacchi | 047043c | 2020-04-08 21:35:09 -0700 | [diff] [blame] | 1522 | return (ENOTSUP); |
| 1523 | } |
| 1524 | |
| 1525 | if ((ret = mod_install(&amdzen_modlinkage)) == 0) { |
| 1526 | amdzen_alloc(); |
| 1527 | } |
| 1528 | |
| 1529 | return (ret); |
| 1530 | } |
| 1531 | |
| 1532 | int |
| 1533 | _info(struct modinfo *modinfop) |
| 1534 | { |
| 1535 | return (mod_info(&amdzen_modlinkage, modinfop)); |
| 1536 | } |
| 1537 | |
| 1538 | int |
| 1539 | _fini(void) |
| 1540 | { |
| 1541 | int ret; |
| 1542 | |
| 1543 | if ((ret = mod_remove(&amdzen_modlinkage)) == 0) { |
| 1544 | amdzen_free(); |
| 1545 | } |
| 1546 | |
| 1547 | return (ret); |
| 1548 | } |