| /* |
| * CDDL HEADER START |
| * |
| * The contents of this file are subject to the terms of the |
| * Common Development and Distribution License (the "License"). |
| * You may not use this file except in compliance with the License. |
| * |
| * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE |
| * or http://www.opensolaris.org/os/licensing. |
| * See the License for the specific language governing permissions |
| * and limitations under the License. |
| * |
| * When distributing Covered Code, include this CDDL HEADER in each |
| * file and include the License file at usr/src/OPENSOLARIS.LICENSE. |
| * If applicable, add the following below this CDDL HEADER, with the |
| * fields enclosed by brackets "[]" replaced with your own identifying |
| * information: Portions Copyright [yyyy] [name of copyright owner] |
| * |
| * CDDL HEADER END |
| */ |
| /* |
| * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved. |
| * Copyright (c) 1990 Mentat Inc. |
| */ |
| |
| /* |
| * This file contains the interface control functions for IPv6. |
| */ |
| |
| #include <sys/types.h> |
| #include <sys/sysmacros.h> |
| #include <sys/stream.h> |
| #include <sys/dlpi.h> |
| #include <sys/stropts.h> |
| #include <sys/ddi.h> |
| #include <sys/cmn_err.h> |
| #include <sys/kstat.h> |
| #include <sys/debug.h> |
| #include <sys/zone.h> |
| #include <sys/policy.h> |
| |
| #include <sys/systm.h> |
| #include <sys/param.h> |
| #include <sys/socket.h> |
| #include <sys/isa_defs.h> |
| #include <net/if.h> |
| #include <net/if_dl.h> |
| #include <net/route.h> |
| #include <netinet/in.h> |
| #include <netinet/igmp_var.h> |
| #include <netinet/ip6.h> |
| #include <netinet/icmp6.h> |
| |
| #include <inet/common.h> |
| #include <inet/nd.h> |
| #include <inet/tunables.h> |
| #include <inet/mib2.h> |
| #include <inet/ip.h> |
| #include <inet/ip6.h> |
| #include <inet/ip_multi.h> |
| #include <inet/ip_ire.h> |
| #include <inet/ip_rts.h> |
| #include <inet/ip_ndp.h> |
| #include <inet/ip_if.h> |
| #include <inet/ip6_asp.h> |
| #include <inet/ipclassifier.h> |
| #include <inet/sctp_ip.h> |
| |
| #include <sys/tsol/tndb.h> |
| #include <sys/tsol/tnet.h> |
| |
| static in6_addr_t ipv6_ll_template = |
| {(uint32_t)V6_LINKLOCAL, 0x0, 0x0, 0x0}; |
| |
| static ipif_t * |
| ipif_lookup_interface_v6(const in6_addr_t *if_addr, const in6_addr_t *dst, |
| ip_stack_t *ipst); |
| |
| static int ipif_add_ires_v6(ipif_t *, boolean_t); |
| |
| /* |
| * This function is called when an application does not specify an interface |
| * to be used for multicast traffic. It calls ire_lookup_multi_v6() to look |
| * for an interface route for the specified multicast group. Doing |
| * this allows the administrator to add prefix routes for multicast to |
| * indicate which interface to be used for multicast traffic in the above |
| * scenario. The route could be for all multicast (ff00::/8), for a single |
| * multicast group (a /128 route) or anything in between. If there is no |
| * such multicast route, we just find any multicast capable interface and |
| * return it. |
| * |
| * We support MULTIRT and RTF_SETSRC on the multicast routes added to the |
| * unicast table. This is used by CGTP. |
| */ |
| ill_t * |
| ill_lookup_group_v6(const in6_addr_t *group, zoneid_t zoneid, ip_stack_t *ipst, |
| boolean_t *multirtp, in6_addr_t *setsrcp) |
| { |
| ill_t *ill; |
| |
| ill = ire_lookup_multi_ill_v6(group, zoneid, ipst, multirtp, setsrcp); |
| if (ill != NULL) |
| return (ill); |
| |
| return (ill_lookup_multicast(ipst, zoneid, B_TRUE)); |
| } |
| |
| /* |
| * Look for an ipif with the specified interface address and destination. |
| * The destination address is used only for matching point-to-point interfaces. |
| */ |
| static ipif_t * |
| ipif_lookup_interface_v6(const in6_addr_t *if_addr, const in6_addr_t *dst, |
| ip_stack_t *ipst) |
| { |
| ipif_t *ipif; |
| ill_t *ill; |
| ill_walk_context_t ctx; |
| |
| /* |
| * First match all the point-to-point interfaces |
| * before looking at non-point-to-point interfaces. |
| * This is done to avoid returning non-point-to-point |
| * ipif instead of unnumbered point-to-point ipif. |
| */ |
| rw_enter(&ipst->ips_ill_g_lock, RW_READER); |
| ill = ILL_START_WALK_V6(&ctx, ipst); |
| for (; ill != NULL; ill = ill_next(&ctx, ill)) { |
| mutex_enter(&ill->ill_lock); |
| for (ipif = ill->ill_ipif; ipif != NULL; |
| ipif = ipif->ipif_next) { |
| /* Allow the ipif to be down */ |
| if ((ipif->ipif_flags & IPIF_POINTOPOINT) && |
| (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, |
| if_addr)) && |
| (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, |
| dst))) { |
| if (!IPIF_IS_CONDEMNED(ipif)) { |
| ipif_refhold_locked(ipif); |
| mutex_exit(&ill->ill_lock); |
| rw_exit(&ipst->ips_ill_g_lock); |
| return (ipif); |
| } |
| } |
| } |
| mutex_exit(&ill->ill_lock); |
| } |
| rw_exit(&ipst->ips_ill_g_lock); |
| /* lookup the ipif based on interface address */ |
| ipif = ipif_lookup_addr_v6(if_addr, NULL, ALL_ZONES, ipst); |
| ASSERT(ipif == NULL || ipif->ipif_isv6); |
| return (ipif); |
| } |
| |
| /* |
| * Common function for ipif_lookup_addr_v6() and ipif_lookup_addr_exact_v6(). |
| */ |
| static ipif_t * |
| ipif_lookup_addr_common_v6(const in6_addr_t *addr, ill_t *match_ill, |
| uint32_t match_flags, zoneid_t zoneid, ip_stack_t *ipst) |
| { |
| ipif_t *ipif; |
| ill_t *ill; |
| boolean_t ptp = B_FALSE; |
| ill_walk_context_t ctx; |
| boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP); |
| boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP); |
| |
| rw_enter(&ipst->ips_ill_g_lock, RW_READER); |
| /* |
| * Repeat twice, first based on local addresses and |
| * next time for pointopoint. |
| */ |
| repeat: |
| ill = ILL_START_WALK_V6(&ctx, ipst); |
| for (; ill != NULL; ill = ill_next(&ctx, ill)) { |
| if (match_ill != NULL && ill != match_ill && |
| (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) { |
| continue; |
| } |
| mutex_enter(&ill->ill_lock); |
| for (ipif = ill->ill_ipif; ipif != NULL; |
| ipif = ipif->ipif_next) { |
| if (zoneid != ALL_ZONES && |
| ipif->ipif_zoneid != zoneid && |
| ipif->ipif_zoneid != ALL_ZONES) |
| continue; |
| |
| if (no_duplicate && |
| !(ipif->ipif_flags & IPIF_UP)) { |
| continue; |
| } |
| |
| /* Allow the ipif to be down */ |
| if ((!ptp && (IN6_ARE_ADDR_EQUAL( |
| &ipif->ipif_v6lcl_addr, addr) && |
| (ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || |
| (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && |
| IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, |
| addr))) { |
| if (!IPIF_IS_CONDEMNED(ipif)) { |
| ipif_refhold_locked(ipif); |
| mutex_exit(&ill->ill_lock); |
| rw_exit(&ipst->ips_ill_g_lock); |
| return (ipif); |
| } |
| } |
| } |
| mutex_exit(&ill->ill_lock); |
| } |
| |
| /* If we already did the ptp case, then we are done */ |
| if (ptp) { |
| rw_exit(&ipst->ips_ill_g_lock); |
| return (NULL); |
| } |
| ptp = B_TRUE; |
| goto repeat; |
| } |
| |
| /* |
| * Lookup an ipif with the specified address. For point-to-point links we |
| * look for matches on either the destination address or the local address, |
| * but we skip the local address check if IPIF_UNNUMBERED is set. If the |
| * `match_ill' argument is non-NULL, the lookup is restricted to that ill |
| * (or illgrp if `match_ill' is in an IPMP group). |
| */ |
| ipif_t * |
| ipif_lookup_addr_v6(const in6_addr_t *addr, ill_t *match_ill, zoneid_t zoneid, |
| ip_stack_t *ipst) |
| { |
| return (ipif_lookup_addr_common_v6(addr, match_ill, IPIF_MATCH_ILLGRP, |
| zoneid, ipst)); |
| } |
| |
| /* |
| * Lookup an ipif with the specified address. Similar to ipif_lookup_addr, |
| * except that we will only return an address if it is not marked as |
| * IPIF_DUPLICATE |
| */ |
| ipif_t * |
| ipif_lookup_addr_nondup_v6(const in6_addr_t *addr, ill_t *match_ill, |
| zoneid_t zoneid, ip_stack_t *ipst) |
| { |
| return (ipif_lookup_addr_common_v6(addr, match_ill, |
| (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP), zoneid, |
| ipst)); |
| } |
| |
| /* |
| * Special abbreviated version of ipif_lookup_addr_v6() that doesn't match |
| * `match_ill' across the IPMP group. This function is only needed in some |
| * corner-cases; almost everything should use ipif_lookup_addr_v6(). |
| */ |
| ipif_t * |
| ipif_lookup_addr_exact_v6(const in6_addr_t *addr, ill_t *match_ill, |
| ip_stack_t *ipst) |
| { |
| ASSERT(match_ill != NULL); |
| return (ipif_lookup_addr_common_v6(addr, match_ill, 0, ALL_ZONES, |
| ipst)); |
| } |
| |
| /* |
| * Look for an ipif with the specified address. For point-point links |
| * we look for matches on either the destination address and the local |
| * address, but we ignore the check on the local address if IPIF_UNNUMBERED |
| * is set. |
| * If the `match_ill' argument is non-NULL, the lookup is restricted to that |
| * ill (or illgrp if `match_ill' is in an IPMP group). |
| * Return the zoneid for the ipif. ALL_ZONES if none found. |
| */ |
| zoneid_t |
| ipif_lookup_addr_zoneid_v6(const in6_addr_t *addr, ill_t *match_ill, |
| ip_stack_t *ipst) |
| { |
| ipif_t *ipif; |
| ill_t *ill; |
| boolean_t ptp = B_FALSE; |
| ill_walk_context_t ctx; |
| zoneid_t zoneid; |
| |
| rw_enter(&ipst->ips_ill_g_lock, RW_READER); |
| /* |
| * Repeat twice, first based on local addresses and |
| * next time for pointopoint. |
| */ |
| repeat: |
| ill = ILL_START_WALK_V6(&ctx, ipst); |
| for (; ill != NULL; ill = ill_next(&ctx, ill)) { |
| if (match_ill != NULL && ill != match_ill && |
| !IS_IN_SAME_ILLGRP(ill, match_ill)) { |
| continue; |
| } |
| mutex_enter(&ill->ill_lock); |
| for (ipif = ill->ill_ipif; ipif != NULL; |
| ipif = ipif->ipif_next) { |
| /* Allow the ipif to be down */ |
| if ((!ptp && (IN6_ARE_ADDR_EQUAL( |
| &ipif->ipif_v6lcl_addr, addr) && |
| (ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || |
| (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && |
| IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, |
| addr)) && |
| !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { |
| zoneid = ipif->ipif_zoneid; |
| mutex_exit(&ill->ill_lock); |
| rw_exit(&ipst->ips_ill_g_lock); |
| /* |
| * If ipif_zoneid was ALL_ZONES then we have |
| * a trusted extensions shared IP address. |
| * In that case GLOBAL_ZONEID works to send. |
| */ |
| if (zoneid == ALL_ZONES) |
| zoneid = GLOBAL_ZONEID; |
| return (zoneid); |
| } |
| } |
| mutex_exit(&ill->ill_lock); |
| } |
| |
| /* If we already did the ptp case, then we are done */ |
| if (ptp) { |
| rw_exit(&ipst->ips_ill_g_lock); |
| return (ALL_ZONES); |
| } |
| ptp = B_TRUE; |
| goto repeat; |
| } |
| |
| /* |
| * Perform various checks to verify that an address would make sense as a local |
| * interface address. This is currently only called when an attempt is made |
| * to set a local address. |
| * |
| * Does not allow a v4-mapped address, an address that equals the subnet |
| * anycast address, ... a multicast address, ... |
| */ |
| boolean_t |
| ip_local_addr_ok_v6(const in6_addr_t *addr, const in6_addr_t *subnet_mask) |
| { |
| in6_addr_t subnet; |
| |
| if (IN6_IS_ADDR_UNSPECIFIED(addr)) |
| return (B_TRUE); /* Allow all zeros */ |
| |
| /* |
| * Don't allow all zeroes or host part, but allow |
| * all ones netmask. |
| */ |
| V6_MASK_COPY(*addr, *subnet_mask, subnet); |
| if (IN6_IS_ADDR_V4MAPPED(addr) || |
| (IN6_ARE_ADDR_EQUAL(addr, &subnet) && |
| !IN6_ARE_ADDR_EQUAL(subnet_mask, &ipv6_all_ones)) || |
| (IN6_IS_ADDR_V4COMPAT(addr) && CLASSD(V4_PART_OF_V6((*addr)))) || |
| IN6_IS_ADDR_MULTICAST(addr)) |
| return (B_FALSE); |
| |
| return (B_TRUE); |
| } |
| |
| /* |
| * Perform various checks to verify that an address would make sense as a |
| * remote/subnet interface address. |
| */ |
| boolean_t |
| ip_remote_addr_ok_v6(const in6_addr_t *addr, const in6_addr_t *subnet_mask) |
| { |
| in6_addr_t subnet; |
| |
| if (IN6_IS_ADDR_UNSPECIFIED(addr)) |
| return (B_TRUE); /* Allow all zeros */ |
| |
| V6_MASK_COPY(*addr, *subnet_mask, subnet); |
| if (IN6_IS_ADDR_V4MAPPED(addr) || |
| (IN6_ARE_ADDR_EQUAL(addr, &subnet) && |
| !IN6_ARE_ADDR_EQUAL(subnet_mask, &ipv6_all_ones)) || |
| IN6_IS_ADDR_MULTICAST(addr) || |
| (IN6_IS_ADDR_V4COMPAT(addr) && CLASSD(V4_PART_OF_V6((*addr))))) |
| return (B_FALSE); |
| |
| return (B_TRUE); |
| } |
| |
| /* |
| * ip_rt_add_v6 is called to add an IPv6 route to the forwarding table. |
| * ill is passed in to associate it with the correct interface |
| * (for link-local destinations and gateways). |
| * If ire_arg is set, then we return the held IRE in that location. |
| */ |
| /* ARGSUSED1 */ |
| int |
| ip_rt_add_v6(const in6_addr_t *dst_addr, const in6_addr_t *mask, |
| const in6_addr_t *gw_addr, const in6_addr_t *src_addr, int flags, |
| ill_t *ill, ire_t **ire_arg, struct rtsa_s *sp, ip_stack_t *ipst, |
| zoneid_t zoneid) |
| { |
| ire_t *ire, *nire; |
| ire_t *gw_ire = NULL; |
| ipif_t *ipif; |
| uint_t type; |
| int match_flags = MATCH_IRE_TYPE; |
| tsol_gc_t *gc = NULL; |
| tsol_gcgrp_t *gcgrp = NULL; |
| boolean_t gcgrp_xtraref = B_FALSE; |
| boolean_t unbound = B_FALSE; |
| |
| if (ire_arg != NULL) |
| *ire_arg = NULL; |
| |
| /* |
| * Prevent routes with a zero gateway from being created (since |
| * interfaces can currently be plumbed and brought up with no assigned |
| * address). |
| */ |
| if (IN6_IS_ADDR_UNSPECIFIED(gw_addr)) |
| return (ENETUNREACH); |
| |
| /* |
| * If this is the case of RTF_HOST being set, then we set the netmask |
| * to all ones (regardless if one was supplied). |
| */ |
| if (flags & RTF_HOST) |
| mask = &ipv6_all_ones; |
| |
| /* |
| * Get the ipif, if any, corresponding to the gw_addr |
| * If -ifp was specified we restrict ourselves to the ill, otherwise |
| * we match on the gatway and destination to handle unnumbered pt-pt |
| * interfaces. |
| */ |
| if (ill != NULL) |
| ipif = ipif_lookup_addr_v6(gw_addr, ill, ALL_ZONES, ipst); |
| else |
| ipif = ipif_lookup_interface_v6(gw_addr, dst_addr, ipst); |
| if (ipif != NULL) { |
| if (IS_VNI(ipif->ipif_ill)) { |
| ipif_refrele(ipif); |
| return (EINVAL); |
| } |
| } |
| |
| /* |
| * GateD will attempt to create routes with a loopback interface |
| * address as the gateway and with RTF_GATEWAY set. We allow |
| * these routes to be added, but create them as interface routes |
| * since the gateway is an interface address. |
| */ |
| if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { |
| flags &= ~RTF_GATEWAY; |
| if (IN6_ARE_ADDR_EQUAL(gw_addr, &ipv6_loopback) && |
| IN6_ARE_ADDR_EQUAL(dst_addr, &ipv6_loopback) && |
| IN6_ARE_ADDR_EQUAL(mask, &ipv6_all_ones)) { |
| ire = ire_ftable_lookup_v6(dst_addr, 0, 0, IRE_LOOPBACK, |
| NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, |
| NULL); |
| if (ire != NULL) { |
| ire_refrele(ire); |
| ipif_refrele(ipif); |
| return (EEXIST); |
| } |
| ip1dbg(("ip_rt_add_v6: 0x%p creating IRE 0x%x" |
| "for 0x%x\n", (void *)ipif, |
| ipif->ipif_ire_type, |
| ntohl(ipif->ipif_lcl_addr))); |
| ire = ire_create_v6( |
| dst_addr, |
| mask, |
| NULL, |
| ipif->ipif_ire_type, /* LOOPBACK */ |
| ipif->ipif_ill, |
| zoneid, |
| (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0, |
| NULL, |
| ipst); |
| |
| if (ire == NULL) { |
| ipif_refrele(ipif); |
| return (ENOMEM); |
| } |
| /* src address assigned by the caller? */ |
| if ((flags & RTF_SETSRC) && |
| !IN6_IS_ADDR_UNSPECIFIED(src_addr)) |
| ire->ire_setsrc_addr_v6 = *src_addr; |
| |
| nire = ire_add(ire); |
| if (nire == NULL) { |
| /* |
| * In the result of failure, ire_add() will have |
| * already deleted the ire in question, so there |
| * is no need to do that here. |
| */ |
| ipif_refrele(ipif); |
| return (ENOMEM); |
| } |
| /* |
| * Check if it was a duplicate entry. This handles |
| * the case of two racing route adds for the same route |
| */ |
| if (nire != ire) { |
| ASSERT(nire->ire_identical_ref > 1); |
| ire_delete(nire); |
| ire_refrele(nire); |
| ipif_refrele(ipif); |
| return (EEXIST); |
| } |
| ire = nire; |
| goto save_ire; |
| } |
| } |
| |
| /* |
| * The routes for multicast with CGTP are quite special in that |
| * the gateway is the local interface address, yet RTF_GATEWAY |
| * is set. We turn off RTF_GATEWAY to provide compatibility with |
| * this undocumented and unusual use of multicast routes. |
| */ |
| if ((flags & RTF_MULTIRT) && ipif != NULL) |
| flags &= ~RTF_GATEWAY; |
| |
| /* |
| * Traditionally, interface routes are ones where RTF_GATEWAY isn't set |
| * and the gateway address provided is one of the system's interface |
| * addresses. By using the routing socket interface and supplying an |
| * RTA_IFP sockaddr with an interface index, an alternate method of |
| * specifying an interface route to be created is available which uses |
| * the interface index that specifies the outgoing interface rather than |
| * the address of an outgoing interface (which may not be able to |
| * uniquely identify an interface). When coupled with the RTF_GATEWAY |
| * flag, routes can be specified which not only specify the next-hop to |
| * be used when routing to a certain prefix, but also which outgoing |
| * interface should be used. |
| * |
| * Previously, interfaces would have unique addresses assigned to them |
| * and so the address assigned to a particular interface could be used |
| * to identify a particular interface. One exception to this was the |
| * case of an unnumbered interface (where IPIF_UNNUMBERED was set). |
| * |
| * With the advent of IPv6 and its link-local addresses, this |
| * restriction was relaxed and interfaces could share addresses between |
| * themselves. In fact, typically all of the link-local interfaces on |
| * an IPv6 node or router will have the same link-local address. In |
| * order to differentiate between these interfaces, the use of an |
| * interface index is necessary and this index can be carried inside a |
| * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction |
| * of using the interface index, however, is that all of the ipif's that |
| * are part of an ill have the same index and so the RTA_IFP sockaddr |
| * cannot be used to differentiate between ipif's (or logical |
| * interfaces) that belong to the same ill (physical interface). |
| * |
| * For example, in the following case involving IPv4 interfaces and |
| * logical interfaces |
| * |
| * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 |
| * 192.0.2.32 255.255.255.224 192.0.2.34 U if0 |
| * 192.0.2.32 255.255.255.224 192.0.2.35 U if0 |
| * |
| * the ipif's corresponding to each of these interface routes can be |
| * uniquely identified by the "gateway" (actually interface address). |
| * |
| * In this case involving multiple IPv6 default routes to a particular |
| * link-local gateway, the use of RTA_IFP is necessary to specify which |
| * default route is of interest: |
| * |
| * default fe80::123:4567:89ab:cdef U if0 |
| * default fe80::123:4567:89ab:cdef U if1 |
| */ |
| |
| /* RTF_GATEWAY not set */ |
| if (!(flags & RTF_GATEWAY)) { |
| if (sp != NULL) { |
| ip2dbg(("ip_rt_add_v6: gateway security attributes " |
| "cannot be set with interface route\n")); |
| if (ipif != NULL) |
| ipif_refrele(ipif); |
| return (EINVAL); |
| } |
| |
| /* |
| * Whether or not ill (RTA_IFP) is set, we require that |
| * the gateway is one of our local addresses. |
| */ |
| if (ipif == NULL) |
| return (ENETUNREACH); |
| |
| /* |
| * We use MATCH_IRE_ILL here. If the caller specified an |
| * interface (from the RTA_IFP sockaddr) we use it, otherwise |
| * we use the ill derived from the gateway address. |
| * We can always match the gateway address since we record it |
| * in ire_gateway_addr. |
| * We don't allow RTA_IFP to specify a different ill than the |
| * one matching the ipif to make sure we can delete the route. |
| */ |
| match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL; |
| if (ill == NULL) { |
| ill = ipif->ipif_ill; |
| } else if (ill != ipif->ipif_ill) { |
| ipif_refrele(ipif); |
| return (EINVAL); |
| } |
| |
| /* |
| * We check for an existing entry at this point. |
| */ |
| match_flags |= MATCH_IRE_MASK; |
| ire = ire_ftable_lookup_v6(dst_addr, mask, gw_addr, |
| IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst, |
| NULL); |
| if (ire != NULL) { |
| ire_refrele(ire); |
| ipif_refrele(ipif); |
| return (EEXIST); |
| } |
| |
| /* |
| * Some software (for example, GateD and Sun Cluster) attempts |
| * to create (what amount to) IRE_PREFIX routes with the |
| * loopback address as the gateway. This is primarily done to |
| * set up prefixes with the RTF_REJECT flag set (for example, |
| * when generating aggregate routes). We also OR in the |
| * RTF_BLACKHOLE flag as these interface routes, by |
| * definition, can only be that. |
| * |
| * If the IRE type (as defined by ill->ill_net_type) would be |
| * IRE_LOOPBACK, then we map the request into a |
| * IRE_IF_NORESOLVER. |
| * |
| * Needless to say, the real IRE_LOOPBACK is NOT created by this |
| * routine, but rather using ire_create_v6() directly. |
| */ |
| type = ill->ill_net_type; |
| if (type == IRE_LOOPBACK) { |
| type = IRE_IF_NORESOLVER; |
| flags |= RTF_BLACKHOLE; |
| } |
| |
| /* |
| * Create a copy of the IRE_IF_NORESOLVER or |
| * IRE_IF_RESOLVER with the modified address, netmask, and |
| * gateway. |
| */ |
| ire = ire_create_v6( |
| dst_addr, |
| mask, |
| gw_addr, |
| type, |
| ill, |
| zoneid, |
| flags, |
| NULL, |
| ipst); |
| if (ire == NULL) { |
| ipif_refrele(ipif); |
| return (ENOMEM); |
| } |
| |
| /* src address assigned by the caller? */ |
| if ((flags & RTF_SETSRC) && !IN6_IS_ADDR_UNSPECIFIED(src_addr)) |
| ire->ire_setsrc_addr_v6 = *src_addr; |
| |
| nire = ire_add(ire); |
| if (nire == NULL) { |
| /* |
| * In the result of failure, ire_add() will have |
| * already deleted the ire in question, so there |
| * is no need to do that here. |
| */ |
| ipif_refrele(ipif); |
| return (ENOMEM); |
| } |
| /* |
| * Check if it was a duplicate entry. This handles |
| * the case of two racing route adds for the same route |
| */ |
| if (nire != ire) { |
| ASSERT(nire->ire_identical_ref > 1); |
| ire_delete(nire); |
| ire_refrele(nire); |
| ipif_refrele(ipif); |
| return (EEXIST); |
| } |
| ire = nire; |
| goto save_ire; |
| } |
| |
| /* |
| * Get an interface IRE for the specified gateway. |
| * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the |
| * gateway, it is currently unreachable and we fail the request |
| * accordingly. We reject any RTF_GATEWAY routes where the gateway |
| * is an IRE_LOCAL or IRE_LOOPBACK. |
| * If RTA_IFP was specified we look on that particular ill. |
| */ |
| if (ill != NULL) |
| match_flags |= MATCH_IRE_ILL; |
| |
| /* Check whether the gateway is reachable. */ |
| again: |
| type = IRE_INTERFACE | IRE_LOCAL | IRE_LOOPBACK; |
| if (flags & RTF_INDIRECT) |
| type |= IRE_OFFLINK; |
| |
| gw_ire = ire_ftable_lookup_v6(gw_addr, 0, 0, type, ill, |
| ALL_ZONES, NULL, match_flags, 0, ipst, NULL); |
| if (gw_ire == NULL) { |
| /* |
| * With IPMP, we allow host routes to influence in.mpathd's |
| * target selection. However, if the test addresses are on |
| * their own network, the above lookup will fail since the |
| * underlying IRE_INTERFACEs are marked hidden. So allow |
| * hidden test IREs to be found and try again. |
| */ |
| if (!(match_flags & MATCH_IRE_TESTHIDDEN)) { |
| match_flags |= MATCH_IRE_TESTHIDDEN; |
| goto again; |
| } |
| if (ipif != NULL) |
| ipif_refrele(ipif); |
| return (ENETUNREACH); |
| } |
| if (gw_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { |
| ire_refrele(gw_ire); |
| if (ipif != NULL) |
| ipif_refrele(ipif); |
| return (ENETUNREACH); |
| } |
| if (ill == NULL && !(flags & RTF_INDIRECT)) { |
| unbound = B_TRUE; |
| if (ipst->ips_ipv6_strict_src_multihoming > 0) |
| ill = gw_ire->ire_ill; |
| } |
| |
| /* |
| * We create one of three types of IREs as a result of this request |
| * based on the netmask. A netmask of all ones (which is automatically |
| * assumed when RTF_HOST is set) results in an IRE_HOST being created. |
| * An all zeroes netmask implies a default route so an IRE_DEFAULT is |
| * created. Otherwise, an IRE_PREFIX route is created for the |
| * destination prefix. |
| */ |
| if (IN6_ARE_ADDR_EQUAL(mask, &ipv6_all_ones)) |
| type = IRE_HOST; |
| else if (IN6_IS_ADDR_UNSPECIFIED(mask)) |
| type = IRE_DEFAULT; |
| else |
| type = IRE_PREFIX; |
| |
| /* check for a duplicate entry */ |
| ire = ire_ftable_lookup_v6(dst_addr, mask, gw_addr, type, ill, |
| ALL_ZONES, NULL, |
| match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, 0, ipst, NULL); |
| if (ire != NULL) { |
| if (ipif != NULL) |
| ipif_refrele(ipif); |
| ire_refrele(gw_ire); |
| ire_refrele(ire); |
| return (EEXIST); |
| } |
| |
| /* Security attribute exists */ |
| if (sp != NULL) { |
| tsol_gcgrp_addr_t ga; |
| |
| /* find or create the gateway credentials group */ |
| ga.ga_af = AF_INET6; |
| ga.ga_addr = *gw_addr; |
| |
| /* we hold reference to it upon success */ |
| gcgrp = gcgrp_lookup(&ga, B_TRUE); |
| if (gcgrp == NULL) { |
| if (ipif != NULL) |
| ipif_refrele(ipif); |
| ire_refrele(gw_ire); |
| return (ENOMEM); |
| } |
| |
| /* |
| * Create and add the security attribute to the group; a |
| * reference to the group is made upon allocating a new |
| * entry successfully. If it finds an already-existing |
| * entry for the security attribute in the group, it simply |
| * returns it and no new reference is made to the group. |
| */ |
| gc = gc_create(sp, gcgrp, &gcgrp_xtraref); |
| if (gc == NULL) { |
| /* release reference held by gcgrp_lookup */ |
| GCGRP_REFRELE(gcgrp); |
| if (ipif != NULL) |
| ipif_refrele(ipif); |
| ire_refrele(gw_ire); |
| return (ENOMEM); |
| } |
| } |
| |
| /* Create the IRE. */ |
| ire = ire_create_v6( |
| dst_addr, /* dest address */ |
| mask, /* mask */ |
| gw_addr, /* gateway address */ |
| (ushort_t)type, /* IRE type */ |
| ill, |
| zoneid, |
| flags, |
| gc, /* security attribute */ |
| ipst); |
| |
| /* |
| * The ire holds a reference to the 'gc' and the 'gc' holds a |
| * reference to the 'gcgrp'. We can now release the extra reference |
| * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. |
| */ |
| if (gcgrp_xtraref) |
| GCGRP_REFRELE(gcgrp); |
| if (ire == NULL) { |
| if (gc != NULL) |
| GC_REFRELE(gc); |
| if (ipif != NULL) |
| ipif_refrele(ipif); |
| ire_refrele(gw_ire); |
| return (ENOMEM); |
| } |
| |
| /* src address assigned by the caller? */ |
| if ((flags & RTF_SETSRC) && !IN6_IS_ADDR_UNSPECIFIED(src_addr)) |
| ire->ire_setsrc_addr_v6 = *src_addr; |
| |
| ire->ire_unbound = unbound; |
| |
| /* |
| * POLICY: should we allow an RTF_HOST with address INADDR_ANY? |
| * SUN/OS socket stuff does but do we really want to allow ::0 ? |
| */ |
| |
| /* Add the new IRE. */ |
| nire = ire_add(ire); |
| if (nire == NULL) { |
| /* |
| * In the result of failure, ire_add() will have |
| * already deleted the ire in question, so there |
| * is no need to do that here. |
| */ |
| if (ipif != NULL) |
| ipif_refrele(ipif); |
| ire_refrele(gw_ire); |
| return (ENOMEM); |
| } |
| /* |
| * Check if it was a duplicate entry. This handles |
| * the case of two racing route adds for the same route |
| */ |
| if (nire != ire) { |
| ASSERT(nire->ire_identical_ref > 1); |
| ire_delete(nire); |
| ire_refrele(nire); |
| if (ipif != NULL) |
| ipif_refrele(ipif); |
| ire_refrele(gw_ire); |
| return (EEXIST); |
| } |
| ire = nire; |
| |
| if (flags & RTF_MULTIRT) { |
| /* |
| * Invoke the CGTP (multirouting) filtering module |
| * to add the dst address in the filtering database. |
| * Replicated inbound packets coming from that address |
| * will be filtered to discard the duplicates. |
| * It is not necessary to call the CGTP filter hook |
| * when the dst address is a multicast, because an |
| * IP source address cannot be a multicast. |
| */ |
| if (ipst->ips_ip_cgtp_filter_ops != NULL && |
| !IN6_IS_ADDR_MULTICAST(&(ire->ire_addr_v6))) { |
| int res; |
| ipif_t *src_ipif; |
| |
| /* Find the source address corresponding to gw_ire */ |
| src_ipif = ipif_lookup_addr_v6( |
| &gw_ire->ire_gateway_addr_v6, NULL, zoneid, ipst); |
| if (src_ipif != NULL) { |
| res = ipst->ips_ip_cgtp_filter_ops-> |
| cfo_add_dest_v6( |
| ipst->ips_netstack->netstack_stackid, |
| &ire->ire_addr_v6, |
| &ire->ire_gateway_addr_v6, |
| &ire->ire_setsrc_addr_v6, |
| &src_ipif->ipif_v6lcl_addr); |
| ipif_refrele(src_ipif); |
| } else { |
| res = EADDRNOTAVAIL; |
| } |
| if (res != 0) { |
| if (ipif != NULL) |
| ipif_refrele(ipif); |
| ire_refrele(gw_ire); |
| ire_delete(ire); |
| ire_refrele(ire); /* Held in ire_add */ |
| return (res); |
| } |
| } |
| } |
| |
| save_ire: |
| if (gw_ire != NULL) { |
| ire_refrele(gw_ire); |
| gw_ire = NULL; |
| } |
| if (ire->ire_ill != NULL) { |
| /* |
| * Save enough information so that we can recreate the IRE if |
| * the ILL goes down and then up. The metrics associated |
| * with the route will be saved as well when rts_setmetrics() is |
| * called after the IRE has been created. In the case where |
| * memory cannot be allocated, none of this information will be |
| * saved. |
| */ |
| ill_save_ire(ire->ire_ill, ire); |
| } |
| |
| if (ire_arg != NULL) { |
| /* |
| * Store the ire that was successfully added into where ire_arg |
| * points to so that callers don't have to look it up |
| * themselves (but they are responsible for ire_refrele()ing |
| * the ire when they are finished with it). |
| */ |
| *ire_arg = ire; |
| } else { |
| ire_refrele(ire); /* Held in ire_add */ |
| } |
| if (ipif != NULL) |
| ipif_refrele(ipif); |
| return (0); |
| } |
| |
| /* |
| * ip_rt_delete_v6 is called to delete an IPv6 route. |
| * ill is passed in to associate it with the correct interface. |
| * (for link-local destinations and gateways). |
| */ |
| /* ARGSUSED4 */ |
| int |
| ip_rt_delete_v6(const in6_addr_t *dst_addr, const in6_addr_t *mask, |
| const in6_addr_t *gw_addr, uint_t rtm_addrs, int flags, ill_t *ill, |
| ip_stack_t *ipst, zoneid_t zoneid) |
| { |
| ire_t *ire = NULL; |
| ipif_t *ipif; |
| uint_t type; |
| uint_t match_flags = MATCH_IRE_TYPE; |
| int err = 0; |
| |
| /* |
| * If this is the case of RTF_HOST being set, then we set the netmask |
| * to all ones. Otherwise, we use the netmask if one was supplied. |
| */ |
| if (flags & RTF_HOST) { |
| mask = &ipv6_all_ones; |
| match_flags |= MATCH_IRE_MASK; |
| } else if (rtm_addrs & RTA_NETMASK) { |
| match_flags |= MATCH_IRE_MASK; |
| } |
| |
| /* |
| * Note that RTF_GATEWAY is never set on a delete, therefore |
| * we check if the gateway address is one of our interfaces first, |
| * and fall back on RTF_GATEWAY routes. |
| * |
| * This makes it possible to delete an original |
| * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. |
| * However, we have RTF_KERNEL set on the ones created by ipif_up |
| * and those can not be deleted here. |
| * |
| * We use MATCH_IRE_ILL if we know the interface. If the caller |
| * specified an interface (from the RTA_IFP sockaddr) we use it, |
| * otherwise we use the ill derived from the gateway address. |
| * We can always match the gateway address since we record it |
| * in ire_gateway_addr. |
| * |
| * For more detail on specifying routes by gateway address and by |
| * interface index, see the comments in ip_rt_add_v6(). |
| */ |
| ipif = ipif_lookup_interface_v6(gw_addr, dst_addr, ipst); |
| if (ipif != NULL) { |
| ill_t *ill_match; |
| |
| if (ill != NULL) |
| ill_match = ill; |
| else |
| ill_match = ipif->ipif_ill; |
| |
| match_flags |= MATCH_IRE_ILL; |
| if (ipif->ipif_ire_type == IRE_LOOPBACK) { |
| ire = ire_ftable_lookup_v6(dst_addr, mask, 0, |
| IRE_LOOPBACK, ill_match, ALL_ZONES, NULL, |
| match_flags, 0, ipst, NULL); |
| } |
| if (ire == NULL) { |
| match_flags |= MATCH_IRE_GW; |
| ire = ire_ftable_lookup_v6(dst_addr, mask, gw_addr, |
| IRE_INTERFACE, ill_match, ALL_ZONES, NULL, |
| match_flags, 0, ipst, NULL); |
| } |
| /* Avoid deleting routes created by kernel from an ipif */ |
| if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) { |
| ire_refrele(ire); |
| ire = NULL; |
| } |
| |
| /* Restore in case we didn't find a match */ |
| match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL); |
| } |
| |
| if (ire == NULL) { |
| /* |
| * At this point, the gateway address is not one of our own |
| * addresses or a matching interface route was not found. We |
| * set the IRE type to lookup based on whether |
| * this is a host route, a default route or just a prefix. |
| * |
| * If an ill was passed in, then the lookup is based on an |
| * interface index so MATCH_IRE_ILL is added to match_flags. |
| */ |
| match_flags |= MATCH_IRE_GW; |
| if (ill != NULL) |
| match_flags |= MATCH_IRE_ILL; |
| if (IN6_ARE_ADDR_EQUAL(mask, &ipv6_all_ones)) |
| type = IRE_HOST; |
| else if (IN6_IS_ADDR_UNSPECIFIED(mask)) |
| type = IRE_DEFAULT; |
| else |
| type = IRE_PREFIX; |
| ire = ire_ftable_lookup_v6(dst_addr, mask, gw_addr, type, |
| ill, ALL_ZONES, NULL, match_flags, 0, ipst, NULL); |
| } |
| |
| if (ipif != NULL) { |
| ipif_refrele(ipif); |
| ipif = NULL; |
| } |
| if (ire == NULL) |
| return (ESRCH); |
| |
| if (ire->ire_flags & RTF_MULTIRT) { |
| /* |
| * Invoke the CGTP (multirouting) filtering module |
| * to remove the dst address from the filtering database. |
| * Packets coming from that address will no longer be |
| * filtered to remove duplicates. |
| */ |
| if (ipst->ips_ip_cgtp_filter_ops != NULL) { |
| err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v6( |
| ipst->ips_netstack->netstack_stackid, |
| &ire->ire_addr_v6, &ire->ire_gateway_addr_v6); |
| } |
| } |
| |
| ill = ire->ire_ill; |
| if (ill != NULL) |
| ill_remove_saved_ire(ill, ire); |
| ire_delete(ire); |
| ire_refrele(ire); |
| return (err); |
| } |
| |
| /* |
| * Derive an interface id from the link layer address. |
| */ |
| void |
| ill_setdefaulttoken(ill_t *ill) |
| { |
| if (!ill->ill_manual_token) { |
| bzero(&ill->ill_token, sizeof (ill->ill_token)); |
| MEDIA_V6INTFID(ill->ill_media, ill, &ill->ill_token); |
| ill->ill_token_length = IPV6_TOKEN_LEN; |
| } |
| } |
| |
| void |
| ill_setdesttoken(ill_t *ill) |
| { |
| bzero(&ill->ill_dest_token, sizeof (ill->ill_dest_token)); |
| MEDIA_V6DESTINTFID(ill->ill_media, ill, &ill->ill_dest_token); |
| } |
| |
| /* |
| * Create a link-local address from a token. |
| */ |
| static void |
| ipif_get_linklocal(in6_addr_t *dest, const in6_addr_t *token) |
| { |
| int i; |
| |
| for (i = 0; i < 4; i++) { |
| dest->s6_addr32[i] = |
| token->s6_addr32[i] | ipv6_ll_template.s6_addr32[i]; |
| } |
| } |
| |
| /* |
| * Set a default IPv6 address for a 6to4 tunnel interface 2002:<tsrc>::1/16 |
| */ |
| static void |
| ipif_set6to4addr(ipif_t *ipif) |
| { |
| ill_t *ill = ipif->ipif_ill; |
| struct in_addr v4phys; |
| |
| ASSERT(ill->ill_mactype == DL_6TO4); |
| ASSERT(ill->ill_phys_addr_length == sizeof (struct in_addr)); |
| ASSERT(ipif->ipif_isv6); |
| |
| if (ipif->ipif_flags & IPIF_UP) |
| return; |
| |
| (void) ip_plen_to_mask_v6(16, &ipif->ipif_v6net_mask); |
| bcopy(ill->ill_phys_addr, &v4phys, sizeof (struct in_addr)); |
| IN6_V4ADDR_TO_6TO4(&v4phys, &ipif->ipif_v6lcl_addr); |
| V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, |
| ipif->ipif_v6subnet); |
| } |
| |
| /* |
| * Is it not possible to set the link local address? |
| * The address can be set if the token is set, and the token |
| * isn't too long. |
| * Return B_TRUE if the address can't be set, or B_FALSE if it can. |
| */ |
| boolean_t |
| ipif_cant_setlinklocal(ipif_t *ipif) |
| { |
| ill_t *ill = ipif->ipif_ill; |
| |
| if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token) || |
| ill->ill_token_length > IPV6_ABITS - IPV6_LL_PREFIXLEN) |
| return (B_TRUE); |
| |
| return (B_FALSE); |
| } |
| |
| /* |
| * Generate a link-local address from the token. |
| */ |
| void |
| ipif_setlinklocal(ipif_t *ipif) |
| { |
| ill_t *ill = ipif->ipif_ill; |
| in6_addr_t ov6addr; |
| |
| ASSERT(IAM_WRITER_ILL(ill)); |
| |
| /* |
| * If the interface was created with no link-local address |
| * on it and the flag ILLF_NOLINKLOCAL was set, then we |
| * dont want to update the link-local. |
| */ |
| if ((ill->ill_flags & ILLF_NOLINKLOCAL) && |
| IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) |
| return; |
| /* |
| * ill_manual_linklocal is set when the link-local address was |
| * manually configured. |
| */ |
| if (ill->ill_manual_linklocal) |
| return; |
| |
| /* |
| * IPv6 interfaces over 6to4 tunnels are special. They do not have |
| * link-local addresses, but instead have a single automatically |
| * generated global address. |
| */ |
| if (ill->ill_mactype == DL_6TO4) { |
| ipif_set6to4addr(ipif); |
| return; |
| } |
| |
| if (ipif_cant_setlinklocal(ipif)) |
| return; |
| |
| ov6addr = ipif->ipif_v6lcl_addr; |
| ipif_get_linklocal(&ipif->ipif_v6lcl_addr, &ill->ill_token); |
| sctp_update_ipif_addr(ipif, ov6addr); |
| (void) ip_plen_to_mask_v6(IPV6_LL_PREFIXLEN, &ipif->ipif_v6net_mask); |
| if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)) { |
| V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, |
| ipif->ipif_v6subnet); |
| } |
| |
| ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); |
| } |
| |
| /* |
| * Generate a destination link-local address for a point-to-point IPv6 |
| * interface with a destination interface id (IP tunnels are such interfaces) |
| * based on the destination token. |
| */ |
| void |
| ipif_setdestlinklocal(ipif_t *ipif) |
| { |
| ill_t *ill = ipif->ipif_ill; |
| |
| ASSERT(IAM_WRITER_ILL(ill)); |
| |
| if (ill->ill_manual_dst_linklocal) |
| return; |
| |
| if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_dest_token)) |
| return; |
| |
| ipif_get_linklocal(&ipif->ipif_v6pp_dst_addr, &ill->ill_dest_token); |
| ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; |
| } |
| |
| /* |
| * Get the resolver set up for a new ipif. (Always called as writer.) |
| */ |
| int |
| ipif_ndp_up(ipif_t *ipif, boolean_t initial) |
| { |
| ill_t *ill = ipif->ipif_ill; |
| int err = 0; |
| nce_t *nce = NULL; |
| boolean_t added_ipif = B_FALSE; |
| |
| DTRACE_PROBE3(ipif__downup, char *, "ipif_ndp_up", |
| ill_t *, ill, ipif_t *, ipif); |
| ip1dbg(("ipif_ndp_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); |
| |
| if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) || |
| (!(ill->ill_net_type & IRE_INTERFACE))) { |
| ipif->ipif_addr_ready = 1; |
| return (0); |
| } |
| |
| if ((ipif->ipif_flags & (IPIF_UNNUMBERED|IPIF_NOLOCAL)) == 0) { |
| uint16_t flags; |
| uint16_t state; |
| uchar_t *hw_addr; |
| ill_t *bound_ill; |
| ipmp_illgrp_t *illg = ill->ill_grp; |
| uint_t hw_addr_len; |
| |
| flags = NCE_F_MYADDR | NCE_F_NONUD | NCE_F_PUBLISH | |
| NCE_F_AUTHORITY; |
| if (ill->ill_flags & ILLF_ROUTER) |
| flags |= NCE_F_ISROUTER; |
| |
| if (ipif->ipif_flags & IPIF_ANYCAST) |
| flags |= NCE_F_ANYCAST; |
| |
| if (IS_IPMP(ill)) { |
| ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); |
| /* |
| * If we're here via ipif_up(), then the ipif won't be |
| * bound yet -- add it to the group, which will bind |
| * it if possible. (We would add it in ipif_up(), but |
| * deleting on failure there is gruesome.) If we're |
| * here via ipmp_ill_bind_ipif(), then the ipif has |
| * already been added to the group and we just need to |
| * use the binding. |
| */ |
| if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) { |
| bound_ill = ipmp_illgrp_add_ipif(illg, ipif); |
| if (bound_ill == NULL) { |
| /* |
| * We couldn't bind the ipif to an ill |
| * yet, so we have nothing to publish. |
| * Set ipif_addr_ready so that this |
| * address can be used locally for now. |
| * The routing socket message will be |
| * sent from ipif_up_done_v6(). |
| */ |
| ipif->ipif_addr_ready = 1; |
| return (0); |
| } |
| added_ipif = B_TRUE; |
| } |
| hw_addr = bound_ill->ill_nd_lla; |
| hw_addr_len = bound_ill->ill_phys_addr_length; |
| } else { |
| bound_ill = ill; |
| hw_addr = ill->ill_nd_lla; |
| hw_addr_len = ill->ill_phys_addr_length; |
| } |
| |
| /* |
| * If this is an initial bring-up (or the ipif was never |
| * completely brought up), do DAD. Otherwise, we're here |
| * because IPMP has rebound an address to this ill: send |
| * unsolicited advertisements to inform others. |
| */ |
| if (initial || !ipif->ipif_addr_ready) { |
| /* Causes Duplicate Address Detection to run */ |
| state = ND_PROBE; |
| } else { |
| state = ND_REACHABLE; |
| flags |= NCE_F_UNSOL_ADV; |
| } |
| |
| retry: |
| err = nce_lookup_then_add_v6(ill, hw_addr, hw_addr_len, |
| &ipif->ipif_v6lcl_addr, flags, state, &nce); |
| switch (err) { |
| case 0: |
| ip1dbg(("ipif_ndp_up: NCE created for %s\n", |
| ill->ill_name)); |
| ipif->ipif_addr_ready = 1; |
| ipif->ipif_added_nce = 1; |
| nce->nce_ipif_cnt++; |
| break; |
| case EINPROGRESS: |
| ip1dbg(("ipif_ndp_up: running DAD now for %s\n", |
| ill->ill_name)); |
| ipif->ipif_added_nce = 1; |
| nce->nce_ipif_cnt++; |
| break; |
| case EEXIST: |
| ip1dbg(("ipif_ndp_up: NCE already exists for %s\n", |
| ill->ill_name)); |
| if (!NCE_MYADDR(nce->nce_common)) { |
| /* |
| * A leftover nce from before this address |
| * existed |
| */ |
| ncec_delete(nce->nce_common); |
| nce_refrele(nce); |
| nce = NULL; |
| goto retry; |
| } |
| if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { |
| nce_refrele(nce); |
| nce = NULL; |
| ip1dbg(("ipif_ndp_up: NCE already exists " |
| "for %s\n", ill->ill_name)); |
| goto fail; |
| } |
| /* |
| * Duplicate local addresses are permissible for |
| * IPIF_POINTOPOINT interfaces which will get marked |
| * IPIF_UNNUMBERED later in |
| * ip_addr_availability_check(). |
| * |
| * The nce_ipif_cnt field tracks the number of |
| * ipifs that have nce_addr as their local address. |
| */ |
| ipif->ipif_addr_ready = 1; |
| ipif->ipif_added_nce = 1; |
| nce->nce_ipif_cnt++; |
| err = 0; |
| break; |
| default: |
| ip1dbg(("ipif_ndp_up: NCE creation failed for %s\n", |
| ill->ill_name)); |
| goto fail; |
| } |
| } else { |
| /* No local NCE for this entry */ |
| ipif->ipif_addr_ready = 1; |
| } |
| if (nce != NULL) |
| nce_refrele(nce); |
| return (0); |
| fail: |
| if (added_ipif) |
| ipmp_illgrp_del_ipif(ill->ill_grp, ipif); |
| |
| return (err); |
| } |
| |
| /* Remove all cache entries for this logical interface */ |
| void |
| ipif_ndp_down(ipif_t *ipif) |
| { |
| ipif_nce_down(ipif); |
| } |
| |
| /* |
| * Return the scope of the given IPv6 address. If the address is an |
| * IPv4 mapped IPv6 address, return the scope of the corresponding |
| * IPv4 address. |
| */ |
| in6addr_scope_t |
| ip_addr_scope_v6(const in6_addr_t *addr) |
| { |
| static in6_addr_t ipv6loopback = IN6ADDR_LOOPBACK_INIT; |
| |
| if (IN6_IS_ADDR_V4MAPPED(addr)) { |
| in_addr_t v4addr_h = ntohl(V4_PART_OF_V6((*addr))); |
| if ((v4addr_h >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || |
| (v4addr_h & IN_AUTOCONF_MASK) == IN_AUTOCONF_NET) |
| return (IP6_SCOPE_LINKLOCAL); |
| if ((v4addr_h & IN_PRIVATE8_MASK) == IN_PRIVATE8_NET || |
| (v4addr_h & IN_PRIVATE12_MASK) == IN_PRIVATE12_NET || |
| (v4addr_h & IN_PRIVATE16_MASK) == IN_PRIVATE16_NET) |
| return (IP6_SCOPE_SITELOCAL); |
| return (IP6_SCOPE_GLOBAL); |
| } |
| |
| if (IN6_IS_ADDR_MULTICAST(addr)) |
| return (IN6_ADDR_MC_SCOPE(addr)); |
| |
| /* link-local and loopback addresses are of link-local scope */ |
| if (IN6_IS_ADDR_LINKLOCAL(addr) || |
| IN6_ARE_ADDR_EQUAL(addr, &ipv6loopback)) |
| return (IP6_SCOPE_LINKLOCAL); |
| if (IN6_IS_ADDR_SITELOCAL(addr)) |
| return (IP6_SCOPE_SITELOCAL); |
| return (IP6_SCOPE_GLOBAL); |
| } |
| |
| |
| /* |
| * Returns the length of the common prefix of a1 and a2, as per |
| * CommonPrefixLen() defined in RFC 3484. |
| */ |
| static int |
| ip_common_prefix_v6(const in6_addr_t *a1, const in6_addr_t *a2) |
| { |
| int i; |
| uint32_t a1val, a2val, mask; |
| |
| for (i = 0; i < 4; i++) { |
| if ((a1val = a1->s6_addr32[i]) != (a2val = a2->s6_addr32[i])) { |
| a1val ^= a2val; |
| i *= 32; |
| mask = 0x80000000u; |
| while (!(a1val & mask)) { |
| mask >>= 1; |
| i++; |
| } |
| return (i); |
| } |
| } |
| return (IPV6_ABITS); |
| } |
| |
| #define IPIF_VALID_IPV6_SOURCE(ipif) \ |
| (((ipif)->ipif_flags & IPIF_UP) && \ |
| !((ipif)->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) && \ |
| !((ipif)->ipif_ill->ill_flags & ILLF_NOACCEPT)) |
| |
| /* source address candidate */ |
| typedef struct candidate { |
| ipif_t *cand_ipif; |
| /* The properties of this candidate */ |
| boolean_t cand_isdst; |
| boolean_t cand_isdst_set; |
| in6addr_scope_t cand_scope; |
| boolean_t cand_scope_set; |
| boolean_t cand_isdeprecated; |
| boolean_t cand_isdeprecated_set; |
| boolean_t cand_ispreferred; |
| boolean_t cand_ispreferred_set; |
| boolean_t cand_matchedinterface; |
| boolean_t cand_matchedinterface_set; |
| boolean_t cand_matchedlabel; |
| boolean_t cand_matchedlabel_set; |
| boolean_t cand_istmp; |
| boolean_t cand_istmp_set; |
| int cand_common_pref; |
| boolean_t cand_common_pref_set; |
| boolean_t cand_pref_eq; |
| boolean_t cand_pref_eq_set; |
| int cand_pref_len; |
| boolean_t cand_pref_len_set; |
| } cand_t; |
| #define cand_srcaddr cand_ipif->ipif_v6lcl_addr |
| #define cand_mask cand_ipif->ipif_v6net_mask |
| #define cand_flags cand_ipif->ipif_flags |
| #define cand_ill cand_ipif->ipif_ill |
| #define cand_zoneid cand_ipif->ipif_zoneid |
| |
| /* information about the destination for source address selection */ |
| typedef struct dstinfo { |
| const in6_addr_t *dst_addr; |
| ill_t *dst_ill; |
| uint_t dst_restrict_ill; |
| boolean_t dst_prefer_src_tmp; |
| in6addr_scope_t dst_scope; |
| char *dst_label; |
| } dstinfo_t; |
| |
| /* |
| * The following functions are rules used to select a source address in |
| * ipif_select_source_v6(). Each rule compares a current candidate (cc) |
| * against the best candidate (bc). Each rule has three possible outcomes; |
| * the candidate is preferred over the best candidate (CAND_PREFER), the |
| * candidate is not preferred over the best candidate (CAND_AVOID), or the |
| * candidate is of equal value as the best candidate (CAND_TIE). |
| * |
| * These rules are part of a greater "Default Address Selection for IPv6" |
| * sheme, which is standards based work coming out of the IETF ipv6 working |
| * group. The IETF document defines both IPv6 source address selection and |
| * destination address ordering. The rules defined here implement the IPv6 |
| * source address selection. Destination address ordering is done by |
| * libnsl, and uses a similar set of rules to implement the sorting. |
| * |
| * Most of the rules are defined by the RFC and are not typically altered. The |
| * last rule, number 8, has language that allows for local preferences. In the |
| * scheme below, this means that new Solaris rules should normally go between |
| * rule_ifprefix and rule_prefix. |
| */ |
| typedef enum {CAND_AVOID, CAND_TIE, CAND_PREFER} rule_res_t; |
| typedef rule_res_t (*rulef_t)(cand_t *, cand_t *, const dstinfo_t *, |
| ip_stack_t *); |
| |
| /* Prefer an address if it is equal to the destination address. */ |
| /* ARGSUSED3 */ |
| static rule_res_t |
| rule_isdst(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, ip_stack_t *ipst) |
| { |
| if (!bc->cand_isdst_set) { |
| bc->cand_isdst = |
| IN6_ARE_ADDR_EQUAL(&bc->cand_srcaddr, dstinfo->dst_addr); |
| bc->cand_isdst_set = B_TRUE; |
| } |
| |
| cc->cand_isdst = |
| IN6_ARE_ADDR_EQUAL(&cc->cand_srcaddr, dstinfo->dst_addr); |
| cc->cand_isdst_set = B_TRUE; |
| |
| if (cc->cand_isdst == bc->cand_isdst) |
| return (CAND_TIE); |
| else if (cc->cand_isdst) |
| return (CAND_PREFER); |
| else |
| return (CAND_AVOID); |
| } |
| |
| /* |
| * Prefer addresses that are of closest scope to the destination. Always |
| * prefer addresses that are of greater scope than the destination over |
| * those that are of lesser scope than the destination. |
| */ |
| /* ARGSUSED3 */ |
| static rule_res_t |
| rule_scope(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, ip_stack_t *ipst) |
| { |
| if (!bc->cand_scope_set) { |
| bc->cand_scope = ip_addr_scope_v6(&bc->cand_srcaddr); |
| bc->cand_scope_set = B_TRUE; |
| } |
| |
| cc->cand_scope = ip_addr_scope_v6(&cc->cand_srcaddr); |
| cc->cand_scope_set = B_TRUE; |
| |
| if (cc->cand_scope < bc->cand_scope) { |
| if (cc->cand_scope < dstinfo->dst_scope) |
| return (CAND_AVOID); |
| else |
| return (CAND_PREFER); |
| } else if (bc->cand_scope < cc->cand_scope) { |
| if (bc->cand_scope < dstinfo->dst_scope) |
| return (CAND_PREFER); |
| else |
| return (CAND_AVOID); |
| } else { |
| return (CAND_TIE); |
| } |
| } |
| |
| /* |
| * Prefer non-deprecated source addresses. |
| */ |
| /* ARGSUSED2 */ |
| static rule_res_t |
| rule_deprecated(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, |
| ip_stack_t *ipst) |
| { |
| if (!bc->cand_isdeprecated_set) { |
| bc->cand_isdeprecated = |
| ((bc->cand_flags & IPIF_DEPRECATED) != 0); |
| bc->cand_isdeprecated_set = B_TRUE; |
| } |
| |
| cc->cand_isdeprecated = ((cc->cand_flags & IPIF_DEPRECATED) != 0); |
| cc->cand_isdeprecated_set = B_TRUE; |
| |
| if (bc->cand_isdeprecated == cc->cand_isdeprecated) |
| return (CAND_TIE); |
| else if (cc->cand_isdeprecated) |
| return (CAND_AVOID); |
| else |
| return (CAND_PREFER); |
| } |
| |
| /* |
| * Prefer source addresses that have the IPIF_PREFERRED flag set. This |
| * rule must be before rule_interface because the flag could be set on any |
| * interface, not just the interface being used for outgoing packets (for |
| * example, the IFF_PREFERRED could be set on an address assigned to the |
| * loopback interface). |
| */ |
| /* ARGSUSED2 */ |
| static rule_res_t |
| rule_preferred(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, |
| ip_stack_t *ipst) |
| { |
| if (!bc->cand_ispreferred_set) { |
| bc->cand_ispreferred = ((bc->cand_flags & IPIF_PREFERRED) != 0); |
| bc->cand_ispreferred_set = B_TRUE; |
| } |
| |
| cc->cand_ispreferred = ((cc->cand_flags & IPIF_PREFERRED) != 0); |
| cc->cand_ispreferred_set = B_TRUE; |
| |
| if (bc->cand_ispreferred == cc->cand_ispreferred) |
| return (CAND_TIE); |
| else if (cc->cand_ispreferred) |
| return (CAND_PREFER); |
| else |
| return (CAND_AVOID); |
| } |
| |
| /* |
| * Prefer source addresses that are assigned to the outgoing interface. |
| */ |
| /* ARGSUSED3 */ |
| static rule_res_t |
| rule_interface(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, |
| ip_stack_t *ipst) |
| { |
| ill_t *dstill = dstinfo->dst_ill; |
| |
| /* |
| * If dstinfo->dst_restrict_ill is set, this rule is unnecessary |
| * since we know all candidates will be on the same link. |
| */ |
| if (dstinfo->dst_restrict_ill) |
| return (CAND_TIE); |
| |
| if (!bc->cand_matchedinterface_set) { |
| bc->cand_matchedinterface = bc->cand_ill == dstill; |
| bc->cand_matchedinterface_set = B_TRUE; |
| } |
| |
| cc->cand_matchedinterface = cc->cand_ill == dstill; |
| cc->cand_matchedinterface_set = B_TRUE; |
| |
| if (bc->cand_matchedinterface == cc->cand_matchedinterface) |
| return (CAND_TIE); |
| else if (cc->cand_matchedinterface) |
| return (CAND_PREFER); |
| else |
| return (CAND_AVOID); |
| } |
| |
| /* |
| * Prefer source addresses whose label matches the destination's label. |
| */ |
| static rule_res_t |
| rule_label(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, ip_stack_t *ipst) |
| { |
| char *label; |
| |
| if (!bc->cand_matchedlabel_set) { |
| label = ip6_asp_lookup(&bc->cand_srcaddr, NULL, ipst); |
| bc->cand_matchedlabel = |
| ip6_asp_labelcmp(label, dstinfo->dst_label); |
| bc->cand_matchedlabel_set = B_TRUE; |
| } |
| |
| label = ip6_asp_lookup(&cc->cand_srcaddr, NULL, ipst); |
| cc->cand_matchedlabel = ip6_asp_labelcmp(label, dstinfo->dst_label); |
| cc->cand_matchedlabel_set = B_TRUE; |
| |
| if (bc->cand_matchedlabel == cc->cand_matchedlabel) |
| return (CAND_TIE); |
| else if (cc->cand_matchedlabel) |
| return (CAND_PREFER); |
| else |
| return (CAND_AVOID); |
| } |
| |
| /* |
| * Prefer public addresses over temporary ones. An application can reverse |
| * the logic of this rule and prefer temporary addresses by using the |
| * IPV6_SRC_PREFERENCES socket option. |
| */ |
| /* ARGSUSED3 */ |
| static rule_res_t |
| rule_temporary(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, |
| ip_stack_t *ipst) |
| { |
| if (!bc->cand_istmp_set) { |
| bc->cand_istmp = ((bc->cand_flags & IPIF_TEMPORARY) != 0); |
| bc->cand_istmp_set = B_TRUE; |
| } |
| |
| cc->cand_istmp = ((cc->cand_flags & IPIF_TEMPORARY) != 0); |
| cc->cand_istmp_set = B_TRUE; |
| |
| if (bc->cand_istmp == cc->cand_istmp) |
| return (CAND_TIE); |
| |
| if (dstinfo->dst_prefer_src_tmp && cc->cand_istmp) |
| return (CAND_PREFER); |
| else if (!dstinfo->dst_prefer_src_tmp && !cc->cand_istmp) |
| return (CAND_PREFER); |
| else |
| return (CAND_AVOID); |
| } |
| |
| /* |
| * Prefer source addresses with longer matching prefix with the destination |
| * under the interface mask. This gets us on the same subnet before applying |
| * any Solaris-specific rules. |
| */ |
| /* ARGSUSED3 */ |
| static rule_res_t |
| rule_ifprefix(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, |
| ip_stack_t *ipst) |
| { |
| if (!bc->cand_pref_eq_set) { |
| bc->cand_pref_eq = V6_MASK_EQ_2(bc->cand_srcaddr, |
| bc->cand_mask, *dstinfo->dst_addr); |
| bc->cand_pref_eq_set = B_TRUE; |
| } |
| |
| cc->cand_pref_eq = V6_MASK_EQ_2(cc->cand_srcaddr, cc->cand_mask, |
| *dstinfo->dst_addr); |
| cc->cand_pref_eq_set = B_TRUE; |
| |
| if (bc->cand_pref_eq) { |
| if (cc->cand_pref_eq) { |
| if (!bc->cand_pref_len_set) { |
| bc->cand_pref_len = |
| ip_mask_to_plen_v6(&bc->cand_mask); |
| bc->cand_pref_len_set = B_TRUE; |
| } |
| cc->cand_pref_len = ip_mask_to_plen_v6(&cc->cand_mask); |
| cc->cand_pref_len_set = B_TRUE; |
| if (bc->cand_pref_len == cc->cand_pref_len) |
| return (CAND_TIE); |
| else if (bc->cand_pref_len > cc->cand_pref_len) |
| return (CAND_AVOID); |
| else |
| return (CAND_PREFER); |
| } else { |
| return (CAND_AVOID); |
| } |
| } else { |
| if (cc->cand_pref_eq) |
| return (CAND_PREFER); |
| else |
| return (CAND_TIE); |
| } |
| } |
| |
| /* |
| * Prefer to use zone-specific addresses when possible instead of all-zones |
| * addresses. |
| */ |
| /* ARGSUSED2 */ |
| static rule_res_t |
| rule_zone_specific(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, |
| ip_stack_t *ipst) |
| { |
| if ((bc->cand_zoneid == ALL_ZONES) == |
| (cc->cand_zoneid == ALL_ZONES)) |
| return (CAND_TIE); |
| else if (cc->cand_zoneid == ALL_ZONES) |
| return (CAND_AVOID); |
| else |
| return (CAND_PREFER); |
| } |
| |
| /* |
| * Prefer to use DHCPv6 (first) and static addresses (second) when possible |
| * instead of statelessly autoconfigured addresses. |
| * |
| * This is done after trying all other preferences (and before the final tie |
| * breaker) so that, if all else is equal, we select addresses configured by |
| * DHCPv6 over other addresses. We presume that DHCPv6 addresses, unlike |
| * stateless autoconfigured addresses, are deliberately configured by an |
| * administrator, and thus are correctly set up in DNS and network packet |
| * filters. |
| */ |
| /* ARGSUSED2 */ |
| static rule_res_t |
| rule_addr_type(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, |
| ip_stack_t *ipst) |
| { |
| #define ATYPE(x) \ |
| ((x) & IPIF_DHCPRUNNING) ? 1 : ((x) & IPIF_ADDRCONF) ? 3 : 2 |
| int bcval = ATYPE(bc->cand_flags); |
| int ccval = ATYPE(cc->cand_flags); |
| #undef ATYPE |
| |
| if (bcval == ccval) |
| return (CAND_TIE); |
| else if (ccval < bcval) |
| return (CAND_PREFER); |
| else |
| return (CAND_AVOID); |
| } |
| |
| /* |
| * Prefer source addresses with longer matching prefix with the destination. |
| * We do the longest matching prefix calculation by doing an xor of both |
| * addresses with the destination, and pick the address with the longest string |
| * of leading zeros, as per CommonPrefixLen() defined in RFC 3484. |
| */ |
| /* ARGSUSED3 */ |
| static rule_res_t |
| rule_prefix(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, ip_stack_t *ipst) |
| { |
| if (!bc->cand_common_pref_set) { |
| bc->cand_common_pref = ip_common_prefix_v6(&bc->cand_srcaddr, |
| dstinfo->dst_addr); |
| bc->cand_common_pref_set = B_TRUE; |
| } |
| |
| cc->cand_common_pref = ip_common_prefix_v6(&cc->cand_srcaddr, |
| dstinfo->dst_addr); |
| cc->cand_common_pref_set = B_TRUE; |
| |
| if (bc->cand_common_pref == cc->cand_common_pref) |
| return (CAND_TIE); |
| else if (bc->cand_common_pref > cc->cand_common_pref) |
| return (CAND_AVOID); |
| else |
| return (CAND_PREFER); |
| } |
| |
| /* |
| * Last rule: we must pick something, so just prefer the current best |
| * candidate. |
| */ |
| /* ARGSUSED */ |
| static rule_res_t |
| rule_must_be_last(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, |
| ip_stack_t *ipst) |
| { |
| return (CAND_AVOID); |
| } |
| |
| /* |
| * Determine the best source address given a destination address and a |
| * destination ill. If no suitable source address is found, it returns |
| * NULL. If there is a usable address pointed to by the usesrc |
| * (i.e ill_usesrc_ifindex != 0) then return that first since it is more |
| * fine grained (i.e per interface) |
| * |
| * This implementation is based on the "Default Address Selection for IPv6" |
| * specification produced by the IETF IPv6 working group. It has been |
| * implemented so that the list of addresses is only traversed once (the |
| * specification's algorithm could traverse the list of addresses once for |
| * every rule). |
| * |
| * The restrict_ill argument restricts the algorithm to choose a source |
| * address that is assigned to the destination ill. This is used when |
| * the destination address is a link-local or multicast address, and when |
| * ipv6_strict_dst_multihoming is turned on. |
| * |
| * src_prefs is the caller's set of source address preferences. If source |
| * address selection is being called to determine the source address of a |
| * connected socket (from ip_set_destination_v6()), then the preferences are |
| * taken from conn_ixa->ixa_src_preferences. These preferences can be set on a |
| * per-socket basis using the IPV6_SRC_PREFERENCES socket option. The only |
| * preference currently implemented is for rfc3041 temporary addresses. |
| */ |
| ipif_t * |
| ipif_select_source_v6(ill_t *dstill, const in6_addr_t *dst, |
| boolean_t restrict_ill, uint32_t src_prefs, zoneid_t zoneid, |
| boolean_t allow_usesrc, boolean_t *notreadyp) |
| { |
| dstinfo_t dstinfo; |
| char dstr[INET6_ADDRSTRLEN]; |
| char sstr[INET6_ADDRSTRLEN]; |
| ipif_t *ipif, *start_ipif, *next_ipif; |
| ill_t *ill, *usesrc_ill = NULL, *ipmp_ill = NULL; |
| ill_walk_context_t ctx; |
| cand_t best_c; /* The best candidate */ |
| cand_t curr_c; /* The current candidate */ |
| uint_t index; |
| boolean_t first_candidate = B_TRUE; |
| rule_res_t rule_result; |
| tsol_tpc_t *src_rhtp, *dst_rhtp; |
| ip_stack_t *ipst = dstill->ill_ipst; |
| |
| /* |
| * The list of ordering rules. They are applied in the order they |
| * appear in the list. |
| * |
| * Solaris doesn't currently support Mobile IPv6, so there's no |
| * rule_mipv6 corresponding to rule 4 in the specification. |
| */ |
| rulef_t rules[] = { |
| rule_isdst, |
| rule_scope, |
| rule_deprecated, |
| rule_preferred, |
| rule_interface, |
| rule_label, |
| rule_temporary, |
| rule_ifprefix, /* local rules after this */ |
| rule_zone_specific, |
| rule_addr_type, |
| rule_prefix, /* local rules before this */ |
| rule_must_be_last, /* must always be last */ |
| NULL |
| }; |
| |
| ASSERT(dstill->ill_isv6); |
| ASSERT(!IN6_IS_ADDR_V4MAPPED(dst)); |
| |
| /* |
| * Check if there is a usable src address pointed to by the |
| * usesrc ifindex. This has higher precedence since it is |
| * finer grained (i.e per interface) v/s being system wide. |
| */ |
| if (dstill->ill_usesrc_ifindex != 0 && allow_usesrc) { |
| if ((usesrc_ill = |
| ill_lookup_on_ifindex(dstill->ill_usesrc_ifindex, B_TRUE, |
| ipst)) != NULL) { |
| dstinfo.dst_ill = usesrc_ill; |
| } else { |
| return (NULL); |
| } |
| } else if (IS_UNDER_IPMP(dstill)) { |
| /* |
| * Test addresses should never be used for source address |
| * selection, so if we were passed an underlying ill, switch |
| * to the IPMP meta-interface. |
| */ |
| if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(dstill)) != NULL) |
| dstinfo.dst_ill = ipmp_ill; |
| else |
| return (NULL); |
| } else { |
| dstinfo.dst_ill = dstill; |
| } |
| |
| /* |
| * If we're dealing with an unlabeled destination on a labeled system, |
| * make sure that we ignore source addresses that are incompatible with |
| * the destination's default label. That destination's default label |
| * must dominate the minimum label on the source address. |
| * |
| * (Note that this has to do with Trusted Solaris. It's not related to |
| * the labels described by ip6_asp_lookup.) |
| */ |
| dst_rhtp = NULL; |
| if (is_system_labeled()) { |
| dst_rhtp = find_tpc(dst, IPV6_VERSION, B_FALSE); |
| if (dst_rhtp == NULL) |
| return (NULL); |
| if (dst_rhtp->tpc_tp.host_type != UNLABELED) { |
| TPC_RELE(dst_rhtp); |
| dst_rhtp = NULL; |
| } |
| } |
| |
| dstinfo.dst_addr = dst; |
| dstinfo.dst_scope = ip_addr_scope_v6(dst); |
| dstinfo.dst_label = ip6_asp_lookup(dst, NULL, ipst); |
| dstinfo.dst_prefer_src_tmp = ((src_prefs & IPV6_PREFER_SRC_TMP) != 0); |
| rw_enter(&ipst->ips_ill_g_lock, RW_READER); |
| /* |
| * Section three of the I-D states that for multicast and |
| * link-local destinations, the candidate set must be restricted to |
| * an interface that is on the same link as the outgoing interface. |
| * Also, when ipv6_strict_dst_multihoming is turned on, always |
| * restrict the source address to the destination link as doing |
| * otherwise will almost certainly cause problems. |
| */ |
| if (IN6_IS_ADDR_LINKLOCAL(dst) || IN6_IS_ADDR_MULTICAST(dst) || |
| ipst->ips_ipv6_strict_dst_multihoming || usesrc_ill != NULL) { |
| dstinfo.dst_restrict_ill = B_TRUE; |
| } else { |
| dstinfo.dst_restrict_ill = restrict_ill; |
| } |
| |
| bzero(&best_c, sizeof (cand_t)); |
| |
| /* |
| * Take a pass through the list of IPv6 interfaces to choose the best |
| * possible source address. If restrict_ill is set, just use dst_ill. |
| */ |
| if (dstinfo.dst_restrict_ill) |
| ill = dstinfo.dst_ill; |
| else |
| ill = ILL_START_WALK_V6(&ctx, ipst); |
| |
| for (; ill != NULL; ill = ill_next(&ctx, ill)) { |
| ASSERT(ill->ill_isv6); |
| |
| /* |
| * Test addresses should never be used for source address |
| * selection, so ignore underlying ills. |
| */ |
| if (IS_UNDER_IPMP(ill)) |
| continue; |
| |
| if (ill->ill_ipif == NULL) |
| continue; |
| /* |
| * For source address selection, we treat the ipif list as |
| * circular and continue until we get back to where we |
| * started. This allows IPMP to vary source address selection |
| * (which improves inbound load spreading) by caching its last |
| * ending point and starting from there. NOTE: we don't have |
| * to worry about ill_src_ipif changing ills since that can't |
| * happen on the IPMP ill. |
| */ |
| start_ipif = ill->ill_ipif; |
| if (IS_IPMP(ill) && ill->ill_src_ipif != NULL) |
| start_ipif = ill->ill_src_ipif; |
| |
| ipif = start_ipif; |
| do { |
| if ((next_ipif = ipif->ipif_next) == NULL) |
| next_ipif = ill->ill_ipif; |
| |
| if (!IPIF_VALID_IPV6_SOURCE(ipif)) |
| continue; |
| |
| if (!ipif->ipif_addr_ready) { |
| if (notreadyp != NULL) |
| *notreadyp = B_TRUE; |
| continue; |
| } |
| |
| if (zoneid != ALL_ZONES && |
| ipif->ipif_zoneid != zoneid && |
| ipif->ipif_zoneid != ALL_ZONES) |
| continue; |
| |
| /* |
| * Check compatibility of local address for |
| * destination's default label if we're on a labeled |
| * system. Incompatible addresses can't be used at |
| * all and must be skipped over. |
| */ |
| if (dst_rhtp != NULL) { |
| boolean_t incompat; |
| |
| src_rhtp = find_tpc(&ipif->ipif_v6lcl_addr, |
| IPV6_VERSION, B_FALSE); |
| if (src_rhtp == NULL) |
| continue; |
| incompat = |
| src_rhtp->tpc_tp.host_type != SUN_CIPSO || |
| src_rhtp->tpc_tp.tp_doi != |
| dst_rhtp->tpc_tp.tp_doi || |
| (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, |
| &src_rhtp->tpc_tp.tp_sl_range_cipso) && |
| !blinlset(&dst_rhtp->tpc_tp.tp_def_label, |
| src_rhtp->tpc_tp.tp_sl_set_cipso)); |
| TPC_RELE(src_rhtp); |
| if (incompat) |
| continue; |
| } |
| |
| if (first_candidate) { |
| /* |
| * This is first valid address in the list. |
| * It is automatically the best candidate |
| * so far. |
| */ |
| best_c.cand_ipif = ipif; |
| first_candidate = B_FALSE; |
| continue; |
| } |
| |
| bzero(&curr_c, sizeof (cand_t)); |
| curr_c.cand_ipif = ipif; |
| |
| /* |
| * Compare this current candidate (curr_c) with the |
| * best candidate (best_c) by applying the |
| * comparison rules in order until one breaks the |
| * tie. |
| */ |
| for (index = 0; rules[index] != NULL; index++) { |
| /* Apply a comparison rule. */ |
| rule_result = (rules[index])(&best_c, &curr_c, |
| &dstinfo, ipst); |
| if (rule_result == CAND_AVOID) { |
| /* |
| * The best candidate is still the |
| * best candidate. Forget about |
| * this current candidate and go on |
| * to the next one. |
| */ |
| break; |
| } else if (rule_result == CAND_PREFER) { |
| /* |
| * This candidate is prefered. It |
| * becomes the best candidate so |
| * far. Go on to the next address. |
| */ |
| best_c = curr_c; |
| break; |
| } |
| /* We have a tie, apply the next rule. */ |
| } |
| |
| /* |
| * The last rule must be a tie breaker rule and |
| * must never produce a tie. At this point, the |
| * candidate should have either been rejected, or |
| * have been prefered as the best candidate so far. |
| */ |
| ASSERT(rule_result != CAND_TIE); |
| } while ((ipif = next_ipif) != start_ipif); |
| |
| /* |
| * For IPMP, update the source ipif rotor to the next ipif, |
| * provided we can look it up. (We must not use it if it's |
| * IPIF_CONDEMNED since we may have grabbed ill_g_lock after |
| * ipif_free() checked ill_src_ipif.) |
| */ |
| if (IS_IPMP(ill) && ipif != NULL) { |
| mutex_enter(&ipif->ipif_ill->ill_lock); |
| next_ipif = ipif->ipif_next; |
| if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif)) |
| ill->ill_src_ipif = next_ipif; |
| else |
| ill->ill_src_ipif = NULL; |
| mutex_exit(&ipif->ipif_ill->ill_lock); |
| } |
| |
| /* |
| * Only one ill to consider if dst_restrict_ill is set. |
| */ |
| if (dstinfo.dst_restrict_ill) |
| break; |
| } |
| |
| ipif = best_c.cand_ipif; |
| ip1dbg(("ipif_select_source_v6(%s, %s) -> %s\n", |
| dstinfo.dst_ill->ill_name, |
| inet_ntop(AF_INET6, dstinfo.dst_addr, dstr, sizeof (dstr)), |
| (ipif == NULL ? "NULL" : |
| inet_ntop(AF_INET6, &ipif->ipif_v6lcl_addr, sstr, sizeof (sstr))))); |
| |
| if (usesrc_ill != NULL) |
| ill_refrele(usesrc_ill); |
| |
| if (ipmp_ill != NULL) |
| ill_refrele(ipmp_ill); |
| |
| if (dst_rhtp != NULL) |
| TPC_RELE(dst_rhtp); |
| |
| if (ipif == NULL) { |
| rw_exit(&ipst->ips_ill_g_lock); |
| return (NULL); |
| } |
| |
| mutex_enter(&ipif->ipif_ill->ill_lock); |
| if (!IPIF_IS_CONDEMNED(ipif)) { |
| ipif_refhold_locked(ipif); |
| mutex_exit(&ipif->ipif_ill->ill_lock); |
| rw_exit(&ipst->ips_ill_g_lock); |
| return (ipif); |
| } |
| mutex_exit(&ipif->ipif_ill->ill_lock); |
| rw_exit(&ipst->ips_ill_g_lock); |
| ip1dbg(("ipif_select_source_v6 cannot lookup ipif %p" |
| " returning null \n", (void *)ipif)); |
| |
| return (NULL); |
| } |
| |
| /* |
| * Pick a source address based on the destination ill and an optional setsrc |
| * address. |
| * The result is stored in srcp. If generation is set, then put the source |
| * generation number there before we look for the source address (to avoid |
| * missing changes in the set of source addresses. |
| * If flagsp is set, then us it to pass back ipif_flags. |
| * |
| * If the caller wants to cache the returned source address and detect when |
| * that might be stale, the caller should pass in a generation argument, |
| * which the caller can later compare against ips_src_generation |
| * |
| * The precedence order for selecting an IPv6 source address is: |
| * - RTF_SETSRC on the first ire in the recursive lookup always wins. |
| * - If usrsrc is set, swap the ill to be the usesrc one. |
| * - If IPMP is used on the ill, select a random address from the most |
| * preferred ones below: |
| * That is followed by the long list of IPv6 source address selection rules |
| * starting with rule_isdst(), rule_scope(), etc. |
| * |
| * We have lower preference for ALL_ZONES IP addresses, |
| * as they pose problems with unlabeled destinations. |
| * |
| * Note that when multiple IP addresses match e.g., with rule_scope() we pick |
| * the first one if IPMP is not in use. With IPMP we randomize. |
| */ |
| int |
| ip_select_source_v6(ill_t *ill, const in6_addr_t *setsrc, const in6_addr_t *dst, |
| zoneid_t zoneid, ip_stack_t *ipst, uint_t restrict_ill, uint32_t src_prefs, |
| in6_addr_t *srcp, uint32_t *generation, uint64_t *flagsp) |
| { |
| ipif_t *ipif; |
| boolean_t notready = B_FALSE; /* Set if !ipif_addr_ready found */ |
| |
| if (flagsp != NULL) |
| *flagsp = 0; |
| |
| /* |
| * Need to grab the generation number before we check to |
| * avoid a race with a change to the set of local addresses. |
| * No lock needed since the thread which updates the set of local |
| * addresses use ipif/ill locks and exit those (hence a store memory |
| * barrier) before doing the atomic increase of ips_src_generation. |
| */ |
| if (generation != NULL) { |
| *generation = ipst->ips_src_generation; |
| } |
| |
| /* Was RTF_SETSRC set on the first IRE in the recursive lookup? */ |
| if (setsrc != NULL && !IN6_IS_ADDR_UNSPECIFIED(setsrc)) { |
| *srcp = *setsrc; |
| return (0); |
| } |
| |
| ipif = ipif_select_source_v6(ill, dst, restrict_ill, src_prefs, zoneid, |
| B_TRUE, ¬ready); |
| if (ipif == NULL) { |
| if (notready) |
| return (ENETDOWN); |
| else |
| return (EADDRNOTAVAIL); |
| } |
| *srcp = ipif->ipif_v6lcl_addr; |
| if (flagsp != NULL) |
| *flagsp = ipif->ipif_flags; |
| ipif_refrele(ipif); |
| return (0); |
| } |
| |
| /* |
| * Perform an attach and bind to get phys addr plus info_req for |
| * the physical device. |
| * q and mp represents an ioctl which will be queued waiting for |
| * completion of the DLPI message exchange. |
| * MUST be called on an ill queue. |
| * |
| * Returns EINPROGRESS when mp has been consumed by queueing it. |
| * The ioctl will complete in ip_rput. |
| */ |
| int |
| ill_dl_phys(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) |
| { |
| mblk_t *v6token_mp = NULL; |
| mblk_t *v6lla_mp = NULL; |
| mblk_t *dest_mp = NULL; |
| mblk_t *phys_mp = NULL; |
| mblk_t *info_mp = NULL; |
| mblk_t *attach_mp = NULL; |
| mblk_t *bind_mp = NULL; |
| mblk_t *unbind_mp = NULL; |
| mblk_t *notify_mp = NULL; |
| mblk_t *capab_mp = NULL; |
| |
| ip1dbg(("ill_dl_phys(%s:%u)\n", ill->ill_name, ipif->ipif_id)); |
| ASSERT(ill->ill_dlpi_style_set); |
| ASSERT(WR(q)->q_next != NULL); |
| |
| if (ill->ill_isv6) { |
| v6token_mp = ip_dlpi_alloc(sizeof (dl_phys_addr_req_t) + |
| sizeof (t_scalar_t), DL_PHYS_ADDR_REQ); |
| if (v6token_mp == NULL) |
| goto bad; |
| ((dl_phys_addr_req_t *)v6token_mp->b_rptr)->dl_addr_type = |
| DL_IPV6_TOKEN; |
| |
| v6lla_mp = ip_dlpi_alloc(sizeof (dl_phys_addr_req_t) + |
| sizeof (t_scalar_t), DL_PHYS_ADDR_REQ); |
| if (v6lla_mp == NULL) |
| goto bad; |
| ((dl_phys_addr_req_t *)v6lla_mp->b_rptr)->dl_addr_type = |
| DL_IPV6_LINK_LAYER_ADDR; |
| } |
| |
| if (ill->ill_mactype == DL_IPV4 || ill->ill_mactype == DL_IPV6) { |
| dest_mp = ip_dlpi_alloc(sizeof (dl_phys_addr_req_t) + |
| sizeof (t_scalar_t), DL_PHYS_ADDR_REQ); |
| if (dest_mp == NULL) |
| goto bad; |
| ((dl_phys_addr_req_t *)dest_mp->b_rptr)->dl_addr_type = |
| DL_CURR_DEST_ADDR; |
| } |
| |
| /* |
| * Allocate a DL_NOTIFY_REQ and set the notifications we want. |
| */ |
| notify_mp = ip_dlpi_alloc(sizeof (dl_notify_req_t) + sizeof (long), |
| DL_NOTIFY_REQ); |
| if (notify_mp == NULL) |
| goto bad; |
| ((dl_notify_req_t *)notify_mp->b_rptr)->dl_notifications = |
| (DL_NOTE_PHYS_ADDR | DL_NOTE_SDU_SIZE | DL_NOTE_FASTPATH_FLUSH | |
| DL_NOTE_LINK_UP | DL_NOTE_LINK_DOWN | DL_NOTE_CAPAB_RENEG | |
| DL_NOTE_PROMISC_ON_PHYS | DL_NOTE_PROMISC_OFF_PHYS | |
| DL_NOTE_REPLUMB | DL_NOTE_ALLOWED_IPS | DL_NOTE_SDU_SIZE2); |
| |
| phys_mp = ip_dlpi_alloc(sizeof (dl_phys_addr_req_t) + |
| sizeof (t_scalar_t), DL_PHYS_ADDR_REQ); |
| if (phys_mp == NULL) |
| goto bad; |
| ((dl_phys_addr_req_t *)phys_mp->b_rptr)->dl_addr_type = |
| DL_CURR_PHYS_ADDR; |
| |
| info_mp = ip_dlpi_alloc( |
| sizeof (dl_info_req_t) + sizeof (dl_info_ack_t), |
| DL_INFO_REQ); |
| if (info_mp == NULL) |
| goto bad; |
| |
| ASSERT(ill->ill_dlpi_capab_state == IDCS_UNKNOWN); |
| capab_mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), |
| DL_CAPABILITY_REQ); |
| if (capab_mp == NULL) |
| goto bad; |
| |
| bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), |
| DL_BIND_REQ); |
| if (bind_mp == NULL) |
| goto bad; |
| ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; |
| ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; |
| |
| unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); |
| if (unbind_mp == NULL) |
| goto bad; |
| |
| /* If we need to attach, pre-alloc and initialize the mblk */ |
| if (ill->ill_needs_attach) { |
| attach_mp = ip_dlpi_alloc(sizeof (dl_attach_req_t), |
| DL_ATTACH_REQ); |
| if (attach_mp == NULL) |
| goto bad; |
| ((dl_attach_req_t *)attach_mp->b_rptr)->dl_ppa = ill->ill_ppa; |
| } |
| |
| /* |
| * Here we are going to delay the ioctl ack until after |
| * ACKs from DL_PHYS_ADDR_REQ. So need to save the |
| * original ioctl message before sending the requests |
| */ |
| mutex_enter(&ill->ill_lock); |
| /* ipsq_pending_mp_add won't fail since we pass in a NULL connp */ |
| (void) ipsq_pending_mp_add(NULL, ipif, ill->ill_wq, mp, 0); |
| /* |
| * Set ill_phys_addr_pend to zero. It will be set to the addr_type of |
| * the DL_PHYS_ADDR_REQ in ill_dlpi_send() and ill_dlpi_done(). It will |
| * be used to track which DL_PHYS_ADDR_REQ is being ACK'd/NAK'd. |
| */ |
| ill->ill_phys_addr_pend = 0; |
| mutex_exit(&ill->ill_lock); |
| |
| if (attach_mp != NULL) { |
| ip1dbg(("ill_dl_phys: attach\n")); |
| ill_dlpi_send(ill, attach_mp); |
| } |
| ill_dlpi_send(ill, bind_mp); |
| ill_dlpi_send(ill, info_mp); |
| |
| /* |
| * Send the capability request to get the VRRP capability information. |
| */ |
| ill_capability_send(ill, capab_mp); |
| |
| if (v6token_mp != NULL) |
| ill_dlpi_send(ill, v6token_mp); |
| if (v6lla_mp != NULL) |
| ill_dlpi_send(ill, v6lla_mp); |
| if (dest_mp != NULL) |
| ill_dlpi_send(ill, dest_mp); |
| ill_dlpi_send(ill, phys_mp); |
| ill_dlpi_send(ill, notify_mp); |
| ill_dlpi_send(ill, unbind_mp); |
| |
| /* |
| * This operation will complete in ip_rput_dlpi_writer with either |
| * a DL_PHYS_ADDR_ACK or DL_ERROR_ACK. |
| */ |
| return (EINPROGRESS); |
| bad: |
| freemsg(v6token_mp); |
| freemsg(v6lla_mp); |
| freemsg(dest_mp); |
| freemsg(phys_mp); |
| freemsg(info_mp); |
| freemsg(attach_mp); |
| freemsg(bind_mp); |
| freemsg(capab_mp); |
| freemsg(unbind_mp); |
| freemsg(notify_mp); |
| return (ENOMEM); |
| } |
| |
| /* Add room for tcp+ip headers */ |
| uint_t ip_loopback_mtu_v6plus = IP_LOOPBACK_MTU + IPV6_HDR_LEN + 20; |
| |
| /* |
| * DLPI is up. |
| * Create all the IREs associated with an interface bring up multicast. |
| * Set the interface flag and finish other initialization |
| * that potentially had to be differed to after DL_BIND_ACK. |
| */ |
| int |
| ipif_up_done_v6(ipif_t *ipif) |
| { |
| ill_t *ill = ipif->ipif_ill; |
| int err; |
| boolean_t loopback = B_FALSE; |
| |
| ip1dbg(("ipif_up_done_v6(%s:%u)\n", |
| ipif->ipif_ill->ill_name, ipif->ipif_id)); |
| DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done_v6", |
| ill_t *, ill, ipif_t *, ipif); |
| |
| /* Check if this is a loopback interface */ |
| if (ipif->ipif_ill->ill_wq == NULL) |
| loopback = B_TRUE; |
| |
| ASSERT(ipif->ipif_isv6); |
| ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); |
| |
| if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) { |
| nce_t *loop_nce = NULL; |
| uint16_t flags = (NCE_F_MYADDR | NCE_F_NONUD | NCE_F_AUTHORITY); |
| |
| /* |
| * lo0:1 and subsequent ipifs were marked IRE_LOCAL in |
| * ipif_lookup_on_name(), but in the case of zones we can have |
| * several loopback addresses on lo0. So all the interfaces with |
| * loopback addresses need to be marked IRE_LOOPBACK. |
| */ |
| if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, &ipv6_loopback)) |
| ipif->ipif_ire_type = IRE_LOOPBACK; |
| else |
| ipif->ipif_ire_type = IRE_LOCAL; |
| if (ill->ill_net_type != IRE_LOOPBACK) |
| flags |= NCE_F_PUBLISH; |
| err = nce_lookup_then_add_v6(ill, NULL, |
| ill->ill_phys_addr_length, |
| &ipif->ipif_v6lcl_addr, flags, ND_REACHABLE, &loop_nce); |
| |
| /* A shared-IP zone sees EEXIST for lo0:N */ |
| if (err == 0 || err == EEXIST) { |
| ipif->ipif_added_nce = 1; |
| loop_nce->nce_ipif_cnt++; |
| nce_refrele(loop_nce); |
| err = 0; |
| } else { |
| ASSERT(loop_nce == NULL); |
| return (err); |
| } |
| } |
| |
| err = ipif_add_ires_v6(ipif, loopback); |
| if (err != 0) { |
| /* |
| * See comments about return value from |
| * ipif_addr_availability_check() in ipif_add_ires_v6(). |
| */ |
| if (err != EADDRINUSE) { |
| ipif_ndp_down(ipif); |
| } else { |
| /* |
| * Make IPMP aware of the deleted ipif so that |
| * the needed ipmp cleanup (e.g., of ipif_bound_ill) |
| * can be completed. Note that we do not want to |
| * destroy the nce that was created on the ipmp_ill |
| * for the active copy of the duplicate address in |
| * use. |
| */ |
| if (IS_IPMP(ill)) |
| ipmp_illgrp_del_ipif(ill->ill_grp, ipif); |
| err = EADDRNOTAVAIL; |
| } |
| return (err); |
| } |
| |
| if (ill->ill_ipif_up_count == 1 && !loopback) { |
| /* Recover any additional IREs entries for this ill */ |
| (void) ill_recover_saved_ire(ill); |
| } |
| |
| if (ill->ill_need_recover_multicast) { |
| /* |
| * Need to recover all multicast memberships in the driver. |
| * This had to be deferred until we had attached. |
| */ |
| ill_recover_multicast(ill); |
| } |
| |
| if (ill->ill_ipif_up_count == 1) { |
| /* |
| * Since the interface is now up, it may now be active. |
| */ |
| if (IS_UNDER_IPMP(ill)) |
| ipmp_ill_refresh_active(ill); |
| } |
| |
| /* Join the allhosts multicast address and the solicited node MC */ |
| ipif_multicast_up(ipif); |
| |
| /* Perhaps ilgs should use this ill */ |
| update_conn_ill(NULL, ill->ill_ipst); |
| |
| if (ipif->ipif_addr_ready) |
| ipif_up_notify(ipif); |
| |
| return (0); |
| } |
| |
| /* |
| * Add the IREs associated with the ipif. |
| * Those MUST be explicitly removed in ipif_delete_ires_v6. |
| */ |
| static int |
| ipif_add_ires_v6(ipif_t *ipif, boolean_t loopback) |
| { |
| ill_t *ill = ipif->ipif_ill; |
| ip_stack_t *ipst = ill->ill_ipst; |
| in6_addr_t v6addr; |
| in6_addr_t route_mask; |
| int err; |
| char buf[INET6_ADDRSTRLEN]; |
| ire_t *ire_local = NULL; /* LOCAL or LOOPBACK */ |
| ire_t *ire_if = NULL; |
| in6_addr_t *gw; |
| |
| if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && |
| !(ipif->ipif_flags & IPIF_NOLOCAL)) { |
| |
| /* |
| * If we're on a labeled system then make sure that zone- |
| * private addresses have proper remote host database entries. |
| */ |
| if (is_system_labeled() && |
| ipif->ipif_ire_type != IRE_LOOPBACK) { |
| if (ip6opt_ls == 0) { |
| cmn_err(CE_WARN, "IPv6 not enabled " |
| "via /etc/system"); |
| return (EINVAL); |
| } |
| if (!tsol_check_interface_address(ipif)) |
| return (EINVAL); |
| } |
| |
| if (loopback) |
| gw = &ipif->ipif_v6lcl_addr; |
| else |
| gw = NULL; |
| |
| /* Register the source address for __sin6_src_id */ |
| err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, |
| ipif->ipif_zoneid, ipst); |
| if (err != 0) { |
| ip0dbg(("ipif_add_ires_v6: srcid_insert %d\n", err)); |
| return (err); |
| } |
| /* |
| * If the interface address is set, create the LOCAL |
| * or LOOPBACK IRE. |
| */ |
| ip1dbg(("ipif_add_ires_v6: creating IRE %d for %s\n", |
| ipif->ipif_ire_type, |
| inet_ntop(AF_INET6, &ipif->ipif_v6lcl_addr, |
| buf, sizeof (buf)))); |
| |
| ire_local = ire_create_v6( |
| &ipif->ipif_v6lcl_addr, /* dest address */ |
| &ipv6_all_ones, /* mask */ |
| gw, /* gateway */ |
| ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ |
| ipif->ipif_ill, /* interface */ |
| ipif->ipif_zoneid, |
| ((ipif->ipif_flags & IPIF_PRIVATE) ? |
| RTF_PRIVATE : 0) | RTF_KERNEL, |
| NULL, |
| ipst); |
| if (ire_local == NULL) { |
| ip1dbg(("ipif_up_done_v6: NULL ire_local\n")); |
| err = ENOMEM; |
| goto bad; |
| } |
| } |
| |
| /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ |
| if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) && |
| !(IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet) && |
| IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask))) { |
| /* ipif_v6subnet is ipif_v6pp_dst_addr for pt-pt */ |
| v6addr = ipif->ipif_v6subnet; |
| |
| if (ipif->ipif_flags & IPIF_POINTOPOINT) { |
| route_mask = ipv6_all_ones; |
| } else { |
| route_mask = ipif->ipif_v6net_mask; |
| } |
| |
| ip1dbg(("ipif_add_ires_v6: creating if IRE %d for %s\n", |
| ill->ill_net_type, |
| inet_ntop(AF_INET6, &v6addr, buf, sizeof (buf)))); |
| |
| ire_if = ire_create_v6( |
| &v6addr, /* dest pref */ |
| &route_mask, /* mask */ |
| &ipif->ipif_v6lcl_addr, /* gateway */ |
| ill->ill_net_type, /* IF_[NO]RESOLVER */ |
| ipif->ipif_ill, |
| ipif->ipif_zoneid, |
| ((ipif->ipif_flags & IPIF_PRIVATE) ? |
| RTF_PRIVATE : 0) | RTF_KERNEL, |
| NULL, |
| ipst); |
| if (ire_if == NULL) { |
| ip1dbg(("ipif_up_done: NULL ire_if\n")); |
| err = ENOMEM; |
| goto bad; |
| } |
| } |
| |
| /* |
| * Need to atomically check for IP address availability under |
| * ip_addr_avail_lock. ill_g_lock is held as reader to ensure no new |
| * ills or new ipifs can be added while we are checking availability. |
| */ |
| rw_enter(&ipst->ips_ill_g_lock, RW_READER); |
| mutex_enter(&ipst->ips_ip_addr_avail_lock); |
| ill->ill_ipif_up_count++; |
| ipif->ipif_flags |= IPIF_UP; |
| err = ip_addr_availability_check(ipif); |
| mutex_exit(&ipst->ips_ip_addr_avail_lock); |
| rw_exit(&ipst->ips_ill_g_lock); |
| |
| if (err != 0) { |
| /* |
| * Our address may already be up on the same ill. In this case, |
| * the external resolver entry for our ipif replaced the one for |
| * the other ipif. So we don't want to delete it (otherwise the |
| * other ipif would be unable to send packets). |
| * ip_addr_availability_check() identifies this case for us and |
| * returns EADDRINUSE; Caller must turn it into EADDRNOTAVAIL |
| * which is the expected error code. |
| * |
| * Note that ipif_ndp_down() will only delete the nce in the |
| * case when the nce_ipif_cnt drops to 0. |
| */ |
| ill->ill_ipif_up_count--; |
| ipif->ipif_flags &= ~IPIF_UP; |
| goto bad; |
| } |
| |
| /* |
| * Add in all newly created IREs. |
| * We add the IRE_INTERFACE before the IRE_LOCAL to ensure |
| * that lookups find the IRE_LOCAL even if the IRE_INTERFACE is |
| * a /128 route. |
| */ |
| if (ire_if != NULL) { |
| ire_if = ire_add(ire_if); |
| if (ire_if == NULL) { |
| err = ENOMEM; |
| goto bad2; |
| } |
| #ifdef DEBUG |
| ire_refhold_notr(ire_if); |
| ire_refrele(ire_if); |
| #endif |
| } |
| if (ire_local != NULL) { |
| ire_local = ire_add(ire_local); |
| if (ire_local == NULL) { |
| err = ENOMEM; |
| goto bad2; |
| } |
| #ifdef DEBUG |
| ire_refhold_notr(ire_local); |
| ire_refrele(ire_local); |
| #endif |
| } |
| rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); |
| if (ire_local != NULL) |
| ipif->ipif_ire_local = ire_local; |
| if (ire_if != NULL) |
| ipif->ipif_ire_if = ire_if; |
| rw_exit(&ipst->ips_ill_g_lock); |
| ire_local = NULL; |
| ire_if = NULL; |
| |
| if (ipif->ipif_addr_ready) |
| ipif_up_notify(ipif); |
| return (0); |
| |
| bad2: |
| ill->ill_ipif_up_count--; |
| ipif->ipif_flags &= ~IPIF_UP; |
| |
| bad: |
| if (ire_local != NULL) |
| ire_delete(ire_local); |
| if (ire_if != NULL) |
| ire_delete(ire_if); |
| |
| rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); |
| ire_local = ipif->ipif_ire_local; |
| ipif->ipif_ire_local = NULL; |
| ire_if = ipif->ipif_ire_if; |
| ipif->ipif_ire_if = NULL; |
| rw_exit(&ipst->ips_ill_g_lock); |
| if (ire_local != NULL) { |
| ire_delete(ire_local); |
| ire_refrele_notr(ire_local); |
| } |
| if (ire_if != NULL) { |
| ire_delete(ire_if); |
| ire_refrele_notr(ire_if); |
| } |
| (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); |
| |
| return (err); |
| } |
| |
| /* Remove all the IREs created by ipif_add_ires_v6 */ |
| void |
| ipif_delete_ires_v6(ipif_t *ipif) |
| { |
| ill_t *ill = ipif->ipif_ill; |
| ip_stack_t *ipst = ill->ill_ipst; |
| ire_t *ire; |
| |
| rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); |
| ire = ipif->ipif_ire_local; |
| ipif->ipif_ire_local = NULL; |
| rw_exit(&ipst->ips_ill_g_lock); |
| if (ire != NULL) { |
| /* |
| * Move count to ipif so we don't loose the count due to |
| * a down/up dance. |
| */ |
| atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count); |
| |
| ire_delete(ire); |
| ire_refrele_notr(ire); |
| } |
| rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); |
| ire = ipif->ipif_ire_if; |
| ipif->ipif_ire_if = NULL; |
| rw_exit(&ipst->ips_ill_g_lock); |
| if (ire != NULL) { |
| ire_delete(ire); |
| ire_refrele_notr(ire); |
| } |
| } |
| |
| /* |
| * Delete an ND entry if it exists. |
| */ |
| /* ARGSUSED */ |
| int |
| ip_siocdelndp_v6(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, |
| ip_ioctl_cmd_t *ipip, void *dummy_ifreq) |
| { |
| sin6_t *sin6; |
| struct lifreq *lifr; |
| lif_nd_req_t *lnr; |
| ill_t *ill = ipif->ipif_ill; |
| nce_t *nce; |
| |
| lifr = (struct lifreq *)mp->b_cont->b_cont->b_rptr; |
| lnr = &lifr->lifr_nd; |
| /* Only allow for logical unit zero i.e. not on "le0:17" */ |
| if (ipif->ipif_id != 0) |
| return (EINVAL); |
| |
| if (!ipif->ipif_isv6) |
| return (EINVAL); |
| |
| if (lnr->lnr_addr.ss_family != AF_INET6) |
| return (EAFNOSUPPORT); |
| |
| sin6 = (sin6_t *)&lnr->lnr_addr; |
| |
| /* |
| * Since ND mappings must be consistent across an IPMP group, prohibit |
| * deleting ND mappings on underlying interfaces. |
| * Don't allow deletion of mappings for local addresses. |
| */ |
| if (IS_UNDER_IPMP(ill)) |
| return (EPERM); |
| |
| nce = nce_lookup_v6(ill, &sin6->sin6_addr); |
| if (nce == NULL) |
| return (ESRCH); |
| |
| if (NCE_MYADDR(nce->nce_common)) { |
| nce_refrele(nce); |
| return (EPERM); |
| } |
| |
| /* |
| * delete the nce_common which will also delete the nces on any |
| * under_ill in the case of ipmp. |
| */ |
| ncec_delete(nce->nce_common); |
| nce_refrele(nce); |
| return (0); |
| } |
| |
| /* |
| * Return nbr cache info. |
| */ |
| /* ARGSUSED */ |
| int |
| ip_siocqueryndp_v6(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, |
| ip_ioctl_cmd_t *ipip, void *dummy_ifreq) |
| { |
| ill_t *ill = ipif->ipif_ill; |
| struct lifreq *lifr; |
| lif_nd_req_t *lnr; |
| |
| lifr = (struct lifreq *)mp->b_cont->b_cont->b_rptr; |
| lnr = &lifr->lifr_nd; |
| /* Only allow for logical unit zero i.e. not on "le0:17" */ |
| if (ipif->ipif_id != 0) |
| return (EINVAL); |
| |
| if (!ipif->ipif_isv6) |
| return (EINVAL); |
| |
| if (lnr->lnr_addr.ss_family != AF_INET6) |
| return (EAFNOSUPPORT); |
| |
| if (ill->ill_phys_addr_length > sizeof (lnr->lnr_hdw_addr)) |
| return (EINVAL); |
| |
| return (ndp_query(ill, lnr)); |
| } |
| |
| /* |
| * Perform an update of the nd entry for the specified address. |
| */ |
| /* ARGSUSED */ |
| int |
| ip_siocsetndp_v6(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, |
| ip_ioctl_cmd_t *ipip, void *dummy_ifreq) |
| { |
| sin6_t *sin6; |
| ill_t *ill = ipif->ipif_ill; |
| struct lifreq *lifr; |
| lif_nd_req_t *lnr; |
| ire_t *ire; |
| |
| lifr = (struct lifreq *)mp->b_cont->b_cont->b_rptr; |
| lnr = &lifr->lifr_nd; |
| /* Only allow for logical unit zero i.e. not on "le0:17" */ |
| if (ipif->ipif_id != 0) |
| return (EINVAL); |
| |
| if (!ipif->ipif_isv6) |
| return (EINVAL); |
| |
| if (lnr->lnr_addr.ss_family != AF_INET6) |
| return (EAFNOSUPPORT); |
| |
| sin6 = (sin6_t *)&lnr->lnr_addr; |
| |
| /* |
| * Since ND mappings must be consistent across an IPMP group, prohibit |
| * updating ND mappings on underlying interfaces. Also, since ND |
| * mappings for IPMP data addresses are owned by IP itself, prohibit |
| |