| /* |
| * CDDL HEADER START |
| * |
| * The contents of this file are subject to the terms of the |
| * Common Development and Distribution License (the "License"). |
| * You may not use this file except in compliance with the License. |
| * |
| * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE |
| * or http://www.opensolaris.org/os/licensing. |
| * See the License for the specific language governing permissions |
| * and limitations under the License. |
| * |
| * When distributing Covered Code, include this CDDL HEADER in each |
| * file and include the License file at usr/src/OPENSOLARIS.LICENSE. |
| * If applicable, add the following below this CDDL HEADER, with the |
| * fields enclosed by brackets "[]" replaced with your own identifying |
| * information: Portions Copyright [yyyy] [name of copyright owner] |
| * |
| * CDDL HEADER END |
| */ |
| /* |
| * Copyright 2007 Sun Microsystems, Inc. All rights reserved. |
| * Use is subject to license terms. |
| */ |
| |
| #pragma ident "%Z%%M% %I% %E% SMI" |
| |
| #include <sys/types.h> |
| #include <sys/systm.h> |
| #include <sys/stream.h> |
| #include <sys/ddi.h> |
| #include <sys/sunddi.h> |
| #include <sys/kmem.h> |
| #include <sys/socket.h> |
| #include <sys/sysmacros.h> |
| #include <sys/list.h> |
| |
| #include <netinet/in.h> |
| #include <netinet/ip6.h> |
| #include <netinet/sctp.h> |
| |
| #include <inet/common.h> |
| #include <inet/ip.h> |
| #include <inet/ip6.h> |
| #include <inet/ip_if.h> |
| #include <inet/ipclassifier.h> |
| #include <inet/sctp_ip.h> |
| #include "sctp_impl.h" |
| #include "sctp_addr.h" |
| |
| static void sctp_ipif_inactive(sctp_ipif_t *); |
| static sctp_ipif_t *sctp_lookup_ipif_addr(in6_addr_t *, boolean_t, |
| sctp_t *, uint_t); |
| static int sctp_get_all_ipifs(sctp_t *, int); |
| int sctp_valid_addr_list(sctp_t *, const void *, uint32_t, |
| uchar_t *, size_t); |
| sctp_saddr_ipif_t *sctp_ipif_lookup(sctp_t *, uint_t); |
| static int sctp_ipif_hash_insert(sctp_t *, sctp_ipif_t *, int, |
| boolean_t dontsrc); |
| static void sctp_ipif_hash_remove(sctp_t *, sctp_ipif_t *); |
| static int sctp_compare_ipif_list(sctp_ipif_hash_t *, |
| sctp_ipif_hash_t *); |
| int sctp_compare_saddrs(sctp_t *, sctp_t *); |
| static int sctp_copy_ipifs(sctp_ipif_hash_t *, sctp_t *, int); |
| int sctp_dup_saddrs(sctp_t *, sctp_t *, int); |
| void sctp_free_saddrs(sctp_t *); |
| void sctp_update_ill(ill_t *, int); |
| void sctp_update_ipif(ipif_t *, int); |
| void sctp_move_ipif(ipif_t *, ill_t *, ill_t *); |
| void sctp_del_saddr(sctp_t *, sctp_saddr_ipif_t *); |
| void sctp_del_saddr_list(sctp_t *, const void *, int, |
| boolean_t); |
| sctp_saddr_ipif_t *sctp_saddr_lookup(sctp_t *, in6_addr_t *, uint_t); |
| in6_addr_t sctp_get_valid_addr(sctp_t *, boolean_t); |
| int sctp_getmyaddrs(void *, void *, int *); |
| void sctp_saddr_init(sctp_stack_t *); |
| void sctp_saddr_fini(sctp_stack_t *); |
| |
| #define SCTP_IPIF_USABLE(sctp_ipif_state) \ |
| ((sctp_ipif_state) == SCTP_IPIFS_UP || \ |
| (sctp_ipif_state) == SCTP_IPIFS_DOWN) |
| |
| #define SCTP_IPIF_DISCARD(sctp_ipif_flags) \ |
| ((sctp_ipif_flags) & (IPIF_PRIVATE | IPIF_DEPRECATED)) |
| |
| #define SCTP_IS_IPIF_LOOPBACK(ipif) \ |
| ((ipif)->sctp_ipif_ill->sctp_ill_flags & PHYI_LOOPBACK) |
| |
| #define SCTP_IS_IPIF_LINKLOCAL(ipif) \ |
| ((ipif)->sctp_ipif_isv6 && \ |
| IN6_IS_ADDR_LINKLOCAL(&(ipif)->sctp_ipif_saddr)) |
| |
| #define SCTP_UNSUPP_AF(ipif, supp_af) \ |
| ((!(ipif)->sctp_ipif_isv6 && !((supp_af) & PARM_SUPP_V4)) || \ |
| ((ipif)->sctp_ipif_isv6 && !((supp_af) & PARM_SUPP_V6))) |
| |
| #define SCTP_IPIF_ZONE_MATCH(sctp, ipif) \ |
| IPCL_ZONE_MATCH((sctp)->sctp_connp, (ipif)->sctp_ipif_zoneid) |
| |
| #define SCTP_ILL_HASH_FN(index) ((index) % SCTP_ILL_HASH) |
| #define SCTP_IPIF_HASH_FN(seqid) ((seqid) % SCTP_IPIF_HASH) |
| #define SCTP_ILL_TO_PHYINDEX(ill) ((ill)->ill_phyint->phyint_ifindex) |
| |
| /* |
| * |
| * |
| * SCTP Interface list manipulation functions, locking used. |
| * |
| * |
| */ |
| |
| /* |
| * Delete an SCTP IPIF from the list if the refcount goes to 0 and it is |
| * marked as condemned. Also, check if the ILL needs to go away. |
| * Called with no locks held. |
| */ |
| static void |
| sctp_ipif_inactive(sctp_ipif_t *sctp_ipif) |
| { |
| sctp_ill_t *sctp_ill; |
| uint_t ipif_index; |
| uint_t ill_index; |
| sctp_stack_t *sctps = sctp_ipif->sctp_ipif_ill-> |
| sctp_ill_netstack->netstack_sctp; |
| |
| rw_enter(&sctps->sctps_g_ills_lock, RW_READER); |
| rw_enter(&sctps->sctps_g_ipifs_lock, RW_WRITER); |
| |
| ipif_index = SCTP_IPIF_HASH_FN(sctp_ipif->sctp_ipif_id); |
| sctp_ill = sctp_ipif->sctp_ipif_ill; |
| ASSERT(sctp_ill != NULL); |
| ill_index = SCTP_ILL_HASH_FN(sctp_ill->sctp_ill_index); |
| if (sctp_ipif->sctp_ipif_state != SCTP_IPIFS_CONDEMNED || |
| sctp_ipif->sctp_ipif_refcnt != 0) { |
| rw_exit(&sctps->sctps_g_ipifs_lock); |
| rw_exit(&sctps->sctps_g_ills_lock); |
| return; |
| } |
| list_remove(&sctps->sctps_g_ipifs[ipif_index].sctp_ipif_list, |
| sctp_ipif); |
| sctps->sctps_g_ipifs[ipif_index].ipif_count--; |
| sctps->sctps_g_ipifs_count--; |
| rw_destroy(&sctp_ipif->sctp_ipif_lock); |
| kmem_free(sctp_ipif, sizeof (sctp_ipif_t)); |
| |
| (void) atomic_add_32_nv(&sctp_ill->sctp_ill_ipifcnt, -1); |
| if (rw_tryupgrade(&sctps->sctps_g_ills_lock) != 0) { |
| rw_downgrade(&sctps->sctps_g_ipifs_lock); |
| if (sctp_ill->sctp_ill_ipifcnt == 0 && |
| sctp_ill->sctp_ill_state == SCTP_ILLS_CONDEMNED) { |
| list_remove(&sctps->sctps_g_ills[ill_index]. |
| sctp_ill_list, (void *)sctp_ill); |
| sctps->sctps_g_ills[ill_index].ill_count--; |
| sctps->sctps_ills_count--; |
| kmem_free(sctp_ill->sctp_ill_name, |
| sctp_ill->sctp_ill_name_length); |
| kmem_free(sctp_ill, sizeof (sctp_ill_t)); |
| } |
| } |
| rw_exit(&sctps->sctps_g_ipifs_lock); |
| rw_exit(&sctps->sctps_g_ills_lock); |
| } |
| |
| /* |
| * Lookup an SCTP IPIF given an IP address. Increments sctp_ipif refcnt. |
| * Called with no locks held. |
| */ |
| static sctp_ipif_t * |
| sctp_lookup_ipif_addr(in6_addr_t *addr, boolean_t refhold, sctp_t *sctp, |
| uint_t ifindex) |
| { |
| int i; |
| int j; |
| sctp_ipif_t *sctp_ipif; |
| sctp_stack_t *sctps = sctp->sctp_sctps; |
| |
| ASSERT(sctp->sctp_zoneid != ALL_ZONES); |
| rw_enter(&sctps->sctps_g_ipifs_lock, RW_READER); |
| for (i = 0; i < SCTP_IPIF_HASH; i++) { |
| if (sctps->sctps_g_ipifs[i].ipif_count == 0) |
| continue; |
| sctp_ipif = list_head(&sctps->sctps_g_ipifs[i].sctp_ipif_list); |
| for (j = 0; j < sctps->sctps_g_ipifs[i].ipif_count; j++) { |
| rw_enter(&sctp_ipif->sctp_ipif_lock, RW_READER); |
| if (SCTP_IPIF_ZONE_MATCH(sctp, sctp_ipif) && |
| SCTP_IPIF_USABLE(sctp_ipif->sctp_ipif_state) && |
| (ifindex == 0 || ifindex == |
| sctp_ipif->sctp_ipif_ill->sctp_ill_index) && |
| IN6_ARE_ADDR_EQUAL(&sctp_ipif->sctp_ipif_saddr, |
| addr)) { |
| rw_exit(&sctp_ipif->sctp_ipif_lock); |
| if (refhold) |
| SCTP_IPIF_REFHOLD(sctp_ipif); |
| rw_exit(&sctps->sctps_g_ipifs_lock); |
| return (sctp_ipif); |
| } |
| rw_exit(&sctp_ipif->sctp_ipif_lock); |
| sctp_ipif = list_next( |
| &sctps->sctps_g_ipifs[i].sctp_ipif_list, sctp_ipif); |
| } |
| } |
| rw_exit(&sctps->sctps_g_ipifs_lock); |
| return (NULL); |
| } |
| |
| /* |
| * Populate the list with all the SCTP ipifs for a given ipversion. |
| * Increments sctp_ipif refcnt. |
| * Called with no locks held. |
| */ |
| static int |
| sctp_get_all_ipifs(sctp_t *sctp, int sleep) |
| { |
| sctp_ipif_t *sctp_ipif; |
| int i; |
| int j; |
| int error = 0; |
| sctp_stack_t *sctps = sctp->sctp_sctps; |
| |
| rw_enter(&sctps->sctps_g_ipifs_lock, RW_READER); |
| for (i = 0; i < SCTP_IPIF_HASH; i++) { |
| if (sctps->sctps_g_ipifs[i].ipif_count == 0) |
| continue; |
| sctp_ipif = list_head(&sctps->sctps_g_ipifs[i].sctp_ipif_list); |
| for (j = 0; j < sctps->sctps_g_ipifs[i].ipif_count; j++) { |
| rw_enter(&sctp_ipif->sctp_ipif_lock, RW_READER); |
| if (SCTP_IPIF_DISCARD(sctp_ipif->sctp_ipif_flags) || |
| !SCTP_IPIF_USABLE(sctp_ipif->sctp_ipif_state) || |
| !SCTP_IPIF_ZONE_MATCH(sctp, sctp_ipif) || |
| (sctp->sctp_ipversion == IPV4_VERSION && |
| sctp_ipif->sctp_ipif_isv6) || |
| (sctp->sctp_connp->conn_ipv6_v6only && |
| !sctp_ipif->sctp_ipif_isv6)) { |
| rw_exit(&sctp_ipif->sctp_ipif_lock); |
| sctp_ipif = list_next( |
| &sctps->sctps_g_ipifs[i].sctp_ipif_list, |
| sctp_ipif); |
| continue; |
| } |
| rw_exit(&sctp_ipif->sctp_ipif_lock); |
| SCTP_IPIF_REFHOLD(sctp_ipif); |
| error = sctp_ipif_hash_insert(sctp, sctp_ipif, sleep, |
| B_FALSE); |
| if (error != 0) |
| goto free_stuff; |
| sctp_ipif = list_next( |
| &sctps->sctps_g_ipifs[i].sctp_ipif_list, |
| sctp_ipif); |
| } |
| } |
| rw_exit(&sctps->sctps_g_ipifs_lock); |
| return (0); |
| free_stuff: |
| rw_exit(&sctps->sctps_g_ipifs_lock); |
| sctp_free_saddrs(sctp); |
| return (ENOMEM); |
| } |
| |
| /* |
| * Given a list of address, fills in the list of SCTP ipifs if all the addresses |
| * are present in the SCTP interface list, return number of addresses filled |
| * or error. If the caller wants the list of addresses, it sends a pre-allocated |
| * buffer - list. Currently, this list is only used on a clustered node when |
| * the SCTP is in the listen state (from sctp_bind_add()). When called on a |
| * clustered node, the input is always a list of addresses (even if the |
| * original bind() was to INADDR_ANY). |
| * Called with no locks held. |
| */ |
| int |
| sctp_valid_addr_list(sctp_t *sctp, const void *addrs, uint32_t addrcnt, |
| uchar_t *list, size_t lsize) |
| { |
| struct sockaddr_in *sin4; |
| struct sockaddr_in6 *sin6; |
| struct in_addr *addr4; |
| in6_addr_t addr; |
| int cnt; |
| int err = 0; |
| int saddr_cnt = 0; |
| sctp_ipif_t *ipif; |
| boolean_t bind_to_all = B_FALSE; |
| boolean_t check_addrs = B_FALSE; |
| boolean_t check_lport = B_FALSE; |
| uchar_t *p = list; |
| |
| /* |
| * Need to check for port and address depending on the state. |
| * After a socket is bound, we need to make sure that subsequent |
| * bindx() has correct port. After an association is established, |
| * we need to check for changing the bound address to invalid |
| * addresses. |
| */ |
| if (sctp->sctp_state >= SCTPS_BOUND) { |
| check_lport = B_TRUE; |
| if (sctp->sctp_state > SCTPS_LISTEN) |
| check_addrs = B_TRUE; |
| } |
| |
| if (sctp->sctp_conn_tfp != NULL) |
| mutex_enter(&sctp->sctp_conn_tfp->tf_lock); |
| if (sctp->sctp_listen_tfp != NULL) |
| mutex_enter(&sctp->sctp_listen_tfp->tf_lock); |
| for (cnt = 0; cnt < addrcnt; cnt++) { |
| boolean_t lookup_saddr = B_TRUE; |
| uint_t ifindex = 0; |
| |
| switch (sctp->sctp_family) { |
| case AF_INET: |
| sin4 = (struct sockaddr_in *)addrs + cnt; |
| if (sin4->sin_family != AF_INET || (check_lport && |
| sin4->sin_port != sctp->sctp_lport)) { |
| err = EINVAL; |
| goto free_ret; |
| } |
| addr4 = &sin4->sin_addr; |
| if (check_addrs && |
| (addr4->s_addr == INADDR_ANY || |
| addr4->s_addr == INADDR_BROADCAST || |
| IN_MULTICAST(addr4->s_addr))) { |
| err = EINVAL; |
| goto free_ret; |
| } |
| IN6_INADDR_TO_V4MAPPED(addr4, &addr); |
| if (!check_addrs && addr4->s_addr == INADDR_ANY) { |
| lookup_saddr = B_FALSE; |
| bind_to_all = B_TRUE; |
| } |
| |
| break; |
| case AF_INET6: |
| sin6 = (struct sockaddr_in6 *)addrs + cnt; |
| if (sin6->sin6_family != AF_INET6 || (check_lport && |
| sin6->sin6_port != sctp->sctp_lport)) { |
| err = EINVAL; |
| goto free_ret; |
| } |
| addr = sin6->sin6_addr; |
| /* Contains the interface index */ |
| ifindex = sin6->sin6_scope_id; |
| if (sctp->sctp_connp->conn_ipv6_v6only && |
| IN6_IS_ADDR_V4MAPPED(&addr)) { |
| err = EAFNOSUPPORT; |
| goto free_ret; |
| } |
| if (check_addrs && |
| (IN6_IS_ADDR_LINKLOCAL(&addr) || |
| IN6_IS_ADDR_MULTICAST(&addr) || |
| IN6_IS_ADDR_UNSPECIFIED(&addr))) { |
| err = EINVAL; |
| goto free_ret; |
| } |
| if (!check_addrs && IN6_IS_ADDR_UNSPECIFIED(&addr)) { |
| lookup_saddr = B_FALSE; |
| bind_to_all = B_TRUE; |
| } |
| |
| break; |
| default: |
| err = EAFNOSUPPORT; |
| goto free_ret; |
| } |
| if (lookup_saddr) { |
| ipif = sctp_lookup_ipif_addr(&addr, B_TRUE, sctp, |
| ifindex); |
| if (ipif == NULL) { |
| /* Address not in the list */ |
| err = EINVAL; |
| goto free_ret; |
| } else if (check_addrs && SCTP_IS_IPIF_LOOPBACK(ipif) && |
| cl_sctp_check_addrs == NULL) { |
| SCTP_IPIF_REFRELE(ipif); |
| err = EINVAL; |
| goto free_ret; |
| } |
| } |
| if (!bind_to_all) { |
| /* |
| * If an address is added after association setup, |
| * we need to wait for the peer to send us an ASCONF |
| * ACK before we can start using it. |
| * saddr_ipif_dontsrc will be reset (to 0) when we |
| * get the ASCONF ACK for this address. |
| */ |
| err = sctp_ipif_hash_insert(sctp, ipif, KM_SLEEP, |
| check_addrs ? B_TRUE : B_FALSE); |
| if (err != 0) { |
| SCTP_IPIF_REFRELE(ipif); |
| if (check_addrs && err == EALREADY) |
| err = EADDRINUSE; |
| goto free_ret; |
| } |
| saddr_cnt++; |
| if (lsize >= sizeof (addr)) { |
| bcopy(&addr, p, sizeof (addr)); |
| p += sizeof (addr); |
| lsize -= sizeof (addr); |
| } |
| } |
| } |
| if (bind_to_all) { |
| /* |
| * Free whatever we might have added before encountering |
| * inaddr_any. |
| */ |
| if (sctp->sctp_nsaddrs > 0) { |
| sctp_free_saddrs(sctp); |
| ASSERT(sctp->sctp_nsaddrs == 0); |
| } |
| err = sctp_get_all_ipifs(sctp, KM_SLEEP); |
| if (err != 0) |
| return (err); |
| sctp->sctp_bound_to_all = 1; |
| } |
| if (sctp->sctp_listen_tfp != NULL) |
| mutex_exit(&sctp->sctp_listen_tfp->tf_lock); |
| if (sctp->sctp_conn_tfp != NULL) |
| mutex_exit(&sctp->sctp_conn_tfp->tf_lock); |
| return (0); |
| free_ret: |
| if (saddr_cnt != 0) |
| sctp_del_saddr_list(sctp, addrs, saddr_cnt, B_TRUE); |
| if (sctp->sctp_listen_tfp != NULL) |
| mutex_exit(&sctp->sctp_listen_tfp->tf_lock); |
| if (sctp->sctp_conn_tfp != NULL) |
| mutex_exit(&sctp->sctp_conn_tfp->tf_lock); |
| return (err); |
| } |
| |
| sctp_saddr_ipif_t * |
| sctp_ipif_lookup(sctp_t *sctp, uint_t ipif_index) |
| { |
| int cnt; |
| int seqid = SCTP_IPIF_HASH_FN(ipif_index); |
| sctp_saddr_ipif_t *ipif_obj; |
| |
| if (sctp->sctp_saddrs[seqid].ipif_count == 0) |
| return (NULL); |
| |
| ipif_obj = list_head(&sctp->sctp_saddrs[seqid].sctp_ipif_list); |
| for (cnt = 0; cnt < sctp->sctp_saddrs[seqid].ipif_count; cnt++) { |
| if (ipif_obj->saddr_ipifp->sctp_ipif_id == ipif_index) |
| return (ipif_obj); |
| ipif_obj = list_next(&sctp->sctp_saddrs[seqid].sctp_ipif_list, |
| ipif_obj); |
| } |
| return (NULL); |
| } |
| |
| static int |
| sctp_ipif_hash_insert(sctp_t *sctp, sctp_ipif_t *ipif, int sleep, |
| boolean_t dontsrc) |
| { |
| int cnt; |
| sctp_saddr_ipif_t *ipif_obj; |
| int seqid = SCTP_IPIF_HASH_FN(ipif->sctp_ipif_id); |
| |
| ipif_obj = list_head(&sctp->sctp_saddrs[seqid].sctp_ipif_list); |
| for (cnt = 0; cnt < sctp->sctp_saddrs[seqid].ipif_count; cnt++) { |
| if (ipif_obj->saddr_ipifp->sctp_ipif_id == ipif->sctp_ipif_id) |
| return (EALREADY); |
| ipif_obj = list_next(&sctp->sctp_saddrs[seqid].sctp_ipif_list, |
| ipif_obj); |
| } |
| ipif_obj = kmem_zalloc(sizeof (sctp_saddr_ipif_t), sleep); |
| if (ipif_obj == NULL) { |
| /* Need to do something */ |
| return (ENOMEM); |
| } |
| ipif_obj->saddr_ipifp = ipif; |
| ipif_obj->saddr_ipif_dontsrc = dontsrc ? 1 : 0; |
| list_insert_tail(&sctp->sctp_saddrs[seqid].sctp_ipif_list, ipif_obj); |
| sctp->sctp_saddrs[seqid].ipif_count++; |
| sctp->sctp_nsaddrs++; |
| return (0); |
| } |
| |
| static void |
| sctp_ipif_hash_remove(sctp_t *sctp, sctp_ipif_t *ipif) |
| { |
| int cnt; |
| sctp_saddr_ipif_t *ipif_obj; |
| int seqid = SCTP_IPIF_HASH_FN(ipif->sctp_ipif_id); |
| |
| ipif_obj = list_head(&sctp->sctp_saddrs[seqid].sctp_ipif_list); |
| for (cnt = 0; cnt < sctp->sctp_saddrs[seqid].ipif_count; cnt++) { |
| if (ipif_obj->saddr_ipifp->sctp_ipif_id == ipif->sctp_ipif_id) { |
| list_remove(&sctp->sctp_saddrs[seqid].sctp_ipif_list, |
| ipif_obj); |
| sctp->sctp_nsaddrs--; |
| sctp->sctp_saddrs[seqid].ipif_count--; |
| SCTP_IPIF_REFRELE(ipif_obj->saddr_ipifp); |
| kmem_free(ipif_obj, sizeof (sctp_saddr_ipif_t)); |
| break; |
| } |
| ipif_obj = list_next(&sctp->sctp_saddrs[seqid].sctp_ipif_list, |
| ipif_obj); |
| } |
| } |
| |
| static int |
| sctp_compare_ipif_list(sctp_ipif_hash_t *list1, sctp_ipif_hash_t *list2) |
| { |
| int i; |
| int j; |
| sctp_saddr_ipif_t *obj1; |
| sctp_saddr_ipif_t *obj2; |
| int overlap = 0; |
| |
| obj1 = list_head(&list1->sctp_ipif_list); |
| for (i = 0; i < list1->ipif_count; i++) { |
| obj2 = list_head(&list2->sctp_ipif_list); |
| for (j = 0; j < list2->ipif_count; j++) { |
| if (obj1->saddr_ipifp->sctp_ipif_id == |
| obj2->saddr_ipifp->sctp_ipif_id) { |
| overlap++; |
| break; |
| } |
| obj2 = list_next(&list2->sctp_ipif_list, |
| obj2); |
| } |
| obj1 = list_next(&list1->sctp_ipif_list, obj1); |
| } |
| return (overlap); |
| } |
| |
| int |
| sctp_compare_saddrs(sctp_t *sctp1, sctp_t *sctp2) |
| { |
| int i; |
| int overlap = 0; |
| |
| for (i = 0; i < SCTP_IPIF_HASH; i++) { |
| overlap += sctp_compare_ipif_list(&sctp1->sctp_saddrs[i], |
| &sctp2->sctp_saddrs[i]); |
| } |
| |
| if (sctp1->sctp_nsaddrs == sctp2->sctp_nsaddrs && |
| overlap == sctp1->sctp_nsaddrs) { |
| return (SCTP_ADDR_EQUAL); |
| } |
| |
| if (overlap == sctp1->sctp_nsaddrs) |
| return (SCTP_ADDR_SUBSET); |
| |
| if (overlap > 0) |
| return (SCTP_ADDR_OVERLAP); |
| |
| return (SCTP_ADDR_DISJOINT); |
| } |
| |
| static int |
| sctp_copy_ipifs(sctp_ipif_hash_t *list1, sctp_t *sctp2, int sleep) |
| { |
| int i; |
| sctp_saddr_ipif_t *obj; |
| int error = 0; |
| |
| obj = list_head(&list1->sctp_ipif_list); |
| for (i = 0; i < list1->ipif_count; i++) { |
| SCTP_IPIF_REFHOLD(obj->saddr_ipifp); |
| error = sctp_ipif_hash_insert(sctp2, obj->saddr_ipifp, sleep, |
| B_FALSE); |
| if (error != 0) |
| return (error); |
| obj = list_next(&list1->sctp_ipif_list, obj); |
| } |
| return (error); |
| } |
| |
| int |
| sctp_dup_saddrs(sctp_t *sctp1, sctp_t *sctp2, int sleep) |
| { |
| int error = 0; |
| int i; |
| |
| if (sctp1 == NULL || sctp1->sctp_bound_to_all == 1) |
| return (sctp_get_all_ipifs(sctp2, sleep)); |
| |
| for (i = 0; i < SCTP_IPIF_HASH; i++) { |
| if (sctp1->sctp_saddrs[i].ipif_count == 0) |
| continue; |
| error = sctp_copy_ipifs(&sctp1->sctp_saddrs[i], sctp2, sleep); |
| if (error != 0) { |
| sctp_free_saddrs(sctp2); |
| return (error); |
| } |
| } |
| return (0); |
| } |
| |
| void |
| sctp_free_saddrs(sctp_t *sctp) |
| { |
| int i; |
| int l; |
| sctp_saddr_ipif_t *obj; |
| |
| if (sctp->sctp_nsaddrs == 0) |
| return; |
| for (i = 0; i < SCTP_IPIF_HASH; i++) { |
| if (sctp->sctp_saddrs[i].ipif_count == 0) |
| continue; |
| obj = list_tail(&sctp->sctp_saddrs[i].sctp_ipif_list); |
| for (l = 0; l < sctp->sctp_saddrs[i].ipif_count; l++) { |
| list_remove(&sctp->sctp_saddrs[i].sctp_ipif_list, obj); |
| SCTP_IPIF_REFRELE(obj->saddr_ipifp); |
| sctp->sctp_nsaddrs--; |
| kmem_free(obj, sizeof (sctp_saddr_ipif_t)); |
| obj = list_tail(&sctp->sctp_saddrs[i].sctp_ipif_list); |
| } |
| sctp->sctp_saddrs[i].ipif_count = 0; |
| } |
| if (sctp->sctp_bound_to_all == 1) |
| sctp->sctp_bound_to_all = 0; |
| ASSERT(sctp->sctp_nsaddrs == 0); |
| } |
| |
| /* |
| * Add/Delete the given ILL from the SCTP ILL list. Called with no locks |
| * held. |
| */ |
| void |
| sctp_update_ill(ill_t *ill, int op) |
| { |
| int i; |
| sctp_ill_t *sctp_ill = NULL; |
| uint_t index; |
| netstack_t *ns = ill->ill_ipst->ips_netstack; |
| sctp_stack_t *sctps = ns->netstack_sctp; |
| |
| ip2dbg(("sctp_update_ill: %s\n", ill->ill_name)); |
| |
| rw_enter(&sctps->sctps_g_ills_lock, RW_WRITER); |
| |
| index = SCTP_ILL_HASH_FN(SCTP_ILL_TO_PHYINDEX(ill)); |
| sctp_ill = list_head(&sctps->sctps_g_ills[index].sctp_ill_list); |
| for (i = 0; i < sctps->sctps_g_ills[index].ill_count; i++) { |
| if (sctp_ill->sctp_ill_index == SCTP_ILL_TO_PHYINDEX(ill)) |
| break; |
| sctp_ill = list_next(&sctps->sctps_g_ills[index].sctp_ill_list, |
| sctp_ill); |
| } |
| |
| switch (op) { |
| case SCTP_ILL_INSERT: |
| if (sctp_ill != NULL) { |
| /* Unmark it if it is condemned */ |
| if (sctp_ill->sctp_ill_state == SCTP_ILLS_CONDEMNED) |
| sctp_ill->sctp_ill_state = 0; |
| rw_exit(&sctps->sctps_g_ills_lock); |
| return; |
| } |
| sctp_ill = kmem_zalloc(sizeof (sctp_ill_t), KM_NOSLEEP); |
| /* Need to re-try? */ |
| if (sctp_ill == NULL) { |
| ip1dbg(("sctp_ill_insert: mem error..\n")); |
| rw_exit(&sctps->sctps_g_ills_lock); |
| return; |
| } |
| sctp_ill->sctp_ill_name = |
| kmem_zalloc(ill->ill_name_length, KM_NOSLEEP); |
| if (sctp_ill->sctp_ill_name == NULL) { |
| ip1dbg(("sctp_ill_insert: mem error..\n")); |
| kmem_free(sctp_ill, sizeof (sctp_ill_t)); |
| rw_exit(&sctps->sctps_g_ills_lock); |
| return; |
| } |
| bcopy(ill->ill_name, sctp_ill->sctp_ill_name, |
| ill->ill_name_length); |
| sctp_ill->sctp_ill_name_length = ill->ill_name_length; |
| sctp_ill->sctp_ill_index = SCTP_ILL_TO_PHYINDEX(ill); |
| sctp_ill->sctp_ill_flags = ill->ill_phyint->phyint_flags; |
| sctp_ill->sctp_ill_netstack = ns; /* No netstack_hold */ |
| list_insert_tail(&sctps->sctps_g_ills[index].sctp_ill_list, |
| (void *)sctp_ill); |
| sctps->sctps_g_ills[index].ill_count++; |
| sctps->sctps_ills_count++; |
| |
| break; |
| |
| case SCTP_ILL_REMOVE: |
| |
| if (sctp_ill == NULL) { |
| rw_exit(&sctps->sctps_g_ills_lock); |
| return; |
| } |
| if (sctp_ill->sctp_ill_ipifcnt == 0) { |
| list_remove(&sctps->sctps_g_ills[index].sctp_ill_list, |
| (void *)sctp_ill); |
| sctps->sctps_g_ills[index].ill_count--; |
| sctps->sctps_ills_count--; |
| kmem_free(sctp_ill->sctp_ill_name, |
| ill->ill_name_length); |
| kmem_free(sctp_ill, sizeof (sctp_ill_t)); |
| } else { |
| sctp_ill->sctp_ill_state = SCTP_ILLS_CONDEMNED; |
| } |
| |
| break; |
| } |
| rw_exit(&sctps->sctps_g_ills_lock); |
| } |
| |
| /* move ipif from f_ill to t_ill */ |
| void |
| sctp_move_ipif(ipif_t *ipif, ill_t *f_ill, ill_t *t_ill) |
| { |
| sctp_ill_t *fsctp_ill = NULL; |
| sctp_ill_t *tsctp_ill = NULL; |
| sctp_ipif_t *sctp_ipif; |
| uint_t index; |
| int i; |
| netstack_t *ns = ipif->ipif_ill->ill_ipst->ips_netstack; |
| sctp_stack_t *sctps = ns->netstack_sctp; |
| |
| rw_enter(&sctps->sctps_g_ills_lock, RW_READER); |
| rw_enter(&sctps->sctps_g_ipifs_lock, RW_READER); |
| |
| index = SCTP_ILL_HASH_FN(SCTP_ILL_TO_PHYINDEX(f_ill)); |
| fsctp_ill = list_head(&sctps->sctps_g_ills[index].sctp_ill_list); |
| for (i = 0; i < sctps->sctps_g_ills[index].ill_count; i++) { |
| if (fsctp_ill->sctp_ill_index == SCTP_ILL_TO_PHYINDEX(f_ill)) |
| break; |
| fsctp_ill = list_next(&sctps->sctps_g_ills[index].sctp_ill_list, |
| fsctp_ill); |
| } |
| |
| index = SCTP_ILL_HASH_FN(SCTP_ILL_TO_PHYINDEX(t_ill)); |
| tsctp_ill = list_head(&sctps->sctps_g_ills[index].sctp_ill_list); |
| for (i = 0; i < sctps->sctps_g_ills[index].ill_count; i++) { |
| if (tsctp_ill->sctp_ill_index == SCTP_ILL_TO_PHYINDEX(t_ill)) |
| break; |
| tsctp_ill = list_next(&sctps->sctps_g_ills[index].sctp_ill_list, |
| tsctp_ill); |
| } |
| |
| index = SCTP_IPIF_HASH_FN(ipif->ipif_seqid); |
| sctp_ipif = list_head(&sctps->sctps_g_ipifs[index].sctp_ipif_list); |
| for (i = 0; i < sctps->sctps_g_ipifs[index].ipif_count; i++) { |
| if (sctp_ipif->sctp_ipif_id == ipif->ipif_seqid) |
| break; |
| sctp_ipif = list_next( |
| &sctps->sctps_g_ipifs[index].sctp_ipif_list, sctp_ipif); |
| } |
| /* Should be an ASSERT? */ |
| if (fsctp_ill == NULL || tsctp_ill == NULL || sctp_ipif == NULL) { |
| ip1dbg(("sctp_move_ipif: error moving ipif %p from %p to %p\n", |
| (void *)ipif, (void *)f_ill, (void *)t_ill)); |
| rw_exit(&sctps->sctps_g_ipifs_lock); |
| rw_exit(&sctps->sctps_g_ills_lock); |
| return; |
| } |
| rw_enter(&sctp_ipif->sctp_ipif_lock, RW_WRITER); |
| ASSERT(sctp_ipif->sctp_ipif_ill == fsctp_ill); |
| sctp_ipif->sctp_ipif_ill = tsctp_ill; |
| rw_exit(&sctp_ipif->sctp_ipif_lock); |
| (void) atomic_add_32_nv(&fsctp_ill->sctp_ill_ipifcnt, -1); |
| atomic_add_32(&tsctp_ill->sctp_ill_ipifcnt, 1); |
| rw_exit(&sctps->sctps_g_ipifs_lock); |
| rw_exit(&sctps->sctps_g_ills_lock); |
| } |
| |
| /* Insert, Remove, Mark up or Mark down the ipif */ |
| void |
| sctp_update_ipif(ipif_t *ipif, int op) |
| { |
| ill_t *ill = ipif->ipif_ill; |
| int i; |
| sctp_ill_t *sctp_ill; |
| sctp_ipif_t *sctp_ipif; |
| uint_t ill_index; |
| uint_t ipif_index; |
| netstack_t *ns = ipif->ipif_ill->ill_ipst->ips_netstack; |
| sctp_stack_t *sctps = ns->netstack_sctp; |
| |
| ip2dbg(("sctp_update_ipif: %s %d\n", ill->ill_name, ipif->ipif_seqid)); |
| |
| rw_enter(&sctps->sctps_g_ills_lock, RW_READER); |
| rw_enter(&sctps->sctps_g_ipifs_lock, RW_WRITER); |
| |
| ill_index = SCTP_ILL_HASH_FN(SCTP_ILL_TO_PHYINDEX(ill)); |
| sctp_ill = list_head(&sctps->sctps_g_ills[ill_index].sctp_ill_list); |
| for (i = 0; i < sctps->sctps_g_ills[ill_index].ill_count; i++) { |
| if (sctp_ill->sctp_ill_index == SCTP_ILL_TO_PHYINDEX(ill)) |
| break; |
| sctp_ill = list_next( |
| &sctps->sctps_g_ills[ill_index].sctp_ill_list, sctp_ill); |
| } |
| if (sctp_ill == NULL) { |
| rw_exit(&sctps->sctps_g_ipifs_lock); |
| rw_exit(&sctps->sctps_g_ills_lock); |
| return; |
| } |
| |
| ipif_index = SCTP_IPIF_HASH_FN(ipif->ipif_seqid); |
| sctp_ipif = list_head(&sctps->sctps_g_ipifs[ipif_index].sctp_ipif_list); |
| for (i = 0; i < sctps->sctps_g_ipifs[ipif_index].ipif_count; i++) { |
| if (sctp_ipif->sctp_ipif_id == ipif->ipif_seqid) |
| break; |
| sctp_ipif = list_next( |
| &sctps->sctps_g_ipifs[ipif_index].sctp_ipif_list, |
| sctp_ipif); |
| } |
| if (op != SCTP_IPIF_INSERT && sctp_ipif == NULL) { |
| ip1dbg(("sctp_update_ipif: null sctp_ipif for %d\n", op)); |
| rw_exit(&sctps->sctps_g_ipifs_lock); |
| rw_exit(&sctps->sctps_g_ills_lock); |
| return; |
| } |
| #ifdef DEBUG |
| if (sctp_ipif != NULL) |
| ASSERT(sctp_ill == sctp_ipif->sctp_ipif_ill); |
| #endif |
| switch (op) { |
| case SCTP_IPIF_INSERT: |
| if (sctp_ipif != NULL) { |
| if (sctp_ipif->sctp_ipif_state == SCTP_IPIFS_CONDEMNED) |
| sctp_ipif->sctp_ipif_state = SCTP_IPIFS_INVALID; |
| rw_exit(&sctps->sctps_g_ipifs_lock); |
| rw_exit(&sctps->sctps_g_ills_lock); |
| return; |
| } |
| sctp_ipif = kmem_zalloc(sizeof (sctp_ipif_t), KM_NOSLEEP); |
| /* Try again? */ |
| if (sctp_ipif == NULL) { |
| ip1dbg(("sctp_ipif_insert: mem failure..\n")); |
| rw_exit(&sctps->sctps_g_ipifs_lock); |
| rw_exit(&sctps->sctps_g_ills_lock); |
| return; |
| } |
| sctp_ipif->sctp_ipif_id = ipif->ipif_seqid; |
| sctp_ipif->sctp_ipif_ill = sctp_ill; |
| sctp_ipif->sctp_ipif_state = SCTP_IPIFS_INVALID; |
| sctp_ipif->sctp_ipif_mtu = ipif->ipif_mtu; |
| sctp_ipif->sctp_ipif_zoneid = ipif->ipif_zoneid; |
| sctp_ipif->sctp_ipif_isv6 = ill->ill_isv6; |
| sctp_ipif->sctp_ipif_flags = ipif->ipif_flags; |
| rw_init(&sctp_ipif->sctp_ipif_lock, NULL, RW_DEFAULT, NULL); |
| list_insert_tail( |
| &sctps->sctps_g_ipifs[ipif_index].sctp_ipif_list, |
| (void *)sctp_ipif); |
| sctps->sctps_g_ipifs[ipif_index].ipif_count++; |
| sctps->sctps_g_ipifs_count++; |
| atomic_add_32(&sctp_ill->sctp_ill_ipifcnt, 1); |
| |
| break; |
| |
| case SCTP_IPIF_REMOVE: |
| { |
| list_t *ipif_list; |
| list_t *ill_list; |
| |
| ill_list = &sctps->sctps_g_ills[ill_index].sctp_ill_list; |
| ipif_list = &sctps->sctps_g_ipifs[ipif_index].sctp_ipif_list; |
| if (sctp_ipif->sctp_ipif_refcnt != 0) { |
| sctp_ipif->sctp_ipif_state = SCTP_IPIFS_CONDEMNED; |
| rw_exit(&sctps->sctps_g_ipifs_lock); |
| rw_exit(&sctps->sctps_g_ills_lock); |
| return; |
| } |
| list_remove(ipif_list, (void *)sctp_ipif); |
| sctps->sctps_g_ipifs[ipif_index].ipif_count--; |
| sctps->sctps_g_ipifs_count--; |
| rw_destroy(&sctp_ipif->sctp_ipif_lock); |
| kmem_free(sctp_ipif, sizeof (sctp_ipif_t)); |
| (void) atomic_add_32_nv(&sctp_ill->sctp_ill_ipifcnt, -1); |
| if (rw_tryupgrade(&sctps->sctps_g_ills_lock) != 0) { |
| rw_downgrade(&sctps->sctps_g_ipifs_lock); |
| if (sctp_ill->sctp_ill_ipifcnt == 0 && |
| sctp_ill->sctp_ill_state == SCTP_ILLS_CONDEMNED) { |
| list_remove(ill_list, (void *)sctp_ill); |
| sctps->sctps_ills_count--; |
| sctps->sctps_g_ills[ill_index].ill_count--; |
| kmem_free(sctp_ill->sctp_ill_name, |
| sctp_ill->sctp_ill_name_length); |
| kmem_free(sctp_ill, sizeof (sctp_ill_t)); |
| } |
| } |
| break; |
| } |
| |
| case SCTP_IPIF_UP: |
| |
| rw_downgrade(&sctps->sctps_g_ipifs_lock); |
| rw_enter(&sctp_ipif->sctp_ipif_lock, RW_WRITER); |
| sctp_ipif->sctp_ipif_state = SCTP_IPIFS_UP; |
| sctp_ipif->sctp_ipif_saddr = ipif->ipif_v6lcl_addr; |
| sctp_ipif->sctp_ipif_flags = ipif->ipif_flags; |
| sctp_ipif->sctp_ipif_mtu = ipif->ipif_mtu; |
| rw_exit(&sctp_ipif->sctp_ipif_lock); |
| |
| break; |
| |
| case SCTP_IPIF_UPDATE: |
| |
| rw_downgrade(&sctps->sctps_g_ipifs_lock); |
| rw_enter(&sctp_ipif->sctp_ipif_lock, RW_WRITER); |
| sctp_ipif->sctp_ipif_mtu = ipif->ipif_mtu; |
| sctp_ipif->sctp_ipif_saddr = ipif->ipif_v6lcl_addr; |
| sctp_ipif->sctp_ipif_zoneid = ipif->ipif_zoneid; |
| sctp_ipif->sctp_ipif_flags = ipif->ipif_flags; |
| rw_exit(&sctp_ipif->sctp_ipif_lock); |
| |
| break; |
| |
| case SCTP_IPIF_DOWN: |
| |
| rw_downgrade(&sctps->sctps_g_ipifs_lock); |
| rw_enter(&sctp_ipif->sctp_ipif_lock, RW_WRITER); |
| sctp_ipif->sctp_ipif_state = SCTP_IPIFS_DOWN; |
| rw_exit(&sctp_ipif->sctp_ipif_lock); |
| |
| break; |
| } |
| rw_exit(&sctps->sctps_g_ipifs_lock); |
| rw_exit(&sctps->sctps_g_ills_lock); |
| } |
| |
| /* |
| * |
| * |
| * SCTP source address list manipulaton, locking not used (except for |
| * sctp locking by the caller. |
| * |
| * |
| */ |
| |
| /* Remove a specific saddr from the list */ |
| void |
| sctp_del_saddr(sctp_t *sctp, sctp_saddr_ipif_t *sp) |
| { |
| if (sctp->sctp_conn_tfp != NULL) |
| mutex_enter(&sctp->sctp_conn_tfp->tf_lock); |
| |
| if (sctp->sctp_listen_tfp != NULL) |
| mutex_enter(&sctp->sctp_listen_tfp->tf_lock); |
| |
| sctp_ipif_hash_remove(sctp, sp->saddr_ipifp); |
| |
| if (sctp->sctp_bound_to_all == 1) |
| sctp->sctp_bound_to_all = 0; |
| |
| if (sctp->sctp_conn_tfp != NULL) |
| mutex_exit(&sctp->sctp_conn_tfp->tf_lock); |
| |
| if (sctp->sctp_listen_tfp != NULL) |
| mutex_exit(&sctp->sctp_listen_tfp->tf_lock); |
| } |
| |
| /* |
| * Delete source address from the existing list. No error checking done here |
| * Called with no locks held. |
| */ |
| void |
| sctp_del_saddr_list(sctp_t *sctp, const void *addrs, int addcnt, |
| boolean_t fanout_locked) |
| { |
| struct sockaddr_in *sin4; |
| struct sockaddr_in6 *sin6; |
| int cnt; |
| in6_addr_t addr; |
| sctp_ipif_t *sctp_ipif; |
| int ifindex = 0; |
| |
| ASSERT(sctp->sctp_nsaddrs >= addcnt); |
| |
| if (!fanout_locked) { |
| if (sctp->sctp_conn_tfp != NULL) |
| mutex_enter(&sctp->sctp_conn_tfp->tf_lock); |
| if (sctp->sctp_listen_tfp != NULL) |
| mutex_enter(&sctp->sctp_listen_tfp->tf_lock); |
| } |
| |
| for (cnt = 0; cnt < addcnt; cnt++) { |
| switch (sctp->sctp_family) { |
| case AF_INET: |
| sin4 = (struct sockaddr_in *)addrs + cnt; |
| IN6_INADDR_TO_V4MAPPED(&sin4->sin_addr, &addr); |
| break; |
| |
| case AF_INET6: |
| sin6 = (struct sockaddr_in6 *)addrs + cnt; |
| addr = sin6->sin6_addr; |
| ifindex = sin6->sin6_scope_id; |
| break; |
| } |
| sctp_ipif = sctp_lookup_ipif_addr(&addr, B_FALSE, sctp, |
| ifindex); |
| ASSERT(sctp_ipif != NULL); |
| sctp_ipif_hash_remove(sctp, sctp_ipif); |
| } |
| if (sctp->sctp_bound_to_all == 1) |
| sctp->sctp_bound_to_all = 0; |
| |
| if (!fanout_locked) { |
| if (sctp->sctp_conn_tfp != NULL) |
| mutex_exit(&sctp->sctp_conn_tfp->tf_lock); |
| if (sctp->sctp_listen_tfp != NULL) |
| mutex_exit(&sctp->sctp_listen_tfp->tf_lock); |
| } |
| } |
| |
| /* |
| * Given an address get the corresponding entry from the list |
| * Called with no locks held. |
| */ |
| sctp_saddr_ipif_t * |
| sctp_saddr_lookup(sctp_t *sctp, in6_addr_t *addr, uint_t ifindex) |
| { |
| sctp_saddr_ipif_t *saddr_ipifs; |
| sctp_ipif_t *sctp_ipif; |
| |
| sctp_ipif = sctp_lookup_ipif_addr(addr, B_FALSE, sctp, ifindex); |
| if (sctp_ipif == NULL) |
| return (NULL); |
| |
| saddr_ipifs = sctp_ipif_lookup(sctp, sctp_ipif->sctp_ipif_id); |
| return (saddr_ipifs); |
| } |
| |
| /* Given an address, add it to the source address list */ |
| int |
| sctp_saddr_add_addr(sctp_t *sctp, in6_addr_t *addr, uint_t ifindex) |
| { |
| sctp_ipif_t *sctp_ipif; |
| |
| sctp_ipif = sctp_lookup_ipif_addr(addr, B_TRUE, sctp, ifindex); |
| if (sctp_ipif == NULL) |
| return (EINVAL); |
| |
| if (sctp_ipif_hash_insert(sctp, sctp_ipif, KM_NOSLEEP, B_FALSE) != 0) { |
| SCTP_IPIF_REFRELE(sctp_ipif); |
| return (EINVAL); |
| } |
| return (0); |
| } |
| |
| /* |
| * Remove or mark as dontsrc addresses that are currently not part of the |
| * association. One would delete addresses when processing an INIT and |
| * mark as dontsrc when processing an INIT-ACK. |
| */ |
| void |
| sctp_check_saddr(sctp_t *sctp, int supp_af, boolean_t delete) |
| { |
| int i; |
| int l; |
| sctp_saddr_ipif_t *obj; |
| int scanned = 0; |
| int naddr; |
| int nsaddr; |
| |
| ASSERT(!sctp->sctp_loopback && !sctp->sctp_linklocal && supp_af != 0); |
| |
| /* |
| * Irregardless of the supported address in the INIT, v4 |
| * must be supported. |
| */ |
| if (sctp->sctp_family == AF_INET) |
| supp_af = PARM_SUPP_V4; |
| |
| nsaddr = sctp->sctp_nsaddrs; |
| for (i = 0; i < SCTP_IPIF_HASH; i++) { |
| if (sctp->sctp_saddrs[i].ipif_count == 0) |
| continue; |
| obj = list_head(&sctp->sctp_saddrs[i].sctp_ipif_list); |
| naddr = sctp->sctp_saddrs[i].ipif_count; |
| for (l = 0; l < naddr; l++) { |
| sctp_ipif_t *ipif; |
| |
| ipif = obj->saddr_ipifp; |
| scanned++; |
| |
| /* |
| * Delete/mark dontsrc loopback/linklocal addresses and |
| * unsupported address. |
| * On a clustered node, we trust the clustering module |
| * to do the right thing w.r.t loopback addresses, so |
| * we ignore loopback addresses in this check. |
| */ |
| if ((SCTP_IS_IPIF_LOOPBACK(ipif) && |
| cl_sctp_check_addrs == NULL) || |
| SCTP_IS_IPIF_LINKLOCAL(ipif) || |
| SCTP_UNSUPP_AF(ipif, supp_af)) { |
| if (!delete) { |
| obj->saddr_ipif_unconfirmed = 1; |
| goto next_obj; |
| } |
| if (sctp->sctp_bound_to_all == 1) |
| sctp->sctp_bound_to_all = 0; |
| if (scanned < nsaddr) { |
| obj = list_next(&sctp->sctp_saddrs[i]. |
| sctp_ipif_list, obj); |
| sctp_ipif_hash_remove(sctp, ipif); |
| continue; |
| } |
| sctp_ipif_hash_remove(sctp, ipif); |
| } |
| next_obj: |
| if (scanned >= nsaddr) |
| return; |
| obj = list_next(&sctp->sctp_saddrs[i].sctp_ipif_list, |
| obj); |
| } |
| } |
| } |
| |
| |
| /* Get the first valid address from the list. Called with no locks held */ |
| in6_addr_t |
| sctp_get_valid_addr(sctp_t *sctp, boolean_t isv6) |
| { |
| int i; |
| int l; |
| sctp_saddr_ipif_t *obj; |
| int scanned = 0; |
| in6_addr_t addr; |
| |
| for (i = 0; i < SCTP_IPIF_HASH; i++) { |
| if (sctp->sctp_saddrs[i].ipif_count == 0) |
| continue; |
| obj = list_head(&sctp->sctp_saddrs[i].sctp_ipif_list); |
| for (l = 0; l < sctp->sctp_saddrs[i].ipif_count; l++) { |
| sctp_ipif_t *ipif; |
| |
| ipif = obj->saddr_ipifp; |
| if (!SCTP_DONT_SRC(obj) && |
| ipif->sctp_ipif_isv6 == isv6 && |
| ipif->sctp_ipif_state == SCTP_IPIFS_UP) { |
| return (ipif->sctp_ipif_saddr); |
| } |
| scanned++; |
| if (scanned >= sctp->sctp_nsaddrs) |
| goto got_none; |
| obj = list_next(&sctp->sctp_saddrs[i].sctp_ipif_list, |
| obj); |
| } |
| } |
| got_none: |
| /* Need to double check this */ |
| if (isv6 == B_TRUE) |
| addr = ipv6_all_zeros; |
| else |
| IN6_IPADDR_TO_V4MAPPED(0, &addr); |
| |
| return (addr); |
| } |
| |
| /* |
| * Return the list of local addresses of an association. The parameter |
| * myaddrs is supposed to be either (struct sockaddr_in *) or (struct |
| * sockaddr_in6 *) depending on the address family. |
| */ |
| int |
| sctp_getmyaddrs(void *conn, void *myaddrs, int *addrcnt) |
| { |
| int i; |
| int l; |
| sctp_saddr_ipif_t *obj; |
| sctp_t *sctp = (sctp_t *)conn; |
| int family = sctp->sctp_family; |
| int max = *addrcnt; |
| size_t added = 0; |
| struct sockaddr_in6 *sin6; |
| struct sockaddr_in *sin4; |
| int scanned = 0; |
| boolean_t skip_lback = B_FALSE; |
| |
| if (sctp->sctp_nsaddrs == 0) |
| return (EINVAL); |
| |
| /* |
| * Skip loopback addresses for non-loopback assoc., ignore |
| * this on a clustered node. |
| */ |
| if (sctp->sctp_state >= SCTPS_ESTABLISHED && !sctp->sctp_loopback && |
| (cl_sctp_check_addrs == NULL)) { |
| skip_lback = B_TRUE; |
| } |
| |
| for (i = 0; i < SCTP_IPIF_HASH; i++) { |
| if (sctp->sctp_saddrs[i].ipif_count == 0) |
| continue; |
| obj = list_head(&sctp->sctp_saddrs[i].sctp_ipif_list); |
| for (l = 0; l < sctp->sctp_saddrs[i].ipif_count; l++) { |
| sctp_ipif_t *ipif = obj->saddr_ipifp; |
| in6_addr_t addr = ipif->sctp_ipif_saddr; |
| |
| scanned++; |
| if ((ipif->sctp_ipif_state == SCTP_IPIFS_CONDEMNED) || |
| SCTP_DONT_SRC(obj) || |
| (SCTP_IS_IPIF_LOOPBACK(ipif) && skip_lback)) { |
| if (scanned >= sctp->sctp_nsaddrs) |
| goto done; |
| obj = list_next(&sctp->sctp_saddrs[i]. |
| sctp_ipif_list, obj); |
| continue; |
| } |
| switch (family) { |
| case AF_INET: |
| sin4 = (struct sockaddr_in *)myaddrs + added; |
| sin4->sin_family = AF_INET; |
| sin4->sin_port = sctp->sctp_lport; |
| IN6_V4MAPPED_TO_INADDR(&addr, &sin4->sin_addr); |
| break; |
| |
| case AF_INET6: |
| sin6 = (struct sockaddr_in6 *)myaddrs + added; |
| sin6->sin6_family = AF_INET6; |
| sin6->sin6_port = sctp->sctp_lport; |
| sin6->sin6_addr = addr; |
| break; |
| } |
| added++; |
| if (added >= max || scanned >= sctp->sctp_nsaddrs) |
| goto done; |
| obj = list_next(&sctp->sctp_saddrs[i].sctp_ipif_list, |
| obj); |
| } |
| } |
| done: |
| *addrcnt = added; |
| return (0); |
| } |
| |
| /* |
| * Given the supported address family, walk through the source address list |
| * and return the total length of the available addresses. If 'p' is not |
| * null, construct the parameter list for the addresses in 'p'. |
| * 'modify' will only be set when we want the source address list to |
| * be modified. The source address list will be modified only when |
| * generating an INIT chunk. For generating an INIT-ACK 'modify' will |
| * be false since the 'sctp' will be that of the listener. |
| */ |
| size_t |
| sctp_saddr_info(sctp_t *sctp, int supp_af, uchar_t *p, boolean_t modify) |
| { |
| int i; |
| int l; |
| sctp_saddr_ipif_t *obj; |
| size_t paramlen = 0; |
| sctp_parm_hdr_t *hdr; |
| int scanned = 0; |
| int naddr; |
| int nsaddr; |
| boolean_t del_ll = B_FALSE; |
| boolean_t del_lb = B_FALSE; |
| |
| |
| /* |
| * On a clustered node don't bother changing anything |
| * on the loopback interface. |
| */ |
| if (modify && !sctp->sctp_loopback && (cl_sctp_check_addrs == NULL)) |
| del_lb = B_TRUE; |
| |
| if (modify && !sctp->sctp_linklocal) |
| del_ll = B_TRUE; |
| |
| nsaddr = sctp->sctp_nsaddrs; |
| for (i = 0; i < SCTP_IPIF_HASH; i++) { |
| if (sctp->sctp_saddrs[i].ipif_count == 0) |
| continue; |
| obj = list_head(&sctp->sctp_saddrs[i].sctp_ipif_list); |
| naddr = sctp->sctp_saddrs[i].ipif_count; |
| for (l = 0; l < naddr; l++) { |
| in6_addr_t addr; |
| sctp_ipif_t *ipif; |
| boolean_t ipif_lb; |
| boolean_t ipif_ll; |
| boolean_t unsupp_af; |
| |
| ipif = obj->saddr_ipifp; |
| scanned++; |
| |
| ipif_lb = SCTP_IS_IPIF_LOOPBACK(ipif); |
| ipif_ll = SCTP_IS_IPIF_LINKLOCAL(ipif); |
| unsupp_af = SCTP_UNSUPP_AF(ipif, supp_af); |
| /* |
| * We need to either delete or skip loopback/linklocal |
| * or unsupported addresses, if required. |
| */ |
| if ((ipif_ll && del_ll) || (ipif_lb && del_lb) || |
| (unsupp_af && modify)) { |
| if (sctp->sctp_bound_to_all == 1) |
| sctp->sctp_bound_to_all = 0; |
| if (scanned < nsaddr) { |
| obj = list_next(&sctp->sctp_saddrs[i]. |
| sctp_ipif_list, obj); |
| sctp_ipif_hash_remove(sctp, ipif); |
| continue; |
| } |
| sctp_ipif_hash_remove(sctp, ipif); |
| goto next_addr; |
| } else if (ipif_ll || unsupp_af || |
| (ipif_lb && (cl_sctp_check_addrs == NULL))) { |
| goto next_addr; |
| } |
| |
| if (!SCTP_IPIF_USABLE(ipif->sctp_ipif_state)) |
| goto next_addr; |
| if (p != NULL) |
| hdr = (sctp_parm_hdr_t *)(p + paramlen); |
| addr = ipif->sctp_ipif_saddr; |
| if (!ipif->sctp_ipif_isv6) { |
| struct in_addr *v4; |
| |
| if (p != NULL) { |
| hdr->sph_type = htons(PARM_ADDR4); |
| hdr->sph_len = htons(PARM_ADDR4_LEN); |
| v4 = (struct in_addr *)(hdr + 1); |
| IN6_V4MAPPED_TO_INADDR(&addr, v4); |
| } |
| paramlen += PARM_ADDR4_LEN; |
| } else { |
| if (p != NULL) { |
| hdr->sph_type = htons(PARM_ADDR6); |
| hdr->sph_len = htons(PARM_ADDR6_LEN); |
| bcopy(&addr, hdr + 1, sizeof (addr)); |
| } |
| paramlen += PARM_ADDR6_LEN; |
| } |
| next_addr: |
| if (scanned >= nsaddr) |
| return (paramlen); |
| obj = list_next(&sctp->sctp_saddrs[i].sctp_ipif_list, |
| obj); |
| } |
| } |
| return (paramlen); |
| } |
| |
| /* |
| * This is used on a clustered node to obtain a list of addresses, the list |
| * consists of sockaddr_in structs for v4 and sockaddr_in6 for v6. The list |
| * is then passed onto the clustering module which sends back the correct |
| * list based on the port info. Regardless of the input, i.e INADDR_ANY |
| * or specific address(es), we create the list since it could be modified by |
| * the clustering module. When given a list of addresses, we simply |
| * create the list of sockaddr_in or sockaddr_in6 structs using those |
| * addresses. If there is an INADDR_ANY in the input list, or if the |
| * input is INADDR_ANY, we create a list of sockaddr_in or sockaddr_in6 |
| * structs consisting all the addresses in the global interface list |
| * except those that are hosted on the loopback interface. We create |
| * a list of sockaddr_in[6] structs just so that it can be directly input |
| * to sctp_valid_addr_list() once the clustering module has processed it. |
| */ |
| int |
| sctp_get_addrlist(sctp_t *sctp, const void *addrs, uint32_t *addrcnt, |
| uchar_t **addrlist, int *uspec, size_t *size) |
| { |
| int cnt; |
| int icnt; |
| sctp_ipif_t *sctp_ipif; |
| struct sockaddr_in *s4; |
| struct sockaddr_in6 *s6; |
| uchar_t *p; |
| int err = 0; |
| sctp_stack_t *sctps = sctp->sctp_sctps; |
| |
| *addrlist = NULL; |
| *size = 0; |
| |
| /* |
| * Create a list of sockaddr_in[6] structs using the input list. |
| */ |
| if (sctp->sctp_family == AF_INET) { |
| *size = sizeof (struct sockaddr_in) * *addrcnt; |
| *addrlist = kmem_zalloc(*size, KM_SLEEP); |
| p = *addrlist; |
| for (cnt = 0; cnt < *addrcnt; cnt++) { |
| s4 = (struct sockaddr_in *)addrs + cnt; |
| /* |
| * We need to create a list of all the available |
| * addresses if there is an INADDR_ANY. However, |
| * if we are beyond LISTEN, then this is invalid |
| * (see sctp_valid_addr_list(). So, we just fail |
| * it here rather than wait till it fails in |
| * sctp_valid_addr_list(). |
| */ |
| if (s4->sin_addr.s_addr == INADDR_ANY) { |
| kmem_free(*addrlist, *size); |
| *addrlist = NULL; |
| *size = 0; |
| if (sctp->sctp_state > SCTPS_LISTEN) { |
| *addrcnt = 0; |
| return (EINVAL); |
| } |
| if (uspec != NULL) |
| *uspec = 1; |
| goto get_all_addrs; |
| } else { |
| bcopy(s4, p, sizeof (*s4)); |
| p += sizeof (*s4); |
| } |
| } |
| } else { |
| *size = sizeof (struct sockaddr_in6) * *addrcnt; |
| *addrlist = kmem_zalloc(*size, KM_SLEEP); |
| p = *addrlist; |
| for (cnt = 0; cnt < *addrcnt; cnt++) { |
| s6 = (struct sockaddr_in6 *)addrs + cnt; |
| /* |
| * Comments for INADDR_ANY, above, apply here too. |
| */ |
| if (IN6_IS_ADDR_UNSPECIFIED(&s6->sin6_addr)) { |
| kmem_free(*addrlist, *size); |
| *size = 0; |
| *addrlist = NULL; |
| if (sctp->sctp_state > SCTPS_LISTEN) { |
| *addrcnt = 0; |
| return (EINVAL); |
| } |
| if (uspec != NULL) |
| *uspec = 1; |
| goto get_all_addrs; |
| } else { |
| bcopy(addrs, p, sizeof (*s6)); |
| p += sizeof (*s6); |
| } |
| } |
| } |
| return (err); |
| get_all_addrs: |
| |
| /* |
| * Allocate max possible size. We allocate the max. size here because |
| * the clustering module could end up adding addresses to the list. |
| * We allocate upfront so that the clustering module need to bother |
| * re-sizing the list. |
| */ |
| if (sctp->sctp_family == AF_INET) { |
| *size = sizeof (struct sockaddr_in) * |
| sctps->sctps_g_ipifs_count; |
| } else { |
| *size = sizeof (struct sockaddr_in6) * |
| sctps->sctps_g_ipifs_count; |
| } |
| *addrlist = kmem_zalloc(*size, KM_SLEEP); |
| *addrcnt = 0; |
| p = *addrlist; |
| rw_enter(&sctps->sctps_g_ipifs_lock, RW_READER); |
| |
| /* |
| * Walk through the global interface list and add all addresses, |
| * except those that are hosted on loopback interfaces. |
| */ |
| for (cnt = 0; cnt < SCTP_IPIF_HASH; cnt++) { |
| if (sctps->sctps_g_ipifs[cnt].ipif_count == 0) |
| continue; |
| sctp_ipif = list_head( |
| &sctps->sctps_g_ipifs[cnt].sctp_ipif_list); |
| for (icnt = 0; |
| icnt < sctps->sctps_g_ipifs[cnt].ipif_count; |
| icnt++) { |
| in6_addr_t addr; |
| |
| rw_enter(&sctp_ipif->sctp_ipif_lock, RW_READER); |
| addr = sctp_ipif->sctp_ipif_saddr; |
| if (SCTP_IPIF_DISCARD(sctp_ipif->sctp_ipif_flags) || |
| !SCTP_IPIF_USABLE(sctp_ipif->sctp_ipif_state) || |
| SCTP_IS_IPIF_LOOPBACK(sctp_ipif) || |
| SCTP_IS_IPIF_LINKLOCAL(sctp_ipif) || |
| !SCTP_IPIF_ZONE_MATCH(sctp, sctp_ipif) || |
| (sctp->sctp_ipversion == IPV4_VERSION && |
| sctp_ipif->sctp_ipif_isv6) || |
| (sctp->sctp_connp->conn_ipv6_v6only && |
| !sctp_ipif->sctp_ipif_isv6)) { |
| rw_exit(&sctp_ipif->sctp_ipif_lock); |
| sctp_ipif = list_next( |
| &sctps->sctps_g_ipifs[cnt].sctp_ipif_list, |
| sctp_ipif); |
| continue; |
| } |
| rw_exit(&sctp_ipif->sctp_ipif_lock); |
| if (sctp->sctp_family == AF_INET) { |
| s4 = (struct sockaddr_in *)p; |
| IN6_V4MAPPED_TO_INADDR(&addr, &s4->sin_addr); |
| s4->sin_family = AF_INET; |
| p += sizeof (*s4); |
| } else { |
| s6 = (struct sockaddr_in6 *)p; |
| s6->sin6_addr = addr; |
| s6->sin6_family = AF_INET6; |
| s6->sin6_scope_id = |
| sctp_ipif->sctp_ipif_ill->sctp_ill_index; |
| p += sizeof (*s6); |
| } |
| (*addrcnt)++; |
| sctp_ipif = list_next( |
| &sctps->sctps_g_ipifs[cnt].sctp_ipif_list, |
| sctp_ipif); |
| } |
| } |
| rw_exit(&sctps->sctps_g_ipifs_lock); |
| return (err); |
| } |
| |
| /* |
| * Get a list of addresses from the source address list. The caller is |
| * responsible for allocating sufficient buffer for this. |
| */ |
| void |
| sctp_get_saddr_list(sctp_t *sctp, uchar_t *p, size_t psize) |
| { |
| int cnt; |
| int icnt; |
| sctp_saddr_ipif_t *obj; |
| int naddr; |
| int scanned = 0; |
| |
| for (cnt = 0; cnt < SCTP_IPIF_HASH; cnt++) { |
| if (sctp->sctp_saddrs[cnt].ipif_count == 0) |
| continue; |
| obj = list_head(&sctp->sctp_saddrs[cnt].sctp_ipif_list); |
| naddr = sctp->sctp_saddrs[cnt].ipif_count; |
| for (icnt = 0; icnt < naddr; icnt++) { |
| sctp_ipif_t *ipif; |
| |
| if (psize < sizeof (ipif->sctp_ipif_saddr)) |
| return; |
| |
| scanned++; |
| ipif = obj->saddr_ipifp; |
| bcopy(&ipif->sctp_ipif_saddr, p, |
| sizeof (ipif->sctp_ipif_saddr)); |
| p += sizeof (ipif->sctp_ipif_saddr); |
| psize -= sizeof (ipif->sctp_ipif_saddr); |
| if (scanned >= sctp->sctp_nsaddrs) |
| return; |
| obj = list_next( |
| &sctp->sctp_saddrs[icnt].sctp_ipif_list, |
| obj); |
| } |
| } |
| } |
| |
| /* |
| * Get a list of addresses from the remote address list. The caller is |
| * responsible for allocating sufficient buffer for this. |
| */ |
| void |
| sctp_get_faddr_list(sctp_t *sctp, uchar_t *p, size_t psize) |
| { |
| sctp_faddr_t *fp; |
| |
| for (fp = sctp->sctp_faddrs; fp != NULL; fp = fp->next) { |
| if (psize < sizeof (fp->faddr)) |
| return; |
| bcopy(&fp->faddr, p, sizeof (fp->faddr)); |
| p += sizeof (fp->faddr); |
| psize -= sizeof (fp->faddr); |
| } |
| } |
| |
| static void |
| sctp_free_ills(sctp_stack_t *sctps) |
| { |
| int i; |
| int l; |
| sctp_ill_t *sctp_ill; |
| |
| if (sctps->sctps_ills_count == 0) |
| return; |
| |
| for (i = 0; i < SCTP_ILL_HASH; i++) { |
| sctp_ill = list_tail(&sctps->sctps_g_ills[i].sctp_ill_list); |
| for (l = 0; l < sctps->sctps_g_ills[i].ill_count; l++) { |
| ASSERT(sctp_ill->sctp_ill_ipifcnt == 0); |
| list_remove(&sctps->sctps_g_ills[i].sctp_ill_list, |
| sctp_ill); |
| sctps->sctps_ills_count--; |
| kmem_free(sctp_ill->sctp_ill_name, |
| sctp_ill->sctp_ill_name_length); |
| kmem_free(sctp_ill, sizeof (sctp_ill_t)); |
| sctp_ill = |
| list_tail(&sctps->sctps_g_ills[i].sctp_ill_list); |
| } |
| sctps->sctps_g_ills[i].ill_count = 0; |
| } |
| ASSERT(sctps->sctps_ills_count == 0); |
| } |
| |
| static void |
| sctp_free_ipifs(sctp_stack_t *sctps) |
| { |
| int i; |
| int l; |
| sctp_ipif_t *sctp_ipif; |
| sctp_ill_t *sctp_ill; |
| |
| if (sctps->sctps_g_ipifs_count == 0) |
| return; |
| |
| for (i = 0; i < SCTP_IPIF_HASH; i++) { |
| sctp_ipif = list_tail(&sctps->sctps_g_ipifs[i].sctp_ipif_list); |
| for (l = 0; l < sctps->sctps_g_ipifs[i].ipif_count; l++) { |
| sctp_ill = sctp_ipif->sctp_ipif_ill; |
| |
| list_remove(&sctps->sctps_g_ipifs[i].sctp_ipif_list, |
| sctp_ipif); |
| sctps->sctps_g_ipifs_count--; |
| (void) atomic_add_32_nv(&sctp_ill->sctp_ill_ipifcnt, |
| -1); |
| kmem_free(sctp_ipif, sizeof (sctp_ipif_t)); |
| sctp_ipif = |
| list_tail(&sctps->sctps_g_ipifs[i].sctp_ipif_list); |
| } |
| sctps->sctps_g_ipifs[i].ipif_count = 0; |
| } |
| ASSERT(sctps->sctps_g_ipifs_count == 0); |
| } |
| |
| |
| /* Initialize the SCTP ILL list and lock */ |
| void |
| sctp_saddr_init(sctp_stack_t *sctps) |
| { |
| int i; |
| |
| sctps->sctps_g_ills = kmem_zalloc(sizeof (sctp_ill_hash_t) * |
| SCTP_ILL_HASH, KM_SLEEP); |
| sctps->sctps_g_ipifs = kmem_zalloc(sizeof (sctp_ipif_hash_t) * |
| SCTP_IPIF_HASH, KM_SLEEP); |
| |
| rw_init(&sctps->sctps_g_ills_lock, NULL, RW_DEFAULT, NULL); |
| rw_init(&sctps->sctps_g_ipifs_lock, NULL, RW_DEFAULT, NULL); |
| |
| for (i = 0; i < SCTP_ILL_HASH; i++) { |
| sctps->sctps_g_ills[i].ill_count = 0; |
| list_create(&sctps->sctps_g_ills[i].sctp_ill_list, |
| sizeof (sctp_ill_t), |
| offsetof(sctp_ill_t, sctp_ills)); |
| } |
| for (i = 0; i < SCTP_IPIF_HASH; i++) { |
| sctps->sctps_g_ipifs[i].ipif_count = 0; |
| list_create(&sctps->sctps_g_ipifs[i].sctp_ipif_list, |
| sizeof (sctp_ipif_t), offsetof(sctp_ipif_t, sctp_ipifs)); |
| } |
| } |
| |
| void |
| sctp_saddr_fini(sctp_stack_t *sctps) |
| { |
| int i; |
| |
| sctp_free_ipifs(sctps); |
| sctp_free_ills(sctps); |
| |
| for (i = 0; i < SCTP_ILL_HASH; i++) |
| list_destroy(&sctps->sctps_g_ills[i].sctp_ill_list); |
| for (i = 0; i < SCTP_IPIF_HASH; i++) |
| list_destroy(&sctps->sctps_g_ipifs[i].sctp_ipif_list); |
| |
| ASSERT(sctps->sctps_ills_count == 0 && sctps->sctps_g_ipifs_count == 0); |
| kmem_free(sctps->sctps_g_ills, sizeof (sctp_ill_hash_t) * |
| SCTP_ILL_HASH); |
| sctps->sctps_g_ills = NULL; |
| kmem_free(sctps->sctps_g_ipifs, sizeof (sctp_ipif_hash_t) * |
| SCTP_IPIF_HASH); |
| sctps->sctps_g_ipifs = NULL; |
| rw_destroy(&sctps->sctps_g_ills_lock); |
| rw_destroy(&sctps->sctps_g_ipifs_lock); |
| } |