| /* |
| * CDDL HEADER START |
| * |
| * The contents of this file are subject to the terms of the |
| * Common Development and Distribution License (the "License"). |
| * You may not use this file except in compliance with the License. |
| * |
| * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE |
| * or http://www.opensolaris.org/os/licensing. |
| * See the License for the specific language governing permissions |
| * and limitations under the License. |
| * |
| * When distributing Covered Code, include this CDDL HEADER in each |
| * file and include the License file at usr/src/OPENSOLARIS.LICENSE. |
| * If applicable, add the following below this CDDL HEADER, with the |
| * fields enclosed by brackets "[]" replaced with your own identifying |
| * information: Portions Copyright [yyyy] [name of copyright owner] |
| * |
| * CDDL HEADER END |
| */ |
| /* |
| * Copyright 2007 Sun Microsystems, Inc. All rights reserved. |
| * Use is subject to license terms. |
| */ |
| |
| #pragma ident "%Z%%M% %I% %E% SMI" |
| |
| /* |
| * This file contains consumer routines of the IPv4 forwarding engine |
| */ |
| |
| #include <sys/types.h> |
| #include <sys/stream.h> |
| #include <sys/stropts.h> |
| #include <sys/strlog.h> |
| #include <sys/dlpi.h> |
| #include <sys/ddi.h> |
| #include <sys/cmn_err.h> |
| #include <sys/policy.h> |
| |
| #include <sys/systm.h> |
| #include <sys/strsun.h> |
| #include <sys/kmem.h> |
| #include <sys/param.h> |
| #include <sys/socket.h> |
| #include <net/if.h> |
| #include <net/route.h> |
| #include <netinet/in.h> |
| #include <net/if_dl.h> |
| #include <netinet/ip6.h> |
| #include <netinet/icmp6.h> |
| |
| #include <inet/common.h> |
| #include <inet/mi.h> |
| #include <inet/mib2.h> |
| #include <inet/ip.h> |
| #include <inet/ip6.h> |
| #include <inet/ip_ndp.h> |
| #include <inet/arp.h> |
| #include <inet/ip_if.h> |
| #include <inet/ip_ire.h> |
| #include <inet/ip_ftable.h> |
| #include <inet/ip_rts.h> |
| #include <inet/nd.h> |
| |
| #include <net/pfkeyv2.h> |
| #include <inet/ipsec_info.h> |
| #include <inet/sadb.h> |
| #include <sys/kmem.h> |
| #include <inet/tcp.h> |
| #include <inet/ipclassifier.h> |
| #include <sys/zone.h> |
| #include <net/radix.h> |
| #include <sys/tsol/label.h> |
| #include <sys/tsol/tnet.h> |
| |
| #define IS_DEFAULT_ROUTE(ire) \ |
| (((ire)->ire_type & IRE_DEFAULT) || \ |
| (((ire)->ire_type & IRE_INTERFACE) && ((ire)->ire_addr == 0))) |
| |
| /* |
| * structure for passing args between ire_ftable_lookup and ire_find_best_route |
| */ |
| typedef struct ire_ftable_args_s { |
| ipaddr_t ift_addr; |
| ipaddr_t ift_mask; |
| ipaddr_t ift_gateway; |
| int ift_type; |
| const ipif_t *ift_ipif; |
| zoneid_t ift_zoneid; |
| uint32_t ift_ihandle; |
| const ts_label_t *ift_tsl; |
| int ift_flags; |
| ire_t *ift_best_ire; |
| } ire_ftable_args_t; |
| |
| static ire_t *route_to_dst(const struct sockaddr *, zoneid_t, ip_stack_t *); |
| static ire_t *ire_round_robin(irb_t *, zoneid_t, ire_ftable_args_t *, |
| ip_stack_t *); |
| static void ire_del_host_redir(ire_t *, char *); |
| static boolean_t ire_find_best_route(struct radix_node *, void *); |
| |
| /* |
| * Lookup a route in forwarding table. A specific lookup is indicated by |
| * passing the required parameters and indicating the match required in the |
| * flag field. |
| * |
| * Looking for default route can be done in three ways |
| * 1) pass mask as 0 and set MATCH_IRE_MASK in flags field |
| * along with other matches. |
| * 2) pass type as IRE_DEFAULT and set MATCH_IRE_TYPE in flags |
| * field along with other matches. |
| * 3) if the destination and mask are passed as zeros. |
| * |
| * A request to return a default route if no route |
| * is found, can be specified by setting MATCH_IRE_DEFAULT |
| * in flags. |
| * |
| * It does not support recursion more than one level. It |
| * will do recursive lookup only when the lookup maps to |
| * a prefix or default route and MATCH_IRE_RECURSIVE flag is passed. |
| * |
| * If the routing table is setup to allow more than one level |
| * of recursion, the cleaning up cache table will not work resulting |
| * in invalid routing. |
| * |
| * Supports IP_BOUND_IF by following the ipif/ill when recursing. |
| * |
| * NOTE : When this function returns NULL, pire has already been released. |
| * pire is valid only when this function successfully returns an |
| * ire. |
| */ |
| ire_t * |
| ire_ftable_lookup(ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, |
| int type, const ipif_t *ipif, ire_t **pire, zoneid_t zoneid, |
| uint32_t ihandle, const ts_label_t *tsl, int flags, ip_stack_t *ipst) |
| { |
| ire_t *ire = NULL; |
| ipaddr_t gw_addr; |
| struct rt_sockaddr rdst, rmask; |
| struct rt_entry *rt; |
| ire_ftable_args_t margs; |
| boolean_t found_incomplete = B_FALSE; |
| |
| ASSERT(ipif == NULL || !ipif->ipif_isv6); |
| ASSERT(!(flags & MATCH_IRE_WQ)); |
| |
| /* |
| * When we return NULL from this function, we should make |
| * sure that *pire is NULL so that the callers will not |
| * wrongly REFRELE the pire. |
| */ |
| if (pire != NULL) |
| *pire = NULL; |
| /* |
| * ire_match_args() will dereference ipif MATCH_IRE_SRC or |
| * MATCH_IRE_ILL is set. |
| */ |
| if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) && |
| (ipif == NULL)) |
| return (NULL); |
| |
| (void) memset(&rdst, 0, sizeof (rdst)); |
| rdst.rt_sin_len = sizeof (rdst); |
| rdst.rt_sin_family = AF_INET; |
| rdst.rt_sin_addr.s_addr = addr; |
| |
| (void) memset(&rmask, 0, sizeof (rmask)); |
| rmask.rt_sin_len = sizeof (rmask); |
| rmask.rt_sin_family = AF_INET; |
| rmask.rt_sin_addr.s_addr = mask; |
| |
| (void) memset(&margs, 0, sizeof (margs)); |
| margs.ift_addr = addr; |
| margs.ift_mask = mask; |
| margs.ift_gateway = gateway; |
| margs.ift_type = type; |
| margs.ift_ipif = ipif; |
| margs.ift_zoneid = zoneid; |
| margs.ift_ihandle = ihandle; |
| margs.ift_tsl = tsl; |
| margs.ift_flags = flags; |
| |
| /* |
| * The flags argument passed to ire_ftable_lookup may cause the |
| * search to return, not the longest matching prefix, but the |
| * "best matching prefix", i.e., the longest prefix that also |
| * satisfies constraints imposed via the permutation of flags |
| * passed in. To achieve this, we invoke ire_match_args() on |
| * each matching leaf in the radix tree. ire_match_args is |
| * invoked by the callback function ire_find_best_route() |
| * We hold the global tree lock in read mode when calling |
| * rn_match_args.Before dropping the global tree lock, ensure |
| * that the radix node can't be deleted by incrementing ire_refcnt. |
| */ |
| RADIX_NODE_HEAD_RLOCK(ipst->ips_ip_ftable); |
| rt = (struct rt_entry *)ipst->ips_ip_ftable->rnh_matchaddr_args(&rdst, |
| ipst->ips_ip_ftable, ire_find_best_route, &margs); |
| ire = margs.ift_best_ire; |
| RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); |
| |
| if (rt == NULL) { |
| return (NULL); |
| } else { |
| ASSERT(ire != NULL); |
| } |
| |
| DTRACE_PROBE2(ire__found, ire_ftable_args_t *, &margs, ire_t *, ire); |
| |
| if (!IS_DEFAULT_ROUTE(ire)) |
| goto found_ire_held; |
| /* |
| * If default route is found, see if default matching criteria |
| * are satisfied. |
| */ |
| if (flags & MATCH_IRE_MASK) { |
| /* |
| * we were asked to match a 0 mask, and came back with |
| * a default route. Ok to return it. |
| */ |
| goto found_default_ire; |
| } |
| if ((flags & MATCH_IRE_TYPE) && |
| (type & (IRE_DEFAULT | IRE_INTERFACE))) { |
| /* |
| * we were asked to match a default ire type. Ok to return it. |
| */ |
| goto found_default_ire; |
| } |
| if (flags & MATCH_IRE_DEFAULT) { |
| goto found_default_ire; |
| } |
| /* |
| * we found a default route, but default matching criteria |
| * are not specified and we are not explicitly looking for |
| * default. |
| */ |
| IRE_REFRELE(ire); |
| return (NULL); |
| found_default_ire: |
| /* |
| * round-robin only if we have more than one route in the bucket. |
| */ |
| if ((ire->ire_bucket->irb_ire_cnt > 1) && |
| IS_DEFAULT_ROUTE(ire) && |
| ((flags & (MATCH_IRE_DEFAULT | MATCH_IRE_MASK)) == |
| MATCH_IRE_DEFAULT)) { |
| ire_t *next_ire; |
| |
| next_ire = ire_round_robin(ire->ire_bucket, zoneid, &margs, |
| ipst); |
| IRE_REFRELE(ire); |
| if (next_ire != NULL) { |
| ire = next_ire; |
| } else { |
| /* no route */ |
| return (NULL); |
| } |
| } |
| found_ire_held: |
| ASSERT(ire->ire_type != IRE_MIPRTUN && ire->ire_in_ill == NULL); |
| if ((flags & MATCH_IRE_RJ_BHOLE) && |
| (ire->ire_flags & (RTF_BLACKHOLE | RTF_REJECT))) { |
| return (ire); |
| } |
| /* |
| * At this point, IRE that was found must be an IRE_FORWARDTABLE |
| * type. If this is a recursive lookup and an IRE_INTERFACE type was |
| * found, return that. If it was some other IRE_FORWARDTABLE type of |
| * IRE (one of the prefix types), then it is necessary to fill in the |
| * parent IRE pointed to by pire, and then lookup the gateway address of |
| * the parent. For backwards compatiblity, if this lookup returns an |
| * IRE other than a IRE_CACHETABLE or IRE_INTERFACE, then one more level |
| * of lookup is done. |
| */ |
| if (flags & MATCH_IRE_RECURSIVE) { |
| ipif_t *gw_ipif; |
| int match_flags = MATCH_IRE_DSTONLY; |
| ire_t *save_ire; |
| |
| if (ire->ire_type & IRE_INTERFACE) |
| return (ire); |
| if (pire != NULL) |
| *pire = ire; |
| /* |
| * If we can't find an IRE_INTERFACE or the caller has not |
| * asked for pire, we need to REFRELE the save_ire. |
| */ |
| save_ire = ire; |
| |
| /* |
| * Currently MATCH_IRE_ILL is never used with |
| * (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT) while |
| * sending out packets as MATCH_IRE_ILL is used only |
| * for communicating with on-link hosts. We can't assert |
| * that here as RTM_GET calls this function with |
| * MATCH_IRE_ILL | MATCH_IRE_DEFAULT | MATCH_IRE_RECURSIVE. |
| * We have already used the MATCH_IRE_ILL in determining |
| * the right prefix route at this point. To match the |
| * behavior of how we locate routes while sending out |
| * packets, we don't want to use MATCH_IRE_ILL below |
| * while locating the interface route. |
| * |
| * ire_ftable_lookup may end up with an incomplete IRE_CACHE |
| * entry for the gateway (i.e., one for which the |
| * ire_nce->nce_state is not yet ND_REACHABLE). If the caller |
| * has specified MATCH_IRE_COMPLETE, such entries will not |
| * be returned; instead, we return the IF_RESOLVER ire. |
| */ |
| if (ire->ire_ipif != NULL) |
| match_flags |= MATCH_IRE_ILL_GROUP; |
| |
| ire = ire_route_lookup(ire->ire_gateway_addr, 0, 0, 0, |
| ire->ire_ipif, NULL, zoneid, tsl, match_flags, ipst); |
| DTRACE_PROBE2(ftable__route__lookup1, (ire_t *), ire, |
| (ire_t *), save_ire); |
| if (ire == NULL || |
| ((ire->ire_type & IRE_CACHE) && ire->ire_nce && |
| ire->ire_nce->nce_state != ND_REACHABLE && |
| (flags & MATCH_IRE_COMPLETE))) { |
| /* |
| * Do not release the parent ire if MATCH_IRE_PARENT |
| * is set. Also return it via ire. |
| */ |
| if (ire != NULL) { |
| ire_refrele(ire); |
| ire = NULL; |
| found_incomplete = B_TRUE; |
| } |
| if (flags & MATCH_IRE_PARENT) { |
| if (pire != NULL) { |
| /* |
| * Need an extra REFHOLD, if the parent |
| * ire is returned via both ire and |
| * pire. |
| */ |
| IRE_REFHOLD(save_ire); |
| } |
| ire = save_ire; |
| } else { |
| ire_refrele(save_ire); |
| if (pire != NULL) |
| *pire = NULL; |
| } |
| if (!found_incomplete) |
| return (ire); |
| } |
| if (ire->ire_type & (IRE_CACHETABLE | IRE_INTERFACE)) { |
| /* |
| * If the caller did not ask for pire, release |
| * it now. |
| */ |
| if (pire == NULL) { |
| ire_refrele(save_ire); |
| } |
| return (ire); |
| } |
| match_flags |= MATCH_IRE_TYPE; |
| gw_addr = ire->ire_gateway_addr; |
| gw_ipif = ire->ire_ipif; |
| ire_refrele(ire); |
| ire = ire_route_lookup(gw_addr, 0, 0, |
| (found_incomplete? IRE_INTERFACE : |
| (IRE_CACHETABLE | IRE_INTERFACE)), |
| gw_ipif, NULL, zoneid, tsl, match_flags, ipst); |
| DTRACE_PROBE2(ftable__route__lookup2, (ire_t *), ire, |
| (ire_t *), save_ire); |
| if (ire == NULL || |
| ((ire->ire_type & IRE_CACHE) && ire->ire_nce && |
| ire->ire_nce->nce_state != ND_REACHABLE && |
| (flags & MATCH_IRE_COMPLETE))) { |
| /* |
| * Do not release the parent ire if MATCH_IRE_PARENT |
| * is set. Also return it via ire. |
| */ |
| if (ire != NULL) { |
| ire_refrele(ire); |
| ire = NULL; |
| } |
| if (flags & MATCH_IRE_PARENT) { |
| if (pire != NULL) { |
| /* |
| * Need an extra REFHOLD, if the |
| * parent ire is returned via both |
| * ire and pire. |
| */ |
| IRE_REFHOLD(save_ire); |
| } |
| ire = save_ire; |
| } else { |
| ire_refrele(save_ire); |
| if (pire != NULL) |
| *pire = NULL; |
| } |
| return (ire); |
| } else if (pire == NULL) { |
| /* |
| * If the caller did not ask for pire, release |
| * it now. |
| */ |
| ire_refrele(save_ire); |
| } |
| return (ire); |
| } |
| ASSERT(pire == NULL || *pire == NULL); |
| return (ire); |
| } |
| |
| |
| /* |
| * Find an IRE_OFFSUBNET IRE entry for the multicast address 'group' |
| * that goes through 'ipif'. As a fallback, a route that goes through |
| * ipif->ipif_ill can be returned. |
| */ |
| ire_t * |
| ipif_lookup_multi_ire(ipif_t *ipif, ipaddr_t group) |
| { |
| ire_t *ire; |
| ire_t *save_ire = NULL; |
| ire_t *gw_ire; |
| irb_t *irb; |
| ipaddr_t gw_addr; |
| int match_flags = MATCH_IRE_TYPE | MATCH_IRE_ILL; |
| ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; |
| |
| ASSERT(CLASSD(group)); |
| |
| ire = ire_ftable_lookup(group, 0, 0, 0, NULL, NULL, ALL_ZONES, 0, |
| NULL, MATCH_IRE_DEFAULT, ipst); |
| |
| if (ire == NULL) |
| return (NULL); |
| |
| irb = ire->ire_bucket; |
| ASSERT(irb); |
| |
| IRB_REFHOLD(irb); |
| ire_refrele(ire); |
| for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { |
| if (ire->ire_addr != group || |
| ipif->ipif_zoneid != ire->ire_zoneid && |
| ire->ire_zoneid != ALL_ZONES) { |
| continue; |
| } |
| |
| switch (ire->ire_type) { |
| case IRE_DEFAULT: |
| case IRE_PREFIX: |
| case IRE_HOST: |
| gw_addr = ire->ire_gateway_addr; |
| gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, |
| ipif, NULL, ALL_ZONES, 0, NULL, match_flags, ipst); |
| |
| if (gw_ire != NULL) { |
| if (save_ire != NULL) { |
| ire_refrele(save_ire); |
| } |
| IRE_REFHOLD(ire); |
| if (gw_ire->ire_ipif == ipif) { |
| ire_refrele(gw_ire); |
| |
| IRB_REFRELE(irb); |
| return (ire); |
| } |
| ire_refrele(gw_ire); |
| save_ire = ire; |
| } |
| break; |
| case IRE_IF_NORESOLVER: |
| case IRE_IF_RESOLVER: |
| if (ire->ire_ipif == ipif) { |
| if (save_ire != NULL) { |
| ire_refrele(save_ire); |
| } |
| IRE_REFHOLD(ire); |
| |
| IRB_REFRELE(irb); |
| return (ire); |
| } |
| break; |
| } |
| } |
| IRB_REFRELE(irb); |
| |
| return (save_ire); |
| } |
| |
| /* |
| * Find an IRE_INTERFACE for the multicast group. |
| * Allows different routes for multicast addresses |
| * in the unicast routing table (akin to 224.0.0.0 but could be more specific) |
| * which point at different interfaces. This is used when IP_MULTICAST_IF |
| * isn't specified (when sending) and when IP_ADD_MEMBERSHIP doesn't |
| * specify the interface to join on. |
| * |
| * Supports IP_BOUND_IF by following the ipif/ill when recursing. |
| */ |
| ire_t * |
| ire_lookup_multi(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst) |
| { |
| ire_t *ire; |
| ipif_t *ipif = NULL; |
| int match_flags = MATCH_IRE_TYPE; |
| ipaddr_t gw_addr; |
| |
| ire = ire_ftable_lookup(group, 0, 0, 0, NULL, NULL, zoneid, |
| 0, NULL, MATCH_IRE_DEFAULT, ipst); |
| |
| /* We search a resolvable ire in case of multirouting. */ |
| if ((ire != NULL) && (ire->ire_flags & RTF_MULTIRT)) { |
| ire_t *cire = NULL; |
| /* |
| * If the route is not resolvable, the looked up ire |
| * may be changed here. In that case, ire_multirt_lookup() |
| * IRE_REFRELE the original ire and change it. |
| */ |
| (void) ire_multirt_lookup(&cire, &ire, MULTIRT_CACHEGW, |
| NULL, ipst); |
| if (cire != NULL) |
| ire_refrele(cire); |
| } |
| if (ire == NULL) |
| return (NULL); |
| /* |
| * Make sure we follow ire_ipif. |
| * |
| * We need to determine the interface route through |
| * which the gateway will be reached. We don't really |
| * care which interface is picked if the interface is |
| * part of a group. |
| */ |
| if (ire->ire_ipif != NULL) { |
| ipif = ire->ire_ipif; |
| match_flags |= MATCH_IRE_ILL_GROUP; |
| } |
| |
| switch (ire->ire_type) { |
| case IRE_DEFAULT: |
| case IRE_PREFIX: |
| case IRE_HOST: |
| gw_addr = ire->ire_gateway_addr; |
| ire_refrele(ire); |
| ire = ire_ftable_lookup(gw_addr, 0, 0, |
| IRE_INTERFACE, ipif, NULL, zoneid, 0, |
| NULL, match_flags, ipst); |
| return (ire); |
| case IRE_IF_NORESOLVER: |
| case IRE_IF_RESOLVER: |
| return (ire); |
| default: |
| ire_refrele(ire); |
| return (NULL); |
| } |
| } |
| |
| /* |
| * Delete the passed in ire if the gateway addr matches |
| */ |
| void |
| ire_del_host_redir(ire_t *ire, char *gateway) |
| { |
| if ((ire->ire_flags & RTF_DYNAMIC) && |
| (ire->ire_gateway_addr == *(ipaddr_t *)gateway)) |
| ire_delete(ire); |
| } |
| |
| /* |
| * Search for all HOST REDIRECT routes that are |
| * pointing at the specified gateway and |
| * delete them. This routine is called only |
| * when a default gateway is going away. |
| */ |
| void |
| ire_delete_host_redirects(ipaddr_t gateway, ip_stack_t *ipst) |
| { |
| struct rtfuncarg rtfarg; |
| |
| (void) memset(&rtfarg, 0, sizeof (rtfarg)); |
| rtfarg.rt_func = ire_del_host_redir; |
| rtfarg.rt_arg = (void *)&gateway; |
| (void) ipst->ips_ip_ftable->rnh_walktree_mt(ipst->ips_ip_ftable, |
| rtfunc, &rtfarg, irb_refhold_rn, irb_refrele_rn); |
| } |
| |
| struct ihandle_arg { |
| uint32_t ihandle; |
| ire_t *ire; |
| }; |
| |
| static int |
| ire_ihandle_onlink_match(struct radix_node *rn, void *arg) |
| { |
| struct rt_entry *rt; |
| irb_t *irb; |
| ire_t *ire; |
| struct ihandle_arg *ih = arg; |
| |
| rt = (struct rt_entry *)rn; |
| ASSERT(rt != NULL); |
| irb = &rt->rt_irb; |
| for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { |
| if ((ire->ire_type & IRE_INTERFACE) && |
| (ire->ire_ihandle == ih->ihandle)) { |
| ih->ire = ire; |
| IRE_REFHOLD(ire); |
| return (1); |
| } |
| } |
| return (0); |
| } |
| |
| /* |
| * Locate the interface ire that is tied to the cache ire 'cire' via |
| * cire->ire_ihandle. |
| * |
| * We are trying to create the cache ire for an onlink destn. or |
| * gateway in 'cire'. We are called from ire_add_v4() in the IRE_IF_RESOLVER |
| * case, after the ire has come back from ARP. |
| */ |
| ire_t * |
| ire_ihandle_lookup_onlink(ire_t *cire) |
| { |
| ire_t *ire; |
| int match_flags; |
| struct ihandle_arg ih; |
| ip_stack_t *ipst; |
| |
| ASSERT(cire != NULL); |
| ipst = cire->ire_ipst; |
| |
| /* |
| * We don't need to specify the zoneid to ire_ftable_lookup() below |
| * because the ihandle refers to an ipif which can be in only one zone. |
| */ |
| match_flags = MATCH_IRE_TYPE | MATCH_IRE_IHANDLE | MATCH_IRE_MASK; |
| /* |
| * We know that the mask of the interface ire equals cire->ire_cmask. |
| * (When ip_newroute() created 'cire' for an on-link destn. it set its |
| * cmask from the interface ire's mask) |
| */ |
| ire = ire_ftable_lookup(cire->ire_addr, cire->ire_cmask, 0, |
| IRE_INTERFACE, NULL, NULL, ALL_ZONES, cire->ire_ihandle, |
| NULL, match_flags, ipst); |
| if (ire != NULL) |
| return (ire); |
| /* |
| * If we didn't find an interface ire above, we can't declare failure. |
| * For backwards compatibility, we need to support prefix routes |
| * pointing to next hop gateways that are not on-link. |
| * |
| * In the resolver/noresolver case, ip_newroute() thinks it is creating |
| * the cache ire for an onlink destination in 'cire'. But 'cire' is |
| * not actually onlink, because ire_ftable_lookup() cheated it, by |
| * doing ire_route_lookup() twice and returning an interface ire. |
| * |
| * Eg. default - gw1 (line 1) |
| * gw1 - gw2 (line 2) |
| * gw2 - hme0 (line 3) |
| * |
| * In the above example, ip_newroute() tried to create the cache ire |
| * 'cire' for gw1, based on the interface route in line 3. The |
| * ire_ftable_lookup() above fails, because there is no interface route |
| * to reach gw1. (it is gw2). We fall thru below. |
| * |
| * Do a brute force search based on the ihandle in a subset of the |
| * forwarding tables, corresponding to cire->ire_cmask. Otherwise |
| * things become very complex, since we don't have 'pire' in this |
| * case. (Also note that this method is not possible in the offlink |
| * case because we don't know the mask) |
| */ |
| (void) memset(&ih, 0, sizeof (ih)); |
| ih.ihandle = cire->ire_ihandle; |
| (void) ipst->ips_ip_ftable->rnh_walktree_mt(ipst->ips_ip_ftable, |
| ire_ihandle_onlink_match, &ih, irb_refhold_rn, irb_refrele_rn); |
| return (ih.ire); |
| } |
| |
| /* |
| * IRE iterator used by ire_ftable_lookup[_v6]() to process multiple default |
| * routes. Given a starting point in the hash list (ire_origin), walk the IREs |
| * in the bucket skipping default interface routes and deleted entries. |
| * Returns the next IRE (unheld), or NULL when we're back to the starting point. |
| * Assumes that the caller holds a reference on the IRE bucket. |
| */ |
| ire_t * |
| ire_get_next_default_ire(ire_t *ire, ire_t *ire_origin) |
| { |
| ASSERT(ire_origin->ire_bucket != NULL); |
| ASSERT(ire != NULL); |
| |
| do { |
| ire = ire->ire_next; |
| if (ire == NULL) |
| ire = ire_origin->ire_bucket->irb_ire; |
| if (ire == ire_origin) |
| return (NULL); |
| } while ((ire->ire_type & IRE_INTERFACE) || |
| (ire->ire_marks & IRE_MARK_CONDEMNED)); |
| ASSERT(ire != NULL); |
| return (ire); |
| } |
| |
| static ipif_t * |
| ire_forward_src_ipif(ipaddr_t dst, ire_t *sire, ire_t *ire, ill_t *dst_ill, |
| int zoneid, ushort_t *marks) |
| { |
| ipif_t *src_ipif; |
| ip_stack_t *ipst = dst_ill->ill_ipst; |
| |
| /* |
| * Pick the best source address from dst_ill. |
| * |
| * 1) If it is part of a multipathing group, we would |
| * like to spread the inbound packets across different |
| * interfaces. ipif_select_source picks a random source |
| * across the different ills in the group. |
| * |
| * 2) If it is not part of a multipathing group, we try |
| * to pick the source address from the destination |
| * route. Clustering assumes that when we have multiple |
| * prefixes hosted on an interface, the prefix of the |
| * source address matches the prefix of the destination |
| * route. We do this only if the address is not |
| * DEPRECATED. |
| * |
| * 3) If the conn is in a different zone than the ire, we |
| * need to pick a source address from the right zone. |
| * |
| * NOTE : If we hit case (1) above, the prefix of the source |
| * address picked may not match the prefix of the |
| * destination routes prefix as ipif_select_source |
| * does not look at "dst" while picking a source |
| * address. |
| * If we want the same behavior as (2), we will need |
| * to change the behavior of ipif_select_source. |
| */ |
| |
| if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { |
| /* |
| * The RTF_SETSRC flag is set in the parent ire (sire). |
| * Check that the ipif matching the requested source |
| * address still exists. |
| */ |
| src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, |
| zoneid, NULL, NULL, NULL, NULL, ipst); |
| return (src_ipif); |
| } |
| *marks |= IRE_MARK_USESRC_CHECK; |
| if ((dst_ill->ill_group != NULL) || |
| (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || |
| (dst_ill->ill_usesrc_ifindex != 0)) { |
| src_ipif = ipif_select_source(dst_ill, dst, zoneid); |
| if (src_ipif == NULL) |
| return (NULL); |
| |
| } else { |
| src_ipif = ire->ire_ipif; |
| ASSERT(src_ipif != NULL); |
| /* hold src_ipif for uniformity */ |
| ipif_refhold(src_ipif); |
| } |
| return (src_ipif); |
| } |
| |
| /* |
| * This function is called by ip_rput_noire() and ip_fast_forward() |
| * to resolve the route of incoming packet that needs to be forwarded. |
| * If the ire of the nexthop is not already in the cachetable, this |
| * routine will insert it to the table, but won't trigger ARP resolution yet. |
| * Thus unlike ip_newroute, this function adds incomplete ires to |
| * the cachetable. ARP resolution for these ires are delayed until |
| * after all of the packet processing is completed and its ready to |
| * be sent out on the wire, Eventually, the packet transmit routine |
| * ip_xmit_v4() attempts to send a packet to the driver. If it finds |
| * that there is no link layer information, it will do the arp |
| * resolution and queue the packet in ire->ire_nce->nce_qd_mp and |
| * then send it out once the arp resolution is over |
| * (see ip_xmit_v4()->ire_arpresolve()). This scheme is similar to |
| * the model of BSD/SunOS 4 |
| * |
| * In future, the insertion of incomplete ires in the cachetable should |
| * be implemented in hostpath as well, as doing so will greatly reduce |
| * the existing complexity for code paths that depend on the context of |
| * the sender (such as IPsec). |
| * |
| * Thus this scheme of adding incomplete ires in cachetable in forwarding |
| * path can be used as a template for simplifying the hostpath. |
| */ |
| |
| ire_t * |
| ire_forward(ipaddr_t dst, boolean_t *check_multirt, ire_t *supplied_ire, |
| ire_t *supplied_sire, const struct ts_label_s *tsl, ip_stack_t *ipst) |
| { |
| ipaddr_t gw = 0; |
| ire_t *ire = NULL; |
| ire_t *sire = NULL, *save_ire; |
| ill_t *dst_ill = NULL; |
| int error; |
| zoneid_t zoneid; |
| ipif_t *src_ipif = NULL; |
| mblk_t *res_mp; |
| ushort_t ire_marks = 0; |
| tsol_gcgrp_t *gcgrp = NULL; |
| tsol_gcgrp_addr_t ga; |
| |
| zoneid = GLOBAL_ZONEID; |
| |
| if (supplied_ire != NULL) { |
| /* We have arrived here from ipfil_sendpkt */ |
| ire = supplied_ire; |
| sire = supplied_sire; |
| goto create_irecache; |
| } |
| |
| ire = ire_ftable_lookup(dst, 0, 0, 0, NULL, &sire, zoneid, 0, |
| tsl, MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | |
| MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT|MATCH_IRE_SECATTR, ipst); |
| |
| if (ire == NULL) { |
| ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, RTA_DST, ipst); |
| goto icmp_err_ret; |
| } |
| |
| /* |
| * If we encounter CGTP, we should have the caller use |
| * ip_newroute to resolve multirt instead of this function. |
| * CGTP specs explicitly state that it can't be used with routers. |
| * This essentially prevents insertion of incomplete RTF_MULTIRT |
| * ires in cachetable. |
| */ |
| if (ip_cgtp_filter && |
| ((ire->ire_flags & RTF_MULTIRT) || |
| ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)))) { |
| ip3dbg(("ire_forward: packet is to be multirouted- " |
| "handing it to ip_newroute\n")); |
| if (sire != NULL) |
| ire_refrele(sire); |
| ire_refrele(ire); |
| /* |
| * Inform caller about encountering of multirt so that |
| * ip_newroute() can be called. |
| */ |
| *check_multirt = B_TRUE; |
| return (NULL); |
| } |
| |
| *check_multirt = B_FALSE; |
| |
| /* |
| * Verify that the returned IRE does not have either |
| * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is |
| * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. |
| */ |
| if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || |
| (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { |
| ip3dbg(("ire 0x%p is not cache/resolver/noresolver\n", |
| (void *)ire)); |
| goto icmp_err_ret; |
| } |
| |
| /* |
| * If we already have a fully resolved IRE CACHE of the |
| * nexthop router, just hand over the cache entry |
| * and we are done. |
| */ |
| |
| if (ire->ire_type & IRE_CACHE) { |
| |
| /* |
| * If we are using this ire cache entry as a |
| * gateway to forward packets, chances are we |
| * will be using it again. So turn off |
| * the temporary flag, thus reducing its |
| * chances of getting deleted frequently. |
| */ |
| if (ire->ire_marks & IRE_MARK_TEMPORARY) { |
| irb_t *irb = ire->ire_bucket; |
| rw_enter(&irb->irb_lock, RW_WRITER); |
| ire->ire_marks &= ~IRE_MARK_TEMPORARY; |
| irb->irb_tmp_ire_cnt--; |
| rw_exit(&irb->irb_lock); |
| } |
| |
| if (sire != NULL) { |
| UPDATE_OB_PKT_COUNT(sire); |
| sire->ire_last_used_time = lbolt; |
| ire_refrele(sire); |
| } |
| return (ire); |
| } |
| create_irecache: |
| /* |
| * Increment the ire_ob_pkt_count field for ire if it is an |
| * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and |
| * increment the same for the parent IRE, sire, if it is some |
| * sort of prefix IRE (which includes DEFAULT, PREFIX, HOST |
| * and HOST_REDIRECT). |
| */ |
| if ((ire->ire_type & IRE_INTERFACE) != 0) { |
| UPDATE_OB_PKT_COUNT(ire); |
| ire->ire_last_used_time = lbolt; |
| } |
| |
| /* |
| * sire must be either IRE_CACHETABLE OR IRE_INTERFACE type |
| */ |
| if (sire != NULL) { |
| gw = sire->ire_gateway_addr; |
| ASSERT((sire->ire_type & |
| (IRE_CACHETABLE | IRE_INTERFACE)) == 0); |
| UPDATE_OB_PKT_COUNT(sire); |
| sire->ire_last_used_time = lbolt; |
| } |
| |
| /* Obtain dst_ill */ |
| dst_ill = ip_newroute_get_dst_ill(ire->ire_ipif->ipif_ill); |
| if (dst_ill == NULL) { |
| ip2dbg(("ire_forward no dst ill; ire 0x%p\n", |
| (void *)ire)); |
| goto icmp_err_ret; |
| } |
| |
| ASSERT(src_ipif == NULL); |
| /* Now obtain the src_ipif */ |
| src_ipif = ire_forward_src_ipif(dst, sire, ire, dst_ill, |
| zoneid, &ire_marks); |
| if (src_ipif == NULL) |
| goto icmp_err_ret; |
| |
| switch (ire->ire_type) { |
| case IRE_IF_NORESOLVER: |
| /* create ire_cache for ire_addr endpoint */ |
| case IRE_IF_RESOLVER: |
| /* |
| * We have the IRE_IF_RESOLVER of the nexthop gateway |
| * and now need to build a IRE_CACHE for it. |
| * In this case, we have the following : |
| * |
| * 1) src_ipif - used for getting a source address. |
| * |
| * 2) dst_ill - from which we derive ire_stq/ire_rfq. This |
| * means packets using the IRE_CACHE that we will build |
| * here will go out on dst_ill. |
| * |
| * 3) sire may or may not be NULL. But, the IRE_CACHE that is |
| * to be created will only be tied to the IRE_INTERFACE |
| * that was derived from the ire_ihandle field. |
| * |
| * If sire is non-NULL, it means the destination is |
| * off-link and we will first create the IRE_CACHE for the |
| * gateway. |
| */ |
| res_mp = dst_ill->ill_resolver_mp; |
| if (ire->ire_type == IRE_IF_RESOLVER && |
| (!OK_RESOLVER_MP(res_mp))) { |
| ire_refrele(ire); |
| ire = NULL; |
| goto out; |
| } |
| /* |
| * To be at this point in the code with a non-zero gw |
| * means that dst is reachable through a gateway that |
| * we have never resolved. By changing dst to the gw |
| * addr we resolve the gateway first. |
| */ |
| if (gw != INADDR_ANY) { |
| /* |
| * The source ipif that was determined above was |
| * relative to the destination address, not the |
| * gateway's. If src_ipif was not taken out of |
| * the IRE_IF_RESOLVER entry, we'll need to call |
| * ipif_select_source() again. |
| */ |
| if (src_ipif != ire->ire_ipif) { |
| ipif_refrele(src_ipif); |
| src_ipif = ipif_select_source(dst_ill, |
| gw, zoneid); |
| if (src_ipif == NULL) |
| goto icmp_err_ret; |
| } |
| dst = gw; |
| gw = INADDR_ANY; |
| } |
| /* |
| * dst has been set to the address of the nexthop. |
| * |
| * TSol note: get security attributes of the nexthop; |
| * Note that the nexthop may either be a gateway, or the |
| * packet destination itself; Detailed explanation of |
| * issues involved is provided in the IRE_IF_NORESOLVER |
| * logic in ip_newroute(). |
| */ |
| ga.ga_af = AF_INET; |
| IN6_IPADDR_TO_V4MAPPED(dst, &ga.ga_addr); |
| gcgrp = gcgrp_lookup(&ga, B_FALSE); |
| |
| if (ire->ire_type == IRE_IF_NORESOLVER) |
| dst = ire->ire_addr; /* ire_cache for tunnel endpoint */ |
| |
| save_ire = ire; |
| /* |
| * create an incomplete ire-cache with a null dlureq_mp. |
| * The dlureq_mp will be created in ire_arpresolve. |
| */ |
| ire = ire_create( |
| (uchar_t *)&dst, /* dest address */ |
| (uchar_t *)&ip_g_all_ones, /* mask */ |
| (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ |
| (uchar_t *)&gw, /* gateway address */ |
| NULL, |
| (save_ire->ire_type == IRE_IF_RESOLVER ? NULL: |
| &save_ire->ire_max_frag), |
| NULL, |
| dst_ill->ill_rq, /* recv-from queue */ |
| dst_ill->ill_wq, /* send-to queue */ |
| IRE_CACHE, /* IRE type */ |
| NULL, |
| src_ipif, |
| NULL, |
| ire->ire_mask, /* Parent mask */ |
| 0, |
| ire->ire_ihandle, /* Interface handle */ |
| 0, |
| &(ire->ire_uinfo), |
| NULL, |
| gcgrp, |
| ipst); |
| ip1dbg(("incomplete ire_cache 0x%p\n", (void *)ire)); |
| if (ire != NULL) { |
| gcgrp = NULL; /* reference now held by IRE */ |
| ire->ire_marks |= ire_marks; |
| /* add the incomplete ire: */ |
| error = ire_add(&ire, NULL, NULL, NULL, B_TRUE); |
| if (error == 0 && ire != NULL) { |
| ire->ire_max_frag = save_ire->ire_max_frag; |
| ip1dbg(("setting max_frag to %d in ire 0x%p\n", |
| ire->ire_max_frag, (void *)ire)); |
| } else { |
| ire_refrele(save_ire); |
| goto icmp_err_ret; |
| } |
| } else { |
| if (gcgrp != NULL) { |
| GCGRP_REFRELE(gcgrp); |
| gcgrp = NULL; |
| } |
| } |
| |
| ire_refrele(save_ire); |
| break; |
| default: |
| break; |
| } |
| |
| out: |
| if (sire != NULL) |
| ire_refrele(sire); |
| if (dst_ill != NULL) |
| ill_refrele(dst_ill); |
| if (src_ipif != NULL) |
| ipif_refrele(src_ipif); |
| return (ire); |
| icmp_err_ret: |
| if (src_ipif != NULL) |
| ipif_refrele(src_ipif); |
| if (dst_ill != NULL) |
| ill_refrele(dst_ill); |
| if (sire != NULL) |
| ire_refrele(sire); |
| if (ire != NULL) { |
| ire_refrele(ire); |
| } |
| /* caller needs to send icmp error message */ |
| return (NULL); |
| |
| } |
| |
| /* |
| * Obtain the rt_entry and rt_irb for the route to be added to |
| * the ips_ip_ftable. |
| * First attempt to add a node to the radix tree via rn_addroute. If the |
| * route already exists, return the bucket for the existing route. |
| * |
| * Locking notes: Need to hold the global radix tree lock in write mode to |
| * add a radix node. To prevent the node from being deleted, ire_get_bucket() |
| * returns with a ref'ed irb_t. The ire itself is added in ire_add_v4() |
| * while holding the irb_lock, but not the radix tree lock. |
| */ |
| irb_t * |
| ire_get_bucket(ire_t *ire) |
| { |
| struct radix_node *rn; |
| struct rt_entry *rt; |
| struct rt_sockaddr rmask, rdst; |
| irb_t *irb = NULL; |
| ip_stack_t *ipst = ire->ire_ipst; |
| |
| ASSERT(ipst->ips_ip_ftable != NULL); |
| |
| /* first try to see if route exists (based on rtalloc1) */ |
| (void) memset(&rdst, 0, sizeof (rdst)); |
| rdst.rt_sin_len = sizeof (rdst); |
| rdst.rt_sin_family = AF_INET; |
| rdst.rt_sin_addr.s_addr = ire->ire_addr; |
| |
| (void) memset(&rmask, 0, sizeof (rmask)); |
| rmask.rt_sin_len = sizeof (rmask); |
| rmask.rt_sin_family = AF_INET; |
| rmask.rt_sin_addr.s_addr = ire->ire_mask; |
| |
| /* |
| * add the route. based on BSD's rtrequest1(RTM_ADD) |
| */ |
| R_Malloc(rt, rt_entry_cache, sizeof (*rt)); |
| (void) memset(rt, 0, sizeof (*rt)); |
| rt->rt_nodes->rn_key = (char *)&rt->rt_dst; |
| rt->rt_dst = rdst; |
| irb = &rt->rt_irb; |
| irb->irb_marks |= IRB_MARK_FTABLE; /* dynamically allocated/freed */ |
| irb->irb_ipst = ipst; |
| rw_init(&irb->irb_lock, NULL, RW_DEFAULT, NULL); |
| RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable); |
| rn = ipst->ips_ip_ftable->rnh_addaddr(&rt->rt_dst, &rmask, |
| ipst->ips_ip_ftable, (struct radix_node *)rt); |
| if (rn == NULL) { |
| RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); |
| Free(rt, rt_entry_cache); |
| rt = NULL; |
| irb = NULL; |
| RADIX_NODE_HEAD_RLOCK(ipst->ips_ip_ftable); |
| rn = ipst->ips_ip_ftable->rnh_lookup(&rdst, &rmask, |
| ipst->ips_ip_ftable); |
| if (rn != NULL && ((rn->rn_flags & RNF_ROOT) == 0)) { |
| /* found a non-root match */ |
| rt = (struct rt_entry *)rn; |
| } |
| } |
| if (rt != NULL) { |
| irb = &rt->rt_irb; |
| IRB_REFHOLD(irb); |
| } |
| RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); |
| return (irb); |
| } |
| |
| /* |
| * This function is used when the caller wants to know the outbound |
| * interface for a packet given only the address. |
| * If this is a offlink IP address and there are multiple |
| * routes to this destination, this routine will utilise the |
| * first route it finds to IP address |
| * Return values: |
| * 0 - FAILURE |
| * nonzero - ifindex |
| */ |
| uint_t |
| ifindex_lookup(const struct sockaddr *ipaddr, zoneid_t zoneid) |
| { |
| uint_t ifindex = 0; |
| ire_t *ire; |
| ill_t *ill; |
| netstack_t *ns; |
| ip_stack_t *ipst; |
| |
| if (zoneid == ALL_ZONES) |
| ns = netstack_find_by_zoneid(GLOBAL_ZONEID); |
| else |
| ns = netstack_find_by_zoneid(zoneid); |
| ASSERT(ns != NULL); |
| |
| /* |
| * For exclusive stacks we set the zoneid to zero |
| * since IP uses the global zoneid in the exclusive stacks. |
| */ |
| if (ns->netstack_stackid != GLOBAL_NETSTACKID) |
| zoneid = GLOBAL_ZONEID; |
| ipst = ns->netstack_ip; |
| |
| ASSERT(ipaddr->sa_family == AF_INET || ipaddr->sa_family == AF_INET6); |
| |
| if ((ire = route_to_dst(ipaddr, zoneid, ipst)) != NULL) { |
| ill = ire_to_ill(ire); |
| if (ill != NULL) |
| ifindex = ill->ill_phyint->phyint_ifindex; |
| ire_refrele(ire); |
| } |
| netstack_rele(ns); |
| return (ifindex); |
| } |
| |
| /* |
| * Routine to find the route to a destination. If a ifindex is supplied |
| * it tries to match the the route to the corresponding ipif for the ifindex |
| */ |
| static ire_t * |
| route_to_dst(const struct sockaddr *dst_addr, zoneid_t zoneid, ip_stack_t *ipst) |
| { |
| ire_t *ire = NULL; |
| int match_flags; |
| |
| match_flags = (MATCH_IRE_DSTONLY | MATCH_IRE_DEFAULT | |
| MATCH_IRE_RECURSIVE | MATCH_IRE_RJ_BHOLE); |
| |
| /* XXX pass NULL tsl for now */ |
| |
| if (dst_addr->sa_family == AF_INET) { |
| ire = ire_route_lookup( |
| ((struct sockaddr_in *)dst_addr)->sin_addr.s_addr, |
| 0, 0, 0, NULL, NULL, zoneid, NULL, match_flags, ipst); |
| } else { |
| ire = ire_route_lookup_v6( |
| &((struct sockaddr_in6 *)dst_addr)->sin6_addr, |
| 0, 0, 0, NULL, NULL, zoneid, NULL, match_flags, ipst); |
| } |
| return (ire); |
| } |
| |
| /* |
| * This routine is called by IP Filter to send a packet out on the wire |
| * to a specified V4 dst (which may be onlink or offlink). The ifindex may or |
| * may not be 0. A non-null ifindex indicates IP Filter has stipulated |
| * an outgoing interface and requires the nexthop to be on that interface. |
| * IP WILL NOT DO the following to the data packet before sending it out: |
| * a. manipulate ttl |
| * b. checksuming |
| * c. ipsec work |
| * d. fragmentation |
| * |
| * Return values: |
| * 0: IP was able to send of the data pkt |
| * ECOMM: Could not send packet |
| * ENONET No route to dst. It is up to the caller |
| * to send icmp unreachable error message, |
| * EINPROGRESS The macaddr of the onlink dst or that |
| * of the offlink dst's nexthop needs to get |
| * resolved before packet can be sent to dst. |
| * Thus transmission is not guaranteed. |
| * |
| */ |
| |
| int |
| ipfil_sendpkt(const struct sockaddr *dst_addr, mblk_t *mp, uint_t ifindex, |
| zoneid_t zoneid) |
| { |
| ire_t *ire = NULL, *sire = NULL; |
| ire_t *ire_cache = NULL; |
| boolean_t check_multirt = B_FALSE; |
| int value; |
| int match_flags; |
| ipaddr_t dst; |
| netstack_t *ns; |
| ip_stack_t *ipst; |
| |
| ASSERT(mp != NULL); |
| |
| if (zoneid == ALL_ZONES) |
| ns = netstack_find_by_zoneid(GLOBAL_ZONEID); |
| else |
| ns = netstack_find_by_zoneid(zoneid); |
| ASSERT(ns != NULL); |
| |
| /* |
| * For exclusive stacks we set the zoneid to zero |
| * since IP uses the global zoneid in the exclusive stacks. |
| */ |
| if (ns->netstack_stackid != GLOBAL_NETSTACKID) |
| zoneid = GLOBAL_ZONEID; |
| ipst = ns->netstack_ip; |
| |
| ASSERT(dst_addr->sa_family == AF_INET || |
| dst_addr->sa_family == AF_INET6); |
| |
| if (dst_addr->sa_family == AF_INET) { |
| dst = ((struct sockaddr_in *)dst_addr)->sin_addr.s_addr; |
| } else { |
| /* |
| * We dont have support for V6 yet. It will be provided |
| * once RFE 6399103 has been delivered. |
| * Until then, for V6 dsts, IP Filter will not call |
| * this function. Instead the netinfo framework provides |
| * its own code path, in ip_inject_impl(), to achieve |
| * what it needs to do, for the time being. |
| */ |
| ip1dbg(("ipfil_sendpkt: no V6 support \n")); |
| value = ECOMM; |
| freemsg(mp); |
| goto discard; |
| } |
| |
| /* |
| * Lets get the ire. We might get the ire cache entry, |
| * or the ire,sire pair needed to create the cache entry. |
| * XXX pass NULL tsl for now. |
| */ |
| |
| if (ifindex == 0) { |
| /* There is no supplied index. So use the FIB info */ |
| |
| match_flags = (MATCH_IRE_DSTONLY | MATCH_IRE_DEFAULT | |
| MATCH_IRE_RECURSIVE | MATCH_IRE_RJ_BHOLE); |
| ire = ire_route_lookup(dst, |
| 0, 0, 0, NULL, &sire, zoneid, MBLK_GETLABEL(mp), |
| match_flags, ipst); |
| } else { |
| ipif_t *supplied_ipif; |
| ill_t *ill; |
| |
| /* |
| * If supplied ifindex is non-null, the only valid |
| * nexthop is one off of the interface corresponding |
| * to the specified ifindex. |
| */ |
| |
| ill = ill_lookup_on_ifindex(ifindex, B_FALSE, |
| NULL, NULL, NULL, NULL, ipst); |
| if (ill != NULL) { |
| supplied_ipif = ipif_get_next_ipif(NULL, ill); |
| } else { |
| ip1dbg(("ipfil_sendpkt: Could not find" |
| " route to dst\n")); |
| value = ECOMM; |
| freemsg(mp); |
| goto discard; |
| } |
| |
| match_flags = (MATCH_IRE_DSTONLY | MATCH_IRE_DEFAULT | |
| MATCH_IRE_IPIF | MATCH_IRE_RECURSIVE| MATCH_IRE_RJ_BHOLE| |
| MATCH_IRE_SECATTR); |
| |
| ire = ire_route_lookup(dst, 0, 0, 0, supplied_ipif, |
| &sire, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); |
| ipif_refrele(supplied_ipif); |
| ill_refrele(ill); |
| } |
| |
| /* |
| * Verify that the returned IRE is non-null and does |
| * not have either the RTF_REJECT or RTF_BLACKHOLE |
| * flags set and that the IRE is either an IRE_CACHE, |
| * IRE_IF_NORESOLVER or IRE_IF_RESOLVER. |
| */ |
| if (ire == NULL || |
| ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || |
| (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0)) { |
| /* |
| * Either ire could not be found or we got |
| * an invalid one |
| */ |
| ip1dbg(("ipfil_sendpkt: Could not find route to dst\n")); |
| value = ENONET; |
| freemsg(mp); |
| goto discard; |
| } |
| |
| /* IP Filter and CGTP dont mix. So bail out if CGTP is on */ |
| if (ip_cgtp_filter && |
| ((ire->ire_flags & RTF_MULTIRT) || |
| ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)))) { |
| ip1dbg(("ipfil_sendpkt: IPFilter does not work with CGTP\n")); |
| value = ECOMM; |
| freemsg(mp); |
| goto discard; |
| } |
| |
| ASSERT(ire->ire_type != IRE_CACHE || ire->ire_nce != NULL); |
| /* |
| * If needed, we will create the ire cache entry for the |
| * nexthop, resolve its link-layer address and then send |
| * the packet out without ttl, checksumming, IPSec processing. |
| */ |
| |
| switch (ire->ire_type) { |
| case IRE_IF_NORESOLVER: |
| case IRE_CACHE: |
| if (sire != NULL) { |
| UPDATE_OB_PKT_COUNT(sire); |
| sire->ire_last_used_time = lbolt; |
| ire_refrele(sire); |
| } |
| ire_cache = ire; |
| break; |
| case IRE_IF_RESOLVER: |
| /* |
| * Call ire_forward(). This function |
| * will, create the ire cache entry of the |
| * the nexthop and adds this incomplete ire |
| * to the ire cache table |
| */ |
| ire_cache = ire_forward(dst, &check_multirt, ire, sire, |
| MBLK_GETLABEL(mp), ipst); |
| if (ire_cache == NULL) { |
| ip1dbg(("ipfil_sendpkt: failed to create the" |
| " ire cache entry \n")); |
| value = ENONET; |
| freemsg(mp); |
| sire = NULL; |
| ire = NULL; |
| goto discard; |
| } |
| break; |
| } |
| /* |
| * Now that we have the ire cache entry of the nexthop, call |
| * ip_xmit_v4() to trigger mac addr resolution |
| * if necessary and send it once ready. |
| */ |
| |
| value = ip_xmit_v4(mp, ire_cache, NULL, B_FALSE); |
| ire_refrele(ire_cache); |
| /* |
| * At this point, the reference for these have already been |
| * released within ire_forward() and/or ip_xmit_v4(). So we set |
| * them to NULL to make sure we dont drop the references |
| * again in case ip_xmit_v4() returns with either SEND_FAILED |
| * or LLHDR_RESLV_FAILED |
| */ |
| sire = NULL; |
| ire = NULL; |
| |
| switch (value) { |
| case SEND_FAILED: |
| ip1dbg(("ipfil_sendpkt: Send failed\n")); |
| value = ECOMM; |
| break; |
| case LLHDR_RESLV_FAILED: |
| ip1dbg(("ipfil_sendpkt: Link-layer resolution" |
| " failed\n")); |
| value = ECOMM; |
| break; |
| case LOOKUP_IN_PROGRESS: |
| netstack_rele(ns); |
| return (EINPROGRESS); |
| case SEND_PASSED: |
| netstack_rele(ns); |
| return (0); |
| } |
| discard: |
| if (dst_addr->sa_family == AF_INET) { |
| BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); |
| } else { |
| BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); |
| } |
| if (ire != NULL) |
| ire_refrele(ire); |
| if (sire != NULL) |
| ire_refrele(sire); |
| netstack_rele(ns); |
| return (value); |
| } |
| |
| /* ire_walk routine invoked for ip_ire_report for each IRE. */ |
| void |
| ire_report_ftable(ire_t *ire, char *m) |
| { |
| char buf1[16]; |
| char buf2[16]; |
| char buf3[16]; |
| char buf4[16]; |
| uint_t fo_pkt_count; |
| uint_t ib_pkt_count; |
| int ref; |
| uint_t print_len, buf_len; |
| mblk_t *mp = (mblk_t *)m; |
| |
| if (ire->ire_type & IRE_CACHETABLE) |
| return; |
| buf_len = mp->b_datap->db_lim - mp->b_wptr; |
| if (buf_len <= 0) |
| return; |
| |
| /* Number of active references of this ire */ |
| ref = ire->ire_refcnt; |
| /* "inbound" to a non local address is a forward */ |
| ib_pkt_count = ire->ire_ib_pkt_count; |
| fo_pkt_count = 0; |
| if (!(ire->ire_type & (IRE_LOCAL|IRE_BROADCAST))) { |
| fo_pkt_count = ib_pkt_count; |
| ib_pkt_count = 0; |
| } |
| print_len = snprintf((char *)mp->b_wptr, buf_len, |
| MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR "%5d " |
| "%s %s %s %s %05d %05ld %06ld %08d %03d %06d %09d %09d %06d %08d " |
| "%04d %08d %08d %d/%d/%d %s\n", |
| (void *)ire, (void *)ire->ire_rfq, (void *)ire->ire_stq, |
| (int)ire->ire_zoneid, |
| ip_dot_addr(ire->ire_addr, buf1), ip_dot_addr(ire->ire_mask, buf2), |
| ip_dot_addr(ire->ire_src_addr, buf3), |
| ip_dot_addr(ire->ire_gateway_addr, buf4), |
| ire->ire_max_frag, ire->ire_uinfo.iulp_rtt, |
| ire->ire_uinfo.iulp_rtt_sd, |
| ire->ire_uinfo.iulp_ssthresh, ref, |
| ire->ire_uinfo.iulp_rtomax, |
| (ire->ire_uinfo.iulp_tstamp_ok ? 1: 0), |
| (ire->ire_uinfo.iulp_wscale_ok ? 1: 0), |
| (ire->ire_uinfo.iulp_ecn_ok ? 1: 0), |
| (ire->ire_uinfo.iulp_pmtud_ok ? 1: 0), |
| ire->ire_uinfo.iulp_sack, |
| ire->ire_uinfo.iulp_spipe, ire->ire_uinfo.iulp_rpipe, |
| ib_pkt_count, ire->ire_ob_pkt_count, fo_pkt_count, |
| ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type)); |
| if (print_len < buf_len) { |
| mp->b_wptr += print_len; |
| } else { |
| mp->b_wptr += buf_len; |
| } |
| } |
| |
| /* |
| * callback function provided by ire_ftable_lookup when calling |
| * rn_match_args(). Invoke ire_match_args on each matching leaf node in |
| * the radix tree. |
| */ |
| boolean_t |
| ire_find_best_route(struct radix_node *rn, void *arg) |
| { |
| struct rt_entry *rt = (struct rt_entry *)rn; |
| irb_t *irb_ptr; |
| ire_t *ire; |
| ire_ftable_args_t *margs = arg; |
| ipaddr_t match_mask; |
| |
| ASSERT(rt != NULL); |
| |
| irb_ptr = &rt->rt_irb; |
| |
| if (irb_ptr->irb_ire_cnt == 0) |
| return (B_FALSE); |
| |
| rw_enter(&irb_ptr->irb_lock, RW_READER); |
| for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { |
| if (ire->ire_marks & IRE_MARK_CONDEMNED) |
| continue; |
| if (margs->ift_flags & MATCH_IRE_MASK) |
| match_mask = margs->ift_mask; |
| else |
| match_mask = ire->ire_mask; |
| |
| if (ire_match_args(ire, margs->ift_addr, match_mask, |
| margs->ift_gateway, margs->ift_type, margs->ift_ipif, |
| margs->ift_zoneid, margs->ift_ihandle, margs->ift_tsl, |
| margs->ift_flags)) { |
| IRE_REFHOLD(ire); |
| rw_exit(&irb_ptr->irb_lock); |
| margs->ift_best_ire = ire; |
| return (B_TRUE); |
| } |
| } |
| rw_exit(&irb_ptr->irb_lock); |
| return (B_FALSE); |
| } |
| |
| /* |
| * ftable irb_t structures are dynamically allocated, and we need to |
| * check if the irb_t (and associated ftable tree attachment) needs to |
| * be cleaned up when the irb_refcnt goes to 0. The conditions that need |
| * be verified are: |
| * - no other walkers of the irebucket, i.e., quiescent irb_refcnt, |
| * - no other threads holding references to ire's in the bucket, |
| * i.e., irb_nire == 0 |
| * - no active ire's in the bucket, i.e., irb_ire_cnt == 0 |
| * - need to hold the global tree lock and irb_lock in write mode. |
| */ |
| void |
| irb_refrele_ftable(irb_t *irb) |
| { |
| for (;;) { |
| rw_enter(&irb->irb_lock, RW_WRITER); |
| ASSERT(irb->irb_refcnt != 0); |
| if (irb->irb_refcnt != 1) { |
| /* |
| * Someone has a reference to this radix node |
| * or there is some bucket walker. |
| */ |
| irb->irb_refcnt--; |
| rw_exit(&irb->irb_lock); |
| return; |
| } else { |
| /* |
| * There is no other walker, nor is there any |
| * other thread that holds a direct ref to this |
| * radix node. Do the clean up if needed. Call |
| * to ire_unlink will clear the IRB_MARK_CONDEMNED flag |
| */ |
| if (irb->irb_marks & IRB_MARK_CONDEMNED) { |
| ire_t *ire_list; |
| |
| ire_list = ire_unlink(irb); |
| rw_exit(&irb->irb_lock); |
| |
| if (ire_list != NULL) |
| ire_cleanup(ire_list); |
| /* |
| * more CONDEMNED entries could have |
| * been added while we dropped the lock, |
| * so we have to re-check. |
| */ |
| continue; |
| } |
| |
| /* |
| * Now check if there are still any ires |
| * associated with this radix node. |
| */ |
| if (irb->irb_nire != 0) { |
| /* |
| * someone is still holding on |
| * to ires in this bucket |
| */ |
| irb->irb_refcnt--; |
| rw_exit(&irb->irb_lock); |
| return; |
| } else { |
| /* |
| * Everything is clear. Zero walkers, |
| * Zero threads with a ref to this |
| * radix node, Zero ires associated with |
| * this radix node. Due to lock order, |
| * check the above conditions again |
| * after grabbing all locks in the right order |
| */ |
| rw_exit(&irb->irb_lock); |
| if (irb_inactive(irb)) |
| return; |
| /* |
| * irb_inactive could not free the irb. |
| * See if there are any walkers, if not |
| * try to clean up again. |
| */ |
| } |
| } |
| } |
| } |
| |
| /* |
| * IRE iterator used by ire_ftable_lookup() to process multiple default |
| * routes. Given a starting point in the hash list (ire_origin), walk the IREs |
| * in the bucket skipping default interface routes and deleted entries. |
| * Returns the next IRE (unheld), or NULL when we're back to the starting point. |
| * Assumes that the caller holds a reference on the IRE bucket. |
| * |
| * In the absence of good IRE_DEFAULT routes, this function will return |
| * the first IRE_INTERFACE route found (if any). |
| */ |
| ire_t * |
| ire_round_robin(irb_t *irb_ptr, zoneid_t zoneid, ire_ftable_args_t *margs, |
| ip_stack_t *ipst) |
| { |
| ire_t *ire_origin; |
| ire_t *ire, *maybe_ire = NULL; |
| |
| rw_enter(&irb_ptr->irb_lock, RW_WRITER); |
| ire_origin = irb_ptr->irb_rr_origin; |
| if (ire_origin != NULL) { |
| ire_origin = ire_origin->ire_next; |
| IRE_FIND_NEXT_ORIGIN(ire_origin); |
| } |
| |
| if (ire_origin == NULL) { |
| /* |
| * first time through routine, or we dropped off the end |
| * of list. |
| */ |
| ire_origin = irb_ptr->irb_ire; |
| IRE_FIND_NEXT_ORIGIN(ire_origin); |
| } |
| irb_ptr->irb_rr_origin = ire_origin; |
| IRB_REFHOLD_LOCKED(irb_ptr); |
| rw_exit(&irb_ptr->irb_lock); |
| |
| DTRACE_PROBE2(ire__rr__origin, (irb_t *), irb_ptr, |
| (ire_t *), ire_origin); |
| |
| /* |
| * Round-robin the routers list looking for a route that |
| * matches the passed in parameters. |
| * We start with the ire we found above and we walk the hash |
| * list until we're back where we started. It doesn't matter if |
| * routes are added or deleted by other threads - we know this |
| * ire will stay in the list because we hold a reference on the |
| * ire bucket. |
| */ |
| ire = ire_origin; |
| while (ire != NULL) { |
| int match_flags = 0; |
| ire_t *rire; |
| |
| if (ire->ire_marks & IRE_MARK_CONDEMNED) |
| goto next_ire; |
| |
| if (!ire_match_args(ire, margs->ift_addr, (ipaddr_t)0, |
| margs->ift_gateway, margs->ift_type, margs->ift_ipif, |
| margs->ift_zoneid, margs->ift_ihandle, margs->ift_tsl, |
| margs->ift_flags)) |
| goto next_ire; |
| |
| if (ire->ire_type & IRE_INTERFACE) { |
| /* |
| * keep looking to see if there is a non-interface |
| * default ire, but save this one as a last resort. |
| */ |
| if (maybe_ire == NULL) |
| maybe_ire = ire; |
| goto next_ire; |
| } |
| |
| if (zoneid == ALL_ZONES) { |
| IRE_REFHOLD(ire); |
| IRB_REFRELE(irb_ptr); |
| return (ire); |
| } |
| /* |
| * When we're in a local zone, we're only |
| * interested in routers that are |
| * reachable through ipifs within our zone. |
| */ |
| if (ire->ire_ipif != NULL) { |
| match_flags |= MATCH_IRE_ILL_GROUP; |
| } |
| rire = ire_route_lookup(ire->ire_gateway_addr, |
| 0, 0, 0, ire->ire_ipif, NULL, zoneid, margs->ift_tsl, |
| match_flags, ipst); |
| if (rire != NULL) { |
| ire_refrele(rire); |
| IRE_REFHOLD(ire); |
| IRB_REFRELE(irb_ptr); |
| return (ire); |
| } |
| next_ire: |
| ire = (ire->ire_next ? ire->ire_next : irb_ptr->irb_ire); |
| if (ire == ire_origin) |
| break; |
| } |
| if (maybe_ire != NULL) |
| IRE_REFHOLD(maybe_ire); |
| IRB_REFRELE(irb_ptr); |
| return (maybe_ire); |
| } |
| |
| void |
| irb_refhold_rn(struct radix_node *rn) |
| { |
| if ((rn->rn_flags & RNF_ROOT) == 0) |
| IRB_REFHOLD(&((rt_t *)(rn))->rt_irb); |
| } |
| |
| void |
| irb_refrele_rn(struct radix_node *rn) |
| { |
| if ((rn->rn_flags & RNF_ROOT) == 0) |
| irb_refrele_ftable(&((rt_t *)(rn))->rt_irb); |
| } |