| /* |
| * Copyright 2007 Sun Microsystems, Inc. All rights reserved. |
| * Use is subject to license terms. |
| * |
| * Copyright (c) 1988, 1989, 1993 |
| * The Regents of the University of California. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 4. Neither the name of the University nor the names of its contributors |
| * may be used to endorse or promote products derived from this software |
| * without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * @(#)radix.c 8.5 (Berkeley) 5/19/95 |
| * $FreeBSD: /repoman/r/ncvs/src/sys/net/radix.c,v 1.36.2.1 2005/01/31 23:26:23 |
| * imp Exp $ |
| */ |
| |
| #pragma ident "%Z%%M% %I% %E% SMI" |
| |
| /* |
| * Routines to build and maintain radix trees for routing lookups. |
| */ |
| #include <sys/types.h> |
| |
| #ifndef _RADIX_H_ |
| #include <sys/param.h> |
| #ifdef _KERNEL |
| #include <sys/lock.h> |
| #include <sys/mutex.h> |
| #include <sys/systm.h> |
| #include <sys/cmn_err.h> |
| #else |
| #include <assert.h> |
| #define ASSERT assert |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <syslog.h> |
| #include <strings.h> |
| #endif /* _KERNEL */ |
| #include <net/radix.h> |
| #endif |
| |
| #ifndef _KERNEL |
| void |
| panic(const char *str) |
| { |
| fprintf(stderr, "Panic - %s\n", str); |
| abort(); |
| } |
| #endif /* _KERNEL */ |
| |
| static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *); |
| static int rn_walktree_mt(struct radix_node_head *, walktree_f_t *, |
| void *, lockf_t, lockf_t); |
| static struct radix_node |
| *rn_insert(void *, struct radix_node_head *, int *, |
| struct radix_node [2]), |
| *rn_newpair(void *, int, struct radix_node[2]), |
| *rn_search(void *, struct radix_node *), |
| *rn_search_m(void *, struct radix_node *, void *), |
| *rn_lookup(void *, void *, struct radix_node_head *), |
| *rn_match(void *, struct radix_node_head *), |
| *rn_match_args(void *, struct radix_node_head *, match_leaf_t *, |
| void *), |
| *rn_addmask(void *, int, int), |
| *rn_addroute(void *, void *, struct radix_node_head *, |
| struct radix_node [2]), |
| *rn_delete(void *, void *, struct radix_node_head *); |
| static boolean_t rn_refines(void *, void *); |
| |
| #define MAX_KEYLEN 16 |
| static int max_keylen = MAX_KEYLEN; |
| |
| #ifdef _KERNEL |
| static struct kmem_cache *radix_mask_cache; /* for rn_mkfreelist */ |
| static struct kmem_cache *radix_node_cache; |
| #else |
| static char *radix_mask_cache, *radix_node_cache; /* dummy vars. never inited */ |
| #endif /* _KERNEL */ |
| |
| static struct radix_mask *rn_mkfreelist; |
| static struct radix_node_head *mask_rnhead; |
| /* |
| * Work area -- the following point to 2 buffers of size max_keylen, |
| * allocated in this order in a block of memory malloc'ed by rn_init. |
| * A third buffer of size MAX_KEYLEN is allocated from the stack. |
| */ |
| static char *rn_zeros, *rn_ones; |
| |
| #define MKGet(m) R_Malloc(m, radix_mask_cache, sizeof (struct radix_mask)) |
| #define MKFree(m) Free(m, radix_mask_cache) |
| #define rn_masktop (mask_rnhead->rnh_treetop) |
| |
| static boolean_t rn_lexobetter(void *m_arg, void *n_arg); |
| static struct radix_mask * |
| rn_new_radix_mask(struct radix_node *tt, |
| struct radix_mask *next); |
| static boolean_t |
| rn_satisfies_leaf(char *trial, struct radix_node *leaf, |
| int skip, match_leaf_t *rn_leaf_fn, void *rn_leaf_arg); |
| |
| #define RN_MATCHF(rn, f, arg) (f == NULL || (*f)((rn), arg)) |
| |
| /* |
| * The data structure for the keys is a radix tree with one way |
| * branching removed. The index rn_bit at an internal node n represents a bit |
| * position to be tested. The tree is arranged so that all descendants |
| * of a node n have keys whose bits all agree up to position rn_bit - 1. |
| * (We say the index of n is rn_bit.) |
| * |
| * There is at least one descendant which has a one bit at position rn_bit, |
| * and at least one with a zero there. |
| * |
| * A route is determined by a pair of key and mask. We require that the |
| * bit-wise logical and of the key and mask to be the key. |
| * We define the index of a route associated with the mask to be |
| * the first bit number in the mask where 0 occurs (with bit number 0 |
| * representing the highest order bit). |
| * |
| * We say a mask is normal if every bit is 0, past the index of the mask. |
| * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit, |
| * and m is a normal mask, then the route applies to every descendant of n. |
| * If the index(m) < rn_bit, this implies the trailing last few bits of k |
| * before bit b are all 0, (and hence consequently true of every descendant |
| * of n), so the route applies to all descendants of the node as well. |
| * |
| * Similar logic shows that a non-normal mask m such that |
| * index(m) <= index(n) could potentially apply to many children of n. |
| * Thus, for each non-host route, we attach its mask to a list at an internal |
| * node as high in the tree as we can go. |
| * |
| * The present version of the code makes use of normal routes in short- |
| * circuiting an explict mask and compare operation when testing whether |
| * a key satisfies a normal route, and also in remembering the unique leaf |
| * that governs a subtree. |
| */ |
| |
| /* |
| * Most of the functions in this code assume that the key/mask arguments |
| * are sockaddr-like structures, where the first byte is an uchar_t |
| * indicating the size of the entire structure. |
| * |
| * To make the assumption more explicit, we use the LEN() macro to access |
| * this field. It is safe to pass an expression with side effects |
| * to LEN() as the argument is evaluated only once. |
| */ |
| #define LEN(x) (*(const uchar_t *)(x)) |
| |
| |
| /* |
| * Search a node in the tree matching the key. |
| */ |
| static struct radix_node * |
| rn_search(v_arg, head) |
| void *v_arg; |
| struct radix_node *head; |
| { |
| struct radix_node *x; |
| caddr_t v; |
| |
| for (x = head, v = v_arg; x->rn_bit >= 0; ) { |
| if (x->rn_bmask & v[x->rn_offset]) |
| x = x->rn_right; |
| else |
| x = x->rn_left; |
| } |
| return (x); |
| } |
| |
| /* |
| * Same as above, but with an additional mask. |
| */ |
| static struct radix_node * |
| rn_search_m(v_arg, head, m_arg) |
| struct radix_node *head; |
| void *v_arg, *m_arg; |
| { |
| struct radix_node *x; |
| caddr_t v = v_arg, m = m_arg; |
| |
| for (x = head; x->rn_bit >= 0; ) { |
| if ((x->rn_bmask & m[x->rn_offset]) && |
| (x->rn_bmask & v[x->rn_offset])) |
| x = x->rn_right; |
| else |
| x = x->rn_left; |
| } |
| return (x); |
| } |
| |
| /* |
| * Returns true if there are no bits set in n_arg that are zero in |
| * m_arg and the masks aren't equal. In other words, it returns true |
| * when m_arg is a finer-granularity netmask -- it represents a subset |
| * of the destinations implied by n_arg. |
| */ |
| static boolean_t |
| rn_refines(m_arg, n_arg) |
| void *m_arg, *n_arg; |
| { |
| caddr_t m = m_arg, n = n_arg; |
| caddr_t lim = n + LEN(n), lim2 = lim; |
| int longer = LEN(n++) - (int)LEN(m++); |
| boolean_t masks_are_equal = B_TRUE; |
| |
| if (longer > 0) |
| lim -= longer; |
| while (n < lim) { |
| if (*n & ~(*m)) |
| return (0); |
| if (*n++ != *m++) |
| masks_are_equal = B_FALSE; |
| } |
| while (n < lim2) |
| if (*n++) |
| return (B_FALSE); |
| if (masks_are_equal && (longer < 0)) |
| for (lim2 = m - longer; m < lim2; ) |
| if (*m++) |
| return (B_TRUE); |
| return (!masks_are_equal); |
| } |
| |
| static struct radix_node * |
| rn_lookup(v_arg, m_arg, head) |
| void *v_arg, *m_arg; |
| struct radix_node_head *head; |
| { |
| struct radix_node *x; |
| caddr_t netmask = NULL; |
| |
| if (m_arg) { |
| x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_offset); |
| if (x == NULL) |
| return (NULL); |
| netmask = x->rn_key; |
| } |
| x = rn_match(v_arg, head); |
| if (x && netmask) { |
| while (x && x->rn_mask != netmask) |
| x = x->rn_dupedkey; |
| } |
| return (x); |
| } |
| |
| /* |
| * Returns true if address 'trial' has no bits differing from the |
| * leaf's key when compared under the leaf's mask. In other words, |
| * returns true when 'trial' matches leaf. |
| * In addition, if a rn_leaf_fn is passed in, that is used to find |
| * a match on conditions defined by the caller of rn_match. This is |
| * used by the kernel ftable to match on IRE_MATCH_* conditions. |
| */ |
| static boolean_t |
| rn_satisfies_leaf(trial, leaf, skip, rn_leaf_fn, rn_leaf_arg) |
| caddr_t trial; |
| struct radix_node *leaf; |
| int skip; |
| match_leaf_t *rn_leaf_fn; |
| void *rn_leaf_arg; |
| { |
| char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask; |
| char *cplim; |
| int length = min(LEN(cp), LEN(cp2)); |
| |
| if (cp3 == 0) |
| cp3 = rn_ones; |
| else |
| length = min(length, LEN(cp3)); |
| cplim = cp + length; |
| cp3 += skip; |
| cp2 += skip; |
| |
| for (cp += skip; cp < cplim; cp++, cp2++, cp3++) |
| if ((*cp ^ *cp2) & *cp3) |
| return (B_FALSE); |
| |
| return (RN_MATCHF(leaf, rn_leaf_fn, rn_leaf_arg)); |
| } |
| |
| static struct radix_node * |
| rn_match(v_arg, head) |
| void *v_arg; |
| struct radix_node_head *head; |
| { |
| return (rn_match_args(v_arg, head, NULL, NULL)); |
| } |
| |
| static struct radix_node * |
| rn_match_args(v_arg, head, rn_leaf_fn, rn_leaf_arg) |
| void *v_arg; |
| struct radix_node_head *head; |
| match_leaf_t *rn_leaf_fn; |
| void *rn_leaf_arg; |
| { |
| caddr_t v = v_arg; |
| struct radix_node *t = head->rnh_treetop, *x; |
| caddr_t cp = v, cp2; |
| caddr_t cplim; |
| struct radix_node *saved_t, *top = t; |
| int off = t->rn_offset, vlen = LEN(cp), matched_off; |
| int test, b, rn_bit; |
| |
| /* |
| * Open code rn_search(v, top) to avoid overhead of extra |
| * subroutine call. |
| */ |
| for (; t->rn_bit >= 0; ) { |
| if (t->rn_bmask & cp[t->rn_offset]) |
| t = t->rn_right; |
| else |
| t = t->rn_left; |
| } |
| /* |
| * See if we match exactly as a host destination |
| * or at least learn how many bits match, for normal mask finesse. |
| * |
| * It doesn't hurt us to limit how many bytes to check |
| * to the length of the mask, since if it matches we had a genuine |
| * match and the leaf we have is the most specific one anyway; |
| * if it didn't match with a shorter length it would fail |
| * with a long one. This wins big for class B&C netmasks which |
| * are probably the most common case... |
| */ |
| if (t->rn_mask) |
| vlen = LEN(t->rn_mask); |
| cp += off; cp2 = t->rn_key + off; cplim = v + vlen; |
| for (; cp < cplim; cp++, cp2++) |
| if (*cp != *cp2) |
| goto keydiff; |
| /* |
| * This extra grot is in case we are explicitly asked |
| * to look up the default. Ugh! |
| * |
| * Never return the root node itself, it seems to cause a |
| * lot of confusion. |
| */ |
| if (t->rn_flags & RNF_ROOT) |
| t = t->rn_dupedkey; |
| if (t == NULL || RN_MATCHF(t, rn_leaf_fn, rn_leaf_arg)) { |
| return (t); |
| } else { |
| /* |
| * Although we found an exact match on the key, rn_leaf_fn |
| * is looking for some other criteria as well. Continue |
| * looking as if the exact match failed. |
| */ |
| if (t->rn_parent->rn_flags & RNF_ROOT) { |
| /* hit the top. have to give up */ |
| return (NULL); |
| } |
| b = 0; |
| goto keeplooking; |
| |
| } |
| keydiff: |
| test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */ |
| for (b = 7; (test >>= 1) > 0; ) |
| b--; |
| keeplooking: |
| matched_off = cp - v; |
| b += matched_off << 3; |
| rn_bit = -1 - b; |
| |
| /* |
| * If there is a host route in a duped-key chain, it will be first. |
| */ |
| if ((saved_t = t)->rn_mask == 0) |
| t = t->rn_dupedkey; |
| for (; t != NULL; t = t->rn_dupedkey) { |
| /* |
| * Even if we don't match exactly as a host, |
| * we may match if the leaf we wound up at is |
| * a route to a net. |
| */ |
| |
| if (t->rn_flags & RNF_NORMAL) { |
| if ((rn_bit <= t->rn_bit) && |
| RN_MATCHF(t, rn_leaf_fn, rn_leaf_arg)) { |
| return (t); |
| } |
| } else if (rn_satisfies_leaf(v, t, matched_off, rn_leaf_fn, |
| rn_leaf_arg)) { |
| return (t); |
| } |
| } |
| t = saved_t; |
| /* start searching up the tree */ |
| do { |
| struct radix_mask *m; |
| |
| t = t->rn_parent; |
| m = t->rn_mklist; |
| /* |
| * If non-contiguous masks ever become important |
| * we can restore the masking and open coding of |
| * the search and satisfaction test and put the |
| * calculation of "off" back before the "do". |
| */ |
| while (m) { |
| if (m->rm_flags & RNF_NORMAL) { |
| if ((rn_bit <= m->rm_bit) && |
| RN_MATCHF(m->rm_leaf, rn_leaf_fn, |
| rn_leaf_arg)) { |
| return (m->rm_leaf); |
| } |
| } else { |
| off = min(t->rn_offset, matched_off); |
| x = rn_search_m(v, t, m->rm_mask); |
| while (x != NULL && x->rn_mask != m->rm_mask) |
| x = x->rn_dupedkey; |
| if (x && rn_satisfies_leaf(v, x, off, |
| rn_leaf_fn, rn_leaf_arg)) { |
| return (x); |
| } |
| } |
| m = m->rm_mklist; |
| } |
| } while (t != top); |
| return (0); |
| } |
| |
| /* |
| * Whenever we add a new leaf to the tree, we also add a parent node, |
| * so we allocate them as an array of two elements: the first one must be |
| * the leaf (see RNTORT() in route.c), the second one is the parent. |
| * This routine initializes the relevant fields of the nodes, so that |
| * the leaf is the left child of the parent node, and both nodes have |
| * (almost) all all fields filled as appropriate. |
| * The function returns a pointer to the parent node. |
| */ |
| |
| static struct radix_node * |
| rn_newpair(v, b, nodes) |
| void *v; |
| int b; |
| struct radix_node nodes[2]; |
| { |
| struct radix_node *tt = nodes, *t = tt + 1; |
| |
| t->rn_bit = b; |
| t->rn_bmask = 0x80 >> (b & 7); |
| t->rn_left = tt; |
| t->rn_offset = b >> 3; |
| |
| /* |
| * t->rn_parent, r->rn_right, tt->rn_mask, tt->rn_dupedkey |
| * and tt->rn_bmask must have been zeroed by caller. |
| */ |
| tt->rn_bit = -1; |
| tt->rn_key = v; |
| tt->rn_parent = t; |
| tt->rn_flags = t->rn_flags = RNF_ACTIVE; |
| tt->rn_mklist = t->rn_mklist = 0; |
| return (t); |
| } |
| |
| static struct radix_node * |
| rn_insert(v_arg, head, dupentry, nodes) |
| void *v_arg; |
| struct radix_node_head *head; |
| int *dupentry; |
| struct radix_node nodes[2]; |
| { |
| caddr_t v = v_arg; |
| struct radix_node *top = head->rnh_treetop; |
| int head_off = top->rn_offset, vlen = (int)LEN(v); |
| struct radix_node *t = rn_search(v_arg, top); |
| caddr_t cp = v + head_off; |
| int b; |
| struct radix_node *tt; |
| |
| /* |
| * Find first bit at which v and t->rn_key differ |
| */ |
| { |
| caddr_t cp2 = t->rn_key + head_off; |
| int cmp_res; |
| caddr_t cplim = v + vlen; |
| |
| while (cp < cplim) |
| if (*cp2++ != *cp++) |
| goto on1; |
| *dupentry = 1; |
| return (t); |
| on1: |
| *dupentry = 0; |
| cmp_res = (cp[-1] ^ cp2[-1]) & 0xff; |
| for (b = (cp - v) << 3; cmp_res; b--) |
| cmp_res >>= 1; |
| } |
| { |
| struct radix_node *p, *x = top; |
| cp = v; |
| do { |
| p = x; |
| if (cp[x->rn_offset] & x->rn_bmask) |
| x = x->rn_right; |
| else |
| x = x->rn_left; |
| } while (b > (unsigned)x->rn_bit); |
| /* x->rn_bit < b && x->rn_bit >= 0 */ |
| t = rn_newpair(v_arg, b, nodes); |
| tt = t->rn_left; |
| if ((cp[p->rn_offset] & p->rn_bmask) == 0) |
| p->rn_left = t; |
| else |
| p->rn_right = t; |
| x->rn_parent = t; |
| t->rn_parent = p; |
| if ((cp[t->rn_offset] & t->rn_bmask) == 0) { |
| t->rn_right = x; |
| } else { |
| t->rn_right = tt; |
| t->rn_left = x; |
| } |
| } |
| return (tt); |
| } |
| |
| static struct radix_node * |
| rn_addmask(n_arg, search, skip) |
| int search, skip; |
| void *n_arg; |
| { |
| caddr_t netmask = (caddr_t)n_arg; |
| struct radix_node *x; |
| caddr_t cp, cplim; |
| int b = 0, mlen, j; |
| int maskduplicated, m0, isnormal; |
| struct radix_node *saved_x; |
| int last_zeroed = 0; |
| char addmask_key[MAX_KEYLEN]; |
| |
| if ((mlen = LEN(netmask)) > max_keylen) |
| mlen = max_keylen; |
| if (skip == 0) |
| skip = 1; |
| if (mlen <= skip) |
| return (mask_rnhead->rnh_nodes); |
| if (skip > 1) |
| bcopy(rn_ones + 1, addmask_key + 1, skip - 1); |
| if ((m0 = mlen) > skip) |
| bcopy(netmask + skip, addmask_key + skip, mlen - skip); |
| /* |
| * Trim trailing zeroes. |
| */ |
| for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0; ) |
| cp--; |
| mlen = cp - addmask_key; |
| if (mlen <= skip) { |
| if (m0 >= last_zeroed) |
| last_zeroed = mlen; |
| return (mask_rnhead->rnh_nodes); |
| } |
| if (m0 < last_zeroed) |
| bzero(addmask_key + m0, last_zeroed - m0); |
| *addmask_key = last_zeroed = mlen; |
| x = rn_search(addmask_key, rn_masktop); |
| if (bcmp(addmask_key, x->rn_key, mlen) != 0) |
| x = 0; |
| if (x || search) |
| return (x); |
| R_Zalloc(x, radix_node_cache, max_keylen + 2 * sizeof (*x)); |
| |
| if ((saved_x = x) == 0) |
| return (0); |
| netmask = cp = (caddr_t)(x + 2); |
| bcopy(addmask_key, cp, mlen); |
| x = rn_insert(cp, mask_rnhead, &maskduplicated, x); |
| if (maskduplicated) { |
| #ifdef _KERNEL |
| cmn_err(CE_WARN, "rn_addmask: mask impossibly already in tree"); |
| #else |
| syslog(LOG_ERR, "rn_addmask: mask impossibly already in tree"); |
| #endif /* _KERNEL */ |
| Free(saved_x, radix_node_cache); |
| return (x); |
| } |
| /* |
| * Calculate index of mask, and check for normalcy. |
| * First find the first byte with a 0 bit, then if there are |
| * more bits left (remember we already trimmed the trailing 0's), |
| * the pattern must be one of those in normal_chars[], or we have |
| * a non-contiguous mask. |
| */ |
| cplim = netmask + mlen; |
| isnormal = 1; |
| for (cp = netmask + skip; (cp < cplim) && *(uchar_t *)cp == 0xff; ) |
| cp++; |
| if (cp != cplim) { |
| static uint8_t normal_chars[] = { |
| 0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; |
| |
| for (j = 0x80; (j & *cp) != 0; j >>= 1) |
| b++; |
| if (*cp != normal_chars[b] || cp != (cplim - 1)) |
| isnormal = 0; |
| } |
| b += (cp - netmask) << 3; |
| x->rn_bit = -1 - b; |
| if (isnormal) |
| x->rn_flags |= RNF_NORMAL; |
| return (x); |
| } |
| |
| /* arbitrary ordering for non-contiguous masks */ |
| static boolean_t |
| rn_lexobetter(m_arg, n_arg) |
| void *m_arg, *n_arg; |
| { |
| uchar_t *mp = m_arg, *np = n_arg, *lim; |
| |
| if (LEN(mp) > LEN(np)) |
| /* not really, but need to check longer one first */ |
| return (B_TRUE); |
| if (LEN(mp) == LEN(np)) |
| for (lim = mp + LEN(mp); mp < lim; ) |
| if (*mp++ > *np++) |
| return (B_TRUE); |
| return (B_FALSE); |
| } |
| |
| static struct radix_mask * |
| rn_new_radix_mask(tt, next) |
| struct radix_node *tt; |
| struct radix_mask *next; |
| { |
| struct radix_mask *m; |
| |
| MKGet(m); |
| if (m == 0) { |
| #ifndef _KERNEL |
| syslog(LOG_ERR, "Mask for route not entered\n"); |
| #endif /* _KERNEL */ |
| return (0); |
| } |
| bzero(m, sizeof (*m)); |
| m->rm_bit = tt->rn_bit; |
| m->rm_flags = tt->rn_flags; |
| if (tt->rn_flags & RNF_NORMAL) |
| m->rm_leaf = tt; |
| else |
| m->rm_mask = tt->rn_mask; |
| m->rm_mklist = next; |
| tt->rn_mklist = m; |
| return (m); |
| } |
| |
| static struct radix_node * |
| rn_addroute(v_arg, n_arg, head, treenodes) |
| void *v_arg, *n_arg; |
| struct radix_node_head *head; |
| struct radix_node treenodes[2]; |
| { |
| caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg; |
| struct radix_node *t, *x = 0, *tt; |
| struct radix_node *saved_tt, *top = head->rnh_treetop; |
| short b = 0, b_leaf = 0; |
| int keyduplicated; |
| caddr_t mmask; |
| struct radix_mask *m, **mp; |
| |
| /* |
| * In dealing with non-contiguous masks, there may be |
| * many different routes which have the same mask. |
| * We will find it useful to have a unique pointer to |
| * the mask to speed avoiding duplicate references at |
| * nodes and possibly save time in calculating indices. |
| */ |
| if (netmask) { |
| if ((x = rn_addmask(netmask, 0, top->rn_offset)) == 0) |
| return (0); |
| b_leaf = x->rn_bit; |
| b = -1 - x->rn_bit; |
| netmask = x->rn_key; |
| } |
| /* |
| * Deal with duplicated keys: attach node to previous instance |
| */ |
| saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes); |
| if (keyduplicated) { |
| for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) { |
| if (tt->rn_mask == netmask) |
| return (0); |
| if (netmask == 0 || |
| (tt->rn_mask && |
| /* index (netmask) > node */ |
| ((b_leaf < tt->rn_bit) || |
| rn_refines(netmask, tt->rn_mask) || |
| rn_lexobetter(netmask, tt->rn_mask)))) |
| break; |
| } |
| /* |
| * If the mask is not duplicated, we wouldn't |
| * find it among possible duplicate key entries |
| * anyway, so the above test doesn't hurt. |
| * |
| * We sort the masks for a duplicated key the same way as |
| * in a masklist -- most specific to least specific. |
| * This may require the unfortunate nuisance of relocating |
| * the head of the list. |
| * |
| * We also reverse, or doubly link the list through the |
| * parent pointer. |
| */ |
| if (tt == saved_tt) { |
| struct radix_node *xx = x; |
| /* link in at head of list */ |
| (tt = treenodes)->rn_dupedkey = t; |
| tt->rn_flags = t->rn_flags; |
| tt->rn_parent = x = t->rn_parent; |
| t->rn_parent = tt; /* parent */ |
| if (x->rn_left == t) |
| x->rn_left = tt; |
| else |
| x->rn_right = tt; |
| saved_tt = tt; x = xx; |
| } else { |
| (tt = treenodes)->rn_dupedkey = t->rn_dupedkey; |
| t->rn_dupedkey = tt; |
| /* Set rn_parent value for tt and tt->rn_dupedkey */ |
| tt->rn_parent = t; |
| if (tt->rn_dupedkey) |
| tt->rn_dupedkey->rn_parent = tt; |
| } |
| tt->rn_key = v; |
| tt->rn_bit = -1; |
| tt->rn_flags = RNF_ACTIVE; |
| } |
| /* |
| * Put mask in tree. |
| */ |
| if (netmask) { |
| tt->rn_mask = netmask; |
| tt->rn_bit = x->rn_bit; |
| tt->rn_flags |= x->rn_flags & RNF_NORMAL; |
| } |
| t = saved_tt->rn_parent; |
| if (keyduplicated) |
| goto key_exists; |
| b_leaf = -1 - t->rn_bit; |
| if (t->rn_right == saved_tt) |
| x = t->rn_left; |
| else |
| x = t->rn_right; |
| /* Promote general routes from below */ |
| if (x->rn_bit < 0) { |
| for (mp = &t->rn_mklist; x; x = x->rn_dupedkey) |
| if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) { |
| *mp = m = rn_new_radix_mask(x, 0); |
| if (m) |
| mp = &m->rm_mklist; |
| } |
| } else if (x->rn_mklist) { |
| /* |
| * Skip over masks whose index is > that of new node |
| */ |
| for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) |
| if (m->rm_bit >= b_leaf) |
| break; |
| t->rn_mklist = m; *mp = 0; |
| } |
| key_exists: |
| /* Add new route to highest possible ancestor's list */ |
| if ((netmask == 0) || (b > t->rn_bit)) |
| return (tt); /* can't lift at all */ |
| b_leaf = tt->rn_bit; |
| do { |
| x = t; |
| t = t->rn_parent; |
| } while (b <= t->rn_bit && x != top); |
| /* |
| * Search through routes associated with node to |
| * insert new route according to index. |
| * Need same criteria as when sorting dupedkeys to avoid |
| * double loop on deletion. |
| */ |
| for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) { |
| if (m->rm_bit < b_leaf) |
| continue; |
| if (m->rm_bit > b_leaf) |
| break; |
| if (m->rm_flags & RNF_NORMAL) { |
| mmask = m->rm_leaf->rn_mask; |
| if (tt->rn_flags & RNF_NORMAL) { |
| #ifdef _KERNEL |
| cmn_err(CE_WARN, "Non-unique normal route, " |
| "mask not entered\n"); |
| #else |
| syslog(LOG_ERR, "Non-unique normal route, " |
| "mask not entered\n"); |
| #endif /* _KERNEL */ |
| return (tt); |
| } |
| } else |
| mmask = m->rm_mask; |
| if (mmask == netmask) { |
| m->rm_refs++; |
| tt->rn_mklist = m; |
| return (tt); |
| } |
| if (rn_refines(netmask, mmask) || |
| rn_lexobetter(netmask, mmask)) |
| break; |
| } |
| *mp = rn_new_radix_mask(tt, *mp); |
| return (tt); |
| } |
| |
| static struct radix_node * |
| rn_delete(v_arg, netmask_arg, head) |
| void *v_arg, *netmask_arg; |
| struct radix_node_head *head; |
| { |
| struct radix_node *t, *p, *x, *tt; |
| struct radix_mask *m, *saved_m, **mp; |
| struct radix_node *dupedkey, *saved_tt, *top; |
| caddr_t v, netmask; |
| int b, head_off, vlen; |
| |
| v = v_arg; |
| netmask = netmask_arg; |
| x = head->rnh_treetop; |
| tt = rn_search(v, x); |
| head_off = x->rn_offset; |
| vlen = LEN(v); |
| saved_tt = tt; |
| top = x; |
| if (tt == 0 || |
| bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off)) |
| return (0); |
| /* |
| * Delete our route from mask lists. |
| */ |
| if (netmask) { |
| if ((x = rn_addmask(netmask, 1, head_off)) == 0) |
| return (0); |
| netmask = x->rn_key; |
| while (tt->rn_mask != netmask) |
| if ((tt = tt->rn_dupedkey) == 0) |
| return (0); |
| } |
| if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0) |
| goto on1; |
| if (tt->rn_flags & RNF_NORMAL) { |
| if (m->rm_leaf != tt || m->rm_refs > 0) { |
| #ifdef _KERNEL |
| cmn_err(CE_WARN, |
| "rn_delete: inconsistent annotation\n"); |
| #else |
| syslog(LOG_ERR, "rn_delete: inconsistent annotation\n"); |
| #endif /* _KERNEL */ |
| return (0); /* dangling ref could cause disaster */ |
| } |
| } else { |
| if (m->rm_mask != tt->rn_mask) { |
| #ifdef _KERNEL |
| cmn_err(CE_WARN, |
| "rn_delete: inconsistent annotation 2\n"); |
| #else |
| syslog(LOG_ERR, |
| "rn_delete: inconsistent annotation 2\n"); |
| #endif /* _KERNEL */ |
| goto on1; |
| } |
| if (--m->rm_refs >= 0) |
| goto on1; |
| } |
| b = -1 - tt->rn_bit; |
| t = saved_tt->rn_parent; |
| if (b > t->rn_bit) |
| goto on1; /* Wasn't lifted at all */ |
| do { |
| x = t; |
| t = t->rn_parent; |
| } while (b <= t->rn_bit && x != top); |
| for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) |
| if (m == saved_m) { |
| *mp = m->rm_mklist; |
| MKFree(m); |
| break; |
| } |
| if (m == 0) { |
| #ifdef _KERNEL |
| cmn_err(CE_WARN, "rn_delete: couldn't find our annotation\n"); |
| #else |
| syslog(LOG_ERR, "rn_delete: couldn't find our annotation\n"); |
| #endif /* _KERNEL */ |
| if (tt->rn_flags & RNF_NORMAL) |
| return (0); /* Dangling ref to us */ |
| } |
| on1: |
| /* |
| * Eliminate us from tree |
| */ |
| if (tt->rn_flags & RNF_ROOT) |
| return (0); |
| t = tt->rn_parent; |
| dupedkey = saved_tt->rn_dupedkey; |
| if (dupedkey) { |
| /* |
| * Here, tt is the deletion target and |
| * saved_tt is the head of the dupekey chain. |
| */ |
| if (tt == saved_tt) { |
| /* remove from head of chain */ |
| x = dupedkey; x->rn_parent = t; |
| if (t->rn_left == tt) |
| t->rn_left = x; |
| else |
| t->rn_right = x; |
| } else { |
| /* find node in front of tt on the chain */ |
| for (x = p = saved_tt; p && p->rn_dupedkey != tt; ) |
| p = p->rn_dupedkey; |
| if (p) { |
| p->rn_dupedkey = tt->rn_dupedkey; |
| if (tt->rn_dupedkey) /* parent */ |
| tt->rn_dupedkey->rn_parent = p; |
| /* parent */ |
| } else |
| #ifdef _KERNEL |
| cmn_err(CE_WARN, |
| "rn_delete: couldn't find us\n"); |
| #else |
| syslog(LOG_ERR, |
| "rn_delete: couldn't find us\n"); |
| #endif /* _KERNEL */ |
| } |
| t = tt + 1; |
| if (t->rn_flags & RNF_ACTIVE) { |
| *++x = *t; |
| p = t->rn_parent; |
| if (p->rn_left == t) |
| p->rn_left = x; |
| else |
| p->rn_right = x; |
| x->rn_left->rn_parent = x; |
| x->rn_right->rn_parent = x; |
| } |
| goto out; |
| } |
| if (t->rn_left == tt) |
| x = t->rn_right; |
| else |
| x = t->rn_left; |
| p = t->rn_parent; |
| if (p->rn_right == t) |
| p->rn_right = x; |
| else |
| p->rn_left = x; |
| x->rn_parent = p; |
| /* |
| * Demote routes attached to us. |
| */ |
| if (t->rn_mklist) { |
| if (x->rn_bit >= 0) { |
| for (mp = &x->rn_mklist; (m = *mp) != NULL; ) |
| mp = &m->rm_mklist; |
| *mp = t->rn_mklist; |
| } else { |
| /* |
| * If there are any key,mask pairs in a sibling |
| * duped-key chain, some subset will appear sorted |
| * in the same order attached to our mklist |
| */ |
| for (m = t->rn_mklist; m && x; x = x->rn_dupedkey) |
| if (m == x->rn_mklist) { |
| struct radix_mask *mm = m->rm_mklist; |
| x->rn_mklist = 0; |
| if (--(m->rm_refs) < 0) |
| MKFree(m); |
| m = mm; |
| } |
| if (m) |
| #ifdef _KERNEL |
| cmn_err(CE_WARN, |
| "rn_delete: Orphaned Mask %p at %p\n", |
| (void *)m, (void *)x); |
| #else |
| syslog(LOG_ERR, |
| "rn_delete: Orphaned Mask %p at %p\n", |
| (void *)m, (void *)x); |
| #endif /* _KERNEL */ |
| } |
| } |
| /* |
| * We may be holding an active internal node in the tree. |
| */ |
| x = tt + 1; |
| if (t != x) { |
| *t = *x; |
| t->rn_left->rn_parent = t; |
| t->rn_right->rn_parent = t; |
| p = x->rn_parent; |
| if (p->rn_left == x) |
| p->rn_left = t; |
| else |
| p->rn_right = t; |
| } |
| out: |
| tt->rn_flags &= ~RNF_ACTIVE; |
| tt[1].rn_flags &= ~RNF_ACTIVE; |
| return (tt); |
| } |
| |
| /* |
| * Walk the radix tree; For the kernel routing table, we hold additional |
| * refs on the ire_bucket to ensure that the walk function f() does not |
| * run into trashed memory. The kernel routing table is identified by |
| * a rnh_treetop that has RNF_SUNW_FT set in the rn_flags. |
| * Note that all refs takein in rn_walktree are released before it returns, |
| * so that f() will need to take any additional references on memory |
| * to be passed back to the caller of rn_walktree. |
| */ |
| static int |
| rn_walktree(h, f, w) |
| struct radix_node_head *h; |
| walktree_f_t *f; |
| void *w; |
| { |
| return (rn_walktree_mt(h, f, w, NULL, NULL)); |
| } |
| static int |
| rn_walktree_mt(h, f, w, lockf, unlockf) |
| struct radix_node_head *h; |
| walktree_f_t *f; |
| void *w; |
| lockf_t lockf, unlockf; |
| { |
| int error; |
| struct radix_node *base, *next; |
| struct radix_node *rn = h->rnh_treetop; |
| boolean_t is_mt = B_FALSE; |
| |
| if (lockf != NULL) { |
| ASSERT(unlockf != NULL); |
| is_mt = B_TRUE; |
| } |
| /* |
| * This gets complicated because we may delete the node |
| * while applying the function f to it, so we need to calculate |
| * the successor node in advance. |
| */ |
| RADIX_NODE_HEAD_RLOCK(h); |
| /* First time through node, go left */ |
| while (rn->rn_bit >= 0) { |
| rn = rn->rn_left; |
| } |
| |
| if (is_mt) |
| (*lockf)(rn); |
| |
| for (;;) { |
| base = rn; |
| /* If at right child go back up, otherwise, go right */ |
| while (rn->rn_parent->rn_right == rn && |
| (rn->rn_flags & RNF_ROOT) == 0) { |
| rn = rn->rn_parent; |
| } |
| /* Find the next *leaf* since next node might vanish, too */ |
| for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0; ) { |
| rn = rn->rn_left; |
| } |
| next = rn; |
| |
| if (is_mt && next != NULL) |
| (*lockf)(next); |
| |
| /* Process leaves */ |
| while ((rn = base) != NULL) { |
| base = rn->rn_dupedkey; |
| |
| if (is_mt && base != NULL) |
| (*lockf)(base); |
| |
| RADIX_NODE_HEAD_UNLOCK(h); |
| if (!(rn->rn_flags & RNF_ROOT) && |
| (error = (*f)(rn, w))) { |
| if (is_mt) { |
| (*unlockf)(rn); |
| if (base != NULL) |
| (*unlockf)(base); |
| if (next != NULL) |
| (*unlockf)(next); |
| } |
| return (error); |
| } |
| if (is_mt) |
| (*unlockf)(rn); |
| RADIX_NODE_HEAD_RLOCK(h); |
| } |
| rn = next; |
| if (rn->rn_flags & RNF_ROOT) { |
| RADIX_NODE_HEAD_UNLOCK(h); |
| /* |
| * no ref to release, since we never take a ref |
| * on the root node- it can't be deleted. |
| */ |
| return (0); |
| } |
| } |
| /* NOTREACHED */ |
| } |
| |
| /* |
| * Allocate and initialize an empty tree. This has 3 nodes, which are |
| * part of the radix_node_head (in the order <left,root,right>) and are |
| * marked RNF_ROOT so they cannot be freed. |
| * The leaves have all-zero and all-one keys, with significant |
| * bits starting at 'off'. |
| * Return 1 on success, 0 on error. |
| */ |
| int |
| rn_inithead(head, off) |
| void **head; |
| int off; |
| { |
| struct radix_node_head *rnh; |
| struct radix_node *t, *tt, *ttt; |
| if (*head) |
| return (1); |
| R_ZallocSleep(rnh, struct radix_node_head *, sizeof (*rnh)); |
| if (rnh == 0) |
| return (0); |
| #ifdef _KERNEL |
| RADIX_NODE_HEAD_LOCK_INIT(rnh); |
| #endif |
| *head = rnh; |
| t = rn_newpair(rn_zeros, off, rnh->rnh_nodes); |
| ttt = rnh->rnh_nodes + 2; |
| t->rn_right = ttt; |
| t->rn_parent = t; |
| tt = t->rn_left; /* ... which in turn is rnh->rnh_nodes */ |
| tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE; |
| tt->rn_bit = -1 - off; |
| *ttt = *tt; |
| ttt->rn_key = rn_ones; |
| rnh->rnh_addaddr = rn_addroute; |
| rnh->rnh_deladdr = rn_delete; |
| rnh->rnh_matchaddr = rn_match; |
| rnh->rnh_matchaddr_args = rn_match_args; |
| rnh->rnh_lookup = rn_lookup; |
| rnh->rnh_walktree = rn_walktree; |
| rnh->rnh_walktree_mt = rn_walktree_mt; |
| rnh->rnh_walktree_from = NULL; /* not implemented */ |
| rnh->rnh_treetop = t; |
| return (1); |
| } |
| |
| void |
| rn_init() |
| { |
| char *cp, *cplim; |
| |
| #ifdef _KERNEL |
| radix_mask_cache = kmem_cache_create("radix_mask", |
| sizeof (struct radix_mask), 0, NULL, NULL, NULL, NULL, NULL, 0); |
| radix_node_cache = kmem_cache_create("radix_node", |
| max_keylen + 2 * sizeof (struct radix_node), |
| 0, NULL, NULL, NULL, NULL, NULL, 0); |
| #endif /* _KERNEL */ |
| R_ZallocSleep(rn_zeros, char *, 2 * max_keylen); |
| |
| ASSERT(rn_zeros != NULL); |
| bzero(rn_zeros, 2 * max_keylen); |
| rn_ones = cp = rn_zeros + max_keylen; |
| cplim = rn_ones + max_keylen; |
| while (cp < cplim) |
| *cp++ = -1; |
| if (rn_inithead((void **)(void *)&mask_rnhead, 0) == 0) |
| panic("rn_init: could not init mask_rnhead "); |
| } |
| |
| int |
| rn_freenode(n, p) |
| struct radix_node *n; |
| void *p; |
| { |
| struct radix_node_head *rnh = p; |
| struct radix_node *d; |
| |
| d = rnh->rnh_deladdr(n->rn_key, NULL, rnh); |
| if (d != NULL) { |
| Free(d, radix_node_cache); |
| } |
| return (0); |
| } |
| |
| |
| void |
| rn_freehead(rnh) |
| struct radix_node_head *rnh; |
| { |
| (void) rn_walktree(rnh, rn_freenode, rnh); |
| |
| rnh->rnh_addaddr = NULL; |
| rnh->rnh_deladdr = NULL; |
| rnh->rnh_matchaddr = NULL; |
| rnh->rnh_lookup = NULL; |
| rnh->rnh_walktree = NULL; |
| |
| #ifdef _KERNEL |
| RADIX_NODE_HEAD_DESTROY(rnh); |
| FreeHead(rnh, sizeof (*rnh)); |
| #else |
| Free(rnh, NULL); |
| #endif /* _KERNEL */ |
| } |
| |
| void |
| rn_fini() |
| { |
| struct radix_mask *m; |
| |
| if (rn_zeros != NULL) { |
| #ifdef _KERNEL |
| FreeHead(rn_zeros, 2 * max_keylen); |
| #else |
| Free(rn_zeros, NULL); |
| #endif |
| rn_zeros = NULL; |
| } |
| |
| |
| if (mask_rnhead != NULL) { |
| rn_freehead(mask_rnhead); |
| mask_rnhead = NULL; |
| } |
| |
| while ((m = rn_mkfreelist) != NULL) { |
| rn_mkfreelist = m->rm_mklist; |
| Free(m, NULL); |
| } |
| } |