| /* |
| * CDDL HEADER START |
| * |
| * The contents of this file are subject to the terms of the |
| * Common Development and Distribution License (the "License"). |
| * You may not use this file except in compliance with the License. |
| * |
| * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE |
| * or http://www.opensolaris.org/os/licensing. |
| * See the License for the specific language governing permissions |
| * and limitations under the License. |
| * |
| * When distributing Covered Code, include this CDDL HEADER in each |
| * file and include the License file at usr/src/OPENSOLARIS.LICENSE. |
| * If applicable, add the following below this CDDL HEADER, with the |
| * fields enclosed by brackets "[]" replaced with your own identifying |
| * information: Portions Copyright [yyyy] [name of copyright owner] |
| * |
| * CDDL HEADER END |
| */ |
| /* |
| * Copyright 2007 Sun Microsystems, Inc. All rights reserved. |
| * Use is subject to license terms. |
| */ |
| |
| #pragma ident "%Z%%M% %I% %E% SMI" |
| |
| #include <mdb/mdb_param.h> |
| #include <mdb/mdb_modapi.h> |
| #include <mdb/mdb_ks.h> |
| #include <mdb/mdb_ctf.h> |
| |
| #include <sys/types.h> |
| #include <sys/thread.h> |
| #include <sys/session.h> |
| #include <sys/user.h> |
| #include <sys/proc.h> |
| #include <sys/var.h> |
| #include <sys/t_lock.h> |
| #include <sys/callo.h> |
| #include <sys/priocntl.h> |
| #include <sys/class.h> |
| #include <sys/regset.h> |
| #include <sys/stack.h> |
| #include <sys/cpuvar.h> |
| #include <sys/vnode.h> |
| #include <sys/vfs.h> |
| #include <sys/flock_impl.h> |
| #include <sys/kmem_impl.h> |
| #include <sys/vmem_impl.h> |
| #include <sys/kstat.h> |
| #include <vm/seg_vn.h> |
| #include <vm/anon.h> |
| #include <vm/as.h> |
| #include <vm/seg_map.h> |
| #include <sys/dditypes.h> |
| #include <sys/ddi_impldefs.h> |
| #include <sys/sysmacros.h> |
| #include <sys/sysconf.h> |
| #include <sys/task.h> |
| #include <sys/project.h> |
| #include <sys/taskq.h> |
| #include <sys/taskq_impl.h> |
| #include <sys/errorq_impl.h> |
| #include <sys/cred_impl.h> |
| #include <sys/zone.h> |
| #include <sys/panic.h> |
| #include <regex.h> |
| #include <sys/port_impl.h> |
| |
| #include "avl.h" |
| #include "contract.h" |
| #include "cpupart_mdb.h" |
| #include "devinfo.h" |
| #include "leaky.h" |
| #include "lgrp.h" |
| #include "pg.h" |
| #include "group.h" |
| #include "list.h" |
| #include "log.h" |
| #include "kgrep.h" |
| #include "kmem.h" |
| #include "bio.h" |
| #include "streams.h" |
| #include "cyclic.h" |
| #include "findstack.h" |
| #include "ndievents.h" |
| #include "mmd.h" |
| #include "net.h" |
| #include "netstack.h" |
| #include "nvpair.h" |
| #include "ctxop.h" |
| #include "tsd.h" |
| #include "thread.h" |
| #include "memory.h" |
| #include "sobj.h" |
| #include "sysevent.h" |
| #include "rctl.h" |
| #include "tsol.h" |
| #include "typegraph.h" |
| #include "ldi.h" |
| #include "vfs.h" |
| #include "zone.h" |
| #include "modhash.h" |
| #include "mdi.h" |
| #include "fm.h" |
| |
| /* |
| * Surely this is defined somewhere... |
| */ |
| #define NINTR 16 |
| |
| #ifndef STACK_BIAS |
| #define STACK_BIAS 0 |
| #endif |
| |
| static char |
| pstat2ch(uchar_t state) |
| { |
| switch (state) { |
| case SSLEEP: return ('S'); |
| case SRUN: return ('R'); |
| case SZOMB: return ('Z'); |
| case SIDL: return ('I'); |
| case SONPROC: return ('O'); |
| case SSTOP: return ('T'); |
| default: return ('?'); |
| } |
| } |
| |
| #define PS_PRTTHREADS 0x1 |
| #define PS_PRTLWPS 0x2 |
| #define PS_PSARGS 0x4 |
| #define PS_TASKS 0x8 |
| #define PS_PROJECTS 0x10 |
| #define PS_ZONES 0x20 |
| |
| static int |
| ps_threadprint(uintptr_t addr, const void *data, void *private) |
| { |
| const kthread_t *t = (const kthread_t *)data; |
| uint_t prt_flags = *((uint_t *)private); |
| |
| static const mdb_bitmask_t t_state_bits[] = { |
| { "TS_FREE", UINT_MAX, TS_FREE }, |
| { "TS_SLEEP", TS_SLEEP, TS_SLEEP }, |
| { "TS_RUN", TS_RUN, TS_RUN }, |
| { "TS_ONPROC", TS_ONPROC, TS_ONPROC }, |
| { "TS_ZOMB", TS_ZOMB, TS_ZOMB }, |
| { "TS_STOPPED", TS_STOPPED, TS_STOPPED }, |
| { NULL, 0, 0 } |
| }; |
| |
| if (prt_flags & PS_PRTTHREADS) |
| mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits); |
| |
| if (prt_flags & PS_PRTLWPS) |
| mdb_printf("\tL %?a ID: %u\n", t->t_lwp, t->t_tid); |
| |
| return (WALK_NEXT); |
| } |
| |
| int |
| ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) |
| { |
| uint_t prt_flags = 0; |
| proc_t pr; |
| struct pid pid, pgid, sid; |
| sess_t session; |
| cred_t cred; |
| task_t tk; |
| kproject_t pj; |
| zone_t zn; |
| |
| if (!(flags & DCMD_ADDRSPEC)) { |
| if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) { |
| mdb_warn("can't walk 'proc'"); |
| return (DCMD_ERR); |
| } |
| return (DCMD_OK); |
| } |
| |
| if (mdb_getopts(argc, argv, |
| 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags, |
| 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags, |
| 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags, |
| 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags, |
| 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags, |
| 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc) |
| return (DCMD_USAGE); |
| |
| if (DCMD_HDRSPEC(flags)) { |
| mdb_printf("%<u>%1s %6s %6s %6s %6s ", |
| "S", "PID", "PPID", "PGID", "SID"); |
| if (prt_flags & PS_TASKS) |
| mdb_printf("%5s ", "TASK"); |
| if (prt_flags & PS_PROJECTS) |
| mdb_printf("%5s ", "PROJ"); |
| if (prt_flags & PS_ZONES) |
| mdb_printf("%5s ", "ZONE"); |
| mdb_printf("%6s %10s %?s %s%</u>\n", |
| "UID", "FLAGS", "ADDR", "NAME"); |
| } |
| |
| mdb_vread(&pr, sizeof (pr), addr); |
| mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp); |
| mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp); |
| mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred); |
| mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp); |
| mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp); |
| if (prt_flags & (PS_TASKS | PS_PROJECTS)) |
| mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task); |
| if (prt_flags & PS_PROJECTS) |
| mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj); |
| if (prt_flags & PS_ZONES) |
| mdb_vread(&zn, sizeof (zone_t), (uintptr_t)pr.p_zone); |
| |
| mdb_printf("%c %6d %6d %6d %6d ", |
| pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id, |
| sid.pid_id); |
| if (prt_flags & PS_TASKS) |
| mdb_printf("%5d ", tk.tk_tkid); |
| if (prt_flags & PS_PROJECTS) |
| mdb_printf("%5d ", pj.kpj_id); |
| if (prt_flags & PS_ZONES) |
| mdb_printf("%5d ", zn.zone_id); |
| mdb_printf("%6d 0x%08x %0?p %s\n", |
| cred.cr_uid, pr.p_flag, addr, |
| (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm); |
| |
| if (prt_flags & ~PS_PSARGS) |
| (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr); |
| |
| return (DCMD_OK); |
| } |
| |
| #define PG_NEWEST 0x0001 |
| #define PG_OLDEST 0x0002 |
| #define PG_PIPE_OUT 0x0004 |
| #define PG_EXACT_MATCH 0x0008 |
| |
| typedef struct pgrep_data { |
| uint_t pg_flags; |
| uint_t pg_psflags; |
| uintptr_t pg_xaddr; |
| hrtime_t pg_xstart; |
| const char *pg_pat; |
| #ifndef _KMDB |
| regex_t pg_reg; |
| #endif |
| } pgrep_data_t; |
| |
| /*ARGSUSED*/ |
| static int |
| pgrep_cb(uintptr_t addr, const void *pdata, void *data) |
| { |
| const proc_t *prp = pdata; |
| pgrep_data_t *pgp = data; |
| #ifndef _KMDB |
| regmatch_t pmatch; |
| #endif |
| |
| /* |
| * kmdb doesn't have access to the reg* functions, so we fall back |
| * to strstr/strcmp. |
| */ |
| #ifdef _KMDB |
| if ((pgp->pg_flags & PG_EXACT_MATCH) ? |
| (strcmp(prp->p_user.u_comm, pgp->pg_pat) != 0) : |
| (strstr(prp->p_user.u_comm, pgp->pg_pat) == NULL)) |
| return (WALK_NEXT); |
| #else |
| if (regexec(&pgp->pg_reg, prp->p_user.u_comm, 1, &pmatch, 0) != 0) |
| return (WALK_NEXT); |
| |
| if ((pgp->pg_flags & PG_EXACT_MATCH) && |
| (pmatch.rm_so != 0 || prp->p_user.u_comm[pmatch.rm_eo] != '\0')) |
| return (WALK_NEXT); |
| #endif |
| |
| if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) { |
| hrtime_t start; |
| |
| start = (hrtime_t)prp->p_user.u_start.tv_sec * NANOSEC + |
| prp->p_user.u_start.tv_nsec; |
| |
| if (pgp->pg_flags & PG_NEWEST) { |
| if (pgp->pg_xaddr == NULL || start > pgp->pg_xstart) { |
| pgp->pg_xaddr = addr; |
| pgp->pg_xstart = start; |
| } |
| } else { |
| if (pgp->pg_xaddr == NULL || start < pgp->pg_xstart) { |
| pgp->pg_xaddr = addr; |
| pgp->pg_xstart = start; |
| } |
| } |
| |
| } else if (pgp->pg_flags & PG_PIPE_OUT) { |
| mdb_printf("%p\n", addr); |
| |
| } else { |
| if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) { |
| mdb_warn("can't invoke 'ps'"); |
| return (WALK_DONE); |
| } |
| pgp->pg_psflags &= ~DCMD_LOOPFIRST; |
| } |
| |
| return (WALK_NEXT); |
| } |
| |
| /*ARGSUSED*/ |
| int |
| pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) |
| { |
| pgrep_data_t pg; |
| int i; |
| #ifndef _KMDB |
| int err; |
| #endif |
| |
| if (flags & DCMD_ADDRSPEC) |
| return (DCMD_USAGE); |
| |
| pg.pg_flags = 0; |
| pg.pg_xaddr = 0; |
| |
| i = mdb_getopts(argc, argv, |
| 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags, |
| 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags, |
| 'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags, |
| NULL); |
| |
| argc -= i; |
| argv += i; |
| |
| if (argc != 1) |
| return (DCMD_USAGE); |
| |
| /* |
| * -n and -o are mutually exclusive. |
| */ |
| if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST)) |
| return (DCMD_USAGE); |
| |
| if (argv->a_type != MDB_TYPE_STRING) |
| return (DCMD_USAGE); |
| |
| if (flags & DCMD_PIPE_OUT) |
| pg.pg_flags |= PG_PIPE_OUT; |
| |
| pg.pg_pat = argv->a_un.a_str; |
| if (DCMD_HDRSPEC(flags)) |
| pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST; |
| else |
| pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP; |
| |
| #ifndef _KMDB |
| if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) { |
| size_t nbytes; |
| char *buf; |
| |
| nbytes = regerror(err, &pg.pg_reg, NULL, 0); |
| buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC); |
| (void) regerror(err, &pg.pg_reg, buf, nbytes); |
| mdb_warn("%s\n", buf); |
| |
| return (DCMD_ERR); |
| } |
| #endif |
| |
| if (mdb_walk("proc", pgrep_cb, &pg) != 0) { |
| mdb_warn("can't walk 'proc'"); |
| return (DCMD_ERR); |
| } |
| |
| if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) { |
| if (pg.pg_flags & PG_PIPE_OUT) { |
| mdb_printf("%p\n", pg.pg_xaddr); |
| } else { |
| if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags, |
| 0, NULL) != 0) { |
| mdb_warn("can't invoke 'ps'"); |
| return (DCMD_ERR); |
| } |
| } |
| } |
| |
| return (DCMD_OK); |
| } |
| |
| int |
| task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) |
| { |
| task_t tk; |
| kproject_t pj; |
| |
| if (!(flags & DCMD_ADDRSPEC)) { |
| if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) { |
| mdb_warn("can't walk task_cache"); |
| return (DCMD_ERR); |
| } |
| return (DCMD_OK); |
| } |
| if (DCMD_HDRSPEC(flags)) { |
| mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n", |
| "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS"); |
| } |
| if (mdb_vread(&tk, sizeof (task_t), addr) == -1) { |
| mdb_warn("can't read task_t structure at %p", addr); |
| return (DCMD_ERR); |
| } |
| if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) { |
| mdb_warn("can't read project_t structure at %p", addr); |
| return (DCMD_ERR); |
| } |
| mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n", |
| addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count, |
| tk.tk_flags); |
| return (DCMD_OK); |
| } |
| |
| int |
| project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) |
| { |
| kproject_t pj; |
| |
| if (!(flags & DCMD_ADDRSPEC)) { |
| if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) { |
| mdb_warn("can't walk projects"); |
| return (DCMD_ERR); |
| } |
| return (DCMD_OK); |
| } |
| if (DCMD_HDRSPEC(flags)) { |
| mdb_printf("%<u>%?s %6s %6s %6s%</u>\n", |
| "ADDR", "PROJID", "ZONEID", "REFCNT"); |
| } |
| if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { |
| mdb_warn("can't read kproject_t structure at %p", addr); |
| return (DCMD_ERR); |
| } |
| mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid, |
| pj.kpj_count); |
| return (DCMD_OK); |
| } |
| |
| /*ARGSUSED*/ |
| int |
| callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) |
| { |
| callout_table_t *co_ktable[CALLOUT_TABLES]; |
| int co_kfanout; |
| callout_table_t co_table; |
| callout_t co_callout; |
| callout_t *co_ptr; |
| int co_id; |
| clock_t lbolt; |
| int i, j, k; |
| const char *lbolt_sym; |
| |
| if ((flags & DCMD_ADDRSPEC) || argc != 0) |
| return (DCMD_USAGE); |
| |
| if (mdb_prop_postmortem) |
| lbolt_sym = "panic_lbolt"; |
| else |
| lbolt_sym = "lbolt"; |
| |
| if (mdb_readvar(&lbolt, lbolt_sym) == -1) { |
| mdb_warn("failed to read '%s'", lbolt_sym); |
| return (DCMD_ERR); |
| } |
| |
| if (mdb_readvar(&co_kfanout, "callout_fanout") == -1) { |
| mdb_warn("failed to read callout_fanout"); |
| return (DCMD_ERR); |
| } |
| |
| if (mdb_readvar(&co_ktable, "callout_table") == -1) { |
| mdb_warn("failed to read callout_table"); |
| return (DCMD_ERR); |
| } |
| |
| mdb_printf("%<u>%-24s %-?s %-?s %-?s%</u>\n", |
| "FUNCTION", "ARGUMENT", "ID", "TIME"); |
| |
| for (i = 0; i < CALLOUT_NTYPES; i++) { |
| for (j = 0; j < co_kfanout; j++) { |
| |
| co_id = CALLOUT_TABLE(i, j); |
| |
| if (mdb_vread(&co_table, sizeof (co_table), |
| (uintptr_t)co_ktable[co_id]) == -1) { |
| mdb_warn("failed to read table at %p", |
| (uintptr_t)co_ktable[co_id]); |
| continue; |
| } |
| |
| for (k = 0; k < CALLOUT_BUCKETS; k++) { |
| co_ptr = co_table.ct_idhash[k]; |
| |
| while (co_ptr != NULL) { |
| mdb_vread(&co_callout, |
| sizeof (co_callout), |
| (uintptr_t)co_ptr); |
| |
| mdb_printf("%-24a %0?p %0?lx %?lx " |
| "(T%+ld)\n", co_callout.c_func, |
| co_callout.c_arg, co_callout.c_xid, |
| co_callout.c_runtime, |
| co_callout.c_runtime - lbolt); |
| |
| co_ptr = co_callout.c_idnext; |
| } |
| } |
| } |
| } |
| |
| return (DCMD_OK); |
| } |
| |
| /*ARGSUSED*/ |
| int |
| class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) |
| { |
| long num_classes, i; |
| sclass_t *class_tbl; |
| GElf_Sym g_sclass; |
| char class_name[PC_CLNMSZ]; |
| size_t tbl_size; |
| |
| if (mdb_lookup_by_name("sclass", &g_sclass) == -1) { |
| mdb_warn("failed to find symbol sclass\n"); |
| return (DCMD_ERR); |
| } |
| |
| tbl_size = (size_t)g_sclass.st_size; |
| num_classes = tbl_size / (sizeof (sclass_t)); |
| class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC); |
| |
| if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) { |
| mdb_warn("failed to read sclass"); |
| return (DCMD_ERR); |
| } |
| |
| mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME", |
| "INIT FCN", "CLASS FCN"); |
| |
| for (i = 0; i < num_classes; i++) { |
| if (mdb_vread(class_name, sizeof (class_name), |
| (uintptr_t)class_tbl[i].cl_name) == -1) |
| (void) strcpy(class_name, "???"); |
| |
| mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name, |
| class_tbl[i].cl_init, class_tbl[i].cl_funcs); |
| } |
| |
| return (DCMD_OK); |
| } |
| |
| #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */ |
| |
| int |
| vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) |
| { |
| uintptr_t rootdir; |
| vnode_t vn; |
| char buf[MAXPATHLEN]; |
| |
| uint_t opt_F = FALSE; |
| |
| if (mdb_getopts(argc, argv, |
| 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc) |
| return (DCMD_USAGE); |
| |
| if (!(flags & DCMD_ADDRSPEC)) { |
| mdb_warn("expected explicit vnode_t address before ::\n"); |
| return (DCMD_USAGE); |
| } |
| |
| if (mdb_readvar(&rootdir, "rootdir") == -1) { |
| mdb_warn("failed to read rootdir"); |
| return (DCMD_ERR); |
| } |
| |
| if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1) |
| return (DCMD_ERR); |
| |
| if (*buf == '\0') { |
| mdb_printf("??\n"); |
| return (DCMD_OK); |
| } |
| |
| mdb_printf("%s", buf); |
| if (opt_F && buf[strlen(buf)-1] != '/' && |
| mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn)) |
| mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0)); |
| mdb_printf("\n"); |
| |
| return (DCMD_OK); |
| } |
| |
| int |
| ld_walk_init(mdb_walk_state_t *wsp) |
| { |
| wsp->walk_data = (void *)wsp->walk_addr; |
| return (WALK_NEXT); |
| } |
| |
| int |
| ld_walk_step(mdb_walk_state_t *wsp) |
| { |
| int status; |
| lock_descriptor_t ld; |
| |
| if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) { |
| mdb_warn("couldn't read lock_descriptor_t at %p\n", |
| wsp->walk_addr); |
| return (WALK_ERR); |
| } |
| |
| status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata); |
| if (status == WALK_ERR) |
| return (WALK_ERR); |
| |
| wsp->walk_addr = (uintptr_t)ld.l_next; |
| if (wsp->walk_addr == (uintptr_t)wsp->walk_data) |
| return (WALK_DONE); |
| |
| return (status); |
| } |
| |
| int |
| lg_walk_init(mdb_walk_state_t *wsp) |
| { |
| GElf_Sym sym; |
| |
| if (mdb_lookup_by_name("lock_graph", &sym) == -1) { |
| mdb_warn("failed to find symbol 'lock_graph'\n"); |
| return (WALK_ERR); |
| } |
| |
| wsp->walk_addr = (uintptr_t)sym.st_value; |
| wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size); |
| |
| return (WALK_NEXT); |
| } |
| |
| typedef struct lg_walk_data { |
| uintptr_t startaddr; |
| mdb_walk_cb_t callback; |
| void *data; |
| } lg_walk_data_t; |
| |
| /* |
| * We can't use ::walk lock_descriptor directly, because the head of each graph |
| * is really a dummy lock. Rather than trying to dynamically determine if this |
| * is a dummy node or not, we just filter out the initial element of the |
| * list. |
| */ |
| static int |
| lg_walk_cb(uintptr_t addr, const void *data, void *priv) |
| { |
| lg_walk_data_t *lw = priv; |
| |
| if (addr != lw->startaddr) |
| return (lw->callback(addr, data, lw->data)); |
| |
| return (WALK_NEXT); |
| } |
| |
| int |
| lg_walk_step(mdb_walk_state_t *wsp) |
| { |
| graph_t *graph; |
| lg_walk_data_t lw; |
| |
| if (wsp->walk_addr >= (uintptr_t)wsp->walk_data) |
| return (WALK_DONE); |
| |
| if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) { |
| mdb_warn("failed to read graph_t at %p", wsp->walk_addr); |
| return (WALK_ERR); |
| } |
| |
| wsp->walk_addr += sizeof (graph); |
| |
| if (graph == NULL) |
| return (WALK_NEXT); |
| |
| lw.callback = wsp->walk_callback; |
| lw.data = wsp->walk_cbdata; |
| |
| lw.startaddr = (uintptr_t)&(graph->active_locks); |
| if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { |
| mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); |
| return (WALK_ERR); |
| } |
| |
| lw.startaddr = (uintptr_t)&(graph->sleeping_locks); |
| if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { |
| mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); |
| return (WALK_ERR); |
| } |
| |
| return (WALK_NEXT); |
| } |
| |
| /* |
| * The space available for the path corresponding to the locked vnode depends |
| * on whether we are printing 32- or 64-bit addresses. |
| */ |
| #ifdef _LP64 |
| #define LM_VNPATHLEN 20 |
| #else |
| #define LM_VNPATHLEN 30 |
| #endif |
| |
| /*ARGSUSED*/ |
| static int |
| lminfo_cb(uintptr_t addr, const void *data, void *priv) |
| { |
| const lock_descriptor_t *ld = data; |
| char buf[LM_VNPATHLEN]; |
| proc_t p; |
| |
| mdb_printf("%-?p %2s %04x %6d %-16s %-?p ", |
| addr, ld->l_type == F_RDLCK ? "RD" : |
| ld->l_type == F_WRLCK ? "WR" : "??", |
| ld->l_state, ld->l_flock.l_pid, |
| ld->l_flock.l_pid == 0 ? "<kernel>" : |
| mdb_pid2proc(ld->l_flock.l_pid, &p) == NULL ? |
| "<defunct>" : p.p_user.u_comm, |
| ld->l_vnode); |
| |
| mdb_vnode2path((uintptr_t)ld->l_vnode, buf, |
| sizeof (buf)); |
| mdb_printf("%s\n", buf); |
| |
| return (WALK_NEXT); |
| } |
| |
| /*ARGSUSED*/ |
| int |
| lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) |
| { |
| if (DCMD_HDRSPEC(flags)) |
| mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n", |
| "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH"); |
| |
| return (mdb_pwalk("lock_graph", lminfo_cb, NULL, NULL)); |
| } |
| |
| /*ARGSUSED*/ |
| int |
| seg(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) |
| { |
| struct seg s; |
| |
| if (argc != 0) |
| return (DCMD_USAGE); |
| |
| if ((flags & DCMD_LOOPFIRST) || !(flags & DCMD_LOOP)) { |
| mdb_printf("%<u>%?s %?s %?s %?s %s%</u>\n", |
| "SEG", "BASE", "SIZE", "DATA", "OPS"); |
| } |
| |
| if (mdb_vread(&s, sizeof (s), addr) == -1) { |
| mdb_warn("failed to read seg at %p", addr); |
| return (DCMD_ERR); |
| } |
| |
| mdb_printf("%?p %?p %?lx %?p %a\n", |
| addr, s.s_base, s.s_size, s.s_data, s.s_ops); |
| |
| return (DCMD_OK); |
| } |
| |
| /*ARGSUSED*/ |
| static int |
| pmap_walk_anon(uintptr_t addr, const struct anon *anon, int *nres) |
| { |
| uintptr_t pp = |
| mdb_vnode2page((uintptr_t)anon->an_vp, (uintptr_t)anon->an_off); |
| |
| if (pp != NULL) |
| (*nres)++; |
| |
| return (WALK_NEXT); |
| } |
| |
| static int |
| pmap_walk_seg(uintptr_t addr, const struct seg *seg, uintptr_t segvn) |
| { |
| |
| mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024); |
| |
| if (segvn == (uintptr_t)seg->s_ops) { |
| struct segvn_data svn; |
| int nres = 0; |
| |
| (void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data); |
| |
| if (svn.amp == NULL) { |
| mdb_printf(" %8s", ""); |
| goto drive_on; |
| } |
| |
| /* |
| * We've got an amp for this segment; walk through |
| * the amp, and determine mappings. |
| */ |
| if (mdb_pwalk("anon", (mdb_walk_cb_t)pmap_walk_anon, |
| &nres, (uintptr_t)svn.amp) == -1) |
| mdb_warn("failed to walk anon (amp=%p)", svn.amp); |
| |
| mdb_printf(" %7dk", (nres * PAGESIZE) / 1024); |
| drive_on: |
| |
| if (svn.vp != NULL) { |
| char buf[29]; |
| |
| mdb_vnode2path((uintptr_t)svn.vp, buf, sizeof (buf)); |
| mdb_printf(" %s", buf); |
| } else |
| mdb_printf(" [ anon ]"); |
| } |
| |
| mdb_printf("\n"); |
| return (WALK_NEXT); |
| } |
| |
| static int |
| pmap_walk_seg_quick(uintptr_t addr, const struct seg *seg, uintptr_t segvn) |
| { |
| mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024); |
| |
| if (segvn == (uintptr_t)seg->s_ops) { |
| struct segvn_data svn; |
| |
| (void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data); |
| |
| if (svn.vp != NULL) { |
| mdb_printf(" %0?p", svn.vp); |
| } else { |
| mdb_printf(" [ anon ]"); |
| } |
| } |
| |
| mdb_printf("\n"); |
| return (WALK_NEXT); |
| } |
| |
| /*ARGSUSED*/ |
| int |
| pmap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) |
| { |
| uintptr_t segvn; |
| proc_t proc; |
| uint_t quick = FALSE; |
| mdb_walk_cb_t cb = (mdb_walk_cb_t)pmap_walk_seg; |
| |
| GElf_Sym sym; |
| |
| if (!(flags & DCMD_ADDRSPEC)) |
| return (DCMD_USAGE); |
| |
| if (mdb_getopts(argc, argv, |
| 'q', MDB_OPT_SETBITS, TRUE, &quick, NULL) != argc) |
| return (DCMD_USAGE); |
| |
| if (mdb_vread(&proc, sizeof (proc), addr) == -1) { |
| mdb_warn("failed to read proc at %p", addr); |
| return (DCMD_ERR); |
| } |
| |
| if (mdb_lookup_by_name("segvn_ops", &sym) == 0) |
| segvn = (uintptr_t)sym.st_value; |
| else |
| segvn = NULL; |
| |
| mdb_printf("%?s %?s %8s ", "SEG", "BASE", "SIZE"); |
| |
| if (quick) { |
| mdb_printf("VNODE\n"); |
| cb = (mdb_walk_cb_t)pmap_walk_seg_quick; |
| } else { |
| mdb_printf("%8s %s\n", "RES", "PATH"); |
| } |
| |
| if (mdb_pwalk("seg", cb, (void *)segvn, (uintptr_t)proc.p_as) == -1) { |
| mdb_warn("failed to walk segments of as %p", proc.p_as); |
| return (DCMD_ERR); |
| } |
| |
| return (DCMD_OK); |
| } |
| |
| typedef struct anon_walk_data { |
| uintptr_t *aw_levone; |
| uintptr_t *aw_levtwo; |
| int aw_nlevone; |
| int aw_levone_ndx; |
| int aw_levtwo_ndx; |
| struct anon_map aw_amp; |
| struct anon_hdr aw_ahp; |
| } anon_walk_data_t; |
| |
| int |
| anon_walk_init(mdb_walk_state_t *wsp) |
| { |
| anon_walk_data_t *aw; |
| |
| if (wsp->walk_addr == NULL) { |
| mdb_warn("anon walk doesn't support global walks\n"); |
| return (WALK_ERR); |
| } |
| |
| aw = mdb_alloc(sizeof (anon_walk_data_t), UM_SLEEP); |
| |
| if (mdb_vread(&aw->aw_amp, sizeof (aw->aw_amp), wsp->walk_addr) == -1) { |
| mdb_warn("failed to read anon map at %p", wsp->walk_addr); |
| mdb_free(aw, sizeof (anon_walk_data_t)); |
| return (WALK_ERR); |
| } |
| |
| if (mdb_vread(&aw->aw_ahp, sizeof (aw->aw_ahp), |
| (uintptr_t)(aw->aw_amp.ahp)) == -1) { |
| mdb_warn("failed to read anon hdr ptr at %p", aw->aw_amp.ahp); |
| mdb_free(aw, sizeof (anon_walk_data_t)); |
| return (WALK_ERR); |
| } |
| |
| if (aw->aw_ahp.size <= ANON_CHUNK_SIZE || |
| (aw->aw_ahp.flags & ANON_ALLOC_FORCE)) { |
| aw->aw_nlevone = aw->aw_ahp.size; |
| aw->aw_levtwo = NULL; |
| } else { |
| aw->aw_nlevone = |
| (aw->aw_ahp.size + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT; |
| aw->aw_levtwo = |
| mdb_zalloc(ANON_CHUNK_SIZE * sizeof (uintptr_t), UM_SLEEP); |
| } |
| |
| aw->aw_levone = |
| mdb_alloc(aw->aw_nlevone * sizeof (uintptr_t), UM_SLEEP); |
| |
| aw->aw_levone_ndx = 0; |
| aw->aw_levtwo_ndx = 0; |
| |
| mdb_vread(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t), |
| (uintptr_t)aw->aw_ahp.array_chunk); |
| |
| if (aw->aw_levtwo != NULL) { |
| while (aw->aw_levone[aw->aw_levone_ndx] == NULL) { |
| aw->aw_levone_ndx++; |
| if (aw->aw_levone_ndx == aw->aw_nlevone) { |
| mdb_warn("corrupt anon; couldn't" |
| "find ptr to lev two map"); |
| goto out; |
| } |
| } |
| |
| mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t), |
| aw->aw_levone[aw->aw_levone_ndx]); |
| } |
| |
| out: |
| wsp->walk_data = aw; |
| return (0); |
| } |
| |
| int |
| anon_walk_step(mdb_walk_state_t *wsp) |
| { |
| int status; |
| anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data; |
| struct anon anon; |
| uintptr_t anonptr; |
| |
| again: |
| /* |
| * Once we've walked through level one, we're done. |
| */ |
| if (aw->aw_levone_ndx == aw->aw_nlevone) |
| return (WALK_DONE); |
| |
| if (aw->aw_levtwo == NULL) { |
| anonptr = aw->aw_levone[aw->aw_levone_ndx]; |
| aw->aw_levone_ndx++; |
| } else { |
| anonptr = aw->aw_levtwo[aw->aw_levtwo_ndx]; |
| aw->aw_levtwo_ndx++; |
| |
| if (aw->aw_levtwo_ndx == ANON_CHUNK_SIZE) { |
| aw->aw_levtwo_ndx = 0; |
| |
| do { |
| aw->aw_levone_ndx++; |
| |
| if (aw->aw_levone_ndx == aw->aw_nlevone) |
| return (WALK_DONE); |
| } while (aw->aw_levone[aw->aw_levone_ndx] == NULL); |
| |
| mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * |
| sizeof (uintptr_t), |
| aw->aw_levone[aw->aw_levone_ndx]); |
| } |
| } |
| |
| if (anonptr != NULL) { |
| mdb_vread(&anon, sizeof (anon), anonptr); |
| status = wsp->walk_callback(anonptr, &anon, wsp->walk_cbdata); |
| } else |
| goto again; |
| |
| return (status); |
| } |
| |
| void |
| anon_walk_fini(mdb_walk_state_t *wsp) |
| { |
| anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data; |
| |
| if (aw->aw_levtwo != NULL) |
| mdb_free(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t)); |
| |
| mdb_free(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t)); |
| mdb_free(aw, sizeof (anon_walk_data_t)); |
| } |
| |
| /*ARGSUSED*/ |
| int |
| whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target) |
| { |
| if ((uintptr_t)f->f_vnode == *target) { |
| mdb_printf("file %p\n", addr); |
| *target = NULL; |
| } |
| |
| return (WALK_NEXT); |
| } |
| |
| /*ARGSUSED*/ |
| int |
| whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target) |
| { |
| uintptr_t t = *target; |
| |
| if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) { |
| mdb_warn("couldn't file walk proc %p", addr); |
| return (WALK_ERR); |
| } |
| |
| if (t == NULL) |
| mdb_printf("%p\n", addr); |
| |
| return (WALK_NEXT); |
| } |
| |
| /*ARGSUSED*/ |
| int |
| whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) |
| { |
| uintptr_t target = addr; |
| |
| if (!(flags & DCMD_ADDRSPEC) || addr == NULL) |
| return (DCMD_USAGE); |
| |
| if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) { |
| mdb_warn("can't proc walk"); |
| return (DCMD_ERR); |
| } |
| |
| return (DCMD_OK); |
| } |
| |
| typedef struct datafmt { |
| char *hdr1; |
| char *hdr2; |
| char *dashes; |
| char *fmt; |
| } datafmt_t; |
| |
| static datafmt_t kmemfmt[] = { |
| { "cache ", "name ", |
| "-------------------------", "%-25s " }, |
| { " buf", " size", "------", "%6u " }, |
| { " buf", "in use", "------", "%6u " }, |
| { " buf", " total", "------", "%6u " }, |
| { " memory", " in use", "---------", "%9u " }, |
| { " alloc", " succeed", "---------", "%9u " }, |
| { "alloc", " fail", "-----", "%5u " }, |
| { NULL, NULL, NULL, NULL } |
| }; |
| |
| static datafmt_t vmemfmt[] = { |
| { "vmem ", "name ", |
| "-------------------------", "%-*s " }, |
| { " memory", " in use", "---------", "%9llu " }, |
| { " memory", " total", "----------", "%10llu " }, |
| { " memory", " import", "---------", "%9llu " }, |
| { " alloc", " succeed", "---------", "%9llu " }, |
| { "alloc", " fail", "-----", "%5llu " }, |
| { NULL, NULL, NULL, NULL } |
| }; |
| |
| /*ARGSUSED*/ |
| static int |
| kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail) |
| { |
| if (ccp->cc_rounds > 0) |
| *avail += ccp->cc_rounds; |
| if (ccp->cc_prounds > 0) |
| *avail += ccp->cc_prounds; |
| |
| return (WALK_NEXT); |
| } |
| |
| /*ARGSUSED*/ |
| static int |
| kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc) |
| { |
| *alloc += ccp->cc_alloc; |
| |
| return (WALK_NEXT); |
| } |
| |
| /*ARGSUSED*/ |
| static int |
| kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail) |
| { |
| *avail += sp->slab_chunks - sp->slab_refcnt; |
| |
| return (WALK_NEXT); |
| } |
| |
| typedef struct kmastat_vmem { |
| uintptr_t kv_addr; |
| struct kmastat_vmem *kv_next; |
| int kv_meminuse; |
| int kv_alloc; |
| int kv_fail; |
| } kmastat_vmem_t; |
| |
| typedef struct kmastat_args { |
| kmastat_vmem_t **ka_kvpp; |
| uint_t ka_shift; |
| } kmastat_args_t; |
| |
| static int |
| kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap) |
| { |
| kmastat_vmem_t **kvp = kap->ka_kvpp; |
| kmastat_vmem_t *kv; |
| datafmt_t *dfp = kmemfmt; |
| int magsize; |
| |
| int avail, alloc, total; |
| size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) * |
| cp->cache_slabsize; |
| |
| mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail; |
| mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc; |
| mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail; |
| |
| magsize = kmem_get_magsize(cp); |
| |
| alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc; |
| avail = cp->cache_full.ml_total * magsize; |
| total = cp->cache_buftotal; |
| |
| (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr); |
| (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr); |
| (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr); |
| |
| for (kv = *kvp; kv != NULL; kv = kv->kv_next) { |
| if (kv->kv_addr == (uintptr_t)cp->cache_arena) |
| goto out; |
| } |
| |
| kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC); |
| kv->kv_next = *kvp; |
| kv->kv_addr = (uintptr_t)cp->cache_arena; |
| *kvp = kv; |
| out: |
| kv->kv_meminuse += meminuse; |
| kv->kv_alloc += alloc; |
| kv->kv_fail += cp->cache_alloc_fail; |
| |
| mdb_printf((dfp++)->fmt, cp->cache_name); |
| mdb_printf((dfp++)->fmt, cp->cache_bufsize); |
| mdb_printf((dfp++)->fmt, total - avail); |
| mdb_printf((dfp++)->fmt, total); |
| mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift); |
| mdb_printf((dfp++)->fmt, alloc); |
| mdb_printf((dfp++)->fmt, cp->cache_alloc_fail); |
| mdb_printf("\n"); |
| |
| return (WALK_NEXT); |
| } |
| |
| static int |
| kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap) |
| { |
| kmastat_vmem_t *kv = *kap->ka_kvpp; |
| size_t len; |
| |
| while (kv != NULL && kv->kv_addr != addr) |
| kv = kv->kv_next; |
| |
| if (kv == NULL || kv->kv_alloc == 0) |
| return (WALK_NEXT); |
| |
| len = MIN(17, strlen(v->vm_name)); |
| |
| mdb_printf("Total [%s]%*s %6s %6s %6s %9u %9u %5u\n", v->vm_name, |
| 17 - len, "", "", "", "", |
| kv->kv_meminuse >> kap->ka_shift, kv->kv_alloc, kv->kv_fail); |
| |
| return (WALK_NEXT); |
| } |
| |
| /*ARGSUSED*/ |
| static int |
| kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp) |
| { |
| datafmt_t *dfp = vmemfmt; |
| const vmem_kstat_t *vkp = &v->vm_kstat; |
| uintptr_t paddr; |
| vmem_t parent; |
| int ident = 0; |
| |
| for (paddr = (uintptr_t)v->vm_source; paddr != NULL; ident += 4) { |
| if (mdb_vread(&parent, sizeof (parent), paddr) == -1) { |
| mdb_warn("couldn't trace %p's ancestry", addr); |
| ident = 0; |
| break; |
| } |
| paddr = (uintptr_t)parent.vm_source; |
| } |
| |
| mdb_printf("%*s", ident, ""); |
| mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name); |
| mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64); |
| mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64); |
| mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp); |
| mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64); |
| mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64); |
| |
| mdb_printf("\n"); |
| |
| return (WALK_NEXT); |
| } |
| |
| /*ARGSUSED*/ |
| int |
| kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) |
| { |
| kmastat_vmem_t *kv = NULL; |
| datafmt_t *dfp; |
| kmastat_args_t ka; |
| |
| ka.ka_shift = 0; |
| if (mdb_getopts(argc, argv, |
| 'k', MDB_OPT_SETBITS, 10, &ka.ka_shift, |
| 'm', MDB_OPT_SETBITS, 20, &ka.ka_shift, |
| 'g', MDB_OPT_SETBITS, 30, &ka.ka_shift, NULL) != argc) |
| return (DCMD_USAGE); |
| |
| for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) |
| mdb_printf("%s ", dfp->hdr1); |
| mdb_printf("\n"); |
| |
| for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) |
| mdb_printf("%s ", dfp->hdr2); |
| mdb_printf("\n"); |
| |
| for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) |
| mdb_printf("%s ", dfp->dashes); |
| mdb_printf("\n"); |
| |
| ka.ka_kvpp = &kv; |
| if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) { |
| mdb_warn("can't walk 'kmem_cache'"); |
| return (DCMD_ERR); |
| } |
| |
| for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) |
| mdb_printf("%s ", dfp->dashes); |
| mdb_printf("\n"); |
| |
| if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) { |
| mdb_warn("can't walk 'vmem'"); |
| return (DCMD_ERR); |
| } |
| |
| for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) |
| mdb_printf("%s ", dfp->dashes); |
| mdb_printf("\n"); |
| |
| mdb_printf("\n"); |
| |
| for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) |
| mdb_printf("%s ", dfp->hdr1); |
| mdb_printf("\n"); |
| |
| for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) |
| mdb_printf("%s ", dfp->hdr2); |
| mdb_printf("\n"); |
| |
| for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) |
| mdb_printf("%s ", dfp->dashes); |
| mdb_printf("\n"); |
| |
| if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) { |
| mdb_warn("can't walk 'vmem'"); |
| return (DCMD_ERR); |
| } |
| |
| for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) |
| mdb_printf("%s ", dfp->dashes); |
| mdb_printf("\n"); |
| return (DCMD_OK); |
| } |
| |
| /* |
| * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made |
| * up of a set of 'struct seg's. We could just scan each seg en masse, but |
| * unfortunately, a few of the segs are both large and sparse, so we could |
| * spend quite a bit of time scanning VAs which have no backing pages. |
| * |
| * So for the few very sparse segs, we skip the segment itself, and scan |
| * the allocated vmem_segs in the vmem arena which manages that part of kas. |
| * Currently, we do this for: |
| * |
| * SEG VMEM ARENA |
| * kvseg heap_arena |
| * kvseg32 heap32_arena |
| * kvseg_core heap_core_arena |
| * |
| * In addition, we skip the segkpm segment in its entirety, since it is very |
| * sparse, and contains no new kernel data. |
| */ |
| typedef struct kgrep_walk_data { |
| kgrep_cb_func *kg_cb; |
| void *kg_cbdata; |
| uintptr_t kg_kvseg; |
| uintptr_t kg_kvseg32; |
| uintptr_t kg_kvseg_core; |
| uintptr_t kg_segkpm; |
| uintptr_t kg_heap_lp_base; |
| uintptr_t kg_heap_lp_end; |
| } kgrep_walk_data_t; |
| |
| static int |
| kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg) |
| { |
| uintptr_t base = (uintptr_t)seg->s_base; |
| |
| if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 || |
| addr == kg->kg_kvseg_core) |
| return (WALK_NEXT); |
| |
| if ((uintptr_t)seg->s_ops == kg->kg_segkpm) |
| return (WALK_NEXT); |
| |
| return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata)); |
| } |
| |
| /*ARGSUSED*/ |
| static int |
| kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) |
| { |
| /* |
| * skip large page heap address range - it is scanned by walking |
| * allocated vmem_segs in the heap_lp_arena |
| */ |
| if (seg->vs_start == kg->kg_heap_lp_base && |
| seg->vs_end == kg->kg_heap_lp_end) |
| return (WALK_NEXT); |
| |
| return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); |
| } |
| |
| /*ARGSUSED*/ |
| static int |
| kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) |
| { |
| return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); |
| } |
| |
| static int |
| kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg) |
| { |
| mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg; |
| |
| if (strcmp(vmem->vm_name, "heap") != 0 && |
| strcmp(vmem->vm_name, "heap32") != 0 && |
| strcmp(vmem->vm_name, "heap_core") != 0 && |
| strcmp(vmem->vm_name, "heap_lp") != 0) |
| return (WALK_NEXT); |
| |
| if (strcmp(vmem->vm_name, "heap_lp") == 0) |
| walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg; |
| |
| if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) { |
| mdb_warn("couldn't walk vmem_alloc for vmem %p", addr); |
| return (WALK_ERR); |
| } |
| |
| return (WALK_NEXT); |
| } |
| |
| int |
| kgrep_subr(kgrep_cb_func *cb, void *cbdata) |
| { |
| GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm; |
| kgrep_walk_data_t kg; |
| |
| if (mdb_get_state() == MDB_STATE_RUNNING) { |
| mdb_warn("kgrep can only be run on a system " |
| "dump or under kmdb; see dumpadm(1M)\n"); |
| return (DCMD_ERR); |
| } |
| |
| if (mdb_lookup_by_name("kas", &kas) == -1) { |
| mdb_warn("failed to locate 'kas' symbol\n"); |
| return (DCMD_ERR); |
| } |
| |
| if (mdb_lookup_by_name("kvseg", &kvseg) == -1) { |
| mdb_warn("failed to locate 'kvseg' symbol\n"); |
| return (DCMD_ERR); |
| } |
| |
| if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) { |
| mdb_warn("failed to locate 'kvseg32' symbol\n"); |
| return (DCMD_ERR); |
| } |
| |
| if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) { |
| mdb_warn("failed to locate 'kvseg_core' symbol\n"); |
| return (DCMD_ERR); |
| } |
| |
| if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) { |
| mdb_warn("failed to locate 'segkpm_ops' symbol\n"); |
| return (DCMD_ERR); |
| } |
| |
| if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) { |
| mdb_warn("failed to read 'heap_lp_base'\n"); |
| return (DCMD_ERR); |
| } |
| |
| if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) { |
| mdb_warn("failed to read 'heap_lp_end'\n"); |
| return (DCMD_ERR); |
| } |
| |
| kg.kg_cb = cb; |
| kg.kg_cbdata = cbdata; |
| kg.kg_kvseg = (uintptr_t)kvseg.st_value; |
| kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value; |
| kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value; |
| kg.kg_segkpm = (uintptr_t)segkpm.st_value; |
| |
| if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg, |
| &kg, kas.st_value) == -1) { |
| mdb_warn("failed to walk kas segments"); |
| return (DCMD_ERR); |
| } |
| |
| if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) { |
| mdb_warn("failed to walk heap/heap32 vmem arenas"); |
| return (DCMD_ERR); |
| } |
| |
| return (DCMD_OK); |
| } |
| |
| size_t |
| kgrep_subr_pagesize(void) |
| { |
| return (PAGESIZE); |
| } |
| |
| typedef struct file_walk_data { |
| struct uf_entry *fw_flist; |
| int fw_flistsz; |
| int fw_ndx; |
| int fw_nofiles; |
| } file_walk_data_t; |
| |
| int |
| file_walk_init(mdb_walk_state_t *wsp) |
| { |
| file_walk_data_t *fw; |
| proc_t p; |
| |
| if (wsp->walk_addr == NULL) { |
| mdb_warn("file walk doesn't support global walks\n"); |
| return (WALK_ERR); |
| } |
| |
| fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP); |
| |
| if (mdb_vread(&p, sizeof (p), wsp->walk_addr) == -1) { |
| mdb_free(fw, sizeof (file_walk_data_t)); |
| mdb_warn("failed to read proc structure at %p", wsp->walk_addr); |
| return (WALK_ERR); |
| } |
| |
| if (p.p_user.u_finfo.fi_nfiles == 0) { |
| mdb_free(fw, sizeof (file_walk_data_t)); |
| return (WALK_DONE); |
| } |
| |
| fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles; |
| fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles; |
| fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP); |
| |
| if (mdb_vread(fw->fw_flist, fw->fw_flistsz, |
| (uintptr_t)p.p_user.u_finfo.fi_list) == -1) { |
| mdb_warn("failed to read file array at %p", |
| p.p_user.u_finfo.fi_list); |
| mdb_free(fw->fw_flist, fw->fw_flistsz); |
| mdb_free(fw, sizeof (file_walk_data_t)); |
| return (WALK_ERR); |
| } |
| |
| fw->fw_ndx = 0; |
| wsp->walk_data = fw; |
| |
| return (WALK_NEXT); |
| } |
| |
| int |
| file_walk_step(mdb_walk_state_t *wsp) |
| { |
| file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; |
| struct file file; |
| uintptr_t fp; |
| |
| again: |
| if (fw->fw_ndx == fw->fw_nofiles) |
| return (WALK_DONE); |
| |
| if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == NULL) |
| goto again; |
| |
| (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); |
| return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); |
| } |
| |
| int |
| allfile_walk_step(mdb_walk_state_t *wsp) |
| { |
| file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; |
| struct file file; |
| uintptr_t fp; |
| |
| if (fw->fw_ndx == fw->fw_nofiles) |
| return (WALK_DONE); |
| |
| if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != NULL) |
| (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); |
| else |
| bzero(&file, sizeof (file)); |
| |
| return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); |
| } |
| |
| void |
| file_walk_fini(mdb_walk_state_t *wsp) |
| { |
| file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; |
| |
| mdb_free(fw->fw_flist, fw->fw_flistsz); |
| mdb_free(fw, sizeof (file_walk_data_t)); |
| } |
| |
| int |
| port_walk_init(mdb_walk_state_t *wsp) |
| { |
| if (wsp->walk_addr == NULL) { |
| mdb_warn("port walk doesn't support global walks\n"); |
| return (WALK_ERR); |
| } |
| |
| if (mdb_layered_walk("file", wsp) == -1) { |
| mdb_warn("couldn't walk 'file'"); |
| return (WALK_ERR); |
| } |
| return (WALK_NEXT); |
| } |
| |
| int |
| port_walk_step(mdb_walk_state_t *wsp) |
| { |
| struct vnode vn; |
| uintptr_t vp; |
| uintptr_t pp; |
| struct port port; |
| |
| vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode; |
| if (mdb_vread(&vn, sizeof (vn), vp) == -1) { |
| mdb_warn("failed to read vnode_t at %p", vp); |
| return (WALK_ERR); |
| } |
| if (vn.v_type != VPORT) |
| return (WALK_NEXT); |
| |
| pp = (uintptr_t)vn.v_data; |
| if (mdb_vread(&port, sizeof (port), pp) == -1) { |
| mdb_warn("failed to read port_t at %p", pp); |
| return (WALK_ERR); |
| } |
| return (wsp->walk_callback(pp, &port, wsp->walk_cbdata)); |
| } |
| |
| typedef struct portev_walk_data { |
| list_node_t *pev_node; |
| list_node_t *pev_last; |
| size_t pev_offset; |
| } portev_walk_data_t; |
| |
| int |
| portev_walk_init(mdb_walk_state_t *wsp) |
| { |
| portev_walk_data_t *pevd; |
| struct port port; |
| struct vnode vn; |
| struct list *list; |
| uintptr_t vp; |
| |
| if (wsp->walk_addr == NULL) { |
| mdb_warn("portev walk doesn't support global walks\n"); |
| return (WALK_ERR); |
| } |
| |
| pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP); |
| |
| if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) { |
| mdb_free(pevd, sizeof (portev_walk_data_t)); |
| mdb_warn("failed to read port structure at %p", wsp->walk_addr); |
| return (WALK_ERR); |
| } |
| |
| vp = (uintptr_t)port.port_vnode; |
| if (mdb_vread(&vn, sizeof (vn), vp) == -1) { |
| mdb_free(pevd, sizeof (portev_walk_data_t)); |
| mdb_warn("failed to read vnode_t at %p", vp); |
| return (WALK_ERR); |
| } |
| |
| if (vn.v_type != VPORT) { |
| mdb_free(pevd, sizeof (portev_walk_data_t)); |
| mdb_warn("input address (%p) does not point to an event port", |
| wsp->walk_addr); |
| return (WALK_ERR); |
| } |
| |
| if (port.port_queue.portq_nent == 0) { |
| mdb_free(pevd, sizeof (portev_walk_data_t)); |
| return (WALK_DONE); |
| } |
| list = &port.port_queue.portq_list; |
| pevd->pev_offset = list->list_offset; |
| pevd->pev_last = list->list_head.list_prev; |
| pevd->pev_node = list->list_head.list_next; |
| wsp->walk_data = pevd; |
| return (WALK_NEXT); |
| } |
| |
| int |
| portev_walk_step(mdb_walk_state_t *wsp) |
| { |
| portev_walk_data_t *pevd; |
| struct port_kevent ev; |
| uintptr_t evp; |
| |
| pevd = (portev_walk_data_t *)wsp->walk_data; |
| |
| if (pevd->pev_last == NULL) |
| return (WALK_DONE); |
| if (pevd->pev_node == pevd->pev_last) |
| pevd->pev_last = NULL; /* last round */ |
| |
| evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset)); |
| if (mdb_vread(&ev, sizeof (ev), evp) == -1) { |
| mdb_warn("failed to read port_kevent at %p", evp); |
| return (WALK_DONE); |
| } |
| pevd->pev_node = ev.portkev_node.list_next; |
| return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata)); |
| } |
| |
| void |
| portev_walk_fini(mdb_walk_state_t *wsp) |
| { |
| portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data; |
| |
| if (pevd != NULL) |
| mdb_free(pevd, sizeof (portev_walk_data_t)); |
| } |
| |
| typedef struct proc_walk_data { |
| uintptr_t *pw_stack; |
| int pw_depth; |
| int pw_max; |
| } proc_walk_data_t; |
| |
| int |
| proc_walk_init(mdb_walk_state_t *wsp) |
| { |
| GElf_Sym sym; |
| proc_walk_data_t *pw; |
| |
| if (wsp->walk_addr == NULL) { |
| if (mdb_lookup_by_name("p0", &sym) == -1) { |
| mdb_warn("failed to read 'practive'"); |
| return (WALK_ERR); |
| } |
| wsp->walk_addr = (uintptr_t)sym.st_value; |
| } |
| |
| pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP); |
| |
| if (mdb_readvar(&pw->pw_max, "nproc") == -1) { |
| mdb_warn("failed to read 'nproc'"); |
| mdb_free(pw, sizeof (pw)); |
| return (WALK_ERR); |
| } |
| |
| pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP); |
| wsp->walk_data = pw; |
| |
| return (WALK_NEXT); |
| } |
| |
| int |
| proc_walk_step(mdb_walk_state_t *wsp) |
| { |
| proc_walk_data_t *pw = wsp->walk_data; |
| uintptr_t addr = wsp->walk_addr; |
| uintptr_t cld, sib; |
| |
| int status; |
| proc_t pr; |
| |
| if (mdb_vread(&pr, sizeof (proc_t), addr) == -1) { |
| mdb_warn("failed to read proc at %p", addr); |
| return (WALK_DONE); |
| } |
| |
| cld = (uintptr_t)pr.p_child; |
| sib = (uintptr_t)pr.p_sibling; |
| |
| if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) { |
| pw->pw_depth--; |
| goto sib; |
| } |
| |
| status = wsp->walk_callback(addr, &pr, wsp->walk_cbdata); |
| |
| if (status != WALK_NEXT) |
| return (status); |
| |
| if ((wsp->walk_addr = cld) != NULL) { |
| if (mdb_vread(&pr, sizeof (proc_t), cld) == -1) { |
| mdb_warn("proc %p has invalid p_child %p; skipping\n", |
| addr, cld); |
| goto sib; |
| } |
| |
| pw->pw_stack[pw->pw_depth++] = addr; |
| |
| if (pw->pw_depth == pw->pw_max) { |
| mdb_warn("depth %d exceeds max depth; try again\n", |
| pw->pw_depth); |
| return (WALK_DONE); |
| } |
| return (WALK_NEXT); |
| } |
| |
| sib: |
| /* |
| * We know that p0 has no siblings, and if another starting proc |
| * was given, we don't want to walk its siblings anyway. |
| */ |
| if (pw->pw_depth == 0) |
| return (WALK_DONE); |
| |
| if (sib != NULL && mdb_vread(&pr, sizeof (proc_t), sib) == -1) { |
| mdb_warn("proc %p has invalid p_sibling %p; skipping\n", |
| addr, sib); |
| sib = NULL; |
| } |
| |
| if ((wsp->walk_addr = sib) == NULL) { |
| if (pw->pw_depth > 0) { |
| wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1]; |
| return (WALK_NEXT); |
| } |
| return (WALK_DONE); |
| } |
| |
| return (WALK_NEXT); |
| } |
| |
| void |
| proc_walk_fini(mdb_walk_state_t *wsp) |
| { |
| proc_walk_data_t *pw = wsp->walk_data; |
| |
| mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t)); |
| mdb_free(pw, sizeof (proc_walk_data_t)); |
| } |
| |
| int |
| task_walk_init(mdb_walk_state_t *wsp) |
| { |
| task_t task; |
| |
| if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) { |
| mdb_warn("failed to read task at %p", wsp->walk_addr); |
| return (WALK_ERR); |
| } |
| wsp->walk_addr = (uintptr_t)task.tk_memb_list; |
| wsp->walk_data = task.tk_memb_list; |
| return (WALK_NEXT); |
| } |
| |
| int |
| task_walk_step(mdb_walk_state_t *wsp) |
| { |
| proc_t proc; |
| int status; |
| |
| if (mdb_vread(&proc, sizeof (proc_t), wsp->walk_addr) == -1) { |
| mdb_warn("failed to read proc at %p", wsp->walk_addr); |
| return (WALK_DONE); |
| } |
| |
| status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata); |
| |
| if (proc.p_tasknext == wsp->walk_data) |
| return (WALK_DONE); |
| |
| wsp->walk_addr = (uintptr_t)proc.p_tasknext; |
| return (status); |
| } |
| |
| int |
| project_walk_init(mdb_walk_state_t *wsp) |
| { |
| if (wsp->walk_addr == NULL) { |
| if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) { |
| mdb_warn("failed to read 'proj0p'"); |
| return (WALK_ERR); |
| } |
| } |
| wsp->walk_data = (void *)wsp->walk_addr; |
| return (WALK_NEXT); |
| } |
| |
| int |
| project_walk_step(mdb_walk_state_t *wsp) |
| { |
| uintptr_t addr = wsp->walk_addr; |
| kproject_t pj; |
| int status; |
| |
| if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { |
| mdb_warn("failed to read project at %p", addr); |
| return (WALK_DONE); |
| } |
| status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata); |
| if (status != WALK_NEXT) |
| return (status); |
| wsp->walk_addr = (uintptr_t)pj.kpj_next; |
| if ((void *)wsp->walk_addr == wsp->walk_data) |
| return (WALK_DONE); |
| return (WALK_NEXT); |
| } |
| |
| static int |
| generic_walk_step(mdb_walk_state_t *wsp) |
| { |
| return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer, |
| wsp->walk_cbdata)); |
| } |
| |
| int |
| seg_walk_init(mdb_walk_state_t *wsp) |
| { |
| if (wsp->walk_addr == NULL) { |
| mdb_warn("seg walk must begin at struct as *\n"); |
| return (WALK_ERR); |
| } |
| |
| /* |
| * this is really just a wrapper to AVL tree walk |
| */ |
| wsp->walk_addr = (uintptr_t)&((struct as *)wsp->walk_addr)->a_segtree; |
| return (avl_walk_init(wsp)); |
| } |
| |
| static int |
| cpu_walk_cmp(const void *l, const void *r) |
| { |
| uintptr_t lhs = *((uintptr_t *)l); |
| uintptr_t rhs = *((uintptr_t *)r); |
| cpu_t lcpu, rcpu; |
| |
| (void) mdb_vread(&lcpu, sizeof (lcpu), lhs); |
| (void) mdb_vread(&rcpu, sizeof (rcpu), rhs); |
| |
| if (lcpu.cpu_id < rcpu.cpu_id) |
| return (-1); |
| |
| if (lcpu.cpu_id > rcpu.cpu_id) |
| return (1); |
| |
| return (0); |
| } |
| |
| typedef struct cpu_walk { |
| uintptr_t *cw_array; |
| int cw_ndx; |
| } cpu_walk_t; |
| |
| int |
| cpu_walk_init(mdb_walk_state_t *wsp) |
| { |
| cpu_walk_t *cw; |
| int max_ncpus, i = 0; |
| uintptr_t current, first; |
| cpu_t cpu, panic_cpu; |
| uintptr_t panicstr, addr; |
| GElf_Sym sym; |
| |
| cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC); |
| |
| if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { |
| mdb_warn("failed to read 'max_ncpus'"); |
| return (WALK_ERR); |
| } |
| |
| if (mdb_readvar(&panicstr, "panicstr") == -1) { |
| mdb_warn("failed to read 'panicstr'"); |
| return (WALK_ERR); |
| } |
| |
| if (panicstr != NULL) { |
| if (mdb_lookup_by_name("panic_cpu", &sym) == -1) { |
| mdb_warn("failed to find 'panic_cpu'"); |
| return (WALK_ERR); |
| } |
| |
| addr = (uintptr_t)sym.st_value; |
| |
| if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) { |
| mdb_warn("failed to read 'panic_cpu'"); |
| return (WALK_ERR); |
| } |
| } |
| |
| /* |
| * Unfortunately, there is no platform-independent way to walk |
| * CPUs in ID order. We therefore loop through in cpu_next order, |
| * building an array of CPU pointers which will subsequently be |
| * sorted. |
| */ |
| cw->cw_array = |
| mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC); |
| |
| if (mdb_readvar(&first, "cpu_list") == -1) { |
| mdb_warn("failed to read 'cpu_list'"); |
| return (WALK_ERR); |
| } |
| |
| current = first; |
| do { |
| if (mdb_vread(&cpu, sizeof (cpu), current) == -1) { |
| mdb_warn("failed to read cpu at %p", current); |
| return (WALK_ERR); |
| } |
| |
| if (panicstr != NULL && panic_cpu.cpu_id == cpu.cpu_id) { |
| cw->cw_array[i++] = addr; |
| } else { |
| cw->cw_array[i++] = current; |
| } |
| } while ((current = (uintptr_t)cpu.cpu_next) != first); |
| |
| qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp); |
| wsp->walk_data = cw; |
| |
| return (WALK_NEXT); |
| } |
| |
| int |
| cpu_walk_step(mdb_walk_state_t *wsp) |
| { |
| cpu_walk_t *cw = wsp->walk_data; |
| cpu_t cpu; |
| uintptr_t addr = cw->cw_array[cw->cw_ndx++]; |
| |
| if (addr == NULL) |
| return (WALK_DONE); |
| |
| if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) { |
| mdb_warn("failed to read cpu at %p", addr); |
| return (WALK_DONE); |
| } |
| |
| return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata)); |
| } |
| |
| typedef struct cpuinfo_data { |
| intptr_t cid_cpu; |
| uintptr_t cid_lbolt; |
| uintptr_t **cid_ithr; |
| char cid_print_head; |
| char cid_print_thr; |
| char cid_print_ithr; |
| char cid_print_flags; |
| } cpuinfo_data_t; |
| |
| int |
| cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid) |
| { |
| cpu_t c; |
| int id; |
| uint8_t pil; |
| |
| if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE) |
| return (WALK_NEXT); |
| |
| if (thr->t_bound_cpu == NULL) { |
| mdb_warn("thr %p is intr thread w/out a CPU\n", addr); |
| return (WALK_NEXT); |
| } |
| |
| (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu); |
| |
| if ((id = c.cpu_id) >= NCPU) { |
| mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n", |
| thr->t_bound_cpu, id, NCPU); |
| return (WALK_NEXT); |
| } |
| |
| if ((pil = thr->t_pil) >= NINTR) { |
| mdb_warn("thread %p has pil (%d) greater than %d\n", |
| addr, pil, NINTR); |
| return (WALK_NEXT); |
| } |
| |
| if (cid->cid_ithr[id][pil] != NULL) { |
| mdb_warn("CPU %d has multiple threads at pil %d (at least " |
| "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]); |
| return (WALK_NEXT); |
| } |
| |
| cid->cid_ithr[id][pil] = addr; |
| |
| return (WALK_NEXT); |
| } |
| |
| #define CPUINFO_IDWIDTH 3 |
| #define CPUINFO_FLAGWIDTH 9 |
| |
| #ifdef _LP64 |
| #if defined(__amd64) |
| #define CPUINFO_TWIDTH 16 |
| #define CPUINFO_CPUWIDTH 16 |
| #else |
| #define CPUINFO_CPUWIDTH 11 |
| #define CPUINFO_TWIDTH 11 |
| #endif |
| #else |
| #define CPUINFO_CPUWIDTH 8 |
| #define CPUINFO_TWIDTH 8 |
| #endif |
| |
| #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9) |
| #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4) |
| #define CPUINFO_ITHRDELT 4 |
| |
| #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \ |
| flagline < nflaglines ? flagbuf[flagline++] : "") |
| |
| int |
| cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid) |
| { |
| kthread_t t; |
| disp_t disp; |
| proc_t p; |
| uintptr_t pinned; |
| char **flagbuf; |
| int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT; |
| |
| const char *flags[] = { |
| "RUNNING", "READY", "QUIESCED", "EXISTS", |
| "ENABLE", "OFFLINE", "POWEROFF", "FROZEN", |
| "SPARE", "FAULTED", NULL |
| }; |
| |
| if (cid->cid_cpu != -1) { |
| if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu) |
| return (WALK_NEXT); |
| |
| /* |
| * Set cid_cpu to -1 to indicate that we found a matching CPU. |
| */ |
| cid->cid_cpu = -1; |
| rval = WALK_DONE; |
| } |
| |
| if (cid->cid_print_head) { |
| mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n", |
| "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL", |
| "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD", |
| "PROC"); |
| cid->cid_print_head = FALSE; |
| } |
| |
| bspl = cpu->cpu_base_spl; |
| |
| if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) { |
| mdb_warn("failed to read disp_t at %p", cpu->cpu_disp); |
| return (WALK_ERR); |
| } |
| |
| mdb_printf("%3d %0*p %3x %4d %4d ", |
| cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags, |
| disp.disp_nrunnable, bspl); |
| |
| if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) { |
| mdb_printf("%3d ", t.t_pri); |
| } else { |
| mdb_printf("%3s ", "-"); |
| } |
| |
| mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no", |
| cpu->cpu_kprunrun ? "yes" : "no"); |
| |
| if (cpu->cpu_last_swtch) { |
| clock_t lbolt; |
| |
| if (mdb_vread(&lbolt, sizeof (lbolt), cid->cid_lbolt) == -1) { |
| mdb_warn("failed to read lbolt at %p", cid->cid_lbolt); |
| return (WALK_ERR); |
| } |
| mdb_printf("t-%-4d ", lbolt - cpu->cpu_last_swtch); |
| } else { |
| mdb_printf("%-6s ", "-"); |
| } |
| |
| mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread); |
| |
| if (cpu->cpu_thread == cpu->cpu_idle_thread) |
| mdb_printf(" (idle)\n"); |
| else if (cpu->cpu_thread == NULL) |
| mdb_printf(" -\n"); |
| else { |
| if (mdb_vread(&p, sizeof (p), (uintptr_t)t.t_procp) != -1) { |
| mdb_printf(" %s\n", p.p_user.u_comm); |
| } else { |
| mdb_printf(" ?\n"); |
| } |
| } |
| |
| flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC); |
| |
| if (cid->cid_print_flags) { |
| int first = 1, i, j, k; |
| char *s; |
| |
| cid->cid_print_head = TRUE; |
| |
| for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) { |
| if (!(cpu->cpu_flags & i)) |
| continue; |
| |
| if (first) { |
| s = mdb_alloc(CPUINFO_THRDELT + 1, |
| UM_GC | UM_SLEEP); |
| |
| (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, |
| "%*s|%*s", CPUINFO_FLAGDELT, "", |
| CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, ""); |
| flagbuf[nflaglines++] = s; |
| } |
| |
| s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP); |
| (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s", |
| CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH - |
| CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j], |
| first ? "<--+" : ""); |
| |
| for (k = strlen(s); k < CPUINFO_THRDELT; k++) |
| s[k] = ' '; |
| s[k] = '\0'; |
| |
| flagbuf[nflaglines++] = s; |
| first = 0; |
| } |
| } |
| |
| if (cid->cid_print_ithr) { |
| int i, found_one = FALSE; |
| int print_thr = disp.disp_nrunnable && cid->cid_print_thr; |
| |
| for (i = NINTR - 1; i >= 0; i--) { |
| uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i]; |
| |
| if (iaddr == NULL) |
| continue; |
| |
| if (!found_one) { |
| found_one = TRUE; |
| |
| CPUINFO_INDENT; |
| mdb_printf("%c%*s|\n", print_thr ? '|' : ' ', |
| CPUINFO_ITHRDELT, ""); |
| |
| CPUINFO_INDENT; |
| mdb_printf("%c%*s+--> %3s %s\n", |
| print_thr ? '|' : ' ', CPUINFO_ITHRDELT, |
| "", "PIL", "THREAD"); |
| } |
| |
| if (mdb_vread(&t, sizeof (t), iaddr) == -1) { |
| mdb_warn("failed to read kthread_t at %p", |
| iaddr); |
| return (WALK_ERR); |
| } |
| |
| CPUINFO_INDENT; |
| mdb_printf("%c%*s %3d %0*p\n", |
| print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", |
| t.t_pil, CPUINFO_TWIDTH, iaddr); |
| |
| pinned = (uintptr_t)t.t_intr; |
| } |
| |
| if (found_one && pinned != NULL) { |
| cid->cid_print_head = TRUE; |
| (void) strcpy(p.p_user.u_comm, "?"); |
| |
| if (mdb_vread(&t, sizeof (t), |
| (uintptr_t)pinned) == -1) { |
| mdb_warn("failed to read kthread_t at %p", |
| pinned); |
| return (WALK_ERR); |
| } |
| if (mdb_vread(&p, sizeof (p), |
| (uintptr_t)t.t_procp) == -1) { |
| mdb_warn("failed to read proc_t at %p", |
| t.t_procp); |
| return (WALK_ERR); |
| } |
| |
| CPUINFO_INDENT; |
| mdb_printf("%c%*s %3s %0*p %s\n", |
| print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-", |
| CPUINFO_TWIDTH, pinned, |
| pinned == (uintptr_t)cpu->cpu_idle_thread ? |
| "(idle)" : p.p_user.u_comm); |
| } |
| } |
| |
| if (disp.disp_nrunnable && cid->cid_print_thr) { |
| dispq_t *dq; |
| |
| int i, npri = disp.disp_npri; |
| |
| dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC); |
| |
| if (mdb_vread(dq, sizeof (dispq_t) * npri, |
| (uintptr_t)disp.disp_q) == -1) { |
| mdb_warn("failed to read dispq_t at %p", disp.disp_q); |
| return (WALK_ERR); |
| } |
| |
| CPUINFO_INDENT; |
| mdb_printf("|\n"); |
| |
| CPUINFO_INDENT; |
| mdb_printf("+--> %3s %-*s %s\n", "PRI", |
| CPUINFO_TWIDTH, "THREAD", "PROC"); |
| |
| for (i = npri - 1; i >= 0; i--) { |
| uintptr_t taddr = (uintptr_t)dq[i].dq_first; |
| |
| while (taddr != NULL) { |
| if (mdb_vread(&t, sizeof (t), taddr) == -1) { |
| mdb_warn("failed to read kthread_t " |
| "at %p", taddr); |
| return (WALK_ERR); |
| } |
| if (mdb_vread(&p, sizeof (p), |
| (uintptr_t)t.t_procp) == -1) { |
| mdb_warn("failed to read proc_t at %p", |
| t.t_procp); |
| return (WALK_ERR); |
| } |
| |
| CPUINFO_INDENT; |
| mdb_printf(" %3d %0*p %s\n", t.t_pri, |
| CPUINFO_TWIDTH, taddr, p.p_user.u_comm); |
| |
| taddr = (uintptr_t)t.t_link; |
| } |
| } |
| cid->cid_print_head = TRUE; |
| } |
| |
| while (flagline < nflaglines) |
| mdb_printf("%s\n", flagbuf[flagline++]); |
| |
| if (cid->cid_print_head) |
| mdb_printf("\n"); |
| |
| return (rval); |
| } |
| |
| int |
| cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) |
| { |
| uint_t verbose = FALSE; |
| cpuinfo_data_t cid; |
| GElf_Sym sym; |
| clock_t lbolt; |
| |
| cid.cid_print_ithr = FALSE; |
| cid.cid_print_thr = FALSE; |
| cid.cid_print_flags = FALSE; |
| cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE; |
| cid.cid_cpu = -1; |
| |
| if (flags & DCMD_ADDRSPEC) |
| cid.cid_cpu = addr; |
| |
| if (mdb_getopts(argc, argv, |
| 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc) |
| return (DCMD_USAGE); |
| |
| if (verbose) { |
| cid.cid_print_ithr = TRUE; |
| cid.cid_print_thr = TRUE; |
| cid.cid_print_flags = TRUE; |
| cid.cid_print_head = TRUE; |
| } |
| |
| if (cid.cid_print_ithr) { |
| int i; |
| |
| cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **) |
| * NCPU, UM_SLEEP | UM_GC); |
| |
| for (i = 0; i < NCPU; i++) |
| cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) * |
| NINTR, UM_SLEEP | UM_GC); |
| |
| if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread, |
| &cid) == -1) { |
| mdb_warn("couldn't walk thread"); |
| return (DCMD_ERR); |
| } |
| } |
| |
| if (mdb_lookup_by_name("panic_lbolt", &sym) == -1) { |
| mdb_warn("failed to find panic_lbolt"); |
| return (DCMD_ERR); |
| } |
| |
| cid.cid_lbolt = (uintptr_t)sym.st_value; |
| |
| if (mdb_vread(&lbolt, sizeof (lbolt), cid.cid_lbolt) == -1) { |
| mdb_warn("failed to read panic_lbolt"); |
| return (DCMD_ERR); |
| } |
| |
| if (lbolt == 0) { |
| if (mdb_lookup_by_name("lbolt", &sym) == -1) { |
| mdb_warn("failed to find lbolt"); |
| return (DCMD_ERR); |
| } |
| cid.cid_lbolt = (uintptr_t)sym.st_value; |
| } |
| |
| if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) { |
| mdb_warn("can't walk cpus"); |
| return (DCMD_ERR); |
| } |
| |
| if (cid.cid_cpu != -1) { |
| /* |
| * We didn't find this CPU when we walked through the CPUs |
| * (i.e. the address specified doesn't show up in the "cpu" |
| * walk). However, the specified address may still correspond |
| * to a valid cpu_t (for example, if the specified address is |
| * the actual panicking cpu_t and not the cached panic_cpu). |
| * Point is: even if we didn't find it, we still want to try |
| * to print the specified address as a cpu_t. |
| */ |
| cpu_t cpu; |
| |
| if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) { |
| mdb_warn("%p is neither a valid CPU ID nor a " |
| "valid cpu_t address\n", cid.cid_cpu); |
| return (DCMD_ERR); |
| } |
| |
| (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid); |
| } |
| |
| return (DCMD_OK); |
| } |
| |
| /*ARGSUSED*/ |
| int |
| flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) |
| { |
| int i; |
| |
| if (!(flags & DCMD_ADDRSPEC)) |
| return (DCMD_USAGE); |
| |
| for (i = 0; i < sizeof (addr) * NBBY; i++) |
| mdb_printf("%p\n", addr ^ (1UL << i)); |
| |
| return (DCMD_OK); |
| } |
| |
| /* |
| * Grumble, grumble. |
| */ |
| #define SMAP_HASHFUNC(vp, off) \ |
| ((((uintptr_t)(vp) >> 6) + ((uintptr_t)(vp) >> 3) + \ |
| ((off) >> MAXBSHIFT)) & smd_hashmsk) |
| |
| int |
| vnode2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) |
| { |
| long smd_hashmsk; |
| int hash; |
| uintptr_t offset = 0; |
| struct smap smp; |
| uintptr_t saddr, kaddr; |
| uintptr_t smd_hash, smd_smap; |
| struct seg seg; |
| |
| if (!(flags & DCMD_ADDRSPEC)) |
| return (DCMD_USAGE); |
| |
| if (mdb_readvar(&smd_hashmsk, "smd_hashmsk") == -1) { |
| mdb_warn("failed to read smd_hashmsk"); |
| return (DCMD_ERR); |
| } |
| |
| if (mdb_readvar(&smd_hash, "smd_hash") == -1) { |
| mdb_warn("failed to read smd_hash"); |
| return (DCMD_ERR); |
| } |
| |
| if (mdb_readvar(&smd_smap, "smd_smap") == -1) { |
| mdb_warn("failed to read smd_hash"); |
| return (DCMD_ERR); |
| } |
| |
| if (mdb_readvar(&kaddr, "segkmap") == -1) { |
| mdb_warn("failed to read segkmap"); |
| return (DCMD_ERR); |
| } |
| |
| if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) { |
| mdb_warn("failed to read segkmap at %p", kaddr); |
| return (DCMD_ERR); |
| } |
| |
| if (argc != 0) { |
| const mdb_arg_t *arg = &argv[0]; |
| |
| if (arg->a_type == MDB_TYPE_IMMEDIATE) |
| offset = arg->a_un.a_val; |
| else |
| offset = (uintptr_t)mdb_strtoull(arg->a_un.a_str); |
| } |
| |
| hash = SMAP_HASHFUNC(addr, offset); |
| |
| if (mdb_vread(&saddr, sizeof (saddr), |
| smd_hash + hash * sizeof (uintptr_t)) == -1) { |
| mdb_warn("couldn't read smap at %p", |
| smd_hash + hash * sizeof (uintptr_t)); |
| return (DCMD_ERR); |
| } |
| |
| do { |
| if (mdb_vread(&smp, sizeof (smp), saddr) == -1) { |
| mdb_warn("couldn't read smap at %p", saddr); |
| return (DCMD_ERR); |
| } |
| |
| if ((uintptr_t)smp.sm_vp == addr && smp.sm_off == offset) { |
| mdb_printf("vnode %p, offs %p is smap %p, vaddr %p\n", |
| addr, offset, saddr, ((saddr - smd_smap) / |
| sizeof (smp)) * MAXBSIZE + seg.s_base); |
| return (DCMD_OK); |
| } |
| |
| saddr = (uintptr_t)smp.sm_hash; |
| } while (saddr != NULL); |
| |
| mdb_printf("no smap for vnode %p, offs %p\n", addr, offset); |
| return (DCMD_OK); |
| } |
| |
| /*ARGSUSED*/ |
| int |
| addr2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) |
| { |
| uintptr_t kaddr; |
| struct seg seg; |
| struct segmap_data sd; |
| |
| if (!(flags & DCMD_ADDRSPEC)) |
| return (DCMD_USAGE); |
| |
| if (mdb_readvar(&kaddr, "segkmap") == -1) { |
| mdb_warn("failed to read segkmap"); |
| return (DCMD_ERR); |
| } |
| |
| if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) { |
| mdb_warn("failed to read segkmap at %p", kaddr); |
| return (DCMD_ERR); |
| } |
| |
| if (mdb_vread(&sd, sizeof (sd), (uintptr_t)seg.s_data) == -1) { |
| mdb_warn("failed to read segmap_data at %p", seg.s_data); |
| return (DCMD_ERR); |
| } |
| |
| mdb_printf("%p is smap %p\n", addr, |
| ((addr - (uintptr_t)seg.s_base) >> MAXBSHIFT) * |
| sizeof (struct smap) + (uintptr_t)sd.smd_sm); |
| |
| return (DCMD_OK); |
| } |
| |
| int |
| as2proc_walk(uintptr_t addr, const proc_t *p, struct as **asp) |
| { |
| if (p->p_as == *asp) |
| mdb_printf("%p\n", addr); |
| return (WALK_NEXT); |
| } |
| |
| /*ARGSUSED*/ |
| int |
| as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) |
| { |
| if (!(flags & DCMD_ADDRSPEC) || argc != 0) |
| return (DCMD_USAGE); |
| |
| if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) { |
| mdb_warn("failed to walk proc"); |
| return (DCMD_ERR); |
| } |
| |
| return (DCMD_OK); |
| } |
| |
| /*ARGSUSED*/ |
| int |
| ptree_walk(uintptr_t addr, const proc_t *p, void *ignored) |
| { |
| proc_t parent; |
| int ident = 0; |
| uintptr_t paddr; |
| |
| for (paddr = (uintptr_t)p->p_parent; paddr != NULL; ident += 5) { |
| mdb_vread(&parent, sizeof (parent), paddr); |
| paddr = (uintptr_t)parent.p_parent; |
| } |
| |
| mdb_inc_indent(ident); |
| mdb_printf("%0?p %s\n", addr, p->p_user.u_comm); |
| mdb_dec_indent(ident); |
| |
| return (WALK_NEXT); |
| } |
| |
| void |
| ptree_ancestors(uintptr_t addr, uintptr_t start) |
| { |
| proc_t p; |
| |
| if (mdb_vread(&p, sizeof (p), addr) == -1) { |
| mdb_warn("couldn't read ancestor at %p", addr); |
| return; |
| } |
| |