blob: decf6555009e4f03a227452931b3e861ab476cb1 [file] [log] [blame]
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <mdb/mdb_param.h>
#include <mdb/mdb_modapi.h>
#include <mdb/mdb_ks.h>
#include <mdb/mdb_ctf.h>
#include <sys/types.h>
#include <sys/thread.h>
#include <sys/session.h>
#include <sys/user.h>
#include <sys/proc.h>
#include <sys/var.h>
#include <sys/t_lock.h>
#include <sys/callo.h>
#include <sys/priocntl.h>
#include <sys/class.h>
#include <sys/regset.h>
#include <sys/stack.h>
#include <sys/cpuvar.h>
#include <sys/vnode.h>
#include <sys/vfs.h>
#include <sys/flock_impl.h>
#include <sys/kmem_impl.h>
#include <sys/vmem_impl.h>
#include <sys/kstat.h>
#include <vm/seg_vn.h>
#include <vm/anon.h>
#include <vm/as.h>
#include <vm/seg_map.h>
#include <sys/dditypes.h>
#include <sys/ddi_impldefs.h>
#include <sys/sysmacros.h>
#include <sys/sysconf.h>
#include <sys/task.h>
#include <sys/project.h>
#include <sys/taskq.h>
#include <sys/taskq_impl.h>
#include <sys/errorq_impl.h>
#include <sys/cred_impl.h>
#include <sys/zone.h>
#include <sys/panic.h>
#include <regex.h>
#include <sys/port_impl.h>
#include "avl.h"
#include "contract.h"
#include "cpupart_mdb.h"
#include "devinfo.h"
#include "leaky.h"
#include "lgrp.h"
#include "pg.h"
#include "group.h"
#include "list.h"
#include "log.h"
#include "kgrep.h"
#include "kmem.h"
#include "bio.h"
#include "streams.h"
#include "cyclic.h"
#include "findstack.h"
#include "ndievents.h"
#include "mmd.h"
#include "net.h"
#include "netstack.h"
#include "nvpair.h"
#include "ctxop.h"
#include "tsd.h"
#include "thread.h"
#include "memory.h"
#include "sobj.h"
#include "sysevent.h"
#include "rctl.h"
#include "tsol.h"
#include "typegraph.h"
#include "ldi.h"
#include "vfs.h"
#include "zone.h"
#include "modhash.h"
#include "mdi.h"
#include "fm.h"
/*
* Surely this is defined somewhere...
*/
#define NINTR 16
#ifndef STACK_BIAS
#define STACK_BIAS 0
#endif
static char
pstat2ch(uchar_t state)
{
switch (state) {
case SSLEEP: return ('S');
case SRUN: return ('R');
case SZOMB: return ('Z');
case SIDL: return ('I');
case SONPROC: return ('O');
case SSTOP: return ('T');
default: return ('?');
}
}
#define PS_PRTTHREADS 0x1
#define PS_PRTLWPS 0x2
#define PS_PSARGS 0x4
#define PS_TASKS 0x8
#define PS_PROJECTS 0x10
#define PS_ZONES 0x20
static int
ps_threadprint(uintptr_t addr, const void *data, void *private)
{
const kthread_t *t = (const kthread_t *)data;
uint_t prt_flags = *((uint_t *)private);
static const mdb_bitmask_t t_state_bits[] = {
{ "TS_FREE", UINT_MAX, TS_FREE },
{ "TS_SLEEP", TS_SLEEP, TS_SLEEP },
{ "TS_RUN", TS_RUN, TS_RUN },
{ "TS_ONPROC", TS_ONPROC, TS_ONPROC },
{ "TS_ZOMB", TS_ZOMB, TS_ZOMB },
{ "TS_STOPPED", TS_STOPPED, TS_STOPPED },
{ NULL, 0, 0 }
};
if (prt_flags & PS_PRTTHREADS)
mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits);
if (prt_flags & PS_PRTLWPS)
mdb_printf("\tL %?a ID: %u\n", t->t_lwp, t->t_tid);
return (WALK_NEXT);
}
int
ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
uint_t prt_flags = 0;
proc_t pr;
struct pid pid, pgid, sid;
sess_t session;
cred_t cred;
task_t tk;
kproject_t pj;
zone_t zn;
if (!(flags & DCMD_ADDRSPEC)) {
if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) {
mdb_warn("can't walk 'proc'");
return (DCMD_ERR);
}
return (DCMD_OK);
}
if (mdb_getopts(argc, argv,
'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags,
'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags,
'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags,
'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags,
'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags,
't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc)
return (DCMD_USAGE);
if (DCMD_HDRSPEC(flags)) {
mdb_printf("%<u>%1s %6s %6s %6s %6s ",
"S", "PID", "PPID", "PGID", "SID");
if (prt_flags & PS_TASKS)
mdb_printf("%5s ", "TASK");
if (prt_flags & PS_PROJECTS)
mdb_printf("%5s ", "PROJ");
if (prt_flags & PS_ZONES)
mdb_printf("%5s ", "ZONE");
mdb_printf("%6s %10s %?s %s%</u>\n",
"UID", "FLAGS", "ADDR", "NAME");
}
mdb_vread(&pr, sizeof (pr), addr);
mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp);
mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp);
mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred);
mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp);
mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp);
if (prt_flags & (PS_TASKS | PS_PROJECTS))
mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task);
if (prt_flags & PS_PROJECTS)
mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj);
if (prt_flags & PS_ZONES)
mdb_vread(&zn, sizeof (zone_t), (uintptr_t)pr.p_zone);
mdb_printf("%c %6d %6d %6d %6d ",
pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id,
sid.pid_id);
if (prt_flags & PS_TASKS)
mdb_printf("%5d ", tk.tk_tkid);
if (prt_flags & PS_PROJECTS)
mdb_printf("%5d ", pj.kpj_id);
if (prt_flags & PS_ZONES)
mdb_printf("%5d ", zn.zone_id);
mdb_printf("%6d 0x%08x %0?p %s\n",
cred.cr_uid, pr.p_flag, addr,
(prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm);
if (prt_flags & ~PS_PSARGS)
(void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr);
return (DCMD_OK);
}
#define PG_NEWEST 0x0001
#define PG_OLDEST 0x0002
#define PG_PIPE_OUT 0x0004
#define PG_EXACT_MATCH 0x0008
typedef struct pgrep_data {
uint_t pg_flags;
uint_t pg_psflags;
uintptr_t pg_xaddr;
hrtime_t pg_xstart;
const char *pg_pat;
#ifndef _KMDB
regex_t pg_reg;
#endif
} pgrep_data_t;
/*ARGSUSED*/
static int
pgrep_cb(uintptr_t addr, const void *pdata, void *data)
{
const proc_t *prp = pdata;
pgrep_data_t *pgp = data;
#ifndef _KMDB
regmatch_t pmatch;
#endif
/*
* kmdb doesn't have access to the reg* functions, so we fall back
* to strstr/strcmp.
*/
#ifdef _KMDB
if ((pgp->pg_flags & PG_EXACT_MATCH) ?
(strcmp(prp->p_user.u_comm, pgp->pg_pat) != 0) :
(strstr(prp->p_user.u_comm, pgp->pg_pat) == NULL))
return (WALK_NEXT);
#else
if (regexec(&pgp->pg_reg, prp->p_user.u_comm, 1, &pmatch, 0) != 0)
return (WALK_NEXT);
if ((pgp->pg_flags & PG_EXACT_MATCH) &&
(pmatch.rm_so != 0 || prp->p_user.u_comm[pmatch.rm_eo] != '\0'))
return (WALK_NEXT);
#endif
if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) {
hrtime_t start;
start = (hrtime_t)prp->p_user.u_start.tv_sec * NANOSEC +
prp->p_user.u_start.tv_nsec;
if (pgp->pg_flags & PG_NEWEST) {
if (pgp->pg_xaddr == NULL || start > pgp->pg_xstart) {
pgp->pg_xaddr = addr;
pgp->pg_xstart = start;
}
} else {
if (pgp->pg_xaddr == NULL || start < pgp->pg_xstart) {
pgp->pg_xaddr = addr;
pgp->pg_xstart = start;
}
}
} else if (pgp->pg_flags & PG_PIPE_OUT) {
mdb_printf("%p\n", addr);
} else {
if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) {
mdb_warn("can't invoke 'ps'");
return (WALK_DONE);
}
pgp->pg_psflags &= ~DCMD_LOOPFIRST;
}
return (WALK_NEXT);
}
/*ARGSUSED*/
int
pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
pgrep_data_t pg;
int i;
#ifndef _KMDB
int err;
#endif
if (flags & DCMD_ADDRSPEC)
return (DCMD_USAGE);
pg.pg_flags = 0;
pg.pg_xaddr = 0;
i = mdb_getopts(argc, argv,
'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags,
'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags,
'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags,
NULL);
argc -= i;
argv += i;
if (argc != 1)
return (DCMD_USAGE);
/*
* -n and -o are mutually exclusive.
*/
if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST))
return (DCMD_USAGE);
if (argv->a_type != MDB_TYPE_STRING)
return (DCMD_USAGE);
if (flags & DCMD_PIPE_OUT)
pg.pg_flags |= PG_PIPE_OUT;
pg.pg_pat = argv->a_un.a_str;
if (DCMD_HDRSPEC(flags))
pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST;
else
pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP;
#ifndef _KMDB
if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) {
size_t nbytes;
char *buf;
nbytes = regerror(err, &pg.pg_reg, NULL, 0);
buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC);
(void) regerror(err, &pg.pg_reg, buf, nbytes);
mdb_warn("%s\n", buf);
return (DCMD_ERR);
}
#endif
if (mdb_walk("proc", pgrep_cb, &pg) != 0) {
mdb_warn("can't walk 'proc'");
return (DCMD_ERR);
}
if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) {
if (pg.pg_flags & PG_PIPE_OUT) {
mdb_printf("%p\n", pg.pg_xaddr);
} else {
if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags,
0, NULL) != 0) {
mdb_warn("can't invoke 'ps'");
return (DCMD_ERR);
}
}
}
return (DCMD_OK);
}
int
task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
task_t tk;
kproject_t pj;
if (!(flags & DCMD_ADDRSPEC)) {
if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) {
mdb_warn("can't walk task_cache");
return (DCMD_ERR);
}
return (DCMD_OK);
}
if (DCMD_HDRSPEC(flags)) {
mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n",
"ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS");
}
if (mdb_vread(&tk, sizeof (task_t), addr) == -1) {
mdb_warn("can't read task_t structure at %p", addr);
return (DCMD_ERR);
}
if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) {
mdb_warn("can't read project_t structure at %p", addr);
return (DCMD_ERR);
}
mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n",
addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count,
tk.tk_flags);
return (DCMD_OK);
}
int
project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
kproject_t pj;
if (!(flags & DCMD_ADDRSPEC)) {
if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) {
mdb_warn("can't walk projects");
return (DCMD_ERR);
}
return (DCMD_OK);
}
if (DCMD_HDRSPEC(flags)) {
mdb_printf("%<u>%?s %6s %6s %6s%</u>\n",
"ADDR", "PROJID", "ZONEID", "REFCNT");
}
if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
mdb_warn("can't read kproject_t structure at %p", addr);
return (DCMD_ERR);
}
mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid,
pj.kpj_count);
return (DCMD_OK);
}
/*ARGSUSED*/
int
callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
callout_table_t *co_ktable[CALLOUT_TABLES];
int co_kfanout;
callout_table_t co_table;
callout_t co_callout;
callout_t *co_ptr;
int co_id;
clock_t lbolt;
int i, j, k;
const char *lbolt_sym;
if ((flags & DCMD_ADDRSPEC) || argc != 0)
return (DCMD_USAGE);
if (mdb_prop_postmortem)
lbolt_sym = "panic_lbolt";
else
lbolt_sym = "lbolt";
if (mdb_readvar(&lbolt, lbolt_sym) == -1) {
mdb_warn("failed to read '%s'", lbolt_sym);
return (DCMD_ERR);
}
if (mdb_readvar(&co_kfanout, "callout_fanout") == -1) {
mdb_warn("failed to read callout_fanout");
return (DCMD_ERR);
}
if (mdb_readvar(&co_ktable, "callout_table") == -1) {
mdb_warn("failed to read callout_table");
return (DCMD_ERR);
}
mdb_printf("%<u>%-24s %-?s %-?s %-?s%</u>\n",
"FUNCTION", "ARGUMENT", "ID", "TIME");
for (i = 0; i < CALLOUT_NTYPES; i++) {
for (j = 0; j < co_kfanout; j++) {
co_id = CALLOUT_TABLE(i, j);
if (mdb_vread(&co_table, sizeof (co_table),
(uintptr_t)co_ktable[co_id]) == -1) {
mdb_warn("failed to read table at %p",
(uintptr_t)co_ktable[co_id]);
continue;
}
for (k = 0; k < CALLOUT_BUCKETS; k++) {
co_ptr = co_table.ct_idhash[k];
while (co_ptr != NULL) {
mdb_vread(&co_callout,
sizeof (co_callout),
(uintptr_t)co_ptr);
mdb_printf("%-24a %0?p %0?lx %?lx "
"(T%+ld)\n", co_callout.c_func,
co_callout.c_arg, co_callout.c_xid,
co_callout.c_runtime,
co_callout.c_runtime - lbolt);
co_ptr = co_callout.c_idnext;
}
}
}
}
return (DCMD_OK);
}
/*ARGSUSED*/
int
class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
long num_classes, i;
sclass_t *class_tbl;
GElf_Sym g_sclass;
char class_name[PC_CLNMSZ];
size_t tbl_size;
if (mdb_lookup_by_name("sclass", &g_sclass) == -1) {
mdb_warn("failed to find symbol sclass\n");
return (DCMD_ERR);
}
tbl_size = (size_t)g_sclass.st_size;
num_classes = tbl_size / (sizeof (sclass_t));
class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC);
if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) {
mdb_warn("failed to read sclass");
return (DCMD_ERR);
}
mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME",
"INIT FCN", "CLASS FCN");
for (i = 0; i < num_classes; i++) {
if (mdb_vread(class_name, sizeof (class_name),
(uintptr_t)class_tbl[i].cl_name) == -1)
(void) strcpy(class_name, "???");
mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name,
class_tbl[i].cl_init, class_tbl[i].cl_funcs);
}
return (DCMD_OK);
}
#define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */
int
vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
uintptr_t rootdir;
vnode_t vn;
char buf[MAXPATHLEN];
uint_t opt_F = FALSE;
if (mdb_getopts(argc, argv,
'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc)
return (DCMD_USAGE);
if (!(flags & DCMD_ADDRSPEC)) {
mdb_warn("expected explicit vnode_t address before ::\n");
return (DCMD_USAGE);
}
if (mdb_readvar(&rootdir, "rootdir") == -1) {
mdb_warn("failed to read rootdir");
return (DCMD_ERR);
}
if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1)
return (DCMD_ERR);
if (*buf == '\0') {
mdb_printf("??\n");
return (DCMD_OK);
}
mdb_printf("%s", buf);
if (opt_F && buf[strlen(buf)-1] != '/' &&
mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn))
mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0));
mdb_printf("\n");
return (DCMD_OK);
}
int
ld_walk_init(mdb_walk_state_t *wsp)
{
wsp->walk_data = (void *)wsp->walk_addr;
return (WALK_NEXT);
}
int
ld_walk_step(mdb_walk_state_t *wsp)
{
int status;
lock_descriptor_t ld;
if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) {
mdb_warn("couldn't read lock_descriptor_t at %p\n",
wsp->walk_addr);
return (WALK_ERR);
}
status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata);
if (status == WALK_ERR)
return (WALK_ERR);
wsp->walk_addr = (uintptr_t)ld.l_next;
if (wsp->walk_addr == (uintptr_t)wsp->walk_data)
return (WALK_DONE);
return (status);
}
int
lg_walk_init(mdb_walk_state_t *wsp)
{
GElf_Sym sym;
if (mdb_lookup_by_name("lock_graph", &sym) == -1) {
mdb_warn("failed to find symbol 'lock_graph'\n");
return (WALK_ERR);
}
wsp->walk_addr = (uintptr_t)sym.st_value;
wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size);
return (WALK_NEXT);
}
typedef struct lg_walk_data {
uintptr_t startaddr;
mdb_walk_cb_t callback;
void *data;
} lg_walk_data_t;
/*
* We can't use ::walk lock_descriptor directly, because the head of each graph
* is really a dummy lock. Rather than trying to dynamically determine if this
* is a dummy node or not, we just filter out the initial element of the
* list.
*/
static int
lg_walk_cb(uintptr_t addr, const void *data, void *priv)
{
lg_walk_data_t *lw = priv;
if (addr != lw->startaddr)
return (lw->callback(addr, data, lw->data));
return (WALK_NEXT);
}
int
lg_walk_step(mdb_walk_state_t *wsp)
{
graph_t *graph;
lg_walk_data_t lw;
if (wsp->walk_addr >= (uintptr_t)wsp->walk_data)
return (WALK_DONE);
if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) {
mdb_warn("failed to read graph_t at %p", wsp->walk_addr);
return (WALK_ERR);
}
wsp->walk_addr += sizeof (graph);
if (graph == NULL)
return (WALK_NEXT);
lw.callback = wsp->walk_callback;
lw.data = wsp->walk_cbdata;
lw.startaddr = (uintptr_t)&(graph->active_locks);
if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
return (WALK_ERR);
}
lw.startaddr = (uintptr_t)&(graph->sleeping_locks);
if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
return (WALK_ERR);
}
return (WALK_NEXT);
}
/*
* The space available for the path corresponding to the locked vnode depends
* on whether we are printing 32- or 64-bit addresses.
*/
#ifdef _LP64
#define LM_VNPATHLEN 20
#else
#define LM_VNPATHLEN 30
#endif
/*ARGSUSED*/
static int
lminfo_cb(uintptr_t addr, const void *data, void *priv)
{
const lock_descriptor_t *ld = data;
char buf[LM_VNPATHLEN];
proc_t p;
mdb_printf("%-?p %2s %04x %6d %-16s %-?p ",
addr, ld->l_type == F_RDLCK ? "RD" :
ld->l_type == F_WRLCK ? "WR" : "??",
ld->l_state, ld->l_flock.l_pid,
ld->l_flock.l_pid == 0 ? "<kernel>" :
mdb_pid2proc(ld->l_flock.l_pid, &p) == NULL ?
"<defunct>" : p.p_user.u_comm,
ld->l_vnode);
mdb_vnode2path((uintptr_t)ld->l_vnode, buf,
sizeof (buf));
mdb_printf("%s\n", buf);
return (WALK_NEXT);
}
/*ARGSUSED*/
int
lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
if (DCMD_HDRSPEC(flags))
mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n",
"ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH");
return (mdb_pwalk("lock_graph", lminfo_cb, NULL, NULL));
}
/*ARGSUSED*/
int
seg(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
struct seg s;
if (argc != 0)
return (DCMD_USAGE);
if ((flags & DCMD_LOOPFIRST) || !(flags & DCMD_LOOP)) {
mdb_printf("%<u>%?s %?s %?s %?s %s%</u>\n",
"SEG", "BASE", "SIZE", "DATA", "OPS");
}
if (mdb_vread(&s, sizeof (s), addr) == -1) {
mdb_warn("failed to read seg at %p", addr);
return (DCMD_ERR);
}
mdb_printf("%?p %?p %?lx %?p %a\n",
addr, s.s_base, s.s_size, s.s_data, s.s_ops);
return (DCMD_OK);
}
/*ARGSUSED*/
static int
pmap_walk_anon(uintptr_t addr, const struct anon *anon, int *nres)
{
uintptr_t pp =
mdb_vnode2page((uintptr_t)anon->an_vp, (uintptr_t)anon->an_off);
if (pp != NULL)
(*nres)++;
return (WALK_NEXT);
}
static int
pmap_walk_seg(uintptr_t addr, const struct seg *seg, uintptr_t segvn)
{
mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024);
if (segvn == (uintptr_t)seg->s_ops) {
struct segvn_data svn;
int nres = 0;
(void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data);
if (svn.amp == NULL) {
mdb_printf(" %8s", "");
goto drive_on;
}
/*
* We've got an amp for this segment; walk through
* the amp, and determine mappings.
*/
if (mdb_pwalk("anon", (mdb_walk_cb_t)pmap_walk_anon,
&nres, (uintptr_t)svn.amp) == -1)
mdb_warn("failed to walk anon (amp=%p)", svn.amp);
mdb_printf(" %7dk", (nres * PAGESIZE) / 1024);
drive_on:
if (svn.vp != NULL) {
char buf[29];
mdb_vnode2path((uintptr_t)svn.vp, buf, sizeof (buf));
mdb_printf(" %s", buf);
} else
mdb_printf(" [ anon ]");
}
mdb_printf("\n");
return (WALK_NEXT);
}
static int
pmap_walk_seg_quick(uintptr_t addr, const struct seg *seg, uintptr_t segvn)
{
mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024);
if (segvn == (uintptr_t)seg->s_ops) {
struct segvn_data svn;
(void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data);
if (svn.vp != NULL) {
mdb_printf(" %0?p", svn.vp);
} else {
mdb_printf(" [ anon ]");
}
}
mdb_printf("\n");
return (WALK_NEXT);
}
/*ARGSUSED*/
int
pmap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
uintptr_t segvn;
proc_t proc;
uint_t quick = FALSE;
mdb_walk_cb_t cb = (mdb_walk_cb_t)pmap_walk_seg;
GElf_Sym sym;
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
if (mdb_getopts(argc, argv,
'q', MDB_OPT_SETBITS, TRUE, &quick, NULL) != argc)
return (DCMD_USAGE);
if (mdb_vread(&proc, sizeof (proc), addr) == -1) {
mdb_warn("failed to read proc at %p", addr);
return (DCMD_ERR);
}
if (mdb_lookup_by_name("segvn_ops", &sym) == 0)
segvn = (uintptr_t)sym.st_value;
else
segvn = NULL;
mdb_printf("%?s %?s %8s ", "SEG", "BASE", "SIZE");
if (quick) {
mdb_printf("VNODE\n");
cb = (mdb_walk_cb_t)pmap_walk_seg_quick;
} else {
mdb_printf("%8s %s\n", "RES", "PATH");
}
if (mdb_pwalk("seg", cb, (void *)segvn, (uintptr_t)proc.p_as) == -1) {
mdb_warn("failed to walk segments of as %p", proc.p_as);
return (DCMD_ERR);
}
return (DCMD_OK);
}
typedef struct anon_walk_data {
uintptr_t *aw_levone;
uintptr_t *aw_levtwo;
int aw_nlevone;
int aw_levone_ndx;
int aw_levtwo_ndx;
struct anon_map aw_amp;
struct anon_hdr aw_ahp;
} anon_walk_data_t;
int
anon_walk_init(mdb_walk_state_t *wsp)
{
anon_walk_data_t *aw;
if (wsp->walk_addr == NULL) {
mdb_warn("anon walk doesn't support global walks\n");
return (WALK_ERR);
}
aw = mdb_alloc(sizeof (anon_walk_data_t), UM_SLEEP);
if (mdb_vread(&aw->aw_amp, sizeof (aw->aw_amp), wsp->walk_addr) == -1) {
mdb_warn("failed to read anon map at %p", wsp->walk_addr);
mdb_free(aw, sizeof (anon_walk_data_t));
return (WALK_ERR);
}
if (mdb_vread(&aw->aw_ahp, sizeof (aw->aw_ahp),
(uintptr_t)(aw->aw_amp.ahp)) == -1) {
mdb_warn("failed to read anon hdr ptr at %p", aw->aw_amp.ahp);
mdb_free(aw, sizeof (anon_walk_data_t));
return (WALK_ERR);
}
if (aw->aw_ahp.size <= ANON_CHUNK_SIZE ||
(aw->aw_ahp.flags & ANON_ALLOC_FORCE)) {
aw->aw_nlevone = aw->aw_ahp.size;
aw->aw_levtwo = NULL;
} else {
aw->aw_nlevone =
(aw->aw_ahp.size + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT;
aw->aw_levtwo =
mdb_zalloc(ANON_CHUNK_SIZE * sizeof (uintptr_t), UM_SLEEP);
}
aw->aw_levone =
mdb_alloc(aw->aw_nlevone * sizeof (uintptr_t), UM_SLEEP);
aw->aw_levone_ndx = 0;
aw->aw_levtwo_ndx = 0;
mdb_vread(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t),
(uintptr_t)aw->aw_ahp.array_chunk);
if (aw->aw_levtwo != NULL) {
while (aw->aw_levone[aw->aw_levone_ndx] == NULL) {
aw->aw_levone_ndx++;
if (aw->aw_levone_ndx == aw->aw_nlevone) {
mdb_warn("corrupt anon; couldn't"
"find ptr to lev two map");
goto out;
}
}
mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t),
aw->aw_levone[aw->aw_levone_ndx]);
}
out:
wsp->walk_data = aw;
return (0);
}
int
anon_walk_step(mdb_walk_state_t *wsp)
{
int status;
anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data;
struct anon anon;
uintptr_t anonptr;
again:
/*
* Once we've walked through level one, we're done.
*/
if (aw->aw_levone_ndx == aw->aw_nlevone)
return (WALK_DONE);
if (aw->aw_levtwo == NULL) {
anonptr = aw->aw_levone[aw->aw_levone_ndx];
aw->aw_levone_ndx++;
} else {
anonptr = aw->aw_levtwo[aw->aw_levtwo_ndx];
aw->aw_levtwo_ndx++;
if (aw->aw_levtwo_ndx == ANON_CHUNK_SIZE) {
aw->aw_levtwo_ndx = 0;
do {
aw->aw_levone_ndx++;
if (aw->aw_levone_ndx == aw->aw_nlevone)
return (WALK_DONE);
} while (aw->aw_levone[aw->aw_levone_ndx] == NULL);
mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE *
sizeof (uintptr_t),
aw->aw_levone[aw->aw_levone_ndx]);
}
}
if (anonptr != NULL) {
mdb_vread(&anon, sizeof (anon), anonptr);
status = wsp->walk_callback(anonptr, &anon, wsp->walk_cbdata);
} else
goto again;
return (status);
}
void
anon_walk_fini(mdb_walk_state_t *wsp)
{
anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data;
if (aw->aw_levtwo != NULL)
mdb_free(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t));
mdb_free(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t));
mdb_free(aw, sizeof (anon_walk_data_t));
}
/*ARGSUSED*/
int
whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target)
{
if ((uintptr_t)f->f_vnode == *target) {
mdb_printf("file %p\n", addr);
*target = NULL;
}
return (WALK_NEXT);
}
/*ARGSUSED*/
int
whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target)
{
uintptr_t t = *target;
if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) {
mdb_warn("couldn't file walk proc %p", addr);
return (WALK_ERR);
}
if (t == NULL)
mdb_printf("%p\n", addr);
return (WALK_NEXT);
}
/*ARGSUSED*/
int
whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
uintptr_t target = addr;
if (!(flags & DCMD_ADDRSPEC) || addr == NULL)
return (DCMD_USAGE);
if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) {
mdb_warn("can't proc walk");
return (DCMD_ERR);
}
return (DCMD_OK);
}
typedef struct datafmt {
char *hdr1;
char *hdr2;
char *dashes;
char *fmt;
} datafmt_t;
static datafmt_t kmemfmt[] = {
{ "cache ", "name ",
"-------------------------", "%-25s " },
{ " buf", " size", "------", "%6u " },
{ " buf", "in use", "------", "%6u " },
{ " buf", " total", "------", "%6u " },
{ " memory", " in use", "---------", "%9u " },
{ " alloc", " succeed", "---------", "%9u " },
{ "alloc", " fail", "-----", "%5u " },
{ NULL, NULL, NULL, NULL }
};
static datafmt_t vmemfmt[] = {
{ "vmem ", "name ",
"-------------------------", "%-*s " },
{ " memory", " in use", "---------", "%9llu " },
{ " memory", " total", "----------", "%10llu " },
{ " memory", " import", "---------", "%9llu " },
{ " alloc", " succeed", "---------", "%9llu " },
{ "alloc", " fail", "-----", "%5llu " },
{ NULL, NULL, NULL, NULL }
};
/*ARGSUSED*/
static int
kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail)
{
if (ccp->cc_rounds > 0)
*avail += ccp->cc_rounds;
if (ccp->cc_prounds > 0)
*avail += ccp->cc_prounds;
return (WALK_NEXT);
}
/*ARGSUSED*/
static int
kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc)
{
*alloc += ccp->cc_alloc;
return (WALK_NEXT);
}
/*ARGSUSED*/
static int
kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail)
{
*avail += sp->slab_chunks - sp->slab_refcnt;
return (WALK_NEXT);
}
typedef struct kmastat_vmem {
uintptr_t kv_addr;
struct kmastat_vmem *kv_next;
int kv_meminuse;
int kv_alloc;
int kv_fail;
} kmastat_vmem_t;
typedef struct kmastat_args {
kmastat_vmem_t **ka_kvpp;
uint_t ka_shift;
} kmastat_args_t;
static int
kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap)
{
kmastat_vmem_t **kvp = kap->ka_kvpp;
kmastat_vmem_t *kv;
datafmt_t *dfp = kmemfmt;
int magsize;
int avail, alloc, total;
size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) *
cp->cache_slabsize;
mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail;
mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc;
mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail;
magsize = kmem_get_magsize(cp);
alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc;
avail = cp->cache_full.ml_total * magsize;
total = cp->cache_buftotal;
(void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr);
(void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr);
(void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr);
for (kv = *kvp; kv != NULL; kv = kv->kv_next) {
if (kv->kv_addr == (uintptr_t)cp->cache_arena)
goto out;
}
kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC);
kv->kv_next = *kvp;
kv->kv_addr = (uintptr_t)cp->cache_arena;
*kvp = kv;
out:
kv->kv_meminuse += meminuse;
kv->kv_alloc += alloc;
kv->kv_fail += cp->cache_alloc_fail;
mdb_printf((dfp++)->fmt, cp->cache_name);
mdb_printf((dfp++)->fmt, cp->cache_bufsize);
mdb_printf((dfp++)->fmt, total - avail);
mdb_printf((dfp++)->fmt, total);
mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift);
mdb_printf((dfp++)->fmt, alloc);
mdb_printf((dfp++)->fmt, cp->cache_alloc_fail);
mdb_printf("\n");
return (WALK_NEXT);
}
static int
kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap)
{
kmastat_vmem_t *kv = *kap->ka_kvpp;
size_t len;
while (kv != NULL && kv->kv_addr != addr)
kv = kv->kv_next;
if (kv == NULL || kv->kv_alloc == 0)
return (WALK_NEXT);
len = MIN(17, strlen(v->vm_name));
mdb_printf("Total [%s]%*s %6s %6s %6s %9u %9u %5u\n", v->vm_name,
17 - len, "", "", "", "",
kv->kv_meminuse >> kap->ka_shift, kv->kv_alloc, kv->kv_fail);
return (WALK_NEXT);
}
/*ARGSUSED*/
static int
kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp)
{
datafmt_t *dfp = vmemfmt;
const vmem_kstat_t *vkp = &v->vm_kstat;
uintptr_t paddr;
vmem_t parent;
int ident = 0;
for (paddr = (uintptr_t)v->vm_source; paddr != NULL; ident += 4) {
if (mdb_vread(&parent, sizeof (parent), paddr) == -1) {
mdb_warn("couldn't trace %p's ancestry", addr);
ident = 0;
break;
}
paddr = (uintptr_t)parent.vm_source;
}
mdb_printf("%*s", ident, "");
mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name);
mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64);
mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64);
mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp);
mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64);
mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64);
mdb_printf("\n");
return (WALK_NEXT);
}
/*ARGSUSED*/
int
kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
kmastat_vmem_t *kv = NULL;
datafmt_t *dfp;
kmastat_args_t ka;
ka.ka_shift = 0;
if (mdb_getopts(argc, argv,
'k', MDB_OPT_SETBITS, 10, &ka.ka_shift,
'm', MDB_OPT_SETBITS, 20, &ka.ka_shift,
'g', MDB_OPT_SETBITS, 30, &ka.ka_shift, NULL) != argc)
return (DCMD_USAGE);
for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
mdb_printf("%s ", dfp->hdr1);
mdb_printf("\n");
for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
mdb_printf("%s ", dfp->hdr2);
mdb_printf("\n");
for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
mdb_printf("%s ", dfp->dashes);
mdb_printf("\n");
ka.ka_kvpp = &kv;
if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) {
mdb_warn("can't walk 'kmem_cache'");
return (DCMD_ERR);
}
for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
mdb_printf("%s ", dfp->dashes);
mdb_printf("\n");
if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) {
mdb_warn("can't walk 'vmem'");
return (DCMD_ERR);
}
for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
mdb_printf("%s ", dfp->dashes);
mdb_printf("\n");
mdb_printf("\n");
for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
mdb_printf("%s ", dfp->hdr1);
mdb_printf("\n");
for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
mdb_printf("%s ", dfp->hdr2);
mdb_printf("\n");
for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
mdb_printf("%s ", dfp->dashes);
mdb_printf("\n");
if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) {
mdb_warn("can't walk 'vmem'");
return (DCMD_ERR);
}
for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
mdb_printf("%s ", dfp->dashes);
mdb_printf("\n");
return (DCMD_OK);
}
/*
* Our ::kgrep callback scans the entire kernel VA space (kas). kas is made
* up of a set of 'struct seg's. We could just scan each seg en masse, but
* unfortunately, a few of the segs are both large and sparse, so we could
* spend quite a bit of time scanning VAs which have no backing pages.
*
* So for the few very sparse segs, we skip the segment itself, and scan
* the allocated vmem_segs in the vmem arena which manages that part of kas.
* Currently, we do this for:
*
* SEG VMEM ARENA
* kvseg heap_arena
* kvseg32 heap32_arena
* kvseg_core heap_core_arena
*
* In addition, we skip the segkpm segment in its entirety, since it is very
* sparse, and contains no new kernel data.
*/
typedef struct kgrep_walk_data {
kgrep_cb_func *kg_cb;
void *kg_cbdata;
uintptr_t kg_kvseg;
uintptr_t kg_kvseg32;
uintptr_t kg_kvseg_core;
uintptr_t kg_segkpm;
uintptr_t kg_heap_lp_base;
uintptr_t kg_heap_lp_end;
} kgrep_walk_data_t;
static int
kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg)
{
uintptr_t base = (uintptr_t)seg->s_base;
if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 ||
addr == kg->kg_kvseg_core)
return (WALK_NEXT);
if ((uintptr_t)seg->s_ops == kg->kg_segkpm)
return (WALK_NEXT);
return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata));
}
/*ARGSUSED*/
static int
kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
{
/*
* skip large page heap address range - it is scanned by walking
* allocated vmem_segs in the heap_lp_arena
*/
if (seg->vs_start == kg->kg_heap_lp_base &&
seg->vs_end == kg->kg_heap_lp_end)
return (WALK_NEXT);
return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
}
/*ARGSUSED*/
static int
kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
{
return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
}
static int
kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg)
{
mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg;
if (strcmp(vmem->vm_name, "heap") != 0 &&
strcmp(vmem->vm_name, "heap32") != 0 &&
strcmp(vmem->vm_name, "heap_core") != 0 &&
strcmp(vmem->vm_name, "heap_lp") != 0)
return (WALK_NEXT);
if (strcmp(vmem->vm_name, "heap_lp") == 0)
walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg;
if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) {
mdb_warn("couldn't walk vmem_alloc for vmem %p", addr);
return (WALK_ERR);
}
return (WALK_NEXT);
}
int
kgrep_subr(kgrep_cb_func *cb, void *cbdata)
{
GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm;
kgrep_walk_data_t kg;
if (mdb_get_state() == MDB_STATE_RUNNING) {
mdb_warn("kgrep can only be run on a system "
"dump or under kmdb; see dumpadm(1M)\n");
return (DCMD_ERR);
}
if (mdb_lookup_by_name("kas", &kas) == -1) {
mdb_warn("failed to locate 'kas' symbol\n");
return (DCMD_ERR);
}
if (mdb_lookup_by_name("kvseg", &kvseg) == -1) {
mdb_warn("failed to locate 'kvseg' symbol\n");
return (DCMD_ERR);
}
if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) {
mdb_warn("failed to locate 'kvseg32' symbol\n");
return (DCMD_ERR);
}
if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) {
mdb_warn("failed to locate 'kvseg_core' symbol\n");
return (DCMD_ERR);
}
if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) {
mdb_warn("failed to locate 'segkpm_ops' symbol\n");
return (DCMD_ERR);
}
if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) {
mdb_warn("failed to read 'heap_lp_base'\n");
return (DCMD_ERR);
}
if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) {
mdb_warn("failed to read 'heap_lp_end'\n");
return (DCMD_ERR);
}
kg.kg_cb = cb;
kg.kg_cbdata = cbdata;
kg.kg_kvseg = (uintptr_t)kvseg.st_value;
kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value;
kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value;
kg.kg_segkpm = (uintptr_t)segkpm.st_value;
if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg,
&kg, kas.st_value) == -1) {
mdb_warn("failed to walk kas segments");
return (DCMD_ERR);
}
if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) {
mdb_warn("failed to walk heap/heap32 vmem arenas");
return (DCMD_ERR);
}
return (DCMD_OK);
}
size_t
kgrep_subr_pagesize(void)
{
return (PAGESIZE);
}
typedef struct file_walk_data {
struct uf_entry *fw_flist;
int fw_flistsz;
int fw_ndx;
int fw_nofiles;
} file_walk_data_t;
int
file_walk_init(mdb_walk_state_t *wsp)
{
file_walk_data_t *fw;
proc_t p;
if (wsp->walk_addr == NULL) {
mdb_warn("file walk doesn't support global walks\n");
return (WALK_ERR);
}
fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP);
if (mdb_vread(&p, sizeof (p), wsp->walk_addr) == -1) {
mdb_free(fw, sizeof (file_walk_data_t));
mdb_warn("failed to read proc structure at %p", wsp->walk_addr);
return (WALK_ERR);
}
if (p.p_user.u_finfo.fi_nfiles == 0) {
mdb_free(fw, sizeof (file_walk_data_t));
return (WALK_DONE);
}
fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles;
fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles;
fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP);
if (mdb_vread(fw->fw_flist, fw->fw_flistsz,
(uintptr_t)p.p_user.u_finfo.fi_list) == -1) {
mdb_warn("failed to read file array at %p",
p.p_user.u_finfo.fi_list);
mdb_free(fw->fw_flist, fw->fw_flistsz);
mdb_free(fw, sizeof (file_walk_data_t));
return (WALK_ERR);
}
fw->fw_ndx = 0;
wsp->walk_data = fw;
return (WALK_NEXT);
}
int
file_walk_step(mdb_walk_state_t *wsp)
{
file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
struct file file;
uintptr_t fp;
again:
if (fw->fw_ndx == fw->fw_nofiles)
return (WALK_DONE);
if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == NULL)
goto again;
(void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
}
int
allfile_walk_step(mdb_walk_state_t *wsp)
{
file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
struct file file;
uintptr_t fp;
if (fw->fw_ndx == fw->fw_nofiles)
return (WALK_DONE);
if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != NULL)
(void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
else
bzero(&file, sizeof (file));
return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
}
void
file_walk_fini(mdb_walk_state_t *wsp)
{
file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
mdb_free(fw->fw_flist, fw->fw_flistsz);
mdb_free(fw, sizeof (file_walk_data_t));
}
int
port_walk_init(mdb_walk_state_t *wsp)
{
if (wsp->walk_addr == NULL) {
mdb_warn("port walk doesn't support global walks\n");
return (WALK_ERR);
}
if (mdb_layered_walk("file", wsp) == -1) {
mdb_warn("couldn't walk 'file'");
return (WALK_ERR);
}
return (WALK_NEXT);
}
int
port_walk_step(mdb_walk_state_t *wsp)
{
struct vnode vn;
uintptr_t vp;
uintptr_t pp;
struct port port;
vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode;
if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
mdb_warn("failed to read vnode_t at %p", vp);
return (WALK_ERR);
}
if (vn.v_type != VPORT)
return (WALK_NEXT);
pp = (uintptr_t)vn.v_data;
if (mdb_vread(&port, sizeof (port), pp) == -1) {
mdb_warn("failed to read port_t at %p", pp);
return (WALK_ERR);
}
return (wsp->walk_callback(pp, &port, wsp->walk_cbdata));
}
typedef struct portev_walk_data {
list_node_t *pev_node;
list_node_t *pev_last;
size_t pev_offset;
} portev_walk_data_t;
int
portev_walk_init(mdb_walk_state_t *wsp)
{
portev_walk_data_t *pevd;
struct port port;
struct vnode vn;
struct list *list;
uintptr_t vp;
if (wsp->walk_addr == NULL) {
mdb_warn("portev walk doesn't support global walks\n");
return (WALK_ERR);
}
pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP);
if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) {
mdb_free(pevd, sizeof (portev_walk_data_t));
mdb_warn("failed to read port structure at %p", wsp->walk_addr);
return (WALK_ERR);
}
vp = (uintptr_t)port.port_vnode;
if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
mdb_free(pevd, sizeof (portev_walk_data_t));
mdb_warn("failed to read vnode_t at %p", vp);
return (WALK_ERR);
}
if (vn.v_type != VPORT) {
mdb_free(pevd, sizeof (portev_walk_data_t));
mdb_warn("input address (%p) does not point to an event port",
wsp->walk_addr);
return (WALK_ERR);
}
if (port.port_queue.portq_nent == 0) {
mdb_free(pevd, sizeof (portev_walk_data_t));
return (WALK_DONE);
}
list = &port.port_queue.portq_list;
pevd->pev_offset = list->list_offset;
pevd->pev_last = list->list_head.list_prev;
pevd->pev_node = list->list_head.list_next;
wsp->walk_data = pevd;
return (WALK_NEXT);
}
int
portev_walk_step(mdb_walk_state_t *wsp)
{
portev_walk_data_t *pevd;
struct port_kevent ev;
uintptr_t evp;
pevd = (portev_walk_data_t *)wsp->walk_data;
if (pevd->pev_last == NULL)
return (WALK_DONE);
if (pevd->pev_node == pevd->pev_last)
pevd->pev_last = NULL; /* last round */
evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset));
if (mdb_vread(&ev, sizeof (ev), evp) == -1) {
mdb_warn("failed to read port_kevent at %p", evp);
return (WALK_DONE);
}
pevd->pev_node = ev.portkev_node.list_next;
return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata));
}
void
portev_walk_fini(mdb_walk_state_t *wsp)
{
portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data;
if (pevd != NULL)
mdb_free(pevd, sizeof (portev_walk_data_t));
}
typedef struct proc_walk_data {
uintptr_t *pw_stack;
int pw_depth;
int pw_max;
} proc_walk_data_t;
int
proc_walk_init(mdb_walk_state_t *wsp)
{
GElf_Sym sym;
proc_walk_data_t *pw;
if (wsp->walk_addr == NULL) {
if (mdb_lookup_by_name("p0", &sym) == -1) {
mdb_warn("failed to read 'practive'");
return (WALK_ERR);
}
wsp->walk_addr = (uintptr_t)sym.st_value;
}
pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP);
if (mdb_readvar(&pw->pw_max, "nproc") == -1) {
mdb_warn("failed to read 'nproc'");
mdb_free(pw, sizeof (pw));
return (WALK_ERR);
}
pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP);
wsp->walk_data = pw;
return (WALK_NEXT);
}
int
proc_walk_step(mdb_walk_state_t *wsp)
{
proc_walk_data_t *pw = wsp->walk_data;
uintptr_t addr = wsp->walk_addr;
uintptr_t cld, sib;
int status;
proc_t pr;
if (mdb_vread(&pr, sizeof (proc_t), addr) == -1) {
mdb_warn("failed to read proc at %p", addr);
return (WALK_DONE);
}
cld = (uintptr_t)pr.p_child;
sib = (uintptr_t)pr.p_sibling;
if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) {
pw->pw_depth--;
goto sib;
}
status = wsp->walk_callback(addr, &pr, wsp->walk_cbdata);
if (status != WALK_NEXT)
return (status);
if ((wsp->walk_addr = cld) != NULL) {
if (mdb_vread(&pr, sizeof (proc_t), cld) == -1) {
mdb_warn("proc %p has invalid p_child %p; skipping\n",
addr, cld);
goto sib;
}
pw->pw_stack[pw->pw_depth++] = addr;
if (pw->pw_depth == pw->pw_max) {
mdb_warn("depth %d exceeds max depth; try again\n",
pw->pw_depth);
return (WALK_DONE);
}
return (WALK_NEXT);
}
sib:
/*
* We know that p0 has no siblings, and if another starting proc
* was given, we don't want to walk its siblings anyway.
*/
if (pw->pw_depth == 0)
return (WALK_DONE);
if (sib != NULL && mdb_vread(&pr, sizeof (proc_t), sib) == -1) {
mdb_warn("proc %p has invalid p_sibling %p; skipping\n",
addr, sib);
sib = NULL;
}
if ((wsp->walk_addr = sib) == NULL) {
if (pw->pw_depth > 0) {
wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1];
return (WALK_NEXT);
}
return (WALK_DONE);
}
return (WALK_NEXT);
}
void
proc_walk_fini(mdb_walk_state_t *wsp)
{
proc_walk_data_t *pw = wsp->walk_data;
mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t));
mdb_free(pw, sizeof (proc_walk_data_t));
}
int
task_walk_init(mdb_walk_state_t *wsp)
{
task_t task;
if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) {
mdb_warn("failed to read task at %p", wsp->walk_addr);
return (WALK_ERR);
}
wsp->walk_addr = (uintptr_t)task.tk_memb_list;
wsp->walk_data = task.tk_memb_list;
return (WALK_NEXT);
}
int
task_walk_step(mdb_walk_state_t *wsp)
{
proc_t proc;
int status;
if (mdb_vread(&proc, sizeof (proc_t), wsp->walk_addr) == -1) {
mdb_warn("failed to read proc at %p", wsp->walk_addr);
return (WALK_DONE);
}
status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata);
if (proc.p_tasknext == wsp->walk_data)
return (WALK_DONE);
wsp->walk_addr = (uintptr_t)proc.p_tasknext;
return (status);
}
int
project_walk_init(mdb_walk_state_t *wsp)
{
if (wsp->walk_addr == NULL) {
if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) {
mdb_warn("failed to read 'proj0p'");
return (WALK_ERR);
}
}
wsp->walk_data = (void *)wsp->walk_addr;
return (WALK_NEXT);
}
int
project_walk_step(mdb_walk_state_t *wsp)
{
uintptr_t addr = wsp->walk_addr;
kproject_t pj;
int status;
if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
mdb_warn("failed to read project at %p", addr);
return (WALK_DONE);
}
status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata);
if (status != WALK_NEXT)
return (status);
wsp->walk_addr = (uintptr_t)pj.kpj_next;
if ((void *)wsp->walk_addr == wsp->walk_data)
return (WALK_DONE);
return (WALK_NEXT);
}
static int
generic_walk_step(mdb_walk_state_t *wsp)
{
return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer,
wsp->walk_cbdata));
}
int
seg_walk_init(mdb_walk_state_t *wsp)
{
if (wsp->walk_addr == NULL) {
mdb_warn("seg walk must begin at struct as *\n");
return (WALK_ERR);
}
/*
* this is really just a wrapper to AVL tree walk
*/
wsp->walk_addr = (uintptr_t)&((struct as *)wsp->walk_addr)->a_segtree;
return (avl_walk_init(wsp));
}
static int
cpu_walk_cmp(const void *l, const void *r)
{
uintptr_t lhs = *((uintptr_t *)l);
uintptr_t rhs = *((uintptr_t *)r);
cpu_t lcpu, rcpu;
(void) mdb_vread(&lcpu, sizeof (lcpu), lhs);
(void) mdb_vread(&rcpu, sizeof (rcpu), rhs);
if (lcpu.cpu_id < rcpu.cpu_id)
return (-1);
if (lcpu.cpu_id > rcpu.cpu_id)
return (1);
return (0);
}
typedef struct cpu_walk {
uintptr_t *cw_array;
int cw_ndx;
} cpu_walk_t;
int
cpu_walk_init(mdb_walk_state_t *wsp)
{
cpu_walk_t *cw;
int max_ncpus, i = 0;
uintptr_t current, first;
cpu_t cpu, panic_cpu;
uintptr_t panicstr, addr;
GElf_Sym sym;
cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC);
if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) {
mdb_warn("failed to read 'max_ncpus'");
return (WALK_ERR);
}
if (mdb_readvar(&panicstr, "panicstr") == -1) {
mdb_warn("failed to read 'panicstr'");
return (WALK_ERR);
}
if (panicstr != NULL) {
if (mdb_lookup_by_name("panic_cpu", &sym) == -1) {
mdb_warn("failed to find 'panic_cpu'");
return (WALK_ERR);
}
addr = (uintptr_t)sym.st_value;
if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) {
mdb_warn("failed to read 'panic_cpu'");
return (WALK_ERR);
}
}
/*
* Unfortunately, there is no platform-independent way to walk
* CPUs in ID order. We therefore loop through in cpu_next order,
* building an array of CPU pointers which will subsequently be
* sorted.
*/
cw->cw_array =
mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC);
if (mdb_readvar(&first, "cpu_list") == -1) {
mdb_warn("failed to read 'cpu_list'");
return (WALK_ERR);
}
current = first;
do {
if (mdb_vread(&cpu, sizeof (cpu), current) == -1) {
mdb_warn("failed to read cpu at %p", current);
return (WALK_ERR);
}
if (panicstr != NULL && panic_cpu.cpu_id == cpu.cpu_id) {
cw->cw_array[i++] = addr;
} else {
cw->cw_array[i++] = current;
}
} while ((current = (uintptr_t)cpu.cpu_next) != first);
qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp);
wsp->walk_data = cw;
return (WALK_NEXT);
}
int
cpu_walk_step(mdb_walk_state_t *wsp)
{
cpu_walk_t *cw = wsp->walk_data;
cpu_t cpu;
uintptr_t addr = cw->cw_array[cw->cw_ndx++];
if (addr == NULL)
return (WALK_DONE);
if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) {
mdb_warn("failed to read cpu at %p", addr);
return (WALK_DONE);
}
return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata));
}
typedef struct cpuinfo_data {
intptr_t cid_cpu;
uintptr_t cid_lbolt;
uintptr_t **cid_ithr;
char cid_print_head;
char cid_print_thr;
char cid_print_ithr;
char cid_print_flags;
} cpuinfo_data_t;
int
cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid)
{
cpu_t c;
int id;
uint8_t pil;
if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE)
return (WALK_NEXT);
if (thr->t_bound_cpu == NULL) {
mdb_warn("thr %p is intr thread w/out a CPU\n", addr);
return (WALK_NEXT);
}
(void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu);
if ((id = c.cpu_id) >= NCPU) {
mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n",
thr->t_bound_cpu, id, NCPU);
return (WALK_NEXT);
}
if ((pil = thr->t_pil) >= NINTR) {
mdb_warn("thread %p has pil (%d) greater than %d\n",
addr, pil, NINTR);
return (WALK_NEXT);
}
if (cid->cid_ithr[id][pil] != NULL) {
mdb_warn("CPU %d has multiple threads at pil %d (at least "
"%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]);
return (WALK_NEXT);
}
cid->cid_ithr[id][pil] = addr;
return (WALK_NEXT);
}
#define CPUINFO_IDWIDTH 3
#define CPUINFO_FLAGWIDTH 9
#ifdef _LP64
#if defined(__amd64)
#define CPUINFO_TWIDTH 16
#define CPUINFO_CPUWIDTH 16
#else
#define CPUINFO_CPUWIDTH 11
#define CPUINFO_TWIDTH 11
#endif
#else
#define CPUINFO_CPUWIDTH 8
#define CPUINFO_TWIDTH 8
#endif
#define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9)
#define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4)
#define CPUINFO_ITHRDELT 4
#define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \
flagline < nflaglines ? flagbuf[flagline++] : "")
int
cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid)
{
kthread_t t;
disp_t disp;
proc_t p;
uintptr_t pinned;
char **flagbuf;
int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT;
const char *flags[] = {
"RUNNING", "READY", "QUIESCED", "EXISTS",
"ENABLE", "OFFLINE", "POWEROFF", "FROZEN",
"SPARE", "FAULTED", NULL
};
if (cid->cid_cpu != -1) {
if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu)
return (WALK_NEXT);
/*
* Set cid_cpu to -1 to indicate that we found a matching CPU.
*/
cid->cid_cpu = -1;
rval = WALK_DONE;
}
if (cid->cid_print_head) {
mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n",
"ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL",
"PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD",
"PROC");
cid->cid_print_head = FALSE;
}
bspl = cpu->cpu_base_spl;
if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) {
mdb_warn("failed to read disp_t at %p", cpu->cpu_disp);
return (WALK_ERR);
}
mdb_printf("%3d %0*p %3x %4d %4d ",
cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags,
disp.disp_nrunnable, bspl);
if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) {
mdb_printf("%3d ", t.t_pri);
} else {
mdb_printf("%3s ", "-");
}
mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no",
cpu->cpu_kprunrun ? "yes" : "no");
if (cpu->cpu_last_swtch) {
clock_t lbolt;
if (mdb_vread(&lbolt, sizeof (lbolt), cid->cid_lbolt) == -1) {
mdb_warn("failed to read lbolt at %p", cid->cid_lbolt);
return (WALK_ERR);
}
mdb_printf("t-%-4d ", lbolt - cpu->cpu_last_swtch);
} else {
mdb_printf("%-6s ", "-");
}
mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread);
if (cpu->cpu_thread == cpu->cpu_idle_thread)
mdb_printf(" (idle)\n");
else if (cpu->cpu_thread == NULL)
mdb_printf(" -\n");
else {
if (mdb_vread(&p, sizeof (p), (uintptr_t)t.t_procp) != -1) {
mdb_printf(" %s\n", p.p_user.u_comm);
} else {
mdb_printf(" ?\n");
}
}
flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC);
if (cid->cid_print_flags) {
int first = 1, i, j, k;
char *s;
cid->cid_print_head = TRUE;
for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) {
if (!(cpu->cpu_flags & i))
continue;
if (first) {
s = mdb_alloc(CPUINFO_THRDELT + 1,
UM_GC | UM_SLEEP);
(void) mdb_snprintf(s, CPUINFO_THRDELT + 1,
"%*s|%*s", CPUINFO_FLAGDELT, "",
CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, "");
flagbuf[nflaglines++] = s;
}
s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP);
(void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s",
CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH -
CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j],
first ? "<--+" : "");
for (k = strlen(s); k < CPUINFO_THRDELT; k++)
s[k] = ' ';
s[k] = '\0';
flagbuf[nflaglines++] = s;
first = 0;
}
}
if (cid->cid_print_ithr) {
int i, found_one = FALSE;
int print_thr = disp.disp_nrunnable && cid->cid_print_thr;
for (i = NINTR - 1; i >= 0; i--) {
uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i];
if (iaddr == NULL)
continue;
if (!found_one) {
found_one = TRUE;
CPUINFO_INDENT;
mdb_printf("%c%*s|\n", print_thr ? '|' : ' ',
CPUINFO_ITHRDELT, "");
CPUINFO_INDENT;
mdb_printf("%c%*s+--> %3s %s\n",
print_thr ? '|' : ' ', CPUINFO_ITHRDELT,
"", "PIL", "THREAD");
}
if (mdb_vread(&t, sizeof (t), iaddr) == -1) {
mdb_warn("failed to read kthread_t at %p",
iaddr);
return (WALK_ERR);
}
CPUINFO_INDENT;
mdb_printf("%c%*s %3d %0*p\n",
print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "",
t.t_pil, CPUINFO_TWIDTH, iaddr);
pinned = (uintptr_t)t.t_intr;
}
if (found_one && pinned != NULL) {
cid->cid_print_head = TRUE;
(void) strcpy(p.p_user.u_comm, "?");
if (mdb_vread(&t, sizeof (t),
(uintptr_t)pinned) == -1) {
mdb_warn("failed to read kthread_t at %p",
pinned);
return (WALK_ERR);
}
if (mdb_vread(&p, sizeof (p),
(uintptr_t)t.t_procp) == -1) {
mdb_warn("failed to read proc_t at %p",
t.t_procp);
return (WALK_ERR);
}
CPUINFO_INDENT;
mdb_printf("%c%*s %3s %0*p %s\n",
print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-",
CPUINFO_TWIDTH, pinned,
pinned == (uintptr_t)cpu->cpu_idle_thread ?
"(idle)" : p.p_user.u_comm);
}
}
if (disp.disp_nrunnable && cid->cid_print_thr) {
dispq_t *dq;
int i, npri = disp.disp_npri;
dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC);
if (mdb_vread(dq, sizeof (dispq_t) * npri,
(uintptr_t)disp.disp_q) == -1) {
mdb_warn("failed to read dispq_t at %p", disp.disp_q);
return (WALK_ERR);
}
CPUINFO_INDENT;
mdb_printf("|\n");
CPUINFO_INDENT;
mdb_printf("+--> %3s %-*s %s\n", "PRI",
CPUINFO_TWIDTH, "THREAD", "PROC");
for (i = npri - 1; i >= 0; i--) {
uintptr_t taddr = (uintptr_t)dq[i].dq_first;
while (taddr != NULL) {
if (mdb_vread(&t, sizeof (t), taddr) == -1) {
mdb_warn("failed to read kthread_t "
"at %p", taddr);
return (WALK_ERR);
}
if (mdb_vread(&p, sizeof (p),
(uintptr_t)t.t_procp) == -1) {
mdb_warn("failed to read proc_t at %p",
t.t_procp);
return (WALK_ERR);
}
CPUINFO_INDENT;
mdb_printf(" %3d %0*p %s\n", t.t_pri,
CPUINFO_TWIDTH, taddr, p.p_user.u_comm);
taddr = (uintptr_t)t.t_link;
}
}
cid->cid_print_head = TRUE;
}
while (flagline < nflaglines)
mdb_printf("%s\n", flagbuf[flagline++]);
if (cid->cid_print_head)
mdb_printf("\n");
return (rval);
}
int
cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
uint_t verbose = FALSE;
cpuinfo_data_t cid;
GElf_Sym sym;
clock_t lbolt;
cid.cid_print_ithr = FALSE;
cid.cid_print_thr = FALSE;
cid.cid_print_flags = FALSE;
cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE;
cid.cid_cpu = -1;
if (flags & DCMD_ADDRSPEC)
cid.cid_cpu = addr;
if (mdb_getopts(argc, argv,
'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc)
return (DCMD_USAGE);
if (verbose) {
cid.cid_print_ithr = TRUE;
cid.cid_print_thr = TRUE;
cid.cid_print_flags = TRUE;
cid.cid_print_head = TRUE;
}
if (cid.cid_print_ithr) {
int i;
cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **)
* NCPU, UM_SLEEP | UM_GC);
for (i = 0; i < NCPU; i++)
cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) *
NINTR, UM_SLEEP | UM_GC);
if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread,
&cid) == -1) {
mdb_warn("couldn't walk thread");
return (DCMD_ERR);
}
}
if (mdb_lookup_by_name("panic_lbolt", &sym) == -1) {
mdb_warn("failed to find panic_lbolt");
return (DCMD_ERR);
}
cid.cid_lbolt = (uintptr_t)sym.st_value;
if (mdb_vread(&lbolt, sizeof (lbolt), cid.cid_lbolt) == -1) {
mdb_warn("failed to read panic_lbolt");
return (DCMD_ERR);
}
if (lbolt == 0) {
if (mdb_lookup_by_name("lbolt", &sym) == -1) {
mdb_warn("failed to find lbolt");
return (DCMD_ERR);
}
cid.cid_lbolt = (uintptr_t)sym.st_value;
}
if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) {
mdb_warn("can't walk cpus");
return (DCMD_ERR);
}
if (cid.cid_cpu != -1) {
/*
* We didn't find this CPU when we walked through the CPUs
* (i.e. the address specified doesn't show up in the "cpu"
* walk). However, the specified address may still correspond
* to a valid cpu_t (for example, if the specified address is
* the actual panicking cpu_t and not the cached panic_cpu).
* Point is: even if we didn't find it, we still want to try
* to print the specified address as a cpu_t.
*/
cpu_t cpu;
if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) {
mdb_warn("%p is neither a valid CPU ID nor a "
"valid cpu_t address\n", cid.cid_cpu);
return (DCMD_ERR);
}
(void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid);
}
return (DCMD_OK);
}
/*ARGSUSED*/
int
flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
int i;
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
for (i = 0; i < sizeof (addr) * NBBY; i++)
mdb_printf("%p\n", addr ^ (1UL << i));
return (DCMD_OK);
}
/*
* Grumble, grumble.
*/
#define SMAP_HASHFUNC(vp, off) \
((((uintptr_t)(vp) >> 6) + ((uintptr_t)(vp) >> 3) + \
((off) >> MAXBSHIFT)) & smd_hashmsk)
int
vnode2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
long smd_hashmsk;
int hash;
uintptr_t offset = 0;
struct smap smp;
uintptr_t saddr, kaddr;
uintptr_t smd_hash, smd_smap;
struct seg seg;
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
if (mdb_readvar(&smd_hashmsk, "smd_hashmsk") == -1) {
mdb_warn("failed to read smd_hashmsk");
return (DCMD_ERR);
}
if (mdb_readvar(&smd_hash, "smd_hash") == -1) {
mdb_warn("failed to read smd_hash");
return (DCMD_ERR);
}
if (mdb_readvar(&smd_smap, "smd_smap") == -1) {
mdb_warn("failed to read smd_hash");
return (DCMD_ERR);
}
if (mdb_readvar(&kaddr, "segkmap") == -1) {
mdb_warn("failed to read segkmap");
return (DCMD_ERR);
}
if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) {
mdb_warn("failed to read segkmap at %p", kaddr);
return (DCMD_ERR);
}
if (argc != 0) {
const mdb_arg_t *arg = &argv[0];
if (arg->a_type == MDB_TYPE_IMMEDIATE)
offset = arg->a_un.a_val;
else
offset = (uintptr_t)mdb_strtoull(arg->a_un.a_str);
}
hash = SMAP_HASHFUNC(addr, offset);
if (mdb_vread(&saddr, sizeof (saddr),
smd_hash + hash * sizeof (uintptr_t)) == -1) {
mdb_warn("couldn't read smap at %p",
smd_hash + hash * sizeof (uintptr_t));
return (DCMD_ERR);
}
do {
if (mdb_vread(&smp, sizeof (smp), saddr) == -1) {
mdb_warn("couldn't read smap at %p", saddr);
return (DCMD_ERR);
}
if ((uintptr_t)smp.sm_vp == addr && smp.sm_off == offset) {
mdb_printf("vnode %p, offs %p is smap %p, vaddr %p\n",
addr, offset, saddr, ((saddr - smd_smap) /
sizeof (smp)) * MAXBSIZE + seg.s_base);
return (DCMD_OK);
}
saddr = (uintptr_t)smp.sm_hash;
} while (saddr != NULL);
mdb_printf("no smap for vnode %p, offs %p\n", addr, offset);
return (DCMD_OK);
}
/*ARGSUSED*/
int
addr2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
uintptr_t kaddr;
struct seg seg;
struct segmap_data sd;
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
if (mdb_readvar(&kaddr, "segkmap") == -1) {
mdb_warn("failed to read segkmap");
return (DCMD_ERR);
}
if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) {
mdb_warn("failed to read segkmap at %p", kaddr);
return (DCMD_ERR);
}
if (mdb_vread(&sd, sizeof (sd), (uintptr_t)seg.s_data) == -1) {
mdb_warn("failed to read segmap_data at %p", seg.s_data);
return (DCMD_ERR);
}
mdb_printf("%p is smap %p\n", addr,
((addr - (uintptr_t)seg.s_base) >> MAXBSHIFT) *
sizeof (struct smap) + (uintptr_t)sd.smd_sm);
return (DCMD_OK);
}
int
as2proc_walk(uintptr_t addr, const proc_t *p, struct as **asp)
{
if (p->p_as == *asp)
mdb_printf("%p\n", addr);
return (WALK_NEXT);
}
/*ARGSUSED*/
int
as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
if (!(flags & DCMD_ADDRSPEC) || argc != 0)
return (DCMD_USAGE);
if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) {
mdb_warn("failed to walk proc");
return (DCMD_ERR);
}
return (DCMD_OK);
}
/*ARGSUSED*/
int
ptree_walk(uintptr_t addr, const proc_t *p, void *ignored)
{
proc_t parent;
int ident = 0;
uintptr_t paddr;
for (paddr = (uintptr_t)p->p_parent; paddr != NULL; ident += 5) {
mdb_vread(&parent, sizeof (parent), paddr);
paddr = (uintptr_t)parent.p_parent;
}
mdb_inc_indent(ident);
mdb_printf("%0?p %s\n", addr, p->p_user.u_comm);
mdb_dec_indent(ident);
return (WALK_NEXT);
}
void
ptree_ancestors(uintptr_t addr, uintptr_t start)
{
proc_t p;
if (mdb_vread(&p, sizeof (p), addr) == -1) {
mdb_warn("couldn't read ancestor at %p", addr);
return;
}