blob: aba780313137c336d6563c44c3154bce1336f6a1 [file] [log] [blame]
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright (c) 2007, The Ohio State University. All rights reserved.
*
* Portions of this source code is developed by the team members of
* The Ohio State University's Network-Based Computing Laboratory (NBCL),
* headed by Professor Dhabaleswar K. (DK) Panda.
*
* Acknowledgements to contributions from developors:
* Ranjit Noronha: noronha@cse.ohio-state.edu
* Lei Chai : chail@cse.ohio-state.edu
* Weikuan Yu : yuw@cse.ohio-state.edu
*
*/
/*
* The rpcib plugin. Implements the interface for RDMATF's
* interaction with IBTF.
*/
#include <sys/param.h>
#include <sys/types.h>
#include <sys/user.h>
#include <sys/systm.h>
#include <sys/sysmacros.h>
#include <sys/proc.h>
#include <sys/socket.h>
#include <sys/file.h>
#include <sys/stream.h>
#include <sys/strsubr.h>
#include <sys/stropts.h>
#include <sys/errno.h>
#include <sys/kmem.h>
#include <sys/debug.h>
#include <sys/pathname.h>
#include <sys/kstat.h>
#include <sys/t_lock.h>
#include <sys/ddi.h>
#include <sys/cmn_err.h>
#include <sys/time.h>
#include <sys/isa_defs.h>
#include <sys/callb.h>
#include <sys/sunddi.h>
#include <sys/sunndi.h>
#include <sys/sdt.h>
#include <sys/ib/ibtl/ibti.h>
#include <rpc/rpc.h>
#include <rpc/ib.h>
#include <sys/modctl.h>
#include <sys/kstr.h>
#include <sys/sockio.h>
#include <sys/vnode.h>
#include <sys/tiuser.h>
#include <net/if.h>
#include <net/if_types.h>
#include <sys/cred.h>
#include <rpc/rpc_rdma.h>
#include <nfs/nfs.h>
#include <sys/atomic.h>
#define NFS_RDMA_PORT 2050
/*
* Convenience structure used by rpcib_get_ib_addresses()
*/
typedef struct rpcib_ipaddrs {
void *ri_list; /* pointer to list of addresses */
uint_t ri_count; /* number of addresses in list */
uint_t ri_size; /* size of ri_list in bytes */
} rpcib_ipaddrs_t;
/*
* Prototype declarations for driver ops
*/
static int rpcib_attach(dev_info_t *, ddi_attach_cmd_t);
static int rpcib_getinfo(dev_info_t *, ddi_info_cmd_t,
void *, void **);
static int rpcib_detach(dev_info_t *, ddi_detach_cmd_t);
static boolean_t rpcib_rdma_capable_interface(struct lifreq *);
static int rpcib_do_ip_ioctl(int, int, void *);
static boolean_t rpcib_get_ib_addresses(rpcib_ipaddrs_t *, rpcib_ipaddrs_t *);
static int rpcib_cache_kstat_update(kstat_t *, int);
static void rib_force_cleanup(void *);
struct {
kstat_named_t cache_limit;
kstat_named_t cache_allocation;
kstat_named_t cache_hits;
kstat_named_t cache_misses;
kstat_named_t cache_misses_above_the_limit;
} rpcib_kstat = {
{"cache_limit", KSTAT_DATA_UINT64 },
{"cache_allocation", KSTAT_DATA_UINT64 },
{"cache_hits", KSTAT_DATA_UINT64 },
{"cache_misses", KSTAT_DATA_UINT64 },
{"cache_misses_above_the_limit", KSTAT_DATA_UINT64 },
};
/* rpcib cb_ops */
static struct cb_ops rpcib_cbops = {
nulldev, /* open */
nulldev, /* close */
nodev, /* strategy */
nodev, /* print */
nodev, /* dump */
nodev, /* read */
nodev, /* write */
nodev, /* ioctl */
nodev, /* devmap */
nodev, /* mmap */
nodev, /* segmap */
nochpoll, /* poll */
ddi_prop_op, /* prop_op */
NULL, /* stream */
D_MP, /* cb_flag */
CB_REV, /* rev */
nodev, /* int (*cb_aread)() */
nodev /* int (*cb_awrite)() */
};
/*
* Device options
*/
static struct dev_ops rpcib_ops = {
DEVO_REV, /* devo_rev, */
0, /* refcnt */
rpcib_getinfo, /* info */
nulldev, /* identify */
nulldev, /* probe */
rpcib_attach, /* attach */
rpcib_detach, /* detach */
nodev, /* reset */
&rpcib_cbops, /* driver ops - devctl interfaces */
NULL, /* bus operations */
NULL, /* power */
ddi_quiesce_not_needed, /* quiesce */
};
/*
* Module linkage information.
*/
static struct modldrv rib_modldrv = {
&mod_driverops, /* Driver module */
"RPCIB plugin driver", /* Driver name and version */
&rpcib_ops, /* Driver ops */
};
static struct modlinkage rib_modlinkage = {
MODREV_1,
(void *)&rib_modldrv,
NULL
};
typedef struct rib_lrc_entry {
struct rib_lrc_entry *forw;
struct rib_lrc_entry *back;
char *lrc_buf;
uint32_t lrc_len;
void *avl_node;
bool_t registered;
struct mrc lrc_mhandle;
bool_t lrc_on_freed_list;
} rib_lrc_entry_t;
typedef struct cache_struct {
rib_lrc_entry_t r;
uint32_t len;
uint32_t elements;
kmutex_t node_lock;
avl_node_t avl_link;
} cache_avl_struct_t;
static uint64_t rib_total_buffers = 0;
uint64_t cache_limit = 100 * 1024 * 1024;
static volatile uint64_t cache_allocation = 0;
static uint64_t cache_watermark = 80 * 1024 * 1024;
static uint64_t cache_hits = 0;
static uint64_t cache_misses = 0;
static uint64_t cache_cold_misses = 0;
static uint64_t cache_hot_misses = 0;
static uint64_t cache_misses_above_the_limit = 0;
static bool_t stats_enabled = FALSE;
static uint64_t max_unsignaled_rws = 5;
/*
* rib_stat: private data pointer used when registering
* with the IBTF. It is returned to the consumer
* in all callbacks.
*/
static rpcib_state_t *rib_stat = NULL;
#define RNR_RETRIES IBT_RNR_RETRY_1
#define MAX_PORTS 2
int preposted_rbufs = RDMA_BUFS_GRANT;
int send_threshold = 1;
/*
* State of the plugin.
* ACCEPT = accepting new connections and requests.
* NO_ACCEPT = not accepting new connection and requests.
* This should eventually move to rpcib_state_t structure, since this
* will tell in which state the plugin is for a particular type of service
* like NFS, NLM or v4 Callback deamon. The plugin might be in accept
* state for one and in no_accept state for the other.
*/
int plugin_state;
kmutex_t plugin_state_lock;
ldi_ident_t rpcib_li;
/*
* RPCIB RDMATF operations
*/
#if defined(MEASURE_POOL_DEPTH)
static void rib_posted_rbufs(uint32_t x) { return; }
#endif
static rdma_stat rib_reachable(int addr_type, struct netbuf *, void **handle);
static rdma_stat rib_disconnect(CONN *conn);
static void rib_listen(struct rdma_svc_data *rd);
static void rib_listen_stop(struct rdma_svc_data *rd);
static rdma_stat rib_registermem(CONN *conn, caddr_t adsp, caddr_t buf,
uint_t buflen, struct mrc *buf_handle);
static rdma_stat rib_deregistermem(CONN *conn, caddr_t buf,
struct mrc buf_handle);
static rdma_stat rib_registermem_via_hca(rib_hca_t *hca, caddr_t adsp,
caddr_t buf, uint_t buflen, struct mrc *buf_handle);
static rdma_stat rib_deregistermem_via_hca(rib_hca_t *hca, caddr_t buf,
struct mrc buf_handle);
static rdma_stat rib_registermemsync(CONN *conn, caddr_t adsp, caddr_t buf,
uint_t buflen, struct mrc *buf_handle, RIB_SYNCMEM_HANDLE *sync_handle,
void *lrc);
static rdma_stat rib_deregistermemsync(CONN *conn, caddr_t buf,
struct mrc buf_handle, RIB_SYNCMEM_HANDLE sync_handle, void *);
static rdma_stat rib_syncmem(CONN *conn, RIB_SYNCMEM_HANDLE shandle,
caddr_t buf, int len, int cpu);
static rdma_stat rib_reg_buf_alloc(CONN *conn, rdma_buf_t *rdbuf);
static void rib_reg_buf_free(CONN *conn, rdma_buf_t *rdbuf);
static void *rib_rbuf_alloc(CONN *, rdma_buf_t *);
static void rib_rbuf_free(CONN *conn, int ptype, void *buf);
static rdma_stat rib_send(CONN *conn, struct clist *cl, uint32_t msgid);
static rdma_stat rib_send_resp(CONN *conn, struct clist *cl, uint32_t msgid);
static rdma_stat rib_post_resp(CONN *conn, struct clist *cl, uint32_t msgid);
static rdma_stat rib_post_resp_remove(CONN *conn, uint32_t msgid);
static rdma_stat rib_post_recv(CONN *conn, struct clist *cl);
static rdma_stat rib_recv(CONN *conn, struct clist **clp, uint32_t msgid);
static rdma_stat rib_read(CONN *conn, struct clist *cl, int wait);
static rdma_stat rib_write(CONN *conn, struct clist *cl, int wait);
static rdma_stat rib_ping_srv(int addr_type, struct netbuf *, rib_hca_t **);
static rdma_stat rib_conn_get(struct netbuf *, int addr_type, void *, CONN **);
static rdma_stat rib_conn_release(CONN *conn);
static rdma_stat rib_getinfo(rdma_info_t *info);
static rib_lrc_entry_t *rib_get_cache_buf(CONN *conn, uint32_t len);
static void rib_free_cache_buf(CONN *conn, rib_lrc_entry_t *buf);
static void rib_destroy_cache(rib_hca_t *hca);
static void rib_server_side_cache_reclaim(void *argp);
static int avl_compare(const void *t1, const void *t2);
static void rib_stop_services(rib_hca_t *);
static void rib_close_channels(rib_conn_list_t *);
/*
* RPCIB addressing operations
*/
/*
* RDMA operations the RPCIB module exports
*/
static rdmaops_t rib_ops = {
rib_reachable,
rib_conn_get,
rib_conn_release,
rib_listen,
rib_listen_stop,
rib_registermem,
rib_deregistermem,
rib_registermemsync,
rib_deregistermemsync,
rib_syncmem,
rib_reg_buf_alloc,
rib_reg_buf_free,
rib_send,
rib_send_resp,
rib_post_resp,
rib_post_resp_remove,
rib_post_recv,
rib_recv,
rib_read,
rib_write,
rib_getinfo,
};
/*
* RDMATF RPCIB plugin details
*/
static rdma_mod_t rib_mod = {
"ibtf", /* api name */
RDMATF_VERS_1,
0,
&rib_ops, /* rdma op vector for ibtf */
};
static rdma_stat open_hcas(rpcib_state_t *);
static rdma_stat rib_qp_init(rib_qp_t *, int);
static void rib_svc_scq_handler(ibt_cq_hdl_t, void *);
static void rib_clnt_scq_handler(ibt_cq_hdl_t, void *);
static void rib_clnt_rcq_handler(ibt_cq_hdl_t, void *);
static void rib_svc_rcq_handler(ibt_cq_hdl_t, void *);
static rib_bufpool_t *rib_rbufpool_create(rib_hca_t *hca, int ptype, int num);
static rdma_stat rib_reg_mem(rib_hca_t *, caddr_t adsp, caddr_t, uint_t,
ibt_mr_flags_t, ibt_mr_hdl_t *, ibt_mr_desc_t *);
static rdma_stat rib_reg_mem_user(rib_hca_t *, caddr_t, uint_t, ibt_mr_flags_t,
ibt_mr_hdl_t *, ibt_mr_desc_t *, caddr_t);
static rdma_stat rib_conn_to_srv(rib_hca_t *, rib_qp_t *, ibt_path_info_t *,
ibt_ip_addr_t *, ibt_ip_addr_t *);
static rdma_stat rib_clnt_create_chan(rib_hca_t *, struct netbuf *,
rib_qp_t **);
static rdma_stat rib_svc_create_chan(rib_hca_t *, caddr_t, uint8_t,
rib_qp_t **);
static rdma_stat rib_sendwait(rib_qp_t *, struct send_wid *);
static struct send_wid *rib_init_sendwait(uint32_t, int, rib_qp_t *);
static int rib_free_sendwait(struct send_wid *);
static struct rdma_done_list *rdma_done_add(rib_qp_t *qp, uint32_t xid);
static void rdma_done_rm(rib_qp_t *qp, struct rdma_done_list *rd);
static void rdma_done_rem_list(rib_qp_t *);
static void rdma_done_notify(rib_qp_t *qp, uint32_t xid);
static void rib_async_handler(void *,
ibt_hca_hdl_t, ibt_async_code_t, ibt_async_event_t *);
static rdma_stat rib_rem_rep(rib_qp_t *, struct reply *);
static struct svc_recv *rib_init_svc_recv(rib_qp_t *, ibt_wr_ds_t *);
static int rib_free_svc_recv(struct svc_recv *);
static struct recv_wid *rib_create_wid(rib_qp_t *, ibt_wr_ds_t *, uint32_t);
static void rib_free_wid(struct recv_wid *);
static rdma_stat rib_disconnect_channel(CONN *, rib_conn_list_t *);
static void rib_detach_hca(rib_hca_t *);
static rdma_stat rib_chk_srv_ibaddr(struct netbuf *, int,
ibt_path_info_t *, ibt_ip_addr_t *, ibt_ip_addr_t *);
/*
* Registration with IBTF as a consumer
*/
static struct ibt_clnt_modinfo_s rib_modinfo = {
IBTI_V2,
IBT_GENERIC,
rib_async_handler, /* async event handler */
NULL, /* Memory Region Handler */
"nfs/ib"
};
/*
* Global strucuture
*/
typedef struct rpcib_s {
dev_info_t *rpcib_dip;
kmutex_t rpcib_mutex;
} rpcib_t;
rpcib_t rpcib;
/*
* /etc/system controlled variable to control
* debugging in rpcib kernel module.
* Set it to values greater that 1 to control
* the amount of debugging messages required.
*/
int rib_debug = 0;
int
_init(void)
{
int error;
error = mod_install((struct modlinkage *)&rib_modlinkage);
if (error != 0) {
/*
* Could not load module
*/
return (error);
}
mutex_init(&plugin_state_lock, NULL, MUTEX_DRIVER, NULL);
return (0);
}
int
_fini()
{
int status;
if ((status = rdma_unregister_mod(&rib_mod)) != RDMA_SUCCESS) {
return (EBUSY);
}
/*
* Remove module
*/
if ((status = mod_remove(&rib_modlinkage)) != 0) {
(void) rdma_register_mod(&rib_mod);
return (status);
}
mutex_destroy(&plugin_state_lock);
return (0);
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&rib_modlinkage, modinfop));
}
/*
* rpcib_getinfo()
* Given the device number, return the devinfo pointer or the
* instance number.
* Note: always succeed DDI_INFO_DEVT2INSTANCE, even before attach.
*/
/*ARGSUSED*/
static int
rpcib_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg, void **result)
{
int ret = DDI_SUCCESS;
switch (cmd) {
case DDI_INFO_DEVT2DEVINFO:
if (rpcib.rpcib_dip != NULL)
*result = rpcib.rpcib_dip;
else {
*result = NULL;
ret = DDI_FAILURE;
}
break;
case DDI_INFO_DEVT2INSTANCE:
*result = NULL;
break;
default:
ret = DDI_FAILURE;
}
return (ret);
}
static int
rpcib_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
ibt_status_t ibt_status;
rdma_stat r_status;
switch (cmd) {
case DDI_ATTACH:
break;
case DDI_RESUME:
return (DDI_SUCCESS);
default:
return (DDI_FAILURE);
}
mutex_init(&rpcib.rpcib_mutex, NULL, MUTEX_DRIVER, NULL);
mutex_enter(&rpcib.rpcib_mutex);
if (rpcib.rpcib_dip != NULL) {
mutex_exit(&rpcib.rpcib_mutex);
return (DDI_FAILURE);
}
rpcib.rpcib_dip = dip;
mutex_exit(&rpcib.rpcib_mutex);
/*
* Create the "rpcib" minor-node.
*/
if (ddi_create_minor_node(dip,
"rpcib", S_IFCHR, 0, DDI_PSEUDO, 0) != DDI_SUCCESS) {
/* Error message, no cmn_err as they print on console */
return (DDI_FAILURE);
}
if (rib_stat == NULL) {
rib_stat = kmem_zalloc(sizeof (*rib_stat), KM_SLEEP);
mutex_init(&rib_stat->open_hca_lock, NULL, MUTEX_DRIVER, NULL);
}
rib_stat->hca_count = ibt_get_hca_list(&rib_stat->hca_guids);
if (rib_stat->hca_count < 1) {
mutex_destroy(&rib_stat->open_hca_lock);
kmem_free(rib_stat, sizeof (*rib_stat));
rib_stat = NULL;
return (DDI_FAILURE);
}
ibt_status = ibt_attach(&rib_modinfo, dip,
(void *)rib_stat, &rib_stat->ibt_clnt_hdl);
if (ibt_status != IBT_SUCCESS) {
ibt_free_hca_list(rib_stat->hca_guids, rib_stat->hca_count);
mutex_destroy(&rib_stat->open_hca_lock);
kmem_free(rib_stat, sizeof (*rib_stat));
rib_stat = NULL;
return (DDI_FAILURE);
}
mutex_enter(&rib_stat->open_hca_lock);
if (open_hcas(rib_stat) != RDMA_SUCCESS) {
ibt_free_hca_list(rib_stat->hca_guids, rib_stat->hca_count);
(void) ibt_detach(rib_stat->ibt_clnt_hdl);
mutex_exit(&rib_stat->open_hca_lock);
mutex_destroy(&rib_stat->open_hca_lock);
kmem_free(rib_stat, sizeof (*rib_stat));
rib_stat = NULL;
return (DDI_FAILURE);
}
mutex_exit(&rib_stat->open_hca_lock);
/*
* Register with rdmatf
*/
rib_mod.rdma_count = rib_stat->hca_count;
r_status = rdma_register_mod(&rib_mod);
if (r_status != RDMA_SUCCESS && r_status != RDMA_REG_EXIST) {
rib_detach_hca(rib_stat->hca);
ibt_free_hca_list(rib_stat->hca_guids, rib_stat->hca_count);
(void) ibt_detach(rib_stat->ibt_clnt_hdl);
mutex_destroy(&rib_stat->open_hca_lock);
kmem_free(rib_stat, sizeof (*rib_stat));
rib_stat = NULL;
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
/*ARGSUSED*/
static int
rpcib_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{
switch (cmd) {
case DDI_DETACH:
break;
case DDI_SUSPEND:
default:
return (DDI_FAILURE);
}
/*
* Detach the hca and free resources
*/
mutex_enter(&plugin_state_lock);
plugin_state = NO_ACCEPT;
mutex_exit(&plugin_state_lock);
rib_detach_hca(rib_stat->hca);
ibt_free_hca_list(rib_stat->hca_guids, rib_stat->hca_count);
(void) ibt_detach(rib_stat->ibt_clnt_hdl);
mutex_enter(&rpcib.rpcib_mutex);
rpcib.rpcib_dip = NULL;
mutex_exit(&rpcib.rpcib_mutex);
mutex_destroy(&rpcib.rpcib_mutex);
return (DDI_SUCCESS);
}
static void rib_rbufpool_free(rib_hca_t *, int);
static void rib_rbufpool_deregister(rib_hca_t *, int);
static void rib_rbufpool_destroy(rib_hca_t *hca, int ptype);
static struct reply *rib_addreplylist(rib_qp_t *, uint32_t);
static rdma_stat rib_rem_replylist(rib_qp_t *);
static int rib_remreply(rib_qp_t *, struct reply *);
static rdma_stat rib_add_connlist(CONN *, rib_conn_list_t *);
static rdma_stat rib_rm_conn(CONN *, rib_conn_list_t *);
/*
* One CQ pair per HCA
*/
static rdma_stat
rib_create_cq(rib_hca_t *hca, uint32_t cq_size, ibt_cq_handler_t cq_handler,
rib_cq_t **cqp, rpcib_state_t *ribstat)
{
rib_cq_t *cq;
ibt_cq_attr_t cq_attr;
uint32_t real_size;
ibt_status_t status;
rdma_stat error = RDMA_SUCCESS;
cq = kmem_zalloc(sizeof (rib_cq_t), KM_SLEEP);
cq->rib_hca = hca;
cq_attr.cq_size = cq_size;
cq_attr.cq_flags = IBT_CQ_NO_FLAGS;
status = ibt_alloc_cq(hca->hca_hdl, &cq_attr, &cq->rib_cq_hdl,
&real_size);
if (status != IBT_SUCCESS) {
cmn_err(CE_WARN, "rib_create_cq: ibt_alloc_cq() failed,"
" status=%d", status);
error = RDMA_FAILED;
goto fail;
}
ibt_set_cq_handler(cq->rib_cq_hdl, cq_handler, ribstat);
/*
* Enable CQ callbacks. CQ Callbacks are single shot
* (e.g. you have to call ibt_enable_cq_notify()
* after each callback to get another one).
*/
status = ibt_enable_cq_notify(cq->rib_cq_hdl, IBT_NEXT_COMPLETION);
if (status != IBT_SUCCESS) {
cmn_err(CE_WARN, "rib_create_cq: "
"enable_cq_notify failed, status %d", status);
error = RDMA_FAILED;
goto fail;
}
*cqp = cq;
return (error);
fail:
if (cq->rib_cq_hdl)
(void) ibt_free_cq(cq->rib_cq_hdl);
if (cq)
kmem_free(cq, sizeof (rib_cq_t));
return (error);
}
static rdma_stat
open_hcas(rpcib_state_t *ribstat)
{
rib_hca_t *hca;
ibt_status_t ibt_status;
rdma_stat status;
ibt_hca_portinfo_t *pinfop;
ibt_pd_flags_t pd_flags = IBT_PD_NO_FLAGS;
uint_t size, cq_size;
int i;
kstat_t *ksp;
cache_avl_struct_t example_avl_node;
char rssc_name[32];
ASSERT(MUTEX_HELD(&ribstat->open_hca_lock));
if (ribstat->hcas == NULL)
ribstat->hcas = kmem_zalloc(ribstat->hca_count *
sizeof (rib_hca_t), KM_SLEEP);
/*
* Open a hca and setup for RDMA
*/
for (i = 0; i < ribstat->hca_count; i++) {
ibt_status = ibt_open_hca(ribstat->ibt_clnt_hdl,
ribstat->hca_guids[i],
&ribstat->hcas[i].hca_hdl);
if (ibt_status != IBT_SUCCESS) {
continue;
}
ribstat->hcas[i].hca_guid = ribstat->hca_guids[i];
hca = &(ribstat->hcas[i]);
hca->ibt_clnt_hdl = ribstat->ibt_clnt_hdl;
hca->state = HCA_INITED;
/*
* query HCA info
*/
ibt_status = ibt_query_hca(hca->hca_hdl, &hca->hca_attrs);
if (ibt_status != IBT_SUCCESS) {
goto fail1;
}
/*
* One PD (Protection Domain) per HCA.
* A qp is allowed to access a memory region
* only when it's in the same PD as that of
* the memory region.
*/
ibt_status = ibt_alloc_pd(hca->hca_hdl, pd_flags, &hca->pd_hdl);
if (ibt_status != IBT_SUCCESS) {
goto fail1;
}
/*
* query HCA ports
*/
ibt_status = ibt_query_hca_ports(hca->hca_hdl,
0, &pinfop, &hca->hca_nports, &size);
if (ibt_status != IBT_SUCCESS) {
goto fail2;
}
hca->hca_ports = pinfop;
hca->hca_pinfosz = size;
pinfop = NULL;
cq_size = DEF_CQ_SIZE; /* default cq size */
/*
* Create 2 pairs of cq's (1 pair for client
* and the other pair for server) on this hca.
* If number of qp's gets too large, then several
* cq's will be needed.
*/
status = rib_create_cq(hca, cq_size, rib_svc_rcq_handler,
&hca->svc_rcq, ribstat);
if (status != RDMA_SUCCESS) {
goto fail3;
}
status = rib_create_cq(hca, cq_size, rib_svc_scq_handler,
&hca->svc_scq, ribstat);
if (status != RDMA_SUCCESS) {
goto fail3;
}
status = rib_create_cq(hca, cq_size, rib_clnt_rcq_handler,
&hca->clnt_rcq, ribstat);
if (status != RDMA_SUCCESS) {
goto fail3;
}
status = rib_create_cq(hca, cq_size, rib_clnt_scq_handler,
&hca->clnt_scq, ribstat);
if (status != RDMA_SUCCESS) {
goto fail3;
}
/*
* Create buffer pools.
* Note rib_rbuf_create also allocates memory windows.
*/
hca->recv_pool = rib_rbufpool_create(hca,
RECV_BUFFER, MAX_BUFS);
if (hca->recv_pool == NULL) {
goto fail3;
}
hca->send_pool = rib_rbufpool_create(hca,
SEND_BUFFER, MAX_BUFS);
if (hca->send_pool == NULL) {
rib_rbufpool_destroy(hca, RECV_BUFFER);
goto fail3;
}
if (hca->server_side_cache == NULL) {
(void) sprintf(rssc_name,
"rib_server_side_cache_%04d", i);
hca->server_side_cache = kmem_cache_create(
rssc_name,
sizeof (cache_avl_struct_t), 0,
NULL,
NULL,
rib_server_side_cache_reclaim,
hca, NULL, 0);
}
avl_create(&hca->avl_tree,
avl_compare,
sizeof (cache_avl_struct_t),
(uint_t)(uintptr_t)&example_avl_node.avl_link-
(uint_t)(uintptr_t)&example_avl_node);
rw_init(&hca->avl_rw_lock,
NULL, RW_DRIVER, hca->iblock);
mutex_init(&hca->cache_allocation,
NULL, MUTEX_DRIVER, NULL);
hca->avl_init = TRUE;
/* Create kstats for the cache */
ASSERT(INGLOBALZONE(curproc));
if (!stats_enabled) {
ksp = kstat_create_zone("unix", 0, "rpcib_cache", "rpc",
KSTAT_TYPE_NAMED,
sizeof (rpcib_kstat) / sizeof (kstat_named_t),
KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_WRITABLE,
GLOBAL_ZONEID);
if (ksp) {
ksp->ks_data = (void *) &rpcib_kstat;
ksp->ks_update = rpcib_cache_kstat_update;
kstat_install(ksp);
stats_enabled = TRUE;
}
}
if (NULL == hca->reg_cache_clean_up) {
hca->reg_cache_clean_up = ddi_taskq_create(NULL,
"REG_CACHE_CLEANUP", 1, TASKQ_DEFAULTPRI, 0);
}
/*
* Initialize the registered service list and
* the lock
*/
hca->service_list = NULL;
rw_init(&hca->service_list_lock, NULL, RW_DRIVER, hca->iblock);
mutex_init(&hca->cb_lock, NULL, MUTEX_DRIVER, hca->iblock);
cv_init(&hca->cb_cv, NULL, CV_DRIVER, NULL);
rw_init(&hca->cl_conn_list.conn_lock, NULL, RW_DRIVER,
hca->iblock);
rw_init(&hca->srv_conn_list.conn_lock, NULL, RW_DRIVER,
hca->iblock);
rw_init(&hca->state_lock, NULL, RW_DRIVER, hca->iblock);
mutex_init(&hca->inuse_lock, NULL, MUTEX_DRIVER, hca->iblock);
hca->inuse = TRUE;
/*
* XXX One hca only. Add multi-hca functionality if needed
* later.
*/
ribstat->hca = hca;
ribstat->nhca_inited++;
ibt_free_portinfo(hca->hca_ports, hca->hca_pinfosz);
break;
fail3:
ibt_free_portinfo(hca->hca_ports, hca->hca_pinfosz);
fail2:
(void) ibt_free_pd(hca->hca_hdl, hca->pd_hdl);
fail1:
(void) ibt_close_hca(hca->hca_hdl);
}
if (ribstat->hca != NULL)
return (RDMA_SUCCESS);
else
return (RDMA_FAILED);
}
/*
* Callback routines
*/
/*
* SCQ handlers
*/
/* ARGSUSED */
static void
rib_clnt_scq_handler(ibt_cq_hdl_t cq_hdl, void *arg)
{
ibt_status_t ibt_status;
ibt_wc_t wc;
int i;
/*
* Re-enable cq notify here to avoid missing any
* completion queue notification.
*/
(void) ibt_enable_cq_notify(cq_hdl, IBT_NEXT_COMPLETION);
ibt_status = IBT_SUCCESS;
while (ibt_status != IBT_CQ_EMPTY) {
bzero(&wc, sizeof (wc));
ibt_status = ibt_poll_cq(cq_hdl, &wc, 1, NULL);
if (ibt_status != IBT_SUCCESS)
return;
/*
* Got a send completion
*/
if (wc.wc_id != NULL) { /* XXX can it be otherwise ???? */
struct send_wid *wd = (struct send_wid *)(uintptr_t)wc.wc_id;
CONN *conn = qptoc(wd->qp);
mutex_enter(&wd->sendwait_lock);
switch (wc.wc_status) {
case IBT_WC_SUCCESS:
wd->status = RDMA_SUCCESS;
break;
case IBT_WC_WR_FLUSHED_ERR:
wd->status = RDMA_FAILED;
break;
default:
/*
* RC Send Q Error Code Local state Remote State
* ==================== =========== ============
* IBT_WC_BAD_RESPONSE_ERR ERROR None
* IBT_WC_LOCAL_LEN_ERR ERROR None
* IBT_WC_LOCAL_CHAN_OP_ERR ERROR None
* IBT_WC_LOCAL_PROTECT_ERR ERROR None
* IBT_WC_MEM_WIN_BIND_ERR ERROR None
* IBT_WC_REMOTE_INVALID_REQ_ERR ERROR ERROR
* IBT_WC_REMOTE_ACCESS_ERR ERROR ERROR
* IBT_WC_REMOTE_OP_ERR ERROR ERROR
* IBT_WC_RNR_NAK_TIMEOUT_ERR ERROR None
* IBT_WC_TRANS_TIMEOUT_ERR ERROR None
* IBT_WC_WR_FLUSHED_ERR None None
*/
/*
* Channel in error state. Set connection to
* ERROR and cleanup will happen either from
* conn_release or from rib_conn_get
*/
wd->status = RDMA_FAILED;
mutex_enter(&conn->c_lock);
if (conn->c_state != C_DISCONN_PEND)
conn->c_state = C_ERROR_CONN;
mutex_exit(&conn->c_lock);
break;
}
if (wd->cv_sig == 1) {
/*
* Notify poster
*/
cv_signal(&wd->wait_cv);
mutex_exit(&wd->sendwait_lock);
} else {
/*
* Poster not waiting for notification.
* Free the send buffers and send_wid
*/
for (i = 0; i < wd->nsbufs; i++) {
rib_rbuf_free(qptoc(wd->qp), SEND_BUFFER,
(void *)(uintptr_t)wd->sbufaddr[i]);
}
mutex_exit(&wd->sendwait_lock);
(void) rib_free_sendwait(wd);
}
}
}
}
/* ARGSUSED */
static void
rib_svc_scq_handler(ibt_cq_hdl_t cq_hdl, void *arg)
{
ibt_status_t ibt_status;
ibt_wc_t wc;
int i;
/*
* Re-enable cq notify here to avoid missing any
* completion queue notification.
*/
(void) ibt_enable_cq_notify(cq_hdl, IBT_NEXT_COMPLETION);
ibt_status = IBT_SUCCESS;
while (ibt_status != IBT_CQ_EMPTY) {
bzero(&wc, sizeof (wc));
ibt_status = ibt_poll_cq(cq_hdl, &wc, 1, NULL);
if (ibt_status != IBT_SUCCESS)
return;
/*
* Got a send completion
*/
if (wc.wc_id != NULL) { /* XXX NULL possible ???? */
struct send_wid *wd =
(struct send_wid *)(uintptr_t)wc.wc_id;
mutex_enter(&wd->sendwait_lock);
if (wd->cv_sig == 1) {
/*
* Update completion status and notify poster
*/
if (wc.wc_status == IBT_WC_SUCCESS)
wd->status = RDMA_SUCCESS;
else
wd->status = RDMA_FAILED;
cv_signal(&wd->wait_cv);
mutex_exit(&wd->sendwait_lock);
} else {
/*
* Poster not waiting for notification.
* Free the send buffers and send_wid
*/
for (i = 0; i < wd->nsbufs; i++) {
rib_rbuf_free(qptoc(wd->qp),
SEND_BUFFER,
(void *)(uintptr_t)wd->sbufaddr[i]);
}
mutex_exit(&wd->sendwait_lock);
(void) rib_free_sendwait(wd);
}
}
}
}
/*
* RCQ handler
*/
/* ARGSUSED */
static void
rib_clnt_rcq_handler(ibt_cq_hdl_t cq_hdl, void *arg)
{
rib_qp_t *qp;
ibt_status_t ibt_status;
ibt_wc_t wc;
struct recv_wid *rwid;
/*
* Re-enable cq notify here to avoid missing any
* completion queue notification.
*/
(void) ibt_enable_cq_notify(cq_hdl, IBT_NEXT_COMPLETION);
ibt_status = IBT_SUCCESS;
while (ibt_status != IBT_CQ_EMPTY) {
bzero(&wc, sizeof (wc));
ibt_status = ibt_poll_cq(cq_hdl, &wc, 1, NULL);
if (ibt_status != IBT_SUCCESS)
return;
rwid = (struct recv_wid *)(uintptr_t)wc.wc_id;
qp = rwid->qp;
if (wc.wc_status == IBT_WC_SUCCESS) {
XDR inxdrs, *xdrs;
uint_t xid, vers, op, find_xid = 0;
struct reply *r;
CONN *conn = qptoc(qp);
uint32_t rdma_credit = 0;
xdrs = &inxdrs;
xdrmem_create(xdrs, (caddr_t)(uintptr_t)rwid->addr,
wc.wc_bytes_xfer, XDR_DECODE);
/*
* Treat xid as opaque (xid is the first entity
* in the rpc rdma message).
*/
xid = *(uint32_t *)(uintptr_t)rwid->addr;
/* Skip xid and set the xdr position accordingly. */
XDR_SETPOS(xdrs, sizeof (uint32_t));
(void) xdr_u_int(xdrs, &vers);
(void) xdr_u_int(xdrs, &rdma_credit);
(void) xdr_u_int(xdrs, &op);
XDR_DESTROY(xdrs);
if (vers != RPCRDMA_VERS) {
/*
* Invalid RPC/RDMA version. Cannot
* interoperate. Set connection to
* ERROR state and bail out.
*/
mutex_enter(&conn->c_lock);
if (conn->c_state != C_DISCONN_PEND)
conn->c_state = C_ERROR_CONN;
mutex_exit(&conn->c_lock);
rib_rbuf_free(conn, RECV_BUFFER,
(void *)(uintptr_t)rwid->addr);
rib_free_wid(rwid);
continue;
}
mutex_enter(&qp->replylist_lock);
for (r = qp->replylist; r != NULL; r = r->next) {
if (r->xid == xid) {
find_xid = 1;
switch (op) {
case RDMA_MSG:
case RDMA_NOMSG:
case RDMA_MSGP:
r->status = RDMA_SUCCESS;
r->vaddr_cq = rwid->addr;
r->bytes_xfer =
wc.wc_bytes_xfer;
cv_signal(&r->wait_cv);
break;
default:
rib_rbuf_free(qptoc(qp),
RECV_BUFFER,
(void *)(uintptr_t)
rwid->addr);
break;
}
break;
}
}
mutex_exit(&qp->replylist_lock);
if (find_xid == 0) {
/* RPC caller not waiting for reply */
DTRACE_PROBE1(rpcib__i__nomatchxid1,
int, xid);
rib_rbuf_free(qptoc(qp), RECV_BUFFER,
(void *)(uintptr_t)rwid->addr);
}
} else if (wc.wc_status == IBT_WC_WR_FLUSHED_ERR) {
CONN *conn = qptoc(qp);
/*
* Connection being flushed. Just free
* the posted buffer
*/
rib_rbuf_free(conn, RECV_BUFFER,
(void *)(uintptr_t)rwid->addr);
} else {
CONN *conn = qptoc(qp);
/*
* RC Recv Q Error Code Local state Remote State
* ==================== =========== ============
* IBT_WC_LOCAL_ACCESS_ERR ERROR ERROR when NAK recvd
* IBT_WC_LOCAL_LEN_ERR ERROR ERROR when NAK recvd
* IBT_WC_LOCAL_PROTECT_ERR ERROR ERROR when NAK recvd
* IBT_WC_LOCAL_CHAN_OP_ERR ERROR ERROR when NAK recvd
* IBT_WC_REMOTE_INVALID_REQ_ERR ERROR ERROR when NAK recvd
* IBT_WC_WR_FLUSHED_ERR None None
*/
/*
* Channel in error state. Set connection
* in ERROR state.
*/
mutex_enter(&conn->c_lock);
if (conn->c_state != C_DISCONN_PEND)
conn->c_state = C_ERROR_CONN;
mutex_exit(&conn->c_lock);
rib_rbuf_free(conn, RECV_BUFFER,
(void *)(uintptr_t)rwid->addr);
}
rib_free_wid(rwid);
}
}
/* Server side */
/* ARGSUSED */
static void
rib_svc_rcq_handler(ibt_cq_hdl_t cq_hdl, void *arg)
{
rdma_recv_data_t *rdp;
rib_qp_t *qp;
ibt_status_t ibt_status;
ibt_wc_t wc;
struct svc_recv *s_recvp;
CONN *conn;
mblk_t *mp;
/*
* Re-enable cq notify here to avoid missing any
* completion queue notification.
*/
(void) ibt_enable_cq_notify(cq_hdl, IBT_NEXT_COMPLETION);
ibt_status = IBT_SUCCESS;
while (ibt_status != IBT_CQ_EMPTY) {
bzero(&wc, sizeof (wc));
ibt_status = ibt_poll_cq(cq_hdl, &wc, 1, NULL);
if (ibt_status != IBT_SUCCESS)
return;
s_recvp = (struct svc_recv *)(uintptr_t)wc.wc_id;
qp = s_recvp->qp;
conn = qptoc(qp);
mutex_enter(&qp->posted_rbufs_lock);
qp->n_posted_rbufs--;
#if defined(MEASURE_POOL_DEPTH)
rib_posted_rbufs(preposted_rbufs - qp->n_posted_rbufs);
#endif
if (qp->n_posted_rbufs == 0)
cv_signal(&qp->posted_rbufs_cv);
mutex_exit(&qp->posted_rbufs_lock);
if (wc.wc_status == IBT_WC_SUCCESS) {
XDR inxdrs, *xdrs;
uint_t xid, vers, op;
uint32_t rdma_credit;
xdrs = &inxdrs;
/* s_recvp->vaddr stores data */
xdrmem_create(xdrs, (caddr_t)(uintptr_t)s_recvp->vaddr,
wc.wc_bytes_xfer, XDR_DECODE);
/*
* Treat xid as opaque (xid is the first entity
* in the rpc rdma message).
*/
xid = *(uint32_t *)(uintptr_t)s_recvp->vaddr;
/* Skip xid and set the xdr position accordingly. */
XDR_SETPOS(xdrs, sizeof (uint32_t));
if (!xdr_u_int(xdrs, &vers) ||
!xdr_u_int(xdrs, &rdma_credit) ||
!xdr_u_int(xdrs, &op)) {
rib_rbuf_free(conn, RECV_BUFFER,
(void *)(uintptr_t)s_recvp->vaddr);
XDR_DESTROY(xdrs);
(void) rib_free_svc_recv(s_recvp);
continue;
}
XDR_DESTROY(xdrs);
if (vers != RPCRDMA_VERS) {
/*
* Invalid RPC/RDMA version.
* Drop rpc rdma message.
*/
rib_rbuf_free(conn, RECV_BUFFER,
(void *)(uintptr_t)s_recvp->vaddr);
(void) rib_free_svc_recv(s_recvp);
continue;
}
/*
* Is this for RDMA_DONE?
*/
if (op == RDMA_DONE) {
rib_rbuf_free(conn, RECV_BUFFER,
(void *)(uintptr_t)s_recvp->vaddr);
/*
* Wake up the thread waiting on
* a RDMA_DONE for xid
*/
mutex_enter(&qp->rdlist_lock);
rdma_done_notify(qp, xid);
mutex_exit(&qp->rdlist_lock);
(void) rib_free_svc_recv(s_recvp);
continue;
}
mutex_enter(&plugin_state_lock);
if (plugin_state == ACCEPT) {
while ((mp = allocb(sizeof (*rdp), BPRI_LO))
== NULL)
(void) strwaitbuf(
sizeof (*rdp), BPRI_LO);
/*
* Plugin is in accept state, hence the master
* transport queue for this is still accepting
* requests. Hence we can call svc_queuereq to
* queue this recieved msg.
*/
rdp = (rdma_recv_data_t *)mp->b_rptr;
rdp->conn = conn;
rdp->rpcmsg.addr =
(caddr_t)(uintptr_t)s_recvp->vaddr;
rdp->rpcmsg.type = RECV_BUFFER;
rdp->rpcmsg.len = wc.wc_bytes_xfer;
rdp->status = wc.wc_status;
mutex_enter(&conn->c_lock);
conn->c_ref++;
mutex_exit(&conn->c_lock);
mp->b_wptr += sizeof (*rdp);
svc_queuereq((queue_t *)rib_stat->q, mp);
mutex_exit(&plugin_state_lock);
} else {
/*
* The master transport for this is going
* away and the queue is not accepting anymore
* requests for krpc, so don't do anything, just
* free the msg.
*/
mutex_exit(&plugin_state_lock);
rib_rbuf_free(conn, RECV_BUFFER,
(void *)(uintptr_t)s_recvp->vaddr);
}
} else {
rib_rbuf_free(conn, RECV_BUFFER,
(void *)(uintptr_t)s_recvp->vaddr);
}
(void) rib_free_svc_recv(s_recvp);
}
}
/*
* Handles DR event of IBT_HCA_DETACH_EVENT.
*/
/* ARGSUSED */
static void
rib_async_handler(void *clnt_private, ibt_hca_hdl_t hca_hdl,
ibt_async_code_t code, ibt_async_event_t *event)
{
switch (code) {
case IBT_HCA_ATTACH_EVENT:
/* ignore */
break;
case IBT_HCA_DETACH_EVENT:
{
ASSERT(rib_stat->hca->hca_hdl == hca_hdl);
rib_detach_hca(rib_stat->hca);
#ifdef DEBUG
cmn_err(CE_NOTE, "rib_async_handler(): HCA being detached!\n");
#endif
break;
}
#ifdef DEBUG
case IBT_EVENT_PATH_MIGRATED:
cmn_err(CE_NOTE, "rib_async_handler(): "
"IBT_EVENT_PATH_MIGRATED\n");
break;
case IBT_EVENT_SQD:
cmn_err(CE_NOTE, "rib_async_handler(): IBT_EVENT_SQD\n");
break;
case IBT_EVENT_COM_EST:
cmn_err(CE_NOTE, "rib_async_handler(): IBT_EVENT_COM_EST\n");
break;
case IBT_ERROR_CATASTROPHIC_CHAN:
cmn_err(CE_NOTE, "rib_async_handler(): "
"IBT_ERROR_CATASTROPHIC_CHAN\n");
break;
case IBT_ERROR_INVALID_REQUEST_CHAN:
cmn_err(CE_NOTE, "rib_async_handler(): "
"IBT_ERROR_INVALID_REQUEST_CHAN\n");
break;
case IBT_ERROR_ACCESS_VIOLATION_CHAN:
cmn_err(CE_NOTE, "rib_async_handler(): "
"IBT_ERROR_ACCESS_VIOLATION_CHAN\n");
break;
case IBT_ERROR_PATH_MIGRATE_REQ:
cmn_err(CE_NOTE, "rib_async_handler(): "
"IBT_ERROR_PATH_MIGRATE_REQ\n");
break;
case IBT_ERROR_CQ:
cmn_err(CE_NOTE, "rib_async_handler(): IBT_ERROR_CQ\n");
break;
case IBT_ERROR_PORT_DOWN:
cmn_err(CE_NOTE, "rib_async_handler(): IBT_ERROR_PORT_DOWN\n");
break;
case IBT_EVENT_PORT_UP:
cmn_err(CE_NOTE, "rib_async_handler(): IBT_EVENT_PORT_UP\n");
break;
case IBT_ASYNC_OPAQUE1:
cmn_err(CE_NOTE, "rib_async_handler(): IBT_ASYNC_OPAQUE1\n");
break;
case IBT_ASYNC_OPAQUE2:
cmn_err(CE_NOTE, "rib_async_handler(): IBT_ASYNC_OPAQUE2\n");
break;
case IBT_ASYNC_OPAQUE3:
cmn_err(CE_NOTE, "rib_async_handler(): IBT_ASYNC_OPAQUE3\n");
break;
case IBT_ASYNC_OPAQUE4:
cmn_err(CE_NOTE, "rib_async_handler(): IBT_ASYNC_OPAQUE4\n");
break;
#endif
default:
break;
}
}
/*
* Client's reachable function.
*/
static rdma_stat
rib_reachable(int addr_type, struct netbuf *raddr, void **handle)
{
rib_hca_t *hca;
rdma_stat status;
/*
* First check if a hca is still attached
*/
*handle = NULL;
rw_enter(&rib_stat->hca->state_lock, RW_READER);
if (rib_stat->hca->state != HCA_INITED) {
rw_exit(&rib_stat->hca->state_lock);
return (RDMA_FAILED);
}
status = rib_ping_srv(addr_type, raddr, &hca);
rw_exit(&rib_stat->hca->state_lock);
if (status == RDMA_SUCCESS) {
*handle = (void *)hca;
return (RDMA_SUCCESS);
} else {
*handle = NULL;
DTRACE_PROBE(rpcib__i__pingfailed);
return (RDMA_FAILED);
}
}
/* Client side qp creation */
static rdma_stat
rib_clnt_create_chan(rib_hca_t *hca, struct netbuf *raddr, rib_qp_t **qp)
{
rib_qp_t *kqp = NULL;
CONN *conn;
rdma_clnt_cred_ctrl_t *cc_info;
ASSERT(qp != NULL);
*qp = NULL;
kqp = kmem_zalloc(sizeof (rib_qp_t), KM_SLEEP);
conn = qptoc(kqp);
kqp->hca = hca;
kqp->rdmaconn.c_rdmamod = &rib_mod;
kqp->rdmaconn.c_private = (caddr_t)kqp;
kqp->mode = RIB_CLIENT;
kqp->chan_flags = IBT_BLOCKING;
conn->c_raddr.buf = kmem_alloc(raddr->len, KM_SLEEP);
bcopy(raddr->buf, conn->c_raddr.buf, raddr->len);
conn->c_raddr.len = conn->c_raddr.maxlen = raddr->len;
/*
* Initialize
*/
cv_init(&kqp->cb_conn_cv, NULL, CV_DEFAULT, NULL);
cv_init(&kqp->posted_rbufs_cv, NULL, CV_DEFAULT, NULL);
mutex_init(&kqp->posted_rbufs_lock, NULL, MUTEX_DRIVER, hca->iblock);
mutex_init(&kqp->replylist_lock, NULL, MUTEX_DRIVER, hca->iblock);
mutex_init(&kqp->rdlist_lock, NULL, MUTEX_DEFAULT, hca->iblock);
mutex_init(&kqp->cb_lock, NULL, MUTEX_DRIVER, hca->iblock);
cv_init(&kqp->rdmaconn.c_cv, NULL, CV_DEFAULT, NULL);
mutex_init(&kqp->rdmaconn.c_lock, NULL, MUTEX_DRIVER, hca->iblock);
/*
* Initialize the client credit control
* portion of the rdmaconn struct.
*/
kqp->rdmaconn.c_cc_type = RDMA_CC_CLNT;
cc_info = &kqp->rdmaconn.rdma_conn_cred_ctrl_u.c_clnt_cc;
cc_info->clnt_cc_granted_ops = 0;
cc_info->clnt_cc_in_flight_ops = 0;
cv_init(&cc_info->clnt_cc_cv, NULL, CV_DEFAULT, NULL);
*qp = kqp;
return (RDMA_SUCCESS);
}
/* Server side qp creation */
static rdma_stat
rib_svc_create_chan(rib_hca_t *hca, caddr_t q, uint8_t port, rib_qp_t **qp)
{
rib_qp_t *kqp = NULL;
ibt_chan_sizes_t chan_sizes;
ibt_rc_chan_alloc_args_t qp_attr;
ibt_status_t ibt_status;
rdma_srv_cred_ctrl_t *cc_info;
*qp = NULL;
kqp = kmem_zalloc(sizeof (rib_qp_t), KM_SLEEP);
kqp->hca = hca;
kqp->port_num = port;
kqp->rdmaconn.c_rdmamod = &rib_mod;
kqp->rdmaconn.c_private = (caddr_t)kqp;
/*
* Create the qp handle
*/
bzero(&qp_attr, sizeof (ibt_rc_chan_alloc_args_t));
qp_attr.rc_scq = hca->svc_scq->rib_cq_hdl;
qp_attr.rc_rcq = hca->svc_rcq->rib_cq_hdl;
qp_attr.rc_pd = hca->pd_hdl;
qp_attr.rc_hca_port_num = port;
qp_attr.rc_sizes.cs_sq_sgl = DSEG_MAX;
qp_attr.rc_sizes.cs_rq_sgl = RQ_DSEG_MAX;
qp_attr.rc_sizes.cs_sq = DEF_SQ_SIZE;
qp_attr.rc_sizes.cs_rq = DEF_RQ_SIZE;
qp_attr.rc_clone_chan = NULL;
qp_attr.rc_control = IBT_CEP_RDMA_RD | IBT_CEP_RDMA_WR;
qp_attr.rc_flags = IBT_WR_SIGNALED;
rw_enter(&hca->state_lock, RW_READER);
if (hca->state != HCA_DETACHED) {
ibt_status = ibt_alloc_rc_channel(hca->hca_hdl,
IBT_ACHAN_NO_FLAGS, &qp_attr, &kqp->qp_hdl,
&chan_sizes);
} else {
rw_exit(&hca->state_lock);
goto fail;
}
rw_exit(&hca->state_lock);
if (ibt_status != IBT_SUCCESS) {
DTRACE_PROBE1(rpcib__i_svccreatechanfail,
int, ibt_status);
goto fail;
}
kqp->mode = RIB_SERVER;
kqp->chan_flags = IBT_BLOCKING;
kqp->q = q; /* server ONLY */
cv_init(&kqp->cb_conn_cv, NULL, CV_DEFAULT, NULL);
cv_init(&kqp->posted_rbufs_cv, NULL, CV_DEFAULT, NULL);
mutex_init(&kqp->replylist_lock, NULL, MUTEX_DEFAULT, hca->iblock);
mutex_init(&kqp->posted_rbufs_lock, NULL, MUTEX_DRIVER, hca->iblock);
mutex_init(&kqp->rdlist_lock, NULL, MUTEX_DEFAULT, hca->iblock);
mutex_init(&kqp->cb_lock, NULL, MUTEX_DRIVER, hca->iblock);
cv_init(&kqp->rdmaconn.c_cv, NULL, CV_DEFAULT, NULL);
mutex_init(&kqp->rdmaconn.c_lock, NULL, MUTEX_DRIVER, hca->iblock);
/*
* Set the private data area to qp to be used in callbacks
*/
ibt_set_chan_private(kqp->qp_hdl, (void *)kqp);
kqp->rdmaconn.c_state = C_CONNECTED;
/*
* Initialize the server credit control
* portion of the rdmaconn struct.
*/
kqp->rdmaconn.c_cc_type = RDMA_CC_SRV;
cc_info = &kqp->rdmaconn.rdma_conn_cred_ctrl_u.c_srv_cc;
cc_info->srv_cc_buffers_granted = preposted_rbufs;
cc_info->srv_cc_cur_buffers_used = 0;
cc_info->srv_cc_posted = preposted_rbufs;
*qp = kqp;
return (RDMA_SUCCESS);
fail:
if (kqp)
kmem_free(kqp, sizeof (rib_qp_t));
return (RDMA_FAILED);
}
/* ARGSUSED */
ibt_cm_status_t
rib_clnt_cm_handler(void *clnt_hdl, ibt_cm_event_t *event,
ibt_cm_return_args_t *ret_args, void *priv_data,
ibt_priv_data_len_t len)
{
rpcib_state_t *ribstat;
rib_hca_t *hca;
ribstat = (rpcib_state_t *)clnt_hdl;
hca = (rib_hca_t *)ribstat->hca;
switch (event->cm_type) {
/* got a connection close event */
case IBT_CM_EVENT_CONN_CLOSED:
{
CONN *conn;
rib_qp_t *qp;
/* check reason why connection was closed */
switch (event->cm_event.closed) {
case IBT_CM_CLOSED_DREP_RCVD:
case IBT_CM_CLOSED_DREQ_TIMEOUT:
case IBT_CM_CLOSED_DUP:
case IBT_CM_CLOSED_ABORT:
case IBT_CM_CLOSED_ALREADY:
/*
* These cases indicate the local end initiated
* the closing of the channel. Nothing to do here.
*/
break;
default:
/*
* Reason for CONN_CLOSED event must be one of
* IBT_CM_CLOSED_DREQ_RCVD or IBT_CM_CLOSED_REJ_RCVD
* or IBT_CM_CLOSED_STALE. These indicate cases were
* the remote end is closing the channel. In these
* cases free the channel and transition to error
* state
*/
qp = ibt_get_chan_private(event->cm_channel);
conn = qptoc(qp);
mutex_enter(&conn->c_lock);
if (conn->c_state == C_DISCONN_PEND) {
mutex_exit(&conn->c_lock);
break;
}
conn->c_state = C_ERROR_CONN;
/*
* Free the rc_channel. Channel has already
* transitioned to ERROR state and WRs have been
* FLUSHED_ERR already.
*/
(void) ibt_free_channel(qp->qp_hdl);
qp->qp_hdl = NULL;
/*
* Free the conn if c_ref is down to 0 already
*/
if (conn->c_ref == 0) {
/*
* Remove from list and free conn
*/
conn->c_state = C_DISCONN_PEND;
mutex_exit(&conn->c_lock);
(void) rib_disconnect_channel(conn,
&hca->cl_conn_list);
} else {
mutex_exit(&conn->c_lock);
}
#ifdef DEBUG
if (rib_debug)
cmn_err(CE_NOTE, "rib_clnt_cm_handler: "
"(CONN_CLOSED) channel disconnected");
#endif
break;
}
break;
}
default:
break;
}
return (IBT_CM_ACCEPT);
}
/* Check server ib address */
rdma_stat
rib_chk_srv_ibaddr(struct netbuf *raddr,
int addr_type, ibt_path_info_t *path, ibt_ip_addr_t *s_ip,
ibt_ip_addr_t *d_ip)
{
struct sockaddr_in *sin4;
struct sockaddr_in6 *sin6;
ibt_status_t ibt_status;
ibt_ip_path_attr_t ipattr;
uint8_t npaths = 0;
ibt_path_ip_src_t srcip;
ASSERT(raddr->buf != NULL);
(void) bzero(path, sizeof (ibt_path_info_t));
switch (addr_type) {
case AF_INET:
sin4 = (struct sockaddr_in *)raddr->buf;
d_ip->family = AF_INET;
d_ip->un.ip4addr = sin4->sin_addr.s_addr;
break;
case AF_INET6:
sin6 = (struct sockaddr_in6 *)raddr->buf;
d_ip->family = AF_INET6;
d_ip->un.ip6addr = sin6->sin6_addr;
break;
default:
return (RDMA_INVAL);
}
bzero(&ipattr, sizeof (ibt_ip_path_attr_t));
bzero(&srcip, sizeof (ibt_path_ip_src_t));
ipattr.ipa_dst_ip = d_ip;
ipattr.ipa_hca_guid = rib_stat->hca->hca_guid;
ipattr.ipa_ndst = 1;
ipattr.ipa_max_paths = 1;
npaths = 0;
ibt_status = ibt_get_ip_paths(rib_stat->ibt_clnt_hdl,
IBT_PATH_NO_FLAGS,
&ipattr,
path,
&npaths,
&srcip);
if (ibt_status != IBT_SUCCESS ||
npaths < 1 ||
path->pi_hca_guid != rib_stat->hca->hca_guid) {
bzero(s_ip, sizeof (ibt_path_ip_src_t));
return (RDMA_FAILED);
}
if (srcip.ip_primary.family == AF_INET) {
s_ip->family = AF_INET;
s_ip->un.ip4addr = srcip.ip_primary.un.ip4addr;
} else {
s_ip->family = AF_INET6;
s_ip->un.ip6addr = srcip.ip_primary.un.ip6addr;
}
return (RDMA_SUCCESS);
}
/*
* Connect to the server.
*/
rdma_stat
rib_conn_to_srv(rib_hca_t *hca, rib_qp_t *qp, ibt_path_info_t *path,
ibt_ip_addr_t *s_ip, ibt_ip_addr_t *d_ip)
{
ibt_chan_open_args_t chan_args; /* channel args */
ibt_chan_sizes_t chan_sizes;
ibt_rc_chan_alloc_args_t qp_attr;
ibt_status_t ibt_status;
ibt_rc_returns_t ret_args; /* conn reject info */
int refresh = REFRESH_ATTEMPTS; /* refresh if IBT_CM_CONN_STALE */
ibt_ip_cm_info_t ipcm_info;
uint8_t cmp_ip_pvt[IBT_IP_HDR_PRIV_DATA_SZ];
(void) bzero(&chan_args, sizeof (chan_args));
(void) bzero(&qp_attr, sizeof (ibt_rc_chan_alloc_args_t));
(void) bzero(&ipcm_info, sizeof (ibt_ip_cm_info_t));
switch (ipcm_info.src_addr.family = s_ip->family) {
case AF_INET:
ipcm_info.src_addr.un.ip4addr = s_ip->un.ip4addr;
break;
case AF_INET6:
ipcm_info.src_addr.un.ip6addr = s_ip->un.ip6addr;
break;
}
switch (ipcm_info.dst_addr.family = d_ip->family) {
case AF_INET:
ipcm_info.dst_addr.un.ip4addr = d_ip->un.ip4addr;
break;
case AF_INET6:
ipcm_info.dst_addr.un.ip6addr = d_ip->un.ip6addr;
break;
}
ipcm_info.src_port = NFS_RDMA_PORT;
ibt_status = ibt_format_ip_private_data(&ipcm_info,
IBT_IP_HDR_PRIV_DATA_SZ, cmp_ip_pvt);
if (ibt_status != IBT_SUCCESS) {
cmn_err(CE_WARN, "ibt_format_ip_private_data failed\n");
return (-1);
}
qp_attr.rc_hca_port_num = path->pi_prim_cep_path.cep_hca_port_num;
/* Alloc a RC channel */
qp_attr.rc_scq = hca->clnt_scq->rib_cq_hdl;
qp_attr.rc_rcq = hca->clnt_rcq->rib_cq_hdl;
qp_attr.rc_pd = hca->pd_hdl;
qp_attr.rc_sizes.cs_sq_sgl = DSEG_MAX;
qp_attr.rc_sizes.cs_rq_sgl = RQ_DSEG_MAX;
qp_attr.rc_sizes.cs_sq = DEF_SQ_SIZE;
qp_attr.rc_sizes.cs_rq = DEF_RQ_SIZE;
qp_attr.rc_clone_chan = NULL;
qp_attr.rc_control = IBT_CEP_RDMA_RD | IBT_CEP_RDMA_WR;
qp_attr.rc_flags = IBT_WR_SIGNALED;
path->pi_sid = ibt_get_ip_sid(IPPROTO_TCP, NFS_RDMA_PORT);
chan_args.oc_path = path;
chan_args.oc_cm_handler = rib_clnt_cm_handler;
chan_args.oc_cm_clnt_private = (void *)rib_stat;
chan_args.oc_rdma_ra_out = 4;
chan_args.oc_rdma_ra_in = 4;
chan_args.oc_path_retry_cnt = 2;
chan_args.oc_path_rnr_retry_cnt = RNR_RETRIES;
chan_args.oc_priv_data = cmp_ip_pvt;
chan_args.oc_priv_data_len = IBT_IP_HDR_PRIV_DATA_SZ;
refresh:
rw_enter(&hca->state_lock, RW_READER);
if (hca->state != HCA_DETACHED) {
ibt_status = ibt_alloc_rc_channel(hca->hca_hdl,
IBT_ACHAN_NO_FLAGS,
&qp_attr, &qp->qp_hdl,
&chan_sizes);
} else {
rw_exit(&hca->state_lock);
return (RDMA_FAILED);
}
rw_exit(&hca->state_lock);
if (ibt_status != IBT_SUCCESS) {
DTRACE_PROBE1(rpcib__i_conntosrv,
int, ibt_status);
return (RDMA_FAILED);
}
/* Connect to the Server */
(void) bzero(&ret_args, sizeof (ret_args));
mutex_enter(&qp->cb_lock);
ibt_status = ibt_open_rc_channel(qp->qp_hdl, IBT_OCHAN_NO_FLAGS,
IBT_BLOCKING, &chan_args, &ret_args);
if (ibt_status != IBT_SUCCESS) {
DTRACE_PROBE2(rpcib__i_openrctosrv,
int, ibt_status, int, ret_args.rc_status);
(void) ibt_free_channel(qp->qp_hdl);
qp->qp_hdl = NULL;
mutex_exit(&qp->cb_lock);
if (refresh-- && ibt_status == IBT_CM_FAILURE &&
ret_args.rc_status == IBT_CM_CONN_STALE) {
/*
* Got IBT_CM_CONN_STALE probably because of stale
* data on the passive end of a channel that existed
* prior to reboot. Retry establishing a channel
* REFRESH_ATTEMPTS times, during which time the
* stale conditions on the server might clear up.
*/
goto refresh;
}
return (RDMA_FAILED);
}
mutex_exit(&qp->cb_lock);
/*
* Set the private data area to qp to be used in callbacks
*/
ibt_set_chan_private(qp->qp_hdl, (void *)qp);
return (RDMA_SUCCESS);
}
rdma_stat
rib_ping_srv(int addr_type, struct netbuf *raddr, rib_hca_t **hca)
{
uint_t i;
ibt_path_info_t path;
ibt_status_t ibt_status;
uint8_t num_paths_p;
ibt_ip_path_attr_t ipattr;
ibt_ip_addr_t dstip;
ibt_path_ip_src_t srcip;
rpcib_ipaddrs_t addrs4;
rpcib_ipaddrs_t addrs6;
struct sockaddr_in *sinp;
struct sockaddr_in6 *sin6p;
rdma_stat retval = RDMA_SUCCESS;
*hca = NULL;
ASSERT(raddr->buf != NULL);
bzero(&path, sizeof (ibt_path_info_t));
bzero(&ipattr, sizeof (ibt_ip_path_attr_t));
bzero(&srcip, sizeof (ibt_path_ip_src_t));
if (!rpcib_get_ib_addresses(&addrs4, &addrs6) ||
(addrs4.ri_count == 0 && addrs6.ri_count == 0)) {
retval = RDMA_FAILED;
goto done;
}
/* Prep the destination address */
switch (addr_type) {
case AF_INET:
sinp = (struct sockaddr_in *)raddr->buf;
dstip.family = AF_INET;
dstip.un.ip4addr = sinp->sin_addr.s_addr;
sinp = addrs4.ri_list;
for (i = 0; i < addrs4.ri_count; i++) {
num_paths_p = 0;
ipattr.ipa_dst_ip = &dstip;
ipattr.ipa_hca_guid = rib_stat->hca->hca_guid;
ipattr.ipa_ndst = 1;
ipattr.ipa_max_paths = 1;
ipattr.ipa_src_ip.family = dstip.family;
ipattr.ipa_src_ip.un.ip4addr = sinp[i].sin_addr.s_addr;
ibt_status = ibt_get_ip_paths(rib_stat->ibt_clnt_hdl,
IBT_PATH_NO_FLAGS, &ipattr, &path, &num_paths_p,
&srcip);
if (ibt_status == IBT_SUCCESS &&
num_paths_p != 0 &&
path.pi_hca_guid == rib_stat->hca->hca_guid) {
*hca = rib_stat->hca;
goto done;
}
}
retval = RDMA_FAILED;
break;
case AF_INET6:
sin6p = (struct sockaddr_in6 *)raddr->buf;
dstip.family = AF_INET6;
dstip.un.ip6addr = sin6p->sin6_addr;
sin6p = addrs6.ri_list;
for (i = 0; i < addrs6.ri_count; i++) {
num_paths_p = 0;
ipattr.ipa_dst_ip = &dstip;
ipattr.ipa_hca_guid = rib_stat->hca->hca_guid;
ipattr.ipa_ndst = 1;
ipattr.ipa_max_paths = 1;
ipattr.ipa_src_ip.family = dstip.family;
ipattr.ipa_src_ip.un.ip6addr = sin6p[i].sin6_addr;
ibt_status = ibt_get_ip_paths(rib_stat->ibt_clnt_hdl,
IBT_PATH_NO_FLAGS, &ipattr, &path, &num_paths_p,
&srcip);
if (ibt_status == IBT_SUCCESS &&
num_paths_p != 0 &&
path.pi_hca_guid == rib_stat->hca->hca_guid) {
*hca = rib_stat->hca;
goto done;
}
}
retval = RDMA_FAILED;
break;
default:
retval = RDMA_INVAL;
break;
}
done:
if (addrs4.ri_size > 0)
kmem_free(addrs4.ri_list, addrs4.ri_size);
if (addrs6.ri_size > 0)
kmem_free(addrs6.ri_list, addrs6.ri_size);
return (retval);
}
/*
* Close channel, remove from connection list and
* free up resources allocated for that channel.
*/
rdma_stat
rib_disconnect_channel(CONN *conn, rib_conn_list_t *conn_list)
{
rib_qp_t *qp = ctoqp(conn);
rib_hca_t *hca;
/*
* c_ref == 0 and connection is in C_DISCONN_PEND
*/
hca = qp->hca;
if (conn_list != NULL)
(void) rib_rm_conn(conn, conn_list);
if (qp->qp_hdl != NULL) {
/*
* If the channel has not been establised,
* ibt_flush_channel is called to flush outstanding WRs
* on the Qs. Otherwise, ibt_close_rc_channel() is
* called. The channel is then freed.
*/
if (conn_list != NULL)
(void) ibt_close_rc_channel(qp->qp_hdl,
IBT_BLOCKING, NULL, 0, NULL, NULL, 0);
else
(void) ibt_flush_channel(qp->qp_hdl);
mutex_enter(&qp->posted_rbufs_lock);
while (qp->n_posted_rbufs)
cv_wait(&qp->posted_rbufs_cv, &qp->posted_rbufs_lock);
mutex_exit(&qp->posted_rbufs_lock);
(void) ibt_free_channel(qp->qp_hdl);
qp->qp_hdl = NULL;
}
ASSERT(qp->rdlist == NULL);
if (qp->replylist != NULL) {
(void) rib_rem_replylist(qp);
}
cv_destroy(&qp->cb_conn_cv);
cv_destroy(&qp->posted_rbufs_cv);
mutex_destroy(&qp->cb_lock);
mutex_destroy(&qp->replylist_lock);
mutex_destroy(&qp->posted_rbufs_lock);
mutex_destroy(&qp->rdlist_lock);
cv_destroy(&conn->c_cv);
mutex_destroy(&conn->c_lock);
if (conn->c_raddr.buf != NULL) {
kmem_free(conn->c_raddr.buf, conn->c_raddr.len);
}
if (conn->c_laddr.buf != NULL) {
kmem_free(conn->c_laddr.buf, conn->c_laddr.len);
}
/*
* Credit control cleanup.
*/
if (qp->rdmaconn.c_cc_type == RDMA_CC_CLNT) {
rdma_clnt_cred_ctrl_t *cc_info;
cc_info = &qp->rdmaconn.rdma_conn_cred_ctrl_u.c_clnt_cc;
cv_destroy(&cc_info->clnt_cc_cv);
}
kmem_free(qp, sizeof (rib_qp_t));
/*
* If HCA has been DETACHED and the srv/clnt_conn_list is NULL,
* then the hca is no longer being used.
*/
if (conn_list != NULL) {
rw_enter(&hca->state_lock, RW_READER);
if (hca->state == HCA_DETACHED) {
rw_enter(&hca->srv_conn_list.conn_lock, RW_READER);
if (hca->srv_conn_list.conn_hd == NULL) {
rw_enter(&hca->cl_conn_list.conn_lock,
RW_READER);
if (hca->cl_conn_list.conn_hd == NULL) {
mutex_enter(&hca->inuse_lock);
hca->inuse = FALSE;
cv_signal(&hca->cb_cv);
mutex_exit(&hca->inuse_lock);
}
rw_exit(&hca->cl_conn_list.conn_lock);
}
rw_exit(&hca->srv_conn_list.conn_lock);
}
rw_exit(&hca->state_lock);
}
return (RDMA_SUCCESS);
}
/*
* Wait for send completion notification. Only on receiving a
* notification be it a successful or error completion, free the
* send_wid.
*/
static rdma_stat
rib_sendwait(rib_qp_t *qp, struct send_wid *wd)
{
clock_t timout, cv_wait_ret;
rdma_stat error = RDMA_SUCCESS;
int i;
/*
* Wait for send to complete
*/
ASSERT(wd != NULL);
mutex_enter(&wd->sendwait_lock);
if (wd->status == (uint_t)SEND_WAIT) {
timout = drv_usectohz(SEND_WAIT_TIME * 1000000) +
ddi_get_lbolt();
if (qp->mode == RIB_SERVER) {
while ((cv_wait_ret = cv_timedwait(&wd->wait_cv,
&wd->sendwait_lock, timout)) > 0 &&
wd->status == (uint_t)SEND_WAIT)
;
switch (cv_wait_ret) {
case -1: /* timeout */
DTRACE_PROBE(rpcib__i__srvsendwait__timeout);
wd->cv_sig = 0; /* no signal needed */
error = RDMA_TIMEDOUT;
break;
default: /* got send completion */
break;
}
} else {
while ((cv_wait_ret = cv_timedwait_sig(&wd->wait_cv,
&wd->sendwait_lock, timout)) > 0 &&
wd->status == (uint_t)SEND_WAIT)
;
switch (cv_wait_ret) {
case -1: /* timeout */
DTRACE_PROBE(rpcib__i__clntsendwait__timeout);
wd->cv_sig = 0; /* no signal needed */
error = RDMA_TIMEDOUT;
break;
case 0: /* interrupted */
DTRACE_PROBE(rpcib__i__clntsendwait__intr);
wd->cv_sig = 0; /* no signal needed */
error = RDMA_INTR;
break;
default: /* got send completion */
break;
}
}
}
if (wd->status != (uint_t)SEND_WAIT) {
/* got send completion */
if (wd->status != RDMA_SUCCESS) {
error = wd->status;
if (wd->status != RDMA_CONNLOST)
error = RDMA_FAILED;
}
for (i = 0; i < wd->nsbufs; i++) {
rib_rbuf_free(qptoc(qp), SEND_BUFFER,
(void *)(uintptr_t)wd->sbufaddr[i]);
}
mutex_exit(&wd->sendwait_lock);
(void) rib_free_sendwait(wd);
} else {
mutex_exit(&wd->sendwait_lock);
}
return (error);
}
static struct send_wid *
rib_init_sendwait(uint32_t xid, int cv_sig, rib_qp_t *qp)
{
struct send_wid *wd;
wd = kmem_zalloc(sizeof (struct send_wid), KM_SLEEP);
wd->xid = xid;
wd->cv_sig = cv_sig;
wd->qp = qp;
cv_init(&wd->wait_cv, NULL, CV_DEFAULT, NULL);
mutex_init(&wd->sendwait_lock, NULL, MUTEX_DRIVER, NULL);
wd->status = (uint_t)SEND_WAIT;
return (wd);
}
static int
rib_free_sendwait(struct send_wid *wdesc)
{
cv_destroy(&wdesc->wait_cv);
mutex_destroy(&wdesc->sendwait_lock);
kmem_free(wdesc, sizeof (*wdesc));
return (0);
}
static rdma_stat
rib_rem_rep(rib_qp_t *qp, struct reply *rep)
{
mutex_enter(&qp->replylist_lock);
if (rep != NULL) {
(void) rib_remreply(qp, rep);
mutex_exit(&qp->replylist_lock);
return (RDMA_SUCCESS);
}
mutex_exit(&qp->replylist_lock);
return (RDMA_FAILED);
}
/*
* Send buffers are freed here only in case of error in posting
* on QP. If the post succeeded, the send buffers are freed upon
* send completion in rib_sendwait() or in the scq_handler.
*/
rdma_stat
rib_send_and_wait(CONN *conn, struct clist *cl, uint32_t msgid,
int send_sig, int cv_sig, caddr_t *swid)
{
struct send_wid *wdesc;
struct clist *clp;
ibt_status_t ibt_status = IBT_SUCCESS;
rdma_stat ret = RDMA_SUCCESS;
ibt_send_wr_t tx_wr;
int i, nds;
ibt_wr_ds_t sgl[DSEG_MAX];
uint_t total_msg_size;
rib_qp_t *qp;
qp = ctoqp(conn);
ASSERT(cl != NULL);
bzero(&tx_wr, sizeof (ibt_send_wr_t));
nds = 0;
total_msg_size = 0;
clp = cl;
while (clp != NULL) {
if (nds >= DSEG_MAX) {
DTRACE_PROBE(rpcib__i__sendandwait_dsegmax_exceeded);
return (RDMA_FAILED);
}
sgl[nds].ds_va = clp->w.c_saddr;
sgl[nds].ds_key = clp->c_smemhandle.mrc_lmr; /* lkey */
sgl[nds].ds_len = clp->c_len;
total_msg_size += clp->c_len;
clp = clp->c_next;
nds++;
}
if (send_sig) {
/* Set SEND_SIGNAL flag. */
tx_wr.wr_flags = IBT_WR_SEND_SIGNAL;
wdesc = rib_init_sendwait(msgid, cv_sig, qp);
*swid = (caddr_t)wdesc;
} else {
tx_wr.wr_flags = IBT_WR_NO_FLAGS;
wdesc = rib_init_sendwait(msgid, 0, qp);
*swid = (caddr_t)wdesc;
}
wdesc->nsbufs = nds;
for (i = 0; i < nds; i++) {
wdesc->sbufaddr[i] = sgl[i].ds_va;
}
tx_wr.wr_id = (ibt_wrid_t)(uintptr_t)wdesc;
tx_wr.wr_opcode = IBT_WRC_SEND;
tx_wr.wr_trans = IBT_RC_SRV;
tx_wr.wr_nds = nds;
tx_wr.wr_sgl = sgl;
mutex_enter(&conn->c_lock);
if (conn->c_state == C_CONNECTED) {
ibt_status = ibt_post_send(qp->qp_hdl, &tx_wr, 1, NULL);
}
if (conn->c_state != C_CONNECTED ||
ibt_status != IBT_SUCCESS) {
if (conn->c_state != C_DISCONN_PEND)
conn->c_state = C_ERROR_CONN;
mutex_exit(&conn->c_lock);
for (i = 0; i < nds; i++) {
rib_rbuf_free(conn, SEND_BUFFER,
(void *)(uintptr_t)wdesc->sbufaddr[i]);
}
(void) rib_free_sendwait(wdesc);
return (RDMA_CONNLOST);
}
mutex_exit(&conn->c_lock);
if (send_sig) {
if (cv_sig) {
/*
* cv_wait for send to complete.
* We can fail due to a timeout or signal or
* unsuccessful send.
*/
ret = rib_sendwait(qp, wdesc);
return (ret);
}
}
return (RDMA_SUCCESS);
}
rdma_stat
rib_send(CONN *conn, struct clist *cl, uint32_t msgid)
{
rdma_stat ret;
caddr_t wd;
/* send-wait & cv_signal */
ret = rib_send_and_wait(conn, cl, msgid, 1, 1, &wd);
return (ret);
}
/*
* Server interface (svc_rdma_ksend).
* Send RPC reply and wait for RDMA_DONE.
*/
rdma_stat
rib_send_resp(CONN *conn, struct clist *cl, uint32_t msgid)
{
rdma_stat ret = RDMA_SUCCESS;
struct rdma_done_list *rd;
clock_t timout, cv_wait_ret;
caddr_t *wid = NULL;
rib_qp_t *qp = ctoqp(conn);
mutex_enter(&qp->rdlist_lock);
rd = rdma_done_add(qp, msgid);
/* No cv_signal (whether send-wait or no-send-wait) */
ret = rib_send_and_wait(conn, cl, msgid, 1, 0, wid);
if (ret != RDMA_SUCCESS) {
rdma_done_rm(qp, rd);
} else {
/*
* Wait for RDMA_DONE from remote end
*/
timout =
drv_usectohz(REPLY_WAIT_TIME * 1000000) + ddi_get_lbolt();
cv_wait_ret = cv_timedwait(&rd->rdma_done_cv,
&qp->rdlist_lock,
timout);
rdma_done_rm(qp, rd);
if (cv_wait_ret < 0) {
ret = RDMA_TIMEDOUT;
}
}
mutex_exit(&qp->rdlist_lock);
return (ret);
}
static struct recv_wid *
rib_create_wid(rib_qp_t *qp, ibt_wr_ds_t *sgl, uint32_t msgid)
{
struct recv_wid *rwid;
rwid = kmem_zalloc(sizeof (struct recv_wid), KM_SLEEP);
rwid->xid = msgid;
rwid->addr = sgl->ds_va;
rwid->qp = qp;
return (rwid);
}
static void
rib_free_wid(struct recv_wid *rwid)
{
kmem_free(rwid, sizeof (struct recv_wid));
}
rdma_stat
rib_clnt_post(CONN* conn, struct clist *cl, uint32_t msgid)
{
rib_qp_t *qp = ctoqp(conn);
struct clist *clp = cl;
struct reply *rep;
struct recv_wid *rwid;
int nds;
ibt_wr_ds_t sgl[DSEG_MAX];
ibt_recv_wr_t recv_wr;
rdma_stat ret;
ibt_status_t ibt_status;
/*
* rdma_clnt_postrecv uses RECV_BUFFER.
*/
nds = 0;
while (cl != NULL) {
if (nds >= DSEG_MAX) {
ret = RDMA_FAILED;
goto done;
}
sgl[nds].ds_va = cl->w.c_saddr;
sgl[nds].ds_key = cl->c_smemhandle.mrc_lmr; /* lkey */
sgl[nds].ds_len = cl->c_len;
cl = cl->c_next;
nds++;
}
if (nds != 1) {
ret = RDMA_FAILED;
goto done;
}
bzero(&recv_wr, sizeof (ibt_recv_wr_t));
recv_wr.wr_nds = nds;
recv_wr.wr_sgl = sgl;
rwid = rib_create_wid(qp, &sgl[0], msgid);
if (rwid) {
recv_wr.wr_id = (ibt_wrid_t)(uintptr_t)rwid;
} else {
ret = RDMA_NORESOURCE;
goto done;
}
rep = rib_addreplylist(qp, msgid);
if (!rep) {
rib_free_wid(rwid);
ret = RDMA_NORESOURCE;
goto done;
}
mutex_enter(&conn->c_lock);
if (conn->c_state == C_CONNECTED) {
ibt_status = ibt_post_recv(qp->qp_hdl, &recv_wr, 1, NULL);
}
if (conn->c_state != C_CONNECTED ||
ibt_status != IBT_SUCCESS) {
if (conn->c_state != C_DISCONN_PEND)
conn->c_state = C_ERROR_CONN;
mutex_exit(&conn->c_lock);
rib_free_wid(rwid);
(void) rib_rem_rep(qp, rep);
ret = RDMA_CONNLOST;
goto done;
}
mutex_exit(&conn->c_lock);
return (RDMA_SUCCESS);
done:
while (clp != NULL) {
rib_rbuf_free(conn, RECV_BUFFER,
(void *)(uintptr_t)clp->w.c_saddr3);
clp = clp->c_next;
}
return (ret);
}
rdma_stat
rib_svc_post(CONN* conn, struct clist *cl)
{
rib_qp_t *qp = ctoqp(conn);
struct svc_recv *s_recvp;
int nds;
ibt_wr_ds_t sgl[DSEG_MAX];
ibt_recv_wr_t recv_wr;
ibt_status_t ibt_status;
nds = 0;
while (cl != NULL) {
if (nds >= DSEG_MAX) {
return (RDMA_FAILED);
}
sgl[nds].ds_va = cl->w.c_saddr;
sgl[nds].ds_key = cl->c_smemhandle.mrc_lmr; /* lkey */
sgl[nds].ds_len = cl->c_len;
cl = cl->c_next;
nds++;
}
if (nds != 1) {
rib_rbuf_free(conn, RECV_BUFFER,
(caddr_t)(uintptr_t)sgl[0].ds_va);
return (RDMA_FAILED);
}
bzero(&recv_wr, sizeof (ibt_recv_wr_t));
recv_wr.wr_nds = nds;
recv_wr.wr_sgl = sgl;
s_recvp = rib_init_svc_recv(qp, &sgl[0]);
/* Use s_recvp's addr as wr id */
recv_wr.wr_id = (ibt_wrid_t)(uintptr_t)s_recvp;
mutex_enter(&conn->c_lock);
if (conn->c_state == C_CONNECTED) {
ibt_status = ibt_post_recv(qp->qp_hdl, &recv_wr, 1, NULL);
}
if (conn->c_state != C_CONNECTED ||
ibt_status != IBT_SUCCESS) {
if (conn->c_state != C_DISCONN_PEND)
conn->c_state = C_ERROR_CONN;
mutex_exit(&conn->c_lock);
rib_rbuf_free(conn, RECV_BUFFER,
(caddr_t)(uintptr_t)sgl[0].ds_va);
(void) rib_free_svc_recv(s_recvp);
return (RDMA_CONNLOST);
}
mutex_exit(&conn->c_lock);
return (RDMA_SUCCESS);
}
/* Client */
rdma_stat
rib_post_resp(CONN* conn, struct clist *cl, uint32_t msgid)
{
return (rib_clnt_post(conn, cl, msgid));
}
/* Client */
rdma_stat
rib_post_resp_remove(CONN* conn, uint32_t msgid)
{
rib_qp_t *qp = ctoqp(conn);
struct reply *rep;
mutex_enter(&qp->replylist_lock);
for (rep = qp->replylist; rep != NULL; rep = rep->next) {
if (rep->xid == msgid) {
if (rep->vaddr_cq) {
rib_rbuf_free(conn, RECV_BUFFER,
(caddr_t)(uintptr_t)rep->vaddr_cq);
}
(void) rib_remreply(qp, rep);
break;
}
}
mutex_exit(&qp->replylist_lock);
return (RDMA_SUCCESS);
}
/* Server */
rdma_stat
rib_post_recv(CONN *conn, struct clist *cl)
{
rib_qp_t *qp = ctoqp(conn);
if (rib_svc_post(conn, cl) == RDMA_SUCCESS) {
mutex_enter(&qp->posted_rbufs_lock);
qp->n_posted_rbufs++;
mutex_exit(&qp->posted_rbufs_lock);
return (RDMA_SUCCESS);
}
return (RDMA_FAILED);
}
/*
* Client side only interface to "recv" the rpc reply buf
* posted earlier by rib_post_resp(conn, cl, msgid).
*/
rdma_stat
rib_recv(CONN *conn, struct clist **clp, uint32_t msgid)
{
struct reply *rep = NULL;
clock_t timout, cv_wait_ret;
rdma_stat ret = RDMA_SUCCESS;
rib_qp_t *qp = ctoqp(conn);
/*
* Find the reply structure for this msgid
*/
mutex_enter(&qp->replylist_lock);
for (rep = qp->replylist; rep != NULL; rep = rep->next) {
if (rep->xid == msgid)
break;
}
if (rep != NULL) {
/*
* If message not yet received, wait.
*/
if (rep->status == (uint_t)REPLY_WAIT) {
timout = ddi_get_lbolt() +
drv_usectohz(REPLY_WAIT_TIME * 1000000);
while ((cv_wait_ret = cv_timedwait_sig(&rep->wait_cv,
&qp->replylist_lock, timout)) > 0 &&
rep->status == (uint_t)REPLY_WAIT)
;
switch (cv_wait_ret) {
case -1: /* timeout */
ret = RDMA_TIMEDOUT;
break;
case 0:
ret = RDMA_INTR;
break;
default:
break;
}
}
if (rep->status == RDMA_SUCCESS) {
struct clist *cl = NULL;
/*
* Got message successfully
*/
clist_add(&cl, 0, rep->bytes_xfer, NULL,
(caddr_t)(uintptr_t)rep->vaddr_cq, NULL, NULL);
*clp = cl;
} else {
if (rep->status != (uint_t)REPLY_WAIT) {
/*
* Got error in reply message. Free
* recv buffer here.
*/
ret = rep->status;
rib_rbuf_free(conn, RECV_BUFFER,
(caddr_t)(uintptr_t)rep->vaddr_cq);
}
}
(void) rib_remreply(qp, rep);
} else {
/*
* No matching reply structure found for given msgid on the
* reply wait list.
*/
ret = RDMA_INVAL;
DTRACE_PROBE(rpcib__i__nomatchxid2);
}
/*
* Done.
*/
mutex_exit(&qp->replylist_lock);
return (ret);
}
/*
* RDMA write a buffer to the remote address.
*/
rdma_stat
rib_write(CONN *conn, struct clist *cl, int wait)
{
ibt_send_wr_t tx_wr;
int cv_sig;
int i;
ibt_wr_ds_t sgl[DSEG_MAX];
struct send_wid *wdesc;
ibt_status_t ibt_status;
rdma_stat ret = RDMA_SUCCESS;
rib_qp_t *qp = ctoqp(conn);
uint64_t n_writes = 0;
bool_t force_wait = FALSE;
if (cl == NULL) {
return (RDMA_FAILED);
}
while ((cl != NULL)) {
if (cl->c_len > 0) {
bzero(&tx_wr, sizeof (ibt_send_wr_t));
tx_wr.wr.rc.rcwr.rdma.rdma_raddr = cl->u.c_daddr;
tx_wr.wr.rc.rcwr.rdma.rdma_rkey =
cl->c_dmemhandle.mrc_rmr; /* rkey */
sgl[0].ds_va = cl->w.c_saddr;
sgl[0].ds_key = cl->c_smemhandle.mrc_lmr; /* lkey */
sgl[0].ds_len = cl->c_len;
if (wait) {
tx_wr.wr_flags = IBT_WR_SEND_SIGNAL;
cv_sig = 1;
} else {
if (n_writes > max_unsignaled_rws) {
n_writes = 0;
force_wait = TRUE;
tx_wr.wr_flags = IBT_WR_SEND_SIGNAL;
cv_sig = 1;
} else {
tx_wr.wr_flags = IBT_WR_NO_FLAGS;
cv_sig = 0;
}
}
wdesc = rib_init_sendwait(0, cv_sig, qp);
tx_wr.wr_id = (ibt_wrid_t)(uintptr_t)wdesc;
tx_wr.wr_opcode = IBT_WRC_RDMAW;
tx_wr.wr_trans = IBT_RC_SRV;
tx_wr.wr_nds = 1;
tx_wr.wr_sgl = sgl;
mutex_enter(&conn->c_lock);
if (conn->c_state == C_CONNECTED) {
ibt_status =
ibt_post_send(qp->qp_hdl, &tx_wr, 1, NULL);
}
if (conn->c_state != C_CONNECTED ||
ibt_status != IBT_SUCCESS) {
if (conn->c_state != C_DISCONN_PEND)
conn->c_state = C_ERROR_CONN;
mutex_exit(&conn->c_lock);
(void) rib_free_sendwait(wdesc);
return (RDMA_CONNLOST);
}
mutex_exit(&conn->c_lock);
/*
* Wait for send to complete
*/
if (wait || force_wait) {
force_wait = FALSE;
ret = rib_sendwait(qp, wdesc);
if (ret != 0) {
return (ret);
}
} else {
mutex_enter(&wdesc->sendwait_lock);
for (i = 0; i < wdesc->nsbufs; i++) {
rib_rbuf_free(qptoc(qp), SEND_BUFFER,
(void *)(uintptr_t)
wdesc->sbufaddr[i]);
}
mutex_exit(&wdesc->sendwait_lock);
(void) rib_free_sendwait(wdesc);
}
n_writes ++;
}
cl = cl->c_next;
}
return (RDMA_SUCCESS);
}
/*
* RDMA Read a buffer from the remote address.
*/
rdma_stat
rib_read(CONN *conn, struct clist *cl, int wait)
{
ibt_send_wr_t rx_wr;
int cv_sig;
int i;
ibt_wr_ds_t sgl;
struct send_wid *wdesc;
ibt_status_t ibt_status = IBT_SUCCESS;
rdma_stat ret = RDMA_SUCCESS;
rib_qp_t *qp = ctoqp(conn);
if (cl == NULL) {
return (RDMA_FAILED);
}
while (cl != NULL) {
bzero(&rx_wr, sizeof (ibt_send_wr_t));
/*
* Remote address is at the head chunk item in list.
*/
rx_wr.wr.rc.rcwr.rdma.rdma_raddr = cl->w.c_saddr;
rx_wr.wr.rc.rcwr.rdma.rdma_rkey = cl->c_smemhandle.mrc_rmr;
sgl.ds_va = cl->u.c_daddr;
sgl.ds_key = cl->c_dmemhandle.mrc_lmr; /* lkey */
sgl.ds_len = cl->c_len;
if (wait) {
rx_wr.wr_flags = IBT_WR_SEND_SIGNAL;
cv_sig = 1;
} else {
rx_wr.wr_flags = IBT_WR_NO_FLAGS;
cv_sig = 0;
}
wdesc = rib_init_sendwait(0, cv_sig, qp);
rx_wr.wr_id = (ibt_wrid_t)(uintptr_t)wdesc;
rx_wr.wr_opcode = IBT_WRC_RDMAR;
rx_wr.wr_trans = IBT_RC_SRV;
rx_wr.wr_nds = 1;
rx_wr.wr_sgl = &sgl;
mutex_enter(&conn->c_lock);
if (conn->c_state == C_CONNECTED) {
ibt_status = ibt_post_send(qp->qp_hdl, &rx_wr, 1, NULL);
}
if (conn->c_state != C_CONNECTED ||
ibt_status != IBT_SUCCESS) {
if (conn->c_state != C_DISCONN_PEND)
conn->c_state = C_ERROR_CONN;
mutex_exit(&conn->c_lock);
(void) rib_free_sendwait(wdesc);
return (RDMA_CONNLOST);
}
mutex_exit(&conn->c_lock);
/*
* Wait for send to complete if this is the
* last item in the list.
*/
if (wait && cl->c_next == NULL) {
ret = rib_sendwait(qp, wdesc);
if (ret != 0) {
return (ret);
}
} else {
mutex_enter(&wdesc->sendwait_lock);
for (i = 0; i < wdesc->nsbufs; i++) {
rib_rbuf_free(qptoc(qp), SEND_BUFFER,
(void *)(uintptr_t)wdesc->sbufaddr[i]);
}
mutex_exit(&wdesc->sendwait_lock);
(void) rib_free_sendwait(wdesc);
}
cl = cl->c_next;
}
return (RDMA_SUCCESS);
}
/*
* rib_srv_cm_handler()
* Connection Manager callback to handle RC connection requests.
*/
/* ARGSUSED */
static ibt_cm_status_t
rib_srv_cm_handler(void *any, ibt_cm_event_t *event,
ibt_cm_return_args_t *ret_args, void *priv_data,
ibt_priv_data_len_t len)
{
queue_t *q;
rib_qp_t *qp;
rpcib_state_t *ribstat;
rib_hca_t *hca;
rdma_stat status = RDMA_SUCCESS;
int i;
struct clist cl;
rdma_buf_t rdbuf = {0};
void *buf = NULL;
CONN *conn;
ibt_ip_cm_info_t ipinfo;
struct sockaddr_in *s;
struct sockaddr_in6 *s6;
int sin_size = sizeof (struct sockaddr_in);
int in_size = sizeof (struct in_addr);
int sin6_size = sizeof (struct sockaddr_in6);
ASSERT(any != NULL);