| /* |
| * CDDL HEADER START |
| * |
| * The contents of this file are subject to the terms of the |
| * Common Development and Distribution License (the "License"). |
| * You may not use this file except in compliance with the License. |
| * |
| * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE |
| * or http://www.opensolaris.org/os/licensing. |
| * See the License for the specific language governing permissions |
| * and limitations under the License. |
| * |
| * When distributing Covered Code, include this CDDL HEADER in each |
| * file and include the License file at usr/src/OPENSOLARIS.LICENSE. |
| * If applicable, add the following below this CDDL HEADER, with the |
| * fields enclosed by brackets "[]" replaced with your own identifying |
| * information: Portions Copyright [yyyy] [name of copyright owner] |
| * |
| * CDDL HEADER END |
| */ |
| |
| /* |
| * Copyright 2009 Sun Microsystems, Inc. All rights reserved. |
| * Use is subject to license terms. |
| */ |
| |
| #include <sys/types.h> |
| #include <sys/systm.h> |
| #include <sys/stream.h> |
| #include <sys/strsubr.h> |
| #include <sys/ddi.h> |
| #include <sys/sunddi.h> |
| #include <sys/kmem.h> |
| #include <sys/socket.h> |
| #include <sys/random.h> |
| #include <sys/tsol/tndb.h> |
| #include <sys/tsol/tnet.h> |
| |
| #include <netinet/in.h> |
| #include <netinet/ip6.h> |
| #include <netinet/sctp.h> |
| |
| #include <inet/common.h> |
| #include <inet/ip.h> |
| #include <inet/ip6.h> |
| #include <inet/ip_ire.h> |
| #include <inet/mib2.h> |
| #include <inet/nd.h> |
| #include <inet/optcom.h> |
| #include <inet/sctp_ip.h> |
| #include <inet/ipclassifier.h> |
| |
| #include "sctp_impl.h" |
| #include "sctp_addr.h" |
| #include "sctp_asconf.h" |
| |
| static struct kmem_cache *sctp_kmem_faddr_cache; |
| static void sctp_init_faddr(sctp_t *, sctp_faddr_t *, in6_addr_t *, mblk_t *); |
| |
| /* Set the source address. Refer to comments in sctp_get_ire(). */ |
| void |
| sctp_set_saddr(sctp_t *sctp, sctp_faddr_t *fp) |
| { |
| boolean_t v6 = !fp->isv4; |
| boolean_t addr_set; |
| |
| fp->saddr = sctp_get_valid_addr(sctp, v6, &addr_set); |
| /* |
| * If there is no source address avaialble, mark this peer address |
| * as unreachable for now. When the heartbeat timer fires, it will |
| * call sctp_get_ire() to re-check if there is any source address |
| * available. |
| */ |
| if (!addr_set) |
| fp->state = SCTP_FADDRS_UNREACH; |
| } |
| |
| /* |
| * Call this function to update the cached IRE of a peer addr fp. |
| */ |
| void |
| sctp_get_ire(sctp_t *sctp, sctp_faddr_t *fp) |
| { |
| ire_t *ire; |
| ipaddr_t addr4; |
| in6_addr_t laddr; |
| sctp_saddr_ipif_t *sp; |
| int hdrlen; |
| ts_label_t *tsl; |
| sctp_stack_t *sctps = sctp->sctp_sctps; |
| ip_stack_t *ipst = sctps->sctps_netstack->netstack_ip; |
| |
| /* Remove the previous cache IRE */ |
| if ((ire = fp->ire) != NULL) { |
| IRE_REFRELE_NOTR(ire); |
| fp->ire = NULL; |
| } |
| |
| /* |
| * If this addr is not reachable, mark it as unconfirmed for now, the |
| * state will be changed back to unreachable later in this function |
| * if it is still the case. |
| */ |
| if (fp->state == SCTP_FADDRS_UNREACH) { |
| fp->state = SCTP_FADDRS_UNCONFIRMED; |
| } |
| |
| tsl = crgetlabel(CONN_CRED(sctp->sctp_connp)); |
| |
| if (fp->isv4) { |
| IN6_V4MAPPED_TO_IPADDR(&fp->faddr, addr4); |
| ire = ire_cache_lookup(addr4, sctp->sctp_zoneid, tsl, ipst); |
| if (ire != NULL) |
| IN6_IPADDR_TO_V4MAPPED(ire->ire_src_addr, &laddr); |
| } else { |
| ire = ire_cache_lookup_v6(&fp->faddr, sctp->sctp_zoneid, tsl, |
| ipst); |
| if (ire != NULL) |
| laddr = ire->ire_src_addr_v6; |
| } |
| |
| if (ire == NULL) { |
| dprint(3, ("ire2faddr: no ire for %x:%x:%x:%x\n", |
| SCTP_PRINTADDR(fp->faddr))); |
| /* |
| * It is tempting to just leave the src addr |
| * unspecified and let IP figure it out, but we |
| * *cannot* do this, since IP may choose a src addr |
| * that is not part of this association... unless |
| * this sctp has bound to all addrs. So if the ire |
| * lookup fails, try to find one in our src addr |
| * list, unless the sctp has bound to all addrs, in |
| * which case we change the src addr to unspec. |
| * |
| * Note that if this is a v6 endpoint but it does |
| * not have any v4 address at this point (e.g. may |
| * have been deleted), sctp_get_valid_addr() will |
| * return mapped INADDR_ANY. In this case, this |
| * address should be marked not reachable so that |
| * it won't be used to send data. |
| */ |
| sctp_set_saddr(sctp, fp); |
| if (fp->state == SCTP_FADDRS_UNREACH) |
| return; |
| goto check_current; |
| } |
| |
| /* Make sure the laddr is part of this association */ |
| if ((sp = sctp_saddr_lookup(sctp, &ire->ire_ipif->ipif_v6lcl_addr, |
| 0)) != NULL && !sp->saddr_ipif_dontsrc) { |
| if (sp->saddr_ipif_unconfirmed == 1) |
| sp->saddr_ipif_unconfirmed = 0; |
| fp->saddr = laddr; |
| } else { |
| dprint(2, ("ire2faddr: src addr is not part of assc\n")); |
| |
| /* |
| * Set the src to the first saddr and hope for the best. |
| * Note that we will still do the ire caching below. |
| * Otherwise, whenever we send a packet, we need to do |
| * the ire lookup again and still may not get the correct |
| * source address. Note that this case should very seldomly |
| * happen. One scenario this can happen is an app |
| * explicitly bind() to an address. But that address is |
| * not the preferred source address to send to the peer. |
| */ |
| sctp_set_saddr(sctp, fp); |
| if (fp->state == SCTP_FADDRS_UNREACH) { |
| IRE_REFRELE(ire); |
| return; |
| } |
| } |
| |
| /* |
| * Note that ire_cache_lookup_*() returns an ire with the tracing |
| * bits enabled. This requires the thread holding the ire also |
| * do the IRE_REFRELE(). Thus we need to do IRE_REFHOLD_NOTR() |
| * and then IRE_REFRELE() the ire here to make the tracing bits |
| * work. |
| */ |
| IRE_REFHOLD_NOTR(ire); |
| IRE_REFRELE(ire); |
| |
| /* Cache the IRE */ |
| fp->ire = ire; |
| if (fp->ire->ire_type == IRE_LOOPBACK && !sctp->sctp_loopback) |
| sctp->sctp_loopback = 1; |
| |
| /* |
| * Pull out RTO information for this faddr and use it if we don't |
| * have any yet. |
| */ |
| if (fp->srtt == -1 && ire->ire_uinfo.iulp_rtt != 0) { |
| /* The cached value is in ms. */ |
| fp->srtt = MSEC_TO_TICK(ire->ire_uinfo.iulp_rtt); |
| fp->rttvar = MSEC_TO_TICK(ire->ire_uinfo.iulp_rtt_sd); |
| fp->rto = 3 * fp->srtt; |
| |
| /* Bound the RTO by configured min and max values */ |
| if (fp->rto < sctp->sctp_rto_min) { |
| fp->rto = sctp->sctp_rto_min; |
| } |
| if (fp->rto > sctp->sctp_rto_max) { |
| fp->rto = sctp->sctp_rto_max; |
| } |
| } |
| |
| /* |
| * Record the MTU for this faddr. If the MTU for this faddr has |
| * changed, check if the assc MTU will also change. |
| */ |
| if (fp->isv4) { |
| hdrlen = sctp->sctp_hdr_len; |
| } else { |
| hdrlen = sctp->sctp_hdr6_len; |
| } |
| if ((fp->sfa_pmss + hdrlen) != ire->ire_max_frag) { |
| /* Make sure that sfa_pmss is a multiple of SCTP_ALIGN. */ |
| fp->sfa_pmss = (ire->ire_max_frag - hdrlen) & ~(SCTP_ALIGN - 1); |
| if (fp->cwnd < (fp->sfa_pmss * 2)) { |
| SET_CWND(fp, fp->sfa_pmss, |
| sctps->sctps_slow_start_initial); |
| } |
| } |
| |
| check_current: |
| if (fp == sctp->sctp_current) |
| sctp_set_faddr_current(sctp, fp); |
| } |
| |
| void |
| sctp_update_ire(sctp_t *sctp) |
| { |
| ire_t *ire; |
| sctp_faddr_t *fp; |
| sctp_stack_t *sctps = sctp->sctp_sctps; |
| |
| for (fp = sctp->sctp_faddrs; fp != NULL; fp = fp->next) { |
| if ((ire = fp->ire) == NULL) |
| continue; |
| mutex_enter(&ire->ire_lock); |
| |
| /* |
| * If the cached IRE is going away, there is no point to |
| * update it. |
| */ |
| if (ire->ire_marks & IRE_MARK_CONDEMNED) { |
| mutex_exit(&ire->ire_lock); |
| IRE_REFRELE_NOTR(ire); |
| fp->ire = NULL; |
| continue; |
| } |
| |
| /* |
| * Only record the PMTU for this faddr if we actually have |
| * done discovery. This prevents initialized default from |
| * clobbering any real info that IP may have. |
| */ |
| if (fp->pmtu_discovered) { |
| if (fp->isv4) { |
| ire->ire_max_frag = fp->sfa_pmss + |
| sctp->sctp_hdr_len; |
| } else { |
| ire->ire_max_frag = fp->sfa_pmss + |
| sctp->sctp_hdr6_len; |
| } |
| } |
| |
| if (sctps->sctps_rtt_updates != 0 && |
| fp->rtt_updates >= sctps->sctps_rtt_updates) { |
| /* |
| * If there is no old cached values, initialize them |
| * conservatively. Set them to be (1.5 * new value). |
| * This code copied from ip_ire_advise(). The cached |
| * value is in ms. |
| */ |
| if (ire->ire_uinfo.iulp_rtt != 0) { |
| ire->ire_uinfo.iulp_rtt = |
| (ire->ire_uinfo.iulp_rtt + |
| TICK_TO_MSEC(fp->srtt)) >> 1; |
| } else { |
| ire->ire_uinfo.iulp_rtt = |
| TICK_TO_MSEC(fp->srtt + (fp->srtt >> 1)); |
| } |
| if (ire->ire_uinfo.iulp_rtt_sd != 0) { |
| ire->ire_uinfo.iulp_rtt_sd = |
| (ire->ire_uinfo.iulp_rtt_sd + |
| TICK_TO_MSEC(fp->rttvar)) >> 1; |
| } else { |
| ire->ire_uinfo.iulp_rtt_sd = |
| TICK_TO_MSEC(fp->rttvar + |
| (fp->rttvar >> 1)); |
| } |
| fp->rtt_updates = 0; |
| } |
| mutex_exit(&ire->ire_lock); |
| } |
| } |
| |
| /* |
| * The sender must set the total length in the IP header. |
| * If sendto == NULL, the current will be used. |
| */ |
| mblk_t * |
| sctp_make_mp(sctp_t *sctp, sctp_faddr_t *sendto, int trailer) |
| { |
| mblk_t *mp; |
| size_t ipsctplen; |
| int isv4; |
| sctp_faddr_t *fp; |
| sctp_stack_t *sctps = sctp->sctp_sctps; |
| boolean_t src_changed = B_FALSE; |
| |
| ASSERT(sctp->sctp_current != NULL || sendto != NULL); |
| if (sendto == NULL) { |
| fp = sctp->sctp_current; |
| } else { |
| fp = sendto; |
| } |
| isv4 = fp->isv4; |
| |
| /* Try to look for another IRE again. */ |
| if (fp->ire == NULL) { |
| sctp_get_ire(sctp, fp); |
| /* |
| * Although we still may not get an IRE, the source address |
| * may be changed in sctp_get_ire(). Set src_changed to |
| * true so that the source address is copied again. |
| */ |
| src_changed = B_TRUE; |
| } |
| |
| /* There is no suitable source address to use, return. */ |
| if (fp->state == SCTP_FADDRS_UNREACH) |
| return (NULL); |
| ASSERT(!IN6_IS_ADDR_V4MAPPED_ANY(&fp->saddr)); |
| |
| if (isv4) { |
| ipsctplen = sctp->sctp_hdr_len; |
| } else { |
| ipsctplen = sctp->sctp_hdr6_len; |
| } |
| |
| mp = allocb_cred(ipsctplen + sctps->sctps_wroff_xtra + trailer, |
| CONN_CRED(sctp->sctp_connp), sctp->sctp_cpid); |
| if (mp == NULL) { |
| ip1dbg(("sctp_make_mp: error making mp..\n")); |
| return (NULL); |
| } |
| mp->b_rptr += sctps->sctps_wroff_xtra; |
| mp->b_wptr = mp->b_rptr + ipsctplen; |
| |
| ASSERT(OK_32PTR(mp->b_wptr)); |
| |
| if (isv4) { |
| ipha_t *iph = (ipha_t *)mp->b_rptr; |
| |
| bcopy(sctp->sctp_iphc, mp->b_rptr, ipsctplen); |
| if (fp != sctp->sctp_current || src_changed) { |
| /* Fix the source and destination addresses. */ |
| IN6_V4MAPPED_TO_IPADDR(&fp->faddr, iph->ipha_dst); |
| IN6_V4MAPPED_TO_IPADDR(&fp->saddr, iph->ipha_src); |
| } |
| /* set or clear the don't fragment bit */ |
| if (fp->df) { |
| iph->ipha_fragment_offset_and_flags = htons(IPH_DF); |
| } else { |
| iph->ipha_fragment_offset_and_flags = 0; |
| } |
| } else { |
| bcopy(sctp->sctp_iphc6, mp->b_rptr, ipsctplen); |
| if (fp != sctp->sctp_current || src_changed) { |
| /* Fix the source and destination addresses. */ |
| ((ip6_t *)(mp->b_rptr))->ip6_dst = fp->faddr; |
| ((ip6_t *)(mp->b_rptr))->ip6_src = fp->saddr; |
| } |
| } |
| ASSERT(sctp->sctp_connp != NULL); |
| |
| /* |
| * IP will not free this IRE if it is condemned. SCTP needs to |
| * free it. |
| */ |
| if ((fp->ire != NULL) && (fp->ire->ire_marks & IRE_MARK_CONDEMNED)) { |
| IRE_REFRELE_NOTR(fp->ire); |
| fp->ire = NULL; |
| } |
| /* Stash the conn and ire ptr info. for IP */ |
| SCTP_STASH_IPINFO(mp, fp->ire); |
| |
| return (mp); |
| } |
| |
| /* |
| * Notify upper layers about preferred write offset, write size. |
| */ |
| void |
| sctp_set_ulp_prop(sctp_t *sctp) |
| { |
| int hdrlen; |
| struct sock_proto_props sopp; |
| |
| sctp_stack_t *sctps = sctp->sctp_sctps; |
| |
| if (sctp->sctp_current->isv4) { |
| hdrlen = sctp->sctp_hdr_len; |
| } else { |
| hdrlen = sctp->sctp_hdr6_len; |
| } |
| ASSERT(sctp->sctp_ulpd); |
| |
| ASSERT(sctp->sctp_current->sfa_pmss == sctp->sctp_mss); |
| bzero(&sopp, sizeof (sopp)); |
| sopp.sopp_flags = SOCKOPT_MAXBLK|SOCKOPT_WROFF; |
| sopp.sopp_wroff = sctps->sctps_wroff_xtra + hdrlen + |
| sizeof (sctp_data_hdr_t); |
| sopp.sopp_maxblk = sctp->sctp_mss - sizeof (sctp_data_hdr_t); |
| sctp->sctp_ulp_prop(sctp->sctp_ulpd, &sopp); |
| } |
| |
| void |
| sctp_set_iplen(sctp_t *sctp, mblk_t *mp) |
| { |
| uint16_t sum = 0; |
| ipha_t *iph; |
| ip6_t *ip6h; |
| mblk_t *pmp = mp; |
| boolean_t isv4; |
| |
| isv4 = (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); |
| for (; pmp; pmp = pmp->b_cont) |
| sum += pmp->b_wptr - pmp->b_rptr; |
| |
| if (isv4) { |
| iph = (ipha_t *)mp->b_rptr; |
| iph->ipha_length = htons(sum); |
| } else { |
| ip6h = (ip6_t *)mp->b_rptr; |
| /* |
| * If an ip6i_t is present, the real IPv6 header |
| * immediately follows. |
| */ |
| if (ip6h->ip6_nxt == IPPROTO_RAW) |
| ip6h = (ip6_t *)&ip6h[1]; |
| ip6h->ip6_plen = htons(sum - ((char *)&sctp->sctp_ip6h[1] - |
| sctp->sctp_iphc6)); |
| } |
| } |
| |
| int |
| sctp_compare_faddrsets(sctp_faddr_t *a1, sctp_faddr_t *a2) |
| { |
| int na1 = 0; |
| int overlap = 0; |
| int equal = 1; |
| int onematch; |
| sctp_faddr_t *fp1, *fp2; |
| |
| for (fp1 = a1; fp1; fp1 = fp1->next) { |
| onematch = 0; |
| for (fp2 = a2; fp2; fp2 = fp2->next) { |
| if (IN6_ARE_ADDR_EQUAL(&fp1->faddr, &fp2->faddr)) { |
| overlap++; |
| onematch = 1; |
| break; |
| } |
| if (!onematch) { |
| equal = 0; |
| } |
| } |
| na1++; |
| } |
| |
| if (equal) { |
| return (SCTP_ADDR_EQUAL); |
| } |
| if (overlap == na1) { |
| return (SCTP_ADDR_SUBSET); |
| } |
| if (overlap) { |
| return (SCTP_ADDR_OVERLAP); |
| } |
| return (SCTP_ADDR_DISJOINT); |
| } |
| |
| /* |
| * Returns 0 on success, -1 on memory allocation failure. If sleep |
| * is true, this function should never fail. The boolean parameter |
| * first decides whether the newly created faddr structure should be |
| * added at the beginning of the list or at the end. |
| * |
| * Note: caller must hold conn fanout lock. |
| */ |
| int |
| sctp_add_faddr(sctp_t *sctp, in6_addr_t *addr, int sleep, boolean_t first) |
| { |
| sctp_faddr_t *faddr; |
| mblk_t *timer_mp; |
| |
| if (is_system_labeled()) { |
| ts_label_t *tsl; |
| tsol_tpc_t *rhtp; |
| int retv; |
| |
| tsl = crgetlabel(CONN_CRED(sctp->sctp_connp)); |
| ASSERT(tsl != NULL); |
| |
| /* find_tpc automatically does the right thing with IPv4 */ |
| rhtp = find_tpc(addr, IPV6_VERSION, B_FALSE); |
| if (rhtp == NULL) |
| return (EACCES); |
| |
| retv = EACCES; |
| if (tsl->tsl_doi == rhtp->tpc_tp.tp_doi) { |
| switch (rhtp->tpc_tp.host_type) { |
| case UNLABELED: |
| /* |
| * Can talk to unlabeled hosts if any of the |
| * following are true: |
| * 1. zone's label matches the remote host's |
| * default label, |
| * 2. mac_exempt is on and the zone dominates |
| * the remote host's label, or |
| * 3. mac_exempt is on and the socket is from |
| * the global zone. |
| */ |
| if (blequal(&rhtp->tpc_tp.tp_def_label, |
| &tsl->tsl_label) || |
| (sctp->sctp_mac_exempt && |
| (sctp->sctp_zoneid == GLOBAL_ZONEID || |
| bldominates(&tsl->tsl_label, |
| &rhtp->tpc_tp.tp_def_label)))) |
| retv = 0; |
| break; |
| case SUN_CIPSO: |
| if (_blinrange(&tsl->tsl_label, |
| &rhtp->tpc_tp.tp_sl_range_cipso) || |
| blinlset(&tsl->tsl_label, |
| rhtp->tpc_tp.tp_sl_set_cipso)) |
| retv = 0; |
| break; |
| } |
| } |
| TPC_RELE(rhtp); |
| if (retv != 0) |
| return (retv); |
| } |
| |
| if ((faddr = kmem_cache_alloc(sctp_kmem_faddr_cache, sleep)) == NULL) |
| return (ENOMEM); |
| timer_mp = sctp_timer_alloc((sctp), sctp_rexmit_timer, sleep); |
| if (timer_mp == NULL) { |
| kmem_cache_free(sctp_kmem_faddr_cache, faddr); |
| return (ENOMEM); |
| } |
| ((sctpt_t *)(timer_mp->b_rptr))->sctpt_faddr = faddr; |
| |
| sctp_init_faddr(sctp, faddr, addr, timer_mp); |
| |
| /* Check for subnet broadcast. */ |
| if (faddr->ire != NULL && faddr->ire->ire_type & IRE_BROADCAST) { |
| IRE_REFRELE_NOTR(faddr->ire); |
| sctp_timer_free(timer_mp); |
| faddr->timer_mp = NULL; |
| kmem_cache_free(sctp_kmem_faddr_cache, faddr); |
| return (EADDRNOTAVAIL); |
| } |
| ASSERT(faddr->next == NULL); |
| |
| if (sctp->sctp_faddrs == NULL) { |
| ASSERT(sctp->sctp_lastfaddr == NULL); |
| /* only element on list; first and last are same */ |
| sctp->sctp_faddrs = sctp->sctp_lastfaddr = faddr; |
| } else if (first) { |
| ASSERT(sctp->sctp_lastfaddr != NULL); |
| faddr->next = sctp->sctp_faddrs; |
| sctp->sctp_faddrs = faddr; |
| } else { |
| sctp->sctp_lastfaddr->next = faddr; |
| sctp->sctp_lastfaddr = faddr; |
| } |
| sctp->sctp_nfaddrs++; |
| |
| return (0); |
| } |
| |
| sctp_faddr_t * |
| sctp_lookup_faddr(sctp_t *sctp, in6_addr_t *addr) |
| { |
| sctp_faddr_t *fp; |
| |
| for (fp = sctp->sctp_faddrs; fp != NULL; fp = fp->next) { |
| if (IN6_ARE_ADDR_EQUAL(&fp->faddr, addr)) |
| break; |
| } |
| |
| return (fp); |
| } |
| |
| sctp_faddr_t * |
| sctp_lookup_faddr_nosctp(sctp_faddr_t *fp, in6_addr_t *addr) |
| { |
| for (; fp; fp = fp->next) { |
| if (IN6_ARE_ADDR_EQUAL(&fp->faddr, addr)) { |
| break; |
| } |
| } |
| |
| return (fp); |
| } |
| |
| /* |
| * To change the currently used peer address to the specified one. |
| */ |
| void |
| sctp_set_faddr_current(sctp_t *sctp, sctp_faddr_t *fp) |
| { |
| /* Now setup the composite header. */ |
| if (fp->isv4) { |
| IN6_V4MAPPED_TO_IPADDR(&fp->faddr, |
| sctp->sctp_ipha->ipha_dst); |
| IN6_V4MAPPED_TO_IPADDR(&fp->saddr, sctp->sctp_ipha->ipha_src); |
| /* update don't fragment bit */ |
| if (fp->df) { |
| sctp->sctp_ipha->ipha_fragment_offset_and_flags = |
| htons(IPH_DF); |
| } else { |
| sctp->sctp_ipha->ipha_fragment_offset_and_flags = 0; |
| } |
| } else { |
| sctp->sctp_ip6h->ip6_dst = fp->faddr; |
| sctp->sctp_ip6h->ip6_src = fp->saddr; |
| } |
| |
| sctp->sctp_current = fp; |
| sctp->sctp_mss = fp->sfa_pmss; |
| |
| /* Update the uppper layer for the change. */ |
| if (!SCTP_IS_DETACHED(sctp)) |
| sctp_set_ulp_prop(sctp); |
| } |
| |
| void |
| sctp_redo_faddr_srcs(sctp_t *sctp) |
| { |
| sctp_faddr_t *fp; |
| |
| for (fp = sctp->sctp_faddrs; fp != NULL; fp = fp->next) { |
| sctp_get_ire(sctp, fp); |
| } |
| } |
| |
| void |
| sctp_faddr_alive(sctp_t *sctp, sctp_faddr_t *fp) |
| { |
| int64_t now = lbolt64; |
| |
| fp->strikes = 0; |
| sctp->sctp_strikes = 0; |
| fp->lastactive = now; |
| fp->hb_expiry = now + SET_HB_INTVL(fp); |
| fp->hb_pending = B_FALSE; |
| if (fp->state != SCTP_FADDRS_ALIVE) { |
| fp->state = SCTP_FADDRS_ALIVE; |
| sctp_intf_event(sctp, fp->faddr, SCTP_ADDR_AVAILABLE, 0); |
| /* Should have a full IRE now */ |
| sctp_get_ire(sctp, fp); |
| |
| /* |
| * If this is the primary, switch back to it now. And |
| * we probably want to reset the source addr used to reach |
| * it. |
| */ |
| if (fp == sctp->sctp_primary) { |
| ASSERT(fp->state != SCTP_FADDRS_UNREACH); |
| sctp_set_faddr_current(sctp, fp); |
| return; |
| } |
| } |
| } |
| |
| int |
| sctp_is_a_faddr_clean(sctp_t *sctp) |
| { |
| sctp_faddr_t *fp; |
| |
| for (fp = sctp->sctp_faddrs; fp; fp = fp->next) { |
| if (fp->state == SCTP_FADDRS_ALIVE && fp->strikes == 0) { |
| return (1); |
| } |
| } |
| |
| return (0); |
| } |
| |
| /* |
| * Returns 0 if there is at leave one other active faddr, -1 if there |
| * are none. If there are none left, faddr_dead() will start killing the |
| * association. |
| * If the downed faddr was the current faddr, a new current faddr |
| * will be chosen. |
| */ |
| int |
| sctp_faddr_dead(sctp_t *sctp, sctp_faddr_t *fp, int newstate) |
| { |
| sctp_faddr_t *ofp; |
| sctp_stack_t *sctps = sctp->sctp_sctps; |
| |
| if (fp->state == SCTP_FADDRS_ALIVE) { |
| sctp_intf_event(sctp, fp->faddr, SCTP_ADDR_UNREACHABLE, 0); |
| } |
| fp->state = newstate; |
| |
| dprint(1, ("sctp_faddr_dead: %x:%x:%x:%x down (state=%d)\n", |
| SCTP_PRINTADDR(fp->faddr), newstate)); |
| |
| if (fp == sctp->sctp_current) { |
| /* Current faddr down; need to switch it */ |
| sctp->sctp_current = NULL; |
| } |
| |
| /* Find next alive faddr */ |
| ofp = fp; |
| for (fp = fp->next; fp != NULL; fp = fp->next) { |
| if (fp->state == SCTP_FADDRS_ALIVE) { |
| break; |
| } |
| } |
| |
| if (fp == NULL) { |
| /* Continue from beginning of list */ |
| for (fp = sctp->sctp_faddrs; fp != ofp; fp = fp->next) { |
| if (fp->state == SCTP_FADDRS_ALIVE) { |
| break; |
| } |
| } |
| } |
| |
| /* |
| * Find a new fp, so if the current faddr is dead, use the new fp |
| * as the current one. |
| */ |
| if (fp != ofp) { |
| if (sctp->sctp_current == NULL) { |
| dprint(1, ("sctp_faddr_dead: failover->%x:%x:%x:%x\n", |
| SCTP_PRINTADDR(fp->faddr))); |
| /* |
| * Note that we don't need to reset the source addr |
| * of the new fp. |
| */ |
| sctp_set_faddr_current(sctp, fp); |
| } |
| return (0); |
| } |
| |
| |
| /* All faddrs are down; kill the association */ |
| dprint(1, ("sctp_faddr_dead: all faddrs down, killing assoc\n")); |
| BUMP_MIB(&sctps->sctps_mib, sctpAborted); |
| sctp_assoc_event(sctp, sctp->sctp_state < SCTPS_ESTABLISHED ? |
| SCTP_CANT_STR_ASSOC : SCTP_COMM_LOST, 0, NULL); |
| sctp_clean_death(sctp, sctp->sctp_client_errno ? |
| sctp->sctp_client_errno : ETIMEDOUT); |
| |
| return (-1); |
| } |
| |
| sctp_faddr_t * |
| sctp_rotate_faddr(sctp_t *sctp, sctp_faddr_t *ofp) |
| { |
| sctp_faddr_t *nfp = NULL; |
| |
| if (ofp == NULL) { |
| ofp = sctp->sctp_current; |
| } |
| |
| /* Find the next live one */ |
| for (nfp = ofp->next; nfp != NULL; nfp = nfp->next) { |
| if (nfp->state == SCTP_FADDRS_ALIVE) { |
| break; |
| } |
| } |
| |
| if (nfp == NULL) { |
| /* Continue from beginning of list */ |
| for (nfp = sctp->sctp_faddrs; nfp != ofp; nfp = nfp->next) { |
| if (nfp->state == SCTP_FADDRS_ALIVE) { |
| break; |
| } |
| } |
| } |
| |
| /* |
| * nfp could only be NULL if all faddrs are down, and when |
| * this happens, faddr_dead() should have killed the |
| * association. Hence this assertion... |
| */ |
| ASSERT(nfp != NULL); |
| return (nfp); |
| } |
| |
| void |
| sctp_unlink_faddr(sctp_t *sctp, sctp_faddr_t *fp) |
| { |
| sctp_faddr_t *fpp; |
| |
| if (!sctp->sctp_faddrs) { |
| return; |
| } |
| |
| if (fp->timer_mp != NULL) { |
| sctp_timer_free(fp->timer_mp); |
| fp->timer_mp = NULL; |
| fp->timer_running = 0; |
| } |
| if (fp->rc_timer_mp != NULL) { |
| sctp_timer_free(fp->rc_timer_mp); |
| fp->rc_timer_mp = NULL; |
| fp->rc_timer_running = 0; |
| } |
| if (fp->ire != NULL) { |
| IRE_REFRELE_NOTR(fp->ire); |
| fp->ire = NULL; |
| } |
| |
| if (fp == sctp->sctp_faddrs) { |
| goto gotit; |
| } |
| |
| for (fpp = sctp->sctp_faddrs; fpp->next != fp; fpp = fpp->next) |
| ; |
| |
| gotit: |
| ASSERT(sctp->sctp_conn_tfp != NULL); |
| mutex_enter(&sctp->sctp_conn_tfp->tf_lock); |
| if (fp == sctp->sctp_faddrs) { |
| sctp->sctp_faddrs = fp->next; |
| } else { |
| fpp->next = fp->next; |
| } |
| mutex_exit(&sctp->sctp_conn_tfp->tf_lock); |
| /* XXX faddr2ire? */ |
| kmem_cache_free(sctp_kmem_faddr_cache, fp); |
| sctp->sctp_nfaddrs--; |
| } |
| |
| void |
| sctp_zap_faddrs(sctp_t *sctp, int caller_holds_lock) |
| { |
| sctp_faddr_t *fp, *fpn; |
| |
| if (sctp->sctp_faddrs == NULL) { |
| ASSERT(sctp->sctp_lastfaddr == NULL); |
| return; |
| } |
| |
| ASSERT(sctp->sctp_lastfaddr != NULL); |
| sctp->sctp_lastfaddr = NULL; |
| sctp->sctp_current = NULL; |
| sctp->sctp_primary = NULL; |
| |
| sctp_free_faddr_timers(sctp); |
| |
| if (sctp->sctp_conn_tfp != NULL && !caller_holds_lock) { |
| /* in conn fanout; need to hold lock */ |
| mutex_enter(&sctp->sctp_conn_tfp->tf_lock); |
| } |
| |
| for (fp = sctp->sctp_faddrs; fp; fp = fpn) { |
| fpn = fp->next; |
| if (fp->ire != NULL) |
| IRE_REFRELE_NOTR(fp->ire); |
| kmem_cache_free(sctp_kmem_faddr_cache, fp); |
| sctp->sctp_nfaddrs--; |
| } |
| |
| sctp->sctp_faddrs = NULL; |
| ASSERT(sctp->sctp_nfaddrs == 0); |
| if (sctp->sctp_conn_tfp != NULL && !caller_holds_lock) { |
| mutex_exit(&sctp->sctp_conn_tfp->tf_lock); |
| } |
| |
| } |
| |
| void |
| sctp_zap_addrs(sctp_t *sctp) |
| { |
| sctp_zap_faddrs(sctp, 0); |
| sctp_free_saddrs(sctp); |
| } |
| |
| /* |
| * Initialize the IPv4 header. Loses any record of any IP options. |
| */ |
| int |
| sctp_header_init_ipv4(sctp_t *sctp, int sleep) |
| { |
| sctp_hdr_t *sctph; |
| sctp_stack_t *sctps = sctp->sctp_sctps; |
| |
| /* |
| * This is a simple initialization. If there's |
| * already a template, it should never be too small, |
| * so reuse it. Otherwise, allocate space for the new one. |
| */ |
| if (sctp->sctp_iphc != NULL) { |
| ASSERT(sctp->sctp_iphc_len >= SCTP_MAX_COMBINED_HEADER_LENGTH); |
| bzero(sctp->sctp_iphc, sctp->sctp_iphc_len); |
| } else { |
| sctp->sctp_iphc_len = SCTP_MAX_COMBINED_HEADER_LENGTH; |
| sctp->sctp_iphc = kmem_zalloc(sctp->sctp_iphc_len, sleep); |
| if (sctp->sctp_iphc == NULL) { |
| sctp->sctp_iphc_len = 0; |
| return (ENOMEM); |
| } |
| } |
| |
| sctp->sctp_ipha = (ipha_t *)sctp->sctp_iphc; |
| |
| sctp->sctp_hdr_len = sizeof (ipha_t) + sizeof (sctp_hdr_t); |
| sctp->sctp_ip_hdr_len = sizeof (ipha_t); |
| sctp->sctp_ipha->ipha_length = htons(sizeof (ipha_t) + |
| sizeof (sctp_hdr_t)); |
| sctp->sctp_ipha->ipha_version_and_hdr_length = |
| (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; |
| |
| /* |
| * These two fields should be zero, and are already set above. |
| * |
| * sctp->sctp_ipha->ipha_ident, |
| * sctp->sctp_ipha->ipha_fragment_offset_and_flags. |
| */ |
| |
| sctp->sctp_ipha->ipha_ttl = sctps->sctps_ipv4_ttl; |
| sctp->sctp_ipha->ipha_protocol = IPPROTO_SCTP; |
| |
| sctph = (sctp_hdr_t *)(sctp->sctp_iphc + sizeof (ipha_t)); |
| sctp->sctp_sctph = sctph; |
| |
| return (0); |
| } |
| |
| /* |
| * Update sctp_sticky_hdrs based on sctp_sticky_ipp. |
| * The headers include ip6i_t (if needed), ip6_t, any sticky extension |
| * headers, and the maximum size sctp header (to avoid reallocation |
| * on the fly for additional sctp options). |
| * Returns failure if can't allocate memory. |
| */ |
| int |
| sctp_build_hdrs(sctp_t *sctp) |
| { |
| char *hdrs; |
| uint_t hdrs_len; |
| ip6i_t *ip6i; |
| char buf[SCTP_MAX_HDR_LENGTH]; |
| ip6_pkt_t *ipp = &sctp->sctp_sticky_ipp; |
| in6_addr_t src; |
| in6_addr_t dst; |
| sctp_stack_t *sctps = sctp->sctp_sctps; |
| |
| /* |
| * save the existing sctp header and source/dest IP addresses |
| */ |
| bcopy(sctp->sctp_sctph6, buf, sizeof (sctp_hdr_t)); |
| src = sctp->sctp_ip6h->ip6_src; |
| dst = sctp->sctp_ip6h->ip6_dst; |
| hdrs_len = ip_total_hdrs_len_v6(ipp) + SCTP_MAX_HDR_LENGTH; |
| ASSERT(hdrs_len != 0); |
| if (hdrs_len > sctp->sctp_iphc6_len) { |
| /* Need to reallocate */ |
| hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); |
| if (hdrs == NULL) |
| return (ENOMEM); |
| |
| if (sctp->sctp_iphc6_len != 0) |
| kmem_free(sctp->sctp_iphc6, sctp->sctp_iphc6_len); |
| sctp->sctp_iphc6 = hdrs; |
| sctp->sctp_iphc6_len = hdrs_len; |
| } |
| ip_build_hdrs_v6((uchar_t *)sctp->sctp_iphc6, |
| hdrs_len - SCTP_MAX_HDR_LENGTH, ipp, IPPROTO_SCTP); |
| |
| /* Set header fields not in ipp */ |
| if (ipp->ipp_fields & IPPF_HAS_IP6I) { |
| ip6i = (ip6i_t *)sctp->sctp_iphc6; |
| sctp->sctp_ip6h = (ip6_t *)&ip6i[1]; |
| } else { |
| sctp->sctp_ip6h = (ip6_t *)sctp->sctp_iphc6; |
| } |
| /* |
| * sctp->sctp_ip_hdr_len will include ip6i_t if there is one. |
| */ |
| sctp->sctp_ip_hdr6_len = hdrs_len - SCTP_MAX_HDR_LENGTH; |
| sctp->sctp_sctph6 = (sctp_hdr_t *)(sctp->sctp_iphc6 + |
| sctp->sctp_ip_hdr6_len); |
| sctp->sctp_hdr6_len = sctp->sctp_ip_hdr6_len + sizeof (sctp_hdr_t); |
| |
| bcopy(buf, sctp->sctp_sctph6, sizeof (sctp_hdr_t)); |
| |
| sctp->sctp_ip6h->ip6_src = src; |
| sctp->sctp_ip6h->ip6_dst = dst; |
| /* |
| * If the hoplimit was not set by ip_build_hdrs_v6(), we need to |
| * set it to the default value for SCTP. |
| */ |
| if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) |
| sctp->sctp_ip6h->ip6_hops = sctps->sctps_ipv6_hoplimit; |
| /* |
| * If we're setting extension headers after a connection |
| * has been established, and if we have a routing header |
| * among the extension headers, call ip_massage_options_v6 to |
| * manipulate the routing header/ip6_dst set the checksum |
| * difference in the sctp header template. |
| * (This happens in sctp_connect_ipv6 if the routing header |
| * is set prior to the connect.) |
| */ |
| |
| if ((sctp->sctp_state >= SCTPS_COOKIE_WAIT) && |
| (sctp->sctp_sticky_ipp.ipp_fields & IPPF_RTHDR)) { |
| ip6_rthdr_t *rth; |
| |
| rth = ip_find_rthdr_v6(sctp->sctp_ip6h, |
| (uint8_t *)sctp->sctp_sctph6); |
| if (rth != NULL) { |
| (void) ip_massage_options_v6(sctp->sctp_ip6h, rth, |
| sctps->sctps_netstack); |
| } |
| } |
| return (0); |
| } |
| |
| /* |
| * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. |
| */ |
| int |
| sctp_header_init_ipv6(sctp_t *sctp, int sleep) |
| { |
| sctp_hdr_t *sctph; |
| sctp_stack_t *sctps = sctp->sctp_sctps; |
| |
| /* |
| * This is a simple initialization. If there's |
| * already a template, it should never be too small, |
| * so reuse it. Otherwise, allocate space for the new one. |
| * Ensure that there is enough space to "downgrade" the sctp_t |
| * to an IPv4 sctp_t. This requires having space for a full load |
| * of IPv4 options |
| */ |
| if (sctp->sctp_iphc6 != NULL) { |
| ASSERT(sctp->sctp_iphc6_len >= |
| SCTP_MAX_COMBINED_HEADER_LENGTH); |
| bzero(sctp->sctp_iphc6, sctp->sctp_iphc6_len); |
| } else { |
| sctp->sctp_iphc6_len = SCTP_MAX_COMBINED_HEADER_LENGTH; |
| sctp->sctp_iphc6 = kmem_zalloc(sctp->sctp_iphc_len, sleep); |
| if (sctp->sctp_iphc6 == NULL) { |
| sctp->sctp_iphc6_len = 0; |
| return (ENOMEM); |
| } |
| } |
| sctp->sctp_hdr6_len = IPV6_HDR_LEN + sizeof (sctp_hdr_t); |
| sctp->sctp_ip_hdr6_len = IPV6_HDR_LEN; |
| sctp->sctp_ip6h = (ip6_t *)sctp->sctp_iphc6; |
| |
| /* Initialize the header template */ |
| |
| sctp->sctp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; |
| sctp->sctp_ip6h->ip6_plen = ntohs(sizeof (sctp_hdr_t)); |
| sctp->sctp_ip6h->ip6_nxt = IPPROTO_SCTP; |
| sctp->sctp_ip6h->ip6_hops = sctps->sctps_ipv6_hoplimit; |
| |
| sctph = (sctp_hdr_t *)(sctp->sctp_iphc6 + IPV6_HDR_LEN); |
| sctp->sctp_sctph6 = sctph; |
| |
| return (0); |
| } |
| |
| static int |
| sctp_v4_label(sctp_t *sctp) |
| { |
| uchar_t optbuf[IP_MAX_OPT_LENGTH]; |
| const cred_t *cr = CONN_CRED(sctp->sctp_connp); |
| int added; |
| |
| if (tsol_compute_label(cr, sctp->sctp_ipha->ipha_dst, optbuf, |
| sctp->sctp_mac_exempt, |
| sctp->sctp_sctps->sctps_netstack->netstack_ip) != 0) |
| return (EACCES); |
| |
| added = tsol_remove_secopt(sctp->sctp_ipha, sctp->sctp_hdr_len); |
| if (added == -1) |
| return (EACCES); |
| sctp->sctp_hdr_len += added; |
| sctp->sctp_sctph = (sctp_hdr_t *)((uchar_t *)sctp->sctp_sctph + added); |
| sctp->sctp_ip_hdr_len += added; |
| if ((sctp->sctp_v4label_len = optbuf[IPOPT_OLEN]) != 0) { |
| sctp->sctp_v4label_len = (sctp->sctp_v4label_len + 3) & ~3; |
| added = tsol_prepend_option(optbuf, sctp->sctp_ipha, |
| sctp->sctp_hdr_len); |
| if (added == -1) |
| return (EACCES); |
| sctp->sctp_hdr_len += added; |
| sctp->sctp_sctph = (sctp_hdr_t *)((uchar_t *)sctp->sctp_sctph + |
| added); |
| sctp->sctp_ip_hdr_len += added; |
| } |
| return (0); |
| } |
| |
| static int |
| sctp_v6_label(sctp_t *sctp) |
| { |
| uchar_t optbuf[TSOL_MAX_IPV6_OPTION]; |
| const cred_t *cr = CONN_CRED(sctp->sctp_connp); |
| |
| if (tsol_compute_label_v6(cr, &sctp->sctp_ip6h->ip6_dst, optbuf, |
| sctp->sctp_mac_exempt, |
| sctp->sctp_sctps->sctps_netstack->netstack_ip) != 0) |
| return (EACCES); |
| if (tsol_update_sticky(&sctp->sctp_sticky_ipp, &sctp->sctp_v6label_len, |
| optbuf) != 0) |
| return (EACCES); |
| if (sctp_build_hdrs(sctp) != 0) |
| return (EACCES); |
| return (0); |
| } |
| |
| /* |
| * XXX implement more sophisticated logic |
| */ |
| int |
| sctp_set_hdraddrs(sctp_t *sctp) |
| { |
| sctp_faddr_t *fp; |
| int gotv4 = 0; |
| int gotv6 = 0; |
| |
| ASSERT(sctp->sctp_faddrs != NULL); |
| ASSERT(sctp->sctp_nsaddrs > 0); |
| |
| /* Set up using the primary first */ |
| if (IN6_IS_ADDR_V4MAPPED(&sctp->sctp_primary->faddr)) { |
| IN6_V4MAPPED_TO_IPADDR(&sctp->sctp_primary->faddr, |
| sctp->sctp_ipha->ipha_dst); |
| /* saddr may be unspec; make_mp() will handle this */ |
| IN6_V4MAPPED_TO_IPADDR(&sctp->sctp_primary->saddr, |
| sctp->sctp_ipha->ipha_src); |
| if (!is_system_labeled() || sctp_v4_label(sctp) == 0) { |
| gotv4 = 1; |
| if (sctp->sctp_ipversion == IPV4_VERSION) { |
| goto copyports; |
| } |
| } |
| } else { |
| sctp->sctp_ip6h->ip6_dst = sctp->sctp_primary->faddr; |
| /* saddr may be unspec; make_mp() will handle this */ |
| sctp->sctp_ip6h->ip6_src = sctp->sctp_primary->saddr; |
| if (!is_system_labeled() || sctp_v6_label(sctp) == 0) |
| gotv6 = 1; |
| } |
| |
| for (fp = sctp->sctp_faddrs; fp; fp = fp->next) { |
| if (!gotv4 && IN6_IS_ADDR_V4MAPPED(&fp->faddr)) { |
| IN6_V4MAPPED_TO_IPADDR(&fp->faddr, |
| sctp->sctp_ipha->ipha_dst); |
| /* copy in the faddr_t's saddr */ |
| IN6_V4MAPPED_TO_IPADDR(&fp->saddr, |
| sctp->sctp_ipha->ipha_src); |
| if (!is_system_labeled() || sctp_v4_label(sctp) == 0) { |
| gotv4 = 1; |
| if (sctp->sctp_ipversion == IPV4_VERSION || |
| gotv6) { |
| break; |
| } |
| } |
| } else if (!gotv6 && !IN6_IS_ADDR_V4MAPPED(&fp->faddr)) { |
| sctp->sctp_ip6h->ip6_dst = fp->faddr; |
| /* copy in the faddr_t's saddr */ |
| sctp->sctp_ip6h->ip6_src = fp->saddr; |
| if (!is_system_labeled() || sctp_v6_label(sctp) == 0) { |
| gotv6 = 1; |
| if (gotv4) |
| break; |
| } |
| } |
| } |
| |
| copyports: |
| if (!gotv4 && !gotv6) |
| return (EACCES); |
| |
| /* copy in the ports for good measure */ |
| sctp->sctp_sctph->sh_sport = sctp->sctp_lport; |
| sctp->sctp_sctph->sh_dport = sctp->sctp_fport; |
| |
| sctp->sctp_sctph6->sh_sport = sctp->sctp_lport; |
| sctp->sctp_sctph6->sh_dport = sctp->sctp_fport; |
| return (0); |
| } |
| |
| /* |
| * got_errchunk is set B_TRUE only if called from validate_init_params(), when |
| * an ERROR chunk is already prepended the size of which needs updating for |
| * additional unrecognized parameters. Other callers either prepend the ERROR |
| * chunk with the correct size after calling this function, or they are calling |
| * to add an invalid parameter to an INIT_ACK chunk, in that case no ERROR chunk |
| * exists, the CAUSE blocks go into the INIT_ACK directly. |
| * |
| * *errmp will be non-NULL both when adding an additional CAUSE block to an |
| * existing prepended COOKIE ERROR chunk (processing params of an INIT_ACK), |
| * and when adding unrecognized parameters after the first, to an INIT_ACK |
| * (processing params of an INIT chunk). |
| */ |
| void |
| sctp_add_unrec_parm(sctp_parm_hdr_t *uph, mblk_t **errmp, |
| boolean_t got_errchunk) |
| { |
| mblk_t *mp; |
| sctp_parm_hdr_t *ph; |
| size_t len; |
| int pad; |
| sctp_chunk_hdr_t *ecp; |
| |
| len = sizeof (*ph) + ntohs(uph->sph_len); |
| if ((pad = len % SCTP_ALIGN) != 0) { |
| pad = SCTP_ALIGN - pad; |
| len += pad; |
| } |
| mp = allocb(len, BPRI_MED); |
| if (mp == NULL) { |
| return; |
| } |
| |
| ph = (sctp_parm_hdr_t *)(mp->b_rptr); |
| ph->sph_type = htons(PARM_UNRECOGNIZED); |
| ph->sph_len = htons(len - pad); |
| |
| /* copy in the unrecognized parameter */ |
| bcopy(uph, ph + 1, ntohs(uph->sph_len)); |
| |
| if (pad != 0) |
| bzero((mp->b_rptr + len - pad), pad); |
| |
| mp->b_wptr = mp->b_rptr + len; |
| if (*errmp != NULL) { |
| /* |
| * Update total length if an ERROR chunk, then link |
| * this CAUSE block to the possible chain of CAUSE |
| * blocks attached to the ERROR chunk or INIT_ACK |
| * being created. |
| */ |
| if (got_errchunk) { |
| /* ERROR chunk already prepended */ |
| ecp = (sctp_chunk_hdr_t *)((*errmp)->b_rptr); |
| ecp->sch_len = htons(ntohs(ecp->sch_len) + len); |
| } |
| linkb(*errmp, mp); |
| } else { |
| *errmp = mp; |
| } |
| } |
| |
| /* |
| * o Bounds checking |
| * o Updates remaining |
| * o Checks alignment |
| */ |
| sctp_parm_hdr_t * |
| sctp_next_parm(sctp_parm_hdr_t *current, ssize_t *remaining) |
| { |
| int pad; |
| uint16_t len; |
| |
| len = ntohs(current->sph_len); |
| *remaining -= len; |
| if (*remaining < sizeof (*current) || len < sizeof (*current)) { |
| return (NULL); |
| } |
| if ((pad = len & (SCTP_ALIGN - 1)) != 0) { |
| pad = SCTP_ALIGN - pad; |
| *remaining -= pad; |
| } |
| /*LINTED pointer cast may result in improper alignment*/ |
| current = (sctp_parm_hdr_t *)((char *)current + len + pad); |
| return (current); |
| } |
| |
| /* |
| * Sets the address parameters given in the INIT chunk into sctp's |
| * faddrs; if psctp is non-NULL, copies psctp's saddrs. If there are |
| * no address parameters in the INIT chunk, a single faddr is created |
| * from the ip hdr at the beginning of pkt. |
| * If there already are existing addresses hanging from sctp, merge |
| * them in, if the old info contains addresses which are not present |
| * in this new info, get rid of them, and clean the pointers if there's |
| * messages which have this as their target address. |
| * |
| * We also re-adjust the source address list here since the list may |
| * contain more than what is actually part of the association. If |
| * we get here from sctp_send_cookie_echo(), we are on the active |
| * side and psctp will be NULL and ich will be the INIT-ACK chunk. |
| * If we get here from sctp_accept_comm(), ich will be the INIT chunk |
| * and psctp will the listening endpoint. |
| * |
| * INIT processing: When processing the INIT we inherit the src address |
| * list from the listener. For a loopback or linklocal association, we |
| * delete the list and just take the address from the IP header (since |
| * that's how we created the INIT-ACK). Additionally, for loopback we |
| * ignore the address params in the INIT. For determining which address |
| * types were sent in the INIT-ACK we follow the same logic as in |
| * creating the INIT-ACK. We delete addresses of the type that are not |
| * supported by the peer. |
| * |
| * INIT-ACK processing: When processing the INIT-ACK since we had not |
| * included addr params for loopback or linklocal addresses when creating |
| * the INIT, we just use the address from the IP header. Further, for |
| * loopback we ignore the addr param list. We mark addresses of the |
| * type not supported by the peer as unconfirmed. |
| * |
| * In case of INIT processing we look for supported address types in the |
| * supported address param, if present. In both cases the address type in |
| * the IP header is supported as well as types for addresses in the param |
| * list, if any. |
| * |
| * Once we have the supported address types sctp_check_saddr() runs through |
| * the source address list and deletes or marks as unconfirmed address of |
| * types not supported by the peer. |
| * |
| * Returns 0 on success, sys errno on failure |
| */ |
| int |
| sctp_get_addrparams(sctp_t *sctp, sctp_t *psctp, mblk_t *pkt, |
| sctp_chunk_hdr_t *ich, uint_t *sctp_options) |
| { |
| sctp_init_chunk_t *init; |
| ipha_t *iph; |
| ip6_t *ip6h; |
| in6_addr_t hdrsaddr[1]; |
| in6_addr_t hdrdaddr[1]; |
| sctp_parm_hdr_t *ph; |
| ssize_t remaining; |
| int isv4; |
| int err; |
| sctp_faddr_t *fp; |
| int supp_af = 0; |
| boolean_t check_saddr = B_TRUE; |
| in6_addr_t curaddr; |
| sctp_stack_t *sctps = sctp->sctp_sctps; |
| |
| if (sctp_options != NULL) |
| *sctp_options = 0; |
| |
| /* extract the address from the IP header */ |
| isv4 = (IPH_HDR_VERSION(pkt->b_rptr) == IPV4_VERSION); |
| if (isv4) { |
| iph = (ipha_t *)pkt->b_rptr; |
| IN6_IPADDR_TO_V4MAPPED(iph->ipha_src, hdrsaddr); |
| IN6_IPADDR_TO_V4MAPPED(iph->ipha_dst, hdrdaddr); |
| supp_af |= PARM_SUPP_V4; |
| } else { |
| ip6h = (ip6_t *)pkt->b_rptr; |
| hdrsaddr[0] = ip6h->ip6_src; |
| hdrdaddr[0] = ip6h->ip6_dst; |
| supp_af |= PARM_SUPP_V6; |
| } |
| |
| /* |
| * Unfortunately, we can't delay this because adding an faddr |
| * looks for the presence of the source address (from the ire |
| * for the faddr) in the source address list. We could have |
| * delayed this if, say, this was a loopback/linklocal connection. |
| * Now, we just end up nuking this list and taking the addr from |
| * the IP header for loopback/linklocal. |
| */ |
| if (psctp != NULL && psctp->sctp_nsaddrs > 0) { |
| ASSERT(sctp->sctp_nsaddrs == 0); |
| |
| err = sctp_dup_saddrs(psctp, sctp, KM_NOSLEEP); |
| if (err != 0) |
| return (err); |
| } |
| /* |
| * We will add the faddr before parsing the address list as this |
| * might be a loopback connection and we would not have to |
| * go through the list. |
| * |
| * Make sure the header's addr is in the list |
| */ |
| fp = sctp_lookup_faddr(sctp, hdrsaddr); |
| if (fp == NULL) { |
| /* not included; add it now */ |
| err = sctp_add_faddr(sctp, hdrsaddr, KM_NOSLEEP, B_TRUE); |
| if (err != 0) |
| return (err); |
| |
| /* sctp_faddrs will be the hdr addr */ |
| fp = sctp->sctp_faddrs; |
| } |
| /* make the header addr the primary */ |
| |
| if (cl_sctp_assoc_change != NULL && psctp == NULL) |
| curaddr = sctp->sctp_current->faddr; |
| |
| sctp->sctp_primary = fp; |
| sctp->sctp_current = fp; |
| sctp->sctp_mss = fp->sfa_pmss; |
| |
| /* For loopback connections & linklocal get address from the header */ |
| if (sctp->sctp_loopback || sctp->sctp_linklocal) { |
| if (sctp->sctp_nsaddrs != 0) |
| sctp_free_saddrs(sctp); |
| if ((err = sctp_saddr_add_addr(sctp, hdrdaddr, 0)) != 0) |
| return (err); |
| /* For loopback ignore address list */ |
| if (sctp->sctp_loopback) |
| return (0); |
| check_saddr = B_FALSE; |
| } |
| |
| /* Walk the params in the INIT [ACK], pulling out addr params */ |
| remaining = ntohs(ich->sch_len) - sizeof (*ich) - |
| sizeof (sctp_init_chunk_t); |
| if (remaining < sizeof (*ph)) { |
| if (check_saddr) { |
| sctp_check_saddr(sctp, supp_af, psctp == NULL ? |
| B_FALSE : B_TRUE, hdrdaddr); |
| } |
| ASSERT(sctp_saddr_lookup(sctp, hdrdaddr, 0) != NULL); |
| return (0); |
| } |
| |
| init = (sctp_init_chunk_t *)(ich + 1); |
| ph = (sctp_parm_hdr_t *)(init + 1); |
| |
| /* params will have already been byteordered when validating */ |
| while (ph != NULL) { |
| if (ph->sph_type == htons(PARM_SUPP_ADDRS)) { |
| int plen; |
| uint16_t *p; |
| uint16_t addrtype; |
| |
| ASSERT(psctp != NULL); |
| plen = ntohs(ph->sph_len); |
| p = (uint16_t *)(ph + 1); |
| while (plen > 0) { |
| addrtype = ntohs(*p); |
| switch (addrtype) { |
| case PARM_ADDR6: |
| supp_af |= PARM_SUPP_V6; |
| break; |
| case PARM_ADDR4: |
| supp_af |= PARM_SUPP_V4; |
| break; |
| default: |
| break; |
| } |
| p++; |
| plen -= sizeof (*p); |
| } |
| } else if (ph->sph_type == htons(PARM_ADDR4)) { |
| if (remaining >= PARM_ADDR4_LEN) { |
| in6_addr_t addr; |
| ipaddr_t ta; |
| |
| supp_af |= PARM_SUPP_V4; |
| /* |
| * Screen out broad/multicasts & loopback. |
| * If the endpoint only accepts v6 address, |
| * go to the next one. |
| * |
| * Subnet broadcast check is done in |
| * sctp_add_faddr(). If the address is |
| * a broadcast address, it won't be added. |
| */ |
| bcopy(ph + 1, &ta, sizeof (ta)); |
| if (ta == 0 || |
| ta == INADDR_BROADCAST || |
| ta == htonl(INADDR_LOOPBACK) || |
| CLASSD(ta) || |
| sctp->sctp_connp->conn_ipv6_v6only) { |
| goto next; |
| } |
| IN6_INADDR_TO_V4MAPPED((struct in_addr *) |
| (ph + 1), &addr); |
| |
| /* Check for duplicate. */ |
| if (sctp_lookup_faddr(sctp, &addr) != NULL) |
| goto next; |
| |
| /* OK, add it to the faddr set */ |
| err = sctp_add_faddr(sctp, &addr, KM_NOSLEEP, |
| B_FALSE); |
| /* Something is wrong... Try the next one. */ |
| if (err != 0) |
| goto next; |
| } |
| } else if (ph->sph_type == htons(PARM_ADDR6) && |
| sctp->sctp_family == AF_INET6) { |
| /* An v4 socket should not take v6 addresses. */ |
| if (remaining >= PARM_ADDR6_LEN) { |
| in6_addr_t *addr6; |
| |
| supp_af |= PARM_SUPP_V6; |
| addr6 = (in6_addr_t *)(ph + 1); |
| /* |
| * Screen out link locals, mcast, loopback |
| * and bogus v6 address. |
| */ |
| if (IN6_IS_ADDR_LINKLOCAL(addr6) || |
| IN6_IS_ADDR_MULTICAST(addr6) || |
| IN6_IS_ADDR_LOOPBACK(addr6) || |
| IN6_IS_ADDR_V4MAPPED(addr6)) { |
| goto next; |
| } |
| /* Check for duplicate. */ |
| if (sctp_lookup_faddr(sctp, addr6) != NULL) |
| goto next; |
| |
| err = sctp_add_faddr(sctp, |
| (in6_addr_t *)(ph + 1), KM_NOSLEEP, |
| B_FALSE); |
| /* Something is wrong... Try the next one. */ |
| if (err != 0) |
| goto next; |
| } |
| } else if (ph->sph_type == htons(PARM_FORWARD_TSN)) { |
| if (sctp_options != NULL) |
| *sctp_options |= SCTP_PRSCTP_OPTION; |
| } /* else; skip */ |
| |
| next: |
| ph = sctp_next_parm(ph, &remaining); |
| } |
| if (check_saddr) { |
| sctp_check_saddr(sctp, supp_af, psctp == NULL ? B_FALSE : |
| B_TRUE, hdrdaddr); |
| } |
| ASSERT(sctp_saddr_lookup(sctp, hdrdaddr, 0) != NULL); |
| /* |
| * We have the right address list now, update clustering's |
| * knowledge because when we sent the INIT we had just added |
| * the address the INIT was sent to. |
| */ |
| if (psctp == NULL && cl_sctp_assoc_change != NULL) { |
| uchar_t *alist; |
| size_t asize; |
| uchar_t *dlist; |
| size_t dsize; |
| |
| asize = sizeof (in6_addr_t) * sctp->sctp_nfaddrs; |
| alist = kmem_alloc(asize, KM_NOSLEEP); |
| if (alist == NULL) { |
| SCTP_KSTAT(sctps, sctp_cl_assoc_change); |
| return (ENOMEM); |
| } |
| /* |
| * Just include the address the INIT was sent to in the |
| * delete list and send the entire faddr list. We could |
| * do it differently (i.e include all the addresses in the |
| * add list even if it contains the original address OR |
| * remove the original address from the add list etc.), but |
| * this seems reasonable enough. |
| */ |
| dsize = sizeof (in6_addr_t); |
| dlist = kmem_alloc(dsize, KM_NOSLEEP); |
| if (dlist == NULL) { |
| kmem_free(alist, asize); |
| SCTP_KSTAT(sctps, sctp_cl_assoc_change); |
| return (ENOMEM); |
| } |
| bcopy(&curaddr, dlist, sizeof (curaddr)); |
| sctp_get_faddr_list(sctp, alist, asize); |
| (*cl_sctp_assoc_change)(sctp->sctp_family, alist, asize, |
| sctp->sctp_nfaddrs, dlist, dsize, 1, SCTP_CL_PADDR, |
| (cl_sctp_handle_t)sctp); |
| /* alist and dlist will be freed by the clustering module */ |
| } |
| return (0); |
| } |
| |
| /* |
| * Returns 0 if the check failed and the restart should be refused, |
| * 1 if the check succeeded. |
| */ |
| int |
| sctp_secure_restart_check(mblk_t *pkt, sctp_chunk_hdr_t *ich, uint32_t ports, |
| int sleep, sctp_stack_t *sctps) |
| { |
| sctp_faddr_t *fp, *fphead = NULL; |
| sctp_parm_hdr_t *ph; |
| ssize_t remaining; |
| int isv4; |
| ipha_t *iph; |
| ip6_t *ip6h; |
| in6_addr_t hdraddr[1]; |
| int retval = 0; |
| sctp_tf_t *tf; |
| sctp_t *sctp; |
| int compres; |
| sctp_init_chunk_t *init; |
| int nadded = 0; |
| |
| /* extract the address from the IP header */ |
| isv4 = (IPH_HDR_VERSION(pkt->b_rptr) == IPV4_VERSION); |
| if (isv4) { |
| iph = (ipha_t *)pkt->b_rptr; |
| IN6_IPADDR_TO_V4MAPPED(iph->ipha_src, hdraddr); |
| } else { |
| ip6h = (ip6_t *)pkt->b_rptr; |
| hdraddr[0] = ip6h->ip6_src; |
| } |
| |
| /* Walk the params in the INIT [ACK], pulling out addr params */ |
| remaining = ntohs(ich->sch_len) - sizeof (*ich) - |
| sizeof (sctp_init_chunk_t); |
| if (remaining < sizeof (*ph)) { |
| /* no parameters; restart OK */ |
| return (1); |
| } |
| init = (sctp_init_chunk_t *)(ich + 1); |
| ph = (sctp_parm_hdr_t *)(init + 1); |
| |
| while (ph != NULL) { |
| sctp_faddr_t *fpa = NULL; |
| |
| /* params will have already been byteordered when validating */ |
| if (ph->sph_type == htons(PARM_ADDR4)) { |
| if (remaining >= PARM_ADDR4_LEN) { |
| in6_addr_t addr; |
| IN6_INADDR_TO_V4MAPPED((struct in_addr *) |
| (ph + 1), &addr); |
| fpa = kmem_cache_alloc(sctp_kmem_faddr_cache, |
| sleep); |
| if (fpa == NULL) { |
| goto done; |
| } |
| bzero(fpa, sizeof (*fpa)); |
| fpa->faddr = addr; |
| fpa->next = NULL; |
| } |
| } else if (ph->sph_type == htons(PARM_ADDR6)) { |
| if (remaining >= PARM_ADDR6_LEN) { |
| fpa = kmem_cache_alloc(sctp_kmem_faddr_cache, |
| sleep); |
| if (fpa == NULL) { |
| goto done; |
| } |
| bzero(fpa, sizeof (*fpa)); |
| bcopy(ph + 1, &fpa->faddr, |
| sizeof (fpa->faddr)); |
| fpa->next = NULL; |
| } |
| } |
| /* link in the new addr, if it was an addr param */ |
| if (fpa != NULL) { |
| if (fphead == NULL) { |
| fphead = fpa; |
| } else { |
| fpa->next = fphead; |
| fphead = fpa; |
| } |
| } |
| |
| ph = sctp_next_parm(ph, &remaining); |
| } |
| |
| if (fphead == NULL) { |
| /* no addr parameters; restart OK */ |
| return (1); |
| } |
| |
| /* |
| * got at least one; make sure the header's addr is |
| * in the list |
| */ |
| fp = sctp_lookup_faddr_nosctp(fphead, hdraddr); |
| if (fp == NULL) { |
| /* not included; add it now */ |
| fp = kmem_cache_alloc(sctp_kmem_faddr_cache, sleep); |
| if (fp == NULL) { |
| goto done; |
| } |
| bzero(fp, sizeof (*fp)); |
| fp->faddr = *hdraddr; |
| fp->next = fphead; |
| fphead = fp; |
| } |
| |
| /* |
| * Now, we can finally do the check: For each sctp instance |
| * on the hash line for ports, compare its faddr set against |
| * the new one. If the new one is a strict subset of any |
| * existing sctp's faddrs, the restart is OK. However, if there |
| * is an overlap, this could be an attack, so return failure. |
| * If all sctp's faddrs are disjoint, this is a legitimate new |
| * association. |
| */ |
| tf = &(sctps->sctps_conn_fanout[SCTP_CONN_HASH(sctps, ports)]); |
| mutex_enter(&tf->tf_lock); |
| |
| for (sctp = tf->tf_sctp; sctp; sctp = sctp->sctp_conn_hash_next) { |
| if (ports != sctp->sctp_ports) { |
| continue; |
| } |
| compres = sctp_compare_faddrsets(fphead, sctp->sctp_faddrs); |
| if (compres <= SCTP_ADDR_SUBSET) { |
| retval = 1; |
| mutex_exit(&tf->tf_lock); |
| goto done; |
| } |
| if (compres == SCTP_ADDR_OVERLAP) { |
| dprint(1, |
| ("new assoc from %x:%x:%x:%x overlaps with %p\n", |
| SCTP_PRINTADDR(*hdraddr), (void *)sctp)); |
| /* |
| * While we still hold the lock, we need to |
| * figure out which addresses have been |
| * added so we can include them in the abort |
| * we will send back. Since these faddrs will |
| * never be used, we overload the rto field |
| * here, setting it to 0 if the address was |
| * not added, 1 if it was added. |
| */ |
| for (fp = fphead; fp; fp = fp->next) { |
| if (sctp_lookup_faddr(sctp, &fp->faddr)) { |
| fp->rto = 0; |
| } else { |
| fp->rto = 1; |
| nadded++; |
| } |
| } |
| mutex_exit(&tf->tf_lock); |
| goto done; |
| } |
| } |
| mutex_exit(&tf->tf_lock); |
| |
| /* All faddrs are disjoint; legit new association */ |
| retval = 1; |
| |
| done: |
| /* If are attempted adds, send back an abort listing the addrs */ |
| if (nadded > 0) { |
| void *dtail; |
| size_t dlen; |
| |
| dtail = kmem_alloc(PARM_ADDR6_LEN * nadded, KM_NOSLEEP); |
| if (dtail == NULL) { |
| goto cleanup; |
| } |
| |
| ph = dtail; |
| dlen = 0; |
| for (fp = fphead; fp; fp = fp->next) { |
| if (fp->rto == 0) { |
| continue; |
| } |
| if (IN6_IS_ADDR_V4MAPPED(&fp->faddr)) { |
| ipaddr_t addr4; |
| |
| ph->sph_type = htons(PARM_ADDR4); |
| ph->sph_len = htons(PARM_ADDR4_LEN); |
| IN6_V4MAPPED_TO_IPADDR(&fp->faddr, addr4); |
| ph++; |
| bcopy(&addr4, ph, sizeof (addr4)); |
| ph = (sctp_parm_hdr_t *) |
| ((char *)ph + sizeof (addr4)); |
| dlen += PARM_ADDR4_LEN; |
| } else { |
| ph->sph_type = htons(PARM_ADDR6); |
| ph->sph_len = htons(PARM_ADDR6_LEN); |
| ph++; |
| bcopy(&fp->faddr, ph, sizeof (fp->faddr)); |
| ph = (sctp_parm_hdr_t *) |
| ((char *)ph + sizeof (fp->faddr)); |
| dlen += PARM_ADDR6_LEN; |
| } |
| } |
| |
| /* Send off the abort */ |
| sctp_send_abort(sctp, sctp_init2vtag(ich), |
| SCTP_ERR_RESTART_NEW_ADDRS, dtail, dlen, pkt, 0, B_TRUE); |
| |
| kmem_free(dtail, PARM_ADDR6_LEN * nadded); |
| } |
| |
| cleanup: |
| /* Clean up */ |
| if (fphead) { |
| sctp_faddr_t *fpn; |
| for (fp = fphead; fp; fp = fpn) { |
| fpn = fp->next; |
| kmem_cache_free(sctp_kmem_faddr_cache, fp); |
| } |
| } |
| |
| return (retval); |
| } |
| |
| /* |
| * Reset any state related to transmitted chunks. |
| */ |
| void |
| sctp_congest_reset(sctp_t *sctp) |
| { |
| sctp_faddr_t *fp; |
| sctp_stack_t *sctps = sctp->sctp_sctps; |
| mblk_t *mp; |
| |
| for (fp = sctp->sctp_faddrs; fp != NULL; fp = fp->next) { |
| fp->ssthresh = sctps->sctps_initial_mtu; |
| SET_CWND(fp, fp->sfa_pmss, sctps->sctps_slow_start_initial); |
| fp->suna = 0; |
| fp->pba = 0; |
| } |
| /* |
| * Clean up the transmit list as well since we have reset accounting |
| * on all the fps. Send event upstream, if required. |
| */ |
| while ((mp = sctp->sctp_xmit_head) != NULL) { |
| sctp->sctp_xmit_head = mp->b_next; |
| mp->b_next = NULL; |
| if (sctp->sctp_xmit_head != NULL) |
| sctp->sctp_xmit_head->b_prev = NULL; |
| sctp_sendfail_event(sctp, mp, 0, B_TRUE); |
| } |
| sctp->sctp_xmit_head = NULL; |
| sctp->sctp_xmit_tail = NULL; |
| sctp->sctp_xmit_unacked = NULL; |
| |
| sctp->sctp_unacked = 0; |
| /* |
| * Any control message as well. We will clean-up this list as well. |
| * This contains any pending ASCONF request that we have queued/sent. |
| * If we do get an ACK we will just drop it. However, given that |
| * we are restarting chances are we aren't going to get any. |
| */ |
| if (sctp->sctp_cxmit_list != NULL) |
| sctp_asconf_free_cxmit(sctp, NULL); |
| sctp->sctp_cxmit_list = NULL; |
| sctp->sctp_cchunk_pend = 0; |
| |
| sctp->sctp_rexmitting = B_FALSE; |
| sctp->sctp_rxt_nxttsn = 0; |
| sctp->sctp_rxt_maxtsn = 0; |
| |
| sctp->sctp_zero_win_probe = B_FALSE; |
| } |
| |
| static void |
| sctp_init_faddr(sctp_t *sctp, sctp_faddr_t *fp, in6_addr_t *addr, |
| mblk_t *timer_mp) |
| { |
| sctp_stack_t *sctps = sctp->sctp_sctps; |
| |
| bcopy(addr, &fp->faddr, sizeof (*addr)); |
| if (IN6_IS_ADDR_V4MAPPED(addr)) { |
| fp->isv4 = 1; |
| /* Make sure that sfa_pmss is a multiple of SCTP_ALIGN. */ |
| fp->sfa_pmss = |
| (sctps->sctps_initial_mtu - sctp->sctp_hdr_len) & |
| ~(SCTP_ALIGN - 1); |
| } else { |
| fp->isv4 = 0; |
| fp->sfa_pmss = |
| (sctps->sctps_initial_mtu - sctp->sctp_hdr6_len) & |
| ~(SCTP_ALIGN - 1); |
| } |
| fp->cwnd = sctps->sctps_slow_start_initial * fp->sfa_pmss; |
| fp->rto = MIN(sctp->sctp_rto_initial, sctp->sctp_init_rto_max); |
| fp->srtt = -1; |
| fp->rtt_updates = 0; |
| fp->strikes = 0; |
| fp->max_retr = sctp->sctp_pp_max_rxt; |
| /* Mark it as not confirmed. */ |
| fp->state = SCTP_FADDRS_UNCONFIRMED; |
| fp->hb_interval = sctp->sctp_hb_interval; |
| fp->ssthresh = sctps->sctps_initial_ssthresh; |
| fp->suna = 0; |
| fp->pba = 0; |
| fp->acked = 0; |
| fp->lastactive = lbolt64; |
| fp->timer_mp = timer_mp; |
| fp->hb_pending = B_FALSE; |
| fp->hb_enabled = B_TRUE; |
| fp->df = 1; |
| fp->pmtu_discovered = 0; |
| fp->next = NULL; |
| fp->ire = NULL; |
| fp->T3expire = 0; |
| (void) random_get_pseudo_bytes((uint8_t *)&fp->hb_secret, |
| sizeof (fp->hb_secret)); |
| fp->hb_expiry = lbolt64; |
| fp->rxt_unacked = 0; |
| |
| sctp_get_ire(sctp, fp); |
| } |
| |
| /*ARGSUSED*/ |
| static int |
| faddr_constructor(void *buf, void *arg, int flags) |
| { |
| sctp_faddr_t *fp = buf; |
| |
| fp->timer_mp = NULL; |
| fp->timer_running = 0; |
| |
| fp->rc_timer_mp = NULL; |
| fp->rc_timer_running = 0; |
| |
| return (0); |
| } |
| |
| /*ARGSUSED*/ |
| static void |
| faddr_destructor(void *buf, void *arg) |
| { |
| sctp_faddr_t *fp = buf; |
| |
| ASSERT(fp->timer_mp == NULL); |
| ASSERT(fp->timer_running == 0); |
| |
| ASSERT(fp->rc_timer_mp == NULL); |
| ASSERT(fp->rc_timer_running == 0); |
| } |
| |
| void |
| sctp_faddr_init(void) |
| { |
| sctp_kmem_faddr_cache = kmem_cache_create("sctp_faddr_cache", |
| sizeof (sctp_faddr_t), 0, faddr_constructor, faddr_destructor, |
| NULL, NULL, NULL, 0); |
| } |
| |
| void |
| sctp_faddr_fini(void) |
| { |
| kmem_cache_destroy(sctp_kmem_faddr_cache); |
| } |