blob: 5113405cbfb46481ce0dfeba5224747f3c993634 [file] [log] [blame]
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/* Copyright (c) 1990 Mentat Inc. */
/*
* This file contains routines that manipulate Internet Routing Entries (IREs).
*/
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/strsun.h>
#include <sys/strsubr.h>
#include <sys/ddi.h>
#include <sys/cmn_err.h>
#include <sys/policy.h>
#include <sys/systm.h>
#include <sys/kmem.h>
#include <sys/param.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/route.h>
#include <netinet/in.h>
#include <net/if_dl.h>
#include <netinet/ip6.h>
#include <netinet/icmp6.h>
#include <inet/common.h>
#include <inet/mi.h>
#include <inet/ip.h>
#include <inet/ip6.h>
#include <inet/ip_ndp.h>
#include <inet/arp.h>
#include <inet/ip_if.h>
#include <inet/ip_ire.h>
#include <inet/ip_ftable.h>
#include <inet/ip_rts.h>
#include <inet/nd.h>
#include <net/pfkeyv2.h>
#include <inet/ipsec_info.h>
#include <inet/sadb.h>
#include <inet/tcp.h>
#include <inet/ipclassifier.h>
#include <sys/zone.h>
#include <sys/cpuvar.h>
#include <sys/tsol/label.h>
#include <sys/tsol/tnet.h>
struct kmem_cache *rt_entry_cache;
/*
* Synchronization notes:
*
* The fields of the ire_t struct are protected in the following way :
*
* ire_next/ire_ptpn
*
* - bucket lock of the respective tables (cache or forwarding tables).
*
* ire_mp, ire_rfq, ire_stq, ire_u *except* ire_gateway_addr[v6], ire_mask,
* ire_type, ire_create_time, ire_masklen, ire_ipversion, ire_flags, ire_ipif,
* ire_ihandle, ire_phandle, ire_nce, ire_bucket, ire_in_ill, ire_in_src_addr
*
* - Set in ire_create_v4/v6 and never changes after that. Thus,
* we don't need a lock whenever these fields are accessed.
*
* - ire_bucket and ire_masklen (also set in ire_create) is set in
* ire_add_v4/ire_add_v6 before inserting in the bucket and never
* changes after that. Thus we don't need a lock whenever these
* fields are accessed.
*
* ire_gateway_addr_v4[v6]
*
* - ire_gateway_addr_v4[v6] is set during ire_create and later modified
* by rts_setgwr[v6]. As ire_gateway_addr is a uint32_t, updates to
* it assumed to be atomic and hence the other parts of the code
* does not use any locks. ire_gateway_addr_v6 updates are not atomic
* and hence any access to it uses ire_lock to get/set the right value.
*
* ire_ident, ire_refcnt
*
* - Updated atomically using atomic_add_32
*
* ire_ssthresh, ire_rtt_sd, ire_rtt, ire_ib_pkt_count, ire_ob_pkt_count
*
* - Assumes that 32 bit writes are atomic. No locks. ire_lock is
* used to serialize updates to ire_ssthresh, ire_rtt_sd, ire_rtt.
*
* ire_max_frag, ire_frag_flag
*
* - ire_lock is used to set/read both of them together.
*
* ire_tire_mark
*
* - Set in ire_create and updated in ire_expire, which is called
* by only one function namely ip_trash_timer_expire. Thus only
* one function updates and examines the value.
*
* ire_marks
* - bucket lock protects this.
*
* ire_ipsec_overhead/ire_ll_hdr_length
*
* - Place holder for returning the information to the upper layers
* when IRE_DB_REQ comes down.
*
*
* ipv6_ire_default_count is protected by the bucket lock of
* ip_forwarding_table_v6[0][0].
*
* ipv6_ire_default_index is not protected as it is just a hint
* at which default gateway to use. There is nothing
* wrong in using the same gateway for two different connections.
*
* As we always hold the bucket locks in all the places while accessing
* the above values, it is natural to use them for protecting them.
*
* We have a separate cache table and forwarding table for IPv4 and IPv6.
* Cache table (ip_cache_table/ip_cache_table_v6) is a pointer to an
* array of irb_t structures. The IPv6 forwarding table
* (ip_forwarding_table_v6) is an array of pointers to arrays of irb_t
* structure. ip_forwarding_table_v6 is allocated dynamically in
* ire_add_v6. ire_ft_init_lock is used to serialize multiple threads
* initializing the same bucket. Once a bucket is initialized, it is never
* de-alloacted. This assumption enables us to access
* ip_forwarding_table_v6[i] without any locks.
*
* The forwarding table for IPv4 is a radix tree whose leaves
* are rt_entry structures containing the irb_t for the rt_dst. The irb_t
* for IPv4 is dynamically allocated and freed.
*
* Each irb_t - ire bucket structure has a lock to protect
* a bucket and the ires residing in the bucket have a back pointer to
* the bucket structure. It also has a reference count for the number
* of threads walking the bucket - irb_refcnt which is bumped up
* using the macro IRB_REFHOLD macro. The flags irb_flags can be
* set to IRE_MARK_CONDEMNED indicating that there are some ires
* in this bucket that are marked with IRE_MARK_CONDEMNED and the
* last thread to leave the bucket should delete the ires. Usually
* this is done by the IRB_REFRELE macro which is used to decrement
* the reference count on a bucket. See comments above irb_t structure
* definition in ip.h for further details.
*
* IRE_REFHOLD/IRE_REFRELE macros operate on the ire which increments/
* decrements the reference count, ire_refcnt, atomically on the ire.
* ire_refcnt is modified only using this macro. Operations on the IRE
* could be described as follows :
*
* CREATE an ire with reference count initialized to 1.
*
* ADDITION of an ire holds the bucket lock, checks for duplicates
* and then adds the ire. ire_add_v4/ire_add_v6 returns the ire after
* bumping up once more i.e the reference count is 2. This is to avoid
* an extra lookup in the functions calling ire_add which wants to
* work with the ire after adding.
*
* LOOKUP of an ire bumps up the reference count using IRE_REFHOLD
* macro. It is valid to bump up the referece count of the IRE,
* after the lookup has returned an ire. Following are the lookup
* functions that return an HELD ire :
*
* ire_lookup_local[_v6], ire_ctable_lookup[_v6], ire_ftable_lookup[_v6],
* ire_cache_lookup[_v6], ire_lookup_multi[_v6], ire_route_lookup[_v6],
* ipif_to_ire[_v6].
*
* DELETION of an ire holds the bucket lock, removes it from the list
* and then decrements the reference count for having removed from the list
* by using the IRE_REFRELE macro. If some other thread has looked up
* the ire, the reference count would have been bumped up and hence
* this ire will not be freed once deleted. It will be freed once the
* reference count drops to zero.
*
* Add and Delete acquires the bucket lock as RW_WRITER, while all the
* lookups acquire the bucket lock as RW_READER.
*
* NOTE : The only functions that does the IRE_REFRELE when an ire is
* passed as an argument are :
*
* 1) ip_wput_ire : This is because it IRE_REFHOLD/RELEs the
* broadcast ires it looks up internally within
* the function. Currently, for simplicity it does
* not differentiate the one that is passed in and
* the ones it looks up internally. It always
* IRE_REFRELEs.
* 2) ire_send
* ire_send_v6 : As ire_send calls ip_wput_ire and other functions
* that take ire as an argument, it has to selectively
* IRE_REFRELE the ire. To maintain symmetry,
* ire_send_v6 does the same.
*
* Otherwise, the general rule is to do the IRE_REFRELE in the function
* that is passing the ire as an argument.
*
* In trying to locate ires the following points are to be noted.
*
* IRE_MARK_CONDEMNED signifies that the ire has been logically deleted and is
* to be ignored when walking the ires using ire_next.
*
* Zones note:
* Walking IREs within a given zone also walks certain ires in other
* zones. This is done intentionally. IRE walks with a specified
* zoneid are used only when doing informational reports, and
* zone users want to see things that they can access. See block
* comment in ire_walk_ill_match().
*/
/*
* The minimum size of IRE cache table. It will be recalcuated in
* ip_ire_init().
* Setable in /etc/system
*/
uint32_t ip_cache_table_size = IP_CACHE_TABLE_SIZE;
uint32_t ip6_cache_table_size = IP6_CACHE_TABLE_SIZE;
/*
* The size of the forwarding table. We will make sure that it is a
* power of 2 in ip_ire_init().
* Setable in /etc/system
*/
uint32_t ip6_ftable_hash_size = IP6_FTABLE_HASH_SIZE;
struct kmem_cache *ire_cache;
static ire_t ire_null;
/*
* The threshold number of IRE in a bucket when the IREs are
* cleaned up. This threshold is calculated later in ip_open()
* based on the speed of CPU and available memory. This default
* value is the maximum.
*
* We have two kinds of cached IRE, temporary and
* non-temporary. Temporary IREs are marked with
* IRE_MARK_TEMPORARY. They are IREs created for non
* TCP traffic and for forwarding purposes. All others
* are non-temporary IREs. We don't mark IRE created for
* TCP as temporary because TCP is stateful and there are
* info stored in the IRE which can be shared by other TCP
* connections to the same destination. For connected
* endpoint, we also don't want to mark the IRE used as
* temporary because the same IRE will be used frequently,
* otherwise, the app should not do a connect(). We change
* the marking at ip_bind_connected_*() if necessary.
*
* We want to keep the cache IRE hash bucket length reasonably
* short, otherwise IRE lookup functions will take "forever."
* We use the "crude" function that the IRE bucket
* length should be based on the CPU speed, which is 1 entry
* per x MHz, depending on the shift factor ip_ire_cpu_ratio
* (n). This means that with a 750MHz CPU, the max bucket
* length can be (750 >> n) entries.
*
* Note that this threshold is separate for temp and non-temp
* IREs. This means that the actual bucket length can be
* twice as that. And while we try to keep temporary IRE
* length at most at the threshold value, we do not attempt to
* make the length for non-temporary IREs fixed, for the
* reason stated above. Instead, we start trying to find
* "unused" non-temporary IREs when the bucket length reaches
* this threshold and clean them up.
*
* We also want to limit the amount of memory used by
* IREs. So if we are allowed to use ~3% of memory (M)
* for those IREs, each bucket should not have more than
*
* M / num of cache bucket / sizeof (ire_t)
*
* Again the above memory uses are separate for temp and
* non-temp cached IREs.
*
* We may also want the limit to be a function of the number
* of interfaces and number of CPUs. Doing the initialization
* in ip_open() means that every time an interface is plumbed,
* the max is re-calculated. Right now, we don't do anything
* different. In future, when we have more experience, we
* may want to change this behavior.
*/
uint32_t ip_ire_max_bucket_cnt = 10; /* Setable in /etc/system */
uint32_t ip6_ire_max_bucket_cnt = 10;
uint32_t ip_ire_cleanup_cnt = 2;
/*
* The minimum of the temporary IRE bucket count. We do not want
* the length of each bucket to be too short. This may hurt
* performance of some apps as the temporary IREs are removed too
* often.
*/
uint32_t ip_ire_min_bucket_cnt = 3; /* /etc/system - not used */
uint32_t ip6_ire_min_bucket_cnt = 3;
/*
* The ratio of memory consumed by IRE used for temporary to available
* memory. This is a shift factor, so 6 means the ratio 1 to 64. This
* value can be changed in /etc/system. 6 is a reasonable number.
*/
uint32_t ip_ire_mem_ratio = 6; /* /etc/system */
/* The shift factor for CPU speed to calculate the max IRE bucket length. */
uint32_t ip_ire_cpu_ratio = 7; /* /etc/system */
typedef struct nce_clookup_s {
ipaddr_t ncecl_addr;
boolean_t ncecl_found;
} nce_clookup_t;
/*
* The maximum number of buckets in IRE cache table. In future, we may
* want to make it a dynamic hash table. For the moment, we fix the
* size and allocate the table in ip_ire_init() when IP is first loaded.
* We take into account the amount of memory a system has.
*/
#define IP_MAX_CACHE_TABLE_SIZE 4096
/* Setable in /etc/system */
static uint32_t ip_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE;
static uint32_t ip6_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE;
/* Zero iulp_t for initialization. */
const iulp_t ire_uinfo_null = { 0 };
static int ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp,
ipsq_func_t func, boolean_t);
static void ire_delete_v4(ire_t *ire);
static void ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers,
zoneid_t zoneid, ip_stack_t *);
static void ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type,
pfv_t func, void *arg, uchar_t vers, ill_t *ill);
static void ire_cache_cleanup(irb_t *irb, uint32_t threshold,
ire_t *ref_ire);
static void ip_nce_clookup_and_delete(nce_t *nce, void *arg);
static ire_t *ip4_ctable_lookup_impl(ire_ctable_args_t *margs);
#ifdef DEBUG
static void ire_trace_cleanup(const ire_t *);
#endif
/*
* To avoid bloating the code, we call this function instead of
* using the macro IRE_REFRELE. Use macro only in performance
* critical paths.
*
* Must not be called while holding any locks. Otherwise if this is
* the last reference to be released there is a chance of recursive mutex
* panic due to ire_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
* to restart an ioctl. The one exception is when the caller is sure that
* this is not the last reference to be released. Eg. if the caller is
* sure that the ire has not been deleted and won't be deleted.
*/
void
ire_refrele(ire_t *ire)
{
IRE_REFRELE(ire);
}
void
ire_refrele_notr(ire_t *ire)
{
IRE_REFRELE_NOTR(ire);
}
/*
* kmem_cache_alloc constructor for IRE in kma space.
* Note that when ire_mp is set the IRE is stored in that mblk and
* not in this cache.
*/
/* ARGSUSED */
static int
ip_ire_constructor(void *buf, void *cdrarg, int kmflags)
{
ire_t *ire = buf;
ire->ire_nce = NULL;
return (0);
}
/* ARGSUSED1 */
static void
ip_ire_destructor(void *buf, void *cdrarg)
{
ire_t *ire = buf;
ASSERT(ire->ire_nce == NULL);
}
/*
* This function is associated with the IP_IOC_IRE_ADVISE_NO_REPLY
* IOCTL. It is used by TCP (or other ULPs) to supply revised information
* for an existing CACHED IRE.
*/
/* ARGSUSED */
int
ip_ire_advise(queue_t *q, mblk_t *mp, cred_t *ioc_cr)
{
uchar_t *addr_ucp;
ipic_t *ipic;
ire_t *ire;
ipaddr_t addr;
in6_addr_t v6addr;
irb_t *irb;
zoneid_t zoneid;
ip_stack_t *ipst = CONNQ_TO_IPST(q);
ASSERT(q->q_next == NULL);
zoneid = Q_TO_CONN(q)->conn_zoneid;
/*
* Check privilege using the ioctl credential; if it is NULL
* then this is a kernel message and therefor privileged.
*/
if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0)
return (EPERM);
ipic = (ipic_t *)mp->b_rptr;
if (!(addr_ucp = mi_offset_param(mp, ipic->ipic_addr_offset,
ipic->ipic_addr_length))) {
return (EINVAL);
}
if (!OK_32PTR(addr_ucp))
return (EINVAL);
switch (ipic->ipic_addr_length) {
case IP_ADDR_LEN: {
/* Extract the destination address. */
addr = *(ipaddr_t *)addr_ucp;
/* Find the corresponding IRE. */
ire = ire_cache_lookup(addr, zoneid, NULL, ipst);
break;
}
case IPV6_ADDR_LEN: {
/* Extract the destination address. */
v6addr = *(in6_addr_t *)addr_ucp;
/* Find the corresponding IRE. */
ire = ire_cache_lookup_v6(&v6addr, zoneid, NULL, ipst);
break;
}
default:
return (EINVAL);
}
if (ire == NULL)
return (ENOENT);
/*
* Update the round trip time estimate and/or the max frag size
* and/or the slow start threshold.
*
* We serialize multiple advises using ire_lock.
*/
mutex_enter(&ire->ire_lock);
if (ipic->ipic_rtt) {
/*
* If there is no old cached values, initialize them
* conservatively. Set them to be (1.5 * new value).
*/
if (ire->ire_uinfo.iulp_rtt != 0) {
ire->ire_uinfo.iulp_rtt = (ire->ire_uinfo.iulp_rtt +
ipic->ipic_rtt) >> 1;
} else {
ire->ire_uinfo.iulp_rtt = ipic->ipic_rtt +
(ipic->ipic_rtt >> 1);
}
if (ire->ire_uinfo.iulp_rtt_sd != 0) {
ire->ire_uinfo.iulp_rtt_sd =
(ire->ire_uinfo.iulp_rtt_sd +
ipic->ipic_rtt_sd) >> 1;
} else {
ire->ire_uinfo.iulp_rtt_sd = ipic->ipic_rtt_sd +
(ipic->ipic_rtt_sd >> 1);
}
}
if (ipic->ipic_max_frag)
ire->ire_max_frag = MIN(ipic->ipic_max_frag, IP_MAXPACKET);
if (ipic->ipic_ssthresh != 0) {
if (ire->ire_uinfo.iulp_ssthresh != 0)
ire->ire_uinfo.iulp_ssthresh =
(ipic->ipic_ssthresh +
ire->ire_uinfo.iulp_ssthresh) >> 1;
else
ire->ire_uinfo.iulp_ssthresh = ipic->ipic_ssthresh;
}
/*
* Don't need the ire_lock below this. ire_type does not change
* after initialization. ire_marks is protected by irb_lock.
*/
mutex_exit(&ire->ire_lock);
if (ipic->ipic_ire_marks != 0 && ire->ire_type == IRE_CACHE) {
/*
* Only increment the temporary IRE count if the original
* IRE is not already marked temporary.
*/
irb = ire->ire_bucket;
rw_enter(&irb->irb_lock, RW_WRITER);
if ((ipic->ipic_ire_marks & IRE_MARK_TEMPORARY) &&
!(ire->ire_marks & IRE_MARK_TEMPORARY)) {
irb->irb_tmp_ire_cnt++;
}
ire->ire_marks |= ipic->ipic_ire_marks;
rw_exit(&irb->irb_lock);
}
ire_refrele(ire);
return (0);
}
/*
* This function is associated with the IP_IOC_IRE_DELETE[_NO_REPLY]
* IOCTL[s]. The NO_REPLY form is used by TCP to delete a route IRE
* for a host that is not responding. This will force an attempt to
* establish a new route, if available, and flush out the ARP entry so
* it will re-resolve. Management processes may want to use the
* version that generates a reply.
*
* This function does not support IPv6 since Neighbor Unreachability Detection
* means that negative advise like this is useless.
*/
/* ARGSUSED */
int
ip_ire_delete(queue_t *q, mblk_t *mp, cred_t *ioc_cr)
{
uchar_t *addr_ucp;
ipaddr_t addr;
ire_t *ire;
ipid_t *ipid;
boolean_t routing_sock_info = B_FALSE; /* Sent info? */
zoneid_t zoneid;
ire_t *gire = NULL;
ill_t *ill;
mblk_t *arp_mp;
ip_stack_t *ipst;
ASSERT(q->q_next == NULL);
zoneid = Q_TO_CONN(q)->conn_zoneid;
ipst = CONNQ_TO_IPST(q);
/*
* Check privilege using the ioctl credential; if it is NULL
* then this is a kernel message and therefor privileged.
*/
if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0)
return (EPERM);
ipid = (ipid_t *)mp->b_rptr;
/* Only actions on IRE_CACHEs are acceptable at present. */
if (ipid->ipid_ire_type != IRE_CACHE)
return (EINVAL);
addr_ucp = mi_offset_param(mp, ipid->ipid_addr_offset,
ipid->ipid_addr_length);
if (addr_ucp == NULL || !OK_32PTR(addr_ucp))
return (EINVAL);
switch (ipid->ipid_addr_length) {
case IP_ADDR_LEN:
/* addr_ucp points at IP addr */
break;
case sizeof (sin_t): {
sin_t *sin;
/*
* got complete (sockaddr) address - increment addr_ucp to point
* at the ip_addr field.
*/
sin = (sin_t *)addr_ucp;
addr_ucp = (uchar_t *)&sin->sin_addr.s_addr;
break;
}
default:
return (EINVAL);
}
/* Extract the destination address. */
bcopy(addr_ucp, &addr, IP_ADDR_LEN);
/* Try to find the CACHED IRE. */
ire = ire_cache_lookup(addr, zoneid, NULL, ipst);
/* Nail it. */
if (ire) {
/* Allow delete only on CACHE entries */
if (ire->ire_type != IRE_CACHE) {
ire_refrele(ire);
return (EINVAL);
}
/*
* Verify that the IRE has been around for a while.
* This is to protect against transport protocols
* that are too eager in sending delete messages.
*/
if (gethrestime_sec() <
ire->ire_create_time + ipst->ips_ip_ignore_delete_time) {
ire_refrele(ire);
return (EINVAL);
}
/*
* Now we have a potentially dead cache entry. We need
* to remove it.
* If this cache entry is generated from a
* default route (i.e., ire_cmask == 0),
* search the default list and mark it dead and some
* background process will try to activate it.
*/
if ((ire->ire_gateway_addr != 0) && (ire->ire_cmask == 0)) {
/*
* Make sure that we pick a different
* IRE_DEFAULT next time.
*/
ire_t *gw_ire;
irb_t *irb = NULL;
uint_t match_flags;
match_flags = (MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE);
gire = ire_ftable_lookup(ire->ire_addr,
ire->ire_cmask, 0, 0,
ire->ire_ipif, NULL, zoneid, 0, NULL, match_flags,
ipst);
ip3dbg(("ire_ftable_lookup() returned gire %p\n",
(void *)gire));
if (gire != NULL) {
irb = gire->ire_bucket;
/*
* We grab it as writer just to serialize
* multiple threads trying to bump up
* irb_rr_origin
*/
rw_enter(&irb->irb_lock, RW_WRITER);
if ((gw_ire = irb->irb_rr_origin) == NULL) {
rw_exit(&irb->irb_lock);
goto done;
}
DTRACE_PROBE1(ip__ire__del__origin,
(ire_t *), gw_ire);
/* Skip past the potentially bad gateway */
if (ire->ire_gateway_addr ==
gw_ire->ire_gateway_addr) {
ire_t *next = gw_ire->ire_next;
DTRACE_PROBE2(ip__ire__del,
(ire_t *), gw_ire, (irb_t *), irb);
IRE_FIND_NEXT_ORIGIN(next);
irb->irb_rr_origin = next;
}
rw_exit(&irb->irb_lock);
}
}
done:
if (gire != NULL)
IRE_REFRELE(gire);
/* report the bad route to routing sockets */
ip_rts_change(RTM_LOSING, ire->ire_addr, ire->ire_gateway_addr,
ire->ire_mask, ire->ire_src_addr, 0, 0, 0,
(RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA), ipst);
routing_sock_info = B_TRUE;
/*
* TCP is really telling us to start over completely, and it
* expects that we'll resend the ARP query. Tell ARP to
* discard the entry, if this is a local destination.
*
* But, if the ARP entry is permanent then it shouldn't be
* deleted, so we set ARED_F_PRESERVE_PERM.
*/
ill = ire->ire_stq->q_ptr;
if (ire->ire_gateway_addr == 0 &&
(arp_mp = ill_ared_alloc(ill, addr)) != NULL) {
ared_t *ared = (ared_t *)arp_mp->b_rptr;
ASSERT(ared->ared_cmd == AR_ENTRY_DELETE);
ared->ared_flags |= ARED_F_PRESERVE_PERM;
putnext(ill->ill_rq, arp_mp);
}
ire_delete(ire);
ire_refrele(ire);
}
/*
* Also look for an IRE_HOST type redirect ire and
* remove it if present.
*/
ire = ire_route_lookup(addr, 0, 0, IRE_HOST, NULL, NULL,
ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
/* Nail it. */
if (ire != NULL) {
if (ire->ire_flags & RTF_DYNAMIC) {
if (!routing_sock_info) {
ip_rts_change(RTM_LOSING, ire->ire_addr,
ire->ire_gateway_addr, ire->ire_mask,
ire->ire_src_addr, 0, 0, 0,
(RTA_DST | RTA_GATEWAY |
RTA_NETMASK | RTA_IFA),
ipst);
}
ire_delete(ire);
}
ire_refrele(ire);
}
return (0);
}
/*
* ip_ire_req is called by ip_wput when an IRE_DB_REQ_TYPE message is handed
* down from the Upper Level Protocol to request a copy of the IRE (to check
* its type or to extract information like round-trip time estimates or the
* MTU.)
* The address is assumed to be in the ire_addr field. If no IRE is found
* an IRE is returned with ire_type being zero.
* Note that the upper lavel protocol has to check for broadcast
* (IRE_BROADCAST) and multicast (CLASSD(addr)).
* If there is a b_cont the resulting IRE_DB_TYPE mblk is placed at the
* end of the returned message.
*
* TCP sends down a message of this type with a connection request packet
* chained on. UDP and ICMP send it down to verify that a route exists for
* the destination address when they get connected.
*/
void
ip_ire_req(queue_t *q, mblk_t *mp)
{
ire_t *inire;
ire_t *ire;
mblk_t *mp1;
ire_t *sire = NULL;
zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid;
ip_stack_t *ipst = CONNQ_TO_IPST(q);
ASSERT(q->q_next == NULL);
if ((mp->b_wptr - mp->b_rptr) < sizeof (ire_t) ||
!OK_32PTR(mp->b_rptr)) {
freemsg(mp);
return;
}
inire = (ire_t *)mp->b_rptr;
/*
* Got it, now take our best shot at an IRE.
*/
if (inire->ire_ipversion == IPV6_VERSION) {
ire = ire_route_lookup_v6(&inire->ire_addr_v6, 0, 0, 0,
NULL, &sire, zoneid, NULL,
(MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT), ipst);
} else {
ASSERT(inire->ire_ipversion == IPV4_VERSION);
ire = ire_route_lookup(inire->ire_addr, 0, 0, 0,
NULL, &sire, zoneid, NULL,
(MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT), ipst);
}
/*
* We prevent returning IRES with source address INADDR_ANY
* as these were temporarily created for sending packets
* from endpoints that have conn_unspec_src set.
*/
if (ire == NULL ||
(ire->ire_ipversion == IPV4_VERSION &&
ire->ire_src_addr == INADDR_ANY) ||
(ire->ire_ipversion == IPV6_VERSION &&
IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6))) {
inire->ire_type = 0;
} else {
bcopy(ire, inire, sizeof (ire_t));
/* Copy the route metrics from the parent. */
if (sire != NULL) {
bcopy(&(sire->ire_uinfo), &(inire->ire_uinfo),
sizeof (iulp_t));
}
/*
* As we don't lookup global policy here, we may not
* pass the right size if per-socket policy is not
* present. For these cases, path mtu discovery will
* do the right thing.
*/
inire->ire_ipsec_overhead = conn_ipsec_length(Q_TO_CONN(q));
/* Pass the latest setting of the ip_path_mtu_discovery */
inire->ire_frag_flag |=
(ipst->ips_ip_path_mtu_discovery) ? IPH_DF : 0;
}
if (ire != NULL)
ire_refrele(ire);
if (sire != NULL)
ire_refrele(sire);
mp->b_wptr = &mp->b_rptr[sizeof (ire_t)];
mp->b_datap->db_type = IRE_DB_TYPE;
/* Put the IRE_DB_TYPE mblk last in the chain */
mp1 = mp->b_cont;
if (mp1 != NULL) {
mp->b_cont = NULL;
linkb(mp1, mp);
mp = mp1;
}
qreply(q, mp);
}
/*
* Send a packet using the specified IRE.
* If ire_src_addr_v6 is all zero then discard the IRE after
* the packet has been sent.
*/
static void
ire_send(queue_t *q, mblk_t *pkt, ire_t *ire)
{
mblk_t *ipsec_mp;
boolean_t is_secure;
uint_t ifindex;
ill_t *ill;
zoneid_t zoneid = ire->ire_zoneid;
ip_stack_t *ipst = ire->ire_ipst;
ASSERT(ire->ire_ipversion == IPV4_VERSION);
ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */
ipsec_mp = pkt;
is_secure = (pkt->b_datap->db_type == M_CTL);
if (is_secure) {
ipsec_out_t *io;
pkt = pkt->b_cont;
io = (ipsec_out_t *)ipsec_mp->b_rptr;
if (io->ipsec_out_type == IPSEC_OUT)
zoneid = io->ipsec_out_zoneid;
}
/* If the packet originated externally then */
if (pkt->b_prev) {
ire_refrele(ire);
/*
* Extract the ifindex from b_prev (set in ip_rput_noire).
* Look up interface to see if it still exists (it could have
* been unplumbed by the time the reply came back from ARP)
*/
ifindex = (uint_t)(uintptr_t)pkt->b_prev;
ill = ill_lookup_on_ifindex(ifindex, B_FALSE,
NULL, NULL, NULL, NULL, ipst);
if (ill == NULL) {
pkt->b_prev = NULL;
pkt->b_next = NULL;
freemsg(ipsec_mp);
return;
}
q = ill->ill_rq;
pkt->b_prev = NULL;
/*
* This packet has not gone through IPSEC processing
* and hence we should not have any IPSEC message
* prepended.
*/
ASSERT(ipsec_mp == pkt);
put(q, pkt);
ill_refrele(ill);
} else if (pkt->b_next) {
/* Packets from multicast router */
pkt->b_next = NULL;
/*
* We never get the IPSEC_OUT while forwarding the
* packet for multicast router.
*/
ASSERT(ipsec_mp == pkt);
ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, ipsec_mp, NULL);
ire_refrele(ire);
} else {
/* Locally originated packets */
boolean_t delete_ire = B_FALSE;
ipha_t *ipha = (ipha_t *)pkt->b_rptr;
/*
* If this IRE shouldn't be kept in the table (because its
* source address is unspecified), hold a reference to it so
* we can delete it even after e.g. ip_wput_ire() has dropped
* its reference.
*/
if (!(ire->ire_marks & IRE_MARK_NOADD) &&
ire->ire_src_addr == INADDR_ANY) {
delete_ire = B_TRUE;
IRE_REFHOLD(ire);
}
/*
* If we were resolving a router we can not use the
* routers IRE for sending the packet (since it would
* violate the uniqness of the IP idents) thus we
* make another pass through ip_wput to create the IRE_CACHE
* for the destination.
* When IRE_MARK_NOADD is set, ire_add() is not called.
* Thus ip_wput() will never find a ire and result in an
* infinite loop. Thus we check whether IRE_MARK_NOADD is
* is set. This also implies that IRE_MARK_NOADD can only be
* used to send packets to directly connected hosts.
*/
if (ipha->ipha_dst != ire->ire_addr &&
!(ire->ire_marks & IRE_MARK_NOADD)) {
ire_refrele(ire); /* Held in ire_add */
if (CONN_Q(q)) {
(void) ip_output(Q_TO_CONN(q), ipsec_mp, q,
IRE_SEND);
} else {
(void) ip_output((void *)(uintptr_t)zoneid,
ipsec_mp, q, IRE_SEND);
}
} else {
if (is_secure) {
ipsec_out_t *oi;
ipha_t *ipha;
oi = (ipsec_out_t *)ipsec_mp->b_rptr;
ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr;
if (oi->ipsec_out_proc_begin) {
/*
* This is the case where
* ip_wput_ipsec_out could not find
* the IRE and recreated a new one.
* As ip_wput_ipsec_out does ire
* lookups, ire_refrele for the extra
* bump in ire_add.
*/
ire_refrele(ire);
ip_wput_ipsec_out(q, ipsec_mp, ipha,
NULL, NULL);
} else {
/*
* IRE_REFRELE will be done in
* ip_wput_ire.
*/
ip_wput_ire(q, ipsec_mp, ire, NULL,
IRE_SEND, zoneid);
}
} else {
/*
* IRE_REFRELE will be done in ip_wput_ire.
*/
ip_wput_ire(q, ipsec_mp, ire, NULL,
IRE_SEND, zoneid);
}
}
/*
* Special code to support sending a single packet with
* conn_unspec_src using an IRE which has no source address.
* The IRE is deleted here after sending the packet to avoid
* having other code trip on it. But before we delete the
* ire, somebody could have looked up this ire.
* We prevent returning/using this IRE by the upper layers
* by making checks to NULL source address in other places
* like e.g ip_ire_append, ip_ire_req and ip_bind_connected.
* Though this does not completely prevent other threads
* from using this ire, this should not cause any problems.
*/
if (delete_ire) {
ip1dbg(("ire_send: delete IRE\n"));
ire_delete(ire);
ire_refrele(ire); /* Held above */
}
}
}
/*
* Send a packet using the specified IRE.
* If ire_src_addr_v6 is all zero then discard the IRE after
* the packet has been sent.
*/
static void
ire_send_v6(queue_t *q, mblk_t *pkt, ire_t *ire)
{
mblk_t *ipsec_mp;
boolean_t secure;
uint_t ifindex;
zoneid_t zoneid = ire->ire_zoneid;
ip_stack_t *ipst = ire->ire_ipst;
ASSERT(ire->ire_ipversion == IPV6_VERSION);
ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */
if (pkt->b_datap->db_type == M_CTL) {
ipsec_out_t *io;
ipsec_mp = pkt;
pkt = pkt->b_cont;
secure = B_TRUE;
io = (ipsec_out_t *)ipsec_mp->b_rptr;
if (io->ipsec_out_type == IPSEC_OUT)
zoneid = io->ipsec_out_zoneid;
} else {
ipsec_mp = pkt;
secure = B_FALSE;
}
/* If the packet originated externally then */
if (pkt->b_prev) {
ill_t *ill;
/*
* Extract the ifindex from b_prev (set in ip_rput_data_v6).
* Look up interface to see if it still exists (it could have
* been unplumbed by the time the reply came back from the
* resolver).
*/
ifindex = (uint_t)(uintptr_t)pkt->b_prev;
ill = ill_lookup_on_ifindex(ifindex, B_TRUE,
NULL, NULL, NULL, NULL, ipst);
if (ill == NULL) {
pkt->b_prev = NULL;
pkt->b_next = NULL;
freemsg(ipsec_mp);
ire_refrele(ire); /* Held in ire_add */
return;
}
q = ill->ill_rq;
pkt->b_prev = NULL;
/*
* This packet has not gone through IPSEC processing
* and hence we should not have any IPSEC message
* prepended.
*/
ASSERT(ipsec_mp == pkt);
put(q, pkt);
ill_refrele(ill);
} else if (pkt->b_next) {
/* Packets from multicast router */
pkt->b_next = NULL;
/*
* We never get the IPSEC_OUT while forwarding the
* packet for multicast router.
*/
ASSERT(ipsec_mp == pkt);
/*
* XXX TODO IPv6.
*/
freemsg(pkt);
#ifdef XXX
ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, pkt, NULL);
#endif
} else {
if (secure) {
ipsec_out_t *oi;
ip6_t *ip6h;
oi = (ipsec_out_t *)ipsec_mp->b_rptr;
ip6h = (ip6_t *)ipsec_mp->b_cont->b_rptr;
if (oi->ipsec_out_proc_begin) {
/*
* This is the case where
* ip_wput_ipsec_out could not find
* the IRE and recreated a new one.
*/
ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h,
NULL, NULL);
} else {
if (CONN_Q(q)) {
(void) ip_output_v6(Q_TO_CONN(q),
ipsec_mp, q, IRE_SEND);
} else {
(void) ip_output_v6(
(void *)(uintptr_t)zoneid,
ipsec_mp, q, IRE_SEND);
}
}
} else {
/*
* Send packets through ip_output_v6 so that any
* ip6_info header can be processed again.
*/
if (CONN_Q(q)) {
(void) ip_output_v6(Q_TO_CONN(q), ipsec_mp, q,
IRE_SEND);
} else {
(void) ip_output_v6((void *)(uintptr_t)zoneid,
ipsec_mp, q, IRE_SEND);
}
}
/*
* Special code to support sending a single packet with
* conn_unspec_src using an IRE which has no source address.
* The IRE is deleted here after sending the packet to avoid
* having other code trip on it. But before we delete the
* ire, somebody could have looked up this ire.
* We prevent returning/using this IRE by the upper layers
* by making checks to NULL source address in other places
* like e.g ip_ire_append_v6, ip_ire_req and
* ip_bind_connected_v6. Though, this does not completely
* prevent other threads from using this ire, this should
* not cause any problems.
*/
if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6)) {
ip1dbg(("ire_send_v6: delete IRE\n"));
ire_delete(ire);
}
}
ire_refrele(ire); /* Held in ire_add */
}
/*
* Make sure that IRE bucket does not get too long.
* This can cause lock up because ire_cache_lookup()
* may take "forever" to finish.
*
* We only remove a maximum of cnt IREs each time. This
* should keep the bucket length approximately constant,
* depending on cnt. This should be enough to defend
* against DoS attack based on creating temporary IREs
* (for forwarding and non-TCP traffic).
*
* We also pass in the address of the newly created IRE
* as we do not want to remove this straight after adding
* it. New IREs are normally added at the tail of the
* bucket. This means that we are removing the "oldest"
* temporary IREs added. Only if there are IREs with
* the same ire_addr, do we not add it at the tail. Refer
* to ire_add_v*(). It should be OK for our purpose.
*
* For non-temporary cached IREs, we make sure that they
* have not been used for some time (defined below), they
* are non-local destinations, and there is no one using
* them at the moment (refcnt == 1).
*
* The above means that the IRE bucket length may become
* very long, consisting of mostly non-temporary IREs.
* This can happen when the hash function does a bad job
* so that most TCP connections cluster to a specific bucket.
* This "hopefully" should never happen. It can also
* happen if most TCP connections have very long lives.
* Even with the minimal hash table size of 256, there
* has to be a lot of such connections to make the bucket
* length unreasonably long. This should probably not
* happen either. The third can when this can happen is
* when the machine is under attack, such as SYN flooding.
* TCP should already have the proper mechanism to protect
* that. So we should be safe.
*
* This function is called by ire_add_then_send() after
* a new IRE is added and the packet is sent.
*
* The idle cutoff interval is set to 60s. It can be
* changed using /etc/system.
*/
uint32_t ire_idle_cutoff_interval = 60000;
static void
ire_cache_cleanup(irb_t *irb, uint32_t threshold, ire_t *ref_ire)
{
ire_t *ire;
clock_t cut_off = drv_usectohz(ire_idle_cutoff_interval * 1000);
int cnt = ip_ire_cleanup_cnt;
/*
* Try to remove cnt temporary IREs first.
*/
for (ire = irb->irb_ire; cnt > 0 && ire != NULL; ire = ire->ire_next) {
if (ire == ref_ire)
continue;
if (ire->ire_marks & IRE_MARK_CONDEMNED)
continue;
if (ire->ire_marks & IRE_MARK_TEMPORARY) {
ASSERT(ire->ire_type == IRE_CACHE);
ire_delete(ire);
cnt--;
}
}
if (cnt == 0)
return;
/*
* If we didn't satisfy our removal target from temporary IREs
* we see how many non-temporary IREs are currently in the bucket.
* If this quantity is above the threshold then we see if there are any
* candidates for removal. We are still limited to removing a maximum
* of cnt IREs.
*/
if ((irb->irb_ire_cnt - irb->irb_tmp_ire_cnt) > threshold) {
for (ire = irb->irb_ire; cnt > 0 && ire != NULL;
ire = ire->ire_next) {
if (ire == ref_ire)
continue;
if (ire->ire_type != IRE_CACHE)
continue;
if (ire->ire_marks & IRE_MARK_CONDEMNED)
continue;
if ((ire->ire_refcnt == 1) &&
(lbolt - ire->ire_last_used_time > cut_off)) {
ire_delete(ire);
cnt--;
}
}
}
}
/*
* ire_add_then_send is called when a new IRE has been created in order to
* route an outgoing packet. Typically, it is called from ip_wput when
* a response comes back down from a resolver. We add the IRE, and then
* possibly run the packet through ip_wput or ip_rput, as appropriate.
* However, we do not add the newly created IRE in the cache when
* IRE_MARK_NOADD is set in the IRE. IRE_MARK_NOADD is set at
* ip_newroute_ipif(). The ires with IRE_MARK_NOADD are ire_refrele'd by
* ip_wput_ire() and get deleted.
* Multirouting support: the packet is silently discarded when the new IRE
* holds the RTF_MULTIRT flag, but is not the first IRE to be added with the
* RTF_MULTIRT flag for the same destination address.
* In this case, we just want to register this additional ire without
* sending the packet, as it has already been replicated through
* existing multirt routes in ip_wput().
*/
void
ire_add_then_send(queue_t *q, ire_t *ire, mblk_t *mp)
{
irb_t *irb;
boolean_t drop = B_FALSE;
boolean_t mctl_present;
mblk_t *first_mp = NULL;
mblk_t *data_mp = NULL;
ire_t *dst_ire;
ipha_t *ipha;
ip6_t *ip6h;
ip_stack_t *ipst = ire->ire_ipst;
int ire_limit;
if (mp != NULL) {
/*
* We first have to retrieve the destination address carried
* by the packet.
* We can't rely on ire as it can be related to a gateway.
* The destination address will help in determining if
* other RTF_MULTIRT ires are already registered.
*
* We first need to know where we are going : v4 or V6.
* the ire version is enough, as there is no risk that
* we resolve an IPv6 address with an IPv4 ire
* or vice versa.
*/
EXTRACT_PKT_MP(mp, first_mp, mctl_present);
data_mp = mp;
mp = first_mp;
if (ire->ire_ipversion == IPV4_VERSION) {
ipha = (ipha_t *)data_mp->b_rptr;
dst_ire = ire_cache_lookup(ipha->ipha_dst,
ire->ire_zoneid, msg_getlabel(mp), ipst);
} else {
ASSERT(ire->ire_ipversion == IPV6_VERSION);
ip6h = (ip6_t *)data_mp->b_rptr;
dst_ire = ire_cache_lookup_v6(&ip6h->ip6_dst,
ire->ire_zoneid, msg_getlabel(mp), ipst);
}
if (dst_ire != NULL) {
if (dst_ire->ire_flags & RTF_MULTIRT) {
/*
* At least one resolved multirt route
* already exists for the destination,
* don't sent this packet: either drop it
* or complete the pending resolution,
* depending on the ire.
*/
drop = B_TRUE;
}
ip1dbg(("ire_add_then_send: dst_ire %p "
"[dst %08x, gw %08x], drop %d\n",
(void *)dst_ire,
(dst_ire->ire_ipversion == IPV4_VERSION) ? \
ntohl(dst_ire->ire_addr) : \
ntohl(V4_PART_OF_V6(dst_ire->ire_addr_v6)),
(dst_ire->ire_ipversion == IPV4_VERSION) ? \
ntohl(dst_ire->ire_gateway_addr) : \
ntohl(V4_PART_OF_V6(
dst_ire->ire_gateway_addr_v6)),
drop));
ire_refrele(dst_ire);
}
}
if (!(ire->ire_marks & IRE_MARK_NOADD)) {
/* Regular packets with cache bound ires are here. */
(void) ire_add(&ire, NULL, NULL, NULL, B_FALSE);
if (ire == NULL) {
mp->b_prev = NULL;
mp->b_next = NULL;
MULTIRT_DEBUG_UNTAG(mp);
freemsg(mp);
return;
}
if (mp == NULL) {
ire_refrele(ire); /* Held in ire_add_v4/v6 */
return;
}
}
if (drop) {
/*
* If we're adding an RTF_MULTIRT ire, the resolution
* is over: we just drop the packet.
*/
if (ire->ire_flags & RTF_MULTIRT) {
data_mp->b_prev = NULL;
data_mp->b_next = NULL;
MULTIRT_DEBUG_UNTAG(mp);
freemsg(mp);
} else {
/*
* Otherwise, we're adding the ire to a gateway
* for a multirt route.
* Invoke ip_newroute() to complete the resolution
* of the route. We will then come back here and
* finally drop this packet in the above code.
*/
if (ire->ire_ipversion == IPV4_VERSION) {
/*
* TODO: in order for CGTP to work in non-global
* zones, ip_newroute() must create the IRE
* cache in the zone indicated by
* ire->ire_zoneid.
*/
ip_newroute(q, mp, ipha->ipha_dst,
(CONN_Q(q) ? Q_TO_CONN(q) : NULL),
ire->ire_zoneid, ipst);
} else {
int minlen = sizeof (ip6i_t) + IPV6_HDR_LEN;
ASSERT(ire->ire_ipversion == IPV6_VERSION);
/*
* If necessary, skip over the ip6i_t to find
* the header with the actual source address.
*/
if (ip6h->ip6_nxt == IPPROTO_RAW) {
if (MBLKL(data_mp) < minlen &&
pullupmsg(data_mp, -1) == 0) {
ip1dbg(("ire_add_then_send: "
"cannot pullupmsg ip6i\n"));
if (mctl_present)
freeb(first_mp);
ire_refrele(ire);
return;
}
ASSERT(MBLKL(data_mp) >= IPV6_HDR_LEN);
ip6h = (ip6_t *)(data_mp->b_rptr +
sizeof (ip6i_t));
}
ip_newroute_v6(q, mp, &ip6h->ip6_dst,
&ip6h->ip6_src, NULL, ire->ire_zoneid,
ipst);
}
}
ire_refrele(ire); /* As done by ire_send(). */
return;
}
/*
* Need to remember ire_bucket here as ire_send*() may delete
* the ire so we cannot reference it after that.
*/
irb = ire->ire_bucket;
if (ire->ire_ipversion == IPV4_VERSION) {
ire_send(q, mp, ire);
ire_limit = ip_ire_max_bucket_cnt;
} else {
ire_send_v6(q, mp, ire);
ire_limit = ip6_ire_max_bucket_cnt;
}
/*
* irb is NULL if the IRE was not added to the hash. This happens
* when IRE_MARK_NOADD is set and when IREs are returned from
* ire_update_srcif_v4().
*/
if (irb != NULL) {
IRB_REFHOLD(irb);
if (irb->irb_ire_cnt > ire_limit)
ire_cache_cleanup(irb, ire_limit, ire);
IRB_REFRELE(irb);
}
}
/*
* Initialize the ire that is specific to IPv4 part and call
* ire_init_common to finish it.
*/
ire_t *
ire_init(ire_t *ire, uchar_t *addr, uchar_t *mask, uchar_t *src_addr,
uchar_t *gateway, uint_t *max_fragp, nce_t *src_nce, queue_t *rfq,
queue_t *stq, ushort_t type, ipif_t *ipif, ipaddr_t cmask, uint32_t phandle,
uint32_t ihandle, uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc,
tsol_gcgrp_t *gcgrp, ip_stack_t *ipst)
{
ASSERT(type != IRE_CACHE || stq != NULL);
/*
* Reject IRE security attribute creation/initialization
* if system is not running in Trusted mode.
*/
if ((gc != NULL || gcgrp != NULL) && !is_system_labeled())
return (NULL);
BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_alloced);
if (addr != NULL)
bcopy(addr, &ire->ire_addr, IP_ADDR_LEN);
if (src_addr != NULL)
bcopy(src_addr, &ire->ire_src_addr, IP_ADDR_LEN);
if (mask != NULL) {
bcopy(mask, &ire->ire_mask, IP_ADDR_LEN);
ire->ire_masklen = ip_mask_to_plen(ire->ire_mask);
}
if (gateway != NULL) {
bcopy(gateway, &ire->ire_gateway_addr, IP_ADDR_LEN);
}
if (type == IRE_CACHE)
ire->ire_cmask = cmask;
/* ire_init_common will free the mblks upon encountering any failure */
if (!ire_init_common(ire, max_fragp, src_nce, rfq, stq, type, ipif,
phandle, ihandle, flags, IPV4_VERSION, ulp_info, gc, gcgrp, ipst))
return (NULL);
return (ire);
}
/*
* Similar to ire_create except that it is called only when
* we want to allocate ire as an mblk e.g. we have an external
* resolver ARP.
*/
ire_t *
ire_create_mp(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway,
uint_t max_frag, nce_t *src_nce, queue_t *rfq, queue_t *stq, ushort_t type,
ipif_t *ipif, ipaddr_t cmask, uint32_t phandle, uint32_t ihandle,
uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp,
ip_stack_t *ipst)
{
ire_t *ire, *buf;
ire_t *ret_ire;
mblk_t *mp;
size_t bufsize;
frtn_t *frtnp;
ill_t *ill;
bufsize = sizeof (ire_t) + sizeof (frtn_t);
buf = kmem_alloc(bufsize, KM_NOSLEEP);
if (buf == NULL) {
ip1dbg(("ire_create_mp: alloc failed\n"));
return (NULL);
}
frtnp = (frtn_t *)(buf + 1);
frtnp->free_arg = (caddr_t)buf;
frtnp->free_func = ire_freemblk;
/*
* Allocate the new IRE. The ire created will hold a ref on
* an nce_t after ire_nce_init, and this ref must either be
* (a) transferred to the ire_cache entry created when ire_add_v4
* is called after successful arp resolution, or,
* (b) released, when arp resolution fails
* Case (b) is handled in ire_freemblk() which will be called
* when mp is freed as a result of failed arp.
*/
mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp);
if (mp == NULL) {
ip1dbg(("ire_create_mp: alloc failed\n"));
kmem_free(buf, bufsize);
return (NULL);
}
ire = (ire_t *)mp->b_rptr;
mp->b_wptr = (uchar_t *)&ire[1];
/* Start clean. */
*ire = ire_null;
ire->ire_mp = mp;
mp->b_datap->db_type = IRE_DB_TYPE;
ire->ire_marks |= IRE_MARK_UNCACHED;
ret_ire = ire_init(ire, addr, mask, src_addr, gateway, NULL, src_nce,
rfq, stq, type, ipif, cmask, phandle, ihandle, flags, ulp_info, gc,
gcgrp, ipst);
ill = (ill_t *)(stq->q_ptr);
if (ret_ire == NULL) {
/* ire_freemblk needs these set */
ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex;
ire->ire_stackid = ipst->ips_netstack->netstack_stackid;
ire->ire_ipst = ipst;
freeb(ire->ire_mp);
return (NULL);
}
ret_ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex;
ret_ire->ire_stackid = ipst->ips_netstack->netstack_stackid;
ASSERT(ret_ire == ire);
ASSERT(ret_ire->ire_ipst == ipst);
/*
* ire_max_frag is normally zero here and is atomically set
* under the irebucket lock in ire_add_v[46] except for the
* case of IRE_MARK_NOADD. In that event the the ire_max_frag
* is non-zero here.
*/
ire->ire_max_frag = max_frag;
return (ire);
}
/*
* ire_create is called to allocate and initialize a new IRE.
*
* NOTE : This is called as writer sometimes though not required
* by this function.
*/
ire_t *
ire_create(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway,
uint_t *max_fragp, nce_t *src_nce, queue_t *rfq, queue_t *stq,
ushort_t type, ipif_t *ipif, ipaddr_t cmask, uint32_t phandle,
uint32_t ihandle, uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc,
tsol_gcgrp_t *gcgrp, ip_stack_t *ipst)
{
ire_t *ire;
ire_t *ret_ire;
ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
if (ire == NULL) {
ip1dbg(("ire_create: alloc failed\n"));
return (NULL);
}
*ire = ire_null;
ret_ire = ire_init(ire, addr, mask, src_addr, gateway, max_fragp,
src_nce, rfq, stq, type, ipif, cmask, phandle, ihandle, flags,
ulp_info, gc, gcgrp, ipst);
if (ret_ire == NULL) {
kmem_cache_free(ire_cache, ire);
return (NULL);
}
ASSERT(ret_ire == ire);
return (ire);
}
/*
* Common to IPv4 and IPv6
*/
boolean_t
ire_init_common(ire_t *ire, uint_t *max_fragp, nce_t *src_nce, queue_t *rfq,
queue_t *stq, ushort_t type, ipif_t *ipif, uint32_t phandle,
uint32_t ihandle, uint32_t flags, uchar_t ipversion, const iulp_t *ulp_info,
tsol_gc_t *gc, tsol_gcgrp_t *gcgrp, ip_stack_t *ipst)
{
ire->ire_max_fragp = max_fragp;
ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? IPH_DF : 0;
#ifdef DEBUG
if (ipif != NULL) {
if (ipif->ipif_isv6)
ASSERT(ipversion == IPV6_VERSION);
else
ASSERT(ipversion == IPV4_VERSION);
}
#endif /* DEBUG */
/*
* Create/initialize IRE security attribute only in Trusted mode;
* if the passed in gc/gcgrp is non-NULL, we expect that the caller
* has held a reference to it and will release it when this routine
* returns a failure, otherwise we own the reference. We do this
* prior to initializing the rest IRE fields.
*
* Don't allocate ire_gw_secattr for the resolver case to prevent
* memory leak (in case of external resolution failure). We'll
* allocate it after a successful external resolution, in ire_add().
* Note that ire->ire_mp != NULL here means this ire is headed
* to an external resolver.
*/
if (is_system_labeled()) {
if ((type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST |
IRE_INTERFACE)) != 0) {
/* release references on behalf of caller */
if (gc != NULL)
GC_REFRELE(gc);
if (gcgrp != NULL)
GCGRP_REFRELE(gcgrp);
} else if ((ire->ire_mp == NULL) &&
tsol_ire_init_gwattr(ire, ipversion, gc, gcgrp) != 0) {
return (B_FALSE);
}
}
ire->ire_stq = stq;
ire->ire_rfq = rfq;
ire->ire_type = type;
ire->ire_flags = RTF_UP | flags;
ire->ire_ident = TICK_TO_MSEC(lbolt);
bcopy(ulp_info, &ire->ire_uinfo, sizeof (iulp_t));
ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count;
ire->ire_last_used_time = lbolt;
ire->ire_create_time = (uint32_t)gethrestime_sec();
/*
* If this IRE is an IRE_CACHE, inherit the handles from the
* parent IREs. For others in the forwarding table, assign appropriate
* new ones.
*
* The mutex protecting ire_handle is because ire_create is not always
* called as a writer.
*/
if (ire->ire_type & IRE_OFFSUBNET) {
mutex_enter(&ipst->ips_ire_handle_lock);
ire->ire_phandle = (uint32_t)ipst->ips_ire_handle++;
mutex_exit(&ipst->ips_ire_handle_lock);
} else if (ire->ire_type & IRE_INTERFACE) {
mutex_enter(&ipst->ips_ire_handle_lock);
ire->ire_ihandle = (uint32_t)ipst->ips_ire_handle++;
mutex_exit(&ipst->ips_ire_handle_lock);
} else if (ire->ire_type == IRE_CACHE) {
ire->ire_phandle = phandle;
ire->ire_ihandle = ihandle;
}
ire->ire_ipif = ipif;
if (ipif != NULL) {
ire->ire_ipif_seqid = ipif->ipif_seqid;
ire->ire_ipif_ifindex =
ipif->ipif_ill->ill_phyint->phyint_ifindex;
ire->ire_zoneid = ipif->ipif_zoneid;
} else {
ire->ire_zoneid = GLOBAL_ZONEID;
}
ire->ire_ipversion = ipversion;
mutex_init(&ire->ire_lock, NULL, MUTEX_DEFAULT, NULL);
if (ipversion == IPV4_VERSION) {
/*
* IPv6 initializes the ire_nce in ire_add_v6, which expects
* to find the ire_nce to be null when it is called.
*/
if (ire_nce_init(ire, src_nce) != 0) {
/* some failure occurred. propagate error back */
return (B_FALSE);
}
}
ire->ire_refcnt = 1;
ire->ire_ipst = ipst; /* No netstack_hold */
ire->ire_trace_disable = B_FALSE;
return (B_TRUE);
}
/*
* This routine is called repeatedly by ipif_up to create broadcast IREs.
* It is passed a pointer to a slot in an IRE pointer array into which to
* place the pointer to the new IRE, if indeed we create one. If the
* IRE corresponding to the address passed in would be a duplicate of an
* existing one, we don't create the new one. irep is incremented before
* return only if we do create a new IRE. (Always called as writer.)
*
* Note that with the "match_flags" parameter, we can match on either
* a particular logical interface (MATCH_IRE_IPIF) or for all logical
* interfaces for a given physical interface (MATCH_IRE_ILL). Currently,
* we only create broadcast ire's on a per physical interface basis. If
* someone is going to be mucking with logical interfaces, it is important
* to call "ipif_check_bcast_ires()" to make sure that any change to a
* logical interface will not cause critical broadcast IRE's to be deleted.
*/
ire_t **
ire_check_and_create_bcast(ipif_t *ipif, ipaddr_t addr, ire_t **irep,
int match_flags)
{
ire_t *ire;
uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST;
boolean_t prefer;
ill_t *ill = ipif->ipif_ill;
ip_stack_t *ipst = ill->ill_ipst;
/*
* No broadcast IREs for the LOOPBACK interface
* or others such as point to point and IPIF_NOXMIT.
*/
if (!(ipif->ipif_flags & IPIF_BROADCAST) ||
(ipif->ipif_flags & IPIF_NOXMIT))
return (irep);
/*
* If this new IRE would be a duplicate, only prefer it if one of
* the following is true:
*
* 1. The existing one has IPIF_DEPRECATED|IPIF_LOCAL|IPIF_ANYCAST
* set and the new one has all of those clear.
*
* 2. The existing one corresponds to an underlying ILL in an IPMP
* group and the new one corresponds to an IPMP group interface.
*/
if ((ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ipif,
ipif->ipif_zoneid, NULL, match_flags, ipst)) != NULL) {
prefer = ((ire->ire_ipif->ipif_flags & check_flags) &&
!(ipif->ipif_flags & check_flags)) ||
(IS_UNDER_IPMP(ire->ire_ipif->ipif_ill) && IS_IPMP(ill));
if (!prefer) {
ire_refrele(ire);
return (irep);
}
/*
* Bcast ires exist in pairs. Both have to be deleted,
* Since we are exclusive we can make the above assertion.
* The 1st has to be refrele'd since it was ctable_lookup'd.
*/
ASSERT(IAM_WRITER_IPIF(ipif));
ASSERT(ire->ire_next->ire_addr == ire->ire_addr);
ire_delete(ire->ire_next);
ire_delete(ire);
ire_refrele(ire);
}
return (ire_create_bcast(ipif, addr, irep));
}
uint_t ip_loopback_mtu = IP_LOOPBACK_MTU;
/*
* This routine is called from ipif_check_bcast_ires and ire_check_bcast.
* It leaves all the verifying and deleting to those routines. So it always
* creates 2 bcast ires and chains them into the ire array passed in.
*/
ire_t **
ire_create_bcast(ipif_t *ipif, ipaddr_t addr, ire_t **irep)
{
ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
ill_t *ill = ipif->ipif_ill;
ASSERT(IAM_WRITER_IPIF(ipif));
if (IS_IPMP(ill)) {
/*
* Broadcast IREs for the IPMP meta-interface use the
* nominated broadcast interface to send and receive packets.
* If there's no nominated interface, send the packets down to
* the IPMP stub driver, which will discard them. If the
* nominated broadcast interface changes, ill_refresh_bcast()
* will refresh the broadcast IREs.
*/
if ((ill = ipmp_illgrp_cast_ill(ill->ill_grp)) == NULL)
ill = ipif->ipif_ill;
}
*irep++ = ire_create(
(uchar_t *)&addr, /* dest addr */
(uchar_t *)&ip_g_all_ones, /* mask */
(uchar_t *)&ipif->ipif_src_addr, /* source addr */
NULL, /* no gateway */
&ipif->ipif_mtu, /* max frag */
NULL, /* no src nce */
ill->ill_rq, /* recv-from queue */
ill->ill_wq, /* send-to queue */
IRE_BROADCAST,
ipif,
0,
0,
0,
0,
&ire_uinfo_null,
NULL,
NULL,
ipst);
*irep++ = ire_create(
(uchar_t *)&addr, /* dest address */
(uchar_t *)&ip_g_all_ones, /* mask */
(uchar_t *)&ipif->ipif_src_addr, /* source address */
NULL, /* no gateway */
&ip_loopback_mtu, /* max frag size */
NULL, /* no src_nce */
ill->ill_rq, /* recv-from queue */
NULL, /* no send-to queue */
IRE_BROADCAST, /* Needed for fanout in wput */
ipif,
0,
0,
0,
0,
&ire_uinfo_null,
NULL,
NULL,
ipst);
return (irep);
}
/*
* ire_walk routine to delete or update any IRE_CACHE that might contain
* stale information.
* The flags state which entries to delete or update.
* Garbage collection is done separately using kmem alloc callbacks to
* ip_trash_ire_reclaim.
* Used for both IPv4 and IPv6. However, IPv6 only uses FLUSH_MTU_TIME
* since other stale information is cleaned up using NUD.
*/
void
ire_expire(ire_t *ire, char *arg)
{
ire_expire_arg_t *ieap = (ire_expire_arg_t *)(uintptr_t)arg;
ill_t *stq_ill;
int flush_flags = ieap->iea_flush_flag;
ip_stack_t *ipst = ieap->iea_ipst;
if ((flush_flags & FLUSH_REDIRECT_TIME) &&
(ire->ire_flags & RTF_DYNAMIC)) {
/* Make sure we delete the corresponding IRE_CACHE */
ip1dbg(("ire_expire: all redirects\n"));
ip_rts_rtmsg(RTM_DELETE, ire, 0, ipst);
ire_delete(ire);
atomic_dec_32(&ipst->ips_ip_redirect_cnt);
return;
}
if (ire->ire_type != IRE_CACHE)
return;
if (flush_flags & FLUSH_ARP_TIME) {
/*
* Remove all IRE_CACHE except IPv4 multicast ires. These
* ires will be deleted by ip_trash_ire_reclaim_stack()
* when system runs low in memory.
* Verify that create time is more than ip_ire_arp_interval
* milliseconds ago.
*/
if (!(ire->ire_ipversion == IPV4_VERSION &&
CLASSD(ire->ire_addr)) && NCE_EXPIRED(ire->ire_nce, ipst)) {
ire_delete(ire);
return;
}
}
if (ipst->ips_ip_path_mtu_discovery && (flush_flags & FLUSH_MTU_TIME) &&
(ire->ire_ipif != NULL)) {
/* Increase pmtu if it is less than the interface mtu */
mutex_enter(&ire->ire_lock);
/*
* If the ipif is a vni (whose mtu is 0, since it's virtual)
* get the mtu from the sending interfaces' ipif
*/
if (IS_VNI(ire->ire_ipif->ipif_ill)) {
stq_ill = ire->ire_stq->q_ptr;
ire->ire_max_frag = MIN(stq_ill->ill_ipif->ipif_mtu,
IP_MAXPACKET);
} else {
ire->ire_max_frag = MIN(ire->ire_ipif->ipif_mtu,
IP_MAXPACKET);
}
ire->ire_frag_flag |= IPH_DF;
mutex_exit(&ire->ire_lock);
}
}
/*
* Return any local address. We use this to target ourselves
* when the src address was specified as 'default'.
* Preference for IRE_LOCAL entries.
*/
ire_t *
ire_lookup_local(zoneid_t zoneid, ip_stack_t *ipst)
{
ire_t *ire;
irb_t *irb;
ire_t *maybe = NULL;
int i;
for (i = 0; i < ipst->ips_ip_cache_table_size; i++) {
irb = &ipst->ips_ip_cache_table[i];
if (irb->irb_ire == NULL)
continue;
rw_enter(&irb->irb_lock, RW_READER);
for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
if ((ire->ire_marks & IRE_MARK_CONDEMNED) ||
(ire->ire_zoneid != zoneid &&
ire->ire_zoneid != ALL_ZONES))
continue;
switch (ire->ire_type) {
case IRE_LOOPBACK:
if (maybe == NULL) {
IRE_REFHOLD(ire);
maybe = ire;
}
break;
case IRE_LOCAL:
if (maybe != NULL) {
ire_refrele(maybe);
}
IRE_REFHOLD(ire);
rw_exit(&irb->irb_lock);
return (ire);
}
}
rw_exit(&irb->irb_lock);
}
return (maybe);
}
/*
* If the specified IRE is associated with a particular ILL, return
* that ILL pointer (May be called as writer.).
*
* NOTE : This is not a generic function that can be used always.
* This function always returns the ill of the outgoing packets
* if this ire is used.
*/
ill_t *
ire_to_ill(const ire_t *ire)
{
ill_t *ill = NULL;
/*
* 1) For an IRE_CACHE, ire_ipif is the one where it obtained
* the source address from. ire_stq is the one where the
* packets will be sent out on. We return that here.
*
* 2) IRE_BROADCAST normally has a loopback and a non-loopback
* copy and they always exist next to each other with loopback
* copy being the first one. If we are called on the non-loopback
* copy, return the one pointed by ire_stq. If it was called on
* a loopback copy, we still return the one pointed by the next
* ire's ire_stq pointer i.e the one pointed by the non-loopback
* copy. We don't want use ire_ipif as it might represent the
* source address (if we borrow source addresses for
* IRE_BROADCASTS in the future).
* However if an interface is currently coming up, the above
* condition may not hold during that period since the ires
* are added one at a time. Thus one of the pair could have been
* added and the other not yet added.
* 3) For many other IREs (e.g., IRE_LOCAL), ire_rfq indicates the ill.
* 4) For all others return the ones pointed by ire_ipif->ipif_ill.
* That handles IRE_LOOPBACK.
*/
if (ire->ire_type == IRE_CACHE) {
ill = (ill_t *)ire->ire_stq->q_ptr;
} else if (ire->ire_type == IRE_BROADCAST) {
if (ire->ire_stq != NULL) {
ill = (ill_t *)ire->ire_stq->q_ptr;
} else {
ire_t *ire_next;
ire_next = ire->ire_next;
if (ire_next != NULL &&
ire_next->ire_type == IRE_BROADCAST &&
ire_next->ire_addr == ire->ire_addr &&
ire_next->ire_ipif == ire->ire_ipif) {
ill = (ill_t *)ire_next->ire_stq->q_ptr;
}
}
} else if (ire->ire_rfq != NULL) {
ill = ire->ire_rfq->q_ptr;
} else if (ire->ire_ipif != NULL) {
ill = ire->ire_ipif->ipif_ill;
}
return (ill);
}
/* Arrange to call the specified function for every IRE in the world. */
void
ire_walk(pfv_t func, void *arg, ip_stack_t *ipst)
{
ire_walk_ipvers(func, arg, 0, ALL_ZONES, ipst);
}
void
ire_walk_v4(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst)
{
ire_walk_ipvers(func, arg, IPV4_VERSION, zoneid, ipst);
}
void
ire_walk_v6(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst)
{
ire_walk_ipvers(func, arg, IPV6_VERSION, zoneid, ipst);
}
/*
* Walk a particular version. version == 0 means both v4 and v6.
*/
static void
ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, zoneid_t zoneid,
ip_stack_t *ipst)
{
if (vers != IPV6_VERSION) {
/*
* ip_forwarding_table variable doesn't matter for IPv4 since
* ire_walk_ill_tables uses ips_ip_ftable for IPv4.
*/
ire_walk_ill_tables(0, 0, func, arg, IP_MASK_TABLE_SIZE,
0, NULL,
ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table,
NULL, zoneid, ipst);
}
if (vers != IPV4_VERSION) {
ire_walk_ill_tables(0, 0, func, arg, IP6_MASK_TABLE_SIZE,
ipst->ips_ip6_ftable_hash_size,
ipst->ips_ip_forwarding_table_v6,
ipst->ips_ip6_cache_table_size,
ipst->ips_ip_cache_table_v6, NULL, zoneid, ipst);
}
}
/*
* Arrange to call the specified function for every IRE that matches the ill.
*/
void
ire_walk_ill(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg,
ill_t *ill)
{
uchar_t vers = (ill->ill_isv6 ? IPV6_VERSION : IPV4_VERSION);
ire_walk_ill_ipvers(match_flags, ire_type, func, arg, vers, ill);
}
void
ire_walk_ill_v4(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg,
ill_t *ill)
{
ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV4_VERSION,
ill);
}
void
ire_walk_ill_v6(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg,
ill_t *ill)
{
ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV6_VERSION,
ill);
}
/*
* Walk a particular ill and version.
*/
static void
ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, pfv_t func,
void *arg, uchar_t vers, ill_t *ill)
{
ip_stack_t *ipst = ill->ill_ipst;
if (vers == IPV4_VERSION) {
ire_walk_ill_tables(match_flags, ire_type, func, arg,
IP_MASK_TABLE_SIZE, 0,
NULL, ipst->ips_ip_cache_table_size,
ipst->ips_ip_cache_table, ill, ALL_ZONES, ipst);
} else if (vers == IPV6_VERSION) {
ire_walk_ill_tables(match_flags, ire_type, func, arg,
IP6_MASK_TABLE_SIZE, ipst->ips_ip6_ftable_hash_size,
ipst->ips_ip_forwarding_table_v6,
ipst->ips_ip6_cache_table_size,
ipst->ips_ip_cache_table_v6, ill, ALL_ZONES, ipst);
}
}
boolean_t
ire_walk_ill_match(uint_t match_flags, uint_t ire_type, ire_t *ire,
ill_t *ill, zoneid_t zoneid, ip_stack_t *ipst)
{
ill_t *ire_stq_ill = NULL;
ill_t *ire_ipif_ill = NULL;
ASSERT(match_flags != 0 || zoneid != ALL_ZONES);
/*
* MATCH_IRE_ILL: We match both on ill pointed by ire_stq and
* ire_ipif. Only in the case of IRE_CACHEs can ire_stq and
* ire_ipif be pointing to different ills. But we want to keep
* this function generic enough for future use. So, we always
* try to match on both. The only caller of this function
* ire_walk_ill_tables, will call "func" after we return from
* this function. We expect "func" to do the right filtering
* of ires in this case.
*/
if (match_flags & MATCH_IRE_ILL) {
if (ire->ire_stq != NULL)
ire_stq_ill = ire->ire_stq->q_ptr;
if (ire->ire_ipif != NULL)
ire_ipif_ill = ire->ire_ipif->ipif_ill;
}
if (zoneid != ALL_ZONES) {
/*
* We're walking the IREs for a specific zone. The only relevant
* IREs are:
* - all IREs with a matching ire_zoneid
* - all IRE_OFFSUBNETs as they're shared across all zones
* - IRE_INTERFACE IREs for interfaces with a usable source addr
* with a matching zone
* - IRE_DEFAULTs with a gateway reachable from the zone
* We should really match on IRE_OFFSUBNETs and IRE_DEFAULTs
* using the same rule; but the above rules are consistent with
* the behavior of ire_ftable_lookup[_v6]() so that all the
* routes that can be matched during lookup are also matched
* here.
*/
if (zoneid != ire->ire_zoneid && ire->ire_zoneid != ALL_ZONES) {
/*
* Note, IRE_INTERFACE can have the stq as NULL. For
* example, if the default multicast route is tied to
* the loopback address.
*/
if ((ire->ire_type & IRE_INTERFACE) &&
(ire->ire_stq != NULL)) {
ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr;
if (ire->ire_ipversion == IPV4_VERSION) {
if (!ipif_usesrc_avail(ire_stq_ill,
zoneid))
/* No usable src addr in zone */
return (B_FALSE);
} else if (ire_stq_ill->ill_usesrc_ifindex
!= 0) {
/*
* For IPv6 use ipif_select_source_v6()
* so the right scope selection is done
*/
ipif_t *src_ipif;
src_ipif =
ipif_select_source_v6(ire_stq_ill,
&ire->ire_addr_v6, B_FALSE,
IPV6_PREFER_SRC_DEFAULT,
zoneid);
if (src_ipif != NULL) {
ipif_refrele(src_ipif);
} else {
return (B_FALSE);
}
} else {
return (B_FALSE);
}
} else if (!(ire->ire_type & IRE_OFFSUBNET)) {
return (B_FALSE);
}
}
/*
* Match all default routes from the global zone, irrespective
* of reachability. For a non-global zone only match those
* where ire_gateway_addr has a IRE_INTERFACE for the zoneid.
*/
if (ire->ire_type == IRE_DEFAULT && zoneid != GLOBAL_ZONEID) {
int ire_match_flags = 0;
in6_addr_t gw_addr_v6;
ire_t *rire;
ire_match_flags |= MATCH_IRE_TYPE;
if (ire->ire_ipif != NULL)
ire_match_flags |= MATCH_IRE_ILL;
if (ire->ire_ipversion == IPV4_VERSION) {
rire = ire_route_lookup(ire->ire_gateway_addr,
0, 0, IRE_INTERFACE, ire->ire_ipif, NULL,
zoneid, NULL, ire_match_flags, ipst);
} else {
ASSERT(ire->ire_ipversion == IPV6_VERSION);
mutex_enter(&ire->ire_lock);
gw_addr_v6 = ire->ire_gateway_addr_v6;
mutex_exit(&ire->ire_lock);
rire = ire_route_lookup_v6(&gw_addr_v6,
NULL, NULL, IRE_INTERFACE, ire->ire_ipif,
NULL, zoneid, NULL, ire_match_flags, ipst);
}
if (rire == NULL) {
return (B_FALSE);
}
ire_refrele(rire);
}
}
if (((!(match_flags & MATCH_IRE_TYPE)) ||
(ire->ire_type & ire_type)) &&
((!(match_flags & MATCH_IRE_ILL)) ||
(ire_stq_ill == ill || ire_ipif_ill == ill ||
ire_ipif_ill != NULL && IS_IN_SAME_ILLGRP(ire_ipif_ill, ill)))) {
return (B_TRUE);
}
return (B_FALSE);
}
int
rtfunc(struct radix_node *rn, void *arg)
{
struct rtfuncarg *rtf = arg;
struct rt_entry *rt;
irb_t *irb;
ire_t *ire;
boolean_t ret;
rt = (struct rt_entry *)rn;
ASSERT(rt != NULL);
irb = &rt->rt_irb;
for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
if ((rtf->rt_match_flags != 0) ||
(rtf->rt_zoneid != ALL_ZONES)) {
ret = ire_walk_ill_match(rtf->rt_match_flags,
rtf->rt_ire_type, ire,
rtf->rt_ill, rtf->rt_zoneid, rtf->rt_ipst);
} else
ret = B_TRUE;
if (ret)
(*rtf->rt_func)(ire, rtf->rt_arg);
}
return (0);
}
/*
* Walk the ftable and the ctable entries that match the ill.
*/
void
ire_walk_ill_tables(uint_t match_flags, uint_t ire_type, pfv_t func,
void *arg, size_t ftbl_sz, size_t htbl_sz, irb_t **ipftbl,
size_t ctbl_sz, irb_t *ipctbl, ill_t *ill, zoneid_t zoneid,
ip_stack_t *ipst)
{
irb_t *irb_ptr;
irb_t *irb;
ire_t *ire;
int i, j;
boolean_t ret;
struct rtfuncarg rtfarg;
ASSERT((!(match_flags & MATCH_IRE_ILL)) || (ill != NULL));
ASSERT(!(match_flags & MATCH_IRE_TYPE) || (ire_type != 0));
/*
* Optimize by not looking at the forwarding table if there
* is a MATCH_IRE_TYPE specified with no IRE_FORWARDTABLE
* specified in ire_type.
*/
if (!(match_flags & MATCH_IRE_TYPE) ||
((ire_type & IRE_FORWARDTABLE) != 0)) {
/* knobs such that routine is called only for v6 case */
if (ipftbl == ipst->ips_ip_forwarding_table_v6) {
for (i = (ftbl_sz - 1); i >= 0; i--) {
if ((irb_ptr = ipftbl[i]) == NULL)
continue;
for (j = 0; j < htbl_sz; j++) {
irb = &irb_ptr[j];
if (irb->irb_ire == NULL)
continue;
IRB_REFHOLD(irb);
for (ire = irb->irb_ire; ire != NULL;
ire = ire->ire_next) {
if (match_flags == 0 &&
zoneid == ALL_ZONES) {
ret = B_TRUE;
} else {
ret =
ire_walk_ill_match(
match_flags,
ire_type, ire, ill,
zoneid, ipst);
}
if (ret)
(*func)(ire, arg);
}
IRB_REFRELE(irb);
}
}
} else {
(void) memset(&rtfarg, 0, sizeof (rtfarg));
rtfarg.rt_func = func;
rtfarg.rt_arg = arg;
if (match_flags != 0) {
rtfarg.rt_match_flags = match_flags;
}
rtfarg.rt_ire_type = ire_type;
rtfarg.rt_ill = ill;
rtfarg.rt_zoneid = zoneid;
rtfarg.rt_ipst = ipst; /* No netstack_hold */
(void) ipst->ips_ip_ftable->rnh_walktree_mt(
ipst->ips_ip_ftable,
rtfunc, &rtfarg, irb_refhold_rn, irb_refrele_rn);
}
}
/*
* Optimize by not looking at the cache table if there
* is a MATCH_IRE_TYPE specified with no IRE_CACHETABLE
* specified in ire_type.
*/
if (!(match_flags & MATCH_IRE_TYPE) ||
((ire_type & IRE_CACHETABLE) != 0)) {
for (i = 0; i < ctbl_sz; i++) {
irb = &ipctbl[i];
if (irb->irb_ire == NULL)
continue;
IRB_REFHOLD(irb);
for (ire = irb->irb_ire; ire != NULL;
ire = ire->ire_next) {
if (match_flags == 0 && zoneid == ALL_ZONES) {
ret = B_TRUE;
} else {
ret = ire_walk_ill_match(
match_flags, ire_type,
ire, ill, zoneid, ipst);
}
if (ret)
(*func)(ire, arg);
}
IRB_REFRELE(irb);
}
}
}
/*
* This function takes a mask and returns
* number of bits set in the mask. If no
* bit is set it returns 0.
* Assumes a contiguous mask.
*/
int
ip_mask_to_plen(ipaddr_t mask)
{
return (mask == 0 ? 0 : IP_ABITS - (ffs(ntohl(mask)) -1));
}
/*
* Convert length for a mask to the mask.
*/
ipaddr_t
ip_plen_to_mask(uint_t masklen)
{
return (htonl(IP_HOST_MASK << (IP_ABITS - masklen)));
}
void
ire_atomic_end(irb_t *irb_ptr, ire_t *ire)
{
ill_t *stq_ill, *ipif_ill;
ip_stack_t *ipst = ire->ire_ipst;
stq_ill = ire->ire_stq != NULL ? ire->ire_stq->q_ptr : NULL;
ipif_ill = ire->ire_ipif != NULL ? ire->ire_ipif->ipif_ill : NULL;
RELEASE_ILL_LOCKS(ipif_ill, stq_ill);
rw_exit(&irb_ptr->irb_lock);
rw_exit(&ipst->ips_ill_g_usesrc_lock);
}
/*
* ire_add_v[46] atomically make sure that the ipif or ill associated
* with the new ire being added is stable and not IPIF_CHANGING or ILL_CHANGING
* before adding the ire to the table. This ensures that we don't create
* new IRE_CACHEs with stale values for parameters that are passed to
* ire_create such as ire_max_frag. Note that ire_create() is passed a pointer
* to the ipif_mtu, and not the value. The actual value is derived from the
* parent ire or ipif under the bucket lock.
*/
int
ire_atomic_start(irb_t *irb_ptr, ire_t *ire, queue_t *q, mblk_t *mp,
ipsq_func_t func)
{
ill_t *stq_ill;
ill_t *ipif_ill;
int error = 0;
ill_t *ill = NULL;
ip_stack_t *ipst = ire->ire_ipst;
stq_ill = ire->ire_stq != NULL ? ire->ire_stq->q_ptr : NULL;
ipif_ill = ire->ire_ipif != NULL ? ire->ire_ipif->ipif_ill : NULL;
ASSERT((q != NULL && mp != NULL && func != NULL) ||
(q == NULL && mp == NULL && func == NULL));
rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
GRAB_CONN_LOCK(q);
rw_enter(&irb_ptr->irb_lock, RW_WRITER);
GRAB_ILL_LOCKS(ipif_ill, stq_ill);
/*
* While the IRE is in the process of being added, a user may have
* invoked the ifconfig usesrc option on the stq_ill to make it a
* usesrc client ILL. Check for this possibility here, if it is true
* then we fail adding the IRE_CACHE. Another check is to make sure
* that an ipif_ill of an IRE_CACHE being added is not part of a usesrc
* group. The ill_g_usesrc_lock is released in ire_atomic_end
*/
if ((ire->ire_type & IRE_CACHE) &&
(ire->ire_marks & IRE_MARK_USESRC_CHECK)) {
if (stq_ill->ill_usesrc_ifindex != 0) {
ASSERT(stq_ill->ill_usesrc_grp_next != NULL);
if ((ipif_ill->ill_phyint->phyint_ifindex !=
stq_ill->ill_usesrc_ifindex) ||
(ipif_ill->ill_usesrc_grp_next == NULL) ||
(ipif_ill->ill_usesrc_ifindex != 0)) {
error = EINVAL;
goto done;
}
} else if (ipif_ill->ill_usesrc_grp_next != NULL) {
error = EINVAL;
goto done;
}
}
/*
* Don't allow IRE's to be created on changing ill's. Also, since
* IPMP flags can be set on an ill without quiescing it, if we're not
* a writer on stq_ill, check that the flags still allow IRE creation.
*/
if ((stq_ill != NULL) && !IAM_WRITER_ILL(stq_ill)) {
if (stq_ill->ill_state_flags & ILL_CHANGING) {
ill = stq_ill;
error = EAGAIN;
} else if (IS_UNDER_IPMP(stq_ill)) {
mutex_enter(&stq_ill->ill_phyint->phyint_lock);
if (!ipmp_ill_is_active(stq_ill) &&
!(ire->ire_marks & IRE_MARK_TESTHIDDEN)) {
error = EINVAL;
}
mutex_exit(&stq_ill->ill_phyint->phyint_lock);
}
if (error != 0)
goto done;
}
if ((ipif_ill != NULL) && !IAM_WRITER_ILL(ipif_ill) &&
(ipif_ill->ill_state_flags & ILL_CHANGING)) {
ill = ipif_ill;
error = EAGAIN;
goto done;
}
if ((ire->ire_ipif != NULL) && !IAM_WRITER_IPIF(ire->ire_ipif) &&
(ire->ire_ipif->ipif_state_flags & IPIF_CHANGING)) {
ill = ire->ire_ipif->ipif_ill;
ASSERT(ill != NULL);
error = EAGAIN;
goto done;
}
done:
if (error == EAGAIN && ILL_CAN_WAIT(ill, q)) {
ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
mutex_enter(&ipsq->ipsq_lock);
mutex_enter(&ipsq->ipsq_xop->ipx_lock);
ire_atomic_end(irb_ptr, ire);
ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
mutex_exit(&ipsq->ipsq_xop->ipx_lock);
mutex_exit(&ipsq->ipsq_lock);
error = EINPROGRESS;
} else if (error != 0) {
ire_atomic_end(irb_ptr, ire);
}
RELEASE_CONN_LOCK(q);
return (error);
}
/*
* Add a fully initialized IRE to an appropriate table based on
* ire_type.
*
* allow_unresolved == B_FALSE indicates a legacy code-path call
* that has prohibited the addition of incomplete ire's. If this
* parameter is set, and we find an nce that is in a state other
* than ND_REACHABLE, we fail the add. Note that nce_state could be
* something other than ND_REACHABLE if the nce had just expired and
* the ire_create preceding the ire_add added a new ND_INITIAL nce.
*/
int
ire_add(ire_t **irep, queue_t *q, mblk_t *mp, ipsq_func_t func,
boolean_t allow_unresolved)
{
ire_t *ire1;
ill_t *stq_ill = NULL;
ill_t *ill;
ipif_t *ipif = NULL;
ill_walk_context_t ctx;
ire_t *ire = *irep;
int error;
boolean_t ire_is_mblk = B_FALSE;
tsol_gcgrp_t *gcgrp = NULL;
tsol_gcgrp_addr_t ga;
ip_stack_t *ipst = ire->ire_ipst;
/* get ready for the day when original ire is not created as mblk */
if (ire->ire_mp != NULL) {
ire_is_mblk = B_TRUE;
/* Copy the ire to a kmem_alloc'ed area */
ire1 = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
if (ire1 == NULL) {
ip1dbg(("ire_add: alloc failed\n"));
ire_delete(ire);
*irep = NULL;
return (ENOMEM);
}
ire->ire_marks &= ~IRE_MARK_UNCACHED;
*ire1 = *ire;
ire1->ire_mp = NULL;
ire1->ire_stq_ifindex = 0;
freeb(ire->ire_mp);
ire = ire1;
}
if (ire->ire_stq != NULL)
stq_ill = ire->ire_stq->q_ptr;
if (stq_ill != NULL && ire->ire_type == IRE_CACHE &&
stq_ill->ill_net_type == IRE_IF_RESOLVER) {
rw_enter(&ipst->ips_ill_g_lock, RW_READER);
ill = ILL_START_WALK_ALL(&ctx, ipst);
for (; ill != NULL; ill = ill_next(&ctx, ill)) {
mutex_enter(&ill->ill_lock);
if (ill->ill_state_flags & ILL_CONDEMNED) {
mutex_exit(&ill->ill_lock);
continue;
}
/*
* We need to make sure that the ipif is a valid one
* before adding the IRE_CACHE. This happens only
* with IRE_CACHE when there is an external resolver.
*
* We can unplumb a logical interface while the
* packet is waiting in ARP with the IRE. Then,
* later on when we feed the IRE back, the ipif
* has to be re-checked. This can't happen with
* NDP currently, as we never queue the IRE with
* the packet. We always try to recreate the IRE
* when the resolution is completed. But, we do
* it for IPv6 also here so that in future if
* we have external resolvers, it will work without
* any change.
*/
ipif = ipif_lookup_seqid(ill, ire->ire_ipif_seqid);
if (ipif != NULL) {
ipif_refhold_locked(ipif);
mutex_exit(&ill->ill_lock);
break;
}
mutex_exit(&ill->ill_lock);
}
rw_exit(&ipst->ips_ill_g_lock);
if (ipif == NULL ||
(ipif->ipif_isv6 &&
!IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) &&
!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6,
&ipif->ipif_v6src_addr)) ||
(!ipif->ipif_isv6 &&
ire->ire_src_addr != ipif->ipif_src_addr) ||
ire->ire_zoneid != ipif->ipif_zoneid) {
if (ipif != NULL)
ipif_refrele(ipif);
ire->ire_ipif = NULL;
ire_delete(ire);
*irep = NULL;
return (EINVAL);
}
ASSERT(ill != NULL);
/*
* Since we didn't attach label security attributes to the
* ire for the resolver case, we need to add it now. (only
* for v4 resolver and v6 xresolv case).
*/
if (is_system_labeled() && ire_is_mblk) {
if (ire->ire_ipversion == IPV4_VERSION) {
ga.ga_af = AF_INET;
IN6_IPADDR_TO_V4MAPPED(ire->ire_gateway_addr !=
INADDR_ANY ? ire->ire_gateway_addr :
ire->ire_addr, &ga.ga_addr);
} else {
ga.ga_af = AF_INET6;
ga.ga_addr = IN6_IS_ADDR_UNSPECIFIED(
&ire->ire_gateway_addr_v6) ?
ire->ire_addr_v6 :
ire->ire_gateway_addr_v6;
}
gcgrp = gcgrp_lookup(&ga, B_FALSE);
error = tsol_ire_init_gwattr(ire, ire->ire_ipversion,
NULL, gcgrp);
if (error != 0) {
if (gcgrp != NULL) {
GCGRP_REFRELE(gcgrp);
gcgrp = NULL;
}
ipif_refrele(ipif);
ire->ire_ipif = NULL;
ire_delete(ire);
*irep = NULL;
return (error);
}
}
}
/*
* In case ire was changed
*/
*irep = ire;
if (ire->ire_ipversion == IPV6_VERSION)
error = ire_add_v6(irep, q, mp, func);
else
error = ire_add_v4(irep, q, mp, func, allow_unresolved);
if (ipif != NULL)
ipif_refrele(ipif);
return (error);
}
/*
* Add an initialized IRE to an appropriate table based on ire_type.
*
* The forward table contains IRE_PREFIX/IRE_HOST and
* IRE_IF_RESOLVER/IRE_IF_NORESOLVER and IRE_DEFAULT.
*
* The cache table contains IRE_BROADCAST/IRE_LOCAL/IRE_LOOPBACK
* and IRE_CACHE.
*
* NOTE : This function is called as writer though not required
* by this function.
*/
static int
ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func,
boolean_t allow_unresolved)
{
ire_t *ire1;
irb_t *irb_ptr;
ire_t **irep;
int flags;
ire_t *pire = NULL;
ill_t *stq_ill;
ire_t *ire = *ire_p;
int error;
boolean_t need_refrele = B_FALSE;
nce_t *nce;
ip_stack_t *ipst = ire->ire_ipst;
uint_t marks = 0;
/*
* IREs with source addresses hosted on interfaces that are under IPMP
* should be hidden so that applications don't accidentally end up
* sending packets with test addresses as their source addresses, or
* sending out interfaces that are e.g. IFF_INACTIVE. Hide them here.
*/
if (ire->ire_ipif != NULL && IS_UNDER_IPMP(ire->ire_ipif->ipif_ill))
marks |= IRE_MARK_TESTHIDDEN;
if (ire->ire_ipif != NULL)
ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock));
if (ire->ire_stq != NULL)
ASSERT(!MUTEX_HELD(
&((ill_t *)(ire->ire_stq->q_ptr))->ill_lock));
ASSERT(ire->ire_ipversion == IPV4_VERSION);
ASSERT(ire->ire_mp == NULL); /* Calls should go through ire_add */
/* Find the appropriate list head. */
switch (ire->ire_type) {
case IRE_HOST:
ire->ire_mask = IP_HOST_MASK;
ire->ire_masklen = IP_ABITS;
ire->ire_marks |= marks;
if ((ire->ire_flags & RTF_SETSRC) == 0)
ire->ire_src_addr = 0;
break;
case IRE_CACHE:
ire->ire_mask = IP_HOST_MASK;
ire->ire_masklen = IP_ABITS;
ire->ire_marks |= marks;
break;
case IRE_BROADCAST:
case IRE_LOCAL:
case IRE_LOOPBACK:
ire->ire_mask = IP_HOST_MASK;
ire->ire_masklen = IP_ABITS;
break;
case IRE_PREFIX:
case IRE_DEFAULT:
ire->ire_marks |= marks;
if ((ire->ire_flags & RTF_SETSRC) == 0)
ire->ire_src_addr = 0;
break;
case IRE_IF_RESOLVER:
case IRE_IF_NORESOLVER:
ire->ire_marks |= marks;
break;
default:
ip0dbg(("ire_add_v4: ire %p has unrecognized IRE type (%d)\n",
(void *)ire, ire->ire_type));
ire_delete(ire);
*ire_p = NULL;
return (EINVAL);
}
/* Make sure the address is properly masked. */
ire->ire_addr &= ire->ire_mask;
/*
* ip_newroute/ip_newroute_multi are unable to prevent the deletion
* of the interface route while adding an IRE_CACHE for an on-link
* destination in the IRE_IF_RESOLVER case, since the ire has to
* go to ARP and return. We can't do a REFHOLD on the
* associated interface ire for fear of ARP freeing the message.
* Here we look up the interface ire in the forwarding table and
* make sure that the interface route has not been deleted.
*/
if (ire->ire_type == IRE_CACHE && ire->ire_gateway_addr == 0 &&
((ill_t *)ire->ire_stq->q_ptr)->ill_net_type == IRE_IF_RESOLVER) {
ASSERT(ire->ire_max_fragp == NULL);
if (CLASSD(ire->ire_addr) && !(ire->ire_flags & RTF_SETSRC)) {
/*
* The ihandle that we used in ip_newroute_multi
* comes from the interface route corresponding
* to ire_ipif. Lookup here to see if it exists
* still.
* If the ire has a source address assigned using
* RTF_SETSRC, ire_ipif is the logical interface holding
* this source address, so we can't use it to check for
* the existence of the interface route. Instead we rely
* on the brute force ihandle search in
* ire_ihandle_lookup_onlink() below.
*/
pire = ipif_to_ire(ire->ire_ipif);
if (pire == NULL) {
ire_delete(ire);
*ire_p = NULL;
return (EINVAL);
} else if (pire->ire_ihandle != ire->ire_ihandle) {
ire_refrele(pire);
ire_delete(ire);
*ire_p = NULL;
return (EINVAL);
}
} else {
pire = ire_ihandle_lookup_onlink(ire);
if (pire == NULL) {
ire_delete(ire);
*ire_p = NULL;
return (EINVAL);
}
}
/* Prevent pire from getting deleted */
IRB_REFHOLD(pire->ire_bucket);
/* Has it been removed already ? */
if (pire->ire_marks & IRE_MARK_CONDEMNED) {
IRB_REFRELE(pire->ire_bucket);
ire_refrele(pire);
ire_delete(ire);
*ire_p = NULL;
return (EINVAL);
}
} else {
ASSERT(ire->ire_max_fragp != NULL);
}
flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW);
if (ire->ire_ipif != NULL) {
/*
* We use MATCH_IRE_IPIF while adding IRE_CACHES only
* for historic reasons and to maintain symmetry with
* IPv6 code path. Historically this was used by
* multicast code to create multiple IRE_CACHES on
* a single ill with different ipifs. This was used
* so that multicast packets leaving the node had the
* right source address. This is no longer needed as
* ip_wput initializes the address correctly.
*/
flags |= MATCH_IRE_IPIF;
/*
* If we are creating a hidden IRE, make sure we search for
* hidden IREs when searching for duplicates below.
* Otherwise, we might find an IRE on some other interface
* that's not marked hidden.
*/
if (ire->ire_marks & IRE_MARK_TESTHIDDEN)
flags |= MATCH_IRE_MARK_TESTHIDDEN;
}
if ((ire->ire_type & IRE_CACHETABLE) == 0) {
irb_ptr = ire_get_bucket(ire);
need_refrele = B_TRUE;
if (irb_ptr == NULL) {
/*
* This assumes that the ire has not added
* a reference to the ipif.
*/
ire->ire_ipif = NULL;
ire_delete(ire);
if (pire != NULL) {
IRB_REFRELE(pire->ire_bucket);
ire_refrele(pire);
}
*ire_p = NULL;
return (EINVAL);
}
} else {
irb_ptr = &(ipst->ips_ip_cache_table[IRE_ADDR_HASH(
ire->ire_addr, ipst->ips_ip_cache_table_size)]);
}
/*
* Start the atomic add of the ire. Grab the ill locks,
* ill_g_usesrc_lock and the bucket lock. Check for condemned
*
* If ipif or ill is changing ire_atomic_start() may queue the
* request and return EINPROGRESS.
* To avoid lock order problems, get the ndp4->ndp_g_lock.
*/
mutex_enter(&ipst->ips_ndp4->ndp_g_lock);
error = ire_atomic_start(irb_ptr, ire, q, mp, func);
if (error != 0) {
mutex_exit(&ipst->ips_ndp4->ndp_g_lock);
/*
* We don't know whether it is a valid ipif or not.
* So, set it to NULL. This assumes that the ire has not added
* a reference to the ipif.
*/
ire->ire_ipif = NULL;
ire_delete(ire);
if (pire != NULL) {
IRB_REFRELE(pire->ire_bucket);
ire_refrele(pire);
}
*ire_p = NULL;
if (need_refrele)
IRB_REFRELE(irb_ptr);
return (error);
}
/*
* To avoid creating ires having stale values for the ire_max_frag
* we get the latest value atomically here. For more details
* see the block comment in ip_sioctl_mtu and in DL_NOTE_SDU_CHANGE
* in ip_rput_dlpi_writer
*/
if (ire->ire_max_fragp == NULL) {
if (CLASSD(ire->ire_addr))
ire->ire_max_frag = ire->ire_ipif->ipif_mtu;
else
ire->ire_max_frag = pire->ire_max_frag;
} else {