| /* |
| * This file and its contents are supplied under the terms of the |
| * Common Development and Distribution License ("CDDL"), version 1.0. |
| * You may only use this file in accordance with the terms of version |
| * 1.0 of the CDDL. |
| * |
| * A full copy of the text of the CDDL should have accompanied this |
| * source. A copy of the CDDL is also available via the Internet at |
| * http://www.illumos.org/license/CDDL. |
| */ |
| |
| /* |
| * Copyright 2018 Nexenta Systems, Inc. |
| * Copyright 2016 Tegile Systems, Inc. All rights reserved. |
| * Copyright (c) 2016 The MathWorks, Inc. All rights reserved. |
| * Copyright 2017 Joyent, Inc. |
| */ |
| |
| /* |
| * blkdev driver for NVMe compliant storage devices |
| * |
| * This driver was written to conform to version 1.2.1 of the NVMe |
| * specification. It may work with newer versions, but that is completely |
| * untested and disabled by default. |
| * |
| * The driver has only been tested on x86 systems and will not work on big- |
| * endian systems without changes to the code accessing registers and data |
| * structures used by the hardware. |
| * |
| * |
| * Interrupt Usage: |
| * |
| * The driver will use a single interrupt while configuring the device as the |
| * specification requires, but contrary to the specification it will try to use |
| * a single-message MSI(-X) or FIXED interrupt. Later in the attach process it |
| * will switch to multiple-message MSI(-X) if supported. The driver wants to |
| * have one interrupt vector per CPU, but it will work correctly if less are |
| * available. Interrupts can be shared by queues, the interrupt handler will |
| * iterate through the I/O queue array by steps of n_intr_cnt. Usually only |
| * the admin queue will share an interrupt with one I/O queue. The interrupt |
| * handler will retrieve completed commands from all queues sharing an interrupt |
| * vector and will post them to a taskq for completion processing. |
| * |
| * |
| * Command Processing: |
| * |
| * NVMe devices can have up to 65535 I/O queue pairs, with each queue holding up |
| * to 65536 I/O commands. The driver will configure one I/O queue pair per |
| * available interrupt vector, with the queue length usually much smaller than |
| * the maximum of 65536. If the hardware doesn't provide enough queues, fewer |
| * interrupt vectors will be used. |
| * |
| * Additionally the hardware provides a single special admin queue pair that can |
| * hold up to 4096 admin commands. |
| * |
| * From the hardware perspective both queues of a queue pair are independent, |
| * but they share some driver state: the command array (holding pointers to |
| * commands currently being processed by the hardware) and the active command |
| * counter. Access to a queue pair and the shared state is protected by |
| * nq_mutex. |
| * |
| * When a command is submitted to a queue pair the active command counter is |
| * incremented and a pointer to the command is stored in the command array. The |
| * array index is used as command identifier (CID) in the submission queue |
| * entry. Some commands may take a very long time to complete, and if the queue |
| * wraps around in that time a submission may find the next array slot to still |
| * be used by a long-running command. In this case the array is sequentially |
| * searched for the next free slot. The length of the command array is the same |
| * as the configured queue length. Queue overrun is prevented by the semaphore, |
| * so a command submission may block if the queue is full. |
| * |
| * |
| * Polled I/O Support: |
| * |
| * For kernel core dump support the driver can do polled I/O. As interrupts are |
| * turned off while dumping the driver will just submit a command in the regular |
| * way, and then repeatedly attempt a command retrieval until it gets the |
| * command back. |
| * |
| * |
| * Namespace Support: |
| * |
| * NVMe devices can have multiple namespaces, each being a independent data |
| * store. The driver supports multiple namespaces and creates a blkdev interface |
| * for each namespace found. Namespaces can have various attributes to support |
| * protection information. This driver does not support any of this and ignores |
| * namespaces that have these attributes. |
| * |
| * As of NVMe 1.1 namespaces can have an 64bit Extended Unique Identifier |
| * (EUI64). This driver uses the EUI64 if present to generate the devid and |
| * passes it to blkdev to use it in the device node names. As this is currently |
| * untested namespaces with EUI64 are ignored by default. |
| * |
| * We currently support only (2 << NVME_MINOR_INST_SHIFT) - 2 namespaces in a |
| * single controller. This is an artificial limit imposed by the driver to be |
| * able to address a reasonable number of controllers and namespaces using a |
| * 32bit minor node number. |
| * |
| * |
| * Minor nodes: |
| * |
| * For each NVMe device the driver exposes one minor node for the controller and |
| * one minor node for each namespace. The only operations supported by those |
| * minor nodes are open(9E), close(9E), and ioctl(9E). This serves as the |
| * interface for the nvmeadm(1M) utility. |
| * |
| * |
| * Blkdev Interface: |
| * |
| * This driver uses blkdev to do all the heavy lifting involved with presenting |
| * a disk device to the system. As a result, the processing of I/O requests is |
| * relatively simple as blkdev takes care of partitioning, boundary checks, DMA |
| * setup, and splitting of transfers into manageable chunks. |
| * |
| * I/O requests coming in from blkdev are turned into NVM commands and posted to |
| * an I/O queue. The queue is selected by taking the CPU id modulo the number of |
| * queues. There is currently no timeout handling of I/O commands. |
| * |
| * Blkdev also supports querying device/media information and generating a |
| * devid. The driver reports the best block size as determined by the namespace |
| * format back to blkdev as physical block size to support partition and block |
| * alignment. The devid is either based on the namespace EUI64, if present, or |
| * composed using the device vendor ID, model number, serial number, and the |
| * namespace ID. |
| * |
| * |
| * Error Handling: |
| * |
| * Error handling is currently limited to detecting fatal hardware errors, |
| * either by asynchronous events, or synchronously through command status or |
| * admin command timeouts. In case of severe errors the device is fenced off, |
| * all further requests will return EIO. FMA is then called to fault the device. |
| * |
| * The hardware has a limit for outstanding asynchronous event requests. Before |
| * this limit is known the driver assumes it is at least 1 and posts a single |
| * asynchronous request. Later when the limit is known more asynchronous event |
| * requests are posted to allow quicker reception of error information. When an |
| * asynchronous event is posted by the hardware the driver will parse the error |
| * status fields and log information or fault the device, depending on the |
| * severity of the asynchronous event. The asynchronous event request is then |
| * reused and posted to the admin queue again. |
| * |
| * On command completion the command status is checked for errors. In case of |
| * errors indicating a driver bug the driver panics. Almost all other error |
| * status values just cause EIO to be returned. |
| * |
| * Command timeouts are currently detected for all admin commands except |
| * asynchronous event requests. If a command times out and the hardware appears |
| * to be healthy the driver attempts to abort the command. The original command |
| * timeout is also applied to the abort command. If the abort times out too the |
| * driver assumes the device to be dead, fences it off, and calls FMA to retire |
| * it. In all other cases the aborted command should return immediately with a |
| * status indicating it was aborted, and the driver will wait indefinitely for |
| * that to happen. No timeout handling of normal I/O commands is presently done. |
| * |
| * Any command that times out due to the controller dropping dead will be put on |
| * nvme_lost_cmds list if it references DMA memory. This will prevent the DMA |
| * memory being reused by the system and later be written to by a "dead" NVMe |
| * controller. |
| * |
| * |
| * Locking: |
| * |
| * Each queue pair has its own nq_mutex, which must be held when accessing the |
| * associated queue registers or the shared state of the queue pair. Callers of |
| * nvme_unqueue_cmd() must make sure that nq_mutex is held, while |
| * nvme_submit_{admin,io}_cmd() and nvme_retrieve_cmd() take care of this |
| * themselves. |
| * |
| * Each command also has its own nc_mutex, which is associated with the |
| * condition variable nc_cv. It is only used on admin commands which are run |
| * synchronously. In that case it must be held across calls to |
| * nvme_submit_{admin,io}_cmd() and nvme_wait_cmd(), which is taken care of by |
| * nvme_admin_cmd(). It must also be held whenever the completion state of the |
| * command is changed or while a admin command timeout is handled. |
| * |
| * If both nc_mutex and nq_mutex must be held, nc_mutex must be acquired first. |
| * More than one nc_mutex may only be held when aborting commands. In this case, |
| * the nc_mutex of the command to be aborted must be held across the call to |
| * nvme_abort_cmd() to prevent the command from completing while the abort is in |
| * progress. |
| * |
| * Each minor node has its own nm_mutex, which protects the open count nm_ocnt |
| * and exclusive-open flag nm_oexcl. |
| * |
| * |
| * Quiesce / Fast Reboot: |
| * |
| * The driver currently does not support fast reboot. A quiesce(9E) entry point |
| * is still provided which is used to send a shutdown notification to the |
| * device. |
| * |
| * |
| * Driver Configuration: |
| * |
| * The following driver properties can be changed to control some aspects of the |
| * drivers operation: |
| * - strict-version: can be set to 0 to allow devices conforming to newer |
| * versions or namespaces with EUI64 to be used |
| * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor |
| * specific command status as a fatal error leading device faulting |
| * - admin-queue-len: the maximum length of the admin queue (16-4096) |
| * - io-queue-len: the maximum length of the I/O queues (16-65536) |
| * - async-event-limit: the maximum number of asynchronous event requests to be |
| * posted by the driver |
| * - volatile-write-cache-enable: can be set to 0 to disable the volatile write |
| * cache |
| * - min-phys-block-size: the minimum physical block size to report to blkdev, |
| * which is among other things the basis for ZFS vdev ashift |
| * |
| * |
| * TODO: |
| * - figure out sane default for I/O queue depth reported to blkdev |
| * - FMA handling of media errors |
| * - support for devices supporting very large I/O requests using chained PRPs |
| * - support for configuring hardware parameters like interrupt coalescing |
| * - support for media formatting and hard partitioning into namespaces |
| * - support for big-endian systems |
| * - support for fast reboot |
| * - support for firmware updates |
| * - support for NVMe Subsystem Reset (1.1) |
| * - support for Scatter/Gather lists (1.1) |
| * - support for Reservations (1.1) |
| * - support for power management |
| */ |
| |
| #include <sys/byteorder.h> |
| #ifdef _BIG_ENDIAN |
| #error nvme driver needs porting for big-endian platforms |
| #endif |
| |
| #include <sys/modctl.h> |
| #include <sys/conf.h> |
| #include <sys/devops.h> |
| #include <sys/ddi.h> |
| #include <sys/sunddi.h> |
| #include <sys/sunndi.h> |
| #include <sys/bitmap.h> |
| #include <sys/sysmacros.h> |
| #include <sys/param.h> |
| #include <sys/varargs.h> |
| #include <sys/cpuvar.h> |
| #include <sys/disp.h> |
| #include <sys/blkdev.h> |
| #include <sys/atomic.h> |
| #include <sys/archsystm.h> |
| #include <sys/sata/sata_hba.h> |
| #include <sys/stat.h> |
| #include <sys/policy.h> |
| #include <sys/list.h> |
| |
| #include <sys/nvme.h> |
| |
| #ifdef __x86 |
| #include <sys/x86_archext.h> |
| #endif |
| |
| #include "nvme_reg.h" |
| #include "nvme_var.h" |
| |
| |
| /* NVMe spec version supported */ |
| static const int nvme_version_major = 1; |
| static const int nvme_version_minor = 2; |
| |
| /* tunable for admin command timeout in seconds, default is 1s */ |
| int nvme_admin_cmd_timeout = 1; |
| |
| /* tunable for FORMAT NVM command timeout in seconds, default is 600s */ |
| int nvme_format_cmd_timeout = 600; |
| |
| static int nvme_attach(dev_info_t *, ddi_attach_cmd_t); |
| static int nvme_detach(dev_info_t *, ddi_detach_cmd_t); |
| static int nvme_quiesce(dev_info_t *); |
| static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *); |
| static int nvme_setup_interrupts(nvme_t *, int, int); |
| static void nvme_release_interrupts(nvme_t *); |
| static uint_t nvme_intr(caddr_t, caddr_t); |
| |
| static void nvme_shutdown(nvme_t *, int, boolean_t); |
| static boolean_t nvme_reset(nvme_t *, boolean_t); |
| static int nvme_init(nvme_t *); |
| static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int); |
| static void nvme_free_cmd(nvme_cmd_t *); |
| static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t, |
| bd_xfer_t *); |
| static void nvme_admin_cmd(nvme_cmd_t *, int); |
| static void nvme_submit_admin_cmd(nvme_qpair_t *, nvme_cmd_t *); |
| static int nvme_submit_io_cmd(nvme_qpair_t *, nvme_cmd_t *); |
| static void nvme_submit_cmd_common(nvme_qpair_t *, nvme_cmd_t *); |
| static nvme_cmd_t *nvme_unqueue_cmd(nvme_t *, nvme_qpair_t *, int); |
| static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *); |
| static void nvme_wait_cmd(nvme_cmd_t *, uint_t); |
| static void nvme_wakeup_cmd(void *); |
| static void nvme_async_event_task(void *); |
| |
| static int nvme_check_unknown_cmd_status(nvme_cmd_t *); |
| static int nvme_check_vendor_cmd_status(nvme_cmd_t *); |
| static int nvme_check_integrity_cmd_status(nvme_cmd_t *); |
| static int nvme_check_specific_cmd_status(nvme_cmd_t *); |
| static int nvme_check_generic_cmd_status(nvme_cmd_t *); |
| static inline int nvme_check_cmd_status(nvme_cmd_t *); |
| |
| static int nvme_abort_cmd(nvme_cmd_t *, uint_t); |
| static void nvme_async_event(nvme_t *); |
| static int nvme_format_nvm(nvme_t *, uint32_t, uint8_t, boolean_t, uint8_t, |
| boolean_t, uint8_t); |
| static int nvme_get_logpage(nvme_t *, void **, size_t *, uint8_t, ...); |
| static int nvme_identify(nvme_t *, uint32_t, void **); |
| static int nvme_set_features(nvme_t *, uint32_t, uint8_t, uint32_t, |
| uint32_t *); |
| static int nvme_get_features(nvme_t *, uint32_t, uint8_t, uint32_t *, |
| void **, size_t *); |
| static int nvme_write_cache_set(nvme_t *, boolean_t); |
| static int nvme_set_nqueues(nvme_t *, uint16_t *); |
| |
| static void nvme_free_dma(nvme_dma_t *); |
| static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *, |
| nvme_dma_t **); |
| static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t, |
| nvme_dma_t **); |
| static void nvme_free_qpair(nvme_qpair_t *); |
| static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, int); |
| static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t); |
| |
| static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t); |
| static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t); |
| static inline uint64_t nvme_get64(nvme_t *, uintptr_t); |
| static inline uint32_t nvme_get32(nvme_t *, uintptr_t); |
| |
| static boolean_t nvme_check_regs_hdl(nvme_t *); |
| static boolean_t nvme_check_dma_hdl(nvme_dma_t *); |
| |
| static int nvme_fill_prp(nvme_cmd_t *, bd_xfer_t *); |
| |
| static void nvme_bd_xfer_done(void *); |
| static void nvme_bd_driveinfo(void *, bd_drive_t *); |
| static int nvme_bd_mediainfo(void *, bd_media_t *); |
| static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t); |
| static int nvme_bd_read(void *, bd_xfer_t *); |
| static int nvme_bd_write(void *, bd_xfer_t *); |
| static int nvme_bd_sync(void *, bd_xfer_t *); |
| static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *); |
| |
| static int nvme_prp_dma_constructor(void *, void *, int); |
| static void nvme_prp_dma_destructor(void *, void *); |
| |
| static void nvme_prepare_devid(nvme_t *, uint32_t); |
| |
| static int nvme_open(dev_t *, int, int, cred_t *); |
| static int nvme_close(dev_t, int, int, cred_t *); |
| static int nvme_ioctl(dev_t, int, intptr_t, int, cred_t *, int *); |
| |
| #define NVME_MINOR_INST_SHIFT 9 |
| #define NVME_MINOR(inst, nsid) (((inst) << NVME_MINOR_INST_SHIFT) | (nsid)) |
| #define NVME_MINOR_INST(minor) ((minor) >> NVME_MINOR_INST_SHIFT) |
| #define NVME_MINOR_NSID(minor) ((minor) & ((1 << NVME_MINOR_INST_SHIFT) - 1)) |
| #define NVME_MINOR_MAX (NVME_MINOR(1, 0) - 2) |
| |
| static void *nvme_state; |
| static kmem_cache_t *nvme_cmd_cache; |
| |
| /* |
| * DMA attributes for queue DMA memory |
| * |
| * Queue DMA memory must be page aligned. The maximum length of a queue is |
| * 65536 entries, and an entry can be 64 bytes long. |
| */ |
| static ddi_dma_attr_t nvme_queue_dma_attr = { |
| .dma_attr_version = DMA_ATTR_V0, |
| .dma_attr_addr_lo = 0, |
| .dma_attr_addr_hi = 0xffffffffffffffffULL, |
| .dma_attr_count_max = (UINT16_MAX + 1) * sizeof (nvme_sqe_t) - 1, |
| .dma_attr_align = 0x1000, |
| .dma_attr_burstsizes = 0x7ff, |
| .dma_attr_minxfer = 0x1000, |
| .dma_attr_maxxfer = (UINT16_MAX + 1) * sizeof (nvme_sqe_t), |
| .dma_attr_seg = 0xffffffffffffffffULL, |
| .dma_attr_sgllen = 1, |
| .dma_attr_granular = 1, |
| .dma_attr_flags = 0, |
| }; |
| |
| /* |
| * DMA attributes for transfers using Physical Region Page (PRP) entries |
| * |
| * A PRP entry describes one page of DMA memory using the page size specified |
| * in the controller configuration's memory page size register (CC.MPS). It uses |
| * a 64bit base address aligned to this page size. There is no limitation on |
| * chaining PRPs together for arbitrarily large DMA transfers. |
| */ |
| static ddi_dma_attr_t nvme_prp_dma_attr = { |
| .dma_attr_version = DMA_ATTR_V0, |
| .dma_attr_addr_lo = 0, |
| .dma_attr_addr_hi = 0xffffffffffffffffULL, |
| .dma_attr_count_max = 0xfff, |
| .dma_attr_align = 0x1000, |
| .dma_attr_burstsizes = 0x7ff, |
| .dma_attr_minxfer = 0x1000, |
| .dma_attr_maxxfer = 0x1000, |
| .dma_attr_seg = 0xfff, |
| .dma_attr_sgllen = -1, |
| .dma_attr_granular = 1, |
| .dma_attr_flags = 0, |
| }; |
| |
| /* |
| * DMA attributes for transfers using scatter/gather lists |
| * |
| * A SGL entry describes a chunk of DMA memory using a 64bit base address and a |
| * 32bit length field. SGL Segment and SGL Last Segment entries require the |
| * length to be a multiple of 16 bytes. |
| */ |
| static ddi_dma_attr_t nvme_sgl_dma_attr = { |
| .dma_attr_version = DMA_ATTR_V0, |
| .dma_attr_addr_lo = 0, |
| .dma_attr_addr_hi = 0xffffffffffffffffULL, |
| .dma_attr_count_max = 0xffffffffUL, |
| .dma_attr_align = 1, |
| .dma_attr_burstsizes = 0x7ff, |
| .dma_attr_minxfer = 0x10, |
| .dma_attr_maxxfer = 0xfffffffffULL, |
| .dma_attr_seg = 0xffffffffffffffffULL, |
| .dma_attr_sgllen = -1, |
| .dma_attr_granular = 0x10, |
| .dma_attr_flags = 0 |
| }; |
| |
| static ddi_device_acc_attr_t nvme_reg_acc_attr = { |
| .devacc_attr_version = DDI_DEVICE_ATTR_V0, |
| .devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC, |
| .devacc_attr_dataorder = DDI_STRICTORDER_ACC |
| }; |
| |
| static struct cb_ops nvme_cb_ops = { |
| .cb_open = nvme_open, |
| .cb_close = nvme_close, |
| .cb_strategy = nodev, |
| .cb_print = nodev, |
| .cb_dump = nodev, |
| .cb_read = nodev, |
| .cb_write = nodev, |
| .cb_ioctl = nvme_ioctl, |
| .cb_devmap = nodev, |
| .cb_mmap = nodev, |
| .cb_segmap = nodev, |
| .cb_chpoll = nochpoll, |
| .cb_prop_op = ddi_prop_op, |
| .cb_str = 0, |
| .cb_flag = D_NEW | D_MP, |
| .cb_rev = CB_REV, |
| .cb_aread = nodev, |
| .cb_awrite = nodev |
| }; |
| |
| static struct dev_ops nvme_dev_ops = { |
| .devo_rev = DEVO_REV, |
| .devo_refcnt = 0, |
| .devo_getinfo = ddi_no_info, |
| .devo_identify = nulldev, |
| .devo_probe = nulldev, |
| .devo_attach = nvme_attach, |
| .devo_detach = nvme_detach, |
| .devo_reset = nodev, |
| .devo_cb_ops = &nvme_cb_ops, |
| .devo_bus_ops = NULL, |
| .devo_power = NULL, |
| .devo_quiesce = nvme_quiesce, |
| }; |
| |
| static struct modldrv nvme_modldrv = { |
| .drv_modops = &mod_driverops, |
| .drv_linkinfo = "NVMe v1.1b", |
| .drv_dev_ops = &nvme_dev_ops |
| }; |
| |
| static struct modlinkage nvme_modlinkage = { |
| .ml_rev = MODREV_1, |
| .ml_linkage = { &nvme_modldrv, NULL } |
| }; |
| |
| static bd_ops_t nvme_bd_ops = { |
| .o_version = BD_OPS_VERSION_0, |
| .o_drive_info = nvme_bd_driveinfo, |
| .o_media_info = nvme_bd_mediainfo, |
| .o_devid_init = nvme_bd_devid, |
| .o_sync_cache = nvme_bd_sync, |
| .o_read = nvme_bd_read, |
| .o_write = nvme_bd_write, |
| }; |
| |
| /* |
| * This list will hold commands that have timed out and couldn't be aborted. |
| * As we don't know what the hardware may still do with the DMA memory we can't |
| * free them, so we'll keep them forever on this list where we can easily look |
| * at them with mdb. |
| */ |
| static struct list nvme_lost_cmds; |
| static kmutex_t nvme_lc_mutex; |
| |
| int |
| _init(void) |
| { |
| int error; |
| |
| error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1); |
| if (error != DDI_SUCCESS) |
| return (error); |
| |
| nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache", |
| sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0); |
| |
| mutex_init(&nvme_lc_mutex, NULL, MUTEX_DRIVER, NULL); |
| list_create(&nvme_lost_cmds, sizeof (nvme_cmd_t), |
| offsetof(nvme_cmd_t, nc_list)); |
| |
| bd_mod_init(&nvme_dev_ops); |
| |
| error = mod_install(&nvme_modlinkage); |
| if (error != DDI_SUCCESS) { |
| ddi_soft_state_fini(&nvme_state); |
| mutex_destroy(&nvme_lc_mutex); |
| list_destroy(&nvme_lost_cmds); |
| bd_mod_fini(&nvme_dev_ops); |
| } |
| |
| return (error); |
| } |
| |
| int |
| _fini(void) |
| { |
| int error; |
| |
| if (!list_is_empty(&nvme_lost_cmds)) |
| return (DDI_FAILURE); |
| |
| error = mod_remove(&nvme_modlinkage); |
| if (error == DDI_SUCCESS) { |
| ddi_soft_state_fini(&nvme_state); |
| kmem_cache_destroy(nvme_cmd_cache); |
| mutex_destroy(&nvme_lc_mutex); |
| list_destroy(&nvme_lost_cmds); |
| bd_mod_fini(&nvme_dev_ops); |
| } |
| |
| return (error); |
| } |
| |
| int |
| _info(struct modinfo *modinfop) |
| { |
| return (mod_info(&nvme_modlinkage, modinfop)); |
| } |
| |
| static inline void |
| nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val) |
| { |
| ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0); |
| |
| /*LINTED: E_BAD_PTR_CAST_ALIGN*/ |
| ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val); |
| } |
| |
| static inline void |
| nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val) |
| { |
| ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0); |
| |
| /*LINTED: E_BAD_PTR_CAST_ALIGN*/ |
| ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val); |
| } |
| |
| static inline uint64_t |
| nvme_get64(nvme_t *nvme, uintptr_t reg) |
| { |
| uint64_t val; |
| |
| ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0); |
| |
| /*LINTED: E_BAD_PTR_CAST_ALIGN*/ |
| val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg)); |
| |
| return (val); |
| } |
| |
| static inline uint32_t |
| nvme_get32(nvme_t *nvme, uintptr_t reg) |
| { |
| uint32_t val; |
| |
| ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0); |
| |
| /*LINTED: E_BAD_PTR_CAST_ALIGN*/ |
| val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg)); |
| |
| return (val); |
| } |
| |
| static boolean_t |
| nvme_check_regs_hdl(nvme_t *nvme) |
| { |
| ddi_fm_error_t error; |
| |
| ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION); |
| |
| if (error.fme_status != DDI_FM_OK) |
| return (B_TRUE); |
| |
| return (B_FALSE); |
| } |
| |
| static boolean_t |
| nvme_check_dma_hdl(nvme_dma_t *dma) |
| { |
| ddi_fm_error_t error; |
| |
| if (dma == NULL) |
| return (B_FALSE); |
| |
| ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION); |
| |
| if (error.fme_status != DDI_FM_OK) |
| return (B_TRUE); |
| |
| return (B_FALSE); |
| } |
| |
| static void |
| nvme_free_dma_common(nvme_dma_t *dma) |
| { |
| if (dma->nd_dmah != NULL) |
| (void) ddi_dma_unbind_handle(dma->nd_dmah); |
| if (dma->nd_acch != NULL) |
| ddi_dma_mem_free(&dma->nd_acch); |
| if (dma->nd_dmah != NULL) |
| ddi_dma_free_handle(&dma->nd_dmah); |
| } |
| |
| static void |
| nvme_free_dma(nvme_dma_t *dma) |
| { |
| nvme_free_dma_common(dma); |
| kmem_free(dma, sizeof (*dma)); |
| } |
| |
| /* ARGSUSED */ |
| static void |
| nvme_prp_dma_destructor(void *buf, void *private) |
| { |
| nvme_dma_t *dma = (nvme_dma_t *)buf; |
| |
| nvme_free_dma_common(dma); |
| } |
| |
| static int |
| nvme_alloc_dma_common(nvme_t *nvme, nvme_dma_t *dma, |
| size_t len, uint_t flags, ddi_dma_attr_t *dma_attr) |
| { |
| if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL, |
| &dma->nd_dmah) != DDI_SUCCESS) { |
| /* |
| * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and |
| * the only other possible error is DDI_DMA_BADATTR which |
| * indicates a driver bug which should cause a panic. |
| */ |
| dev_err(nvme->n_dip, CE_PANIC, |
| "!failed to get DMA handle, check DMA attributes"); |
| return (DDI_FAILURE); |
| } |
| |
| /* |
| * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified |
| * or the flags are conflicting, which isn't the case here. |
| */ |
| (void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr, |
| DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp, |
| &dma->nd_len, &dma->nd_acch); |
| |
| if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp, |
| dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, |
| &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!failed to bind DMA memory"); |
| atomic_inc_32(&nvme->n_dma_bind_err); |
| nvme_free_dma_common(dma); |
| return (DDI_FAILURE); |
| } |
| |
| return (DDI_SUCCESS); |
| } |
| |
| static int |
| nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags, |
| ddi_dma_attr_t *dma_attr, nvme_dma_t **ret) |
| { |
| nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP); |
| |
| if (nvme_alloc_dma_common(nvme, dma, len, flags, dma_attr) != |
| DDI_SUCCESS) { |
| *ret = NULL; |
| kmem_free(dma, sizeof (nvme_dma_t)); |
| return (DDI_FAILURE); |
| } |
| |
| bzero(dma->nd_memp, dma->nd_len); |
| |
| *ret = dma; |
| return (DDI_SUCCESS); |
| } |
| |
| /* ARGSUSED */ |
| static int |
| nvme_prp_dma_constructor(void *buf, void *private, int flags) |
| { |
| nvme_dma_t *dma = (nvme_dma_t *)buf; |
| nvme_t *nvme = (nvme_t *)private; |
| |
| dma->nd_dmah = NULL; |
| dma->nd_acch = NULL; |
| |
| if (nvme_alloc_dma_common(nvme, dma, nvme->n_pagesize, |
| DDI_DMA_READ, &nvme->n_prp_dma_attr) != DDI_SUCCESS) { |
| return (-1); |
| } |
| |
| ASSERT(dma->nd_ncookie == 1); |
| |
| dma->nd_cached = B_TRUE; |
| |
| return (0); |
| } |
| |
| static int |
| nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len, |
| uint_t flags, nvme_dma_t **dma) |
| { |
| uint32_t len = nentry * qe_len; |
| ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr; |
| |
| len = roundup(len, nvme->n_pagesize); |
| |
| q_dma_attr.dma_attr_minxfer = len; |
| |
| if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma) |
| != DDI_SUCCESS) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!failed to get DMA memory for queue"); |
| goto fail; |
| } |
| |
| if ((*dma)->nd_ncookie != 1) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!got too many cookies for queue DMA"); |
| goto fail; |
| } |
| |
| return (DDI_SUCCESS); |
| |
| fail: |
| if (*dma) { |
| nvme_free_dma(*dma); |
| *dma = NULL; |
| } |
| |
| return (DDI_FAILURE); |
| } |
| |
| static void |
| nvme_free_qpair(nvme_qpair_t *qp) |
| { |
| int i; |
| |
| mutex_destroy(&qp->nq_mutex); |
| sema_destroy(&qp->nq_sema); |
| |
| if (qp->nq_sqdma != NULL) |
| nvme_free_dma(qp->nq_sqdma); |
| if (qp->nq_cqdma != NULL) |
| nvme_free_dma(qp->nq_cqdma); |
| |
| if (qp->nq_active_cmds > 0) |
| for (i = 0; i != qp->nq_nentry; i++) |
| if (qp->nq_cmd[i] != NULL) |
| nvme_free_cmd(qp->nq_cmd[i]); |
| |
| if (qp->nq_cmd != NULL) |
| kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry); |
| |
| kmem_free(qp, sizeof (nvme_qpair_t)); |
| } |
| |
| static int |
| nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp, |
| int idx) |
| { |
| nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP); |
| |
| mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER, |
| DDI_INTR_PRI(nvme->n_intr_pri)); |
| sema_init(&qp->nq_sema, nentry, NULL, SEMA_DRIVER, NULL); |
| |
| if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t), |
| DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS) |
| goto fail; |
| |
| if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t), |
| DDI_DMA_READ, &qp->nq_cqdma) != DDI_SUCCESS) |
| goto fail; |
| |
| qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp; |
| qp->nq_cq = (nvme_cqe_t *)qp->nq_cqdma->nd_memp; |
| qp->nq_nentry = nentry; |
| |
| qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx); |
| qp->nq_cqhdbl = NVME_REG_CQHDBL(nvme, idx); |
| |
| qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP); |
| qp->nq_next_cmd = 0; |
| |
| *nqp = qp; |
| return (DDI_SUCCESS); |
| |
| fail: |
| nvme_free_qpair(qp); |
| *nqp = NULL; |
| |
| return (DDI_FAILURE); |
| } |
| |
| static nvme_cmd_t * |
| nvme_alloc_cmd(nvme_t *nvme, int kmflag) |
| { |
| nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag); |
| |
| if (cmd == NULL) |
| return (cmd); |
| |
| bzero(cmd, sizeof (nvme_cmd_t)); |
| |
| cmd->nc_nvme = nvme; |
| |
| mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER, |
| DDI_INTR_PRI(nvme->n_intr_pri)); |
| cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL); |
| |
| return (cmd); |
| } |
| |
| static void |
| nvme_free_cmd(nvme_cmd_t *cmd) |
| { |
| /* Don't free commands on the lost commands list. */ |
| if (list_link_active(&cmd->nc_list)) |
| return; |
| |
| if (cmd->nc_dma) { |
| if (cmd->nc_dma->nd_cached) |
| kmem_cache_free(cmd->nc_nvme->n_prp_cache, |
| cmd->nc_dma); |
| else |
| nvme_free_dma(cmd->nc_dma); |
| cmd->nc_dma = NULL; |
| } |
| |
| cv_destroy(&cmd->nc_cv); |
| mutex_destroy(&cmd->nc_mutex); |
| |
| kmem_cache_free(nvme_cmd_cache, cmd); |
| } |
| |
| static void |
| nvme_submit_admin_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd) |
| { |
| sema_p(&qp->nq_sema); |
| nvme_submit_cmd_common(qp, cmd); |
| } |
| |
| static int |
| nvme_submit_io_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd) |
| { |
| if (sema_tryp(&qp->nq_sema) == 0) |
| return (EAGAIN); |
| |
| nvme_submit_cmd_common(qp, cmd); |
| return (0); |
| } |
| |
| static void |
| nvme_submit_cmd_common(nvme_qpair_t *qp, nvme_cmd_t *cmd) |
| { |
| nvme_reg_sqtdbl_t tail = { 0 }; |
| |
| mutex_enter(&qp->nq_mutex); |
| cmd->nc_completed = B_FALSE; |
| |
| /* |
| * Try to insert the cmd into the active cmd array at the nq_next_cmd |
| * slot. If the slot is already occupied advance to the next slot and |
| * try again. This can happen for long running commands like async event |
| * requests. |
| */ |
| while (qp->nq_cmd[qp->nq_next_cmd] != NULL) |
| qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry; |
| qp->nq_cmd[qp->nq_next_cmd] = cmd; |
| |
| qp->nq_active_cmds++; |
| |
| cmd->nc_sqe.sqe_cid = qp->nq_next_cmd; |
| bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t)); |
| (void) ddi_dma_sync(qp->nq_sqdma->nd_dmah, |
| sizeof (nvme_sqe_t) * qp->nq_sqtail, |
| sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV); |
| qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry; |
| |
| tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry; |
| nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r); |
| |
| mutex_exit(&qp->nq_mutex); |
| } |
| |
| static nvme_cmd_t * |
| nvme_unqueue_cmd(nvme_t *nvme, nvme_qpair_t *qp, int cid) |
| { |
| nvme_cmd_t *cmd; |
| |
| ASSERT(mutex_owned(&qp->nq_mutex)); |
| ASSERT3S(cid, <, qp->nq_nentry); |
| |
| cmd = qp->nq_cmd[cid]; |
| qp->nq_cmd[cid] = NULL; |
| ASSERT3U(qp->nq_active_cmds, >, 0); |
| qp->nq_active_cmds--; |
| sema_v(&qp->nq_sema); |
| |
| ASSERT3P(cmd, !=, NULL); |
| ASSERT3P(cmd->nc_nvme, ==, nvme); |
| ASSERT3S(cmd->nc_sqe.sqe_cid, ==, cid); |
| |
| return (cmd); |
| } |
| |
| static nvme_cmd_t * |
| nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp) |
| { |
| nvme_reg_cqhdbl_t head = { 0 }; |
| |
| nvme_cqe_t *cqe; |
| nvme_cmd_t *cmd; |
| |
| (void) ddi_dma_sync(qp->nq_cqdma->nd_dmah, 0, |
| sizeof (nvme_cqe_t) * qp->nq_nentry, DDI_DMA_SYNC_FORKERNEL); |
| |
| mutex_enter(&qp->nq_mutex); |
| cqe = &qp->nq_cq[qp->nq_cqhead]; |
| |
| /* Check phase tag of CQE. Hardware inverts it for new entries. */ |
| if (cqe->cqe_sf.sf_p == qp->nq_phase) { |
| mutex_exit(&qp->nq_mutex); |
| return (NULL); |
| } |
| |
| ASSERT(nvme->n_ioq[cqe->cqe_sqid] == qp); |
| |
| cmd = nvme_unqueue_cmd(nvme, qp, cqe->cqe_cid); |
| |
| ASSERT(cmd->nc_sqid == cqe->cqe_sqid); |
| bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t)); |
| |
| qp->nq_sqhead = cqe->cqe_sqhd; |
| |
| head.b.cqhdbl_cqh = qp->nq_cqhead = (qp->nq_cqhead + 1) % qp->nq_nentry; |
| |
| /* Toggle phase on wrap-around. */ |
| if (qp->nq_cqhead == 0) |
| qp->nq_phase = qp->nq_phase ? 0 : 1; |
| |
| nvme_put32(cmd->nc_nvme, qp->nq_cqhdbl, head.r); |
| mutex_exit(&qp->nq_mutex); |
| |
| return (cmd); |
| } |
| |
| static int |
| nvme_check_unknown_cmd_status(nvme_cmd_t *cmd) |
| { |
| nvme_cqe_t *cqe = &cmd->nc_cqe; |
| |
| dev_err(cmd->nc_nvme->n_dip, CE_WARN, |
| "!unknown command status received: opc = %x, sqid = %d, cid = %d, " |
| "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc, |
| cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct, |
| cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m); |
| |
| if (cmd->nc_xfer != NULL) |
| bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); |
| |
| if (cmd->nc_nvme->n_strict_version) { |
| cmd->nc_nvme->n_dead = B_TRUE; |
| ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST); |
| } |
| |
| return (EIO); |
| } |
| |
| static int |
| nvme_check_vendor_cmd_status(nvme_cmd_t *cmd) |
| { |
| nvme_cqe_t *cqe = &cmd->nc_cqe; |
| |
| dev_err(cmd->nc_nvme->n_dip, CE_WARN, |
| "!unknown command status received: opc = %x, sqid = %d, cid = %d, " |
| "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc, |
| cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct, |
| cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m); |
| if (!cmd->nc_nvme->n_ignore_unknown_vendor_status) { |
| cmd->nc_nvme->n_dead = B_TRUE; |
| ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST); |
| } |
| |
| return (EIO); |
| } |
| |
| static int |
| nvme_check_integrity_cmd_status(nvme_cmd_t *cmd) |
| { |
| nvme_cqe_t *cqe = &cmd->nc_cqe; |
| |
| switch (cqe->cqe_sf.sf_sc) { |
| case NVME_CQE_SC_INT_NVM_WRITE: |
| /* write fail */ |
| /* TODO: post ereport */ |
| if (cmd->nc_xfer != NULL) |
| bd_error(cmd->nc_xfer, BD_ERR_MEDIA); |
| return (EIO); |
| |
| case NVME_CQE_SC_INT_NVM_READ: |
| /* read fail */ |
| /* TODO: post ereport */ |
| if (cmd->nc_xfer != NULL) |
| bd_error(cmd->nc_xfer, BD_ERR_MEDIA); |
| return (EIO); |
| |
| default: |
| return (nvme_check_unknown_cmd_status(cmd)); |
| } |
| } |
| |
| static int |
| nvme_check_generic_cmd_status(nvme_cmd_t *cmd) |
| { |
| nvme_cqe_t *cqe = &cmd->nc_cqe; |
| |
| switch (cqe->cqe_sf.sf_sc) { |
| case NVME_CQE_SC_GEN_SUCCESS: |
| return (0); |
| |
| /* |
| * Errors indicating a bug in the driver should cause a panic. |
| */ |
| case NVME_CQE_SC_GEN_INV_OPC: |
| /* Invalid Command Opcode */ |
| if (!cmd->nc_dontpanic) |
| dev_err(cmd->nc_nvme->n_dip, CE_PANIC, |
| "programming error: invalid opcode in cmd %p", |
| (void *)cmd); |
| return (EINVAL); |
| |
| case NVME_CQE_SC_GEN_INV_FLD: |
| /* Invalid Field in Command */ |
| if (!cmd->nc_dontpanic) |
| dev_err(cmd->nc_nvme->n_dip, CE_PANIC, |
| "programming error: invalid field in cmd %p", |
| (void *)cmd); |
| return (EIO); |
| |
| case NVME_CQE_SC_GEN_ID_CNFL: |
| /* Command ID Conflict */ |
| dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " |
| "cmd ID conflict in cmd %p", (void *)cmd); |
| return (0); |
| |
| case NVME_CQE_SC_GEN_INV_NS: |
| /* Invalid Namespace or Format */ |
| if (!cmd->nc_dontpanic) |
| dev_err(cmd->nc_nvme->n_dip, CE_PANIC, |
| "programming error: invalid NS/format in cmd %p", |
| (void *)cmd); |
| return (EINVAL); |
| |
| case NVME_CQE_SC_GEN_NVM_LBA_RANGE: |
| /* LBA Out Of Range */ |
| dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " |
| "LBA out of range in cmd %p", (void *)cmd); |
| return (0); |
| |
| /* |
| * Non-fatal errors, handle gracefully. |
| */ |
| case NVME_CQE_SC_GEN_DATA_XFR_ERR: |
| /* Data Transfer Error (DMA) */ |
| /* TODO: post ereport */ |
| atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err); |
| if (cmd->nc_xfer != NULL) |
| bd_error(cmd->nc_xfer, BD_ERR_NTRDY); |
| return (EIO); |
| |
| case NVME_CQE_SC_GEN_INTERNAL_ERR: |
| /* |
| * Internal Error. The spec (v1.0, section 4.5.1.2) says |
| * detailed error information is returned as async event, |
| * so we pretty much ignore the error here and handle it |
| * in the async event handler. |
| */ |
| atomic_inc_32(&cmd->nc_nvme->n_internal_err); |
| if (cmd->nc_xfer != NULL) |
| bd_error(cmd->nc_xfer, BD_ERR_NTRDY); |
| return (EIO); |
| |
| case NVME_CQE_SC_GEN_ABORT_REQUEST: |
| /* |
| * Command Abort Requested. This normally happens only when a |
| * command times out. |
| */ |
| /* TODO: post ereport or change blkdev to handle this? */ |
| atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err); |
| return (ECANCELED); |
| |
| case NVME_CQE_SC_GEN_ABORT_PWRLOSS: |
| /* Command Aborted due to Power Loss Notification */ |
| ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST); |
| cmd->nc_nvme->n_dead = B_TRUE; |
| return (EIO); |
| |
| case NVME_CQE_SC_GEN_ABORT_SQ_DEL: |
| /* Command Aborted due to SQ Deletion */ |
| atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del); |
| return (EIO); |
| |
| case NVME_CQE_SC_GEN_NVM_CAP_EXC: |
| /* Capacity Exceeded */ |
| atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc); |
| if (cmd->nc_xfer != NULL) |
| bd_error(cmd->nc_xfer, BD_ERR_MEDIA); |
| return (EIO); |
| |
| case NVME_CQE_SC_GEN_NVM_NS_NOTRDY: |
| /* Namespace Not Ready */ |
| atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy); |
| if (cmd->nc_xfer != NULL) |
| bd_error(cmd->nc_xfer, BD_ERR_NTRDY); |
| return (EIO); |
| |
| default: |
| return (nvme_check_unknown_cmd_status(cmd)); |
| } |
| } |
| |
| static int |
| nvme_check_specific_cmd_status(nvme_cmd_t *cmd) |
| { |
| nvme_cqe_t *cqe = &cmd->nc_cqe; |
| |
| switch (cqe->cqe_sf.sf_sc) { |
| case NVME_CQE_SC_SPC_INV_CQ: |
| /* Completion Queue Invalid */ |
| ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE); |
| atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err); |
| return (EINVAL); |
| |
| case NVME_CQE_SC_SPC_INV_QID: |
| /* Invalid Queue Identifier */ |
| ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE || |
| cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE || |
| cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE || |
| cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE); |
| atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err); |
| return (EINVAL); |
| |
| case NVME_CQE_SC_SPC_MAX_QSZ_EXC: |
| /* Max Queue Size Exceeded */ |
| ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE || |
| cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE); |
| atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc); |
| return (EINVAL); |
| |
| case NVME_CQE_SC_SPC_ABRT_CMD_EXC: |
| /* Abort Command Limit Exceeded */ |
| ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT); |
| dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " |
| "abort command limit exceeded in cmd %p", (void *)cmd); |
| return (0); |
| |
| case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC: |
| /* Async Event Request Limit Exceeded */ |
| ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT); |
| dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " |
| "async event request limit exceeded in cmd %p", |
| (void *)cmd); |
| return (0); |
| |
| case NVME_CQE_SC_SPC_INV_INT_VECT: |
| /* Invalid Interrupt Vector */ |
| ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE); |
| atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect); |
| return (EINVAL); |
| |
| case NVME_CQE_SC_SPC_INV_LOG_PAGE: |
| /* Invalid Log Page */ |
| ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE); |
| atomic_inc_32(&cmd->nc_nvme->n_inv_log_page); |
| return (EINVAL); |
| |
| case NVME_CQE_SC_SPC_INV_FORMAT: |
| /* Invalid Format */ |
| ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT); |
| atomic_inc_32(&cmd->nc_nvme->n_inv_format); |
| if (cmd->nc_xfer != NULL) |
| bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); |
| return (EINVAL); |
| |
| case NVME_CQE_SC_SPC_INV_Q_DEL: |
| /* Invalid Queue Deletion */ |
| ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE); |
| atomic_inc_32(&cmd->nc_nvme->n_inv_q_del); |
| return (EINVAL); |
| |
| case NVME_CQE_SC_SPC_NVM_CNFL_ATTR: |
| /* Conflicting Attributes */ |
| ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT || |
| cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ || |
| cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE); |
| atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr); |
| if (cmd->nc_xfer != NULL) |
| bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); |
| return (EINVAL); |
| |
| case NVME_CQE_SC_SPC_NVM_INV_PROT: |
| /* Invalid Protection Information */ |
| ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE || |
| cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ || |
| cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE); |
| atomic_inc_32(&cmd->nc_nvme->n_inv_prot); |
| if (cmd->nc_xfer != NULL) |
| bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); |
| return (EINVAL); |
| |
| case NVME_CQE_SC_SPC_NVM_READONLY: |
| /* Write to Read Only Range */ |
| ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE); |
| atomic_inc_32(&cmd->nc_nvme->n_readonly); |
| if (cmd->nc_xfer != NULL) |
| bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); |
| return (EROFS); |
| |
| default: |
| return (nvme_check_unknown_cmd_status(cmd)); |
| } |
| } |
| |
| static inline int |
| nvme_check_cmd_status(nvme_cmd_t *cmd) |
| { |
| nvme_cqe_t *cqe = &cmd->nc_cqe; |
| |
| /* |
| * Take a shortcut if the controller is dead, or if |
| * command status indicates no error. |
| */ |
| if (cmd->nc_nvme->n_dead) |
| return (EIO); |
| |
| if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC && |
| cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS) |
| return (0); |
| |
| if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC) |
| return (nvme_check_generic_cmd_status(cmd)); |
| else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC) |
| return (nvme_check_specific_cmd_status(cmd)); |
| else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY) |
| return (nvme_check_integrity_cmd_status(cmd)); |
| else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR) |
| return (nvme_check_vendor_cmd_status(cmd)); |
| |
| return (nvme_check_unknown_cmd_status(cmd)); |
| } |
| |
| static int |
| nvme_abort_cmd(nvme_cmd_t *abort_cmd, uint_t sec) |
| { |
| nvme_t *nvme = abort_cmd->nc_nvme; |
| nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); |
| nvme_abort_cmd_t ac = { 0 }; |
| int ret = 0; |
| |
| sema_p(&nvme->n_abort_sema); |
| |
| ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid; |
| ac.b.ac_sqid = abort_cmd->nc_sqid; |
| |
| cmd->nc_sqid = 0; |
| cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT; |
| cmd->nc_callback = nvme_wakeup_cmd; |
| cmd->nc_sqe.sqe_cdw10 = ac.r; |
| |
| /* |
| * Send the ABORT to the hardware. The ABORT command will return _after_ |
| * the aborted command has completed (aborted or otherwise), but since |
| * we still hold the aborted command's mutex its callback hasn't been |
| * processed yet. |
| */ |
| nvme_admin_cmd(cmd, sec); |
| sema_v(&nvme->n_abort_sema); |
| |
| if ((ret = nvme_check_cmd_status(cmd)) != 0) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!ABORT failed with sct = %x, sc = %x", |
| cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); |
| atomic_inc_32(&nvme->n_abort_failed); |
| } else { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!ABORT of command %d/%d %ssuccessful", |
| abort_cmd->nc_sqe.sqe_cid, abort_cmd->nc_sqid, |
| cmd->nc_cqe.cqe_dw0 & 1 ? "un" : ""); |
| if ((cmd->nc_cqe.cqe_dw0 & 1) == 0) |
| atomic_inc_32(&nvme->n_cmd_aborted); |
| } |
| |
| nvme_free_cmd(cmd); |
| return (ret); |
| } |
| |
| /* |
| * nvme_wait_cmd -- wait for command completion or timeout |
| * |
| * In case of a serious error or a timeout of the abort command the hardware |
| * will be declared dead and FMA will be notified. |
| */ |
| static void |
| nvme_wait_cmd(nvme_cmd_t *cmd, uint_t sec) |
| { |
| clock_t timeout = ddi_get_lbolt() + drv_usectohz(sec * MICROSEC); |
| nvme_t *nvme = cmd->nc_nvme; |
| nvme_reg_csts_t csts; |
| nvme_qpair_t *qp; |
| |
| ASSERT(mutex_owned(&cmd->nc_mutex)); |
| |
| while (!cmd->nc_completed) { |
| if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1) |
| break; |
| } |
| |
| if (cmd->nc_completed) |
| return; |
| |
| /* |
| * The command timed out. |
| * |
| * Check controller for fatal status, any errors associated with the |
| * register or DMA handle, or for a double timeout (abort command timed |
| * out). If necessary log a warning and call FMA. |
| */ |
| csts.r = nvme_get32(nvme, NVME_REG_CSTS); |
| dev_err(nvme->n_dip, CE_WARN, "!command %d/%d timeout, " |
| "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_cid, cmd->nc_sqid, |
| cmd->nc_sqe.sqe_opc, csts.b.csts_cfs); |
| atomic_inc_32(&nvme->n_cmd_timeout); |
| |
| if (csts.b.csts_cfs || |
| nvme_check_regs_hdl(nvme) || |
| nvme_check_dma_hdl(cmd->nc_dma) || |
| cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) { |
| ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); |
| nvme->n_dead = B_TRUE; |
| } else if (nvme_abort_cmd(cmd, sec) == 0) { |
| /* |
| * If the abort succeeded the command should complete |
| * immediately with an appropriate status. |
| */ |
| while (!cmd->nc_completed) |
| cv_wait(&cmd->nc_cv, &cmd->nc_mutex); |
| |
| return; |
| } |
| |
| qp = nvme->n_ioq[cmd->nc_sqid]; |
| |
| mutex_enter(&qp->nq_mutex); |
| (void) nvme_unqueue_cmd(nvme, qp, cmd->nc_sqe.sqe_cid); |
| mutex_exit(&qp->nq_mutex); |
| |
| /* |
| * As we don't know what the presumed dead hardware might still do with |
| * the DMA memory, we'll put the command on the lost commands list if it |
| * has any DMA memory. |
| */ |
| if (cmd->nc_dma != NULL) { |
| mutex_enter(&nvme_lc_mutex); |
| list_insert_head(&nvme_lost_cmds, cmd); |
| mutex_exit(&nvme_lc_mutex); |
| } |
| } |
| |
| static void |
| nvme_wakeup_cmd(void *arg) |
| { |
| nvme_cmd_t *cmd = arg; |
| |
| mutex_enter(&cmd->nc_mutex); |
| cmd->nc_completed = B_TRUE; |
| cv_signal(&cmd->nc_cv); |
| mutex_exit(&cmd->nc_mutex); |
| } |
| |
| static void |
| nvme_async_event_task(void *arg) |
| { |
| nvme_cmd_t *cmd = arg; |
| nvme_t *nvme = cmd->nc_nvme; |
| nvme_error_log_entry_t *error_log = NULL; |
| nvme_health_log_t *health_log = NULL; |
| size_t logsize = 0; |
| nvme_async_event_t event; |
| |
| /* |
| * Check for errors associated with the async request itself. The only |
| * command-specific error is "async event limit exceeded", which |
| * indicates a programming error in the driver and causes a panic in |
| * nvme_check_cmd_status(). |
| * |
| * Other possible errors are various scenarios where the async request |
| * was aborted, or internal errors in the device. Internal errors are |
| * reported to FMA, the command aborts need no special handling here. |
| * |
| * And finally, at least qemu nvme does not support async events, |
| * and will return NVME_CQE_SC_GEN_INV_OPC | DNR. If so, we |
| * will avoid posting async events. |
| */ |
| |
| if (nvme_check_cmd_status(cmd) != 0) { |
| dev_err(cmd->nc_nvme->n_dip, CE_WARN, |
| "!async event request returned failure, sct = %x, " |
| "sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct, |
| cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr, |
| cmd->nc_cqe.cqe_sf.sf_m); |
| |
| if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC && |
| cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) { |
| cmd->nc_nvme->n_dead = B_TRUE; |
| ddi_fm_service_impact(cmd->nc_nvme->n_dip, |
| DDI_SERVICE_LOST); |
| } |
| |
| if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC && |
| cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_OPC && |
| cmd->nc_cqe.cqe_sf.sf_dnr == 1) { |
| nvme->n_async_event_supported = B_FALSE; |
| } |
| |
| nvme_free_cmd(cmd); |
| return; |
| } |
| |
| |
| event.r = cmd->nc_cqe.cqe_dw0; |
| |
| /* Clear CQE and re-submit the async request. */ |
| bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t)); |
| nvme_submit_admin_cmd(nvme->n_adminq, cmd); |
| |
| switch (event.b.ae_type) { |
| case NVME_ASYNC_TYPE_ERROR: |
| if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) { |
| (void) nvme_get_logpage(nvme, (void **)&error_log, |
| &logsize, event.b.ae_logpage); |
| } else { |
| dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in " |
| "async event reply: %d", event.b.ae_logpage); |
| atomic_inc_32(&nvme->n_wrong_logpage); |
| } |
| |
| switch (event.b.ae_info) { |
| case NVME_ASYNC_ERROR_INV_SQ: |
| dev_err(nvme->n_dip, CE_PANIC, "programming error: " |
| "invalid submission queue"); |
| return; |
| |
| case NVME_ASYNC_ERROR_INV_DBL: |
| dev_err(nvme->n_dip, CE_PANIC, "programming error: " |
| "invalid doorbell write value"); |
| return; |
| |
| case NVME_ASYNC_ERROR_DIAGFAIL: |
| dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure"); |
| ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); |
| nvme->n_dead = B_TRUE; |
| atomic_inc_32(&nvme->n_diagfail_event); |
| break; |
| |
| case NVME_ASYNC_ERROR_PERSISTENT: |
| dev_err(nvme->n_dip, CE_WARN, "!persistent internal " |
| "device error"); |
| ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); |
| nvme->n_dead = B_TRUE; |
| atomic_inc_32(&nvme->n_persistent_event); |
| break; |
| |
| case NVME_ASYNC_ERROR_TRANSIENT: |
| dev_err(nvme->n_dip, CE_WARN, "!transient internal " |
| "device error"); |
| /* TODO: send ereport */ |
| atomic_inc_32(&nvme->n_transient_event); |
| break; |
| |
| case NVME_ASYNC_ERROR_FW_LOAD: |
| dev_err(nvme->n_dip, CE_WARN, |
| "!firmware image load error"); |
| atomic_inc_32(&nvme->n_fw_load_event); |
| break; |
| } |
| break; |
| |
| case NVME_ASYNC_TYPE_HEALTH: |
| if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) { |
| (void) nvme_get_logpage(nvme, (void **)&health_log, |
| &logsize, event.b.ae_logpage, -1); |
| } else { |
| dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in " |
| "async event reply: %d", event.b.ae_logpage); |
| atomic_inc_32(&nvme->n_wrong_logpage); |
| } |
| |
| switch (event.b.ae_info) { |
| case NVME_ASYNC_HEALTH_RELIABILITY: |
| dev_err(nvme->n_dip, CE_WARN, |
| "!device reliability compromised"); |
| /* TODO: send ereport */ |
| atomic_inc_32(&nvme->n_reliability_event); |
| break; |
| |
| case NVME_ASYNC_HEALTH_TEMPERATURE: |
| dev_err(nvme->n_dip, CE_WARN, |
| "!temperature above threshold"); |
| /* TODO: send ereport */ |
| atomic_inc_32(&nvme->n_temperature_event); |
| break; |
| |
| case NVME_ASYNC_HEALTH_SPARE: |
| dev_err(nvme->n_dip, CE_WARN, |
| "!spare space below threshold"); |
| /* TODO: send ereport */ |
| atomic_inc_32(&nvme->n_spare_event); |
| break; |
| } |
| break; |
| |
| case NVME_ASYNC_TYPE_VENDOR: |
| dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event " |
| "received, info = %x, logpage = %x", event.b.ae_info, |
| event.b.ae_logpage); |
| atomic_inc_32(&nvme->n_vendor_event); |
| break; |
| |
| default: |
| dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, " |
| "type = %x, info = %x, logpage = %x", event.b.ae_type, |
| event.b.ae_info, event.b.ae_logpage); |
| atomic_inc_32(&nvme->n_unknown_event); |
| break; |
| } |
| |
| if (error_log) |
| kmem_free(error_log, logsize); |
| |
| if (health_log) |
| kmem_free(health_log, logsize); |
| } |
| |
| static void |
| nvme_admin_cmd(nvme_cmd_t *cmd, int sec) |
| { |
| mutex_enter(&cmd->nc_mutex); |
| nvme_submit_admin_cmd(cmd->nc_nvme->n_adminq, cmd); |
| nvme_wait_cmd(cmd, sec); |
| mutex_exit(&cmd->nc_mutex); |
| } |
| |
| static void |
| nvme_async_event(nvme_t *nvme) |
| { |
| nvme_cmd_t *cmd; |
| |
| cmd = nvme_alloc_cmd(nvme, KM_SLEEP); |
| cmd->nc_sqid = 0; |
| cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT; |
| cmd->nc_callback = nvme_async_event_task; |
| cmd->nc_dontpanic = B_TRUE; |
| |
| nvme_submit_admin_cmd(nvme->n_adminq, cmd); |
| } |
| |
| static int |
| nvme_format_nvm(nvme_t *nvme, uint32_t nsid, uint8_t lbaf, boolean_t ms, |
| uint8_t pi, boolean_t pil, uint8_t ses) |
| { |
| nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); |
| nvme_format_nvm_t format_nvm = { 0 }; |
| int ret; |
| |
| format_nvm.b.fm_lbaf = lbaf & 0xf; |
| format_nvm.b.fm_ms = ms ? 1 : 0; |
| format_nvm.b.fm_pi = pi & 0x7; |
| format_nvm.b.fm_pil = pil ? 1 : 0; |
| format_nvm.b.fm_ses = ses & 0x7; |
| |
| cmd->nc_sqid = 0; |
| cmd->nc_callback = nvme_wakeup_cmd; |
| cmd->nc_sqe.sqe_nsid = nsid; |
| cmd->nc_sqe.sqe_opc = NVME_OPC_NVM_FORMAT; |
| cmd->nc_sqe.sqe_cdw10 = format_nvm.r; |
| |
| /* |
| * Some devices like Samsung SM951 don't allow formatting of all |
| * namespaces in one command. Handle that gracefully. |
| */ |
| if (nsid == (uint32_t)-1) |
| cmd->nc_dontpanic = B_TRUE; |
| |
| nvme_admin_cmd(cmd, nvme_format_cmd_timeout); |
| |
| if ((ret = nvme_check_cmd_status(cmd)) != 0) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!FORMAT failed with sct = %x, sc = %x", |
| cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); |
| } |
| |
| nvme_free_cmd(cmd); |
| return (ret); |
| } |
| |
| static int |
| nvme_get_logpage(nvme_t *nvme, void **buf, size_t *bufsize, uint8_t logpage, |
| ...) |
| { |
| nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); |
| nvme_getlogpage_t getlogpage = { 0 }; |
| va_list ap; |
| int ret; |
| |
| va_start(ap, logpage); |
| |
| cmd->nc_sqid = 0; |
| cmd->nc_callback = nvme_wakeup_cmd; |
| cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE; |
| |
| getlogpage.b.lp_lid = logpage; |
| |
| switch (logpage) { |
| case NVME_LOGPAGE_ERROR: |
| cmd->nc_sqe.sqe_nsid = (uint32_t)-1; |
| /* |
| * The GET LOG PAGE command can use at most 2 pages to return |
| * data, PRP lists are not supported. |
| */ |
| *bufsize = MIN(2 * nvme->n_pagesize, |
| nvme->n_error_log_len * sizeof (nvme_error_log_entry_t)); |
| break; |
| |
| case NVME_LOGPAGE_HEALTH: |
| cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t); |
| *bufsize = sizeof (nvme_health_log_t); |
| break; |
| |
| case NVME_LOGPAGE_FWSLOT: |
| cmd->nc_sqe.sqe_nsid = (uint32_t)-1; |
| *bufsize = sizeof (nvme_fwslot_log_t); |
| break; |
| |
| default: |
| dev_err(nvme->n_dip, CE_WARN, "!unknown log page requested: %d", |
| logpage); |
| atomic_inc_32(&nvme->n_unknown_logpage); |
| ret = EINVAL; |
| goto fail; |
| } |
| |
| va_end(ap); |
| |
| getlogpage.b.lp_numd = *bufsize / sizeof (uint32_t) - 1; |
| |
| cmd->nc_sqe.sqe_cdw10 = getlogpage.r; |
| |
| if (nvme_zalloc_dma(nvme, getlogpage.b.lp_numd * sizeof (uint32_t), |
| DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!nvme_zalloc_dma failed for GET LOG PAGE"); |
| ret = ENOMEM; |
| goto fail; |
| } |
| |
| if (cmd->nc_dma->nd_ncookie > 2) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!too many DMA cookies for GET LOG PAGE"); |
| atomic_inc_32(&nvme->n_too_many_cookies); |
| ret = ENOMEM; |
| goto fail; |
| } |
| |
| cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress; |
| if (cmd->nc_dma->nd_ncookie > 1) { |
| ddi_dma_nextcookie(cmd->nc_dma->nd_dmah, |
| &cmd->nc_dma->nd_cookie); |
| cmd->nc_sqe.sqe_dptr.d_prp[1] = |
| cmd->nc_dma->nd_cookie.dmac_laddress; |
| } |
| |
| nvme_admin_cmd(cmd, nvme_admin_cmd_timeout); |
| |
| if ((ret = nvme_check_cmd_status(cmd)) != 0) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!GET LOG PAGE failed with sct = %x, sc = %x", |
| cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); |
| goto fail; |
| } |
| |
| *buf = kmem_alloc(*bufsize, KM_SLEEP); |
| bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize); |
| |
| fail: |
| nvme_free_cmd(cmd); |
| |
| return (ret); |
| } |
| |
| static int |
| nvme_identify(nvme_t *nvme, uint32_t nsid, void **buf) |
| { |
| nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); |
| int ret; |
| |
| if (buf == NULL) |
| return (EINVAL); |
| |
| cmd->nc_sqid = 0; |
| cmd->nc_callback = nvme_wakeup_cmd; |
| cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY; |
| cmd->nc_sqe.sqe_nsid = nsid; |
| cmd->nc_sqe.sqe_cdw10 = nsid ? NVME_IDENTIFY_NSID : NVME_IDENTIFY_CTRL; |
| |
| if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ, |
| &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!nvme_zalloc_dma failed for IDENTIFY"); |
| ret = ENOMEM; |
| goto fail; |
| } |
| |
| if (cmd->nc_dma->nd_ncookie > 2) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!too many DMA cookies for IDENTIFY"); |
| atomic_inc_32(&nvme->n_too_many_cookies); |
| ret = ENOMEM; |
| goto fail; |
| } |
| |
| cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress; |
| if (cmd->nc_dma->nd_ncookie > 1) { |
| ddi_dma_nextcookie(cmd->nc_dma->nd_dmah, |
| &cmd->nc_dma->nd_cookie); |
| cmd->nc_sqe.sqe_dptr.d_prp[1] = |
| cmd->nc_dma->nd_cookie.dmac_laddress; |
| } |
| |
| nvme_admin_cmd(cmd, nvme_admin_cmd_timeout); |
| |
| if ((ret = nvme_check_cmd_status(cmd)) != 0) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!IDENTIFY failed with sct = %x, sc = %x", |
| cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); |
| goto fail; |
| } |
| |
| *buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP); |
| bcopy(cmd->nc_dma->nd_memp, *buf, NVME_IDENTIFY_BUFSIZE); |
| |
| fail: |
| nvme_free_cmd(cmd); |
| |
| return (ret); |
| } |
| |
| static int |
| nvme_set_features(nvme_t *nvme, uint32_t nsid, uint8_t feature, uint32_t val, |
| uint32_t *res) |
| { |
| _NOTE(ARGUNUSED(nsid)); |
| nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); |
| int ret = EINVAL; |
| |
| ASSERT(res != NULL); |
| |
| cmd->nc_sqid = 0; |
| cmd->nc_callback = nvme_wakeup_cmd; |
| cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES; |
| cmd->nc_sqe.sqe_cdw10 = feature; |
| cmd->nc_sqe.sqe_cdw11 = val; |
| |
| switch (feature) { |
| case NVME_FEAT_WRITE_CACHE: |
| if (!nvme->n_write_cache_present) |
| goto fail; |
| break; |
| |
| case NVME_FEAT_NQUEUES: |
| break; |
| |
| default: |
| goto fail; |
| } |
| |
| nvme_admin_cmd(cmd, nvme_admin_cmd_timeout); |
| |
| if ((ret = nvme_check_cmd_status(cmd)) != 0) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!SET FEATURES %d failed with sct = %x, sc = %x", |
| feature, cmd->nc_cqe.cqe_sf.sf_sct, |
| cmd->nc_cqe.cqe_sf.sf_sc); |
| goto fail; |
| } |
| |
| *res = cmd->nc_cqe.cqe_dw0; |
| |
| fail: |
| nvme_free_cmd(cmd); |
| return (ret); |
| } |
| |
| static int |
| nvme_get_features(nvme_t *nvme, uint32_t nsid, uint8_t feature, uint32_t *res, |
| void **buf, size_t *bufsize) |
| { |
| nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); |
| int ret = EINVAL; |
| |
| ASSERT(res != NULL); |
| |
| if (bufsize != NULL) |
| *bufsize = 0; |
| |
| cmd->nc_sqid = 0; |
| cmd->nc_callback = nvme_wakeup_cmd; |
| cmd->nc_sqe.sqe_opc = NVME_OPC_GET_FEATURES; |
| cmd->nc_sqe.sqe_cdw10 = feature; |
| cmd->nc_sqe.sqe_cdw11 = *res; |
| |
| /* |
| * For some of the optional features there doesn't seem to be a method |
| * of detecting whether it is supported other than using it. This will |
| * cause "Invalid Field in Command" error, which is normally considered |
| * a programming error. Set the nc_dontpanic flag to override the panic |
| * in nvme_check_generic_cmd_status(). |
| */ |
| switch (feature) { |
| case NVME_FEAT_ARBITRATION: |
| case NVME_FEAT_POWER_MGMT: |
| case NVME_FEAT_TEMPERATURE: |
| case NVME_FEAT_ERROR: |
| case NVME_FEAT_NQUEUES: |
| case NVME_FEAT_INTR_COAL: |
| case NVME_FEAT_INTR_VECT: |
| case NVME_FEAT_WRITE_ATOM: |
| case NVME_FEAT_ASYNC_EVENT: |
| break; |
| |
| case NVME_FEAT_WRITE_CACHE: |
| if (!nvme->n_write_cache_present) |
| goto fail; |
| break; |
| |
| case NVME_FEAT_LBA_RANGE: |
| if (!nvme->n_lba_range_supported) |
| goto fail; |
| |
| cmd->nc_dontpanic = B_TRUE; |
| cmd->nc_sqe.sqe_nsid = nsid; |
| ASSERT(bufsize != NULL); |
| *bufsize = NVME_LBA_RANGE_BUFSIZE; |
| break; |
| |
| case NVME_FEAT_AUTO_PST: |
| if (!nvme->n_auto_pst_supported) |
| goto fail; |
| |
| ASSERT(bufsize != NULL); |
| *bufsize = NVME_AUTO_PST_BUFSIZE; |
| break; |
| |
| case NVME_FEAT_PROGRESS: |
| if (!nvme->n_progress_supported) |
| goto fail; |
| |
| cmd->nc_dontpanic = B_TRUE; |
| break; |
| |
| default: |
| goto fail; |
| } |
| |
| if (bufsize != NULL && *bufsize != 0) { |
| if (nvme_zalloc_dma(nvme, *bufsize, DDI_DMA_READ, |
| &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!nvme_zalloc_dma failed for GET FEATURES"); |
| ret = ENOMEM; |
| goto fail; |
| } |
| |
| if (cmd->nc_dma->nd_ncookie > 2) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!too many DMA cookies for GET FEATURES"); |
| atomic_inc_32(&nvme->n_too_many_cookies); |
| ret = ENOMEM; |
| goto fail; |
| } |
| |
| cmd->nc_sqe.sqe_dptr.d_prp[0] = |
| cmd->nc_dma->nd_cookie.dmac_laddress; |
| if (cmd->nc_dma->nd_ncookie > 1) { |
| ddi_dma_nextcookie(cmd->nc_dma->nd_dmah, |
| &cmd->nc_dma->nd_cookie); |
| cmd->nc_sqe.sqe_dptr.d_prp[1] = |
| cmd->nc_dma->nd_cookie.dmac_laddress; |
| } |
| } |
| |
| nvme_admin_cmd(cmd, nvme_admin_cmd_timeout); |
| |
| if ((ret = nvme_check_cmd_status(cmd)) != 0) { |
| boolean_t known = B_TRUE; |
| |
| /* Check if this is unsupported optional feature */ |
| if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC && |
| cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_FLD) { |
| switch (feature) { |
| case NVME_FEAT_LBA_RANGE: |
| nvme->n_lba_range_supported = B_FALSE; |
| break; |
| case NVME_FEAT_PROGRESS: |
| nvme->n_progress_supported = B_FALSE; |
| break; |
| default: |
| known = B_FALSE; |
| break; |
| } |
| } else { |
| known = B_FALSE; |
| } |
| |
| /* Report the error otherwise */ |
| if (!known) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!GET FEATURES %d failed with sct = %x, sc = %x", |
| feature, cmd->nc_cqe.cqe_sf.sf_sct, |
| cmd->nc_cqe.cqe_sf.sf_sc); |
| } |
| |
| goto fail; |
| } |
| |
| if (bufsize != NULL && *bufsize != 0) { |
| ASSERT(buf != NULL); |
| *buf = kmem_alloc(*bufsize, KM_SLEEP); |
| bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize); |
| } |
| |
| *res = cmd->nc_cqe.cqe_dw0; |
| |
| fail: |
| nvme_free_cmd(cmd); |
| return (ret); |
| } |
| |
| static int |
| nvme_write_cache_set(nvme_t *nvme, boolean_t enable) |
| { |
| nvme_write_cache_t nwc = { 0 }; |
| |
| if (enable) |
| nwc.b.wc_wce = 1; |
| |
| return (nvme_set_features(nvme, 0, NVME_FEAT_WRITE_CACHE, nwc.r, |
| &nwc.r)); |
| } |
| |
| static int |
| nvme_set_nqueues(nvme_t *nvme, uint16_t *nqueues) |
| { |
| nvme_nqueues_t nq = { 0 }; |
| int ret; |
| |
| nq.b.nq_nsq = nq.b.nq_ncq = *nqueues - 1; |
| |
| ret = nvme_set_features(nvme, 0, NVME_FEAT_NQUEUES, nq.r, &nq.r); |
| |
| if (ret == 0) { |
| /* |
| * Always use the same number of submission and completion |
| * queues, and never use more than the requested number of |
| * queues. |
| */ |
| *nqueues = MIN(*nqueues, MIN(nq.b.nq_nsq, nq.b.nq_ncq) + 1); |
| } |
| |
| return (ret); |
| } |
| |
| static int |
| nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx) |
| { |
| nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); |
| nvme_create_queue_dw10_t dw10 = { 0 }; |
| nvme_create_cq_dw11_t c_dw11 = { 0 }; |
| nvme_create_sq_dw11_t s_dw11 = { 0 }; |
| int ret; |
| |
| dw10.b.q_qid = idx; |
| dw10.b.q_qsize = qp->nq_nentry - 1; |
| |
| c_dw11.b.cq_pc = 1; |
| c_dw11.b.cq_ien = 1; |
| c_dw11.b.cq_iv = idx % nvme->n_intr_cnt; |
| |
| cmd->nc_sqid = 0; |
| cmd->nc_callback = nvme_wakeup_cmd; |
| cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE; |
| cmd->nc_sqe.sqe_cdw10 = dw10.r; |
| cmd->nc_sqe.sqe_cdw11 = c_dw11.r; |
| cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_cqdma->nd_cookie.dmac_laddress; |
| |
| nvme_admin_cmd(cmd, nvme_admin_cmd_timeout); |
| |
| if ((ret = nvme_check_cmd_status(cmd)) != 0) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!CREATE CQUEUE failed with sct = %x, sc = %x", |
| cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); |
| goto fail; |
| } |
| |
| nvme_free_cmd(cmd); |
| |
| s_dw11.b.sq_pc = 1; |
| s_dw11.b.sq_cqid = idx; |
| |
| cmd = nvme_alloc_cmd(nvme, KM_SLEEP); |
| cmd->nc_sqid = 0; |
| cmd->nc_callback = nvme_wakeup_cmd; |
| cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE; |
| cmd->nc_sqe.sqe_cdw10 = dw10.r; |
| cmd->nc_sqe.sqe_cdw11 = s_dw11.r; |
| cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress; |
| |
| nvme_admin_cmd(cmd, nvme_admin_cmd_timeout); |
| |
| if ((ret = nvme_check_cmd_status(cmd)) != 0) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!CREATE SQUEUE failed with sct = %x, sc = %x", |
| cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); |
| goto fail; |
| } |
| |
| fail: |
| nvme_free_cmd(cmd); |
| |
| return (ret); |
| } |
| |
| static boolean_t |
| nvme_reset(nvme_t *nvme, boolean_t quiesce) |
| { |
| nvme_reg_csts_t csts; |
| int i; |
| |
| nvme_put32(nvme, NVME_REG_CC, 0); |
| |
| csts.r = nvme_get32(nvme, NVME_REG_CSTS); |
| if (csts.b.csts_rdy == 1) { |
| nvme_put32(nvme, NVME_REG_CC, 0); |
| for (i = 0; i != nvme->n_timeout * 10; i++) { |
| csts.r = nvme_get32(nvme, NVME_REG_CSTS); |
| if (csts.b.csts_rdy == 0) |
| break; |
| |
| if (quiesce) |
| drv_usecwait(50000); |
| else |
| delay(drv_usectohz(50000)); |
| } |
| } |
| |
| nvme_put32(nvme, NVME_REG_AQA, 0); |
| nvme_put32(nvme, NVME_REG_ASQ, 0); |
| nvme_put32(nvme, NVME_REG_ACQ, 0); |
| |
| csts.r = nvme_get32(nvme, NVME_REG_CSTS); |
| return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE); |
| } |
| |
| static void |
| nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce) |
| { |
| nvme_reg_cc_t cc; |
| nvme_reg_csts_t csts; |
| int i; |
| |
| ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT); |
| |
| cc.r = nvme_get32(nvme, NVME_REG_CC); |
| cc.b.cc_shn = mode & 0x3; |
| nvme_put32(nvme, NVME_REG_CC, cc.r); |
| |
| for (i = 0; i != 10; i++) { |
| csts.r = nvme_get32(nvme, NVME_REG_CSTS); |
| if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE) |
| break; |
| |
| if (quiesce) |
| drv_usecwait(100000); |
| else |
| delay(drv_usectohz(100000)); |
| } |
| } |
| |
| |
| static void |
| nvme_prepare_devid(nvme_t *nvme, uint32_t nsid) |
| { |
| /* |
| * Section 7.7 of the spec describes how to get a unique ID for |
| * the controller: the vendor ID, the model name and the serial |
| * number shall be unique when combined. |
| * |
| * If a namespace has no EUI64 we use the above and add the hex |
| * namespace ID to get a unique ID for the namespace. |
| */ |
| char model[sizeof (nvme->n_idctl->id_model) + 1]; |
| char serial[sizeof (nvme->n_idctl->id_serial) + 1]; |
| |
| bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model)); |
| bcopy(nvme->n_idctl->id_serial, serial, |
| sizeof (nvme->n_idctl->id_serial)); |
| |
| model[sizeof (nvme->n_idctl->id_model)] = '\0'; |
| serial[sizeof (nvme->n_idctl->id_serial)] = '\0'; |
| |
| nvme->n_ns[nsid - 1].ns_devid = kmem_asprintf("%4X-%s-%s-%X", |
| nvme->n_idctl->id_vid, model, serial, nsid); |
| } |
| |
| static int |
| nvme_init_ns(nvme_t *nvme, int nsid) |
| { |
| nvme_namespace_t *ns = &nvme->n_ns[nsid - 1]; |
| nvme_identify_nsid_t *idns; |
| int last_rp; |
| |
| ns->ns_nvme = nvme; |
| |
| if (nvme_identify(nvme, nsid, (void **)&idns) != 0) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!failed to identify namespace %d", nsid); |
| return (DDI_FAILURE); |
| } |
| |
| ns->ns_idns = idns; |
| ns->ns_id = nsid; |
| ns->ns_block_count = idns->id_nsize; |
| ns->ns_block_size = |
| 1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads; |
| ns->ns_best_block_size = ns->ns_block_size; |
| |
| /* |
| * Get the EUI64 if present. Use it for devid and device node names. |
| */ |
| if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1)) |
| bcopy(idns->id_eui64, ns->ns_eui64, sizeof (ns->ns_eui64)); |
| |
| /*LINTED: E_BAD_PTR_CAST_ALIGN*/ |
| if (*(uint64_t *)ns->ns_eui64 != 0) { |
| uint8_t *eui64 = ns->ns_eui64; |
| |
| (void) snprintf(ns->ns_name, sizeof (ns->ns_name), |
| "%02x%02x%02x%02x%02x%02x%02x%02x", |
| eui64[0], eui64[1], eui64[2], eui64[3], |
| eui64[4], eui64[5], eui64[6], eui64[7]); |
| } else { |
| (void) snprintf(ns->ns_name, sizeof (ns->ns_name), "%d", |
| ns->ns_id); |
| |
| nvme_prepare_devid(nvme, ns->ns_id); |
| } |
| |
| /* |
| * Find the LBA format with no metadata and the best relative |
| * performance. A value of 3 means "degraded", 0 is best. |
| */ |
| last_rp = 3; |
| for (int j = 0; j <= idns->id_nlbaf; j++) { |
| if (idns->id_lbaf[j].lbaf_lbads == 0) |
| break; |
| if (idns->id_lbaf[j].lbaf_ms != 0) |
| continue; |
| if (idns->id_lbaf[j].lbaf_rp >= last_rp) |
| continue; |
| last_rp = idns->id_lbaf[j].lbaf_rp; |
| ns->ns_best_block_size = |
| 1 << idns->id_lbaf[j].lbaf_lbads; |
| } |
| |
| if (ns->ns_best_block_size < nvme->n_min_block_size) |
| ns->ns_best_block_size = nvme->n_min_block_size; |
| |
| /* |
| * We currently don't support namespaces that use either: |
| * - protection information |
| * - illegal block size (< 512) |
| */ |
| if (idns->id_dps.dp_pinfo) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!ignoring namespace %d, unsupported feature: " |
| "pinfo = %d", nsid, idns->id_dps.dp_pinfo); |
| ns->ns_ignore = B_TRUE; |
| } else if (ns->ns_block_size < 512) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!ignoring namespace %d, unsupported block size %"PRIu64, |
| nsid, (uint64_t)ns->ns_block_size); |
| ns->ns_ignore = B_TRUE; |
| } else { |
| ns->ns_ignore = B_FALSE; |
| } |
| |
| return (DDI_SUCCESS); |
| } |
| |
| static int |
| nvme_init(nvme_t *nvme) |
| { |
| nvme_reg_cc_t cc = { 0 }; |
| nvme_reg_aqa_t aqa = { 0 }; |
| nvme_reg_asq_t asq = { 0 }; |
| nvme_reg_acq_t acq = { 0 }; |
| nvme_reg_cap_t cap; |
| nvme_reg_vs_t vs; |
| nvme_reg_csts_t csts; |
| int i = 0; |
| uint16_t nqueues; |
| char model[sizeof (nvme->n_idctl->id_model) + 1]; |
| char *vendor, *product; |
| |
| /* Check controller version */ |
| vs.r = nvme_get32(nvme, NVME_REG_VS); |
| nvme->n_version.v_major = vs.b.vs_mjr; |
| nvme->n_version.v_minor = vs.b.vs_mnr; |
| dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d", |
| nvme->n_version.v_major, nvme->n_version.v_minor); |
| |
| if (NVME_VERSION_HIGHER(&nvme->n_version, |
| nvme_version_major, nvme_version_minor)) { |
| dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.%d", |
| nvme_version_major, nvme_version_minor); |
| if (nvme->n_strict_version) |
| goto fail; |
| } |
| |
| /* retrieve controller configuration */ |
| cap.r = nvme_get64(nvme, NVME_REG_CAP); |
| |
| if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!NVM command set not supported by hardware"); |
| goto fail; |
| } |
| |
| nvme->n_nssr_supported = cap.b.cap_nssrs; |
| nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd; |
| nvme->n_timeout = cap.b.cap_to; |
| nvme->n_arbitration_mechanisms = cap.b.cap_ams; |
| nvme->n_cont_queues_reqd = cap.b.cap_cqr; |
| nvme->n_max_queue_entries = cap.b.cap_mqes + 1; |
| |
| /* |
| * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify |
| * the base page size of 4k (1<<12), so add 12 here to get the real |
| * page size value. |
| */ |
| nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT), |
| cap.b.cap_mpsmax + 12); |
| nvme->n_pagesize = 1UL << (nvme->n_pageshift); |
| |
| /* |
| * Set up Queue DMA to transfer at least 1 page-aligned page at a time. |
| */ |
| nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize; |
| nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize; |
| |
| /* |
| * Set up PRP DMA to transfer 1 page-aligned page at a time. |
| * Maxxfer may be increased after we identified the controller limits. |
| */ |
| nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize; |
| nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize; |
| nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize; |
| nvme->n_prp_dma_attr.dma_attr_seg = nvme->n_pagesize - 1; |
| |
| /* |
| * Reset controller if it's still in ready state. |
| */ |
| if (nvme_reset(nvme, B_FALSE) == B_FALSE) { |
| dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller"); |
| ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); |
| nvme->n_dead = B_TRUE; |
| goto fail; |
| } |
| |
| /* |
| * Create the admin queue pair. |
| */ |
| if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0) |
| != DDI_SUCCESS) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!unable to allocate admin qpair"); |
| goto fail; |
| } |
| nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP); |
| nvme->n_ioq[0] = nvme->n_adminq; |
| |
| nvme->n_progress |= NVME_ADMIN_QUEUE; |
| |
| (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, |
| "admin-queue-len", nvme->n_admin_queue_len); |
| |
| aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1; |
| asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress; |
| acq = nvme->n_adminq->nq_cqdma->nd_cookie.dmac_laddress; |
| |
| ASSERT((asq & (nvme->n_pagesize - 1)) == 0); |
| ASSERT((acq & (nvme->n_pagesize - 1)) == 0); |
| |
| nvme_put32(nvme, NVME_REG_AQA, aqa.r); |
| nvme_put64(nvme, NVME_REG_ASQ, asq); |
| nvme_put64(nvme, NVME_REG_ACQ, acq); |
| |
| cc.b.cc_ams = 0; /* use Round-Robin arbitration */ |
| cc.b.cc_css = 0; /* use NVM command set */ |
| cc.b.cc_mps = nvme->n_pageshift - 12; |
| cc.b.cc_shn = 0; /* no shutdown in progress */ |
| cc.b.cc_en = 1; /* enable controller */ |
| cc.b.cc_iosqes = 6; /* submission queue entry is 2^6 bytes long */ |
| cc.b.cc_iocqes = 4; /* completion queue entry is 2^4 bytes long */ |
| |
| nvme_put32(nvme, NVME_REG_CC, cc.r); |
| |
| /* |
| * Wait for the controller to become ready. |
| */ |
| csts.r = nvme_get32(nvme, NVME_REG_CSTS); |
| if (csts.b.csts_rdy == 0) { |
| for (i = 0; i != nvme->n_timeout * 10; i++) { |
| delay(drv_usectohz(50000)); |
| csts.r = nvme_get32(nvme, NVME_REG_CSTS); |
| |
| if (csts.b.csts_cfs == 1) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!controller fatal status at init"); |
| ddi_fm_service_impact(nvme->n_dip, |
| DDI_SERVICE_LOST); |
| nvme->n_dead = B_TRUE; |
| goto fail; |
| } |
| |
| if (csts.b.csts_rdy == 1) |
| break; |
| } |
| } |
| |
| if (csts.b.csts_rdy == 0) { |
| dev_err(nvme->n_dip, CE_WARN, "!controller not ready"); |
| ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); |
| nvme->n_dead = B_TRUE; |
| goto fail; |
| } |
| |
| /* |
| * Assume an abort command limit of 1. We'll destroy and re-init |
| * that later when we know the true abort command limit. |
| */ |
| sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL); |
| |
| /* |
| * Setup initial interrupt for admin queue. |
| */ |
| if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 1) |
| != DDI_SUCCESS) && |
| (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 1) |
| != DDI_SUCCESS) && |
| (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1) |
| != DDI_SUCCESS)) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!failed to setup initial interrupt"); |
| goto fail; |
| } |
| |
| /* |
| * Post an asynchronous event command to catch errors. |
| * We assume the asynchronous events are supported as required by |
| * specification (Figure 40 in section 5 of NVMe 1.2). |
| * However, since at least qemu does not follow the specification, |
| * we need a mechanism to protect ourselves. |
| */ |
| nvme->n_async_event_supported = B_TRUE; |
| nvme_async_event(nvme); |
| |
| /* |
| * Identify Controller |
| */ |
| if (nvme_identify(nvme, 0, (void **)&nvme->n_idctl) != 0) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!failed to identify controller"); |
| goto fail; |
| } |
| |
| /* |
| * Get Vendor & Product ID |
| */ |
| bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model)); |
| model[sizeof (nvme->n_idctl->id_model)] = '\0'; |
| sata_split_model(model, &vendor, &product); |
| |
| if (vendor == NULL) |
| nvme->n_vendor = strdup("NVMe"); |
| else |
| nvme->n_vendor = strdup(vendor); |
| |
| nvme->n_product = strdup(product); |
| |
| /* |
| * Get controller limits. |
| */ |
| nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT, |
| MIN(nvme->n_admin_queue_len / 10, |
| MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit))); |
| |
| (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, |
| "async-event-limit", nvme->n_async_event_limit); |
| |
| nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1; |
| |
| /* |
| * Reinitialize the semaphore with the true abort command limit |
| * supported by the hardware. It's not necessary to disable interrupts |
| * as only command aborts use the semaphore, and no commands are |
| * executed or aborted while we're here. |
| */ |
| sema_destroy(&nvme->n_abort_sema); |
| sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL, |
| SEMA_DRIVER, NULL); |
| |
| nvme->n_progress |= NVME_CTRL_LIMITS; |
| |
| if (nvme->n_idctl->id_mdts == 0) |
| nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536; |
| else |
| nvme->n_max_data_transfer_size = |
| 1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts); |
| |
| nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1; |
| |
| /* |
| * Limit n_max_data_transfer_size to what we can handle in one PRP. |
| * Chained PRPs are currently unsupported. |
| * |
| * This is a no-op on hardware which doesn't support a transfer size |
| * big enough to require chained PRPs. |
| */ |
| nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size, |
| (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize)); |
| |
| nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size; |
| |
| /* |
| * Make sure the minimum/maximum queue entry sizes are not |
| * larger/smaller than the default. |
| */ |
| |
| if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) || |
| ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) || |
| ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) || |
| ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t))) |
| goto fail; |
| |
| /* |
| * Check for the presence of a Volatile Write Cache. If present, |
| * enable or disable based on the value of the property |
| * volatile-write-cache-enable (default is enabled). |
| */ |
| nvme->n_write_cache_present = |
| nvme->n_idctl->id_vwc.vwc_present == 0 ? B_FALSE : B_TRUE; |
| |
| (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, |
| "volatile-write-cache-present", |
| nvme->n_write_cache_present ? 1 : 0); |
| |
| if (!nvme->n_write_cache_present) { |
| nvme->n_write_cache_enabled = B_FALSE; |
| } else if (nvme_write_cache_set(nvme, nvme->n_write_cache_enabled) |
| != 0) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!failed to %sable volatile write cache", |
| nvme->n_write_cache_enabled ? "en" : "dis"); |
| /* |
| * Assume the cache is (still) enabled. |
| */ |
| nvme->n_write_cache_enabled = B_TRUE; |
| } |
| |
| (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, |
| "volatile-write-cache-enable", |
| nvme->n_write_cache_enabled ? 1 : 0); |
| |
| /* |
| * Assume LBA Range Type feature is supported. If it isn't this |
| * will be set to B_FALSE by nvme_get_features(). |
| */ |
| nvme->n_lba_range_supported = B_TRUE; |
| |
| /* |
| * Check support for Autonomous Power State Transition. |
| */ |
| if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1)) |
| nvme->n_auto_pst_supported = |
| nvme->n_idctl->id_apsta.ap_sup == 0 ? B_FALSE : B_TRUE; |
| |
| /* |
| * Assume Software Progress Marker feature is supported. If it isn't |
| * this will be set to B_FALSE by nvme_get_features(). |
| */ |
| nvme->n_progress_supported = B_TRUE; |
| |
| /* |
| * Identify Namespaces |
| */ |
| nvme->n_namespace_count = nvme->n_idctl->id_nn; |
| |
| if (nvme->n_namespace_count == 0) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!controllers without namespaces are not supported"); |
| goto fail; |
| } |
| |
| if (nvme->n_namespace_count > NVME_MINOR_MAX) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!too many namespaces: %d, limiting to %d\n", |
| nvme->n_namespace_count, NVME_MINOR_MAX); |
| nvme->n_namespace_count = NVME_MINOR_MAX; |
| } |
| |
| nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) * |
| nvme->n_namespace_count, KM_SLEEP); |
| |
| for (i = 0; i != nvme->n_namespace_count; i++) { |
| mutex_init(&nvme->n_ns[i].ns_minor.nm_mutex, NULL, MUTEX_DRIVER, |
| NULL); |
| if (nvme_init_ns(nvme, i + 1) != DDI_SUCCESS) |
| goto fail; |
| } |
| |
| /* |
| * Try to set up MSI/MSI-X interrupts. |
| */ |
| if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX)) |
| != 0) { |
| nvme_release_interrupts(nvme); |
| |
| nqueues = MIN(UINT16_MAX, ncpus); |
| |
| if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, |
| nqueues) != DDI_SUCCESS) && |
| (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, |
| nqueues) != DDI_SUCCESS)) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!failed to setup MSI/MSI-X interrupts"); |
| goto fail; |
| } |
| } |
| |
| nqueues = nvme->n_intr_cnt; |
| |
| /* |
| * Create I/O queue pairs. |
| */ |
| |
| if (nvme_set_nqueues(nvme, &nqueues) != 0) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!failed to set number of I/O queues to %d", |
| nvme->n_intr_cnt); |
| goto fail; |
| } |
| |
| /* |
| * Reallocate I/O queue array |
| */ |
| kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *)); |
| nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) * |
| (nqueues + 1), KM_SLEEP); |
| nvme->n_ioq[0] = nvme->n_adminq; |
| |
| nvme->n_ioq_count = nqueues; |
| |
| /* |
| * If we got less queues than we asked for we might as well give |
| * some of the interrupt vectors back to the system. |
| */ |
| if (nvme->n_ioq_count < nvme->n_intr_cnt) { |
| nvme_release_interrupts(nvme); |
| |
| if (nvme_setup_interrupts(nvme, nvme->n_intr_type, |
| nvme->n_ioq_count) != DDI_SUCCESS) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!failed to reduce number of interrupts"); |
| goto fail; |
| } |
| } |
| |
| /* |
| * Alloc & register I/O queue pairs |
| */ |
| nvme->n_io_queue_len = |
| MIN(nvme->n_io_queue_len, nvme->n_max_queue_entries); |
| (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-queue-len", |
| nvme->n_io_queue_len); |
| |
| for (i = 1; i != nvme->n_ioq_count + 1; i++) { |
| if (nvme_alloc_qpair(nvme, nvme->n_io_queue_len, |
| &nvme->n_ioq[i], i) != DDI_SUCCESS) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!unable to allocate I/O qpair %d", i); |
| goto fail; |
| } |
| |
| if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i) != 0) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!unable to create I/O qpair %d", i); |
| goto fail; |
| } |
| } |
| |
| /* |
| * Post more asynchronous events commands to reduce event reporting |
| * latency as suggested by the spec. |
| */ |
| if (nvme->n_async_event_supported) { |
| for (i = 1; i != nvme->n_async_event_limit; i++) |
| nvme_async_event(nvme); |
| } |
| |
| return (DDI_SUCCESS); |
| |
| fail: |
| (void) nvme_reset(nvme, B_FALSE); |
| return (DDI_FAILURE); |
| } |
| |
| static uint_t |
| nvme_intr(caddr_t arg1, caddr_t arg2) |
| { |
| /*LINTED: E_PTR_BAD_CAST_ALIGN*/ |
| nvme_t *nvme = (nvme_t *)arg1; |
| int inum = (int)(uintptr_t)arg2; |
| int ccnt = 0; |
| int qnum; |
| nvme_cmd_t *cmd; |
| |
| if (inum >= nvme->n_intr_cnt) |
| return (DDI_INTR_UNCLAIMED); |
| |
| if (nvme->n_dead) |
| return (nvme->n_intr_type == DDI_INTR_TYPE_FIXED ? |
| DDI_INTR_UNCLAIMED : DDI_INTR_CLAIMED); |
| |
| /* |
| * The interrupt vector a queue uses is calculated as queue_idx % |
| * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array |
| * in steps of n_intr_cnt to process all queues using this vector. |
| */ |
| for (qnum = inum; |
| qnum < nvme->n_ioq_count + 1 && nvme->n_ioq[qnum] != NULL; |
| qnum += nvme->n_intr_cnt) { |
| while ((cmd = nvme_retrieve_cmd(nvme, nvme->n_ioq[qnum]))) { |
| taskq_dispatch_ent((taskq_t *)cmd->nc_nvme->n_cmd_taskq, |
| cmd->nc_callback, cmd, TQ_NOSLEEP, &cmd->nc_tqent); |
| ccnt++; |
| } |
| } |
| |
| return (ccnt > 0 ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED); |
| } |
| |
| static void |
| nvme_release_interrupts(nvme_t *nvme) |
| { |
| int i; |
| |
| for (i = 0; i < nvme->n_intr_cnt; i++) { |
| if |