blob: ec6d18ca917bfaa1f9c916952cbcfec4508213fb [file] [log] [blame]
/*
* This file and its contents are supplied under the terms of the
* Common Development and Distribution License ("CDDL"), version 1.0.
* You may only use this file in accordance with the terms of version
* 1.0 of the CDDL.
*
* A full copy of the text of the CDDL should have accompanied this
* source. A copy of the CDDL is also available via the Internet at
* http://www.illumos.org/license/CDDL.
*/
/*
* Copyright 2018 Nexenta Systems, Inc.
* Copyright 2016 Tegile Systems, Inc. All rights reserved.
* Copyright (c) 2016 The MathWorks, Inc. All rights reserved.
* Copyright 2017 Joyent, Inc.
*/
/*
* blkdev driver for NVMe compliant storage devices
*
* This driver was written to conform to version 1.2.1 of the NVMe
* specification. It may work with newer versions, but that is completely
* untested and disabled by default.
*
* The driver has only been tested on x86 systems and will not work on big-
* endian systems without changes to the code accessing registers and data
* structures used by the hardware.
*
*
* Interrupt Usage:
*
* The driver will use a single interrupt while configuring the device as the
* specification requires, but contrary to the specification it will try to use
* a single-message MSI(-X) or FIXED interrupt. Later in the attach process it
* will switch to multiple-message MSI(-X) if supported. The driver wants to
* have one interrupt vector per CPU, but it will work correctly if less are
* available. Interrupts can be shared by queues, the interrupt handler will
* iterate through the I/O queue array by steps of n_intr_cnt. Usually only
* the admin queue will share an interrupt with one I/O queue. The interrupt
* handler will retrieve completed commands from all queues sharing an interrupt
* vector and will post them to a taskq for completion processing.
*
*
* Command Processing:
*
* NVMe devices can have up to 65535 I/O queue pairs, with each queue holding up
* to 65536 I/O commands. The driver will configure one I/O queue pair per
* available interrupt vector, with the queue length usually much smaller than
* the maximum of 65536. If the hardware doesn't provide enough queues, fewer
* interrupt vectors will be used.
*
* Additionally the hardware provides a single special admin queue pair that can
* hold up to 4096 admin commands.
*
* From the hardware perspective both queues of a queue pair are independent,
* but they share some driver state: the command array (holding pointers to
* commands currently being processed by the hardware) and the active command
* counter. Access to a queue pair and the shared state is protected by
* nq_mutex.
*
* When a command is submitted to a queue pair the active command counter is
* incremented and a pointer to the command is stored in the command array. The
* array index is used as command identifier (CID) in the submission queue
* entry. Some commands may take a very long time to complete, and if the queue
* wraps around in that time a submission may find the next array slot to still
* be used by a long-running command. In this case the array is sequentially
* searched for the next free slot. The length of the command array is the same
* as the configured queue length. Queue overrun is prevented by the semaphore,
* so a command submission may block if the queue is full.
*
*
* Polled I/O Support:
*
* For kernel core dump support the driver can do polled I/O. As interrupts are
* turned off while dumping the driver will just submit a command in the regular
* way, and then repeatedly attempt a command retrieval until it gets the
* command back.
*
*
* Namespace Support:
*
* NVMe devices can have multiple namespaces, each being a independent data
* store. The driver supports multiple namespaces and creates a blkdev interface
* for each namespace found. Namespaces can have various attributes to support
* protection information. This driver does not support any of this and ignores
* namespaces that have these attributes.
*
* As of NVMe 1.1 namespaces can have an 64bit Extended Unique Identifier
* (EUI64). This driver uses the EUI64 if present to generate the devid and
* passes it to blkdev to use it in the device node names. As this is currently
* untested namespaces with EUI64 are ignored by default.
*
* We currently support only (2 << NVME_MINOR_INST_SHIFT) - 2 namespaces in a
* single controller. This is an artificial limit imposed by the driver to be
* able to address a reasonable number of controllers and namespaces using a
* 32bit minor node number.
*
*
* Minor nodes:
*
* For each NVMe device the driver exposes one minor node for the controller and
* one minor node for each namespace. The only operations supported by those
* minor nodes are open(9E), close(9E), and ioctl(9E). This serves as the
* interface for the nvmeadm(1M) utility.
*
*
* Blkdev Interface:
*
* This driver uses blkdev to do all the heavy lifting involved with presenting
* a disk device to the system. As a result, the processing of I/O requests is
* relatively simple as blkdev takes care of partitioning, boundary checks, DMA
* setup, and splitting of transfers into manageable chunks.
*
* I/O requests coming in from blkdev are turned into NVM commands and posted to
* an I/O queue. The queue is selected by taking the CPU id modulo the number of
* queues. There is currently no timeout handling of I/O commands.
*
* Blkdev also supports querying device/media information and generating a
* devid. The driver reports the best block size as determined by the namespace
* format back to blkdev as physical block size to support partition and block
* alignment. The devid is either based on the namespace EUI64, if present, or
* composed using the device vendor ID, model number, serial number, and the
* namespace ID.
*
*
* Error Handling:
*
* Error handling is currently limited to detecting fatal hardware errors,
* either by asynchronous events, or synchronously through command status or
* admin command timeouts. In case of severe errors the device is fenced off,
* all further requests will return EIO. FMA is then called to fault the device.
*
* The hardware has a limit for outstanding asynchronous event requests. Before
* this limit is known the driver assumes it is at least 1 and posts a single
* asynchronous request. Later when the limit is known more asynchronous event
* requests are posted to allow quicker reception of error information. When an
* asynchronous event is posted by the hardware the driver will parse the error
* status fields and log information or fault the device, depending on the
* severity of the asynchronous event. The asynchronous event request is then
* reused and posted to the admin queue again.
*
* On command completion the command status is checked for errors. In case of
* errors indicating a driver bug the driver panics. Almost all other error
* status values just cause EIO to be returned.
*
* Command timeouts are currently detected for all admin commands except
* asynchronous event requests. If a command times out and the hardware appears
* to be healthy the driver attempts to abort the command. The original command
* timeout is also applied to the abort command. If the abort times out too the
* driver assumes the device to be dead, fences it off, and calls FMA to retire
* it. In all other cases the aborted command should return immediately with a
* status indicating it was aborted, and the driver will wait indefinitely for
* that to happen. No timeout handling of normal I/O commands is presently done.
*
* Any command that times out due to the controller dropping dead will be put on
* nvme_lost_cmds list if it references DMA memory. This will prevent the DMA
* memory being reused by the system and later be written to by a "dead" NVMe
* controller.
*
*
* Locking:
*
* Each queue pair has its own nq_mutex, which must be held when accessing the
* associated queue registers or the shared state of the queue pair. Callers of
* nvme_unqueue_cmd() must make sure that nq_mutex is held, while
* nvme_submit_{admin,io}_cmd() and nvme_retrieve_cmd() take care of this
* themselves.
*
* Each command also has its own nc_mutex, which is associated with the
* condition variable nc_cv. It is only used on admin commands which are run
* synchronously. In that case it must be held across calls to
* nvme_submit_{admin,io}_cmd() and nvme_wait_cmd(), which is taken care of by
* nvme_admin_cmd(). It must also be held whenever the completion state of the
* command is changed or while a admin command timeout is handled.
*
* If both nc_mutex and nq_mutex must be held, nc_mutex must be acquired first.
* More than one nc_mutex may only be held when aborting commands. In this case,
* the nc_mutex of the command to be aborted must be held across the call to
* nvme_abort_cmd() to prevent the command from completing while the abort is in
* progress.
*
* Each minor node has its own nm_mutex, which protects the open count nm_ocnt
* and exclusive-open flag nm_oexcl.
*
*
* Quiesce / Fast Reboot:
*
* The driver currently does not support fast reboot. A quiesce(9E) entry point
* is still provided which is used to send a shutdown notification to the
* device.
*
*
* Driver Configuration:
*
* The following driver properties can be changed to control some aspects of the
* drivers operation:
* - strict-version: can be set to 0 to allow devices conforming to newer
* versions or namespaces with EUI64 to be used
* - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor
* specific command status as a fatal error leading device faulting
* - admin-queue-len: the maximum length of the admin queue (16-4096)
* - io-queue-len: the maximum length of the I/O queues (16-65536)
* - async-event-limit: the maximum number of asynchronous event requests to be
* posted by the driver
* - volatile-write-cache-enable: can be set to 0 to disable the volatile write
* cache
* - min-phys-block-size: the minimum physical block size to report to blkdev,
* which is among other things the basis for ZFS vdev ashift
*
*
* TODO:
* - figure out sane default for I/O queue depth reported to blkdev
* - FMA handling of media errors
* - support for devices supporting very large I/O requests using chained PRPs
* - support for configuring hardware parameters like interrupt coalescing
* - support for media formatting and hard partitioning into namespaces
* - support for big-endian systems
* - support for fast reboot
* - support for firmware updates
* - support for NVMe Subsystem Reset (1.1)
* - support for Scatter/Gather lists (1.1)
* - support for Reservations (1.1)
* - support for power management
*/
#include <sys/byteorder.h>
#ifdef _BIG_ENDIAN
#error nvme driver needs porting for big-endian platforms
#endif
#include <sys/modctl.h>
#include <sys/conf.h>
#include <sys/devops.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/sunndi.h>
#include <sys/bitmap.h>
#include <sys/sysmacros.h>
#include <sys/param.h>
#include <sys/varargs.h>
#include <sys/cpuvar.h>
#include <sys/disp.h>
#include <sys/blkdev.h>
#include <sys/atomic.h>
#include <sys/archsystm.h>
#include <sys/sata/sata_hba.h>
#include <sys/stat.h>
#include <sys/policy.h>
#include <sys/list.h>
#include <sys/nvme.h>
#ifdef __x86
#include <sys/x86_archext.h>
#endif
#include "nvme_reg.h"
#include "nvme_var.h"
/* NVMe spec version supported */
static const int nvme_version_major = 1;
static const int nvme_version_minor = 2;
/* tunable for admin command timeout in seconds, default is 1s */
int nvme_admin_cmd_timeout = 1;
/* tunable for FORMAT NVM command timeout in seconds, default is 600s */
int nvme_format_cmd_timeout = 600;
static int nvme_attach(dev_info_t *, ddi_attach_cmd_t);
static int nvme_detach(dev_info_t *, ddi_detach_cmd_t);
static int nvme_quiesce(dev_info_t *);
static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *);
static int nvme_setup_interrupts(nvme_t *, int, int);
static void nvme_release_interrupts(nvme_t *);
static uint_t nvme_intr(caddr_t, caddr_t);
static void nvme_shutdown(nvme_t *, int, boolean_t);
static boolean_t nvme_reset(nvme_t *, boolean_t);
static int nvme_init(nvme_t *);
static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int);
static void nvme_free_cmd(nvme_cmd_t *);
static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t,
bd_xfer_t *);
static void nvme_admin_cmd(nvme_cmd_t *, int);
static void nvme_submit_admin_cmd(nvme_qpair_t *, nvme_cmd_t *);
static int nvme_submit_io_cmd(nvme_qpair_t *, nvme_cmd_t *);
static void nvme_submit_cmd_common(nvme_qpair_t *, nvme_cmd_t *);
static nvme_cmd_t *nvme_unqueue_cmd(nvme_t *, nvme_qpair_t *, int);
static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *);
static void nvme_wait_cmd(nvme_cmd_t *, uint_t);
static void nvme_wakeup_cmd(void *);
static void nvme_async_event_task(void *);
static int nvme_check_unknown_cmd_status(nvme_cmd_t *);
static int nvme_check_vendor_cmd_status(nvme_cmd_t *);
static int nvme_check_integrity_cmd_status(nvme_cmd_t *);
static int nvme_check_specific_cmd_status(nvme_cmd_t *);
static int nvme_check_generic_cmd_status(nvme_cmd_t *);
static inline int nvme_check_cmd_status(nvme_cmd_t *);
static int nvme_abort_cmd(nvme_cmd_t *, uint_t);
static void nvme_async_event(nvme_t *);
static int nvme_format_nvm(nvme_t *, uint32_t, uint8_t, boolean_t, uint8_t,
boolean_t, uint8_t);
static int nvme_get_logpage(nvme_t *, void **, size_t *, uint8_t, ...);
static int nvme_identify(nvme_t *, uint32_t, void **);
static int nvme_set_features(nvme_t *, uint32_t, uint8_t, uint32_t,
uint32_t *);
static int nvme_get_features(nvme_t *, uint32_t, uint8_t, uint32_t *,
void **, size_t *);
static int nvme_write_cache_set(nvme_t *, boolean_t);
static int nvme_set_nqueues(nvme_t *, uint16_t *);
static void nvme_free_dma(nvme_dma_t *);
static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *,
nvme_dma_t **);
static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t,
nvme_dma_t **);
static void nvme_free_qpair(nvme_qpair_t *);
static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, int);
static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t);
static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t);
static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t);
static inline uint64_t nvme_get64(nvme_t *, uintptr_t);
static inline uint32_t nvme_get32(nvme_t *, uintptr_t);
static boolean_t nvme_check_regs_hdl(nvme_t *);
static boolean_t nvme_check_dma_hdl(nvme_dma_t *);
static int nvme_fill_prp(nvme_cmd_t *, bd_xfer_t *);
static void nvme_bd_xfer_done(void *);
static void nvme_bd_driveinfo(void *, bd_drive_t *);
static int nvme_bd_mediainfo(void *, bd_media_t *);
static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t);
static int nvme_bd_read(void *, bd_xfer_t *);
static int nvme_bd_write(void *, bd_xfer_t *);
static int nvme_bd_sync(void *, bd_xfer_t *);
static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *);
static int nvme_prp_dma_constructor(void *, void *, int);
static void nvme_prp_dma_destructor(void *, void *);
static void nvme_prepare_devid(nvme_t *, uint32_t);
static int nvme_open(dev_t *, int, int, cred_t *);
static int nvme_close(dev_t, int, int, cred_t *);
static int nvme_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
#define NVME_MINOR_INST_SHIFT 9
#define NVME_MINOR(inst, nsid) (((inst) << NVME_MINOR_INST_SHIFT) | (nsid))
#define NVME_MINOR_INST(minor) ((minor) >> NVME_MINOR_INST_SHIFT)
#define NVME_MINOR_NSID(minor) ((minor) & ((1 << NVME_MINOR_INST_SHIFT) - 1))
#define NVME_MINOR_MAX (NVME_MINOR(1, 0) - 2)
static void *nvme_state;
static kmem_cache_t *nvme_cmd_cache;
/*
* DMA attributes for queue DMA memory
*
* Queue DMA memory must be page aligned. The maximum length of a queue is
* 65536 entries, and an entry can be 64 bytes long.
*/
static ddi_dma_attr_t nvme_queue_dma_attr = {
.dma_attr_version = DMA_ATTR_V0,
.dma_attr_addr_lo = 0,
.dma_attr_addr_hi = 0xffffffffffffffffULL,
.dma_attr_count_max = (UINT16_MAX + 1) * sizeof (nvme_sqe_t) - 1,
.dma_attr_align = 0x1000,
.dma_attr_burstsizes = 0x7ff,
.dma_attr_minxfer = 0x1000,
.dma_attr_maxxfer = (UINT16_MAX + 1) * sizeof (nvme_sqe_t),
.dma_attr_seg = 0xffffffffffffffffULL,
.dma_attr_sgllen = 1,
.dma_attr_granular = 1,
.dma_attr_flags = 0,
};
/*
* DMA attributes for transfers using Physical Region Page (PRP) entries
*
* A PRP entry describes one page of DMA memory using the page size specified
* in the controller configuration's memory page size register (CC.MPS). It uses
* a 64bit base address aligned to this page size. There is no limitation on
* chaining PRPs together for arbitrarily large DMA transfers.
*/
static ddi_dma_attr_t nvme_prp_dma_attr = {
.dma_attr_version = DMA_ATTR_V0,
.dma_attr_addr_lo = 0,
.dma_attr_addr_hi = 0xffffffffffffffffULL,
.dma_attr_count_max = 0xfff,
.dma_attr_align = 0x1000,
.dma_attr_burstsizes = 0x7ff,
.dma_attr_minxfer = 0x1000,
.dma_attr_maxxfer = 0x1000,
.dma_attr_seg = 0xfff,
.dma_attr_sgllen = -1,
.dma_attr_granular = 1,
.dma_attr_flags = 0,
};
/*
* DMA attributes for transfers using scatter/gather lists
*
* A SGL entry describes a chunk of DMA memory using a 64bit base address and a
* 32bit length field. SGL Segment and SGL Last Segment entries require the
* length to be a multiple of 16 bytes.
*/
static ddi_dma_attr_t nvme_sgl_dma_attr = {
.dma_attr_version = DMA_ATTR_V0,
.dma_attr_addr_lo = 0,
.dma_attr_addr_hi = 0xffffffffffffffffULL,
.dma_attr_count_max = 0xffffffffUL,
.dma_attr_align = 1,
.dma_attr_burstsizes = 0x7ff,
.dma_attr_minxfer = 0x10,
.dma_attr_maxxfer = 0xfffffffffULL,
.dma_attr_seg = 0xffffffffffffffffULL,
.dma_attr_sgllen = -1,
.dma_attr_granular = 0x10,
.dma_attr_flags = 0
};
static ddi_device_acc_attr_t nvme_reg_acc_attr = {
.devacc_attr_version = DDI_DEVICE_ATTR_V0,
.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC,
.devacc_attr_dataorder = DDI_STRICTORDER_ACC
};
static struct cb_ops nvme_cb_ops = {
.cb_open = nvme_open,
.cb_close = nvme_close,
.cb_strategy = nodev,
.cb_print = nodev,
.cb_dump = nodev,
.cb_read = nodev,
.cb_write = nodev,
.cb_ioctl = nvme_ioctl,
.cb_devmap = nodev,
.cb_mmap = nodev,
.cb_segmap = nodev,
.cb_chpoll = nochpoll,
.cb_prop_op = ddi_prop_op,
.cb_str = 0,
.cb_flag = D_NEW | D_MP,
.cb_rev = CB_REV,
.cb_aread = nodev,
.cb_awrite = nodev
};
static struct dev_ops nvme_dev_ops = {
.devo_rev = DEVO_REV,
.devo_refcnt = 0,
.devo_getinfo = ddi_no_info,
.devo_identify = nulldev,
.devo_probe = nulldev,
.devo_attach = nvme_attach,
.devo_detach = nvme_detach,
.devo_reset = nodev,
.devo_cb_ops = &nvme_cb_ops,
.devo_bus_ops = NULL,
.devo_power = NULL,
.devo_quiesce = nvme_quiesce,
};
static struct modldrv nvme_modldrv = {
.drv_modops = &mod_driverops,
.drv_linkinfo = "NVMe v1.1b",
.drv_dev_ops = &nvme_dev_ops
};
static struct modlinkage nvme_modlinkage = {
.ml_rev = MODREV_1,
.ml_linkage = { &nvme_modldrv, NULL }
};
static bd_ops_t nvme_bd_ops = {
.o_version = BD_OPS_VERSION_0,
.o_drive_info = nvme_bd_driveinfo,
.o_media_info = nvme_bd_mediainfo,
.o_devid_init = nvme_bd_devid,
.o_sync_cache = nvme_bd_sync,
.o_read = nvme_bd_read,
.o_write = nvme_bd_write,
};
/*
* This list will hold commands that have timed out and couldn't be aborted.
* As we don't know what the hardware may still do with the DMA memory we can't
* free them, so we'll keep them forever on this list where we can easily look
* at them with mdb.
*/
static struct list nvme_lost_cmds;
static kmutex_t nvme_lc_mutex;
int
_init(void)
{
int error;
error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1);
if (error != DDI_SUCCESS)
return (error);
nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache",
sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
mutex_init(&nvme_lc_mutex, NULL, MUTEX_DRIVER, NULL);
list_create(&nvme_lost_cmds, sizeof (nvme_cmd_t),
offsetof(nvme_cmd_t, nc_list));
bd_mod_init(&nvme_dev_ops);
error = mod_install(&nvme_modlinkage);
if (error != DDI_SUCCESS) {
ddi_soft_state_fini(&nvme_state);
mutex_destroy(&nvme_lc_mutex);
list_destroy(&nvme_lost_cmds);
bd_mod_fini(&nvme_dev_ops);
}
return (error);
}
int
_fini(void)
{
int error;
if (!list_is_empty(&nvme_lost_cmds))
return (DDI_FAILURE);
error = mod_remove(&nvme_modlinkage);
if (error == DDI_SUCCESS) {
ddi_soft_state_fini(&nvme_state);
kmem_cache_destroy(nvme_cmd_cache);
mutex_destroy(&nvme_lc_mutex);
list_destroy(&nvme_lost_cmds);
bd_mod_fini(&nvme_dev_ops);
}
return (error);
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&nvme_modlinkage, modinfop));
}
static inline void
nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val)
{
ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
/*LINTED: E_BAD_PTR_CAST_ALIGN*/
ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val);
}
static inline void
nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val)
{
ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
/*LINTED: E_BAD_PTR_CAST_ALIGN*/
ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val);
}
static inline uint64_t
nvme_get64(nvme_t *nvme, uintptr_t reg)
{
uint64_t val;
ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
/*LINTED: E_BAD_PTR_CAST_ALIGN*/
val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg));
return (val);
}
static inline uint32_t
nvme_get32(nvme_t *nvme, uintptr_t reg)
{
uint32_t val;
ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
/*LINTED: E_BAD_PTR_CAST_ALIGN*/
val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg));
return (val);
}
static boolean_t
nvme_check_regs_hdl(nvme_t *nvme)
{
ddi_fm_error_t error;
ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION);
if (error.fme_status != DDI_FM_OK)
return (B_TRUE);
return (B_FALSE);
}
static boolean_t
nvme_check_dma_hdl(nvme_dma_t *dma)
{
ddi_fm_error_t error;
if (dma == NULL)
return (B_FALSE);
ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION);
if (error.fme_status != DDI_FM_OK)
return (B_TRUE);
return (B_FALSE);
}
static void
nvme_free_dma_common(nvme_dma_t *dma)
{
if (dma->nd_dmah != NULL)
(void) ddi_dma_unbind_handle(dma->nd_dmah);
if (dma->nd_acch != NULL)
ddi_dma_mem_free(&dma->nd_acch);
if (dma->nd_dmah != NULL)
ddi_dma_free_handle(&dma->nd_dmah);
}
static void
nvme_free_dma(nvme_dma_t *dma)
{
nvme_free_dma_common(dma);
kmem_free(dma, sizeof (*dma));
}
/* ARGSUSED */
static void
nvme_prp_dma_destructor(void *buf, void *private)
{
nvme_dma_t *dma = (nvme_dma_t *)buf;
nvme_free_dma_common(dma);
}
static int
nvme_alloc_dma_common(nvme_t *nvme, nvme_dma_t *dma,
size_t len, uint_t flags, ddi_dma_attr_t *dma_attr)
{
if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL,
&dma->nd_dmah) != DDI_SUCCESS) {
/*
* Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and
* the only other possible error is DDI_DMA_BADATTR which
* indicates a driver bug which should cause a panic.
*/
dev_err(nvme->n_dip, CE_PANIC,
"!failed to get DMA handle, check DMA attributes");
return (DDI_FAILURE);
}
/*
* ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified
* or the flags are conflicting, which isn't the case here.
*/
(void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr,
DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp,
&dma->nd_len, &dma->nd_acch);
if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp,
dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
&dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) {
dev_err(nvme->n_dip, CE_WARN,
"!failed to bind DMA memory");
atomic_inc_32(&nvme->n_dma_bind_err);
nvme_free_dma_common(dma);
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
static int
nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags,
ddi_dma_attr_t *dma_attr, nvme_dma_t **ret)
{
nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP);
if (nvme_alloc_dma_common(nvme, dma, len, flags, dma_attr) !=
DDI_SUCCESS) {
*ret = NULL;
kmem_free(dma, sizeof (nvme_dma_t));
return (DDI_FAILURE);
}
bzero(dma->nd_memp, dma->nd_len);
*ret = dma;
return (DDI_SUCCESS);
}
/* ARGSUSED */
static int
nvme_prp_dma_constructor(void *buf, void *private, int flags)
{
nvme_dma_t *dma = (nvme_dma_t *)buf;
nvme_t *nvme = (nvme_t *)private;
dma->nd_dmah = NULL;
dma->nd_acch = NULL;
if (nvme_alloc_dma_common(nvme, dma, nvme->n_pagesize,
DDI_DMA_READ, &nvme->n_prp_dma_attr) != DDI_SUCCESS) {
return (-1);
}
ASSERT(dma->nd_ncookie == 1);
dma->nd_cached = B_TRUE;
return (0);
}
static int
nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len,
uint_t flags, nvme_dma_t **dma)
{
uint32_t len = nentry * qe_len;
ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr;
len = roundup(len, nvme->n_pagesize);
q_dma_attr.dma_attr_minxfer = len;
if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma)
!= DDI_SUCCESS) {
dev_err(nvme->n_dip, CE_WARN,
"!failed to get DMA memory for queue");
goto fail;
}
if ((*dma)->nd_ncookie != 1) {
dev_err(nvme->n_dip, CE_WARN,
"!got too many cookies for queue DMA");
goto fail;
}
return (DDI_SUCCESS);
fail:
if (*dma) {
nvme_free_dma(*dma);
*dma = NULL;
}
return (DDI_FAILURE);
}
static void
nvme_free_qpair(nvme_qpair_t *qp)
{
int i;
mutex_destroy(&qp->nq_mutex);
sema_destroy(&qp->nq_sema);
if (qp->nq_sqdma != NULL)
nvme_free_dma(qp->nq_sqdma);
if (qp->nq_cqdma != NULL)
nvme_free_dma(qp->nq_cqdma);
if (qp->nq_active_cmds > 0)
for (i = 0; i != qp->nq_nentry; i++)
if (qp->nq_cmd[i] != NULL)
nvme_free_cmd(qp->nq_cmd[i]);
if (qp->nq_cmd != NULL)
kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry);
kmem_free(qp, sizeof (nvme_qpair_t));
}
static int
nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp,
int idx)
{
nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP);
mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER,
DDI_INTR_PRI(nvme->n_intr_pri));
sema_init(&qp->nq_sema, nentry, NULL, SEMA_DRIVER, NULL);
if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t),
DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS)
goto fail;
if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t),
DDI_DMA_READ, &qp->nq_cqdma) != DDI_SUCCESS)
goto fail;
qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp;
qp->nq_cq = (nvme_cqe_t *)qp->nq_cqdma->nd_memp;
qp->nq_nentry = nentry;
qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx);
qp->nq_cqhdbl = NVME_REG_CQHDBL(nvme, idx);
qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP);
qp->nq_next_cmd = 0;
*nqp = qp;
return (DDI_SUCCESS);
fail:
nvme_free_qpair(qp);
*nqp = NULL;
return (DDI_FAILURE);
}
static nvme_cmd_t *
nvme_alloc_cmd(nvme_t *nvme, int kmflag)
{
nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag);
if (cmd == NULL)
return (cmd);
bzero(cmd, sizeof (nvme_cmd_t));
cmd->nc_nvme = nvme;
mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER,
DDI_INTR_PRI(nvme->n_intr_pri));
cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL);
return (cmd);
}
static void
nvme_free_cmd(nvme_cmd_t *cmd)
{
/* Don't free commands on the lost commands list. */
if (list_link_active(&cmd->nc_list))
return;
if (cmd->nc_dma) {
if (cmd->nc_dma->nd_cached)
kmem_cache_free(cmd->nc_nvme->n_prp_cache,
cmd->nc_dma);
else
nvme_free_dma(cmd->nc_dma);
cmd->nc_dma = NULL;
}
cv_destroy(&cmd->nc_cv);
mutex_destroy(&cmd->nc_mutex);
kmem_cache_free(nvme_cmd_cache, cmd);
}
static void
nvme_submit_admin_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
{
sema_p(&qp->nq_sema);
nvme_submit_cmd_common(qp, cmd);
}
static int
nvme_submit_io_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
{
if (sema_tryp(&qp->nq_sema) == 0)
return (EAGAIN);
nvme_submit_cmd_common(qp, cmd);
return (0);
}
static void
nvme_submit_cmd_common(nvme_qpair_t *qp, nvme_cmd_t *cmd)
{
nvme_reg_sqtdbl_t tail = { 0 };
mutex_enter(&qp->nq_mutex);
cmd->nc_completed = B_FALSE;
/*
* Try to insert the cmd into the active cmd array at the nq_next_cmd
* slot. If the slot is already occupied advance to the next slot and
* try again. This can happen for long running commands like async event
* requests.
*/
while (qp->nq_cmd[qp->nq_next_cmd] != NULL)
qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
qp->nq_cmd[qp->nq_next_cmd] = cmd;
qp->nq_active_cmds++;
cmd->nc_sqe.sqe_cid = qp->nq_next_cmd;
bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t));
(void) ddi_dma_sync(qp->nq_sqdma->nd_dmah,
sizeof (nvme_sqe_t) * qp->nq_sqtail,
sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV);
qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry;
nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r);
mutex_exit(&qp->nq_mutex);
}
static nvme_cmd_t *
nvme_unqueue_cmd(nvme_t *nvme, nvme_qpair_t *qp, int cid)
{
nvme_cmd_t *cmd;
ASSERT(mutex_owned(&qp->nq_mutex));
ASSERT3S(cid, <, qp->nq_nentry);
cmd = qp->nq_cmd[cid];
qp->nq_cmd[cid] = NULL;
ASSERT3U(qp->nq_active_cmds, >, 0);
qp->nq_active_cmds--;
sema_v(&qp->nq_sema);
ASSERT3P(cmd, !=, NULL);
ASSERT3P(cmd->nc_nvme, ==, nvme);
ASSERT3S(cmd->nc_sqe.sqe_cid, ==, cid);
return (cmd);
}
static nvme_cmd_t *
nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp)
{
nvme_reg_cqhdbl_t head = { 0 };
nvme_cqe_t *cqe;
nvme_cmd_t *cmd;
(void) ddi_dma_sync(qp->nq_cqdma->nd_dmah, 0,
sizeof (nvme_cqe_t) * qp->nq_nentry, DDI_DMA_SYNC_FORKERNEL);
mutex_enter(&qp->nq_mutex);
cqe = &qp->nq_cq[qp->nq_cqhead];
/* Check phase tag of CQE. Hardware inverts it for new entries. */
if (cqe->cqe_sf.sf_p == qp->nq_phase) {
mutex_exit(&qp->nq_mutex);
return (NULL);
}
ASSERT(nvme->n_ioq[cqe->cqe_sqid] == qp);
cmd = nvme_unqueue_cmd(nvme, qp, cqe->cqe_cid);
ASSERT(cmd->nc_sqid == cqe->cqe_sqid);
bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t));
qp->nq_sqhead = cqe->cqe_sqhd;
head.b.cqhdbl_cqh = qp->nq_cqhead = (qp->nq_cqhead + 1) % qp->nq_nentry;
/* Toggle phase on wrap-around. */
if (qp->nq_cqhead == 0)
qp->nq_phase = qp->nq_phase ? 0 : 1;
nvme_put32(cmd->nc_nvme, qp->nq_cqhdbl, head.r);
mutex_exit(&qp->nq_mutex);
return (cmd);
}
static int
nvme_check_unknown_cmd_status(nvme_cmd_t *cmd)
{
nvme_cqe_t *cqe = &cmd->nc_cqe;
dev_err(cmd->nc_nvme->n_dip, CE_WARN,
"!unknown command status received: opc = %x, sqid = %d, cid = %d, "
"sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
if (cmd->nc_xfer != NULL)
bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
if (cmd->nc_nvme->n_strict_version) {
cmd->nc_nvme->n_dead = B_TRUE;
ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
}
return (EIO);
}
static int
nvme_check_vendor_cmd_status(nvme_cmd_t *cmd)
{
nvme_cqe_t *cqe = &cmd->nc_cqe;
dev_err(cmd->nc_nvme->n_dip, CE_WARN,
"!unknown command status received: opc = %x, sqid = %d, cid = %d, "
"sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
if (!cmd->nc_nvme->n_ignore_unknown_vendor_status) {
cmd->nc_nvme->n_dead = B_TRUE;
ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
}
return (EIO);
}
static int
nvme_check_integrity_cmd_status(nvme_cmd_t *cmd)
{
nvme_cqe_t *cqe = &cmd->nc_cqe;
switch (cqe->cqe_sf.sf_sc) {
case NVME_CQE_SC_INT_NVM_WRITE:
/* write fail */
/* TODO: post ereport */
if (cmd->nc_xfer != NULL)
bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
return (EIO);
case NVME_CQE_SC_INT_NVM_READ:
/* read fail */
/* TODO: post ereport */
if (cmd->nc_xfer != NULL)
bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
return (EIO);
default:
return (nvme_check_unknown_cmd_status(cmd));
}
}
static int
nvme_check_generic_cmd_status(nvme_cmd_t *cmd)
{
nvme_cqe_t *cqe = &cmd->nc_cqe;
switch (cqe->cqe_sf.sf_sc) {
case NVME_CQE_SC_GEN_SUCCESS:
return (0);
/*
* Errors indicating a bug in the driver should cause a panic.
*/
case NVME_CQE_SC_GEN_INV_OPC:
/* Invalid Command Opcode */
if (!cmd->nc_dontpanic)
dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
"programming error: invalid opcode in cmd %p",
(void *)cmd);
return (EINVAL);
case NVME_CQE_SC_GEN_INV_FLD:
/* Invalid Field in Command */
if (!cmd->nc_dontpanic)
dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
"programming error: invalid field in cmd %p",
(void *)cmd);
return (EIO);
case NVME_CQE_SC_GEN_ID_CNFL:
/* Command ID Conflict */
dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
"cmd ID conflict in cmd %p", (void *)cmd);
return (0);
case NVME_CQE_SC_GEN_INV_NS:
/* Invalid Namespace or Format */
if (!cmd->nc_dontpanic)
dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
"programming error: invalid NS/format in cmd %p",
(void *)cmd);
return (EINVAL);
case NVME_CQE_SC_GEN_NVM_LBA_RANGE:
/* LBA Out Of Range */
dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
"LBA out of range in cmd %p", (void *)cmd);
return (0);
/*
* Non-fatal errors, handle gracefully.
*/
case NVME_CQE_SC_GEN_DATA_XFR_ERR:
/* Data Transfer Error (DMA) */
/* TODO: post ereport */
atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err);
if (cmd->nc_xfer != NULL)
bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
return (EIO);
case NVME_CQE_SC_GEN_INTERNAL_ERR:
/*
* Internal Error. The spec (v1.0, section 4.5.1.2) says
* detailed error information is returned as async event,
* so we pretty much ignore the error here and handle it
* in the async event handler.
*/
atomic_inc_32(&cmd->nc_nvme->n_internal_err);
if (cmd->nc_xfer != NULL)
bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
return (EIO);
case NVME_CQE_SC_GEN_ABORT_REQUEST:
/*
* Command Abort Requested. This normally happens only when a
* command times out.
*/
/* TODO: post ereport or change blkdev to handle this? */
atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err);
return (ECANCELED);
case NVME_CQE_SC_GEN_ABORT_PWRLOSS:
/* Command Aborted due to Power Loss Notification */
ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
cmd->nc_nvme->n_dead = B_TRUE;
return (EIO);
case NVME_CQE_SC_GEN_ABORT_SQ_DEL:
/* Command Aborted due to SQ Deletion */
atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del);
return (EIO);
case NVME_CQE_SC_GEN_NVM_CAP_EXC:
/* Capacity Exceeded */
atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc);
if (cmd->nc_xfer != NULL)
bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
return (EIO);
case NVME_CQE_SC_GEN_NVM_NS_NOTRDY:
/* Namespace Not Ready */
atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy);
if (cmd->nc_xfer != NULL)
bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
return (EIO);
default:
return (nvme_check_unknown_cmd_status(cmd));
}
}
static int
nvme_check_specific_cmd_status(nvme_cmd_t *cmd)
{
nvme_cqe_t *cqe = &cmd->nc_cqe;
switch (cqe->cqe_sf.sf_sc) {
case NVME_CQE_SC_SPC_INV_CQ:
/* Completion Queue Invalid */
ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE);
atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err);
return (EINVAL);
case NVME_CQE_SC_SPC_INV_QID:
/* Invalid Queue Identifier */
ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE ||
cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE ||
cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err);
return (EINVAL);
case NVME_CQE_SC_SPC_MAX_QSZ_EXC:
/* Max Queue Size Exceeded */
ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc);
return (EINVAL);
case NVME_CQE_SC_SPC_ABRT_CMD_EXC:
/* Abort Command Limit Exceeded */
ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT);
dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
"abort command limit exceeded in cmd %p", (void *)cmd);
return (0);
case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC:
/* Async Event Request Limit Exceeded */
ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT);
dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
"async event request limit exceeded in cmd %p",
(void *)cmd);
return (0);
case NVME_CQE_SC_SPC_INV_INT_VECT:
/* Invalid Interrupt Vector */
ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect);
return (EINVAL);
case NVME_CQE_SC_SPC_INV_LOG_PAGE:
/* Invalid Log Page */
ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE);
atomic_inc_32(&cmd->nc_nvme->n_inv_log_page);
return (EINVAL);
case NVME_CQE_SC_SPC_INV_FORMAT:
/* Invalid Format */
ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT);
atomic_inc_32(&cmd->nc_nvme->n_inv_format);
if (cmd->nc_xfer != NULL)
bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
return (EINVAL);
case NVME_CQE_SC_SPC_INV_Q_DEL:
/* Invalid Queue Deletion */
ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
atomic_inc_32(&cmd->nc_nvme->n_inv_q_del);
return (EINVAL);
case NVME_CQE_SC_SPC_NVM_CNFL_ATTR:
/* Conflicting Attributes */
ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT ||
cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr);
if (cmd->nc_xfer != NULL)
bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
return (EINVAL);
case NVME_CQE_SC_SPC_NVM_INV_PROT:
/* Invalid Protection Information */
ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE ||
cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
atomic_inc_32(&cmd->nc_nvme->n_inv_prot);
if (cmd->nc_xfer != NULL)
bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
return (EINVAL);
case NVME_CQE_SC_SPC_NVM_READONLY:
/* Write to Read Only Range */
ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
atomic_inc_32(&cmd->nc_nvme->n_readonly);
if (cmd->nc_xfer != NULL)
bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
return (EROFS);
default:
return (nvme_check_unknown_cmd_status(cmd));
}
}
static inline int
nvme_check_cmd_status(nvme_cmd_t *cmd)
{
nvme_cqe_t *cqe = &cmd->nc_cqe;
/*
* Take a shortcut if the controller is dead, or if
* command status indicates no error.
*/
if (cmd->nc_nvme->n_dead)
return (EIO);
if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS)
return (0);
if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC)
return (nvme_check_generic_cmd_status(cmd));
else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC)
return (nvme_check_specific_cmd_status(cmd));
else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY)
return (nvme_check_integrity_cmd_status(cmd));
else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR)
return (nvme_check_vendor_cmd_status(cmd));
return (nvme_check_unknown_cmd_status(cmd));
}
static int
nvme_abort_cmd(nvme_cmd_t *abort_cmd, uint_t sec)
{
nvme_t *nvme = abort_cmd->nc_nvme;
nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
nvme_abort_cmd_t ac = { 0 };
int ret = 0;
sema_p(&nvme->n_abort_sema);
ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid;
ac.b.ac_sqid = abort_cmd->nc_sqid;
cmd->nc_sqid = 0;
cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT;
cmd->nc_callback = nvme_wakeup_cmd;
cmd->nc_sqe.sqe_cdw10 = ac.r;
/*
* Send the ABORT to the hardware. The ABORT command will return _after_
* the aborted command has completed (aborted or otherwise), but since
* we still hold the aborted command's mutex its callback hasn't been
* processed yet.
*/
nvme_admin_cmd(cmd, sec);
sema_v(&nvme->n_abort_sema);
if ((ret = nvme_check_cmd_status(cmd)) != 0) {
dev_err(nvme->n_dip, CE_WARN,
"!ABORT failed with sct = %x, sc = %x",
cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
atomic_inc_32(&nvme->n_abort_failed);
} else {
dev_err(nvme->n_dip, CE_WARN,
"!ABORT of command %d/%d %ssuccessful",
abort_cmd->nc_sqe.sqe_cid, abort_cmd->nc_sqid,
cmd->nc_cqe.cqe_dw0 & 1 ? "un" : "");
if ((cmd->nc_cqe.cqe_dw0 & 1) == 0)
atomic_inc_32(&nvme->n_cmd_aborted);
}
nvme_free_cmd(cmd);
return (ret);
}
/*
* nvme_wait_cmd -- wait for command completion or timeout
*
* In case of a serious error or a timeout of the abort command the hardware
* will be declared dead and FMA will be notified.
*/
static void
nvme_wait_cmd(nvme_cmd_t *cmd, uint_t sec)
{
clock_t timeout = ddi_get_lbolt() + drv_usectohz(sec * MICROSEC);
nvme_t *nvme = cmd->nc_nvme;
nvme_reg_csts_t csts;
nvme_qpair_t *qp;
ASSERT(mutex_owned(&cmd->nc_mutex));
while (!cmd->nc_completed) {
if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1)
break;
}
if (cmd->nc_completed)
return;
/*
* The command timed out.
*
* Check controller for fatal status, any errors associated with the
* register or DMA handle, or for a double timeout (abort command timed
* out). If necessary log a warning and call FMA.
*/
csts.r = nvme_get32(nvme, NVME_REG_CSTS);
dev_err(nvme->n_dip, CE_WARN, "!command %d/%d timeout, "
"OPC = %x, CFS = %d", cmd->nc_sqe.sqe_cid, cmd->nc_sqid,
cmd->nc_sqe.sqe_opc, csts.b.csts_cfs);
atomic_inc_32(&nvme->n_cmd_timeout);
if (csts.b.csts_cfs ||
nvme_check_regs_hdl(nvme) ||
nvme_check_dma_hdl(cmd->nc_dma) ||
cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) {
ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
nvme->n_dead = B_TRUE;
} else if (nvme_abort_cmd(cmd, sec) == 0) {
/*
* If the abort succeeded the command should complete
* immediately with an appropriate status.
*/
while (!cmd->nc_completed)
cv_wait(&cmd->nc_cv, &cmd->nc_mutex);
return;
}
qp = nvme->n_ioq[cmd->nc_sqid];
mutex_enter(&qp->nq_mutex);
(void) nvme_unqueue_cmd(nvme, qp, cmd->nc_sqe.sqe_cid);
mutex_exit(&qp->nq_mutex);
/*
* As we don't know what the presumed dead hardware might still do with
* the DMA memory, we'll put the command on the lost commands list if it
* has any DMA memory.
*/
if (cmd->nc_dma != NULL) {
mutex_enter(&nvme_lc_mutex);
list_insert_head(&nvme_lost_cmds, cmd);
mutex_exit(&nvme_lc_mutex);
}
}
static void
nvme_wakeup_cmd(void *arg)
{
nvme_cmd_t *cmd = arg;
mutex_enter(&cmd->nc_mutex);
cmd->nc_completed = B_TRUE;
cv_signal(&cmd->nc_cv);
mutex_exit(&cmd->nc_mutex);
}
static void
nvme_async_event_task(void *arg)
{
nvme_cmd_t *cmd = arg;
nvme_t *nvme = cmd->nc_nvme;
nvme_error_log_entry_t *error_log = NULL;
nvme_health_log_t *health_log = NULL;
size_t logsize = 0;
nvme_async_event_t event;
/*
* Check for errors associated with the async request itself. The only
* command-specific error is "async event limit exceeded", which
* indicates a programming error in the driver and causes a panic in
* nvme_check_cmd_status().
*
* Other possible errors are various scenarios where the async request
* was aborted, or internal errors in the device. Internal errors are
* reported to FMA, the command aborts need no special handling here.
*
* And finally, at least qemu nvme does not support async events,
* and will return NVME_CQE_SC_GEN_INV_OPC | DNR. If so, we
* will avoid posting async events.
*/
if (nvme_check_cmd_status(cmd) != 0) {
dev_err(cmd->nc_nvme->n_dip, CE_WARN,
"!async event request returned failure, sct = %x, "
"sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct,
cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr,
cmd->nc_cqe.cqe_sf.sf_m);
if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) {
cmd->nc_nvme->n_dead = B_TRUE;
ddi_fm_service_impact(cmd->nc_nvme->n_dip,
DDI_SERVICE_LOST);
}
if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_OPC &&
cmd->nc_cqe.cqe_sf.sf_dnr == 1) {
nvme->n_async_event_supported = B_FALSE;
}
nvme_free_cmd(cmd);
return;
}
event.r = cmd->nc_cqe.cqe_dw0;
/* Clear CQE and re-submit the async request. */
bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t));
nvme_submit_admin_cmd(nvme->n_adminq, cmd);
switch (event.b.ae_type) {
case NVME_ASYNC_TYPE_ERROR:
if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) {
(void) nvme_get_logpage(nvme, (void **)&error_log,
&logsize, event.b.ae_logpage);
} else {
dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
"async event reply: %d", event.b.ae_logpage);
atomic_inc_32(&nvme->n_wrong_logpage);
}
switch (event.b.ae_info) {
case NVME_ASYNC_ERROR_INV_SQ:
dev_err(nvme->n_dip, CE_PANIC, "programming error: "
"invalid submission queue");
return;
case NVME_ASYNC_ERROR_INV_DBL:
dev_err(nvme->n_dip, CE_PANIC, "programming error: "
"invalid doorbell write value");
return;
case NVME_ASYNC_ERROR_DIAGFAIL:
dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure");
ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
nvme->n_dead = B_TRUE;
atomic_inc_32(&nvme->n_diagfail_event);
break;
case NVME_ASYNC_ERROR_PERSISTENT:
dev_err(nvme->n_dip, CE_WARN, "!persistent internal "
"device error");
ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
nvme->n_dead = B_TRUE;
atomic_inc_32(&nvme->n_persistent_event);
break;
case NVME_ASYNC_ERROR_TRANSIENT:
dev_err(nvme->n_dip, CE_WARN, "!transient internal "
"device error");
/* TODO: send ereport */
atomic_inc_32(&nvme->n_transient_event);
break;
case NVME_ASYNC_ERROR_FW_LOAD:
dev_err(nvme->n_dip, CE_WARN,
"!firmware image load error");
atomic_inc_32(&nvme->n_fw_load_event);
break;
}
break;
case NVME_ASYNC_TYPE_HEALTH:
if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) {
(void) nvme_get_logpage(nvme, (void **)&health_log,
&logsize, event.b.ae_logpage, -1);
} else {
dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
"async event reply: %d", event.b.ae_logpage);
atomic_inc_32(&nvme->n_wrong_logpage);
}
switch (event.b.ae_info) {
case NVME_ASYNC_HEALTH_RELIABILITY:
dev_err(nvme->n_dip, CE_WARN,
"!device reliability compromised");
/* TODO: send ereport */
atomic_inc_32(&nvme->n_reliability_event);
break;
case NVME_ASYNC_HEALTH_TEMPERATURE:
dev_err(nvme->n_dip, CE_WARN,
"!temperature above threshold");
/* TODO: send ereport */
atomic_inc_32(&nvme->n_temperature_event);
break;
case NVME_ASYNC_HEALTH_SPARE:
dev_err(nvme->n_dip, CE_WARN,
"!spare space below threshold");
/* TODO: send ereport */
atomic_inc_32(&nvme->n_spare_event);
break;
}
break;
case NVME_ASYNC_TYPE_VENDOR:
dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event "
"received, info = %x, logpage = %x", event.b.ae_info,
event.b.ae_logpage);
atomic_inc_32(&nvme->n_vendor_event);
break;
default:
dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, "
"type = %x, info = %x, logpage = %x", event.b.ae_type,
event.b.ae_info, event.b.ae_logpage);
atomic_inc_32(&nvme->n_unknown_event);
break;
}
if (error_log)
kmem_free(error_log, logsize);
if (health_log)
kmem_free(health_log, logsize);
}
static void
nvme_admin_cmd(nvme_cmd_t *cmd, int sec)
{
mutex_enter(&cmd->nc_mutex);
nvme_submit_admin_cmd(cmd->nc_nvme->n_adminq, cmd);
nvme_wait_cmd(cmd, sec);
mutex_exit(&cmd->nc_mutex);
}
static void
nvme_async_event(nvme_t *nvme)
{
nvme_cmd_t *cmd;
cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
cmd->nc_sqid = 0;
cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT;
cmd->nc_callback = nvme_async_event_task;
cmd->nc_dontpanic = B_TRUE;
nvme_submit_admin_cmd(nvme->n_adminq, cmd);
}
static int
nvme_format_nvm(nvme_t *nvme, uint32_t nsid, uint8_t lbaf, boolean_t ms,
uint8_t pi, boolean_t pil, uint8_t ses)
{
nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
nvme_format_nvm_t format_nvm = { 0 };
int ret;
format_nvm.b.fm_lbaf = lbaf & 0xf;
format_nvm.b.fm_ms = ms ? 1 : 0;
format_nvm.b.fm_pi = pi & 0x7;
format_nvm.b.fm_pil = pil ? 1 : 0;
format_nvm.b.fm_ses = ses & 0x7;
cmd->nc_sqid = 0;
cmd->nc_callback = nvme_wakeup_cmd;
cmd->nc_sqe.sqe_nsid = nsid;
cmd->nc_sqe.sqe_opc = NVME_OPC_NVM_FORMAT;
cmd->nc_sqe.sqe_cdw10 = format_nvm.r;
/*
* Some devices like Samsung SM951 don't allow formatting of all
* namespaces in one command. Handle that gracefully.
*/
if (nsid == (uint32_t)-1)
cmd->nc_dontpanic = B_TRUE;
nvme_admin_cmd(cmd, nvme_format_cmd_timeout);
if ((ret = nvme_check_cmd_status(cmd)) != 0) {
dev_err(nvme->n_dip, CE_WARN,
"!FORMAT failed with sct = %x, sc = %x",
cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
}
nvme_free_cmd(cmd);
return (ret);
}
static int
nvme_get_logpage(nvme_t *nvme, void **buf, size_t *bufsize, uint8_t logpage,
...)
{
nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
nvme_getlogpage_t getlogpage = { 0 };
va_list ap;
int ret;
va_start(ap, logpage);
cmd->nc_sqid = 0;
cmd->nc_callback = nvme_wakeup_cmd;
cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE;
getlogpage.b.lp_lid = logpage;
switch (logpage) {
case NVME_LOGPAGE_ERROR:
cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
/*
* The GET LOG PAGE command can use at most 2 pages to return
* data, PRP lists are not supported.
*/
*bufsize = MIN(2 * nvme->n_pagesize,
nvme->n_error_log_len * sizeof (nvme_error_log_entry_t));
break;
case NVME_LOGPAGE_HEALTH:
cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t);
*bufsize = sizeof (nvme_health_log_t);
break;
case NVME_LOGPAGE_FWSLOT:
cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
*bufsize = sizeof (nvme_fwslot_log_t);
break;
default:
dev_err(nvme->n_dip, CE_WARN, "!unknown log page requested: %d",
logpage);
atomic_inc_32(&nvme->n_unknown_logpage);
ret = EINVAL;
goto fail;
}
va_end(ap);
getlogpage.b.lp_numd = *bufsize / sizeof (uint32_t) - 1;
cmd->nc_sqe.sqe_cdw10 = getlogpage.r;
if (nvme_zalloc_dma(nvme, getlogpage.b.lp_numd * sizeof (uint32_t),
DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
dev_err(nvme->n_dip, CE_WARN,
"!nvme_zalloc_dma failed for GET LOG PAGE");
ret = ENOMEM;
goto fail;
}
if (cmd->nc_dma->nd_ncookie > 2) {
dev_err(nvme->n_dip, CE_WARN,
"!too many DMA cookies for GET LOG PAGE");
atomic_inc_32(&nvme->n_too_many_cookies);
ret = ENOMEM;
goto fail;
}
cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
if (cmd->nc_dma->nd_ncookie > 1) {
ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
&cmd->nc_dma->nd_cookie);
cmd->nc_sqe.sqe_dptr.d_prp[1] =
cmd->nc_dma->nd_cookie.dmac_laddress;
}
nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
if ((ret = nvme_check_cmd_status(cmd)) != 0) {
dev_err(nvme->n_dip, CE_WARN,
"!GET LOG PAGE failed with sct = %x, sc = %x",
cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
goto fail;
}
*buf = kmem_alloc(*bufsize, KM_SLEEP);
bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
fail:
nvme_free_cmd(cmd);
return (ret);
}
static int
nvme_identify(nvme_t *nvme, uint32_t nsid, void **buf)
{
nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
int ret;
if (buf == NULL)
return (EINVAL);
cmd->nc_sqid = 0;
cmd->nc_callback = nvme_wakeup_cmd;
cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY;
cmd->nc_sqe.sqe_nsid = nsid;
cmd->nc_sqe.sqe_cdw10 = nsid ? NVME_IDENTIFY_NSID : NVME_IDENTIFY_CTRL;
if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ,
&nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
dev_err(nvme->n_dip, CE_WARN,
"!nvme_zalloc_dma failed for IDENTIFY");
ret = ENOMEM;
goto fail;
}
if (cmd->nc_dma->nd_ncookie > 2) {
dev_err(nvme->n_dip, CE_WARN,
"!too many DMA cookies for IDENTIFY");
atomic_inc_32(&nvme->n_too_many_cookies);
ret = ENOMEM;
goto fail;
}
cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
if (cmd->nc_dma->nd_ncookie > 1) {
ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
&cmd->nc_dma->nd_cookie);
cmd->nc_sqe.sqe_dptr.d_prp[1] =
cmd->nc_dma->nd_cookie.dmac_laddress;
}
nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
if ((ret = nvme_check_cmd_status(cmd)) != 0) {
dev_err(nvme->n_dip, CE_WARN,
"!IDENTIFY failed with sct = %x, sc = %x",
cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
goto fail;
}
*buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP);
bcopy(cmd->nc_dma->nd_memp, *buf, NVME_IDENTIFY_BUFSIZE);
fail:
nvme_free_cmd(cmd);
return (ret);
}
static int
nvme_set_features(nvme_t *nvme, uint32_t nsid, uint8_t feature, uint32_t val,
uint32_t *res)
{
_NOTE(ARGUNUSED(nsid));
nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
int ret = EINVAL;
ASSERT(res != NULL);
cmd->nc_sqid = 0;
cmd->nc_callback = nvme_wakeup_cmd;
cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES;
cmd->nc_sqe.sqe_cdw10 = feature;
cmd->nc_sqe.sqe_cdw11 = val;
switch (feature) {
case NVME_FEAT_WRITE_CACHE:
if (!nvme->n_write_cache_present)
goto fail;
break;
case NVME_FEAT_NQUEUES:
break;
default:
goto fail;
}
nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
if ((ret = nvme_check_cmd_status(cmd)) != 0) {
dev_err(nvme->n_dip, CE_WARN,
"!SET FEATURES %d failed with sct = %x, sc = %x",
feature, cmd->nc_cqe.cqe_sf.sf_sct,
cmd->nc_cqe.cqe_sf.sf_sc);
goto fail;
}
*res = cmd->nc_cqe.cqe_dw0;
fail:
nvme_free_cmd(cmd);
return (ret);
}
static int
nvme_get_features(nvme_t *nvme, uint32_t nsid, uint8_t feature, uint32_t *res,
void **buf, size_t *bufsize)
{
nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
int ret = EINVAL;
ASSERT(res != NULL);
if (bufsize != NULL)
*bufsize = 0;
cmd->nc_sqid = 0;
cmd->nc_callback = nvme_wakeup_cmd;
cmd->nc_sqe.sqe_opc = NVME_OPC_GET_FEATURES;
cmd->nc_sqe.sqe_cdw10 = feature;
cmd->nc_sqe.sqe_cdw11 = *res;
/*
* For some of the optional features there doesn't seem to be a method
* of detecting whether it is supported other than using it. This will
* cause "Invalid Field in Command" error, which is normally considered
* a programming error. Set the nc_dontpanic flag to override the panic
* in nvme_check_generic_cmd_status().
*/
switch (feature) {
case NVME_FEAT_ARBITRATION:
case NVME_FEAT_POWER_MGMT:
case NVME_FEAT_TEMPERATURE:
case NVME_FEAT_ERROR:
case NVME_FEAT_NQUEUES:
case NVME_FEAT_INTR_COAL:
case NVME_FEAT_INTR_VECT:
case NVME_FEAT_WRITE_ATOM:
case NVME_FEAT_ASYNC_EVENT:
break;
case NVME_FEAT_WRITE_CACHE:
if (!nvme->n_write_cache_present)
goto fail;
break;
case NVME_FEAT_LBA_RANGE:
if (!nvme->n_lba_range_supported)
goto fail;
cmd->nc_dontpanic = B_TRUE;
cmd->nc_sqe.sqe_nsid = nsid;
ASSERT(bufsize != NULL);
*bufsize = NVME_LBA_RANGE_BUFSIZE;
break;
case NVME_FEAT_AUTO_PST:
if (!nvme->n_auto_pst_supported)
goto fail;
ASSERT(bufsize != NULL);
*bufsize = NVME_AUTO_PST_BUFSIZE;
break;
case NVME_FEAT_PROGRESS:
if (!nvme->n_progress_supported)
goto fail;
cmd->nc_dontpanic = B_TRUE;
break;
default:
goto fail;
}
if (bufsize != NULL && *bufsize != 0) {
if (nvme_zalloc_dma(nvme, *bufsize, DDI_DMA_READ,
&nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
dev_err(nvme->n_dip, CE_WARN,
"!nvme_zalloc_dma failed for GET FEATURES");
ret = ENOMEM;
goto fail;
}
if (cmd->nc_dma->nd_ncookie > 2) {
dev_err(nvme->n_dip, CE_WARN,
"!too many DMA cookies for GET FEATURES");
atomic_inc_32(&nvme->n_too_many_cookies);
ret = ENOMEM;
goto fail;
}
cmd->nc_sqe.sqe_dptr.d_prp[0] =
cmd->nc_dma->nd_cookie.dmac_laddress;
if (cmd->nc_dma->nd_ncookie > 1) {
ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
&cmd->nc_dma->nd_cookie);
cmd->nc_sqe.sqe_dptr.d_prp[1] =
cmd->nc_dma->nd_cookie.dmac_laddress;
}
}
nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
if ((ret = nvme_check_cmd_status(cmd)) != 0) {
boolean_t known = B_TRUE;
/* Check if this is unsupported optional feature */
if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_FLD) {
switch (feature) {
case NVME_FEAT_LBA_RANGE:
nvme->n_lba_range_supported = B_FALSE;
break;
case NVME_FEAT_PROGRESS:
nvme->n_progress_supported = B_FALSE;
break;
default:
known = B_FALSE;
break;
}
} else {
known = B_FALSE;
}
/* Report the error otherwise */
if (!known) {
dev_err(nvme->n_dip, CE_WARN,
"!GET FEATURES %d failed with sct = %x, sc = %x",
feature, cmd->nc_cqe.cqe_sf.sf_sct,
cmd->nc_cqe.cqe_sf.sf_sc);
}
goto fail;
}
if (bufsize != NULL && *bufsize != 0) {
ASSERT(buf != NULL);
*buf = kmem_alloc(*bufsize, KM_SLEEP);
bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
}
*res = cmd->nc_cqe.cqe_dw0;
fail:
nvme_free_cmd(cmd);
return (ret);
}
static int
nvme_write_cache_set(nvme_t *nvme, boolean_t enable)
{
nvme_write_cache_t nwc = { 0 };
if (enable)
nwc.b.wc_wce = 1;
return (nvme_set_features(nvme, 0, NVME_FEAT_WRITE_CACHE, nwc.r,
&nwc.r));
}
static int
nvme_set_nqueues(nvme_t *nvme, uint16_t *nqueues)
{
nvme_nqueues_t nq = { 0 };
int ret;
nq.b.nq_nsq = nq.b.nq_ncq = *nqueues - 1;
ret = nvme_set_features(nvme, 0, NVME_FEAT_NQUEUES, nq.r, &nq.r);
if (ret == 0) {
/*
* Always use the same number of submission and completion
* queues, and never use more than the requested number of
* queues.
*/
*nqueues = MIN(*nqueues, MIN(nq.b.nq_nsq, nq.b.nq_ncq) + 1);
}
return (ret);
}
static int
nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx)
{
nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
nvme_create_queue_dw10_t dw10 = { 0 };
nvme_create_cq_dw11_t c_dw11 = { 0 };
nvme_create_sq_dw11_t s_dw11 = { 0 };
int ret;
dw10.b.q_qid = idx;
dw10.b.q_qsize = qp->nq_nentry - 1;
c_dw11.b.cq_pc = 1;
c_dw11.b.cq_ien = 1;
c_dw11.b.cq_iv = idx % nvme->n_intr_cnt;
cmd->nc_sqid = 0;
cmd->nc_callback = nvme_wakeup_cmd;
cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE;
cmd->nc_sqe.sqe_cdw10 = dw10.r;
cmd->nc_sqe.sqe_cdw11 = c_dw11.r;
cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_cqdma->nd_cookie.dmac_laddress;
nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
if ((ret = nvme_check_cmd_status(cmd)) != 0) {
dev_err(nvme->n_dip, CE_WARN,
"!CREATE CQUEUE failed with sct = %x, sc = %x",
cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
goto fail;
}
nvme_free_cmd(cmd);
s_dw11.b.sq_pc = 1;
s_dw11.b.sq_cqid = idx;
cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
cmd->nc_sqid = 0;
cmd->nc_callback = nvme_wakeup_cmd;
cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE;
cmd->nc_sqe.sqe_cdw10 = dw10.r;
cmd->nc_sqe.sqe_cdw11 = s_dw11.r;
cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress;
nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
if ((ret = nvme_check_cmd_status(cmd)) != 0) {
dev_err(nvme->n_dip, CE_WARN,
"!CREATE SQUEUE failed with sct = %x, sc = %x",
cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
goto fail;
}
fail:
nvme_free_cmd(cmd);
return (ret);
}
static boolean_t
nvme_reset(nvme_t *nvme, boolean_t quiesce)
{
nvme_reg_csts_t csts;
int i;
nvme_put32(nvme, NVME_REG_CC, 0);
csts.r = nvme_get32(nvme, NVME_REG_CSTS);
if (csts.b.csts_rdy == 1) {
nvme_put32(nvme, NVME_REG_CC, 0);
for (i = 0; i != nvme->n_timeout * 10; i++) {
csts.r = nvme_get32(nvme, NVME_REG_CSTS);
if (csts.b.csts_rdy == 0)
break;
if (quiesce)
drv_usecwait(50000);
else
delay(drv_usectohz(50000));
}
}
nvme_put32(nvme, NVME_REG_AQA, 0);
nvme_put32(nvme, NVME_REG_ASQ, 0);
nvme_put32(nvme, NVME_REG_ACQ, 0);
csts.r = nvme_get32(nvme, NVME_REG_CSTS);
return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE);
}
static void
nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce)
{
nvme_reg_cc_t cc;
nvme_reg_csts_t csts;
int i;
ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT);
cc.r = nvme_get32(nvme, NVME_REG_CC);
cc.b.cc_shn = mode & 0x3;
nvme_put32(nvme, NVME_REG_CC, cc.r);
for (i = 0; i != 10; i++) {
csts.r = nvme_get32(nvme, NVME_REG_CSTS);
if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE)
break;
if (quiesce)
drv_usecwait(100000);
else
delay(drv_usectohz(100000));
}
}
static void
nvme_prepare_devid(nvme_t *nvme, uint32_t nsid)
{
/*
* Section 7.7 of the spec describes how to get a unique ID for
* the controller: the vendor ID, the model name and the serial
* number shall be unique when combined.
*
* If a namespace has no EUI64 we use the above and add the hex
* namespace ID to get a unique ID for the namespace.
*/
char model[sizeof (nvme->n_idctl->id_model) + 1];
char serial[sizeof (nvme->n_idctl->id_serial) + 1];
bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
bcopy(nvme->n_idctl->id_serial, serial,
sizeof (nvme->n_idctl->id_serial));
model[sizeof (nvme->n_idctl->id_model)] = '\0';
serial[sizeof (nvme->n_idctl->id_serial)] = '\0';
nvme->n_ns[nsid - 1].ns_devid = kmem_asprintf("%4X-%s-%s-%X",
nvme->n_idctl->id_vid, model, serial, nsid);
}
static int
nvme_init_ns(nvme_t *nvme, int nsid)
{
nvme_namespace_t *ns = &nvme->n_ns[nsid - 1];
nvme_identify_nsid_t *idns;
int last_rp;
ns->ns_nvme = nvme;
if (nvme_identify(nvme, nsid, (void **)&idns) != 0) {
dev_err(nvme->n_dip, CE_WARN,
"!failed to identify namespace %d", nsid);
return (DDI_FAILURE);
}
ns->ns_idns = idns;
ns->ns_id = nsid;
ns->ns_block_count = idns->id_nsize;
ns->ns_block_size =
1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads;
ns->ns_best_block_size = ns->ns_block_size;
/*
* Get the EUI64 if present. Use it for devid and device node names.
*/
if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
bcopy(idns->id_eui64, ns->ns_eui64, sizeof (ns->ns_eui64));
/*LINTED: E_BAD_PTR_CAST_ALIGN*/
if (*(uint64_t *)ns->ns_eui64 != 0) {
uint8_t *eui64 = ns->ns_eui64;
(void) snprintf(ns->ns_name, sizeof (ns->ns_name),
"%02x%02x%02x%02x%02x%02x%02x%02x",
eui64[0], eui64[1], eui64[2], eui64[3],
eui64[4], eui64[5], eui64[6], eui64[7]);
} else {
(void) snprintf(ns->ns_name, sizeof (ns->ns_name), "%d",
ns->ns_id);
nvme_prepare_devid(nvme, ns->ns_id);
}
/*
* Find the LBA format with no metadata and the best relative
* performance. A value of 3 means "degraded", 0 is best.
*/
last_rp = 3;
for (int j = 0; j <= idns->id_nlbaf; j++) {
if (idns->id_lbaf[j].lbaf_lbads == 0)
break;
if (idns->id_lbaf[j].lbaf_ms != 0)
continue;
if (idns->id_lbaf[j].lbaf_rp >= last_rp)
continue;
last_rp = idns->id_lbaf[j].lbaf_rp;
ns->ns_best_block_size =
1 << idns->id_lbaf[j].lbaf_lbads;
}
if (ns->ns_best_block_size < nvme->n_min_block_size)
ns->ns_best_block_size = nvme->n_min_block_size;
/*
* We currently don't support namespaces that use either:
* - protection information
* - illegal block size (< 512)
*/
if (idns->id_dps.dp_pinfo) {
dev_err(nvme->n_dip, CE_WARN,
"!ignoring namespace %d, unsupported feature: "
"pinfo = %d", nsid, idns->id_dps.dp_pinfo);
ns->ns_ignore = B_TRUE;
} else if (ns->ns_block_size < 512) {
dev_err(nvme->n_dip, CE_WARN,
"!ignoring namespace %d, unsupported block size %"PRIu64,
nsid, (uint64_t)ns->ns_block_size);
ns->ns_ignore = B_TRUE;
} else {
ns->ns_ignore = B_FALSE;
}
return (DDI_SUCCESS);
}
static int
nvme_init(nvme_t *nvme)
{
nvme_reg_cc_t cc = { 0 };
nvme_reg_aqa_t aqa = { 0 };
nvme_reg_asq_t asq = { 0 };
nvme_reg_acq_t acq = { 0 };
nvme_reg_cap_t cap;
nvme_reg_vs_t vs;
nvme_reg_csts_t csts;
int i = 0;
uint16_t nqueues;
char model[sizeof (nvme->n_idctl->id_model) + 1];
char *vendor, *product;
/* Check controller version */
vs.r = nvme_get32(nvme, NVME_REG_VS);
nvme->n_version.v_major = vs.b.vs_mjr;
nvme->n_version.v_minor = vs.b.vs_mnr;
dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d",
nvme->n_version.v_major, nvme->n_version.v_minor);
if (NVME_VERSION_HIGHER(&nvme->n_version,
nvme_version_major, nvme_version_minor)) {
dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.%d",
nvme_version_major, nvme_version_minor);
if (nvme->n_strict_version)
goto fail;
}
/* retrieve controller configuration */
cap.r = nvme_get64(nvme, NVME_REG_CAP);
if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) {
dev_err(nvme->n_dip, CE_WARN,
"!NVM command set not supported by hardware");
goto fail;
}
nvme->n_nssr_supported = cap.b.cap_nssrs;
nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd;
nvme->n_timeout = cap.b.cap_to;
nvme->n_arbitration_mechanisms = cap.b.cap_ams;
nvme->n_cont_queues_reqd = cap.b.cap_cqr;
nvme->n_max_queue_entries = cap.b.cap_mqes + 1;
/*
* The MPSMIN and MPSMAX fields in the CAP register use 0 to specify
* the base page size of 4k (1<<12), so add 12 here to get the real
* page size value.
*/
nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT),
cap.b.cap_mpsmax + 12);
nvme->n_pagesize = 1UL << (nvme->n_pageshift);
/*
* Set up Queue DMA to transfer at least 1 page-aligned page at a time.
*/
nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize;
nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
/*
* Set up PRP DMA to transfer 1 page-aligned page at a time.
* Maxxfer may be increased after we identified the controller limits.
*/
nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize;
nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize;
nvme->n_prp_dma_attr.dma_attr_seg = nvme->n_pagesize - 1;
/*
* Reset controller if it's still in ready state.
*/
if (nvme_reset(nvme, B_FALSE) == B_FALSE) {
dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller");
ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
nvme->n_dead = B_TRUE;
goto fail;
}
/*
* Create the admin queue pair.
*/
if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0)
!= DDI_SUCCESS) {
dev_err(nvme->n_dip, CE_WARN,
"!unable to allocate admin qpair");
goto fail;
}
nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP);
nvme->n_ioq[0] = nvme->n_adminq;
nvme->n_progress |= NVME_ADMIN_QUEUE;
(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
"admin-queue-len", nvme->n_admin_queue_len);
aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1;
asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress;
acq = nvme->n_adminq->nq_cqdma->nd_cookie.dmac_laddress;
ASSERT((asq & (nvme->n_pagesize - 1)) == 0);
ASSERT((acq & (nvme->n_pagesize - 1)) == 0);
nvme_put32(nvme, NVME_REG_AQA, aqa.r);
nvme_put64(nvme, NVME_REG_ASQ, asq);
nvme_put64(nvme, NVME_REG_ACQ, acq);
cc.b.cc_ams = 0; /* use Round-Robin arbitration */
cc.b.cc_css = 0; /* use NVM command set */
cc.b.cc_mps = nvme->n_pageshift - 12;
cc.b.cc_shn = 0; /* no shutdown in progress */
cc.b.cc_en = 1; /* enable controller */
cc.b.cc_iosqes = 6; /* submission queue entry is 2^6 bytes long */
cc.b.cc_iocqes = 4; /* completion queue entry is 2^4 bytes long */
nvme_put32(nvme, NVME_REG_CC, cc.r);
/*
* Wait for the controller to become ready.
*/
csts.r = nvme_get32(nvme, NVME_REG_CSTS);
if (csts.b.csts_rdy == 0) {
for (i = 0; i != nvme->n_timeout * 10; i++) {
delay(drv_usectohz(50000));
csts.r = nvme_get32(nvme, NVME_REG_CSTS);
if (csts.b.csts_cfs == 1) {
dev_err(nvme->n_dip, CE_WARN,
"!controller fatal status at init");
ddi_fm_service_impact(nvme->n_dip,
DDI_SERVICE_LOST);
nvme->n_dead = B_TRUE;
goto fail;
}
if (csts.b.csts_rdy == 1)
break;
}
}
if (csts.b.csts_rdy == 0) {
dev_err(nvme->n_dip, CE_WARN, "!controller not ready");
ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
nvme->n_dead = B_TRUE;
goto fail;
}
/*
* Assume an abort command limit of 1. We'll destroy and re-init
* that later when we know the true abort command limit.
*/
sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL);
/*
* Setup initial interrupt for admin queue.
*/
if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 1)
!= DDI_SUCCESS) &&
(nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 1)
!= DDI_SUCCESS) &&
(nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1)
!= DDI_SUCCESS)) {
dev_err(nvme->n_dip, CE_WARN,
"!failed to setup initial interrupt");
goto fail;
}
/*
* Post an asynchronous event command to catch errors.
* We assume the asynchronous events are supported as required by
* specification (Figure 40 in section 5 of NVMe 1.2).
* However, since at least qemu does not follow the specification,
* we need a mechanism to protect ourselves.
*/
nvme->n_async_event_supported = B_TRUE;
nvme_async_event(nvme);
/*
* Identify Controller
*/
if (nvme_identify(nvme, 0, (void **)&nvme->n_idctl) != 0) {
dev_err(nvme->n_dip, CE_WARN,
"!failed to identify controller");
goto fail;
}
/*
* Get Vendor & Product ID
*/
bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
model[sizeof (nvme->n_idctl->id_model)] = '\0';
sata_split_model(model, &vendor, &product);
if (vendor == NULL)
nvme->n_vendor = strdup("NVMe");
else
nvme->n_vendor = strdup(vendor);
nvme->n_product = strdup(product);
/*
* Get controller limits.
*/
nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT,
MIN(nvme->n_admin_queue_len / 10,
MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit)));
(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
"async-event-limit", nvme->n_async_event_limit);
nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1;
/*
* Reinitialize the semaphore with the true abort command limit
* supported by the hardware. It's not necessary to disable interrupts
* as only command aborts use the semaphore, and no commands are
* executed or aborted while we're here.
*/
sema_destroy(&nvme->n_abort_sema);
sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL,
SEMA_DRIVER, NULL);
nvme->n_progress |= NVME_CTRL_LIMITS;
if (nvme->n_idctl->id_mdts == 0)
nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536;
else
nvme->n_max_data_transfer_size =
1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts);
nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1;
/*
* Limit n_max_data_transfer_size to what we can handle in one PRP.
* Chained PRPs are currently unsupported.
*
* This is a no-op on hardware which doesn't support a transfer size
* big enough to require chained PRPs.
*/
nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size,
(nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize));
nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size;
/*
* Make sure the minimum/maximum queue entry sizes are not
* larger/smaller than the default.
*/
if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) ||
((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) ||
((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) ||
((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t)))
goto fail;
/*
* Check for the presence of a Volatile Write Cache. If present,
* enable or disable based on the value of the property
* volatile-write-cache-enable (default is enabled).
*/
nvme->n_write_cache_present =
nvme->n_idctl->id_vwc.vwc_present == 0 ? B_FALSE : B_TRUE;
(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
"volatile-write-cache-present",
nvme->n_write_cache_present ? 1 : 0);
if (!nvme->n_write_cache_present) {
nvme->n_write_cache_enabled = B_FALSE;
} else if (nvme_write_cache_set(nvme, nvme->n_write_cache_enabled)
!= 0) {
dev_err(nvme->n_dip, CE_WARN,
"!failed to %sable volatile write cache",
nvme->n_write_cache_enabled ? "en" : "dis");
/*
* Assume the cache is (still) enabled.
*/
nvme->n_write_cache_enabled = B_TRUE;
}
(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
"volatile-write-cache-enable",
nvme->n_write_cache_enabled ? 1 : 0);
/*
* Assume LBA Range Type feature is supported. If it isn't this
* will be set to B_FALSE by nvme_get_features().
*/
nvme->n_lba_range_supported = B_TRUE;
/*
* Check support for Autonomous Power State Transition.
*/
if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
nvme->n_auto_pst_supported =
nvme->n_idctl->id_apsta.ap_sup == 0 ? B_FALSE : B_TRUE;
/*
* Assume Software Progress Marker feature is supported. If it isn't
* this will be set to B_FALSE by nvme_get_features().
*/
nvme->n_progress_supported = B_TRUE;
/*
* Identify Namespaces
*/
nvme->n_namespace_count = nvme->n_idctl->id_nn;
if (nvme->n_namespace_count == 0) {
dev_err(nvme->n_dip, CE_WARN,
"!controllers without namespaces are not supported");
goto fail;
}
if (nvme->n_namespace_count > NVME_MINOR_MAX) {
dev_err(nvme->n_dip, CE_WARN,
"!too many namespaces: %d, limiting to %d\n",
nvme->n_namespace_count, NVME_MINOR_MAX);
nvme->n_namespace_count = NVME_MINOR_MAX;
}
nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) *
nvme->n_namespace_count, KM_SLEEP);
for (i = 0; i != nvme->n_namespace_count; i++) {
mutex_init(&nvme->n_ns[i].ns_minor.nm_mutex, NULL, MUTEX_DRIVER,
NULL);
if (nvme_init_ns(nvme, i + 1) != DDI_SUCCESS)
goto fail;
}
/*
* Try to set up MSI/MSI-X interrupts.
*/
if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX))
!= 0) {
nvme_release_interrupts(nvme);
nqueues = MIN(UINT16_MAX, ncpus);
if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX,
nqueues) != DDI_SUCCESS) &&
(nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI,
nqueues) != DDI_SUCCESS)) {
dev_err(nvme->n_dip, CE_WARN,
"!failed to setup MSI/MSI-X interrupts");
goto fail;
}
}
nqueues = nvme->n_intr_cnt;
/*
* Create I/O queue pairs.
*/
if (nvme_set_nqueues(nvme, &nqueues) != 0) {
dev_err(nvme->n_dip, CE_WARN,
"!failed to set number of I/O queues to %d",
nvme->n_intr_cnt);
goto fail;
}
/*
* Reallocate I/O queue array
*/
kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *));
nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) *
(nqueues + 1), KM_SLEEP);
nvme->n_ioq[0] = nvme->n_adminq;
nvme->n_ioq_count = nqueues;
/*
* If we got less queues than we asked for we might as well give
* some of the interrupt vectors back to the system.
*/
if (nvme->n_ioq_count < nvme->n_intr_cnt) {
nvme_release_interrupts(nvme);
if (nvme_setup_interrupts(nvme, nvme->n_intr_type,
nvme->n_ioq_count) != DDI_SUCCESS) {
dev_err(nvme->n_dip, CE_WARN,
"!failed to reduce number of interrupts");
goto fail;
}
}
/*
* Alloc & register I/O queue pairs
*/
nvme->n_io_queue_len =
MIN(nvme->n_io_queue_len, nvme->n_max_queue_entries);
(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-queue-len",
nvme->n_io_queue_len);
for (i = 1; i != nvme->n_ioq_count + 1; i++) {
if (nvme_alloc_qpair(nvme, nvme->n_io_queue_len,
&nvme->n_ioq[i], i) != DDI_SUCCESS) {
dev_err(nvme->n_dip, CE_WARN,
"!unable to allocate I/O qpair %d", i);
goto fail;
}
if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i) != 0) {
dev_err(nvme->n_dip, CE_WARN,
"!unable to create I/O qpair %d", i);
goto fail;
}
}
/*
* Post more asynchronous events commands to reduce event reporting
* latency as suggested by the spec.
*/
if (nvme->n_async_event_supported) {
for (i = 1; i != nvme->n_async_event_limit; i++)
nvme_async_event(nvme);
}
return (DDI_SUCCESS);
fail:
(void) nvme_reset(nvme, B_FALSE);
return (DDI_FAILURE);
}
static uint_t
nvme_intr(caddr_t arg1, caddr_t arg2)
{
/*LINTED: E_PTR_BAD_CAST_ALIGN*/
nvme_t *nvme = (nvme_t *)arg1;
int inum = (int)(uintptr_t)arg2;
int ccnt = 0;
int qnum;
nvme_cmd_t *cmd;
if (inum >= nvme->n_intr_cnt)
return (DDI_INTR_UNCLAIMED);
if (nvme->n_dead)
return (nvme->n_intr_type == DDI_INTR_TYPE_FIXED ?
DDI_INTR_UNCLAIMED : DDI_INTR_CLAIMED);
/*
* The interrupt vector a queue uses is calculated as queue_idx %
* intr_cnt in nvme_create_io_qpair(). Iterate through the queue array
* in steps of n_intr_cnt to process all queues using this vector.
*/
for (qnum = inum;
qnum < nvme->n_ioq_count + 1 && nvme->n_ioq[qnum] != NULL;
qnum += nvme->n_intr_cnt) {
while ((cmd = nvme_retrieve_cmd(nvme, nvme->n_ioq[qnum]))) {
taskq_dispatch_ent((taskq_t *)cmd->nc_nvme->n_cmd_taskq,
cmd->nc_callback, cmd, TQ_NOSLEEP, &cmd->nc_tqent);
ccnt++;
}
}
return (ccnt > 0 ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
}
static void
nvme_release_interrupts(nvme_t *nvme)
{
int i;
for (i = 0; i < nvme->n_intr_cnt; i++) {
if