blob: 8c4062f6a1958180ce802f600462ccab38e6c659 [file] [log] [blame]
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2017 by Delphix. All rights reserved.
* Copyright (c) 2014 Integros [integros.com]
* Copyright 2015 Joyent, Inc.
* Copyright 2017 Nexenta Systems, Inc.
*/
/* Portions Copyright 2007 Jeremy Teo */
/* Portions Copyright 2010 Robert Milkowski */
#include <sys/types.h>
#include <sys/param.h>
#include <sys/time.h>
#include <sys/systm.h>
#include <sys/sysmacros.h>
#include <sys/resource.h>
#include <sys/vfs.h>
#include <sys/vfs_opreg.h>
#include <sys/vnode.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/kmem.h>
#include <sys/taskq.h>
#include <sys/uio.h>
#include <sys/vmsystm.h>
#include <sys/atomic.h>
#include <sys/vm.h>
#include <vm/seg_vn.h>
#include <vm/pvn.h>
#include <vm/as.h>
#include <vm/kpm.h>
#include <vm/seg_kpm.h>
#include <sys/mman.h>
#include <sys/pathname.h>
#include <sys/cmn_err.h>
#include <sys/errno.h>
#include <sys/unistd.h>
#include <sys/zfs_dir.h>
#include <sys/zfs_acl.h>
#include <sys/zfs_ioctl.h>
#include <sys/fs/zfs.h>
#include <sys/dmu.h>
#include <sys/dmu_objset.h>
#include <sys/spa.h>
#include <sys/txg.h>
#include <sys/dbuf.h>
#include <sys/zap.h>
#include <sys/sa.h>
#include <sys/dirent.h>
#include <sys/policy.h>
#include <sys/sunddi.h>
#include <sys/filio.h>
#include <sys/sid.h>
#include "fs/fs_subr.h"
#include <sys/zfs_ctldir.h>
#include <sys/zfs_fuid.h>
#include <sys/zfs_sa.h>
#include <sys/dnlc.h>
#include <sys/zfs_rlock.h>
#include <sys/extdirent.h>
#include <sys/kidmap.h>
#include <sys/cred.h>
#include <sys/attr.h>
#include <sys/zil.h>
/*
* Programming rules.
*
* Each vnode op performs some logical unit of work. To do this, the ZPL must
* properly lock its in-core state, create a DMU transaction, do the work,
* record this work in the intent log (ZIL), commit the DMU transaction,
* and wait for the intent log to commit if it is a synchronous operation.
* Moreover, the vnode ops must work in both normal and log replay context.
* The ordering of events is important to avoid deadlocks and references
* to freed memory. The example below illustrates the following Big Rules:
*
* (1) A check must be made in each zfs thread for a mounted file system.
* This is done avoiding races using ZFS_ENTER(zfsvfs).
* A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes
* must be checked with ZFS_VERIFY_ZP(zp). Both of these macros
* can return EIO from the calling function.
*
* (2) VN_RELE() should always be the last thing except for zil_commit()
* (if necessary) and ZFS_EXIT(). This is for 3 reasons:
* First, if it's the last reference, the vnode/znode
* can be freed, so the zp may point to freed memory. Second, the last
* reference will call zfs_zinactive(), which may induce a lot of work --
* pushing cached pages (which acquires range locks) and syncing out
* cached atime changes. Third, zfs_zinactive() may require a new tx,
* which could deadlock the system if you were already holding one.
* If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
*
* (3) All range locks must be grabbed before calling dmu_tx_assign(),
* as they can span dmu_tx_assign() calls.
*
* (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
* dmu_tx_assign(). This is critical because we don't want to block
* while holding locks.
*
* If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This
* reduces lock contention and CPU usage when we must wait (note that if
* throughput is constrained by the storage, nearly every transaction
* must wait).
*
* Note, in particular, that if a lock is sometimes acquired before
* the tx assigns, and sometimes after (e.g. z_lock), then failing
* to use a non-blocking assign can deadlock the system. The scenario:
*
* Thread A has grabbed a lock before calling dmu_tx_assign().
* Thread B is in an already-assigned tx, and blocks for this lock.
* Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
* forever, because the previous txg can't quiesce until B's tx commits.
*
* If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
* then drop all locks, call dmu_tx_wait(), and try again. On subsequent
* calls to dmu_tx_assign(), pass TXG_NOTHROTTLE in addition to TXG_NOWAIT,
* to indicate that this operation has already called dmu_tx_wait().
* This will ensure that we don't retry forever, waiting a short bit
* each time.
*
* (5) If the operation succeeded, generate the intent log entry for it
* before dropping locks. This ensures that the ordering of events
* in the intent log matches the order in which they actually occurred.
* During ZIL replay the zfs_log_* functions will update the sequence
* number to indicate the zil transaction has replayed.
*
* (6) At the end of each vnode op, the DMU tx must always commit,
* regardless of whether there were any errors.
*
* (7) After dropping all locks, invoke zil_commit(zilog, foid)
* to ensure that synchronous semantics are provided when necessary.
*
* In general, this is how things should be ordered in each vnode op:
*
* ZFS_ENTER(zfsvfs); // exit if unmounted
* top:
* zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD())
* rw_enter(...); // grab any other locks you need
* tx = dmu_tx_create(...); // get DMU tx
* dmu_tx_hold_*(); // hold each object you might modify
* error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
* if (error) {
* rw_exit(...); // drop locks
* zfs_dirent_unlock(dl); // unlock directory entry
* VN_RELE(...); // release held vnodes
* if (error == ERESTART) {
* waited = B_TRUE;
* dmu_tx_wait(tx);
* dmu_tx_abort(tx);
* goto top;
* }
* dmu_tx_abort(tx); // abort DMU tx
* ZFS_EXIT(zfsvfs); // finished in zfs
* return (error); // really out of space
* }
* error = do_real_work(); // do whatever this VOP does
* if (error == 0)
* zfs_log_*(...); // on success, make ZIL entry
* dmu_tx_commit(tx); // commit DMU tx -- error or not
* rw_exit(...); // drop locks
* zfs_dirent_unlock(dl); // unlock directory entry
* VN_RELE(...); // release held vnodes
* zil_commit(zilog, foid); // synchronous when necessary
* ZFS_EXIT(zfsvfs); // finished in zfs
* return (error); // done, report error
*/
/* ARGSUSED */
static int
zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
{
znode_t *zp = VTOZ(*vpp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(zp);
if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
((flag & FAPPEND) == 0)) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EPERM));
}
if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
ZTOV(zp)->v_type == VREG &&
!(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
if (fs_vscan(*vpp, cr, 0) != 0) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EACCES));
}
}
/* Keep a count of the synchronous opens in the znode */
if (flag & (FSYNC | FDSYNC))
atomic_inc_32(&zp->z_sync_cnt);
ZFS_EXIT(zfsvfs);
return (0);
}
/* ARGSUSED */
static int
zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
caller_context_t *ct)
{
znode_t *zp = VTOZ(vp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
/*
* Clean up any locks held by this process on the vp.
*/
cleanlocks(vp, ddi_get_pid(), 0);
cleanshares(vp, ddi_get_pid());
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(zp);
/* Decrement the synchronous opens in the znode */
if ((flag & (FSYNC | FDSYNC)) && (count == 1))
atomic_dec_32(&zp->z_sync_cnt);
if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
ZTOV(zp)->v_type == VREG &&
!(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
VERIFY(fs_vscan(vp, cr, 1) == 0);
ZFS_EXIT(zfsvfs);
return (0);
}
/*
* Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
* data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
*/
static int
zfs_holey(vnode_t *vp, int cmd, offset_t *off)
{
znode_t *zp = VTOZ(vp);
uint64_t noff = (uint64_t)*off; /* new offset */
uint64_t file_sz;
int error;
boolean_t hole;
file_sz = zp->z_size;
if (noff >= file_sz) {
return (SET_ERROR(ENXIO));
}
if (cmd == _FIO_SEEK_HOLE)
hole = B_TRUE;
else
hole = B_FALSE;
error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
if (error == ESRCH)
return (SET_ERROR(ENXIO));
/*
* We could find a hole that begins after the logical end-of-file,
* because dmu_offset_next() only works on whole blocks. If the
* EOF falls mid-block, then indicate that the "virtual hole"
* at the end of the file begins at the logical EOF, rather than
* at the end of the last block.
*/
if (noff > file_sz) {
ASSERT(hole);
noff = file_sz;
}
if (noff < *off)
return (error);
*off = noff;
return (error);
}
/* ARGSUSED */
static int
zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
int *rvalp, caller_context_t *ct)
{
offset_t off;
offset_t ndata;
dmu_object_info_t doi;
int error;
zfsvfs_t *zfsvfs;
znode_t *zp;
switch (com) {
case _FIOFFS:
{
return (zfs_sync(vp->v_vfsp, 0, cred));
/*
* The following two ioctls are used by bfu. Faking out,
* necessary to avoid bfu errors.
*/
}
case _FIOGDIO:
case _FIOSDIO:
{
return (0);
}
case _FIO_SEEK_DATA:
case _FIO_SEEK_HOLE:
{
if (ddi_copyin((void *)data, &off, sizeof (off), flag))
return (SET_ERROR(EFAULT));
zp = VTOZ(vp);
zfsvfs = zp->z_zfsvfs;
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(zp);
/* offset parameter is in/out */
error = zfs_holey(vp, com, &off);
ZFS_EXIT(zfsvfs);
if (error)
return (error);
if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
return (SET_ERROR(EFAULT));
return (0);
}
case _FIO_COUNT_FILLED:
{
/*
* _FIO_COUNT_FILLED adds a new ioctl command which
* exposes the number of filled blocks in a
* ZFS object.
*/
zp = VTOZ(vp);
zfsvfs = zp->z_zfsvfs;
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(zp);
/*
* Wait for all dirty blocks for this object
* to get synced out to disk, and the DMU info
* updated.
*/
error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id);
if (error) {
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* Retrieve fill count from DMU object.
*/
error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi);
if (error) {
ZFS_EXIT(zfsvfs);
return (error);
}
ndata = doi.doi_fill_count;
ZFS_EXIT(zfsvfs);
if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag))
return (SET_ERROR(EFAULT));
return (0);
}
}
return (SET_ERROR(ENOTTY));
}
/*
* Utility functions to map and unmap a single physical page. These
* are used to manage the mappable copies of ZFS file data, and therefore
* do not update ref/mod bits.
*/
caddr_t
zfs_map_page(page_t *pp, enum seg_rw rw)
{
if (kpm_enable)
return (hat_kpm_mapin(pp, 0));
ASSERT(rw == S_READ || rw == S_WRITE);
return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
(caddr_t)-1));
}
void
zfs_unmap_page(page_t *pp, caddr_t addr)
{
if (kpm_enable) {
hat_kpm_mapout(pp, 0, addr);
} else {
ppmapout(addr);
}
}
/*
* When a file is memory mapped, we must keep the IO data synchronized
* between the DMU cache and the memory mapped pages. What this means:
*
* On Write: If we find a memory mapped page, we write to *both*
* the page and the dmu buffer.
*/
static void
update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
{
int64_t off;
off = start & PAGEOFFSET;
for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
page_t *pp;
uint64_t nbytes = MIN(PAGESIZE - off, len);
if (pp = page_lookup(vp, start, SE_SHARED)) {
caddr_t va;
va = zfs_map_page(pp, S_WRITE);
(void) dmu_read(os, oid, start+off, nbytes, va+off,
DMU_READ_PREFETCH);
zfs_unmap_page(pp, va);
page_unlock(pp);
}
len -= nbytes;
off = 0;
}
}
/*
* When a file is memory mapped, we must keep the IO data synchronized
* between the DMU cache and the memory mapped pages. What this means:
*
* On Read: We "read" preferentially from memory mapped pages,
* else we default from the dmu buffer.
*
* NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
* the file is memory mapped.
*/
static int
mappedread(vnode_t *vp, int nbytes, uio_t *uio)
{
znode_t *zp = VTOZ(vp);
int64_t start, off;
int len = nbytes;
int error = 0;
start = uio->uio_loffset;
off = start & PAGEOFFSET;
for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
page_t *pp;
uint64_t bytes = MIN(PAGESIZE - off, len);
if (pp = page_lookup(vp, start, SE_SHARED)) {
caddr_t va;
va = zfs_map_page(pp, S_READ);
error = uiomove(va + off, bytes, UIO_READ, uio);
zfs_unmap_page(pp, va);
page_unlock(pp);
} else {
error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
uio, bytes);
}
len -= bytes;
off = 0;
if (error)
break;
}
return (error);
}
offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
/*
* Read bytes from specified file into supplied buffer.
*
* IN: vp - vnode of file to be read from.
* uio - structure supplying read location, range info,
* and return buffer.
* ioflag - SYNC flags; used to provide FRSYNC semantics.
* cr - credentials of caller.
* ct - caller context
*
* OUT: uio - updated offset and range, buffer filled.
*
* RETURN: 0 on success, error code on failure.
*
* Side Effects:
* vp - atime updated if byte count > 0
*/
/* ARGSUSED */
static int
zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
{
znode_t *zp = VTOZ(vp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
ssize_t n, nbytes;
int error = 0;
rl_t *rl;
xuio_t *xuio = NULL;
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(zp);
if (zp->z_pflags & ZFS_AV_QUARANTINED) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EACCES));
}
/*
* Validate file offset
*/
if (uio->uio_loffset < (offset_t)0) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EINVAL));
}
/*
* Fasttrack empty reads
*/
if (uio->uio_resid == 0) {
ZFS_EXIT(zfsvfs);
return (0);
}
/*
* Check for mandatory locks
*/
if (MANDMODE(zp->z_mode)) {
if (error = chklock(vp, FREAD,
uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
ZFS_EXIT(zfsvfs);
return (error);
}
}
/*
* If we're in FRSYNC mode, sync out this znode before reading it.
*/
if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zfsvfs->z_log, zp->z_id);
/*
* Lock the range against changes.
*/
rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
/*
* If we are reading past end-of-file we can skip
* to the end; but we might still need to set atime.
*/
if (uio->uio_loffset >= zp->z_size) {
error = 0;
goto out;
}
ASSERT(uio->uio_loffset < zp->z_size);
n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
if ((uio->uio_extflg == UIO_XUIO) &&
(((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
int nblk;
int blksz = zp->z_blksz;
uint64_t offset = uio->uio_loffset;
xuio = (xuio_t *)uio;
if ((ISP2(blksz))) {
nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
blksz)) / blksz;
} else {
ASSERT(offset + n <= blksz);
nblk = 1;
}
(void) dmu_xuio_init(xuio, nblk);
if (vn_has_cached_data(vp)) {
/*
* For simplicity, we always allocate a full buffer
* even if we only expect to read a portion of a block.
*/
while (--nblk >= 0) {
(void) dmu_xuio_add(xuio,
dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
blksz), 0, blksz);
}
}
}
while (n > 0) {
nbytes = MIN(n, zfs_read_chunk_size -
P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
if (vn_has_cached_data(vp)) {
error = mappedread(vp, nbytes, uio);
} else {
error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
uio, nbytes);
}
if (error) {
/* convert checksum errors into IO errors */
if (error == ECKSUM)
error = SET_ERROR(EIO);
break;
}
n -= nbytes;
}
out:
zfs_range_unlock(rl);
ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* Write the bytes to a file.
*
* IN: vp - vnode of file to be written to.
* uio - structure supplying write location, range info,
* and data buffer.
* ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is
* set if in append mode.
* cr - credentials of caller.
* ct - caller context (NFS/CIFS fem monitor only)
*
* OUT: uio - updated offset and range.
*
* RETURN: 0 on success, error code on failure.
*
* Timestamps:
* vp - ctime|mtime updated if byte count > 0
*/
/* ARGSUSED */
static int
zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
{
znode_t *zp = VTOZ(vp);
rlim64_t limit = uio->uio_llimit;
ssize_t start_resid = uio->uio_resid;
ssize_t tx_bytes;
uint64_t end_size;
dmu_tx_t *tx;
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
zilog_t *zilog;
offset_t woff;
ssize_t n, nbytes;
rl_t *rl;
int max_blksz = zfsvfs->z_max_blksz;
int error = 0;
arc_buf_t *abuf;
iovec_t *aiov = NULL;
xuio_t *xuio = NULL;
int i_iov = 0;
int iovcnt = uio->uio_iovcnt;
iovec_t *iovp = uio->uio_iov;
int write_eof;
int count = 0;
sa_bulk_attr_t bulk[4];
uint64_t mtime[2], ctime[2];
/*
* Fasttrack empty write
*/
n = start_resid;
if (n == 0)
return (0);
if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
limit = MAXOFFSET_T;
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(zp);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
&zp->z_size, 8);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
&zp->z_pflags, 8);
/*
* In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
* callers might not be able to detect properly that we are read-only,
* so check it explicitly here.
*/
if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EROFS));
}
/*
* If immutable or not appending then return EPERM.
* Intentionally allow ZFS_READONLY through here.
* See zfs_zaccess_common()
*/
if ((zp->z_pflags & ZFS_IMMUTABLE) ||
((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
(uio->uio_loffset < zp->z_size))) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EPERM));
}
zilog = zfsvfs->z_log;
/*
* Validate file offset
*/
woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
if (woff < 0) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EINVAL));
}
/*
* Check for mandatory locks before calling zfs_range_lock()
* in order to prevent a deadlock with locks set via fcntl().
*/
if (MANDMODE((mode_t)zp->z_mode) &&
(error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* Pre-fault the pages to ensure slow (eg NFS) pages
* don't hold up txg.
* Skip this if uio contains loaned arc_buf.
*/
if ((uio->uio_extflg == UIO_XUIO) &&
(((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
xuio = (xuio_t *)uio;
else
uio_prefaultpages(MIN(n, max_blksz), uio);
/*
* If in append mode, set the io offset pointer to eof.
*/
if (ioflag & FAPPEND) {
/*
* Obtain an appending range lock to guarantee file append
* semantics. We reset the write offset once we have the lock.
*/
rl = zfs_range_lock(zp, 0, n, RL_APPEND);
woff = rl->r_off;
if (rl->r_len == UINT64_MAX) {
/*
* We overlocked the file because this write will cause
* the file block size to increase.
* Note that zp_size cannot change with this lock held.
*/
woff = zp->z_size;
}
uio->uio_loffset = woff;
} else {
/*
* Note that if the file block size will change as a result of
* this write, then this range lock will lock the entire file
* so that we can re-write the block safely.
*/
rl = zfs_range_lock(zp, woff, n, RL_WRITER);
}
if (woff >= limit) {
zfs_range_unlock(rl);
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EFBIG));
}
if ((woff + n) > limit || woff > (limit - n))
n = limit - woff;
/* Will this write extend the file length? */
write_eof = (woff + n > zp->z_size);
end_size = MAX(zp->z_size, woff + n);
/*
* Write the file in reasonable size chunks. Each chunk is written
* in a separate transaction; this keeps the intent log records small
* and allows us to do more fine-grained space accounting.
*/
while (n > 0) {
abuf = NULL;
woff = uio->uio_loffset;
if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
if (abuf != NULL)
dmu_return_arcbuf(abuf);
error = SET_ERROR(EDQUOT);
break;
}
if (xuio && abuf == NULL) {
ASSERT(i_iov < iovcnt);
aiov = &iovp[i_iov];
abuf = dmu_xuio_arcbuf(xuio, i_iov);
dmu_xuio_clear(xuio, i_iov);
DTRACE_PROBE3(zfs_cp_write, int, i_iov,
iovec_t *, aiov, arc_buf_t *, abuf);
ASSERT((aiov->iov_base == abuf->b_data) ||
((char *)aiov->iov_base - (char *)abuf->b_data +
aiov->iov_len == arc_buf_size(abuf)));
i_iov++;
} else if (abuf == NULL && n >= max_blksz &&
woff >= zp->z_size &&
P2PHASE(woff, max_blksz) == 0 &&
zp->z_blksz == max_blksz) {
/*
* This write covers a full block. "Borrow" a buffer
* from the dmu so that we can fill it before we enter
* a transaction. This avoids the possibility of
* holding up the transaction if the data copy hangs
* up on a pagefault (e.g., from an NFS server mapping).
*/
size_t cbytes;
abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
max_blksz);
ASSERT(abuf != NULL);
ASSERT(arc_buf_size(abuf) == max_blksz);
if (error = uiocopy(abuf->b_data, max_blksz,
UIO_WRITE, uio, &cbytes)) {
dmu_return_arcbuf(abuf);
break;
}
ASSERT(cbytes == max_blksz);
}
/*
* Start a transaction.
*/
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
zfs_sa_upgrade_txholds(tx, zp);
error = dmu_tx_assign(tx, TXG_WAIT);
if (error) {
dmu_tx_abort(tx);
if (abuf != NULL)
dmu_return_arcbuf(abuf);
break;
}
/*
* If zfs_range_lock() over-locked we grow the blocksize
* and then reduce the lock range. This will only happen
* on the first iteration since zfs_range_reduce() will
* shrink down r_len to the appropriate size.
*/
if (rl->r_len == UINT64_MAX) {
uint64_t new_blksz;
if (zp->z_blksz > max_blksz) {
/*
* File's blocksize is already larger than the
* "recordsize" property. Only let it grow to
* the next power of 2.
*/
ASSERT(!ISP2(zp->z_blksz));
new_blksz = MIN(end_size,
1 << highbit64(zp->z_blksz));
} else {
new_blksz = MIN(end_size, max_blksz);
}
zfs_grow_blocksize(zp, new_blksz, tx);
zfs_range_reduce(rl, woff, n);
}
/*
* XXX - should we really limit each write to z_max_blksz?
* Perhaps we should use SPA_MAXBLOCKSIZE chunks?
*/
nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
if (abuf == NULL) {
tx_bytes = uio->uio_resid;
error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
uio, nbytes, tx);
tx_bytes -= uio->uio_resid;
} else {
tx_bytes = nbytes;
ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
/*
* If this is not a full block write, but we are
* extending the file past EOF and this data starts
* block-aligned, use assign_arcbuf(). Otherwise,
* write via dmu_write().
*/
if (tx_bytes < max_blksz && (!write_eof ||
aiov->iov_base != abuf->b_data)) {
ASSERT(xuio);
dmu_write(zfsvfs->z_os, zp->z_id, woff,
aiov->iov_len, aiov->iov_base, tx);
dmu_return_arcbuf(abuf);
xuio_stat_wbuf_copied();
} else {
ASSERT(xuio || tx_bytes == max_blksz);
dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
woff, abuf, tx);
}
ASSERT(tx_bytes <= uio->uio_resid);
uioskip(uio, tx_bytes);
}
if (tx_bytes && vn_has_cached_data(vp)) {
update_pages(vp, woff,
tx_bytes, zfsvfs->z_os, zp->z_id);
}
/*
* If we made no progress, we're done. If we made even
* partial progress, update the znode and ZIL accordingly.
*/
if (tx_bytes == 0) {
(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
(void *)&zp->z_size, sizeof (uint64_t), tx);
dmu_tx_commit(tx);
ASSERT(error != 0);
break;
}
/*
* Clear Set-UID/Set-GID bits on successful write if not
* privileged and at least one of the excute bits is set.
*
* It would be nice to to this after all writes have
* been done, but that would still expose the ISUID/ISGID
* to another app after the partial write is committed.
*
* Note: we don't call zfs_fuid_map_id() here because
* user 0 is not an ephemeral uid.
*/
mutex_enter(&zp->z_acl_lock);
if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
(S_IXUSR >> 6))) != 0 &&
(zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
secpolicy_vnode_setid_retain(cr,
(zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
uint64_t newmode;
zp->z_mode &= ~(S_ISUID | S_ISGID);
newmode = zp->z_mode;
(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
(void *)&newmode, sizeof (uint64_t), tx);
}
mutex_exit(&zp->z_acl_lock);
zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
B_TRUE);
/*
* Update the file size (zp_size) if it has changed;
* account for possible concurrent updates.
*/
while ((end_size = zp->z_size) < uio->uio_loffset) {
(void) atomic_cas_64(&zp->z_size, end_size,
uio->uio_loffset);
ASSERT(error == 0);
}
/*
* If we are replaying and eof is non zero then force
* the file size to the specified eof. Note, there's no
* concurrency during replay.
*/
if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
zp->z_size = zfsvfs->z_replay_eof;
error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
dmu_tx_commit(tx);
if (error != 0)
break;
ASSERT(tx_bytes == nbytes);
n -= nbytes;
if (!xuio && n > 0)
uio_prefaultpages(MIN(n, max_blksz), uio);
}
zfs_range_unlock(rl);
/*
* If we're in replay mode, or we made no progress, return error.
* Otherwise, it's at least a partial write, so it's successful.
*/
if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
ZFS_EXIT(zfsvfs);
return (error);
}
if (ioflag & (FSYNC | FDSYNC) ||
zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zilog, zp->z_id);
ZFS_EXIT(zfsvfs);
return (0);
}
/* ARGSUSED */
void
zfs_get_done(zgd_t *zgd, int error)
{
znode_t *zp = zgd->zgd_private;
objset_t *os = zp->z_zfsvfs->z_os;
if (zgd->zgd_db)
dmu_buf_rele(zgd->zgd_db, zgd);
zfs_range_unlock(zgd->zgd_rl);
/*
* Release the vnode asynchronously as we currently have the
* txg stopped from syncing.
*/
VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
kmem_free(zgd, sizeof (zgd_t));
}
#ifdef DEBUG
static int zil_fault_io = 0;
#endif
/*
* Get data to generate a TX_WRITE intent log record.
*/
int
zfs_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio)
{
zfsvfs_t *zfsvfs = arg;
objset_t *os = zfsvfs->z_os;
znode_t *zp;
uint64_t object = lr->lr_foid;
uint64_t offset = lr->lr_offset;
uint64_t size = lr->lr_length;
dmu_buf_t *db;
zgd_t *zgd;
int error = 0;
ASSERT3P(lwb, !=, NULL);
ASSERT3P(zio, !=, NULL);
ASSERT3U(size, !=, 0);
/*
* Nothing to do if the file has been removed
*/
if (zfs_zget(zfsvfs, object, &zp) != 0)
return (SET_ERROR(ENOENT));
if (zp->z_unlinked) {
/*
* Release the vnode asynchronously as we currently have the
* txg stopped from syncing.
*/
VN_RELE_ASYNC(ZTOV(zp),
dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
return (SET_ERROR(ENOENT));
}
zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
zgd->zgd_lwb = lwb;
zgd->zgd_private = zp;
/*
* Write records come in two flavors: immediate and indirect.
* For small writes it's cheaper to store the data with the
* log record (immediate); for large writes it's cheaper to
* sync the data and get a pointer to it (indirect) so that
* we don't have to write the data twice.
*/
if (buf != NULL) { /* immediate write */
zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
/* test for truncation needs to be done while range locked */
if (offset >= zp->z_size) {
error = SET_ERROR(ENOENT);
} else {
error = dmu_read(os, object, offset, size, buf,
DMU_READ_NO_PREFETCH);
}
ASSERT(error == 0 || error == ENOENT);
} else { /* indirect write */
/*
* Have to lock the whole block to ensure when it's
* written out and its checksum is being calculated
* that no one can change the data. We need to re-check
* blocksize after we get the lock in case it's changed!
*/
for (;;) {
uint64_t blkoff;
size = zp->z_blksz;
blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
offset -= blkoff;
zgd->zgd_rl = zfs_range_lock(zp, offset, size,
RL_READER);
if (zp->z_blksz == size)
break;
offset += blkoff;
zfs_range_unlock(zgd->zgd_rl);
}
/* test for truncation needs to be done while range locked */
if (lr->lr_offset >= zp->z_size)
error = SET_ERROR(ENOENT);
#ifdef DEBUG
if (zil_fault_io) {
error = SET_ERROR(EIO);
zil_fault_io = 0;
}
#endif
if (error == 0)
error = dmu_buf_hold(os, object, offset, zgd, &db,
DMU_READ_NO_PREFETCH);
if (error == 0) {
blkptr_t *bp = &lr->lr_blkptr;
zgd->zgd_db = db;
zgd->zgd_bp = bp;
ASSERT(db->db_offset == offset);
ASSERT(db->db_size == size);
error = dmu_sync(zio, lr->lr_common.lrc_txg,
zfs_get_done, zgd);
ASSERT(error || lr->lr_length <= size);
/*
* On success, we need to wait for the write I/O
* initiated by dmu_sync() to complete before we can
* release this dbuf. We will finish everything up
* in the zfs_get_done() callback.
*/
if (error == 0)
return (0);
if (error == EALREADY) {
lr->lr_common.lrc_txtype = TX_WRITE2;
/*
* TX_WRITE2 relies on the data previously
* written by the TX_WRITE that caused
* EALREADY. We zero out the BP because
* it is the old, currently-on-disk BP.
*/
zgd->zgd_bp = NULL;
BP_ZERO(bp);
error = 0;
}
}
}
zfs_get_done(zgd, error);
return (error);
}
/*ARGSUSED*/
static int
zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
caller_context_t *ct)
{
znode_t *zp = VTOZ(vp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
int error;
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(zp);
if (flag & V_ACE_MASK)
error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
else
error = zfs_zaccess_rwx(zp, mode, flag, cr);
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* If vnode is for a device return a specfs vnode instead.
*/
static int
specvp_check(vnode_t **vpp, cred_t *cr)
{
int error = 0;
if (IS_DEVVP(*vpp)) {
struct vnode *svp;
svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
VN_RELE(*vpp);
if (svp == NULL)
error = SET_ERROR(ENOSYS);
*vpp = svp;
}
return (error);
}
/*
* Lookup an entry in a directory, or an extended attribute directory.
* If it exists, return a held vnode reference for it.
*
* IN: dvp - vnode of directory to search.
* nm - name of entry to lookup.
* pnp - full pathname to lookup [UNUSED].
* flags - LOOKUP_XATTR set if looking for an attribute.
* rdir - root directory vnode [UNUSED].
* cr - credentials of caller.
* ct - caller context
* direntflags - directory lookup flags
* realpnp - returned pathname.
*
* OUT: vpp - vnode of located entry, NULL if not found.
*
* RETURN: 0 on success, error code on failure.
*
* Timestamps:
* NA
*/
/* ARGSUSED */
static int
zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
int *direntflags, pathname_t *realpnp)
{
znode_t *zdp = VTOZ(dvp);
zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
int error = 0;
/*
* Fast path lookup, however we must skip DNLC lookup
* for case folding or normalizing lookups because the
* DNLC code only stores the passed in name. This means
* creating 'a' and removing 'A' on a case insensitive
* file system would work, but DNLC still thinks 'a'
* exists and won't let you create it again on the next
* pass through fast path.
*/
if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
if (dvp->v_type != VDIR) {
return (SET_ERROR(ENOTDIR));
} else if (zdp->z_sa_hdl == NULL) {
return (SET_ERROR(EIO));
}
if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
error = zfs_fastaccesschk_execute(zdp, cr);
if (!error) {
*vpp = dvp;
VN_HOLD(*vpp);
return (0);
}
return (error);
} else if (!zdp->z_zfsvfs->z_norm &&
(zdp->z_zfsvfs->z_case == ZFS_CASE_SENSITIVE)) {
vnode_t *tvp = dnlc_lookup(dvp, nm);
if (tvp) {
error = zfs_fastaccesschk_execute(zdp, cr);
if (error) {
VN_RELE(tvp);
return (error);
}
if (tvp == DNLC_NO_VNODE) {
VN_RELE(tvp);
return (SET_ERROR(ENOENT));
} else {
*vpp = tvp;
return (specvp_check(vpp, cr));
}
}
}
}
DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(zdp);
*vpp = NULL;
if (flags & LOOKUP_XATTR) {
/*
* If the xattr property is off, refuse the lookup request.
*/
if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EINVAL));
}
/*
* We don't allow recursive attributes..
* Maybe someday we will.
*/
if (zdp->z_pflags & ZFS_XATTR) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EINVAL));
}
if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* Do we have permission to get into attribute directory?
*/
if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
B_FALSE, cr)) {
VN_RELE(*vpp);
*vpp = NULL;
}
ZFS_EXIT(zfsvfs);
return (error);
}
if (dvp->v_type != VDIR) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(ENOTDIR));
}
/*
* Check accessibility of directory.
*/
if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
ZFS_EXIT(zfsvfs);
return (error);
}
if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EILSEQ));
}
error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
if (error == 0)
error = specvp_check(vpp, cr);
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* Attempt to create a new entry in a directory. If the entry
* already exists, truncate the file if permissible, else return
* an error. Return the vp of the created or trunc'd file.
*
* IN: dvp - vnode of directory to put new file entry in.
* name - name of new file entry.
* vap - attributes of new file.
* excl - flag indicating exclusive or non-exclusive mode.
* mode - mode to open file with.
* cr - credentials of caller.
* flag - large file flag [UNUSED].
* ct - caller context
* vsecp - ACL to be set
*
* OUT: vpp - vnode of created or trunc'd entry.
*
* RETURN: 0 on success, error code on failure.
*
* Timestamps:
* dvp - ctime|mtime updated if new entry created
* vp - ctime|mtime always, atime if new
*/
/* ARGSUSED */
static int
zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
vsecattr_t *vsecp)
{
znode_t *zp, *dzp = VTOZ(dvp);
zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
zilog_t *zilog;
objset_t *os;
zfs_dirlock_t *dl;
dmu_tx_t *tx;
int error;
ksid_t *ksid;
uid_t uid;
gid_t gid = crgetgid(cr);
zfs_acl_ids_t acl_ids;
boolean_t fuid_dirtied;
boolean_t have_acl = B_FALSE;
boolean_t waited = B_FALSE;
/*
* If we have an ephemeral id, ACL, or XVATTR then
* make sure file system is at proper version
*/
ksid = crgetsid(cr, KSID_OWNER);
if (ksid)
uid = ksid_getid(ksid);
else
uid = crgetuid(cr);
if (zfsvfs->z_use_fuids == B_FALSE &&
(vsecp || (vap->va_mask & AT_XVATTR) ||
IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
return (SET_ERROR(EINVAL));
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(dzp);
os = zfsvfs->z_os;
zilog = zfsvfs->z_log;
if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EILSEQ));
}
if (vap->va_mask & AT_XVATTR) {
if ((error = secpolicy_xvattr((xvattr_t *)vap,
crgetuid(cr), cr, vap->va_type)) != 0) {
ZFS_EXIT(zfsvfs);
return (error);
}
}
top:
*vpp = NULL;
if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
vap->va_mode &= ~VSVTX;
if (*name == '\0') {
/*
* Null component name refers to the directory itself.
*/
VN_HOLD(dvp);
zp = dzp;
dl = NULL;
error = 0;
} else {
/* possible VN_HOLD(zp) */
int zflg = 0;
if (flag & FIGNORECASE)
zflg |= ZCILOOK;
error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
NULL, NULL);
if (error) {
if (have_acl)
zfs_acl_ids_free(&acl_ids);
if (strcmp(name, "..") == 0)
error = SET_ERROR(EISDIR);
ZFS_EXIT(zfsvfs);
return (error);
}
}
if (zp == NULL) {
uint64_t txtype;
/*
* Create a new file object and update the directory
* to reference it.
*/
if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
if (have_acl)
zfs_acl_ids_free(&acl_ids);
goto out;
}
/*
* We only support the creation of regular files in
* extended attribute directories.
*/
if ((dzp->z_pflags & ZFS_XATTR) &&
(vap->va_type != VREG)) {
if (have_acl)
zfs_acl_ids_free(&acl_ids);
error = SET_ERROR(EINVAL);
goto out;
}
if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
cr, vsecp, &acl_ids)) != 0)
goto out;
have_acl = B_TRUE;
if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
zfs_acl_ids_free(&acl_ids);
error = SET_ERROR(EDQUOT);
goto out;
}
tx = dmu_tx_create(os);
dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
ZFS_SA_BASE_ATTR_SIZE);
fuid_dirtied = zfsvfs->z_fuid_dirty;
if (fuid_dirtied)
zfs_fuid_txhold(zfsvfs, tx);
dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
if (!zfsvfs->z_use_sa &&
acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
0, acl_ids.z_aclp->z_acl_bytes);
}
error = dmu_tx_assign(tx,
(waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
if (error) {
zfs_dirent_unlock(dl);
if (error == ERESTART) {
waited = B_TRUE;
dmu_tx_wait(tx);
dmu_tx_abort(tx);
goto top;
}
zfs_acl_ids_free(&acl_ids);
dmu_tx_abort(tx);
ZFS_EXIT(zfsvfs);
return (error);
}
zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
if (fuid_dirtied)
zfs_fuid_sync(zfsvfs, tx);
(void) zfs_link_create(dl, zp, tx, ZNEW);
txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
if (flag & FIGNORECASE)
txtype |= TX_CI;
zfs_log_create(zilog, tx, txtype, dzp, zp, name,
vsecp, acl_ids.z_fuidp, vap);
zfs_acl_ids_free(&acl_ids);
dmu_tx_commit(tx);
} else {
int aflags = (flag & FAPPEND) ? V_APPEND : 0;
if (have_acl)
zfs_acl_ids_free(&acl_ids);
have_acl = B_FALSE;
/*
* A directory entry already exists for this name.
*/
/*
* Can't truncate an existing file if in exclusive mode.
*/
if (excl == EXCL) {
error = SET_ERROR(EEXIST);
goto out;
}
/*
* Can't open a directory for writing.
*/
if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
error = SET_ERROR(EISDIR);
goto out;
}
/*
* Verify requested access to file.
*/
if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
goto out;
}
mutex_enter(&dzp->z_lock);
dzp->z_seq++;
mutex_exit(&dzp->z_lock);
/*
* Truncate regular files if requested.
*/
if ((ZTOV(zp)->v_type == VREG) &&
(vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
/* we can't hold any locks when calling zfs_freesp() */
zfs_dirent_unlock(dl);
dl = NULL;
error = zfs_freesp(zp, 0, 0, mode, TRUE);
if (error == 0) {
vnevent_create(ZTOV(zp), ct);
}
}
}
out:
if (dl)
zfs_dirent_unlock(dl);
if (error) {
if (zp)
VN_RELE(ZTOV(zp));
} else {
*vpp = ZTOV(zp);
error = specvp_check(vpp, cr);
}
if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zilog, 0);
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* Remove an entry from a directory.
*
* IN: dvp - vnode of directory to remove entry from.
* name - name of entry to remove.
* cr - credentials of caller.
* ct - caller context
* flags - case flags
*
* RETURN: 0 on success, error code on failure.
*
* Timestamps:
* dvp - ctime|mtime
* vp - ctime (if nlink > 0)
*/
uint64_t null_xattr = 0;
/*ARGSUSED*/
static int
zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
int flags)
{
znode_t *zp, *dzp = VTOZ(dvp);
znode_t *xzp;
vnode_t *vp;
zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
zilog_t *zilog;
uint64_t acl_obj, xattr_obj;
uint64_t xattr_obj_unlinked = 0;
uint64_t obj = 0;
zfs_dirlock_t *dl;
dmu_tx_t *tx;
boolean_t may_delete_now, delete_now = FALSE;
boolean_t unlinked, toobig = FALSE;
uint64_t txtype;
pathname_t *realnmp = NULL;
pathname_t realnm;
int error;
int zflg = ZEXISTS;
boolean_t waited = B_FALSE;
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(dzp);
zilog = zfsvfs->z_log;
if (flags & FIGNORECASE) {
zflg |= ZCILOOK;
pn_alloc(&realnm);
realnmp = &realnm;
}
top:
xattr_obj = 0;
xzp = NULL;
/*
* Attempt to lock directory; fail if entry doesn't exist.
*/
if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
NULL, realnmp)) {
if (realnmp)
pn_free(realnmp);
ZFS_EXIT(zfsvfs);
return (error);
}
vp = ZTOV(zp);
if (error = zfs_zaccess_delete(dzp, zp, cr)) {
goto out;
}
/*
* Need to use rmdir for removing directories.
*/
if (vp->v_type == VDIR) {
error = SET_ERROR(EPERM);
goto out;
}
vnevent_remove(vp, dvp, name, ct);
if (realnmp)
dnlc_remove(dvp, realnmp->pn_buf);
else
dnlc_remove(dvp, name);
mutex_enter(&vp->v_lock);
may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
mutex_exit(&vp->v_lock);
/*
* We may delete the znode now, or we may put it in the unlinked set;
* it depends on whether we're the last link, and on whether there are
* other holds on the vnode. So we dmu_tx_hold() the right things to
* allow for either case.
*/
obj = zp->z_id;
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
zfs_sa_upgrade_txholds(tx, zp);
zfs_sa_upgrade_txholds(tx, dzp);
if (may_delete_now) {
toobig =
zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
/* if the file is too big, only hold_free a token amount */
dmu_tx_hold_free(tx, zp->z_id, 0,
(toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
}
/* are there any extended attributes? */
error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
&xattr_obj, sizeof (xattr_obj));
if (error == 0 && xattr_obj) {
error = zfs_zget(zfsvfs, xattr_obj, &xzp);
ASSERT0(error);
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
}
mutex_enter(&zp->z_lock);
if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
mutex_exit(&zp->z_lock);
/* charge as an update -- would be nice not to charge at all */
dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
/*
* Mark this transaction as typically resulting in a net free of space
*/
dmu_tx_mark_netfree(tx);
error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
if (error) {
zfs_dirent_unlock(dl);
VN_RELE(vp);
if (xzp)
VN_RELE(ZTOV(xzp));
if (error == ERESTART) {
waited = B_TRUE;
dmu_tx_wait(tx);
dmu_tx_abort(tx);
goto top;
}
if (realnmp)
pn_free(realnmp);
dmu_tx_abort(tx);
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* Remove the directory entry.
*/
error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
if (error) {
dmu_tx_commit(tx);
goto out;
}
if (unlinked) {
/*
* Hold z_lock so that we can make sure that the ACL obj
* hasn't changed. Could have been deleted due to
* zfs_sa_upgrade().
*/
mutex_enter(&zp->z_lock);
mutex_enter(&vp->v_lock);
(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
&xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
delete_now = may_delete_now && !toobig &&
vp->v_count == 1 && !vn_has_cached_data(vp) &&
xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
acl_obj;
mutex_exit(&vp->v_lock);
}
if (delete_now) {
if (xattr_obj_unlinked) {
ASSERT3U(xzp->z_links, ==, 2);
mutex_enter(&xzp->z_lock);
xzp->z_unlinked = 1;
xzp->z_links = 0;
error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
&xzp->z_links, sizeof (xzp->z_links), tx);
ASSERT3U(error, ==, 0);
mutex_exit(&xzp->z_lock);
zfs_unlinked_add(xzp, tx);
if (zp->z_is_sa)
error = sa_remove(zp->z_sa_hdl,
SA_ZPL_XATTR(zfsvfs), tx);
else
error = sa_update(zp->z_sa_hdl,
SA_ZPL_XATTR(zfsvfs), &null_xattr,
sizeof (uint64_t), tx);
ASSERT0(error);
}
mutex_enter(&vp->v_lock);
VN_RELE_LOCKED(vp);
ASSERT0(vp->v_count);
mutex_exit(&vp->v_lock);
mutex_exit(&zp->z_lock);
zfs_znode_delete(zp, tx);
} else if (unlinked) {
mutex_exit(&zp->z_lock);
zfs_unlinked_add(zp, tx);
}
txtype = TX_REMOVE;
if (flags & FIGNORECASE)
txtype |= TX_CI;
zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
dmu_tx_commit(tx);
out:
if (realnmp)
pn_free(realnmp);
zfs_dirent_unlock(dl);
if (!delete_now)
VN_RELE(vp);
if (xzp)
VN_RELE(ZTOV(xzp));
if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zilog, 0);
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* Create a new directory and insert it into dvp using the name
* provided. Return a pointer to the inserted directory.
*
* IN: dvp - vnode of directory to add subdir to.
* dirname - name of new directory.
* vap - attributes of new directory.
* cr - credentials of caller.
* ct - caller context
* flags - case flags
* vsecp - ACL to be set
*
* OUT: vpp - vnode of created directory.
*
* RETURN: 0 on success, error code on failure.
*
* Timestamps:
* dvp - ctime|mtime updated
* vp - ctime|mtime|atime updated
*/
/*ARGSUSED*/
static int
zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
caller_context_t *ct, int flags, vsecattr_t *vsecp)
{
znode_t *zp, *dzp = VTOZ(dvp);
zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
zilog_t *zilog;
zfs_dirlock_t *dl;
uint64_t txtype;
dmu_tx_t *tx;
int error;
int zf = ZNEW;
ksid_t *ksid;
uid_t uid;
gid_t gid = crgetgid(cr);
zfs_acl_ids_t acl_ids;
boolean_t fuid_dirtied;
boolean_t waited = B_FALSE;
ASSERT(vap->va_type == VDIR);
/*
* If we have an ephemeral id, ACL, or XVATTR then
* make sure file system is at proper version
*/
ksid = crgetsid(cr, KSID_OWNER);
if (ksid)
uid = ksid_getid(ksid);
else
uid = crgetuid(cr);
if (zfsvfs->z_use_fuids == B_FALSE &&
(vsecp || (vap->va_mask & AT_XVATTR) ||
IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
return (SET_ERROR(EINVAL));
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(dzp);
zilog = zfsvfs->z_log;
if (dzp->z_pflags & ZFS_XATTR) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EINVAL));
}
if (zfsvfs->z_utf8 && u8_validate(dirname,
strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EILSEQ));
}
if (flags & FIGNORECASE)
zf |= ZCILOOK;
if (vap->va_mask & AT_XVATTR) {
if ((error = secpolicy_xvattr((xvattr_t *)vap,
crgetuid(cr), cr, vap->va_type)) != 0) {
ZFS_EXIT(zfsvfs);
return (error);
}
}
if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
vsecp, &acl_ids)) != 0) {
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* First make sure the new directory doesn't exist.
*
* Existence is checked first to make sure we don't return
* EACCES instead of EEXIST which can cause some applications
* to fail.
*/
top:
*vpp = NULL;
if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
NULL, NULL)) {
zfs_acl_ids_free(&acl_ids);
ZFS_EXIT(zfsvfs);
return (error);
}
if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
zfs_acl_ids_free(&acl_ids);
zfs_dirent_unlock(dl);
ZFS_EXIT(zfsvfs);
return (error);
}
if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
zfs_acl_ids_free(&acl_ids);
zfs_dirent_unlock(dl);
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EDQUOT));
}
/*
* Add a new entry to the directory.
*/
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
fuid_dirtied = zfsvfs->z_fuid_dirty;
if (fuid_dirtied)
zfs_fuid_txhold(zfsvfs, tx);
if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
acl_ids.z_aclp->z_acl_bytes);
}
dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
ZFS_SA_BASE_ATTR_SIZE);
error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
if (error) {
zfs_dirent_unlock(dl);
if (error == ERESTART) {
waited = B_TRUE;
dmu_tx_wait(tx);
dmu_tx_abort(tx);
goto top;
}
zfs_acl_ids_free(&acl_ids);
dmu_tx_abort(tx);
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* Create new node.
*/
zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
if (fuid_dirtied)
zfs_fuid_sync(zfsvfs, tx);
/*
* Now put new name in parent dir.
*/
(void) zfs_link_create(dl, zp, tx, ZNEW);
*vpp = ZTOV(zp);
txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
if (flags & FIGNORECASE)
txtype |= TX_CI;
zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
acl_ids.z_fuidp, vap);
zfs_acl_ids_free(&acl_ids);
dmu_tx_commit(tx);
zfs_dirent_unlock(dl);
if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zilog, 0);
ZFS_EXIT(zfsvfs);
return (0);
}
/*
* Remove a directory subdir entry. If the current working
* directory is the same as the subdir to be removed, the
* remove will fail.
*
* IN: dvp - vnode of directory to remove from.
* name - name of directory to be removed.
* cwd - vnode of current working directory.
* cr - credentials of caller.
* ct - caller context
* flags - case flags
*
* RETURN: 0 on success, error code on failure.
*
* Timestamps:
* dvp - ctime|mtime updated
*/
/*ARGSUSED*/
static int
zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
caller_context_t *ct, int flags)
{
znode_t *dzp = VTOZ(dvp);
znode_t *zp;
vnode_t *vp;
zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
zilog_t *zilog;
zfs_dirlock_t *dl;
dmu_tx_t *tx;
int error;
int zflg = ZEXISTS;
boolean_t waited = B_FALSE;
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(dzp);
zilog = zfsvfs->z_log;
if (flags & FIGNORECASE)
zflg |= ZCILOOK;
top:
zp = NULL;
/*
* Attempt to lock directory; fail if entry doesn't exist.
*/
if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
NULL, NULL)) {
ZFS_EXIT(zfsvfs);
return (error);
}
vp = ZTOV(zp);
if (error = zfs_zaccess_delete(dzp, zp, cr)) {
goto out;
}
if (vp->v_type != VDIR) {
error = SET_ERROR(ENOTDIR);
goto out;
}
if (vp == cwd) {
error = SET_ERROR(EINVAL);
goto out;
}
vnevent_rmdir(vp, dvp, name, ct);
/*
* Grab a lock on the directory to make sure that noone is
* trying to add (or lookup) entries while we are removing it.
*/
rw_enter(&zp->z_name_lock, RW_WRITER);
/*
* Grab a lock on the parent pointer to make sure we play well
* with the treewalk and directory rename code.
*/
rw_enter(&zp->z_parent_lock, RW_WRITER);
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
zfs_sa_upgrade_txholds(tx, zp);
zfs_sa_upgrade_txholds(tx, dzp);
dmu_tx_mark_netfree(tx);
error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
if (error) {
rw_exit(&zp->z_parent_lock);
rw_exit(&zp->z_name_lock);
zfs_dirent_unlock(dl);
VN_RELE(vp);
if (error == ERESTART) {
waited = B_TRUE;
dmu_tx_wait(tx);
dmu_tx_abort(tx);
goto top;
}
dmu_tx_abort(tx);
ZFS_EXIT(zfsvfs);
return (error);
}
error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
if (error == 0) {
uint64_t txtype = TX_RMDIR;
if (flags & FIGNORECASE)
txtype |= TX_CI;
zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
}
dmu_tx_commit(tx);
rw_exit(&zp->z_parent_lock);
rw_exit(&zp->z_name_lock);
out:
zfs_dirent_unlock(dl);
VN_RELE(vp);
if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zilog, 0);
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* Read as many directory entries as will fit into the provided
* buffer from the given directory cursor position (specified in
* the uio structure).
*
* IN: vp - vnode of directory to read.
* uio - structure supplying read location, range info,
* and return buffer.
* cr - credentials of caller.
* ct - caller context
* flags - case flags
*
* OUT: uio - updated offset and range, buffer filled.
* eofp - set to true if end-of-file detected.
*
* RETURN: 0 on success, error code on failure.
*
* Timestamps:
* vp - atime updated
*
* Note that the low 4 bits of the cookie returned by zap is always zero.
* This allows us to use the low range for "special" directory entries:
* We use 0 for '.', and 1 for '..'. If this is the root of the filesystem,
* we use the offset 2 for the '.zfs' directory.
*/
/* ARGSUSED */
static int
zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
caller_context_t *ct, int flags)
{
znode_t *zp = VTOZ(vp);
iovec_t *iovp;
edirent_t *eodp;
dirent64_t *odp;
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
objset_t *os;
caddr_t outbuf;
size_t bufsize;
zap_cursor_t zc;
zap_attribute_t zap;
uint_t bytes_wanted;
uint64_t offset; /* must be unsigned; checks for < 1 */
uint64_t parent;
int local_eof;
int outcount;
int error;
uint8_t prefetch;
boolean_t check_sysattrs;
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(zp);
if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
&parent, sizeof (parent))) != 0) {
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* If we are not given an eof variable,
* use a local one.
*/
if (eofp == NULL)
eofp = &local_eof;
/*
* Check for valid iov_len.
*/
if (uio->uio_iov->iov_len <= 0) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EINVAL));
}
/*
* Quit if directory has been removed (posix)
*/
if ((*eofp = zp->z_unlinked) != 0) {
ZFS_EXIT(zfsvfs);
return (0);
}
error = 0;
os = zfsvfs->z_os;
offset = uio->uio_loffset;
prefetch = zp->z_zn_prefetch;
/*
* Initialize the iterator cursor.
*/
if (offset <= 3) {
/*
* Start iteration from the beginning of the directory.
*/
zap_cursor_init(&zc, os, zp->z_id);
} else {
/*
* The offset is a serialized cursor.
*/
zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
}
/*
* Get space to change directory entries into fs independent format.
*/
iovp = uio->uio_iov;
bytes_wanted = iovp->iov_len;
if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
bufsize = bytes_wanted;
outbuf = kmem_alloc(bufsize, KM_SLEEP);
odp = (struct dirent64 *)outbuf;
} else {
bufsize = bytes_wanted;
outbuf = NULL;
odp = (struct dirent64 *)iovp->iov_base;
}
eodp = (struct edirent *)odp;
/*
* If this VFS supports the system attribute view interface; and
* we're looking at an extended attribute directory; and we care
* about normalization conflicts on this vfs; then we must check
* for normalization conflicts with the sysattr name space.
*/
check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
(vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
(flags & V_RDDIR_ENTFLAGS);
/*
* Transform to file-system independent format
*/
outcount = 0;
while (outcount < bytes_wanted) {
ino64_t objnum;
ushort_t reclen;
off64_t *next = NULL;
/*
* Special case `.', `..', and `.zfs'.
*/
if (offset == 0) {
(void) strcpy(zap.za_name, ".");
zap.za_normalization_conflict = 0;
objnum = zp->z_id;
} else if (offset == 1) {
(void) strcpy(zap.za_name, "..");
zap.za_normalization_conflict = 0;
objnum = parent;
} else if (offset == 2 && zfs_show_ctldir(zp)) {
(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
zap.za_normalization_conflict = 0;
objnum = ZFSCTL_INO_ROOT;
} else {
/*
* Grab next entry.
*/
if (error = zap_cursor_retrieve(&zc, &zap)) {
if ((*eofp = (error == ENOENT)) != 0)
break;
else
goto update;
}
if (zap.za_integer_length != 8 ||
zap.za_num_integers != 1) {
cmn_err(CE_WARN, "zap_readdir: bad directory "
"entry, obj = %lld, offset = %lld\n",
(u_longlong_t)zp->z_id,
(u_longlong_t)offset);
error = SET_ERROR(ENXIO);
goto update;
}
objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
/*
* MacOS X can extract the object type here such as:
* uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
*/
if (check_sysattrs && !zap.za_normalization_conflict) {
zap.za_normalization_conflict =
xattr_sysattr_casechk(zap.za_name);
}
}
if (flags & V_RDDIR_ACCFILTER) {
/*
* If we have no access at all, don't include
* this entry in the returned information
*/
znode_t *ezp;
if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
goto skip_entry;
if (!zfs_has_access(ezp, cr)) {
VN_RELE(ZTOV(ezp));
goto skip_entry;
}
VN_RELE(ZTOV(ezp));
}
if (flags & V_RDDIR_ENTFLAGS)
reclen = EDIRENT_RECLEN(strlen(zap.za_name));
else
reclen = DIRENT64_RECLEN(strlen(zap.za_name));
/*
* Will this entry fit in the buffer?
*/
if (outcount + reclen > bufsize) {
/*
* Did we manage to fit anything in the buffer?
*/
if (!outcount) {
error = SET_ERROR(EINVAL);
goto update;
}
break;
}
if (flags & V_RDDIR_ENTFLAGS) {
/*
* Add extended flag entry:
*/
eodp->ed_ino = objnum;
eodp->ed_reclen = reclen;
/* NOTE: ed_off is the offset for the *next* entry */
next = &(eodp->ed_off);
eodp->ed_eflags = zap.za_normalization_conflict ?
ED_CASE_CONFLICT : 0;
(void) strncpy(eodp->ed_name, zap.za_name,
EDIRENT_NAMELEN(reclen));
eodp = (edirent_t *)((intptr_t)eodp + reclen);
} else {
/*
* Add normal entry:
*/
odp->d_ino = objnum;
odp->d_reclen = reclen;
/* NOTE: d_off is the offset for the *next* entry */
next = &(odp->d_off);
(void) strncpy(odp->d_name, zap.za_name,
DIRENT64_NAMELEN(reclen));
odp = (dirent64_t *)((intptr_t)odp + reclen);
}
outcount += reclen;
ASSERT(outcount <= bufsize);
/* Prefetch znode */
if (prefetch)
dmu_prefetch(os, objnum, 0, 0, 0,
ZIO_PRIORITY_SYNC_READ);
skip_entry:
/*
* Move to the next entry, fill in the previous offset.
*/
if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
zap_cursor_advance(&zc);
offset = zap_cursor_serialize(&zc);
} else {
offset += 1;
}
if (next)
*next = offset;
}
zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
iovp->iov_base += outcount;
iovp->iov_len -= outcount;
uio->uio_resid -= outcount;
} else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
/*
* Reset the pointer.
*/
offset = uio->uio_loffset;
}
update:
zap_cursor_fini(&zc);
if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
kmem_free(outbuf, bufsize);
if (error == ENOENT)
error = 0;
ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
uio->uio_loffset = offset;
ZFS_EXIT(zfsvfs);
return (error);
}
ulong_t zfs_fsync_sync_cnt = 4;
static int
zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
{
znode_t *zp = VTOZ(vp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
/*
* Regardless of whether this is required for standards conformance,
* this is the logical behavior when fsync() is called on a file with
* dirty pages. We use B_ASYNC since the ZIL transactions are already
* going to be pushed out as part of the zil_commit().
*/
if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
(vp->v_type == VREG) && !(IS_SWAPVP(vp)))
(void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(zp);
zil_commit(zfsvfs->z_log, zp->z_id);
ZFS_EXIT(zfsvfs);
}
return (0);
}
/*
* Get the requested file attributes and place them in the provided
* vattr structure.
*
* IN: vp - vnode of file.
* vap - va_mask identifies requested attributes.
* If AT_XVATTR set, then optional attrs are requested
* flags - ATTR_NOACLCHECK (CIFS server context)
* cr - credentials of caller.
* ct - caller context
*
* OUT: vap - attribute values.
*
* RETURN: 0 (always succeeds).
*/
/* ARGSUSED */
static int
zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
caller_context_t *ct)
{
znode_t *zp = VTOZ(vp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
int error = 0;
uint64_t links;
uint64_t mtime[2], ctime[2];
xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
xoptattr_t *xoap = NULL;
boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
sa_bulk_attr_t bulk[2];
int count = 0;
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(zp);
zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
ZFS_EXIT(zfsvfs);
return (error);
}
/*
* If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
* Also, if we are the owner don't bother, since owner should
* always be allowed to read basic attributes of file.
*/
if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
(vap->va_uid != crgetuid(cr))) {
if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
skipaclchk, cr)) {
ZFS_EXIT(zfsvfs);
return (error);
}
}
/*
* Return all attributes. It's cheaper to provide the answer
* than to determine whether we were asked the question.
*/
mutex_enter(&zp->z_lock);
vap->va_type = vp->v_type;
vap->va_mode = zp->z_mode & MODEMASK;
vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
vap->va_nodeid = zp->z_id;
if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
links = zp->z_links + 1;
else
links = zp->z_links;
vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */
vap->va_size = zp->z_size;
vap->va_rdev = vp->v_rdev;
vap->va_seq = zp->z_seq;
/*
* Add in any requested optional attributes and the create time.
* Also set the corresponding bits in the returned attribute bitmap.
*/
if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
xoap->xoa_archive =
((zp->z_pflags & ZFS_ARCHIVE) != 0);
XVA_SET_RTN(xvap, XAT_ARCHIVE);
}
if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
xoap->xoa_readonly =
((zp->z_pflags & ZFS_READONLY) != 0);
XVA_SET_RTN(xvap, XAT_READONLY);
}
if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
xoap->xoa_system =
((zp->z_pflags & ZFS_SYSTEM) != 0);
XVA_SET_RTN(xvap, XAT_SYSTEM);
}
if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
xoap->xoa_hidden =
((zp->z_pflags & ZFS_HIDDEN) != 0);
XVA_SET_RTN(xvap, XAT_HIDDEN);
}
if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
xoap->xoa_nounlink =
((zp->z_pflags & ZFS_NOUNLINK) != 0);
XVA_SET_RTN(xvap, XAT_NOUNLINK);
}
if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
xoap->xoa_immutable =
((zp->z_pflags & ZFS_IMMUTABLE) != 0);
XVA_SET_RTN(xvap, XAT_IMMUTABLE);
}
if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
xoap->xoa_appendonly =
((zp->z_pflags & ZFS_APPENDONLY) != 0);
XVA_SET_RTN(xvap, XAT_APPENDONLY);
}
if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
xoap->xoa_nodump =
((zp->z_pflags & ZFS_NODUMP) != 0);
XVA_SET_RTN(xvap, XAT_NODUMP);
}
if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
xoap->xoa_opaque =
((zp->z_pflags & ZFS_OPAQUE) != 0);
XVA_SET_RTN(xvap, XAT_OPAQUE);
}
if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
xoap->xoa_av_quarantined =
((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
}
if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
xoap->xoa_av_modified =
((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
}
if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
vp->v_type == VREG) {
zfs_sa_get_scanstamp(zp, xvap);
}
if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
uint64_t times[2];
(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
times, sizeof (times));
ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
XVA_SET_RTN(xvap, XAT_CREATETIME);
}
if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
XVA_SET_RTN(xvap, XAT_REPARSE);
}
if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
xoap->xoa_generation = zp->z_gen;
XVA_SET_RTN(xvap, XAT_GEN);
}
if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
xoap->xoa_offline =
((zp->z_pflags & ZFS_OFFLINE) != 0);
XVA_SET_RTN(xvap, XAT_OFFLINE);
}
if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
xoap->xoa_sparse =
((zp->z_pflags & ZFS_SPARSE) != 0);
XVA_SET_RTN(xvap, XAT_SPARSE);
}
}
ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
ZFS_TIME_DECODE(&vap->va_mtime, mtime);
ZFS_TIME_DECODE(&vap->va_ctime, ctime);
mutex_exit(&zp->z_lock);
sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
if (zp->z_blksz == 0) {
/*
* Block size hasn't been set; suggest maximal I/O transfers.
*/
vap->va_blksize = zfsvfs->z_max_blksz;
}
ZFS_EXIT(zfsvfs);
return (0);
}
/*
* Set the file attributes to the values contained in the
* vattr structure.
*
* IN: vp - vnode of file to be modified.
* vap - new attribute values.
* If AT_XVATTR set, then optional attrs are being set
* flags - ATTR_UTIME set if non-default time values provided.
* - ATTR_NOACLCHECK (CIFS context only).
* cr - credentials of caller.
* ct - caller context
*
* RETURN: 0 on success, error code on failure.
*
* Timestamps:
* vp - ctime updated, mtime updated if size changed.
*/
/* ARGSUSED */
static int
zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
caller_context_t *ct)
{
znode_t *zp = VTOZ(vp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
zilog_t *zilog;
dmu_tx_t *tx;
vattr_t oldva;
xvattr_t tmpxvattr;
uint_t mask = vap->va_mask;
uint_t saved_mask = 0;
int trim_mask = 0;
uint64_t new_mode;
uint64_t new_uid, new_gid;
uint64_t xattr_obj;
uint64_t mtime[2], ctime[2];
znode_t *attrzp;
int need_policy = FALSE;
int err, err2;
zfs_fuid_info_t *fuidp = NULL;
xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
xoptattr_t *xoap;
zfs_acl_t *aclp;
boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
boolean_t fuid_dirtied = B_FALSE;
sa_bulk_attr_t bulk[7], xattr_bulk[7];
int count = 0, xattr_count = 0;
if (mask == 0)
return (0);
if (mask & AT_NOSET)
return (SET_ERROR(EINVAL));
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(zp);
zilog = zfsvfs->z_log;
/*
* Make sure that if we have ephemeral uid/gid or xvattr specified
* that file system is at proper version level
*/
if (zfsvfs->z_use_fuids == B_FALSE &&
(((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
(mask & AT_XVATTR))) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EINVAL));
}
if (mask & AT_SIZE && vp->v_type == VDIR) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EISDIR));
}
if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EINVAL));
}
/*
* If this is an xvattr_t, then get a pointer to the structure of
* optional attributes. If this is NULL, then we have a vattr_t.
*/
xoap = xva_getxoptattr(xvap);
xva_init(&tmpxvattr);
/*
* Immutable files can only alter immutable bit and atime
*/
if ((zp->z_pflags & ZFS_IMMUTABLE) &&
((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EPERM));
}
/*
* Note: ZFS_READONLY is handled in zfs_zaccess_common.
*/
/*
* Verify timestamps doesn't overflow 32 bits.
* ZFS can handle large timestamps, but 32bit syscalls can't
* handle times greater than 2039. This check should be removed
* once large timestamps are fully supported.
*/
if (mask & (AT_ATIME | AT_MTIME)) {
if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EOVERFLOW));
}
}
top:
attrzp = NULL;
aclp = NULL;
/* Can this be moved to before the top label? */
if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
ZFS_EXIT(zfsvfs);
return (SET_ERROR(EROFS));
}