| /* |
| * CDDL HEADER START |
| * |
| * The contents of this file are subject to the terms of the |
| * Common Development and Distribution License (the "License"). |
| * You may not use this file except in compliance with the License. |
| * |
| * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE |
| * or http://www.opensolaris.org/os/licensing. |
| * See the License for the specific language governing permissions |
| * and limitations under the License. |
| * |
| * When distributing Covered Code, include this CDDL HEADER in each |
| * file and include the License file at usr/src/OPENSOLARIS.LICENSE. |
| * If applicable, add the following below this CDDL HEADER, with the |
| * fields enclosed by brackets "[]" replaced with your own identifying |
| * information: Portions Copyright [yyyy] [name of copyright owner] |
| * |
| * CDDL HEADER END |
| */ |
| /* |
| * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. |
| */ |
| /* |
| * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. |
| * Copyright (c) 2013, Joyent, Inc. All rights reserved. |
| * Copyright 2016 Nexenta Systems, Inc. All rights reserved. |
| * Copyright (c) 2011, 2017 by Delphix. All rights reserved. |
| * Copyright (c) 2018 DilOS |
| */ |
| |
| #include <sys/dmu.h> |
| #include <sys/dmu_impl.h> |
| #include <sys/dmu_tx.h> |
| #include <sys/dbuf.h> |
| #include <sys/dnode.h> |
| #include <sys/zfs_context.h> |
| #include <sys/dmu_objset.h> |
| #include <sys/dmu_traverse.h> |
| #include <sys/dsl_dataset.h> |
| #include <sys/dsl_dir.h> |
| #include <sys/dsl_pool.h> |
| #include <sys/dsl_synctask.h> |
| #include <sys/dsl_prop.h> |
| #include <sys/dmu_zfetch.h> |
| #include <sys/zfs_ioctl.h> |
| #include <sys/zap.h> |
| #include <sys/zio_checksum.h> |
| #include <sys/zio_compress.h> |
| #include <sys/sa.h> |
| #include <sys/zfeature.h> |
| #include <sys/abd.h> |
| #ifdef _KERNEL |
| #include <sys/vmsystm.h> |
| #include <sys/zfs_znode.h> |
| #endif |
| |
| static xuio_stats_t xuio_stats = { |
| { "onloan_read_buf", KSTAT_DATA_UINT64 }, |
| { "onloan_write_buf", KSTAT_DATA_UINT64 }, |
| { "read_buf_copied", KSTAT_DATA_UINT64 }, |
| { "read_buf_nocopy", KSTAT_DATA_UINT64 }, |
| { "write_buf_copied", KSTAT_DATA_UINT64 }, |
| { "write_buf_nocopy", KSTAT_DATA_UINT64 } |
| }; |
| |
| #define XUIOSTAT_INCR(stat, val) \ |
| atomic_add_64(&xuio_stats.stat.value.ui64, (val)) |
| #define XUIOSTAT_BUMP(stat) XUIOSTAT_INCR(stat, 1) |
| |
| /* |
| * Enable/disable nopwrite feature. |
| */ |
| int zfs_nopwrite_enabled = 1; |
| |
| /* |
| * Tunable to control percentage of dirtied blocks from frees in one TXG. |
| * After this threshold is crossed, additional dirty blocks from frees |
| * wait until the next TXG. |
| * A value of zero will disable this throttle. |
| */ |
| uint32_t zfs_per_txg_dirty_frees_percent = 30; |
| |
| /* |
| * This can be used for testing, to ensure that certain actions happen |
| * while in the middle of a remap (which might otherwise complete too |
| * quickly). |
| */ |
| int zfs_object_remap_one_indirect_delay_ticks = 0; |
| |
| const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { |
| { DMU_BSWAP_UINT8, TRUE, FALSE, "unallocated" }, |
| { DMU_BSWAP_ZAP, TRUE, TRUE, "object directory" }, |
| { DMU_BSWAP_UINT64, TRUE, TRUE, "object array" }, |
| { DMU_BSWAP_UINT8, TRUE, FALSE, "packed nvlist" }, |
| { DMU_BSWAP_UINT64, TRUE, FALSE, "packed nvlist size" }, |
| { DMU_BSWAP_UINT64, TRUE, FALSE, "bpobj" }, |
| { DMU_BSWAP_UINT64, TRUE, FALSE, "bpobj header" }, |
| { DMU_BSWAP_UINT64, TRUE, FALSE, "SPA space map header" }, |
| { DMU_BSWAP_UINT64, TRUE, FALSE, "SPA space map" }, |
| { DMU_BSWAP_UINT64, TRUE, FALSE, "ZIL intent log" }, |
| { DMU_BSWAP_DNODE, TRUE, FALSE, "DMU dnode" }, |
| { DMU_BSWAP_OBJSET, TRUE, TRUE, "DMU objset" }, |
| { DMU_BSWAP_UINT64, TRUE, TRUE, "DSL directory" }, |
| { DMU_BSWAP_ZAP, TRUE, TRUE, "DSL directory child map" }, |
| { DMU_BSWAP_ZAP, TRUE, TRUE, "DSL dataset snap map" }, |
| { DMU_BSWAP_ZAP, TRUE, TRUE, "DSL props" }, |
| { DMU_BSWAP_UINT64, TRUE, TRUE, "DSL dataset" }, |
| { DMU_BSWAP_ZNODE, TRUE, FALSE, "ZFS znode" }, |
| { DMU_BSWAP_OLDACL, TRUE, FALSE, "ZFS V0 ACL" }, |
| { DMU_BSWAP_UINT8, FALSE, FALSE, "ZFS plain file" }, |
| { DMU_BSWAP_ZAP, TRUE, FALSE, "ZFS directory" }, |
| { DMU_BSWAP_ZAP, TRUE, FALSE, "ZFS master node" }, |
| { DMU_BSWAP_ZAP, TRUE, FALSE, "ZFS delete queue" }, |
| { DMU_BSWAP_UINT8, FALSE, FALSE, "zvol object" }, |
| { DMU_BSWAP_ZAP, TRUE, FALSE, "zvol prop" }, |
| { DMU_BSWAP_UINT8, FALSE, FALSE, "other uint8[]" }, |
| { DMU_BSWAP_UINT64, FALSE, FALSE, "other uint64[]" }, |
| { DMU_BSWAP_ZAP, TRUE, FALSE, "other ZAP" }, |
| { DMU_BSWAP_ZAP, TRUE, FALSE, "persistent error log" }, |
| { DMU_BSWAP_UINT8, TRUE, FALSE, "SPA history" }, |
| { DMU_BSWAP_UINT64, TRUE, FALSE, "SPA history offsets" }, |
| { DMU_BSWAP_ZAP, TRUE, TRUE, "Pool properties" }, |
| { DMU_BSWAP_ZAP, TRUE, TRUE, "DSL permissions" }, |
| { DMU_BSWAP_ACL, TRUE, FALSE, "ZFS ACL" }, |
| { DMU_BSWAP_UINT8, TRUE, FALSE, "ZFS SYSACL" }, |
| { DMU_BSWAP_UINT8, TRUE, FALSE, "FUID table" }, |
| { DMU_BSWAP_UINT64, TRUE, FALSE, "FUID table size" }, |
| { DMU_BSWAP_ZAP, TRUE, TRUE, "DSL dataset next clones" }, |
| { DMU_BSWAP_ZAP, TRUE, FALSE, "scan work queue" }, |
| { DMU_BSWAP_ZAP, TRUE, FALSE, "ZFS user/group used" }, |
| { DMU_BSWAP_ZAP, TRUE, FALSE, "ZFS user/group quota" }, |
| { DMU_BSWAP_ZAP, TRUE, TRUE, "snapshot refcount tags" }, |
| { DMU_BSWAP_ZAP, TRUE, FALSE, "DDT ZAP algorithm" }, |
| { DMU_BSWAP_ZAP, TRUE, FALSE, "DDT statistics" }, |
| { DMU_BSWAP_UINT8, TRUE, FALSE, "System attributes" }, |
| { DMU_BSWAP_ZAP, TRUE, FALSE, "SA master node" }, |
| { DMU_BSWAP_ZAP, TRUE, FALSE, "SA attr registration" }, |
| { DMU_BSWAP_ZAP, TRUE, FALSE, "SA attr layouts" }, |
| { DMU_BSWAP_ZAP, TRUE, FALSE, "scan translations" }, |
| { DMU_BSWAP_UINT8, FALSE, FALSE, "deduplicated block" }, |
| { DMU_BSWAP_ZAP, TRUE, TRUE, "DSL deadlist map" }, |
| { DMU_BSWAP_UINT64, TRUE, TRUE, "DSL deadlist map hdr" }, |
| { DMU_BSWAP_ZAP, TRUE, TRUE, "DSL dir clones" }, |
| { DMU_BSWAP_UINT64, TRUE, FALSE, "bpobj subobj" } |
| }; |
| |
| const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = { |
| { byteswap_uint8_array, "uint8" }, |
| { byteswap_uint16_array, "uint16" }, |
| { byteswap_uint32_array, "uint32" }, |
| { byteswap_uint64_array, "uint64" }, |
| { zap_byteswap, "zap" }, |
| { dnode_buf_byteswap, "dnode" }, |
| { dmu_objset_byteswap, "objset" }, |
| { zfs_znode_byteswap, "znode" }, |
| { zfs_oldacl_byteswap, "oldacl" }, |
| { zfs_acl_byteswap, "acl" } |
| }; |
| |
| int |
| dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset, |
| void *tag, dmu_buf_t **dbp) |
| { |
| uint64_t blkid; |
| dmu_buf_impl_t *db; |
| |
| blkid = dbuf_whichblock(dn, 0, offset); |
| rw_enter(&dn->dn_struct_rwlock, RW_READER); |
| db = dbuf_hold(dn, blkid, tag); |
| rw_exit(&dn->dn_struct_rwlock); |
| |
| if (db == NULL) { |
| *dbp = NULL; |
| return (SET_ERROR(EIO)); |
| } |
| |
| *dbp = &db->db; |
| return (0); |
| } |
| int |
| dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset, |
| void *tag, dmu_buf_t **dbp) |
| { |
| dnode_t *dn; |
| uint64_t blkid; |
| dmu_buf_impl_t *db; |
| int err; |
| |
| err = dnode_hold(os, object, FTAG, &dn); |
| if (err) |
| return (err); |
| blkid = dbuf_whichblock(dn, 0, offset); |
| rw_enter(&dn->dn_struct_rwlock, RW_READER); |
| db = dbuf_hold(dn, blkid, tag); |
| rw_exit(&dn->dn_struct_rwlock); |
| dnode_rele(dn, FTAG); |
| |
| if (db == NULL) { |
| *dbp = NULL; |
| return (SET_ERROR(EIO)); |
| } |
| |
| *dbp = &db->db; |
| return (err); |
| } |
| |
| int |
| dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset, |
| void *tag, dmu_buf_t **dbp, int flags) |
| { |
| int err; |
| int db_flags = DB_RF_CANFAIL; |
| |
| if (flags & DMU_READ_NO_PREFETCH) |
| db_flags |= DB_RF_NOPREFETCH; |
| |
| err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp); |
| if (err == 0) { |
| dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); |
| err = dbuf_read(db, NULL, db_flags); |
| if (err != 0) { |
| dbuf_rele(db, tag); |
| *dbp = NULL; |
| } |
| } |
| |
| return (err); |
| } |
| |
| int |
| dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, |
| void *tag, dmu_buf_t **dbp, int flags) |
| { |
| int err; |
| int db_flags = DB_RF_CANFAIL; |
| |
| if (flags & DMU_READ_NO_PREFETCH) |
| db_flags |= DB_RF_NOPREFETCH; |
| |
| err = dmu_buf_hold_noread(os, object, offset, tag, dbp); |
| if (err == 0) { |
| dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); |
| err = dbuf_read(db, NULL, db_flags); |
| if (err != 0) { |
| dbuf_rele(db, tag); |
| *dbp = NULL; |
| } |
| } |
| |
| return (err); |
| } |
| |
| int |
| dmu_bonus_max(void) |
| { |
| return (DN_MAX_BONUSLEN); |
| } |
| |
| int |
| dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx) |
| { |
| dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; |
| dnode_t *dn; |
| int error; |
| |
| DB_DNODE_ENTER(db); |
| dn = DB_DNODE(db); |
| |
| if (dn->dn_bonus != db) { |
| error = SET_ERROR(EINVAL); |
| } else if (newsize < 0 || newsize > db_fake->db_size) { |
| error = SET_ERROR(EINVAL); |
| } else { |
| dnode_setbonuslen(dn, newsize, tx); |
| error = 0; |
| } |
| |
| DB_DNODE_EXIT(db); |
| return (error); |
| } |
| |
| int |
| dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx) |
| { |
| dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; |
| dnode_t *dn; |
| int error; |
| |
| DB_DNODE_ENTER(db); |
| dn = DB_DNODE(db); |
| |
| if (!DMU_OT_IS_VALID(type)) { |
| error = SET_ERROR(EINVAL); |
| } else if (dn->dn_bonus != db) { |
| error = SET_ERROR(EINVAL); |
| } else { |
| dnode_setbonus_type(dn, type, tx); |
| error = 0; |
| } |
| |
| DB_DNODE_EXIT(db); |
| return (error); |
| } |
| |
| dmu_object_type_t |
| dmu_get_bonustype(dmu_buf_t *db_fake) |
| { |
| dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; |
| dnode_t *dn; |
| dmu_object_type_t type; |
| |
| DB_DNODE_ENTER(db); |
| dn = DB_DNODE(db); |
| type = dn->dn_bonustype; |
| DB_DNODE_EXIT(db); |
| |
| return (type); |
| } |
| |
| int |
| dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx) |
| { |
| dnode_t *dn; |
| int error; |
| |
| error = dnode_hold(os, object, FTAG, &dn); |
| dbuf_rm_spill(dn, tx); |
| rw_enter(&dn->dn_struct_rwlock, RW_WRITER); |
| dnode_rm_spill(dn, tx); |
| rw_exit(&dn->dn_struct_rwlock); |
| dnode_rele(dn, FTAG); |
| return (error); |
| } |
| |
| /* |
| * returns ENOENT, EIO, or 0. |
| */ |
| int |
| dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp) |
| { |
| dnode_t *dn; |
| dmu_buf_impl_t *db; |
| int error; |
| |
| error = dnode_hold(os, object, FTAG, &dn); |
| if (error) |
| return (error); |
| |
| rw_enter(&dn->dn_struct_rwlock, RW_READER); |
| if (dn->dn_bonus == NULL) { |
| rw_exit(&dn->dn_struct_rwlock); |
| rw_enter(&dn->dn_struct_rwlock, RW_WRITER); |
| if (dn->dn_bonus == NULL) |
| dbuf_create_bonus(dn); |
| } |
| db = dn->dn_bonus; |
| |
| /* as long as the bonus buf is held, the dnode will be held */ |
| if (refcount_add(&db->db_holds, tag) == 1) { |
| VERIFY(dnode_add_ref(dn, db)); |
| atomic_inc_32(&dn->dn_dbufs_count); |
| } |
| |
| /* |
| * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's |
| * hold and incrementing the dbuf count to ensure that dnode_move() sees |
| * a dnode hold for every dbuf. |
| */ |
| rw_exit(&dn->dn_struct_rwlock); |
| |
| dnode_rele(dn, FTAG); |
| |
| VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH)); |
| |
| *dbp = &db->db; |
| return (0); |
| } |
| |
| /* |
| * returns ENOENT, EIO, or 0. |
| * |
| * This interface will allocate a blank spill dbuf when a spill blk |
| * doesn't already exist on the dnode. |
| * |
| * if you only want to find an already existing spill db, then |
| * dmu_spill_hold_existing() should be used. |
| */ |
| int |
| dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp) |
| { |
| dmu_buf_impl_t *db = NULL; |
| int err; |
| |
| if ((flags & DB_RF_HAVESTRUCT) == 0) |
| rw_enter(&dn->dn_struct_rwlock, RW_READER); |
| |
| db = dbuf_hold(dn, DMU_SPILL_BLKID, tag); |
| |
| if ((flags & DB_RF_HAVESTRUCT) == 0) |
| rw_exit(&dn->dn_struct_rwlock); |
| |
| ASSERT(db != NULL); |
| err = dbuf_read(db, NULL, flags); |
| if (err == 0) |
| *dbp = &db->db; |
| else |
| dbuf_rele(db, tag); |
| return (err); |
| } |
| |
| int |
| dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) |
| { |
| dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; |
| dnode_t *dn; |
| int err; |
| |
| DB_DNODE_ENTER(db); |
| dn = DB_DNODE(db); |
| |
| if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) { |
| err = SET_ERROR(EINVAL); |
| } else { |
| rw_enter(&dn->dn_struct_rwlock, RW_READER); |
| |
| if (!dn->dn_have_spill) { |
| err = SET_ERROR(ENOENT); |
| } else { |
| err = dmu_spill_hold_by_dnode(dn, |
| DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp); |
| } |
| |
| rw_exit(&dn->dn_struct_rwlock); |
| } |
| |
| DB_DNODE_EXIT(db); |
| return (err); |
| } |
| |
| int |
| dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) |
| { |
| dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; |
| dnode_t *dn; |
| int err; |
| |
| DB_DNODE_ENTER(db); |
| dn = DB_DNODE(db); |
| err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp); |
| DB_DNODE_EXIT(db); |
| |
| return (err); |
| } |
| |
| /* |
| * Note: longer-term, we should modify all of the dmu_buf_*() interfaces |
| * to take a held dnode rather than <os, object> -- the lookup is wasteful, |
| * and can induce severe lock contention when writing to several files |
| * whose dnodes are in the same block. |
| */ |
| int |
| dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, |
| boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags) |
| { |
| dmu_buf_t **dbp; |
| uint64_t blkid, nblks, i; |
| uint32_t dbuf_flags; |
| int err; |
| zio_t *zio; |
| |
| ASSERT(length <= DMU_MAX_ACCESS); |
| |
| /* |
| * Note: We directly notify the prefetch code of this read, so that |
| * we can tell it about the multi-block read. dbuf_read() only knows |
| * about the one block it is accessing. |
| */ |
| dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT | |
| DB_RF_NOPREFETCH; |
| |
| rw_enter(&dn->dn_struct_rwlock, RW_READER); |
| if (dn->dn_datablkshift) { |
| int blkshift = dn->dn_datablkshift; |
| nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) - |
| P2ALIGN(offset, 1ULL << blkshift)) >> blkshift; |
| } else { |
| if (offset + length > dn->dn_datablksz) { |
| zfs_panic_recover("zfs: accessing past end of object " |
| "%llx/%llx (size=%u access=%llu+%llu)", |
| (longlong_t)dn->dn_objset-> |
| os_dsl_dataset->ds_object, |
| (longlong_t)dn->dn_object, dn->dn_datablksz, |
| (longlong_t)offset, (longlong_t)length); |
| rw_exit(&dn->dn_struct_rwlock); |
| return (SET_ERROR(EIO)); |
| } |
| nblks = 1; |
| } |
| dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); |
| |
| zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL); |
| blkid = dbuf_whichblock(dn, 0, offset); |
| for (i = 0; i < nblks; i++) { |
| dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag); |
| if (db == NULL) { |
| rw_exit(&dn->dn_struct_rwlock); |
| dmu_buf_rele_array(dbp, nblks, tag); |
| zio_nowait(zio); |
| return (SET_ERROR(EIO)); |
| } |
| |
| /* initiate async i/o */ |
| if (read) |
| (void) dbuf_read(db, zio, dbuf_flags); |
| dbp[i] = &db->db; |
| } |
| |
| if ((flags & DMU_READ_NO_PREFETCH) == 0 && |
| DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) { |
| dmu_zfetch(&dn->dn_zfetch, blkid, nblks, |
| read && DNODE_IS_CACHEABLE(dn)); |
| } |
| rw_exit(&dn->dn_struct_rwlock); |
| |
| /* wait for async i/o */ |
| err = zio_wait(zio); |
| if (err) { |
| dmu_buf_rele_array(dbp, nblks, tag); |
| return (err); |
| } |
| |
| /* wait for other io to complete */ |
| if (read) { |
| for (i = 0; i < nblks; i++) { |
| dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; |
| mutex_enter(&db->db_mtx); |
| while (db->db_state == DB_READ || |
| db->db_state == DB_FILL) |
| cv_wait(&db->db_changed, &db->db_mtx); |
| if (db->db_state == DB_UNCACHED) |
| err = SET_ERROR(EIO); |
| mutex_exit(&db->db_mtx); |
| if (err) { |
| dmu_buf_rele_array(dbp, nblks, tag); |
| return (err); |
| } |
| } |
| } |
| |
| *numbufsp = nblks; |
| *dbpp = dbp; |
| return (0); |
| } |
| |
| static int |
| dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, |
| uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) |
| { |
| dnode_t *dn; |
| int err; |
| |
| err = dnode_hold(os, object, FTAG, &dn); |
| if (err) |
| return (err); |
| |
| err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, |
| numbufsp, dbpp, DMU_READ_PREFETCH); |
| |
| dnode_rele(dn, FTAG); |
| |
| return (err); |
| } |
| |
| int |
| dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset, |
| uint64_t length, boolean_t read, void *tag, int *numbufsp, |
| dmu_buf_t ***dbpp) |
| { |
| dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; |
| dnode_t *dn; |
| int err; |
| |
| DB_DNODE_ENTER(db); |
| dn = DB_DNODE(db); |
| err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, |
| numbufsp, dbpp, DMU_READ_PREFETCH); |
| DB_DNODE_EXIT(db); |
| |
| return (err); |
| } |
| |
| void |
| dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag) |
| { |
| int i; |
| dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; |
| |
| if (numbufs == 0) |
| return; |
| |
| for (i = 0; i < numbufs; i++) { |
| if (dbp[i]) |
| dbuf_rele(dbp[i], tag); |
| } |
| |
| kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); |
| } |
| |
| /* |
| * Issue prefetch i/os for the given blocks. If level is greater than 0, the |
| * indirect blocks prefeteched will be those that point to the blocks containing |
| * the data starting at offset, and continuing to offset + len. |
| * |
| * Note that if the indirect blocks above the blocks being prefetched are not in |
| * cache, they will be asychronously read in. |
| */ |
| void |
| dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset, |
| uint64_t len, zio_priority_t pri) |
| { |
| dnode_t *dn; |
| uint64_t blkid; |
| int nblks, err; |
| |
| if (len == 0) { /* they're interested in the bonus buffer */ |
| dn = DMU_META_DNODE(os); |
| |
| if (object == 0 || object >= DN_MAX_OBJECT) |
| return; |
| |
| rw_enter(&dn->dn_struct_rwlock, RW_READER); |
| blkid = dbuf_whichblock(dn, level, |
| object * sizeof (dnode_phys_t)); |
| dbuf_prefetch(dn, level, blkid, pri, 0); |
| rw_exit(&dn->dn_struct_rwlock); |
| return; |
| } |
| |
| /* |
| * XXX - Note, if the dnode for the requested object is not |
| * already cached, we will do a *synchronous* read in the |
| * dnode_hold() call. The same is true for any indirects. |
| */ |
| err = dnode_hold(os, object, FTAG, &dn); |
| if (err != 0) |
| return; |
| |
| rw_enter(&dn->dn_struct_rwlock, RW_READER); |
| /* |
| * offset + len - 1 is the last byte we want to prefetch for, and offset |
| * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the |
| * last block we want to prefetch, and dbuf_whichblock(dn, level, |
| * offset) is the first. Then the number we need to prefetch is the |
| * last - first + 1. |
| */ |
| if (level > 0 || dn->dn_datablkshift != 0) { |
| nblks = dbuf_whichblock(dn, level, offset + len - 1) - |
| dbuf_whichblock(dn, level, offset) + 1; |
| } else { |
| nblks = (offset < dn->dn_datablksz); |
| } |
| |
| if (nblks != 0) { |
| blkid = dbuf_whichblock(dn, level, offset); |
| for (int i = 0; i < nblks; i++) |
| dbuf_prefetch(dn, level, blkid + i, pri, 0); |
| } |
| |
| rw_exit(&dn->dn_struct_rwlock); |
| |
| dnode_rele(dn, FTAG); |
| } |
| |
| /* |
| * Get the next "chunk" of file data to free. We traverse the file from |
| * the end so that the file gets shorter over time (if we crashes in the |
| * middle, this will leave us in a better state). We find allocated file |
| * data by simply searching the allocated level 1 indirects. |
| * |
| * On input, *start should be the first offset that does not need to be |
| * freed (e.g. "offset + length"). On return, *start will be the first |
| * offset that should be freed. |
| */ |
| static int |
| get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum) |
| { |
| uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1); |
| /* bytes of data covered by a level-1 indirect block */ |
| uint64_t iblkrange = |
| dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT); |
| |
| ASSERT3U(minimum, <=, *start); |
| |
| if (*start - minimum <= iblkrange * maxblks) { |
| *start = minimum; |
| return (0); |
| } |
| ASSERT(ISP2(iblkrange)); |
| |
| for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) { |
| int err; |
| |
| /* |
| * dnode_next_offset(BACKWARDS) will find an allocated L1 |
| * indirect block at or before the input offset. We must |
| * decrement *start so that it is at the end of the region |
| * to search. |
| */ |
| (*start)--; |
| err = dnode_next_offset(dn, |
| DNODE_FIND_BACKWARDS, start, 2, 1, 0); |
| |
| /* if there are no indirect blocks before start, we are done */ |
| if (err == ESRCH) { |
| *start = minimum; |
| break; |
| } else if (err != 0) { |
| return (err); |
| } |
| |
| /* set start to the beginning of this L1 indirect */ |
| *start = P2ALIGN(*start, iblkrange); |
| } |
| if (*start < minimum) |
| *start = minimum; |
| return (0); |
| } |
| |
| /* |
| * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set, |
| * otherwise return false. |
| * Used below in dmu_free_long_range_impl() to enable abort when unmounting |
| */ |
| /*ARGSUSED*/ |
| static boolean_t |
| dmu_objset_zfs_unmounting(objset_t *os) |
| { |
| #ifdef _KERNEL |
| if (dmu_objset_type(os) == DMU_OST_ZFS) |
| return (zfs_get_vfs_flag_unmounted(os)); |
| #endif |
| return (B_FALSE); |
| } |
| |
| static int |
| dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset, |
| uint64_t length) |
| { |
| uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz; |
| int err; |
| uint64_t dirty_frees_threshold; |
| dsl_pool_t *dp = dmu_objset_pool(os); |
| |
| if (offset >= object_size) |
| return (0); |
| |
| if (zfs_per_txg_dirty_frees_percent <= 100) |
| dirty_frees_threshold = |
| zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100; |
| else |
| dirty_frees_threshold = zfs_dirty_data_max / 4; |
| |
| if (length == DMU_OBJECT_END || offset + length > object_size) |
| length = object_size - offset; |
| |
| while (length != 0) { |
| uint64_t chunk_end, chunk_begin, chunk_len; |
| uint64_t long_free_dirty_all_txgs = 0; |
| dmu_tx_t *tx; |
| |
| if (dmu_objset_zfs_unmounting(dn->dn_objset)) |
| return (SET_ERROR(EINTR)); |
| |
| chunk_end = chunk_begin = offset + length; |
| |
| /* move chunk_begin backwards to the beginning of this chunk */ |
| err = get_next_chunk(dn, &chunk_begin, offset); |
| if (err) |
| return (err); |
| ASSERT3U(chunk_begin, >=, offset); |
| ASSERT3U(chunk_begin, <=, chunk_end); |
| |
| chunk_len = chunk_end - chunk_begin; |
| |
| mutex_enter(&dp->dp_lock); |
| for (int t = 0; t < TXG_SIZE; t++) { |
| long_free_dirty_all_txgs += |
| dp->dp_long_free_dirty_pertxg[t]; |
| } |
| mutex_exit(&dp->dp_lock); |
| |
| /* |
| * To avoid filling up a TXG with just frees wait for |
| * the next TXG to open before freeing more chunks if |
| * we have reached the threshold of frees |
| */ |
| if (dirty_frees_threshold != 0 && |
| long_free_dirty_all_txgs >= dirty_frees_threshold) { |
| txg_wait_open(dp, 0); |
| continue; |
| } |
| |
| tx = dmu_tx_create(os); |
| dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len); |
| |
| /* |
| * Mark this transaction as typically resulting in a net |
| * reduction in space used. |
| */ |
| dmu_tx_mark_netfree(tx); |
| err = dmu_tx_assign(tx, TXG_WAIT); |
| if (err) { |
| dmu_tx_abort(tx); |
| return (err); |
| } |
| |
| mutex_enter(&dp->dp_lock); |
| dp->dp_long_free_dirty_pertxg[dmu_tx_get_txg(tx) & TXG_MASK] += |
| chunk_len; |
| mutex_exit(&dp->dp_lock); |
| DTRACE_PROBE3(free__long__range, |
| uint64_t, long_free_dirty_all_txgs, uint64_t, chunk_len, |
| uint64_t, dmu_tx_get_txg(tx)); |
| dnode_free_range(dn, chunk_begin, chunk_len, tx); |
| dmu_tx_commit(tx); |
| |
| length -= chunk_len; |
| } |
| return (0); |
| } |
| |
| int |
| dmu_free_long_range(objset_t *os, uint64_t object, |
| uint64_t offset, uint64_t length) |
| { |
| dnode_t *dn; |
| int err; |
| |
| err = dnode_hold(os, object, FTAG, &dn); |
| if (err != 0) |
| return (err); |
| err = dmu_free_long_range_impl(os, dn, offset, length); |
| |
| /* |
| * It is important to zero out the maxblkid when freeing the entire |
| * file, so that (a) subsequent calls to dmu_free_long_range_impl() |
| * will take the fast path, and (b) dnode_reallocate() can verify |
| * that the entire file has been freed. |
| */ |
| if (err == 0 && offset == 0 && length == DMU_OBJECT_END) |
| dn->dn_maxblkid = 0; |
| |
| dnode_rele(dn, FTAG); |
| return (err); |
| } |
| |
| int |
| dmu_free_long_object(objset_t *os, uint64_t object) |
| { |
| dmu_tx_t *tx; |
| int err; |
| |
| err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END); |
| if (err != 0) |
| return (err); |
| |
| tx = dmu_tx_create(os); |
| dmu_tx_hold_bonus(tx, object); |
| dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); |
| dmu_tx_mark_netfree(tx); |
| err = dmu_tx_assign(tx, TXG_WAIT); |
| if (err == 0) { |
| err = dmu_object_free(os, object, tx); |
| dmu_tx_commit(tx); |
| } else { |
| dmu_tx_abort(tx); |
| } |
| |
| return (err); |
| } |
| |
| int |
| dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, |
| uint64_t size, dmu_tx_t *tx) |
| { |
| dnode_t *dn; |
| int err = dnode_hold(os, object, FTAG, &dn); |
| if (err) |
| return (err); |
| ASSERT(offset < UINT64_MAX); |
| ASSERT(size == -1ULL || size <= UINT64_MAX - offset); |
| dnode_free_range(dn, offset, size, tx); |
| dnode_rele(dn, FTAG); |
| return (0); |
| } |
| |
| static int |
| dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size, |
| void *buf, uint32_t flags) |
| { |
| dmu_buf_t **dbp; |
| int numbufs, err = 0; |
| |
| /* |
| * Deal with odd block sizes, where there can't be data past the first |
| * block. If we ever do the tail block optimization, we will need to |
| * handle that here as well. |
| */ |
| if (dn->dn_maxblkid == 0) { |
| int newsz = offset > dn->dn_datablksz ? 0 : |
| MIN(size, dn->dn_datablksz - offset); |
| bzero((char *)buf + newsz, size - newsz); |
| size = newsz; |
| } |
| |
| while (size > 0) { |
| uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); |
| int i; |
| |
| /* |
| * NB: we could do this block-at-a-time, but it's nice |
| * to be reading in parallel. |
| */ |
| err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, |
| TRUE, FTAG, &numbufs, &dbp, flags); |
| if (err) |
| break; |
| |
| for (i = 0; i < numbufs; i++) { |
| int tocpy; |
| int bufoff; |
| dmu_buf_t *db = dbp[i]; |
| |
| ASSERT(size > 0); |
| |
| bufoff = offset - db->db_offset; |
| tocpy = (int)MIN(db->db_size - bufoff, size); |
| |
| bcopy((char *)db->db_data + bufoff, buf, tocpy); |
| |
| offset += tocpy; |
| size -= tocpy; |
| buf = (char *)buf + tocpy; |
| } |
| dmu_buf_rele_array(dbp, numbufs, FTAG); |
| } |
| return (err); |
| } |
| |
| int |
| dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, |
| void *buf, uint32_t flags) |
| { |
| dnode_t *dn; |
| int err; |
| |
| err = dnode_hold(os, object, FTAG, &dn); |
| if (err != 0) |
| return (err); |
| |
| err = dmu_read_impl(dn, offset, size, buf, flags); |
| dnode_rele(dn, FTAG); |
| return (err); |
| } |
| |
| int |
| dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf, |
| uint32_t flags) |
| { |
| return (dmu_read_impl(dn, offset, size, buf, flags)); |
| } |
| |
| static void |
| dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size, |
| const void *buf, dmu_tx_t *tx) |
| { |
| int i; |
| |
| for (i = 0; i < numbufs; i++) { |
| int tocpy; |
| int bufoff; |
| dmu_buf_t *db = dbp[i]; |
| |
| ASSERT(size > 0); |
| |
| bufoff = offset - db->db_offset; |
| tocpy = (int)MIN(db->db_size - bufoff, size); |
| |
| ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); |
| |
| if (tocpy == db->db_size) |
| dmu_buf_will_fill(db, tx); |
| else |
| dmu_buf_will_dirty(db, tx); |
| |
| bcopy(buf, (char *)db->db_data + bufoff, tocpy); |
| |
| if (tocpy == db->db_size) |
| dmu_buf_fill_done(db, tx); |
| |
| offset += tocpy; |
| size -= tocpy; |
| buf = (char *)buf + tocpy; |
| } |
| } |
| |
| void |
| dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, |
| const void *buf, dmu_tx_t *tx) |
| { |
| dmu_buf_t **dbp; |
| int numbufs; |
| |
| if (size == 0) |
| return; |
| |
| VERIFY0(dmu_buf_hold_array(os, object, offset, size, |
| FALSE, FTAG, &numbufs, &dbp)); |
| dmu_write_impl(dbp, numbufs, offset, size, buf, tx); |
| dmu_buf_rele_array(dbp, numbufs, FTAG); |
| } |
| |
| void |
| dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, |
| const void *buf, dmu_tx_t *tx) |
| { |
| dmu_buf_t **dbp; |
| int numbufs; |
| |
| if (size == 0) |
| return; |
| |
| VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size, |
| FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH)); |
| dmu_write_impl(dbp, numbufs, offset, size, buf, tx); |
| dmu_buf_rele_array(dbp, numbufs, FTAG); |
| } |
| |
| static int |
| dmu_object_remap_one_indirect(objset_t *os, dnode_t *dn, |
| uint64_t last_removal_txg, uint64_t offset) |
| { |
| uint64_t l1blkid = dbuf_whichblock(dn, 1, offset); |
| int err = 0; |
| |
| rw_enter(&dn->dn_struct_rwlock, RW_READER); |
| dmu_buf_impl_t *dbuf = dbuf_hold_level(dn, 1, l1blkid, FTAG); |
| ASSERT3P(dbuf, !=, NULL); |
| |
| /* |
| * If the block hasn't been written yet, this default will ensure |
| * we don't try to remap it. |
| */ |
| uint64_t birth = UINT64_MAX; |
| ASSERT3U(last_removal_txg, !=, UINT64_MAX); |
| if (dbuf->db_blkptr != NULL) |
| birth = dbuf->db_blkptr->blk_birth; |
| rw_exit(&dn->dn_struct_rwlock); |
| |
| /* |
| * If this L1 was already written after the last removal, then we've |
| * already tried to remap it. |
| */ |
| if (birth <= last_removal_txg && |
| dbuf_read(dbuf, NULL, DB_RF_MUST_SUCCEED) == 0 && |
| dbuf_can_remap(dbuf)) { |
| dmu_tx_t *tx = dmu_tx_create(os); |
| dmu_tx_hold_remap_l1indirect(tx, dn->dn_object); |
| err = dmu_tx_assign(tx, TXG_WAIT); |
| if (err == 0) { |
| (void) dbuf_dirty(dbuf, tx); |
| dmu_tx_commit(tx); |
| } else { |
| dmu_tx_abort(tx); |
| } |
| } |
| |
| dbuf_rele(dbuf, FTAG); |
| |
| delay(zfs_object_remap_one_indirect_delay_ticks); |
| |
| return (err); |
| } |
| |
| /* |
| * Remap all blockpointers in the object, if possible, so that they reference |
| * only concrete vdevs. |
| * |
| * To do this, iterate over the L0 blockpointers and remap any that reference |
| * an indirect vdev. Note that we only examine L0 blockpointers; since we |
| * cannot guarantee that we can remap all blockpointer anyways (due to split |
| * blocks), we do not want to make the code unnecessarily complicated to |
| * catch the unlikely case that there is an L1 block on an indirect vdev that |
| * contains no indirect blockpointers. |
| */ |
| int |
| dmu_object_remap_indirects(objset_t *os, uint64_t object, |
| uint64_t last_removal_txg) |
| { |
| uint64_t offset, l1span; |
| int err; |
| dnode_t *dn; |
| |
| err = dnode_hold(os, object, FTAG, &dn); |
| if (err != 0) { |
| return (err); |
| } |
| |
| if (dn->dn_nlevels <= 1) { |
| if (issig(JUSTLOOKING) && issig(FORREAL)) { |
| err = SET_ERROR(EINTR); |
| } |
| |
| /* |
| * If the dnode has no indirect blocks, we cannot dirty them. |
| * We still want to remap the blkptr(s) in the dnode if |
| * appropriate, so mark it as dirty. |
| */ |
| if (err == 0 && dnode_needs_remap(dn)) { |
| dmu_tx_t *tx = dmu_tx_create(os); |
| dmu_tx_hold_bonus(tx, dn->dn_object); |
| if ((err = dmu_tx_assign(tx, TXG_WAIT)) == 0) { |
| dnode_setdirty(dn, tx); |
| dmu_tx_commit(tx); |
| } else { |
| dmu_tx_abort(tx); |
| } |
| } |
| |
| dnode_rele(dn, FTAG); |
| return (err); |
| } |
| |
| offset = 0; |
| l1span = 1ULL << (dn->dn_indblkshift - SPA_BLKPTRSHIFT + |
| dn->dn_datablkshift); |
| /* |
| * Find the next L1 indirect that is not a hole. |
| */ |
| while (dnode_next_offset(dn, 0, &offset, 2, 1, 0) == 0) { |
| if (issig(JUSTLOOKING) && issig(FORREAL)) { |
| err = SET_ERROR(EINTR); |
| break; |
| } |
| if ((err = dmu_object_remap_one_indirect(os, dn, |
| last_removal_txg, offset)) != 0) { |
| break; |
| } |
| offset += l1span; |
| } |
| |
| dnode_rele(dn, FTAG); |
| return (err); |
| } |
| |
| void |
| dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, |
| dmu_tx_t *tx) |
| { |
| dmu_buf_t **dbp; |
| int numbufs, i; |
| |
| if (size == 0) |
| return; |
| |
| VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, |
| FALSE, FTAG, &numbufs, &dbp)); |
| |
| for (i = 0; i < numbufs; i++) { |
| dmu_buf_t *db = dbp[i]; |
| |
| dmu_buf_will_not_fill(db, tx); |
| } |
| dmu_buf_rele_array(dbp, numbufs, FTAG); |
| } |
| |
| void |
| dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset, |
| void *data, uint8_t etype, uint8_t comp, int uncompressed_size, |
| int compressed_size, int byteorder, dmu_tx_t *tx) |
| { |
| dmu_buf_t *db; |
| |
| ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES); |
| ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS); |
| VERIFY0(dmu_buf_hold_noread(os, object, offset, |
| FTAG, &db)); |
| |
| dmu_buf_write_embedded(db, |
| data, (bp_embedded_type_t)etype, (enum zio_compress)comp, |
| uncompressed_size, compressed_size, byteorder, tx); |
| |
| dmu_buf_rele(db, FTAG); |
| } |
| |
| /* |
| * DMU support for xuio |
| */ |
| kstat_t *xuio_ksp = NULL; |
| |
| int |
| dmu_xuio_init(xuio_t *xuio, int nblk) |
| { |
| dmu_xuio_t *priv; |
| uio_t *uio = &xuio->xu_uio; |
| |
| uio->uio_iovcnt = nblk; |
| uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP); |
| |
| priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP); |
| priv->cnt = nblk; |
| priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP); |
| priv->iovp = uio->uio_iov; |
| XUIO_XUZC_PRIV(xuio) = priv; |
| |
| if (XUIO_XUZC_RW(xuio) == UIO_READ) |
| XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk); |
| else |
| XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk); |
| |
| return (0); |
| } |
| |
| void |
| dmu_xuio_fini(xuio_t *xuio) |
| { |
| dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); |
| int nblk = priv->cnt; |
| |
| kmem_free(priv->iovp, nblk * sizeof (iovec_t)); |
| kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *)); |
| kmem_free(priv, sizeof (dmu_xuio_t)); |
| |
| if (XUIO_XUZC_RW(xuio) == UIO_READ) |
| XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk); |
| else |
| XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk); |
| } |
| |
| /* |
| * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf } |
| * and increase priv->next by 1. |
| */ |
| int |
| dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n) |
| { |
| struct iovec *iov; |
| uio_t *uio = &xuio->xu_uio; |
| dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); |
| int i = priv->next++; |
| |
| ASSERT(i < priv->cnt); |
| ASSERT(off + n <= arc_buf_lsize(abuf)); |
| iov = uio->uio_iov + i; |
| iov->iov_base = (char *)abuf->b_data + off; |
| iov->iov_len = n; |
| priv->bufs[i] = abuf; |
| return (0); |
| } |
| |
| int |
| dmu_xuio_cnt(xuio_t *xuio) |
| { |
| dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); |
| return (priv->cnt); |
| } |
| |
| arc_buf_t * |
| dmu_xuio_arcbuf(xuio_t *xuio, int i) |
| { |
| dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); |
| |
| ASSERT(i < priv->cnt); |
| return (priv->bufs[i]); |
| } |
| |
| void |
| dmu_xuio_clear(xuio_t *xuio, int i) |
| { |
| dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); |
| |
| ASSERT(i < priv->cnt); |
| priv->bufs[i] = NULL; |
| } |
| |
| static void |
| xuio_stat_init(void) |
| { |
| xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc", |
| KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t), |
| KSTAT_FLAG_VIRTUAL); |
| if (xuio_ksp != NULL) { |
| xuio_ksp->ks_data = &xuio_stats; |
| kstat_install(xuio_ksp); |
| } |
| } |
| |
| static void |
| xuio_stat_fini(void) |
| { |
| if (xuio_ksp != NULL) { |
| kstat_delete(xuio_ksp); |
| xuio_ksp = NULL; |
| } |
| } |
| |
| void |
| xuio_stat_wbuf_copied(void) |
| { |
| XUIOSTAT_BUMP(xuiostat_wbuf_copied); |
| } |
| |
| void |
| xuio_stat_wbuf_nocopy(void) |
| { |
| XUIOSTAT_BUMP(xuiostat_wbuf_nocopy); |
| } |
| |
| #ifdef _KERNEL |
| int |
| dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size) |
| { |
| dmu_buf_t **dbp; |
| int numbufs, i, err; |
| xuio_t *xuio = NULL; |
| |
| /* |
| * NB: we could do this block-at-a-time, but it's nice |
| * to be reading in parallel. |
| */ |
| err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, |
| TRUE, FTAG, &numbufs, &dbp, 0); |
| if (err) |
| return (err); |
| |
| if (uio->uio_extflg == UIO_XUIO) |
| xuio = (xuio_t *)uio; |
| |
| for (i = 0; i < numbufs; i++) { |
| int tocpy; |
| int bufoff; |
| dmu_buf_t *db = dbp[i]; |
| |
| ASSERT(size > 0); |
| |
| bufoff = uio->uio_loffset - db->db_offset; |
| tocpy = (int)MIN(db->db_size - bufoff, size); |
| |
| if (xuio) { |
| dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; |
| arc_buf_t *dbuf_abuf = dbi->db_buf; |
| arc_buf_t *abuf = dbuf_loan_arcbuf(dbi); |
| err = dmu_xuio_add(xuio, abuf, bufoff, tocpy); |
| if (!err) { |
| uio->uio_resid -= tocpy; |
| uio->uio_loffset += tocpy; |
| } |
| |
| if (abuf == dbuf_abuf) |
| XUIOSTAT_BUMP(xuiostat_rbuf_nocopy); |
| else |
| XUIOSTAT_BUMP(xuiostat_rbuf_copied); |
| } else { |
| err = uiomove((char *)db->db_data + bufoff, tocpy, |
| UIO_READ, uio); |
| } |
| if (err) |
| break; |
| |
| size -= tocpy; |
| } |
| dmu_buf_rele_array(dbp, numbufs, FTAG); |
| |
| return (err); |
| } |
| |
| /* |
| * Read 'size' bytes into the uio buffer. |
| * From object zdb->db_object. |
| * Starting at offset uio->uio_loffset. |
| * |
| * If the caller already has a dbuf in the target object |
| * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(), |
| * because we don't have to find the dnode_t for the object. |
| */ |
| int |
| dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size) |
| { |
| dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; |
| dnode_t *dn; |
| int err; |
| |
| if (size == 0) |
| return (0); |
| |
| DB_DNODE_ENTER(db); |
| dn = DB_DNODE(db); |
| err = dmu_read_uio_dnode(dn, uio, size); |
| DB_DNODE_EXIT(db); |
| |
| return (err); |
| } |
| |
| /* |
| * Read 'size' bytes into the uio buffer. |
| * From the specified object |
| * Starting at offset uio->uio_loffset. |
| */ |
| int |
| dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size) |
| { |
| dnode_t *dn; |
| int err; |
| |
| if (size == 0) |
| return (0); |
| |
| err = dnode_hold(os, object, FTAG, &dn); |
| if (err) |
| return (err); |
| |
| err = dmu_read_uio_dnode(dn, uio, size); |
| |
| dnode_rele(dn, FTAG); |
| |
| return (err); |
| } |
| |
| int |
| dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx) |
| { |
| dmu_buf_t **dbp; |
| int numbufs; |
| int err = 0; |
| int i; |
| |
| err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, |
| FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH); |
| if (err) |
| return (err); |
| |
| for (i = 0; i < numbufs; i++) { |
| int tocpy; |
| int bufoff; |
| dmu_buf_t *db = dbp[i]; |
| |
| ASSERT(size > 0); |
| |
| bufoff = uio->uio_loffset - db->db_offset; |
| tocpy = (int)MIN(db->db_size - bufoff, size); |
| |
| ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); |
| |
| if (tocpy == db->db_size) |
| dmu_buf_will_fill(db, tx); |
| else |
| dmu_buf_will_dirty(db, tx); |
| |
| /* |
| * XXX uiomove could block forever (eg. nfs-backed |
| * pages). There needs to be a uiolockdown() function |
| * to lock the pages in memory, so that uiomove won't |
| * block. |
| */ |
| err = uiomove((char *)db->db_data + bufoff, tocpy, |
| UIO_WRITE, uio); |
| |
| if (tocpy == db->db_size) |
| dmu_buf_fill_done(db, tx); |
| |
| if (err) |
| break; |
| |
| size -= tocpy; |
| } |
| |
| dmu_buf_rele_array(dbp, numbufs, FTAG); |
| return (err); |
| } |
| |
| /* |
| * Write 'size' bytes from the uio buffer. |
| * To object zdb->db_object. |
| * Starting at offset uio->uio_loffset. |
| * |
| * If the caller already has a dbuf in the target object |
| * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(), |
| * because we don't have to find the dnode_t for the object. |
| */ |
| int |
| dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size, |
| dmu_tx_t *tx) |
| { |
| dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; |
| dnode_t *dn; |
| int err; |
| |
| if (size == 0) |
| return (0); |
| |
| DB_DNODE_ENTER(db); |
| dn = DB_DNODE(db); |
| err = dmu_write_uio_dnode(dn, uio, size, tx); |
| DB_DNODE_EXIT(db); |
| |
| return (err); |
| } |
| |
| /* |
| * Write 'size' bytes from the uio buffer. |
| * To the specified object. |
| * Starting at offset uio->uio_loffset. |
| */ |
| int |
| dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size, |
| dmu_tx_t *tx) |
| { |
| dnode_t *dn; |
| int err; |
| |
| if (size == 0) |
| return (0); |
| |
| err = dnode_hold(os, object, FTAG, &dn); |
| if (err) |
| return (err); |
| |
| err = dmu_write_uio_dnode(dn, uio, size, tx); |
| |
| dnode_rele(dn, FTAG); |
| |
| return (err); |
| } |
| |
| int |
| dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, |
| page_t *pp, dmu_tx_t *tx) |
| { |
| dmu_buf_t **dbp; |
| int numbufs, i; |
| int err; |
| |
| if (size == 0) |
| return (0); |
| |
| err = dmu_buf_hold_array(os, object, offset, size, |
| FALSE, FTAG, &numbufs, &dbp); |
| if (err) |
| return (err); |
| |
| for (i = 0; i < numbufs; i++) { |
| int tocpy, copied, thiscpy; |
| int bufoff; |
| dmu_buf_t *db = dbp[i]; |
| caddr_t va; |
| |
| ASSERT(size > 0); |
| ASSERT3U(db->db_size, >=, PAGESIZE); |
| |
| bufoff = offset - db->db_offset; |
| tocpy = (int)MIN(db->db_size - bufoff, size); |
| |
| ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); |
| |
| if (tocpy == db->db_size) |
| dmu_buf_will_fill(db, tx); |
| else |
| dmu_buf_will_dirty(db, tx); |
| |
| for (copied = 0; copied < tocpy; copied += PAGESIZE) { |
| ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff); |
| thiscpy = MIN(PAGESIZE, tocpy - copied); |
| va = zfs_map_page(pp, S_READ); |
| bcopy(va, (char *)db->db_data + bufoff, thiscpy); |
| zfs_unmap_page(pp, va); |
| pp = pp->p_next; |
| bufoff += PAGESIZE; |
| } |
| |
| if (tocpy == db->db_size) |
| dmu_buf_fill_done(db, tx); |
| |
| offset += tocpy; |
| size -= tocpy; |
| } |
| dmu_buf_rele_array(dbp, numbufs, FTAG); |
| return (err); |
| } |
| #endif |
| |
| /* |
| * Allocate a loaned anonymous arc buffer. |
| */ |
| arc_buf_t * |
| dmu_request_arcbuf(dmu_buf_t *handle, int size) |
| { |
| dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle; |
| |
| return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size)); |
| } |
| |
| /* |
| * Free a loaned arc buffer. |
| */ |
| void |
| dmu_return_arcbuf(arc_buf_t *buf) |
| { |
| arc_return_buf(buf, FTAG); |
| arc_buf_destroy(buf, FTAG); |
| } |
| |
| /* |
| * When possible directly assign passed loaned arc buffer to a dbuf. |
| * If this is not possible copy the contents of passed arc buf via |
| * dmu_write(). |
| */ |
| void |
| dmu_assign_arcbuf_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf, |
| dmu_tx_t *tx) |
| { |
| dmu_buf_impl_t *db; |
| uint32_t blksz = (uint32_t)arc_buf_lsize(buf); |
| uint64_t blkid; |
| |
| rw_enter(&dn->dn_struct_rwlock, RW_READER); |
| blkid = dbuf_whichblock(dn, 0, offset); |
| VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL); |
| rw_exit(&dn->dn_struct_rwlock); |
| |
| /* |
| * We can only assign if the offset is aligned, the arc buf is the |
| * same size as the dbuf, and the dbuf is not metadata. |
| */ |
| if (offset == db->db.db_offset && blksz == db->db.db_size) { |
| dbuf_assign_arcbuf(db, buf, tx); |
| dbuf_rele(db, FTAG); |
| } else { |
| objset_t *os; |
| uint64_t object; |
| |
| /* compressed bufs must always be assignable to their dbuf */ |
| ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF); |
| ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED)); |
| |
| os = dn->dn_objset; |
| object = dn->dn_object; |
| |
| dbuf_rele(db, FTAG); |
| dmu_write(os, object, offset, blksz, buf->b_data, tx); |
| dmu_return_arcbuf(buf); |
| XUIOSTAT_BUMP(xuiostat_wbuf_copied); |
| } |
| } |
| |
| void |
| dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf, |
| dmu_tx_t *tx) |
| { |
| dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle; |
| |
| DB_DNODE_ENTER(dbuf); |
| dmu_assign_arcbuf_dnode(DB_DNODE(dbuf), offset, buf, tx); |
| DB_DNODE_EXIT(dbuf); |
| } |
| |
| typedef struct { |
| dbuf_dirty_record_t *dsa_dr; |
| dmu_sync_cb_t *dsa_done; |
| zgd_t *dsa_zgd; |
| dmu_tx_t *dsa_tx; |
| } dmu_sync_arg_t; |
| |
| /* ARGSUSED */ |
| static void |
| dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg) |
| { |
| dmu_sync_arg_t *dsa = varg; |
| dmu_buf_t *db = dsa->dsa_zgd->zgd_db; |
| blkptr_t *bp = zio->io_bp; |
| |
| if (zio->io_error == 0) { |
| if (BP_IS_HOLE(bp)) { |
| /* |
| * A block of zeros may compress to a hole, but the |
| * block size still needs to be known for replay. |
| */ |
| BP_SET_LSIZE(bp, db->db_size); |
| } else if (!BP_IS_EMBEDDED(bp)) { |
| ASSERT(BP_GET_LEVEL(bp) == 0); |
| bp->blk_fill = 1; |
| } |
| } |
| } |
| |
| static void |
| dmu_sync_late_arrival_ready(zio_t *zio) |
| { |
| dmu_sync_ready(zio, NULL, zio->io_private); |
| } |
| |
| /* ARGSUSED */ |
| static void |
| dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) |
| { |
| dmu_sync_arg_t *dsa = varg; |
| dbuf_dirty_record_t *dr = dsa->dsa_dr; |
| dmu_buf_impl_t *db = dr->dr_dbuf; |
| zgd_t *zgd = dsa->dsa_zgd; |
| |
| /* |
| * Record the vdev(s) backing this blkptr so they can be flushed after |
| * the writes for the lwb have completed. |
| */ |
| if (zio->io_error == 0) { |
| zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp); |
| } |
| |
| mutex_enter(&db->db_mtx); |
| ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); |
| if (zio->io_error == 0) { |
| dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE); |
| if (dr->dt.dl.dr_nopwrite) { |
| blkptr_t *bp = zio->io_bp; |
| blkptr_t *bp_orig = &zio->io_bp_orig; |
| uint8_t chksum = BP_GET_CHECKSUM(bp_orig); |
| |
| ASSERT(BP_EQUAL(bp, bp_orig)); |
| VERIFY(BP_EQUAL(bp, db->db_blkptr)); |
| ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF); |
| ASSERT(zio_checksum_table[chksum].ci_flags & |
| ZCHECKSUM_FLAG_NOPWRITE); |
| } |
| dr->dt.dl.dr_overridden_by = *zio->io_bp; |
| dr->dt.dl.dr_override_state = DR_OVERRIDDEN; |
| dr->dt.dl.dr_copies = zio->io_prop.zp_copies; |
| |
| /* |
| * Old style holes are filled with all zeros, whereas |
| * new-style holes maintain their lsize, type, level, |
| * and birth time (see zio_write_compress). While we |
| * need to reset the BP_SET_LSIZE() call that happened |
| * in dmu_sync_ready for old style holes, we do *not* |
| * want to wipe out the information contained in new |
| * style holes. Thus, only zero out the block pointer if |
| * it's an old style hole. |
| */ |
| if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) && |
| dr->dt.dl.dr_overridden_by.blk_birth == 0) |
| BP_ZERO(&dr->dt.dl.dr_overridden_by); |
| } else { |
| dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; |
| } |
| cv_broadcast(&db->db_changed); |
| mutex_exit(&db->db_mtx); |
| |
| dsa->dsa_done(dsa->dsa_zgd, zio->io_error); |
| |
| kmem_free(dsa, sizeof (*dsa)); |
| } |
| |
| static void |
| dmu_sync_late_arrival_done(zio_t *zio) |
| { |
| blkptr_t *bp = zio->io_bp; |
| dmu_sync_arg_t *dsa = zio->io_private; |
| blkptr_t *bp_orig = &zio->io_bp_orig; |
| zgd_t *zgd = dsa->dsa_zgd; |
| |
| if (zio->io_error == 0) { |
| /* |
| * Record the vdev(s) backing this blkptr so they can be |
| * flushed after the writes for the lwb have completed. |
| */ |
| zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp); |
| |
| if (!BP_IS_HOLE(bp)) { |
| ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE)); |
| ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig)); |
| ASSERT(zio->io_bp->blk_birth == zio->io_txg); |
| ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa)); |
| zio_free(zio->io_spa, zio->io_txg, zio->io_bp); |
| } |
| } |
| |
| dmu_tx_commit(dsa->dsa_tx); |
| |
| dsa->dsa_done(dsa->dsa_zgd, zio->io_error); |
| |
| abd_put(zio->io_abd); |
| kmem_free(dsa, sizeof (*dsa)); |
| } |
| |
| static int |
| dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd, |
| zio_prop_t *zp, zbookmark_phys_t *zb) |
| { |
| dmu_sync_arg_t *dsa; |
| dmu_tx_t *tx; |
| |
| tx = dmu_tx_create(os); |
| dmu_tx_hold_space(tx, zgd->zgd_db->db_size); |
| if (dmu_tx_assign(tx, TXG_WAIT) != 0) { |
| dmu_tx_abort(tx); |
| /* Make zl_get_data do txg_waited_synced() */ |
| return (SET_ERROR(EIO)); |
| } |
| |
| /* |
| * In order to prevent the zgd's lwb from being free'd prior to |
| * dmu_sync_late_arrival_done() being called, we have to ensure |
| * the lwb's "max txg" takes this tx's txg into account. |
| */ |
| zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx)); |
| |
| dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); |
| dsa->dsa_dr = NULL; |
| dsa->dsa_done = done; |
| dsa->dsa_zgd = zgd; |
| dsa->dsa_tx = tx; |
| |
| /* |
| * Since we are currently syncing this txg, it's nontrivial to |
| * determine what BP to nopwrite against, so we disable nopwrite. |
| * |
| * When syncing, the db_blkptr is initially the BP of the previous |
| * txg. We can not nopwrite against it because it will be changed |
| * (this is similar to the non-late-arrival case where the dbuf is |
| * dirty in a future txg). |
| * |
| * Then dbuf_write_ready() sets bp_blkptr to the location we will write. |
| * We can not nopwrite against it because although the BP will not |
| * (typically) be changed, the data has not yet been persisted to this |
| * location. |
| * |
| * Finally, when dbuf_write_done() is called, it is theoretically |
| * possible to always nopwrite, because the data that was written in |
| * this txg is the same data that we are trying to write. However we |
| * would need to check that this dbuf is not dirty in any future |
| * txg's (as we do in the normal dmu_sync() path). For simplicity, we |
| * don't nopwrite in this case. |
| */ |
| zp->zp_nopwrite = B_FALSE; |
| |
| zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp, |
| abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size), |
| zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp, |
| dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done, |
| dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb)); |
| |
| return (0); |
| } |
| |
| /* |
| * Intent log support: sync the block associated with db to disk. |
| * N.B. and XXX: the caller is responsible for making sure that the |
| * data isn't changing while dmu_sync() is writing it. |
| * |
| * Return values: |
| * |
| * EEXIST: this txg has already been synced, so there's nothing to do. |
| * The caller should not log the write. |
| * |
| * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. |
| * The caller should not log the write. |
| * |
| * EALREADY: this block is already in the process of being synced. |
| * The caller should track its progress (somehow). |
| * |
| * EIO: could not do the I/O. |
| * The caller should do a txg_wait_synced(). |
| * |
| * 0: the I/O has been initiated. |
| * The caller should log this blkptr in the done callback. |
| * It is possible that the I/O will fail, in which case |
| * the error will be reported to the done callback and |
| * propagated to pio from zio_done(). |
| */ |
| int |
| dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd) |
| { |
| dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db; |
| objset_t *os = db->db_objset; |
| dsl_dataset_t *ds = os->os_dsl_dataset; |
| dbuf_dirty_record_t *dr; |
| dmu_sync_arg_t *dsa; |
| zbookmark_phys_t zb; |
| zio_prop_t zp; |
| dnode_t *dn; |
| |
| ASSERT(pio != NULL); |
| ASSERT(txg != 0); |
| |
| SET_BOOKMARK(&zb, ds->ds_object, |
| db->db.db_object, db->db_level, db->db_blkid); |
| |
| DB_DNODE_ENTER(db); |
| dn = DB_DNODE(db); |
| dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp); |
| DB_DNODE_EXIT(db); |
| |
| /* |
| * If we're frozen (running ziltest), we always need to generate a bp. |
| */ |
| if (txg > spa_freeze_txg(os->os_spa)) |
| return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); |
| |
| /* |
| * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf() |
| * and us. If we determine that this txg is not yet syncing, |
| * but it begins to sync a moment later, that's OK because the |
| * sync thread will block in dbuf_sync_leaf() until we drop db_mtx. |
| */ |
| mutex_enter(&db->db_mtx); |
| |
| if (txg <= spa_last_synced_txg(os->os_spa)) { |
| /* |
| * This txg has already synced. There's nothing to do. |
| */ |
| mutex_exit(&db->db_mtx); |
| return (SET_ERROR(EEXIST)); |
| } |
| |
| if (txg <= spa_syncing_txg(os->os_spa)) { |
| /* |
| * This txg is currently syncing, so we can't mess with |
| * the dirty record anymore; just write a new log block. |
| */ |
| mutex_exit(&db->db_mtx); |
| return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); |
| } |
| |
| dr = db->db_last_dirty; |
| while (dr && dr->dr_txg != txg) |
| dr = dr->dr_next; |
| |
| if (dr == NULL) { |
| /* |
| * There's no dr for this dbuf, so it must have been freed. |
| * There's no need to log writes to freed blocks, so we're done. |
| */ |
| mutex_exit(&db->db_mtx); |
| return (SET_ERROR(ENOENT)); |
| } |
| |
| ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg); |
| |
| if (db->db_blkptr != NULL) { |
| /* |
| * We need to fill in zgd_bp with the current blkptr so that |
| * the nopwrite code can check if we're writing the same |
| * data that's already on disk. We can only nopwrite if we |
| * are sure that after making the copy, db_blkptr will not |
| * change until our i/o completes. We ensure this by |
| * holding the db_mtx, and only allowing nopwrite if the |
| * block is not already dirty (see below). This is verified |
| * by dmu_sync_done(), which VERIFYs that the db_blkptr has |
| * not changed. |
| */ |
| *zgd->zgd_bp = *db->db_blkptr; |
| } |
| |
| /* |
| * Assume the on-disk data is X, the current syncing data (in |
| * txg - 1) is Y, and the current in-memory data is Z (currently |
| * in dmu_sync). |
| * |
| * We usually want to perform a nopwrite if X and Z are the |
| * same. However, if Y is different (i.e. the BP is going to |
| * change before this write takes effect), then a nopwrite will |
| * be incorrect - we would override with X, which could have |
| * been freed when Y was written. |
| * |
| * (Note that this is not a concern when we are nop-writing from |
| * syncing context, because X and Y must be identical, because |
| * all previous txgs have been synced.) |
| * |
| * Therefore, we disable nopwrite if the current BP could change |
| * before this TXG. There are two ways it could change: by |
| * being dirty (dr_next is non-NULL), or by being freed |
| * (dnode_block_freed()). This behavior is verified by |
| * zio_done(), which VERIFYs that the override BP is identical |
| * to the on-disk BP. |
| */ |
| DB_DNODE_ENTER(db); |
| dn = DB_DNODE(db); |
| if (dr->dr_next != NULL || dnode_block_freed(dn, db->db_blkid)) |
| zp.zp_nopwrite = B_FALSE; |
| DB_DNODE_EXIT(db); |
| |
| ASSERT(dr->dr_txg == txg); |
| if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC || |
| dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { |
| /* |
| * We have already issued a sync write for this buffer, |
| * or this buffer has already been synced. It could not |
| * have been dirtied since, or we would have cleared the state. |
| */ |
| mutex_exit(&db->db_mtx); |
| return (SET_ERROR(EALREADY)); |
| } |
| |
| ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); |
| dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; |
| mutex_exit(&db->db_mtx); |
| |
| dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); |
| dsa->dsa_dr = dr; |
| dsa->dsa_done = done; |
| dsa->dsa_zgd = zgd; |
| dsa->dsa_tx = NULL; |
| |
| zio_nowait(arc_write(pio, os->os_spa, txg, |
| zgd->zgd_bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), |
| &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa, |
| ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb)); |
| |
| return (0); |
| } |
| |
| int |
| dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, |
| dmu_tx_t *tx) |
| { |
| dnode_t *dn; |
| int err; |
| |
| err = dnode_hold(os, object, FTAG, &dn); |
| if (err) |
| return (err); |
| err = dnode_set_blksz(dn, size, ibs, tx); |
| dnode_rele(dn, FTAG); |
| return (err); |
| } |
| |
| void |
| dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, |
| dmu_tx_t *tx) |
| { |
| dnode_t *dn; |
| |
| /* |
| * Send streams include each object's checksum function. This |
| * check ensures that the receiving system can understand the |
| * checksum function transmitted. |
| */ |
| ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS); |
| |
| VERIFY0(dnode_hold(os, object, FTAG, &dn)); |
| ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS); |
| dn->dn_checksum = checksum; |
| dnode_setdirty(dn, tx); |
| dnode_rele(dn, FTAG); |
| } |
| |
| void |
| dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, |
| dmu_tx_t *tx) |
| { |
| dnode_t *dn; |
| |
| /* |
| * Send streams include each object's compression function. This |
| * check ensures that the receiving system can understand the |
| * compression function transmitted. |
| */ |
| ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS); |
| |
| VERIFY0(dnode_hold(os, object, FTAG, &dn)); |
| dn->dn_compress = compress; |
| dnode_setdirty(dn, tx); |
| dnode_rele(dn, FTAG); |
| } |
| |
| int zfs_mdcomp_disable = 0; |
| |
| /* |
| * When the "redundant_metadata" property is set to "most", only indirect |
| * blocks of this level and higher will have an additional ditto block. |
| */ |
| int zfs_redundant_metadata_most_ditto_level = 2; |
| |
| void |
| dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp) |
| { |
| dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET; |
| boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) || |
| (wp & WP_SPILL)); |
| enum zio_checksum checksum = os->os_checksum; |
| enum zio_compress compress = os->os_compress; |
| enum zio_checksum dedup_checksum = os->os_dedup_checksum; |
| boolean_t dedup = B_FALSE; |
| boolean_t nopwrite = B_FALSE; |
| boolean_t dedup_verify = os->os_dedup_verify; |
| int copies = os->os_copies; |
| |
| /* |
| * We maintain different write policies for each of the following |
| * types of data: |
| * 1. metadata |
| * 2. preallocated blocks (i.e. level-0 blocks of a dump device) |
| * 3. all other level 0 blocks |
| */ |
| if (ismd) { |
| if (zfs_mdcomp_disable) { |
| compress = ZIO_COMPRESS_EMPTY; |
| } else { |
| /* |
| * XXX -- we should design a compression algorithm |
| * that specializes in arrays of bps. |
| */ |
| compress = zio_compress_select(os->os_spa, |
| ZIO_COMPRESS_ON, ZIO_COMPRESS_ON); |
| } |
| |
| /* |
| * Metadata always gets checksummed. If the data |
| * checksum is multi-bit correctable, and it's not a |
| * ZBT-style checksum, then it's suitable for metadata |
| * as well. Otherwise, the metadata checksum defaults |
| * to fletcher4. |
| */ |
| if (!(zio_checksum_table[checksum].ci_flags & |
| ZCHECKSUM_FLAG_METADATA) || |
| (zio_checksum_table[checksum].ci_flags & |
| ZCHECKSUM_FLAG_EMBEDDED)) |
| checksum = ZIO_CHECKSUM_FLETCHER_4; |
| |
| if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL || |
| (os->os_redundant_metadata == |
| ZFS_REDUNDANT_METADATA_MOST && |
| (level >= zfs_redundant_metadata_most_ditto_level || |
| DMU_OT_IS_METADATA(type) || (wp & WP_SPILL)))) |
| copies++; |
| } else if (wp & WP_NOFILL) { |
| ASSERT(level == 0); |
| |
| /* |
| * If we're writing preallocated blocks, we aren't actually |
| * writing them so don't set any policy properties. These |
| * blocks are currently only used by an external subsystem |
| * outside of zfs (i.e. dump) and not written by the zio |
| * pipeline. |
| */ |
| compress = ZIO_COMPRESS_OFF; |
| checksum = ZIO_CHECKSUM_NOPARITY; |
| } else { |
| compress = zio_compress_select(os->os_spa, dn->dn_compress, |
| compress); |
| |
| checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ? |
| zio_checksum_select(dn->dn_checksum, checksum) : |
| dedup_checksum; |
| |
| /* |
| * Determine dedup setting. If we are in dmu_sync(), |
| * we won't actually dedup now because that's all |
| * done in syncing context; but we do want to use the |
| * dedup checkum. If the checksum is not strong |
| * enough to ensure unique signatures, force |
| * dedup_verify. |
| */ |
| if (dedup_checksum != ZIO_CHECKSUM_OFF) { |
| dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE; |
| if (!(zio_checksum_table[checksum].ci_flags & |
| ZCHECKSUM_FLAG_DEDUP)) |
| dedup_verify = B_TRUE; |
| } |
| |
| /* |
| * Enable nopwrite if we have secure enough checksum |
| * algorithm (see comment in zio_nop_write) and |
| * compression is enabled. We don't enable nopwrite if |
| * dedup is enabled as the two features are mutually |
| * exclusive. |
| */ |
| nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags & |
| ZCHECKSUM_FLAG_NOPWRITE) && |
| compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled); |
| } |
| |
| zp->zp_checksum = checksum; |
| zp->zp_compress = compress; |
| ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT); |
| |
| zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type; |
| zp->zp_level = level; |
| zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa)); |
| zp->zp_dedup = dedup; |
| zp->zp_dedup_verify = dedup && dedup_verify; |
| zp->zp_nopwrite = nopwrite; |
| } |
| |
| int |
| dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) |
| { |
| dnode_t *dn; |
| int err; |
| |
| /* |
| * Sync any current changes before |
| * we go trundling through the block pointers. |
| */ |
| err = dmu_object_wait_synced(os, object); |
| if (err) { |
| return (err); |
| } |
| |
| err = dnode_hold(os, object, FTAG, &dn); |
| if (err) { |
| return (err); |
| } |
| |
| err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0); |
| dnode_rele(dn, FTAG); |
| |
| return (err); |
| } |
| |
| /* |
| * Given the ZFS object, if it contains any dirty nodes |
| * this function flushes all dirty blocks to disk. This |
| * ensures the DMU object info is updated. A more efficient |
| * future version might just find the TXG with the maximum |
| * ID and wait for that to be synced. |
| */ |
| int |
| dmu_object_wait_synced(objset_t *os, uint64_t object) |
| { |
| dnode_t *dn; |
| int error, i; |
| |
| error = dnode_hold(os, object, FTAG, &dn); |
| if (error) { |
| return (error); |
| } |
| |
| for (i = 0; i < TXG_SIZE; i++) { |
| if (list_link_active(&dn->dn_dirty_link[i])) { |
| break; |
| } |
| } |
| dnode_rele(dn, FTAG); |
| if (i != TXG_SIZE) { |
| txg_wait_synced(dmu_objset_pool(os), 0); |
| } |
| |
| return (0); |
| } |
| |
| void |
| dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) |
| { |
| dnode_phys_t *dnp; |
| |
| rw_enter(&dn->dn_struct_rwlock, RW_READER); |
| mutex_enter(&dn->dn_mtx); |
| |
| dnp = dn->dn_phys; |
| |
| doi->doi_data_block_size = dn->dn_datablksz; |
| doi->doi_metadata_block_size = dn->dn_indblkshift ? |
| 1ULL << dn->dn_indblkshift : 0; |
| doi->doi_type = dn->dn_type; |
| doi->doi_bonus_type = dn->dn_bonustype; |
| doi->doi_bonus_size = dn->dn_bonuslen; |
| doi->doi_indirection = dn->dn_nlevels; |
| doi->doi_checksum = dn->dn_checksum; |
| doi->doi_compress = dn->dn_compress; |
| doi->doi_nblkptr = dn->dn_nblkptr; |
| doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9; |
| doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz; |
| doi->doi_fill_count = 0; |
| for (int i = 0; i < dnp->dn_nblkptr; i++) |
| doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]); |
| |
| mutex_exit(&dn->dn_mtx); |
| rw_exit(&dn->dn_struct_rwlock); |
| } |
| |
| /* |
| * Get information on a DMU object. |
| * If doi is NULL, just indicates whether the object exists. |
| */ |
| int |
| dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) |
| { |
| dnode_t *dn; |
| int err = dnode_hold(os, object, FTAG, &dn); |
| |
| if (err) |
| return (err); |
| |
| if (doi != NULL) |
| dmu_object_info_from_dnode(dn, doi); |
| |
| dnode_rele(dn, FTAG); |
| return (0); |
| } |
| |
| /* |
| * As above, but faster; can be used when you have a held dbuf in hand. |
| */ |
| void |
| dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi) |
| { |
| dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; |
| |
| DB_DNODE_ENTER(db); |
| dmu_object_info_from_dnode(DB_DNODE(db), doi); |
| DB_DNODE_EXIT(db); |
| } |
| |
| /* |
| * Faster still when you only care about the size. |
| * This is specifically optimized for zfs_getattr(). |
| */ |
| void |
| dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize, |
| u_longlong_t *nblk512) |
| { |
| dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; |
| dnode_t *dn; |
| |
| DB_DNODE_ENTER(db); |
| dn = DB_DNODE(db); |
| |
| *blksize = dn->dn_datablksz; |
| /* add 1 for dnode space */ |
| *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> |
| SPA_MINBLOCKSHIFT) + 1; |
| DB_DNODE_EXIT(db); |
| } |
| |
| void |
| byteswap_uint64_array(void *vbuf, size_t size) |
| { |
| uint64_t *buf = vbuf; |
| size_t count = size >> 3; |
| int i; |
| |
| ASSERT((size & 7) == 0); |
| |
| for (i = 0; i < count; i++) |
| buf[i] = BSWAP_64(buf[i]); |
| } |
| |
| void |
| byteswap_uint32_array(void *vbuf, size_t size) |
| { |
| uint32_t *buf = vbuf; |
| size_t count = size >> 2; |
| int i; |
| |
| ASSERT((size & 3) == 0); |
| |
| for (i = 0; i < count; i++) |
| buf[i] = BSWAP_32(buf[i]); |
| } |
| |
| void |
| byteswap_uint16_array(void *vbuf, size_t size) |
| { |
| uint16_t *buf = vbuf; |
| size_t count = size >> 1; |
| int i; |
| |
| ASSERT((size & 1) == 0); |
| |
| for (i = 0; i < count; i++) |
| buf[i] = BSWAP_16(buf[i]); |
| } |
| |
| /* ARGSUSED */ |
| void |
| byteswap_uint8_array(void *vbuf, size_t size) |
| { |
| } |
| |
| void |
| dmu_init(void) |
| { |
| abd_init(); |
| zfs_dbgmsg_init(); |
| sa_cache_init(); |
| xuio_stat_init(); |
| dmu_objset_init(); |
| dnode_init(); |
| zfetch_init(); |
| l2arc_init(); |
| arc_init(); |
| dbuf_init(); |
| } |
| |
| void |
| dmu_fini(void) |
| { |
| arc_fini(); /* arc depends on l2arc, so arc must go first */ |
| l2arc_fini(); |
| zfetch_fini(); |
| dbuf_fini(); |
| dnode_fini(); |
| dmu_objset_fini(); |
| xuio_stat_fini(); |
| sa_cache_fini(); |
| zfs_dbgmsg_fini(); |
| abd_fini(); |
| } |