| /* |
| * CDDL HEADER START |
| * |
| * The contents of this file are subject to the terms of the |
| * Common Development and Distribution License (the "License"). |
| * You may not use this file except in compliance with the License. |
| * |
| * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE |
| * or http://www.opensolaris.org/os/licensing. |
| * See the License for the specific language governing permissions |
| * and limitations under the License. |
| * |
| * When distributing Covered Code, include this CDDL HEADER in each |
| * file and include the License file at usr/src/OPENSOLARIS.LICENSE. |
| * If applicable, add the following below this CDDL HEADER, with the |
| * fields enclosed by brackets "[]" replaced with your own identifying |
| * information: Portions Copyright [yyyy] [name of copyright owner] |
| * |
| * CDDL HEADER END |
| */ |
| /* |
| * Copyright 2009 Sun Microsystems, Inc. All rights reserved. |
| * Use is subject to license terms. |
| */ |
| |
| /* |
| * Multithreaded STREAMS Local Transport Provider. |
| * |
| * OVERVIEW |
| * ======== |
| * |
| * This driver provides TLI as well as socket semantics. It provides |
| * connectionless, connection oriented, and connection oriented with orderly |
| * release transports for TLI and sockets. Each transport type has separate name |
| * spaces (i.e. it is not possible to connect from a socket to a TLI endpoint) - |
| * this removes any name space conflicts when binding to socket style transport |
| * addresses. |
| * |
| * NOTE: There is one exception: Socket ticots and ticotsord transports share |
| * the same namespace. In fact, sockets always use ticotsord type transport. |
| * |
| * The driver mode is specified during open() by the minor number used for |
| * open. |
| * |
| * The sockets in addition have the following semantic differences: |
| * No support for passing up credentials (TL_SET[U]CRED). |
| * |
| * Options are passed through transparently on T_CONN_REQ to T_CONN_IND, |
| * from T_UNITDATA_REQ to T_UNIDATA_IND, and from T_OPTDATA_REQ to |
| * T_OPTDATA_IND. |
| * |
| * The T_CONN_CON is generated when processing the T_CONN_REQ i.e. before |
| * a T_CONN_RES is received from the acceptor. This means that a socket |
| * connect will complete before the peer has called accept. |
| * |
| * |
| * MULTITHREADING |
| * ============== |
| * |
| * The driver does not use STREAMS protection mechanisms. Instead it uses a |
| * generic "serializer" abstraction. Most of the operations are executed behind |
| * the serializer and are, essentially single-threaded. All functions executed |
| * behind the same serializer are strictly serialized. So if one thread calls |
| * serializer_enter(serializer, foo, mp1, arg1); and another thread calls |
| * serializer_enter(serializer, bar, mp2, arg1); then (depending on which one |
| * was called) the actual sequence will be foo(mp1, arg1); bar(mp1, arg2) or |
| * bar(mp1, arg2); foo(mp1, arg1); But foo() and bar() will never run at the |
| * same time. |
| * |
| * Connectionless transport use a single serializer per transport type (one for |
| * TLI and one for sockets. Connection-oriented transports use finer-grained |
| * serializers. |
| * |
| * All COTS-type endpoints start their life with private serializers. During |
| * connection request processing the endpoint serializer is switched to the |
| * listener's serializer and the rest of T_CONN_REQ processing is done on the |
| * listener serializer. During T_CONN_RES processing the eager serializer is |
| * switched from listener to acceptor serializer and after that point all |
| * processing for eager and acceptor happens on this serializer. To avoid races |
| * with endpoint closes while its serializer may be changing closes are blocked |
| * while serializers are manipulated. |
| * |
| * References accounting |
| * --------------------- |
| * |
| * Endpoints are reference counted and freed when the last reference is |
| * dropped. Functions within the serializer may access an endpoint state even |
| * after an endpoint closed. The te_closing being set on the endpoint indicates |
| * that the endpoint entered its close routine. |
| * |
| * One reference is held for each opened endpoint instance. The reference |
| * counter is incremented when the endpoint is linked to another endpoint and |
| * decremented when the link disappears. It is also incremented when the |
| * endpoint is found by the hash table lookup. This increment is atomic with the |
| * lookup itself and happens while the hash table read lock is held. |
| * |
| * Close synchronization |
| * --------------------- |
| * |
| * During close the endpoint as marked as closing using te_closing flag. It is |
| * usually enough to check for te_closing flag since all other state changes |
| * happen after this flag is set and the close entered serializer. Immediately |
| * after setting te_closing flag tl_close() enters serializer and waits until |
| * the callback finishes. This allows all functions called within serializer to |
| * simply check te_closing without any locks. |
| * |
| * Serializer management. |
| * --------------------- |
| * |
| * For COTS transports serializers are created when the endpoint is constructed |
| * and destroyed when the endpoint is destructed. CLTS transports use global |
| * serializers - one for sockets and one for TLI. |
| * |
| * COTS serializers have separate reference counts to deal with several |
| * endpoints sharing the same serializer. There is a subtle problem related to |
| * the serializer destruction. The serializer should never be destroyed by any |
| * function executed inside serializer. This means that close has to wait till |
| * all serializer activity for this endpoint is finished before it can drop the |
| * last reference on the endpoint (which may as well free the serializer). This |
| * is only relevant for COTS transports which manage serializers |
| * dynamically. For CLTS transports close may complete without waiting for all |
| * serializer activity to finish since serializer is only destroyed at driver |
| * detach time. |
| * |
| * COTS endpoints keep track of the number of outstanding requests on the |
| * serializer for the endpoint. The code handling accept() avoids changing |
| * client serializer if it has any pending messages on the serializer and |
| * instead moves acceptor to listener's serializer. |
| * |
| * |
| * Use of hash tables |
| * ------------------ |
| * |
| * The driver uses modhash hash table implementation. Each transport uses two |
| * hash tables - one for finding endpoints by acceptor ID and another one for |
| * finding endpoints by address. For sockets TICOTS and TICOTSORD share the same |
| * pair of hash tables since sockets only use TICOTSORD. |
| * |
| * All hash tables lookups increment a reference count for returned endpoints, |
| * so we may safely check the endpoint state even when the endpoint is removed |
| * from the hash by another thread immediately after it is found. |
| * |
| * |
| * CLOSE processing |
| * ================ |
| * |
| * The driver enters serializer twice on close(). The close sequence is the |
| * following: |
| * |
| * 1) Wait until closing is safe (te_closewait becomes zero) |
| * This step is needed to prevent close during serializer switches. In most |
| * cases (close happening after connection establishment) te_closewait is |
| * zero. |
| * 1) Set te_closing. |
| * 2) Call tl_close_ser() within serializer and wait for it to complete. |
| * |
| * te_close_ser simply marks endpoint and wakes up waiting tl_close(). |
| * It also needs to clear write-side q_next pointers - this should be done |
| * before qprocsoff(). |
| * |
| * This synchronous serializer entry during close is needed to ensure that |
| * the queue is valid everywhere inside the serializer. |
| * |
| * Note that in many cases close will execute tl_close_ser() synchronously, |
| * so it will not wait at all. |
| * |
| * 3) Calls qprocsoff(). |
| * 4) Calls tl_close_finish_ser() within the serializer and waits for it to |
| * complete (for COTS transports). For CLTS transport there is no wait. |
| * |
| * tl_close_finish_ser() Finishes the close process and wakes up waiting |
| * close if there is any. |
| * |
| * Note that in most cases close will enter te_close_ser_finish() |
| * synchronously and will not wait at all. |
| * |
| * |
| * Flow Control |
| * ============ |
| * |
| * The driver implements both read and write side service routines. No one calls |
| * putq() on the read queue. The read side service routine tl_rsrv() is called |
| * when the read side stream is back-enabled. It enters serializer synchronously |
| * (waits till serializer processing is complete). Within serializer it |
| * back-enables all endpoints blocked by the queue for connection-less |
| * transports and enables write side service processing for the peer for |
| * connection-oriented transports. |
| * |
| * Read and write side service routines use special mblk_sized space in the |
| * endpoint structure to enter perimeter. |
| * |
| * Write-side flow control |
| * ----------------------- |
| * |
| * Write side flow control is a bit tricky. The driver needs to deal with two |
| * message queues - the explicit STREAMS message queue maintained by |
| * putq()/getq()/putbq() and the implicit queue within the serializer. These two |
| * queues should be synchronized to preserve message ordering and should |
| * maintain a single order determined by the order in which messages enter |
| * tl_wput(). In order to maintain the ordering between these two queues the |
| * STREAMS queue is only manipulated within the serializer, so the ordering is |
| * provided by the serializer. |
| * |
| * Functions called from the tl_wsrv() sometimes may call putbq(). To |
| * immediately stop any further processing of the STREAMS message queues the |
| * code calling putbq() also sets the te_nowsrv flag in the endpoint. The write |
| * side service processing stops when the flag is set. |
| * |
| * The tl_wsrv() function enters serializer synchronously and waits for it to |
| * complete. The serializer call-back tl_wsrv_ser() either drains all messages |
| * on the STREAMS queue or terminates when it notices the te_nowsrv flag |
| * set. Note that the maximum amount of messages processed by tl_wput_ser() is |
| * always bounded by the amount of messages on the STREAMS queue at the time |
| * tl_wsrv_ser() is entered. Any new messages may only appear on the STREAMS |
| * queue from another serialized entry which can't happen in parallel. This |
| * guarantees that tl_wput_ser() is complete in bounded time (there is no risk |
| * of it draining forever while writer places new messages on the STREAMS |
| * queue). |
| * |
| * Note that a closing endpoint never sets te_nowsrv and never calls putbq(). |
| * |
| * |
| * Unix Domain Sockets |
| * =================== |
| * |
| * The driver knows the structure of Unix Domain sockets addresses and treats |
| * them differently from generic TLI addresses. For sockets implicit binds are |
| * requested by setting SOU_MAGIC_IMPLICIT in the soua_magic part of the address |
| * instead of using address length of zero. Explicit binds specify |
| * SOU_MAGIC_EXPLICIT as magic. |
| * |
| * For implicit binds we always use minor number as soua_vp part of the address |
| * and avoid any hash table lookups. This saves two hash tables lookups per |
| * anonymous bind. |
| * |
| * For explicit address we hash the vnode pointer instead of hashing the |
| * full-scale address+zone+length. Hashing by pointer is more efficient then |
| * hashing by the full address. |
| * |
| * For unix domain sockets the te_ap is always pointing to te_uxaddr part of the |
| * tep structure, so it should be never freed. |
| * |
| * Also for sockets the driver always uses minor number as acceptor id. |
| * |
| * TPI VIOLATIONS |
| * -------------- |
| * |
| * This driver violates TPI in several respects for Unix Domain Sockets: |
| * |
| * 1) It treats O_T_BIND_REQ as T_BIND_REQ and refuses bind if an explicit bind |
| * is requested and the endpoint is already in use. There is no point in |
| * generating an unused address since this address will be rejected by |
| * sockfs anyway. For implicit binds it always generates a new address |
| * (sets soua_vp to its minor number). |
| * |
| * 2) It always uses minor number as acceptor ID and never uses queue |
| * pointer. It is ok since sockets get acceptor ID from T_CAPABILITY_REQ |
| * message and they do not use the queue pointer. |
| * |
| * 3) For Listener sockets the usual sequence is to issue bind() zero backlog |
| * followed by listen(). The listen() should be issued with non-zero |
| * backlog, so sotpi_listen() issues unbind request followed by bind |
| * request to the same address but with a non-zero qlen value. Both |
| * tl_bind() and tl_unbind() require write lock on the hash table to |
| * insert/remove the address. The driver does not remove the address from |
| * the hash for endpoints that are bound to the explicit address and have |
| * backlog of zero. During T_BIND_REQ processing if the address requested |
| * is equal to the address the endpoint already has it updates the backlog |
| * without reinserting the address in the hash table. This optimization |
| * avoids two hash table updates for each listener created. It always |
| * avoids the problem of a "stolen" address when another listener may use |
| * the same address between the unbind and bind and suddenly listen() fails |
| * because address is in use even though the bind() succeeded. |
| * |
| * |
| * CONNECTIONLESS TRANSPORTS |
| * ========================= |
| * |
| * Connectionless transports all share the same serializer (one for TLI and one |
| * for Sockets). Functions executing behind serializer can check or modify state |
| * of any endpoint. |
| * |
| * When endpoint X talks to another endpoint Y it caches the pointer to Y in the |
| * te_lastep field. The next time X talks to some address A it checks whether A |
| * is the same as Y's address and if it is there is no need to lookup Y. If the |
| * address is different or the state of Y is not appropriate (e.g. closed or not |
| * idle) X does a lookup using tl_find_peer() and caches the new address. |
| * NOTE: tl_find_peer() never returns closing endpoint and it places a refhold |
| * on the endpoint found. |
| * |
| * During close of endpoint Y it doesn't try to remove itself from other |
| * endpoints caches. They will detect that Y is gone and will search the peer |
| * endpoint again. |
| * |
| * Flow Control Handling. |
| * ---------------------- |
| * |
| * Each connectionless endpoint keeps a list of endpoints which are |
| * flow-controlled by its queue. It also keeps a pointer to the queue which |
| * flow-controls itself. Whenever flow control releases for endpoint X it |
| * enables all queues from the list. During close it also back-enables everyone |
| * in the list. If X is flow-controlled when it is closing it removes it from |
| * the peers list. |
| * |
| * DATA STRUCTURES |
| * =============== |
| * |
| * Each endpoint is represented by the tl_endpt_t structure which keeps all the |
| * endpoint state. For connection-oriented transports it has a keeps a list |
| * of pending connections (tl_icon_t). For connectionless transports it keeps a |
| * list of endpoints flow controlled by this one. |
| * |
| * Each transport type is represented by a per-transport data structure |
| * tl_transport_state_t. It contains a pointer to an acceptor ID hash and the |
| * endpoint address hash tables for each transport. It also contains pointer to |
| * transport serializer for connectionless transports. |
| * |
| * Each endpoint keeps a link to its transport structure, so the code can find |
| * all per-transport information quickly. |
| */ |
| |
| #include <sys/types.h> |
| #include <sys/inttypes.h> |
| #include <sys/stream.h> |
| #include <sys/stropts.h> |
| #define _SUN_TPI_VERSION 2 |
| #include <sys/tihdr.h> |
| #include <sys/strlog.h> |
| #include <sys/debug.h> |
| #include <sys/cred.h> |
| #include <sys/errno.h> |
| #include <sys/kmem.h> |
| #include <sys/id_space.h> |
| #include <sys/modhash.h> |
| #include <sys/mkdev.h> |
| #include <sys/tl.h> |
| #include <sys/stat.h> |
| #include <sys/conf.h> |
| #include <sys/modctl.h> |
| #include <sys/strsun.h> |
| #include <sys/socket.h> |
| #include <sys/socketvar.h> |
| #include <sys/sysmacros.h> |
| #include <sys/xti_xtiopt.h> |
| #include <sys/ddi.h> |
| #include <sys/sunddi.h> |
| #include <sys/zone.h> |
| #include <inet/common.h> /* typedef int (*pfi_t)() for inet/optcom.h */ |
| #include <inet/optcom.h> |
| #include <sys/strsubr.h> |
| #include <sys/ucred.h> |
| #include <sys/suntpi.h> |
| #include <sys/list.h> |
| #include <sys/serializer.h> |
| |
| /* |
| * TBD List |
| * 14 Eliminate state changes through table |
| * 16. AF_UNIX socket options |
| * 17. connect() for ticlts |
| * 18. support for "netstat" to show AF_UNIX plus TLI local |
| * transport connections |
| * 21. sanity check to flushing on sending M_ERROR |
| */ |
| |
| /* |
| * CONSTANT DECLARATIONS |
| * -------------------- |
| */ |
| |
| /* |
| * Local declarations |
| */ |
| #define NEXTSTATE(EV, ST) ti_statetbl[EV][ST] |
| |
| #define BADSEQNUM (-1) /* initial seq number used by T_DISCON_IND */ |
| #define TL_BUFWAIT (10000) /* usecs to wait for allocb buffer timeout */ |
| #define TL_TIDUSZ (64*1024) /* tidu size when "strmsgz" is unlimited (0) */ |
| /* |
| * Hash tables size. |
| */ |
| #define TL_HASH_SIZE 311 |
| |
| /* |
| * Definitions for module_info |
| */ |
| #define TL_ID (104) /* module ID number */ |
| #define TL_NAME "tl" /* module name */ |
| #define TL_MINPSZ (0) /* min packet size */ |
| #define TL_MAXPSZ INFPSZ /* max packet size ZZZ */ |
| #define TL_HIWAT (16*1024) /* hi water mark */ |
| #define TL_LOWAT (256) /* lo water mark */ |
| /* |
| * Definition of minor numbers/modes for new transport provider modes. |
| * We view the socket use as a separate mode to get a separate name space. |
| */ |
| #define TL_TICOTS 0 /* connection oriented transport */ |
| #define TL_TICOTSORD 1 /* COTS w/ orderly release */ |
| #define TL_TICLTS 2 /* connectionless transport */ |
| #define TL_UNUSED 3 |
| #define TL_SOCKET 4 /* Socket */ |
| #define TL_SOCK_COTS (TL_SOCKET|TL_TICOTS) |
| #define TL_SOCK_COTSORD (TL_SOCKET|TL_TICOTSORD) |
| #define TL_SOCK_CLTS (TL_SOCKET|TL_TICLTS) |
| |
| #define TL_MINOR_MASK 0x7 |
| #define TL_MINOR_START (TL_TICLTS + 1) |
| |
| /* |
| * LOCAL MACROS |
| */ |
| #define T_ALIGN(p) P2ROUNDUP((p), sizeof (t_scalar_t)) |
| |
| /* |
| * EXTERNAL VARIABLE DECLARATIONS |
| * ----------------------------- |
| */ |
| /* |
| * state table defined in the OS space.c |
| */ |
| extern char ti_statetbl[TE_NOEVENTS][TS_NOSTATES]; |
| |
| /* |
| * STREAMS DRIVER ENTRY POINTS PROTOTYPES |
| */ |
| static int tl_open(queue_t *, dev_t *, int, int, cred_t *); |
| static int tl_close(queue_t *, int, cred_t *); |
| static void tl_wput(queue_t *, mblk_t *); |
| static void tl_wsrv(queue_t *); |
| static void tl_rsrv(queue_t *); |
| |
| static int tl_attach(dev_info_t *, ddi_attach_cmd_t); |
| static int tl_detach(dev_info_t *, ddi_detach_cmd_t); |
| static int tl_info(dev_info_t *, ddi_info_cmd_t, void *, void **); |
| |
| |
| /* |
| * GLOBAL DATA STRUCTURES AND VARIABLES |
| * ----------------------------------- |
| */ |
| |
| /* |
| * Table representing database of all options managed by T_SVR4_OPTMGMT_REQ |
| * For now, we only manage the SO_RECVUCRED option but we also have |
| * harmless dummy options to make things work with some common code we access. |
| */ |
| opdes_t tl_opt_arr[] = { |
| /* The SO_TYPE is needed for the hack below */ |
| { |
| SO_TYPE, |
| SOL_SOCKET, |
| OA_R, |
| OA_R, |
| OP_NP, |
| 0, |
| sizeof (t_scalar_t), |
| 0 |
| }, |
| { |
| SO_RECVUCRED, |
| SOL_SOCKET, |
| OA_RW, |
| OA_RW, |
| OP_NP, |
| 0, |
| sizeof (int), |
| 0 |
| } |
| }; |
| |
| /* |
| * Table of all supported levels |
| * Note: Some levels (e.g. XTI_GENERIC) may be valid but may not have |
| * any supported options so we need this info separately. |
| * |
| * This is needed only for topmost tpi providers. |
| */ |
| optlevel_t tl_valid_levels_arr[] = { |
| XTI_GENERIC, |
| SOL_SOCKET, |
| TL_PROT_LEVEL |
| }; |
| |
| #define TL_VALID_LEVELS_CNT A_CNT(tl_valid_levels_arr) |
| /* |
| * Current upper bound on the amount of space needed to return all options. |
| * Additional options with data size of sizeof(long) are handled automatically. |
| * Others need hand job. |
| */ |
| #define TL_MAX_OPT_BUF_LEN \ |
| ((A_CNT(tl_opt_arr) << 2) + \ |
| (A_CNT(tl_opt_arr) * sizeof (struct opthdr)) + \ |
| + 64 + sizeof (struct T_optmgmt_ack)) |
| |
| #define TL_OPT_ARR_CNT A_CNT(tl_opt_arr) |
| |
| /* |
| * transport addr structure |
| */ |
| typedef struct tl_addr { |
| zoneid_t ta_zoneid; /* Zone scope of address */ |
| t_scalar_t ta_alen; /* length of abuf */ |
| void *ta_abuf; /* the addr itself */ |
| } tl_addr_t; |
| |
| /* |
| * Refcounted version of serializer. |
| */ |
| typedef struct tl_serializer { |
| uint_t ts_refcnt; |
| serializer_t *ts_serializer; |
| } tl_serializer_t; |
| |
| /* |
| * Each transport type has a separate state. |
| * Per-transport state. |
| */ |
| typedef struct tl_transport_state { |
| char *tr_name; |
| minor_t tr_minor; |
| uint32_t tr_defaddr; |
| mod_hash_t *tr_ai_hash; |
| mod_hash_t *tr_addr_hash; |
| tl_serializer_t *tr_serializer; |
| } tl_transport_state_t; |
| |
| #define TL_DFADDR 0x1000 |
| |
| static tl_transport_state_t tl_transports[] = { |
| { "ticots", TL_TICOTS, TL_DFADDR, NULL, NULL, NULL }, |
| { "ticotsord", TL_TICOTSORD, TL_DFADDR, NULL, NULL, NULL }, |
| { "ticlts", TL_TICLTS, TL_DFADDR, NULL, NULL, NULL }, |
| { "undefined", TL_UNUSED, TL_DFADDR, NULL, NULL, NULL }, |
| { "sticots", TL_SOCK_COTS, TL_DFADDR, NULL, NULL, NULL }, |
| { "sticotsord", TL_SOCK_COTSORD, TL_DFADDR, NULL, NULL }, |
| { "sticlts", TL_SOCK_CLTS, TL_DFADDR, NULL, NULL, NULL } |
| }; |
| |
| #define TL_MAXTRANSPORT A_CNT(tl_transports) |
| |
| struct tl_endpt; |
| typedef struct tl_endpt tl_endpt_t; |
| |
| typedef void (tlproc_t)(mblk_t *, tl_endpt_t *); |
| |
| /* |
| * Data structure used to represent pending connects. |
| * Records enough information so that the connecting peer can close |
| * before the connection gets accepted. |
| */ |
| typedef struct tl_icon { |
| list_node_t ti_node; |
| struct tl_endpt *ti_tep; /* NULL if peer has already closed */ |
| mblk_t *ti_mp; /* b_next list of data + ordrel_ind */ |
| t_scalar_t ti_seqno; /* Sequence number */ |
| } tl_icon_t; |
| |
| typedef struct so_ux_addr soux_addr_t; |
| #define TL_SOUX_ADDRLEN sizeof (soux_addr_t) |
| |
| /* |
| * Maximum number of unaccepted connection indications allowed per listener. |
| */ |
| #define TL_MAXQLEN 4096 |
| int tl_maxqlen = TL_MAXQLEN; |
| |
| /* |
| * transport endpoint structure |
| */ |
| struct tl_endpt { |
| queue_t *te_rq; /* stream read queue */ |
| queue_t *te_wq; /* stream write queue */ |
| uint32_t te_refcnt; |
| int32_t te_state; /* TPI state of endpoint */ |
| minor_t te_minor; /* minor number */ |
| #define te_seqno te_minor |
| uint_t te_flag; /* flag field */ |
| boolean_t te_nowsrv; |
| tl_serializer_t *te_ser; /* Serializer to use */ |
| #define te_serializer te_ser->ts_serializer |
| |
| soux_addr_t te_uxaddr; /* Socket address */ |
| #define te_magic te_uxaddr.soua_magic |
| #define te_vp te_uxaddr.soua_vp |
| tl_addr_t te_ap; /* addr bound to this endpt */ |
| #define te_zoneid te_ap.ta_zoneid |
| #define te_alen te_ap.ta_alen |
| #define te_abuf te_ap.ta_abuf |
| |
| tl_transport_state_t *te_transport; |
| #define te_addrhash te_transport->tr_addr_hash |
| #define te_aihash te_transport->tr_ai_hash |
| #define te_defaddr te_transport->tr_defaddr |
| cred_t *te_credp; /* endpoint user credentials */ |
| mod_hash_hndl_t te_hash_hndl; /* Handle for address hash */ |
| |
| /* |
| * State specific for connection-oriented and connectionless transports. |
| */ |
| union { |
| /* Connection-oriented state. */ |
| struct { |
| t_uscalar_t _te_nicon; /* count of conn requests */ |
| t_uscalar_t _te_qlen; /* max conn requests */ |
| tl_endpt_t *_te_oconp; /* conn request pending */ |
| tl_endpt_t *_te_conp; /* connected endpt */ |
| #ifndef _ILP32 |
| void *_te_pad; |
| #endif |
| list_t _te_iconp; /* list of conn ind. pending */ |
| } _te_cots_state; |
| /* Connection-less state. */ |
| struct { |
| tl_endpt_t *_te_lastep; /* last dest. endpoint */ |
| tl_endpt_t *_te_flowq; /* flow controlled on whom */ |
| list_node_t _te_flows; /* lists of connections */ |
| list_t _te_flowlist; /* Who flowcontrols on me */ |
| } _te_clts_state; |
| } _te_transport_state; |
| #define te_nicon _te_transport_state._te_cots_state._te_nicon |
| #define te_qlen _te_transport_state._te_cots_state._te_qlen |
| #define te_oconp _te_transport_state._te_cots_state._te_oconp |
| #define te_conp _te_transport_state._te_cots_state._te_conp |
| #define te_iconp _te_transport_state._te_cots_state._te_iconp |
| #define te_lastep _te_transport_state._te_clts_state._te_lastep |
| #define te_flowq _te_transport_state._te_clts_state._te_flowq |
| #define te_flowlist _te_transport_state._te_clts_state._te_flowlist |
| #define te_flows _te_transport_state._te_clts_state._te_flows |
| |
| bufcall_id_t te_bufcid; /* outstanding bufcall id */ |
| timeout_id_t te_timoutid; /* outstanding timeout id */ |
| pid_t te_cpid; /* cached pid of endpoint */ |
| t_uscalar_t te_acceptor_id; /* acceptor id for T_CONN_RES */ |
| /* |
| * Pieces of the endpoint state needed for closing. |
| */ |
| kmutex_t te_closelock; |
| kcondvar_t te_closecv; |
| uint8_t te_closing; /* The endpoint started closing */ |
| uint8_t te_closewait; /* Wait in close until zero */ |
| mblk_t te_closemp; /* for entering serializer on close */ |
| mblk_t te_rsrvmp; /* for entering serializer on rsrv */ |
| mblk_t te_wsrvmp; /* for entering serializer on wsrv */ |
| kmutex_t te_srv_lock; |
| kcondvar_t te_srv_cv; |
| uint8_t te_rsrv_active; /* Running in tl_rsrv() */ |
| uint8_t te_wsrv_active; /* Running in tl_wsrv() */ |
| /* |
| * Pieces of the endpoint state needed for serializer transitions. |
| */ |
| kmutex_t te_ser_lock; /* Protects the count below */ |
| uint_t te_ser_count; /* Number of messages on serializer */ |
| }; |
| |
| /* |
| * Flag values. Lower 4 bits specify that transport used. |
| * TL_LISTENER, TL_ACCEPTOR, TL_ACCEPTED and TL_EAGER are for debugging only, |
| * they allow to identify the endpoint more easily. |
| */ |
| #define TL_LISTENER 0x00010 /* the listener endpoint */ |
| #define TL_ACCEPTOR 0x00020 /* the accepting endpoint */ |
| #define TL_EAGER 0x00040 /* connecting endpoint */ |
| #define TL_ACCEPTED 0x00080 /* accepted connection */ |
| #define TL_SETCRED 0x00100 /* flag to indicate sending of credentials */ |
| #define TL_SETUCRED 0x00200 /* flag to indicate sending of ucred */ |
| #define TL_SOCKUCRED 0x00400 /* flag to indicate sending of SCM_UCRED */ |
| #define TL_ADDRHASHED 0x01000 /* Endpoint address is stored in te_addrhash */ |
| #define TL_CLOSE_SER 0x10000 /* Endpoint close has entered the serializer */ |
| /* |
| * Boolean checks for the endpoint type. |
| */ |
| #define IS_CLTS(x) (((x)->te_flag & TL_TICLTS) != 0) |
| #define IS_COTS(x) (((x)->te_flag & TL_TICLTS) == 0) |
| #define IS_COTSORD(x) (((x)->te_flag & TL_TICOTSORD) != 0) |
| #define IS_SOCKET(x) (((x)->te_flag & TL_SOCKET) != 0) |
| |
| /* |
| * Certain operations are always used together. These macros reduce the chance |
| * of missing a part of a combination. |
| */ |
| #define TL_UNCONNECT(x) { tl_refrele(x); x = NULL; } |
| #define TL_REMOVE_PEER(x) { if ((x) != NULL) TL_UNCONNECT(x) } |
| |
| #define TL_PUTBQ(x, mp) { \ |
| ASSERT(!((x)->te_flag & TL_CLOSE_SER)); \ |
| (x)->te_nowsrv = B_TRUE; \ |
| (void) putbq((x)->te_wq, mp); \ |
| } |
| |
| #define TL_QENABLE(x) { (x)->te_nowsrv = B_FALSE; qenable((x)->te_wq); } |
| #define TL_PUTQ(x, mp) { (x)->te_nowsrv = B_FALSE; (void)putq((x)->te_wq, mp); } |
| |
| /* |
| * STREAMS driver glue data structures. |
| */ |
| static struct module_info tl_minfo = { |
| TL_ID, /* mi_idnum */ |
| TL_NAME, /* mi_idname */ |
| TL_MINPSZ, /* mi_minpsz */ |
| TL_MAXPSZ, /* mi_maxpsz */ |
| TL_HIWAT, /* mi_hiwat */ |
| TL_LOWAT /* mi_lowat */ |
| }; |
| |
| static struct qinit tl_rinit = { |
| NULL, /* qi_putp */ |
| (int (*)())tl_rsrv, /* qi_srvp */ |
| tl_open, /* qi_qopen */ |
| tl_close, /* qi_qclose */ |
| NULL, /* qi_qadmin */ |
| &tl_minfo, /* qi_minfo */ |
| NULL /* qi_mstat */ |
| }; |
| |
| static struct qinit tl_winit = { |
| (int (*)())tl_wput, /* qi_putp */ |
| (int (*)())tl_wsrv, /* qi_srvp */ |
| NULL, /* qi_qopen */ |
| NULL, /* qi_qclose */ |
| NULL, /* qi_qadmin */ |
| &tl_minfo, /* qi_minfo */ |
| NULL /* qi_mstat */ |
| }; |
| |
| static struct streamtab tlinfo = { |
| &tl_rinit, /* st_rdinit */ |
| &tl_winit, /* st_wrinit */ |
| NULL, /* st_muxrinit */ |
| NULL /* st_muxwrinit */ |
| }; |
| |
| DDI_DEFINE_STREAM_OPS(tl_devops, nulldev, nulldev, tl_attach, tl_detach, |
| nulldev, tl_info, D_MP, &tlinfo, ddi_quiesce_not_supported); |
| |
| static struct modldrv modldrv = { |
| &mod_driverops, /* Type of module -- pseudo driver here */ |
| "TPI Local Transport (tl)", |
| &tl_devops, /* driver ops */ |
| }; |
| |
| /* |
| * Module linkage information for the kernel. |
| */ |
| static struct modlinkage modlinkage = { |
| MODREV_1, |
| &modldrv, |
| NULL |
| }; |
| |
| /* |
| * Templates for response to info request |
| * Check sanity of unlimited connect data etc. |
| */ |
| |
| #define TL_CLTS_PROVIDER_FLAG (XPG4_1|SENDZERO) |
| #define TL_COTS_PROVIDER_FLAG (XPG4_1|SENDZERO) |
| |
| static struct T_info_ack tl_cots_info_ack = |
| { |
| T_INFO_ACK, /* PRIM_type -always T_INFO_ACK */ |
| T_INFINITE, /* TSDU size */ |
| T_INFINITE, /* ETSDU size */ |
| T_INFINITE, /* CDATA_size */ |
| T_INFINITE, /* DDATA_size */ |
| T_INFINITE, /* ADDR_size */ |
| T_INFINITE, /* OPT_size */ |
| 0, /* TIDU_size - fill at run time */ |
| T_COTS, /* SERV_type */ |
| -1, /* CURRENT_state */ |
| TL_COTS_PROVIDER_FLAG /* PROVIDER_flag */ |
| }; |
| |
| static struct T_info_ack tl_clts_info_ack = |
| { |
| T_INFO_ACK, /* PRIM_type - always T_INFO_ACK */ |
| 0, /* TSDU_size - fill at run time */ |
| -2, /* ETSDU_size -2 => not supported */ |
| -2, /* CDATA_size -2 => not supported */ |
| -2, /* DDATA_size -2 => not supported */ |
| -1, /* ADDR_size -1 => unlimited */ |
| -1, /* OPT_size */ |
| 0, /* TIDU_size - fill at run time */ |
| T_CLTS, /* SERV_type */ |
| -1, /* CURRENT_state */ |
| TL_CLTS_PROVIDER_FLAG /* PROVIDER_flag */ |
| }; |
| |
| /* |
| * private copy of devinfo pointer used in tl_info |
| */ |
| static dev_info_t *tl_dip; |
| |
| /* |
| * Endpoints cache. |
| */ |
| static kmem_cache_t *tl_cache; |
| /* |
| * Minor number space. |
| */ |
| static id_space_t *tl_minors; |
| |
| /* |
| * Default Data Unit size. |
| */ |
| static t_scalar_t tl_tidusz; |
| |
| /* |
| * Size of hash tables. |
| */ |
| static size_t tl_hash_size = TL_HASH_SIZE; |
| |
| /* |
| * Debug and test variable ONLY. Turn off T_CONN_IND queueing |
| * for sockets. |
| */ |
| static int tl_disable_early_connect = 0; |
| static int tl_client_closing_when_accepting; |
| |
| static int tl_serializer_noswitch; |
| |
| /* |
| * LOCAL FUNCTION PROTOTYPES |
| * ------------------------- |
| */ |
| static boolean_t tl_eqaddr(tl_addr_t *, tl_addr_t *); |
| static void tl_do_proto(mblk_t *, tl_endpt_t *); |
| static void tl_do_ioctl(mblk_t *, tl_endpt_t *); |
| static void tl_do_ioctl_ser(mblk_t *, tl_endpt_t *); |
| static void tl_error_ack(queue_t *, mblk_t *, t_scalar_t, t_scalar_t, |
| t_scalar_t); |
| static void tl_bind(mblk_t *, tl_endpt_t *); |
| static void tl_bind_ser(mblk_t *, tl_endpt_t *); |
| static void tl_ok_ack(queue_t *, mblk_t *mp, t_scalar_t); |
| static void tl_unbind(mblk_t *, tl_endpt_t *); |
| static void tl_optmgmt(queue_t *, mblk_t *); |
| static void tl_conn_req(queue_t *, mblk_t *); |
| static void tl_conn_req_ser(mblk_t *, tl_endpt_t *); |
| static void tl_conn_res(mblk_t *, tl_endpt_t *); |
| static void tl_discon_req(mblk_t *, tl_endpt_t *); |
| static void tl_capability_req(mblk_t *, tl_endpt_t *); |
| static void tl_info_req_ser(mblk_t *, tl_endpt_t *); |
| static void tl_info_req(mblk_t *, tl_endpt_t *); |
| static void tl_addr_req(mblk_t *, tl_endpt_t *); |
| static void tl_connected_cots_addr_req(mblk_t *, tl_endpt_t *); |
| static void tl_data(mblk_t *, tl_endpt_t *); |
| static void tl_exdata(mblk_t *, tl_endpt_t *); |
| static void tl_ordrel(mblk_t *, tl_endpt_t *); |
| static void tl_unitdata(mblk_t *, tl_endpt_t *); |
| static void tl_unitdata_ser(mblk_t *, tl_endpt_t *); |
| static void tl_uderr(queue_t *, mblk_t *, t_scalar_t); |
| static tl_endpt_t *tl_find_peer(tl_endpt_t *, tl_addr_t *); |
| static tl_endpt_t *tl_sock_find_peer(tl_endpt_t *, struct so_ux_addr *); |
| static boolean_t tl_get_any_addr(tl_endpt_t *, tl_addr_t *); |
| static void tl_cl_backenable(tl_endpt_t *); |
| static void tl_co_unconnect(tl_endpt_t *); |
| static mblk_t *tl_resizemp(mblk_t *, ssize_t); |
| static void tl_discon_ind(tl_endpt_t *, uint32_t); |
| static mblk_t *tl_discon_ind_alloc(uint32_t, t_scalar_t); |
| static mblk_t *tl_ordrel_ind_alloc(void); |
| static tl_icon_t *tl_icon_find(tl_endpt_t *, t_scalar_t); |
| static void tl_icon_queuemsg(tl_endpt_t *, t_scalar_t, mblk_t *); |
| static boolean_t tl_icon_hasprim(tl_endpt_t *, t_scalar_t, t_scalar_t); |
| static void tl_icon_sendmsgs(tl_endpt_t *, mblk_t **); |
| static void tl_icon_freemsgs(mblk_t **); |
| static void tl_merror(queue_t *, mblk_t *, int); |
| static void tl_fill_option(uchar_t *, cred_t *, pid_t, int, cred_t *); |
| static int tl_default_opt(queue_t *, int, int, uchar_t *); |
| static int tl_get_opt(queue_t *, int, int, uchar_t *); |
| static int tl_set_opt(queue_t *, uint_t, int, int, uint_t, uchar_t *, uint_t *, |
| uchar_t *, void *, cred_t *); |
| static void tl_memrecover(queue_t *, mblk_t *, size_t); |
| static void tl_freetip(tl_endpt_t *, tl_icon_t *); |
| static void tl_free(tl_endpt_t *); |
| static int tl_constructor(void *, void *, int); |
| static void tl_destructor(void *, void *); |
| static void tl_find_callback(mod_hash_key_t, mod_hash_val_t); |
| static tl_serializer_t *tl_serializer_alloc(int); |
| static void tl_serializer_refhold(tl_serializer_t *); |
| static void tl_serializer_refrele(tl_serializer_t *); |
| static void tl_serializer_enter(tl_endpt_t *, tlproc_t, mblk_t *); |
| static void tl_serializer_exit(tl_endpt_t *); |
| static boolean_t tl_noclose(tl_endpt_t *); |
| static void tl_closeok(tl_endpt_t *); |
| static void tl_refhold(tl_endpt_t *); |
| static void tl_refrele(tl_endpt_t *); |
| static int tl_hash_cmp_addr(mod_hash_key_t, mod_hash_key_t); |
| static uint_t tl_hash_by_addr(void *, mod_hash_key_t); |
| static void tl_close_ser(mblk_t *, tl_endpt_t *); |
| static void tl_close_finish_ser(mblk_t *, tl_endpt_t *); |
| static void tl_wput_data_ser(mblk_t *, tl_endpt_t *); |
| static void tl_proto_ser(mblk_t *, tl_endpt_t *); |
| static void tl_putq_ser(mblk_t *, tl_endpt_t *); |
| static void tl_wput_common_ser(mblk_t *, tl_endpt_t *); |
| static void tl_wput_ser(mblk_t *, tl_endpt_t *); |
| static void tl_wsrv_ser(mblk_t *, tl_endpt_t *); |
| static void tl_rsrv_ser(mblk_t *, tl_endpt_t *); |
| static void tl_addr_unbind(tl_endpt_t *); |
| |
| /* |
| * Intialize option database object for TL |
| */ |
| |
| optdb_obj_t tl_opt_obj = { |
| tl_default_opt, /* TL default value function pointer */ |
| tl_get_opt, /* TL get function pointer */ |
| tl_set_opt, /* TL set function pointer */ |
| TL_OPT_ARR_CNT, /* TL option database count of entries */ |
| tl_opt_arr, /* TL option database */ |
| TL_VALID_LEVELS_CNT, /* TL valid level count of entries */ |
| tl_valid_levels_arr /* TL valid level array */ |
| }; |
| |
| /* |
| * Logical operations. |
| * |
| * IMPLY(X, Y) means that X implies Y i.e. when X is true, Y |
| * should also be true. |
| * |
| * EQUIV(X, Y) is logical equivalence. Both X and Y should be true or false at |
| * the same time. |
| */ |
| #define IMPLY(X, Y) (!(X) || (Y)) |
| #define EQUIV(X, Y) (IMPLY(X, Y) && IMPLY(Y, X)) |
| |
| /* |
| * LOCAL FUNCTIONS AND DRIVER ENTRY POINTS |
| * --------------------------------------- |
| */ |
| |
| /* |
| * Loadable module routines |
| */ |
| int |
| _init(void) |
| { |
| return (mod_install(&modlinkage)); |
| } |
| |
| int |
| _fini(void) |
| { |
| return (mod_remove(&modlinkage)); |
| } |
| |
| int |
| _info(struct modinfo *modinfop) |
| { |
| return (mod_info(&modlinkage, modinfop)); |
| } |
| |
| /* |
| * Driver Entry Points and Other routines |
| */ |
| static int |
| tl_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) |
| { |
| int i; |
| char name[32]; |
| |
| /* |
| * Resume from a checkpoint state. |
| */ |
| if (cmd == DDI_RESUME) |
| return (DDI_SUCCESS); |
| |
| if (cmd != DDI_ATTACH) |
| return (DDI_FAILURE); |
| |
| /* |
| * Deduce TIDU size to use. Note: "strmsgsz" being 0 has semantics that |
| * streams message sizes can be unlimited. We use a defined constant |
| * instead. |
| */ |
| tl_tidusz = strmsgsz != 0 ? (t_scalar_t)strmsgsz : TL_TIDUSZ; |
| |
| /* |
| * Create subdevices for each transport. |
| */ |
| for (i = 0; i < TL_UNUSED; i++) { |
| if (ddi_create_minor_node(devi, |
| tl_transports[i].tr_name, |
| S_IFCHR, tl_transports[i].tr_minor, |
| DDI_PSEUDO, NULL) == DDI_FAILURE) { |
| ddi_remove_minor_node(devi, NULL); |
| return (DDI_FAILURE); |
| } |
| } |
| |
| tl_cache = kmem_cache_create("tl_cache", sizeof (tl_endpt_t), |
| 0, tl_constructor, tl_destructor, NULL, NULL, NULL, 0); |
| |
| if (tl_cache == NULL) { |
| ddi_remove_minor_node(devi, NULL); |
| return (DDI_FAILURE); |
| } |
| |
| tl_minors = id_space_create("tl_minor_space", |
| TL_MINOR_START, MAXMIN32 - TL_MINOR_START + 1); |
| |
| /* |
| * Create ID space for minor numbers |
| */ |
| for (i = 0; i < TL_MAXTRANSPORT; i++) { |
| tl_transport_state_t *t = &tl_transports[i]; |
| |
| if (i == TL_UNUSED) |
| continue; |
| |
| /* Socket COTSORD shares namespace with COTS */ |
| if (i == TL_SOCK_COTSORD) { |
| t->tr_ai_hash = |
| tl_transports[TL_SOCK_COTS].tr_ai_hash; |
| ASSERT(t->tr_ai_hash != NULL); |
| t->tr_addr_hash = |
| tl_transports[TL_SOCK_COTS].tr_addr_hash; |
| ASSERT(t->tr_addr_hash != NULL); |
| continue; |
| } |
| |
| /* |
| * Create hash tables. |
| */ |
| (void) snprintf(name, sizeof (name), "%s_ai_hash", |
| t->tr_name); |
| #ifdef _ILP32 |
| if (i & TL_SOCKET) |
| t->tr_ai_hash = |
| mod_hash_create_idhash(name, tl_hash_size - 1, |
| mod_hash_null_valdtor); |
| else |
| t->tr_ai_hash = |
| mod_hash_create_ptrhash(name, tl_hash_size, |
| mod_hash_null_valdtor, sizeof (queue_t)); |
| #else |
| t->tr_ai_hash = |
| mod_hash_create_idhash(name, tl_hash_size - 1, |
| mod_hash_null_valdtor); |
| #endif /* _ILP32 */ |
| |
| if (i & TL_SOCKET) { |
| (void) snprintf(name, sizeof (name), "%s_sockaddr_hash", |
| t->tr_name); |
| t->tr_addr_hash = mod_hash_create_ptrhash(name, |
| tl_hash_size, mod_hash_null_valdtor, |
| sizeof (uintptr_t)); |
| } else { |
| (void) snprintf(name, sizeof (name), "%s_addr_hash", |
| t->tr_name); |
| t->tr_addr_hash = mod_hash_create_extended(name, |
| tl_hash_size, mod_hash_null_keydtor, |
| mod_hash_null_valdtor, |
| tl_hash_by_addr, NULL, tl_hash_cmp_addr, KM_SLEEP); |
| } |
| |
| /* Create serializer for connectionless transports. */ |
| if (i & TL_TICLTS) |
| t->tr_serializer = tl_serializer_alloc(KM_SLEEP); |
| } |
| |
| tl_dip = devi; |
| |
| return (DDI_SUCCESS); |
| } |
| |
| static int |
| tl_detach(dev_info_t *devi, ddi_detach_cmd_t cmd) |
| { |
| int i; |
| |
| if (cmd == DDI_SUSPEND) |
| return (DDI_SUCCESS); |
| |
| if (cmd != DDI_DETACH) |
| return (DDI_FAILURE); |
| |
| /* |
| * Destroy arenas and hash tables. |
| */ |
| for (i = 0; i < TL_MAXTRANSPORT; i++) { |
| tl_transport_state_t *t = &tl_transports[i]; |
| |
| if ((i == TL_UNUSED) || (i == TL_SOCK_COTSORD)) |
| continue; |
| |
| ASSERT(EQUIV(i & TL_TICLTS, t->tr_serializer != NULL)); |
| if (t->tr_serializer != NULL) { |
| tl_serializer_refrele(t->tr_serializer); |
| t->tr_serializer = NULL; |
| } |
| |
| #ifdef _ILP32 |
| if (i & TL_SOCKET) |
| mod_hash_destroy_idhash(t->tr_ai_hash); |
| else |
| mod_hash_destroy_ptrhash(t->tr_ai_hash); |
| #else |
| mod_hash_destroy_idhash(t->tr_ai_hash); |
| #endif /* _ILP32 */ |
| t->tr_ai_hash = NULL; |
| if (i & TL_SOCKET) |
| mod_hash_destroy_ptrhash(t->tr_addr_hash); |
| else |
| mod_hash_destroy_hash(t->tr_addr_hash); |
| t->tr_addr_hash = NULL; |
| } |
| |
| kmem_cache_destroy(tl_cache); |
| tl_cache = NULL; |
| id_space_destroy(tl_minors); |
| tl_minors = NULL; |
| ddi_remove_minor_node(devi, NULL); |
| return (DDI_SUCCESS); |
| } |
| |
| /* ARGSUSED */ |
| static int |
| tl_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) |
| { |
| |
| int retcode = DDI_FAILURE; |
| |
| switch (infocmd) { |
| |
| case DDI_INFO_DEVT2DEVINFO: |
| if (tl_dip != NULL) { |
| *result = (void *)tl_dip; |
| retcode = DDI_SUCCESS; |
| } |
| break; |
| |
| case DDI_INFO_DEVT2INSTANCE: |
| *result = (void *)0; |
| retcode = DDI_SUCCESS; |
| break; |
| |
| default: |
| break; |
| } |
| return (retcode); |
| } |
| |
| /* |
| * Endpoint reference management. |
| */ |
| static void |
| tl_refhold(tl_endpt_t *tep) |
| { |
| atomic_add_32(&tep->te_refcnt, 1); |
| } |
| |
| static void |
| tl_refrele(tl_endpt_t *tep) |
| { |
| ASSERT(tep->te_refcnt != 0); |
| |
| if (atomic_add_32_nv(&tep->te_refcnt, -1) == 0) |
| tl_free(tep); |
| } |
| |
| /*ARGSUSED*/ |
| static int |
| tl_constructor(void *buf, void *cdrarg, int kmflags) |
| { |
| tl_endpt_t *tep = buf; |
| |
| bzero(tep, sizeof (tl_endpt_t)); |
| mutex_init(&tep->te_closelock, NULL, MUTEX_DEFAULT, NULL); |
| cv_init(&tep->te_closecv, NULL, CV_DEFAULT, NULL); |
| mutex_init(&tep->te_srv_lock, NULL, MUTEX_DEFAULT, NULL); |
| cv_init(&tep->te_srv_cv, NULL, CV_DEFAULT, NULL); |
| mutex_init(&tep->te_ser_lock, NULL, MUTEX_DEFAULT, NULL); |
| |
| return (0); |
| } |
| |
| /*ARGSUSED*/ |
| static void |
| tl_destructor(void *buf, void *cdrarg) |
| { |
| tl_endpt_t *tep = buf; |
| |
| mutex_destroy(&tep->te_closelock); |
| cv_destroy(&tep->te_closecv); |
| mutex_destroy(&tep->te_srv_lock); |
| cv_destroy(&tep->te_srv_cv); |
| mutex_destroy(&tep->te_ser_lock); |
| } |
| |
| static void |
| tl_free(tl_endpt_t *tep) |
| { |
| ASSERT(tep->te_refcnt == 0); |
| ASSERT(tep->te_transport != NULL); |
| ASSERT(tep->te_rq == NULL); |
| ASSERT(tep->te_wq == NULL); |
| ASSERT(tep->te_ser != NULL); |
| ASSERT(tep->te_ser_count == 0); |
| ASSERT(! (tep->te_flag & TL_ADDRHASHED)); |
| |
| if (IS_SOCKET(tep)) { |
| ASSERT(tep->te_alen == TL_SOUX_ADDRLEN); |
| ASSERT(tep->te_abuf == &tep->te_uxaddr); |
| ASSERT(tep->te_vp == (void *)(uintptr_t)tep->te_minor); |
| ASSERT(tep->te_magic == SOU_MAGIC_IMPLICIT); |
| } else if (tep->te_abuf != NULL) { |
| kmem_free(tep->te_abuf, tep->te_alen); |
| tep->te_alen = -1; /* uninitialized */ |
| tep->te_abuf = NULL; |
| } else { |
| ASSERT(tep->te_alen == -1); |
| } |
| |
| id_free(tl_minors, tep->te_minor); |
| ASSERT(tep->te_credp == NULL); |
| |
| if (tep->te_hash_hndl != NULL) |
| mod_hash_cancel(tep->te_addrhash, &tep->te_hash_hndl); |
| |
| if (IS_COTS(tep)) { |
| TL_REMOVE_PEER(tep->te_conp); |
| TL_REMOVE_PEER(tep->te_oconp); |
| tl_serializer_refrele(tep->te_ser); |
| tep->te_ser = NULL; |
| ASSERT(tep->te_nicon == 0); |
| ASSERT(list_head(&tep->te_iconp) == NULL); |
| } else { |
| ASSERT(tep->te_lastep == NULL); |
| ASSERT(list_head(&tep->te_flowlist) == NULL); |
| ASSERT(tep->te_flowq == NULL); |
| } |
| |
| ASSERT(tep->te_bufcid == 0); |
| ASSERT(tep->te_timoutid == 0); |
| bzero(&tep->te_ap, sizeof (tep->te_ap)); |
| tep->te_acceptor_id = 0; |
| |
| ASSERT(tep->te_closewait == 0); |
| ASSERT(!tep->te_rsrv_active); |
| ASSERT(!tep->te_wsrv_active); |
| tep->te_closing = 0; |
| tep->te_nowsrv = B_FALSE; |
| tep->te_flag = 0; |
| |
| kmem_cache_free(tl_cache, tep); |
| } |
| |
| /* |
| * Allocate/free reference-counted wrappers for serializers. |
| */ |
| static tl_serializer_t * |
| tl_serializer_alloc(int flags) |
| { |
| tl_serializer_t *s = kmem_alloc(sizeof (tl_serializer_t), flags); |
| serializer_t *ser; |
| |
| if (s == NULL) |
| return (NULL); |
| |
| ser = serializer_create(flags); |
| |
| if (ser == NULL) { |
| kmem_free(s, sizeof (tl_serializer_t)); |
| return (NULL); |
| } |
| |
| s->ts_refcnt = 1; |
| s->ts_serializer = ser; |
| return (s); |
| } |
| |
| static void |
| tl_serializer_refhold(tl_serializer_t *s) |
| { |
| atomic_add_32(&s->ts_refcnt, 1); |
| } |
| |
| static void |
| tl_serializer_refrele(tl_serializer_t *s) |
| { |
| if (atomic_add_32_nv(&s->ts_refcnt, -1) == 0) { |
| serializer_destroy(s->ts_serializer); |
| kmem_free(s, sizeof (tl_serializer_t)); |
| } |
| } |
| |
| /* |
| * Post a request on the endpoint serializer. For COTS transports keep track of |
| * the number of pending requests. |
| */ |
| static void |
| tl_serializer_enter(tl_endpt_t *tep, tlproc_t tlproc, mblk_t *mp) |
| { |
| if (IS_COTS(tep)) { |
| mutex_enter(&tep->te_ser_lock); |
| tep->te_ser_count++; |
| mutex_exit(&tep->te_ser_lock); |
| } |
| serializer_enter(tep->te_serializer, (srproc_t *)tlproc, mp, tep); |
| } |
| |
| /* |
| * Complete processing the request on the serializer. Decrement the counter for |
| * pending requests for COTS transports. |
| */ |
| static void |
| tl_serializer_exit(tl_endpt_t *tep) |
| { |
| if (IS_COTS(tep)) { |
| mutex_enter(&tep->te_ser_lock); |
| ASSERT(tep->te_ser_count != 0); |
| tep->te_ser_count--; |
| mutex_exit(&tep->te_ser_lock); |
| } |
| } |
| |
| /* |
| * Hash management functions. |
| */ |
| |
| /* |
| * Return TRUE if two addresses are equal, false otherwise. |
| */ |
| static boolean_t |
| tl_eqaddr(tl_addr_t *ap1, tl_addr_t *ap2) |
| { |
| return ((ap1->ta_alen > 0) && |
| (ap1->ta_alen == ap2->ta_alen) && |
| (ap1->ta_zoneid == ap2->ta_zoneid) && |
| (bcmp(ap1->ta_abuf, ap2->ta_abuf, ap1->ta_alen) == 0)); |
| } |
| |
| /* |
| * This function is called whenever an endpoint is found in the hash table. |
| */ |
| /* ARGSUSED0 */ |
| static void |
| tl_find_callback(mod_hash_key_t key, mod_hash_val_t val) |
| { |
| tl_refhold((tl_endpt_t *)val); |
| } |
| |
| /* |
| * Address hash function. |
| */ |
| /* ARGSUSED */ |
| static uint_t |
| tl_hash_by_addr(void *hash_data, mod_hash_key_t key) |
| { |
| tl_addr_t *ap = (tl_addr_t *)key; |
| size_t len = ap->ta_alen; |
| uchar_t *p = ap->ta_abuf; |
| uint_t i, g; |
| |
| ASSERT((len > 0) && (p != NULL)); |
| |
| for (i = ap->ta_zoneid; len -- != 0; p++) { |
| i = (i << 4) + (*p); |
| if ((g = (i & 0xf0000000U)) != 0) { |
| i ^= (g >> 24); |
| i ^= g; |
| } |
| } |
| return (i); |
| } |
| |
| /* |
| * This function is used by hash lookups. It compares two generic addresses. |
| */ |
| static int |
| tl_hash_cmp_addr(mod_hash_key_t key1, mod_hash_key_t key2) |
| { |
| #ifdef DEBUG |
| tl_addr_t *ap1 = (tl_addr_t *)key1; |
| tl_addr_t *ap2 = (tl_addr_t *)key2; |
| |
| ASSERT(key1 != NULL); |
| ASSERT(key2 != NULL); |
| |
| ASSERT(ap1->ta_abuf != NULL); |
| ASSERT(ap2->ta_abuf != NULL); |
| ASSERT(ap1->ta_alen > 0); |
| ASSERT(ap2->ta_alen > 0); |
| #endif |
| |
| return (! tl_eqaddr((tl_addr_t *)key1, (tl_addr_t *)key2)); |
| } |
| |
| /* |
| * Prevent endpoint from closing if possible. |
| * Return B_TRUE on success, B_FALSE on failure. |
| */ |
| static boolean_t |
| tl_noclose(tl_endpt_t *tep) |
| { |
| boolean_t rc = B_FALSE; |
| |
| mutex_enter(&tep->te_closelock); |
| if (! tep->te_closing) { |
| ASSERT(tep->te_closewait == 0); |
| tep->te_closewait++; |
| rc = B_TRUE; |
| } |
| mutex_exit(&tep->te_closelock); |
| return (rc); |
| } |
| |
| /* |
| * Allow endpoint to close if needed. |
| */ |
| static void |
| tl_closeok(tl_endpt_t *tep) |
| { |
| ASSERT(tep->te_closewait > 0); |
| mutex_enter(&tep->te_closelock); |
| ASSERT(tep->te_closewait == 1); |
| tep->te_closewait--; |
| cv_signal(&tep->te_closecv); |
| mutex_exit(&tep->te_closelock); |
| } |
| |
| /* |
| * STREAMS open entry point. |
| */ |
| /* ARGSUSED */ |
| static int |
| tl_open(queue_t *rq, dev_t *devp, int oflag, int sflag, cred_t *credp) |
| { |
| tl_endpt_t *tep; |
| minor_t minor = getminor(*devp); |
| |
| /* |
| * Driver is called directly. Both CLONEOPEN and MODOPEN |
| * are illegal |
| */ |
| if ((sflag == CLONEOPEN) || (sflag == MODOPEN)) |
| return (ENXIO); |
| |
| if (rq->q_ptr != NULL) |
| return (0); |
| |
| /* Minor number should specify the mode used for the driver. */ |
| if ((minor >= TL_UNUSED)) |
| return (ENXIO); |
| |
| if (oflag & SO_SOCKSTR) { |
| minor |= TL_SOCKET; |
| } |
| |
| tep = kmem_cache_alloc(tl_cache, KM_SLEEP); |
| tep->te_refcnt = 1; |
| tep->te_cpid = curproc->p_pid; |
| rq->q_ptr = WR(rq)->q_ptr = tep; |
| tep->te_state = TS_UNBND; |
| tep->te_credp = credp; |
| crhold(credp); |
| tep->te_zoneid = getzoneid(); |
| |
| tep->te_flag = minor & TL_MINOR_MASK; |
| tep->te_transport = &tl_transports[minor]; |
| |
| /* Allocate a unique minor number for this instance. */ |
| tep->te_minor = (minor_t)id_alloc(tl_minors); |
| |
| /* Reserve hash handle for bind(). */ |
| (void) mod_hash_reserve(tep->te_addrhash, &tep->te_hash_hndl); |
| |
| /* Transport-specific initialization */ |
| if (IS_COTS(tep)) { |
| /* Use private serializer */ |
| tep->te_ser = tl_serializer_alloc(KM_SLEEP); |
| |
| /* Create list for pending connections */ |
| list_create(&tep->te_iconp, sizeof (tl_icon_t), |
| offsetof(tl_icon_t, ti_node)); |
| tep->te_qlen = 0; |
| tep->te_nicon = 0; |
| tep->te_oconp = NULL; |
| tep->te_conp = NULL; |
| } else { |
| /* Use shared serializer */ |
| tep->te_ser = tep->te_transport->tr_serializer; |
| bzero(&tep->te_flows, sizeof (list_node_t)); |
| /* Create list for flow control */ |
| list_create(&tep->te_flowlist, sizeof (tl_endpt_t), |
| offsetof(tl_endpt_t, te_flows)); |
| tep->te_flowq = NULL; |
| tep->te_lastep = NULL; |
| |
| } |
| |
| /* Initialize endpoint address */ |
| if (IS_SOCKET(tep)) { |
| /* Socket-specific address handling. */ |
| tep->te_alen = TL_SOUX_ADDRLEN; |
| tep->te_abuf = &tep->te_uxaddr; |
| tep->te_vp = (void *)(uintptr_t)tep->te_minor; |
| tep->te_magic = SOU_MAGIC_IMPLICIT; |
| } else { |
| tep->te_alen = -1; |
| tep->te_abuf = NULL; |
| } |
| |
| /* clone the driver */ |
| *devp = makedevice(getmajor(*devp), tep->te_minor); |
| |
| tep->te_rq = rq; |
| tep->te_wq = WR(rq); |
| |
| #ifdef _ILP32 |
| if (IS_SOCKET(tep)) |
| tep->te_acceptor_id = tep->te_minor; |
| else |
| tep->te_acceptor_id = (t_uscalar_t)rq; |
| #else |
| tep->te_acceptor_id = tep->te_minor; |
| #endif /* _ILP32 */ |
| |
| |
| qprocson(rq); |
| |
| /* |
| * Insert acceptor ID in the hash. The AI hash always sleeps on |
| * insertion so insertion can't fail. |
| */ |
| (void) mod_hash_insert(tep->te_transport->tr_ai_hash, |
| (mod_hash_key_t)(uintptr_t)tep->te_acceptor_id, |
| (mod_hash_val_t)tep); |
| |
| return (0); |
| } |
| |
| /* ARGSUSED1 */ |
| static int |
| tl_close(queue_t *rq, int flag, cred_t *credp) |
| { |
| tl_endpt_t *tep = (tl_endpt_t *)rq->q_ptr; |
| tl_endpt_t *elp = NULL; |
| queue_t *wq = tep->te_wq; |
| int rc; |
| |
| ASSERT(wq == WR(rq)); |
| |
| /* |
| * Remove the endpoint from acceptor hash. |
| */ |
| rc = mod_hash_remove(tep->te_transport->tr_ai_hash, |
| (mod_hash_key_t)(uintptr_t)tep->te_acceptor_id, |
| (mod_hash_val_t *)&elp); |
| ASSERT(rc == 0 && tep == elp); |
| if ((rc != 0) || (tep != elp)) { |
| (void) (STRLOG(TL_ID, tep->te_minor, 1, |
| SL_TRACE|SL_ERROR, |
| "tl_close:inconsistency in AI hash")); |
| } |
| |
| /* |
| * Wait till close is safe, then mark endpoint as closing. |
| */ |
| mutex_enter(&tep->te_closelock); |
| while (tep->te_closewait) |
| cv_wait(&tep->te_closecv, &tep->te_closelock); |
| tep->te_closing = B_TRUE; |
| /* |
| * Will wait for the serializer part of the close to finish, so set |
| * te_closewait now. |
| */ |
| tep->te_closewait = 1; |
| tep->te_nowsrv = B_FALSE; |
| mutex_exit(&tep->te_closelock); |
| |
| /* |
| * tl_close_ser doesn't drop reference, so no need to tl_refhold. |
| * It is safe because close will wait for tl_close_ser to finish. |
| */ |
| tl_serializer_enter(tep, tl_close_ser, &tep->te_closemp); |
| |
| /* |
| * Wait for the first phase of close to complete before qprocsoff(). |
| */ |
| mutex_enter(&tep->te_closelock); |
| while (tep->te_closewait) |
| cv_wait(&tep->te_closecv, &tep->te_closelock); |
| mutex_exit(&tep->te_closelock); |
| |
| qprocsoff(rq); |
| |
| if (tep->te_bufcid) { |
| qunbufcall(rq, tep->te_bufcid); |
| tep->te_bufcid = 0; |
| } |
| if (tep->te_timoutid) { |
| (void) quntimeout(rq, tep->te_timoutid); |
| tep->te_timoutid = 0; |
| } |
| |
| /* |
| * Finish close behind serializer. |
| * |
| * For a CLTS endpoint increase a refcount and continue close processing |
| * with serializer protection. This processing may happen asynchronously |
| * with the completion of tl_close(). |
| * |
| * Fot a COTS endpoint wait before destroying tep since the serializer |
| * may go away together with tep and we need to destroy serializer |
| * outside of serializer context. |
| */ |
| ASSERT(tep->te_closewait == 0); |
| if (IS_COTS(tep)) |
| tep->te_closewait = 1; |
| else |
| tl_refhold(tep); |
| |
| tl_serializer_enter(tep, tl_close_finish_ser, &tep->te_closemp); |
| |
| /* |
| * For connection-oriented transports wait for all serializer activity |
| * to settle down. |
| */ |
| if (IS_COTS(tep)) { |
| mutex_enter(&tep->te_closelock); |
| while (tep->te_closewait) |
| cv_wait(&tep->te_closecv, &tep->te_closelock); |
| mutex_exit(&tep->te_closelock); |
| } |
| |
| crfree(tep->te_credp); |
| tep->te_credp = NULL; |
| tep->te_wq = NULL; |
| tl_refrele(tep); |
| /* |
| * tep is likely to be destroyed now, so can't reference it any more. |
| */ |
| |
| rq->q_ptr = wq->q_ptr = NULL; |
| return (0); |
| } |
| |
| /* |
| * First phase of close processing done behind the serializer. |
| * |
| * Do not drop the reference in the end - tl_close() wants this reference to |
| * stay. |
| */ |
| /* ARGSUSED0 */ |
| static void |
| tl_close_ser(mblk_t *mp, tl_endpt_t *tep) |
| { |
| ASSERT(tep->te_closing); |
| ASSERT(tep->te_closewait == 1); |
| ASSERT(!(tep->te_flag & TL_CLOSE_SER)); |
| |
| tep->te_flag |= TL_CLOSE_SER; |
| |
| /* |
| * Drain out all messages on queue except for TL_TICOTS where the |
| * abortive release semantics permit discarding of data on close |
| */ |
| if (tep->te_wq->q_first && (IS_CLTS(tep) || IS_COTSORD(tep))) { |
| tl_wsrv_ser(NULL, tep); |
| } |
| |
| /* Remove address from hash table. */ |
| tl_addr_unbind(tep); |
| /* |
| * qprocsoff() gets confused when q->q_next is not NULL on the write |
| * queue of the driver, so clear these before qprocsoff() is called. |
| * Also clear q_next for the peer since this queue is going away. |
| */ |
| if (IS_COTS(tep) && !IS_SOCKET(tep)) { |
| tl_endpt_t *peer_tep = tep->te_conp; |
| |
| tep->te_wq->q_next = NULL; |
| if ((peer_tep != NULL) && !peer_tep->te_closing) |
| peer_tep->te_wq->q_next = NULL; |
| } |
| |
| tep->te_rq = NULL; |
| |
| /* wake up tl_close() */ |
| tl_closeok(tep); |
| tl_serializer_exit(tep); |
| } |
| |
| /* |
| * Second phase of tl_close(). Should wakeup tl_close() for COTS mode and drop |
| * the reference for CLTS. |
| * |
| * Called from serializer. Should drop reference count for CLTS only. |
| */ |
| /* ARGSUSED0 */ |
| static void |
| tl_close_finish_ser(mblk_t *mp, tl_endpt_t *tep) |
| { |
| ASSERT(tep->te_closing); |
| ASSERT(IMPLY(IS_CLTS(tep), tep->te_closewait == 0)); |
| ASSERT(IMPLY(IS_COTS(tep), tep->te_closewait == 1)); |
| |
| tep->te_state = -1; /* Uninitialized */ |
| if (IS_COTS(tep)) { |
| tl_co_unconnect(tep); |
| } else { |
| /* Connectionless specific cleanup */ |
| TL_REMOVE_PEER(tep->te_lastep); |
| /* |
| * Backenable anybody that is flow controlled waiting for |
| * this endpoint. |
| */ |
| tl_cl_backenable(tep); |
| if (tep->te_flowq != NULL) { |
| list_remove(&(tep->te_flowq->te_flowlist), tep); |
| tep->te_flowq = NULL; |
| } |
| } |
| |
| tl_serializer_exit(tep); |
| if (IS_COTS(tep)) |
| tl_closeok(tep); |
| else |
| tl_refrele(tep); |
| } |
| |
| /* |
| * STREAMS write-side put procedure. |
| * Enter serializer for most of the processing. |
| * |
| * The T_CONN_REQ is processed outside of serializer. |
| */ |
| static void |
| tl_wput(queue_t *wq, mblk_t *mp) |
| { |
| tl_endpt_t *tep = (tl_endpt_t *)wq->q_ptr; |
| ssize_t msz = MBLKL(mp); |
| union T_primitives *prim = (union T_primitives *)mp->b_rptr; |
| tlproc_t *tl_proc = NULL; |
| |
| switch (DB_TYPE(mp)) { |
| case M_DATA: |
| /* Only valid for connection-oriented transports */ |
| if (IS_CLTS(tep)) { |
| (void) (STRLOG(TL_ID, tep->te_minor, 1, |
| SL_TRACE|SL_ERROR, |
| "tl_wput:M_DATA invalid for ticlts driver")); |
| tl_merror(wq, mp, EPROTO); |
| return; |
| } |
| tl_proc = tl_wput_data_ser; |
| break; |
| |
| case M_IOCTL: |
| switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { |
| case TL_IOC_CREDOPT: |
| /* FALLTHROUGH */ |
| case TL_IOC_UCREDOPT: |
| /* |
| * Serialize endpoint state change. |
| */ |
| tl_proc = tl_do_ioctl_ser; |
| break; |
| |
| default: |
| miocnak(wq, mp, 0, EINVAL); |
| return; |
| } |
| break; |
| |
| case M_FLUSH: |
| /* |
| * do canonical M_FLUSH processing |
| */ |
| if (*mp->b_rptr & FLUSHW) { |
| flushq(wq, FLUSHALL); |
| *mp->b_rptr &= ~FLUSHW; |
| } |
| if (*mp->b_rptr & FLUSHR) { |
| flushq(RD(wq), FLUSHALL); |
| qreply(wq, mp); |
| } else { |
| freemsg(mp); |
| } |
| return; |
| |
| case M_PROTO: |
| if (msz < sizeof (prim->type)) { |
| (void) (STRLOG(TL_ID, tep->te_minor, 1, |
| SL_TRACE|SL_ERROR, |
| "tl_wput:M_PROTO data too short")); |
| tl_merror(wq, mp, EPROTO); |
| return; |
| } |
| switch (prim->type) { |
| case T_OPTMGMT_REQ: |
| case T_SVR4_OPTMGMT_REQ: |
| /* |
| * Process TPI option management requests immediately |
| * in put procedure regardless of in-order processing |
| * of already queued messages. |
| * (Note: This driver supports AF_UNIX socket |
| * implementation. Unless we implement this processing, |
| * setsockopt() on socket endpoint will block on flow |
| * controlled endpoints which it should not. That is |
| * required for successful execution of VSU socket tests |
| * and is consistent with BSD socket behavior). |
| */ |
| tl_optmgmt(wq, mp); |
| return; |
| case O_T_BIND_REQ: |
| case T_BIND_REQ: |
| tl_proc = tl_bind_ser; |
| break; |
| case T_CONN_REQ: |
| if (IS_CLTS(tep)) { |
| tl_merror(wq, mp, EPROTO); |
| return; |
| } |
| tl_conn_req(wq, mp); |
| return; |
| case T_DATA_REQ: |
| case T_OPTDATA_REQ: |
| case T_EXDATA_REQ: |
| case T_ORDREL_REQ: |
| tl_proc = tl_putq_ser; |
| break; |
| case T_UNITDATA_REQ: |
| if (IS_COTS(tep) || |
| (msz < sizeof (struct T_unitdata_req))) { |
| tl_merror(wq, mp, EPROTO); |
| return; |
| } |
| if ((tep->te_state == TS_IDLE) && !wq->q_first) { |
| tl_proc = tl_unitdata_ser; |
| } else { |
| tl_proc = tl_putq_ser; |
| } |
| break; |
| default: |
| /* |
| * process in service procedure if message already |
| * queued (maintain in-order processing) |
| */ |
| if (wq->q_first != NULL) { |
| tl_proc = tl_putq_ser; |
| } else { |
| tl_proc = tl_wput_ser; |
| } |
| break; |
| } |
| break; |
| |
| case M_PCPROTO: |
| /* |
| * Check that the message has enough data to figure out TPI |
| * primitive. |
| */ |
| if (msz < sizeof (prim->type)) { |
| (void) (STRLOG(TL_ID, tep->te_minor, 1, |
| SL_TRACE|SL_ERROR, |
| "tl_wput:M_PCROTO data too short")); |
| tl_merror(wq, mp, EPROTO); |
| return; |
| } |
| switch (prim->type) { |
| case T_CAPABILITY_REQ: |
| tl_capability_req(mp, tep); |
| return; |
| case T_INFO_REQ: |
| tl_proc = tl_info_req_ser; |
| break; |
| default: |
| (void) (STRLOG(TL_ID, tep->te_minor, 1, |
| SL_TRACE|SL_ERROR, |
| "tl_wput:unknown TPI msg primitive")); |
| tl_merror(wq, mp, EPROTO); |
| return; |
| } |
| break; |
| default: |
| (void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR, |
| "tl_wput:default:unexpected Streams message")); |
| freemsg(mp); |
| return; |
| } |
| |
| /* |
| * Continue processing via serializer. |
| */ |
| ASSERT(tl_proc != NULL); |
| tl_refhold(tep); |
| tl_serializer_enter(tep, tl_proc, mp); |
| } |
| |
| /* |
| * Place message on the queue while preserving order. |
| */ |
| static void |
| tl_putq_ser(mblk_t *mp, tl_endpt_t *tep) |
| { |
| if (tep->te_closing) { |
| tl_wput_ser(mp, tep); |
| } else { |
| TL_PUTQ(tep, mp); |
| tl_serializer_exit(tep); |
| tl_refrele(tep); |
| } |
| |
| } |
| |
| static void |
| tl_wput_common_ser(mblk_t *mp, tl_endpt_t *tep) |
| { |
| ASSERT((DB_TYPE(mp) == M_DATA) || (DB_TYPE(mp) == M_PROTO)); |
| |
| switch (DB_TYPE(mp)) { |
| case M_DATA: |
| tl_data(mp, tep); |
| break; |
| case M_PROTO: |
| tl_do_proto(mp, tep); |
| break; |
| default: |
| freemsg(mp); |
| break; |
| } |
| } |
| |
| /* |
| * Write side put procedure called from serializer. |
| */ |
| static void |
| tl_wput_ser(mblk_t *mp, tl_endpt_t *tep) |
| { |
| tl_wput_common_ser(mp, tep); |
| tl_serializer_exit(tep); |
| tl_refrele(tep); |
| } |
| |
| /* |
| * M_DATA processing. Called from serializer. |
| */ |
| static void |
| tl_wput_data_ser(mblk_t *mp, tl_endpt_t *tep) |
| { |
| tl_endpt_t *peer_tep = tep->te_conp; |
| queue_t *peer_rq; |
| |
| ASSERT(DB_TYPE(mp) == M_DATA); |
| ASSERT(IS_COTS(tep)); |
| |
| ASSERT(IMPLY(peer_tep, tep->te_serializer == peer_tep->te_serializer)); |
| |
| /* |
| * fastpath for data. Ignore flow control if tep is closing. |
| */ |
| if ((peer_tep != NULL) && |
| !peer_tep->te_closing && |
| ((tep->te_state == TS_DATA_XFER) || |
| (tep->te_state == TS_WREQ_ORDREL)) && |
| (tep->te_wq != NULL) && |
| (tep->te_wq->q_first == NULL) && |
| ((peer_tep->te_state == TS_DATA_XFER) || |
| (peer_tep->te_state == TS_WREQ_ORDREL)) && |
| ((peer_rq = peer_tep->te_rq) != NULL) && |
| (canputnext(peer_rq) || tep->te_closing)) { |
| putnext(peer_rq, mp); |
| } else if (tep->te_closing) { |
| /* |
| * It is possible that by the time we got here tep started to |
| * close. If the write queue is not empty, and the state is |
| * TS_DATA_XFER the data should be delivered in order, so we |
| * call putq() instead of freeing the data. |
| */ |
| if ((tep->te_wq != NULL) && |
| ((tep->te_state == TS_DATA_XFER) || |
| (tep->te_state == TS_WREQ_ORDREL))) { |
| TL_PUTQ(tep, mp); |
| } else { |
| freemsg(mp); |
| } |
| } else { |
| TL_PUTQ(tep, mp); |
| } |
| |
| tl_serializer_exit(tep); |
| tl_refrele(tep); |
| } |
| |
| /* |
| * Write side service routine. |
| * |
| * All actual processing happens within serializer which is entered |
| * synchronously. It is possible that by the time tl_wsrv() wakes up, some new |
| * messages that need processing may have arrived, so tl_wsrv repeats until |
| * queue is empty or te_nowsrv is set. |
| */ |
| static void |
| tl_wsrv(queue_t *wq) |
| { |
| tl_endpt_t *tep = (tl_endpt_t *)wq->q_ptr; |
| |
| while ((wq->q_first != NULL) && !tep->te_nowsrv) { |
| mutex_enter(&tep->te_srv_lock); |
| ASSERT(tep->te_wsrv_active == B_FALSE); |
| tep->te_wsrv_active = B_TRUE; |
| mutex_exit(&tep->te_srv_lock); |
| |
| tl_serializer_enter(tep, tl_wsrv_ser, &tep->te_wsrvmp); |
| |
| /* |
| * Wait for serializer job to complete. |
| */ |
| mutex_enter(&tep->te_srv_lock); |
| while (tep->te_wsrv_active) { |
| cv_wait(&tep->te_srv_cv, &tep->te_srv_lock); |
| } |
| cv_signal(&tep->te_srv_cv); |
| mutex_exit(&tep->te_srv_lock); |
| } |
| } |
| |
| /* |
| * Serialized write side processing of the STREAMS queue. |
| * May be called either from tl_wsrv() or from tl_close() in which case ser_mp |
| * is NULL. |
| */ |
| static void |
| tl_wsrv_ser(mblk_t *ser_mp, tl_endpt_t *tep) |
| { |
| mblk_t *mp; |
| queue_t *wq = tep->te_wq; |
| |
| ASSERT(wq != NULL); |
| while (!tep->te_nowsrv && (mp = getq(wq)) != NULL) { |
| tl_wput_common_ser(mp, tep); |
| } |
| |
| /* |
| * Wakeup service routine unless called from close. |
| * If ser_mp is specified, the caller is tl_wsrv(). |
| * Otherwise, the caller is tl_close_ser(). Since tl_close_ser() doesn't |
| * call tl_serializer_enter() before calling tl_wsrv_ser(), there should |
| * be no matching tl_serializer_exit() in this case. |
| * Also, there is no need to wakeup anyone since tl_close_ser() is not |
| * waiting on te_srv_cv. |
| */ |
| if (ser_mp != NULL) { |
| /* |
| * We are called from tl_wsrv. |
| */ |
| mutex_enter(&tep->te_srv_lock); |
| ASSERT(tep->te_wsrv_active); |
| tep->te_wsrv_active = B_FALSE; |
| cv_signal(&tep->te_srv_cv); |
| mutex_exit(&tep->te_srv_lock); |
| tl_serializer_exit(tep); |
| } |
| } |
| |
| /* |
| * Called when the stream is backenabled. Enter serializer and qenable everyone |
| * flow controlled by tep. |
| * |
| * NOTE: The service routine should enter serializer synchronously. Otherwise it |
| * is possible that two instances of tl_rsrv will be running reusing the same |
| * rsrv mblk. |
| */ |
| static void |
| tl_rsrv(queue_t *rq) |
| { |
| tl_endpt_t *tep = (tl_endpt_t *)rq->q_ptr; |
| |
| ASSERT(rq->q_first == NULL); |
| ASSERT(tep->te_rsrv_active == 0); |
| |
| tep->te_rsrv_active = B_TRUE; |
| tl_serializer_enter(tep, tl_rsrv_ser, &tep->te_rsrvmp); |
| /* |
| * Wait for serializer job to complete. |
| */ |
| mutex_enter(&tep->te_srv_lock); |
| while (tep->te_rsrv_active) { |
| cv_wait(&tep->te_srv_cv, &tep->te_srv_lock); |
| } |
| cv_signal(&tep->te_srv_cv); |
| mutex_exit(&tep->te_srv_lock); |
| } |
| |
| /* ARGSUSED */ |
| static void |
| tl_rsrv_ser(mblk_t *mp, tl_endpt_t *tep) |
| { |
| tl_endpt_t *peer_tep; |
| |
| if (IS_CLTS(tep) && tep->te_state == TS_IDLE) { |
| tl_cl_backenable(tep); |
| } else if ( |
| IS_COTS(tep) && |
| ((peer_tep = tep->te_conp) != NULL) && |
| !peer_tep->te_closing && |
| ((tep->te_state == TS_DATA_XFER) || |
| (tep->te_state == TS_WIND_ORDREL)|| |
| (tep->te_state == TS_WREQ_ORDREL))) { |
| TL_QENABLE(peer_tep); |
| } |
| |
| /* |
| * Wakeup read side service routine. |
| */ |
| mutex_enter(&tep->te_srv_lock); |
| ASSERT(tep->te_rsrv_active); |
| tep->te_rsrv_active = B_FALSE; |
| cv_signal(&tep->te_srv_cv); |
| mutex_exit(&tep->te_srv_lock); |
| tl_serializer_exit(tep); |
| } |
| |
| /* |
| * process M_PROTO messages. Always called from serializer. |
| */ |
| static void |
| tl_do_proto(mblk_t *mp, tl_endpt_t *tep) |
| { |
| ssize_t msz = MBLKL(mp); |
| union T_primitives *prim = (union T_primitives *)mp->b_rptr; |
| |
| /* Message size was validated by tl_wput(). */ |
| ASSERT(msz >= sizeof (prim->type)); |
| |
| switch (prim->type) { |
| case T_UNBIND_REQ: |
| tl_unbind(mp, tep); |
| break; |
| |
| case T_ADDR_REQ: |
| tl_addr_req(mp, tep); |
| break; |
| |
| case O_T_CONN_RES: |
| case T_CONN_RES: |
| if (IS_CLTS(tep)) { |
| tl_merror(tep->te_wq, mp, EPROTO); |
| break; |
| } |
| tl_conn_res(mp, tep); |
| break; |
| |
| case T_DISCON_REQ: |
| if (IS_CLTS(tep)) { |
| tl_merror(tep->te_wq, mp, EPROTO); |
| break; |
| } |
| tl_discon_req(mp, tep); |
| break; |
| |
| case T_DATA_REQ: |
| if (IS_CLTS(tep)) { |
| tl_merror(tep->te_wq, mp, EPROTO); |
| break; |
| } |
| tl_data(mp, tep); |
| break; |
| |
| case T_OPTDATA_REQ: |
| if (IS_CLTS(tep)) { |
| tl_merror(tep->te_wq, mp, EPROTO); |
| break; |
| } |
| tl_data(mp, tep); |
| break; |
| |
| case T_EXDATA_REQ: |
| if (IS_CLTS(tep)) { |
| tl_merror(tep->te_wq, mp, EPROTO); |
| break; |
| } |
| tl_exdata(mp, tep); |
| break; |
| |
| case T_ORDREL_REQ: |
| if (! IS_COTSORD(tep)) { |
| tl_merror(tep->te_wq, mp, EPROTO); |
| break; |
| } |
| tl_ordrel(mp, tep); |
| break; |
| |
| case T_UNITDATA_REQ: |
| if (IS_COTS(tep)) { |
| tl_merror(tep->te_wq, mp, EPROTO); |
| break; |
| } |
| tl_unitdata(mp, tep); |
| break; |
| |
| default: |
| tl_merror(tep->te_wq, mp, EPROTO); |
| break; |
| } |
| } |
| |
| /* |
| * Process ioctl from serializer. |
| * This is a wrapper around tl_do_ioctl(). |
| */ |
| static void |
| tl_do_ioctl_ser(mblk_t *mp, tl_endpt_t *tep) |
| { |
| if (! tep->te_closing) |
| tl_do_ioctl(mp, tep); |
| else |
| freemsg(mp); |
| |
| tl_serializer_exit(tep); |
| tl_refrele(tep); |
| } |
| |
| static void |
| tl_do_ioctl(mblk_t *mp, tl_endpt_t *tep) |
| { |
| struct iocblk *iocbp = (struct iocblk *)mp->b_rptr; |
| int cmd = iocbp->ioc_cmd; |
| queue_t *wq = tep->te_wq; |
| int error; |
| int thisopt, otheropt; |
| |
| ASSERT((cmd == TL_IOC_CREDOPT) || (cmd == TL_IOC_UCREDOPT)); |
| |
| switch (cmd) { |
| case TL_IOC_CREDOPT: |
| if (cmd == TL_IOC_CREDOPT) { |
| thisopt = TL_SETCRED; |
| otheropt = TL_SETUCRED; |
| } else { |
| /* FALLTHROUGH */ |
| case TL_IOC_UCREDOPT: |
| thisopt = TL_SETUCRED; |
| otheropt = TL_SETCRED; |
| } |
| /* |
| * The credentials passing does not apply to sockets. |
| * Only one of the cred options can be set at a given time. |
| */ |
| if (IS_SOCKET(tep) || (tep->te_flag & otheropt)) { |
| miocnak(wq, mp, 0, EINVAL); |
| return; |
| } |
| |
| /* |
| * Turn on generation of credential options for |
| * T_conn_req, T_conn_con, T_unidata_ind. |
| */ |
| error = miocpullup(mp, sizeof (uint32_t)); |
| if (error != 0) { |
| miocnak(wq, mp, 0, error); |
| return; |
| } |
| if (!IS_P2ALIGNED(mp->b_cont->b_rptr, sizeof (uint32_t))) { |
| miocnak(wq, mp, 0, EINVAL); |
| return; |
| } |
| |
| if (*(uint32_t *)mp->b_cont->b_rptr) |
| tep->te_flag |= thisopt; |
| else |
| tep->te_flag &= ~thisopt; |
| |
| miocack(wq, mp, 0, 0); |
| break; |
| |
| default: |
| /* Should not be here */ |
| miocnak(wq, mp, 0, EINVAL); |
| break; |
| } |
| } |
| |
| |
| /* |
| * send T_ERROR_ACK |
| * Note: assumes enough memory or caller passed big enough mp |
| * - no recovery from allocb failures |
| */ |
| |
| static void |
| tl_error_ack(queue_t *wq, mblk_t *mp, t_scalar_t tli_err, |
| t_scalar_t unix_err, t_scalar_t type) |
| { |
| struct T_error_ack *err_ack; |
| mblk_t *ackmp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), |
| M_PCPROTO, T_ERROR_ACK); |
| |
| if (ackmp == NULL) { |
| (void) (STRLOG(TL_ID, 0, 1, SL_TRACE|SL_ERROR, |
| "tl_error_ack:out of mblk memory")); |
| tl_merror(wq, NULL, ENOSR); |
| return; |
| } |
| err_ack = (struct T_error_ack *)ackmp->b_rptr; |
| err_ack->ERROR_prim = type; |
| err_ack->TLI_error = tli_err; |
| err_ack->UNIX_error = unix_err; |
| |
| /* |
| * send error ack message |
| */ |
| qreply(wq, ackmp); |
| } |
| |
| |
| |
| /* |
| * send T_OK_ACK |
| * Note: assumes enough memory or caller passed big enough mp |
| * - no recovery from allocb failures |
| */ |
| static void |
| tl_ok_ack(queue_t *wq, mblk_t *mp, t_scalar_t type) |
| { |
| struct T_ok_ack *ok_ack; |
| mblk_t *ackmp = tpi_ack_alloc(mp, sizeof (struct T_ok_ack), |
| M_PCPROTO, T_OK_ACK); |
| |
| if (ackmp == NULL) { |
| tl_merror(wq, NULL, ENOMEM); |
| return; |
| } |
| |
| ok_ack = (struct T_ok_ack *)ackmp->b_rptr; |
| ok_ack->CORRECT_prim = type; |
| |
| (void) qreply(wq, ackmp); |
| } |
| |
| /* |
| * Process T_BIND_REQ and O_T_BIND_REQ from serializer. |
| * This is a wrapper around tl_bind(). |
| */ |
| static void |
| tl_bind_ser(mblk_t *mp, tl_endpt_t *tep) |
| { |
| if (! tep->te_closing) |
| tl_bind(mp, tep); |
| else |
| freemsg(mp); |
| |
| tl_serializer_exit(tep); |
| tl_refrele(tep); |
| } |
| |
| /* |
| * Process T_BIND_REQ and O_T_BIND_REQ TPI requests. |
| * Assumes that the endpoint is in the unbound. |
| */ |
| static void |
| tl_bind(mblk_t *mp, tl_endpt_t *tep) |
| { |
| queue_t *wq = tep->te_wq; |
| struct T_bind_ack *b_ack; |
| struct T_bind_req *bind = (struct T_bind_req *)mp->b_rptr; |
| mblk_t *ackmp, *bamp; |
| soux_addr_t ux_addr; |
| t_uscalar_t qlen = 0; |
| t_scalar_t alen, aoff; |
| tl_addr_t addr_req; |
| void *addr_startp; |
| ssize_t msz = MBLKL(mp), basize; |
| t_scalar_t tli_err = 0, unix_err = 0; |
| t_scalar_t save_prim_type = bind->PRIM_type; |
| t_scalar_t save_state = tep->te_state; |
| |
| if (tep->te_state != TS_UNBND) { |
| (void) (STRLOG(TL_ID, tep->te_minor, 1, |
| SL_TRACE|SL_ERROR, |
| "tl_wput:bind_request:out of state, state=%d", |
| tep->te_state)); |
| tli_err = TOUTSTATE; |
| goto error; |
| } |
| |
| if (msz < sizeof (struct T_bind_req)) { |
| tli_err = TSYSERR; unix_err = EINVAL; |
| goto error; |
| } |
| |
| tep->te_state = NEXTSTATE(TE_BIND_REQ, tep->te_state); |
| |
| ASSERT((bind->PRIM_type == O_T_BIND_REQ) || |
| (bind->PRIM_type == T_BIND_REQ)); |
| |
| alen = bind->ADDR_length; |
| aoff = bind->ADDR_offset; |
| |
| /* negotiate max conn req pending */ |
| if (IS_COTS(tep)) { |
| qlen = bind->CONIND_number; |
| if (qlen > tl_maxqlen) |
| qlen = tl_maxqlen; |
| } |
| |
| /* |
| * Reserve hash handle. It can only be NULL if the endpoint is unbound |
| * and bound again. |
| */ |
| if ((tep->te_hash_hndl == NULL) && |
| ((tep->te_flag & TL_ADDRHASHED) == 0) && |
| mod_hash_reserve_nosleep(tep->te_addrhash, |
| &tep->te_hash_hndl) != 0) { |
| tli_err = TSYSERR; unix_err = ENOSR; |
| goto error; |
| } |
| |
| /* |
| * Verify address correctness. |
| */ |
| if (IS_SOCKET(tep)) { |
| ASSERT(bind->PRIM_type == O_T_BIND_REQ); |
| |
| if ((alen != TL_SOUX_ADDRLEN) || |
| (aoff < 0) || |
| (aoff + alen > msz)) { |
| (void) (STRLOG(TL_ID, tep->te_minor, |
| 1, SL_TRACE|SL_ERROR, |
| "tl_bind: invalid socket addr")); |
| tep->te_state = NEXTSTATE(TE_ERROR_ACK, tep->te_state); |
| tli_err = TSYSERR; unix_err = EINVAL; |
| goto error; |
| } |
| /* Copy address from message to local buffer. */ |
| bcopy(mp->b_rptr + aoff, &ux_addr, sizeof (ux_addr)); |
| /* |
| * Check that we got correct address from sockets |
| */ |
| if ((ux_addr.soua_magic != SOU_MAGIC_EXPLICIT) && |
| (ux_addr.soua_magic != SOU_MAGIC_IMPLICIT)) { |
| (void) (STRLOG(TL_ID, tep->te_minor, |
| 1, SL_TRACE|SL_ERROR, |
| "tl_bind: invalid socket magic")); |
| tep->te_state = NEXTSTATE(TE_ERROR_ACK, tep->te_state); |
| tli_err = TSYSERR; unix_err = EINVAL; |
| goto error; |
| } |
| if ((ux_addr.soua_magic == SOU_MAGIC_IMPLICIT) && |
| (ux_addr.soua_vp != NULL)) { |
| (void) (STRLOG(TL_ID, tep->te_minor, |
| 1, SL_TRACE|SL_ERROR, |
| "tl_bind: implicit addr non-empty")); |
| tep->te_state = NEXTSTATE(TE_ERROR_ACK, tep->te_state); |
| tli_err = TSYSERR; unix_err = EINVAL; |
| goto error; |
| } |
| if ((ux_addr.soua_magic == SOU_MAGIC_EXPLICIT) && |
| (ux_addr.soua_vp == NULL)) { |
| (void) (STRLOG(TL_ID, tep->te_minor, |
| 1, SL_TRACE|SL_ERROR, |
| "tl_bind: explicit addr empty")); |
| tep->te_state = NEXTSTATE(TE_ERROR_ACK, tep->te_state); |
| tli_err = TSYSERR; unix_err = EINVAL; |
| goto error; |
| } |
| } else { |
| if ((alen > 0) && ((aoff < 0) || |
| ((ssize_t)(aoff + alen) > msz) || |
| ((aoff + alen) < 0))) { |
| (void) (STRLOG(TL_ID, tep->te_minor, |
| 1, SL_TRACE|SL_ERROR, |
| "tl_bind: invalid message")); |
| tep->te_state = NEXTSTATE(TE_ERROR_ACK, tep->te_state); |
| tli_err = TSYSERR; unix_err = EINVAL; |
| goto error; |
| } |
| if ((alen < 0) || (alen > (msz - sizeof (struct T_bind_req)))) { |
| (void) (STRLOG(TL_ID, tep->te_minor, |
| 1, SL_TRACE|SL_ERROR, |
| "tl_bind: bad addr in message")); |
| tep->te_state = NEXTSTATE(TE_ERROR_ACK, tep->te_state); |
| tli_err = TBADADDR; |
| goto error; |
| } |
| #ifdef DEBUG |
| /* |
| * Mild form of ASSERT()ion to detect broken TPI apps. |
| * if (! assertion) |
| * log warning; |
| */ |
| if (! ((alen == 0 && aoff == 0) || |
| (aoff >= (t_scalar_t)(sizeof (struct T_bind_req))))) { |
| (void) (STRLOG(TL_ID, tep->te_minor, |
| 3, SL_TRACE|SL_ERROR, |
| "tl_bind: addr overlaps TPI message")); |
| } |
| #endif |
| } |
| |
| /* |
| * Bind the address provided or allocate one if requested. |
| * Allow rebinds with a new qlen value. |
| */ |
| if (IS_SOCKET(tep)) { |
| /* |
| * For anonymous requests the te_ap is already set up properly |
| * so use minor number as an address. |
| * For explicit requests need to check whether the address is |
| * already in use. |
| */ |
| if (ux_addr.soua_magic == SOU_MAGIC_EXPLICIT) { |
| int rc; |
| |
| if (tep->te_flag & TL_ADDRHASHED) { |
| ASSERT(IS_COTS(tep) && tep->te_qlen == 0); |
| if (tep->te_vp == ux_addr.soua_vp) |
| goto skip_addr_bind; |
| else /* Rebind to a new address. */ |
| tl_addr_unbind(tep); |
| } |
| /* |
| * Insert address in the hash if it is not already |
| * there. Since we use preallocated handle, the insert |
| * can fail only if the key is already present. |
| */ |
| rc = mod_hash_insert_reserve(tep->te_addrhash, |
| (mod_hash_key_t)ux_addr.soua_vp, |
| (mod_hash_val_t)tep, tep->te_hash_hndl); |
| |
| if (rc != 0) { |
| ASSERT(rc == MH_ERR_DUPLICATE); |
| /* |
| * Violate O_T_BIND_REQ semantics and fail with |
| * TADDRBUSY - sockets will not use any address |
| * other than supplied one for explicit binds. |
| */ |
| (void) (STRLOG(TL_ID, tep->te_minor, 1, |
| SL_TRACE|SL_ERROR, |
| "tl_bind:requested addr %p is busy", |
| ux_addr.soua_vp)); |
| tli_err = TADDRBUSY; unix_err = 0; |
| goto error; |
| } |
| tep->te_uxaddr = ux_addr; |
| tep->te_flag |= TL_ADDRHASHED; |
| tep->te_hash_hndl = NULL; |
| } |
| } else if (alen == 0) { |
| /* |
| * assign any free address |
| */ |
| if (! tl_get_any_addr(tep, NULL)) { |
| (void) (STRLOG(TL_ID, tep->te_minor, |
| 1, SL_TRACE|SL_ERROR, |
| "tl_bind:failed to get buffer for any " |
| "address")); |
| tli_err = TSYSERR; unix_err = ENOSR; |
| goto error; |
| } |
| } else { |
| addr_req.ta_alen = alen; |
| addr_req.ta_abuf = (mp->b_rptr + aoff); |
| addr_req.ta_zoneid = tep->te_zoneid; |
| |
| tep->te_abuf = kmem_zalloc((size_t)alen, KM_NOSLEEP); |
| if (tep->te_abuf == NULL) { |
| tli_err = TSYSERR; unix_err = ENOSR; |
| goto error; |
| } |
| bcopy(addr_req.ta_abuf, tep->te_abuf, addr_req.ta_alen); |
| tep->te_alen = alen; |
| |
| if (mod_hash_insert_reserve(tep->te_addrhash, |
| (mod_hash_key_t)&tep->te_ap, (mod_hash_val_t)tep, |
| tep->te_hash_hndl) != 0) { |
| if (save_prim_type == T_BIND_REQ) { |
| /* |
| * The bind semantics for this primitive |
| * require a failure if the exact address |
| * requested is busy |
| */ |
| (void) (STRLOG(TL_ID, tep->te_minor, 1, |
| SL_TRACE|SL_ERROR, |
| "tl_bind:requested addr is busy")); |
| tli_err = TADDRBUSY; unix_err = 0; |
| goto error; |
| } |
| |
| /* |
| * O_T_BIND_REQ semantics say if address if requested |
| * address is busy, bind to any available free address |
| */ |
| if (! tl_get_any_addr(tep, &addr_req)) { |
| (void) (STRLOG(TL_ID, tep->te_minor, 1, |
| SL_TRACE|SL_ERROR, |
| "tl_bind:unable to get any addr buf")); |
| tli_err = TSYSERR; unix_err = ENOMEM; |
| goto error; |
| } |
| } else { |
| tep->te_flag |= TL_ADDRHASHED; |
| tep->te_hash_hndl = NULL; |
| } |
| } |
| |
| ASSERT(tep->te_alen >= 0); |
| |
| skip_addr_bind: |
| /* |
| * prepare T_BIND_ACK TPI message |
| */ |
| basize = sizeof (struct T_bind_ack) + tep->te_alen; |
| bamp = reallocb(mp, basize, 0); |
| if (bamp == NULL) { |
| (void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR, |
| "tl_wput:tl_bind: allocb failed")); |
| /* |
| * roll back state changes |
| */ |
| tl_addr_unbind(tep); |
| tep->te_state = TS_UNBND; |
| tl_memrecover(wq, mp, basize); |
| return; |
| } |
| |
| DB_TYPE(bamp) = M_PCPROTO; |
| bamp->b_wptr = bamp->b_rptr + basize; |
| b_ack = (struct T_bind_ack *)bamp->b_rptr; |
| b_ack->PRIM_type = T_BIND_ACK; |
| b_ack->CONIND_number = qlen; |
| b_ack->ADDR_length = tep->te_alen; |
| b_ack->ADDR_offset = (t_scalar_t)sizeof (struct T_bind_ack); |
| addr_startp = bamp->b_rptr + b_ack->ADDR_offset; |
| bcopy(tep->te_abuf, addr_startp, tep->te_alen); |
| |
| if (IS_COTS(tep)) { |
| tep->te_qlen = qlen; |
| if (qlen > 0) |
| tep->te_flag |= TL_LISTENER; |
| } |
| |
| tep->te_state = NEXTSTATE(TE_BIND_ACK, tep->te_state); |
| /* |
| * send T_BIND_ACK message |
| */ |
| (void) qreply(wq, bamp); |
| return; |
| |
| error: |
| ackmp = reallocb(mp, sizeof (struct T_error_ack), 0); |
| if (ackmp == NULL) { |
| /* |
| * roll back state changes |
| */ |
| tep->te_state = save_state; |
| tl_memrecover(wq, mp, sizeof (struct T_error_ack)); |
| return; |
| } |
| tep->te_state = NEXTSTATE(TE_ERROR_ACK, tep->te_state); |
| tl_error_ack(wq, ackmp, tli_err, unix_err, save_prim_type); |
| } |
| |
| /* |
| * Process T_UNBIND_REQ. |
| * Called from serializer. |
| */ |
| static void |
| tl_unbind(mblk_t *mp, tl_endpt_t *tep) |
| { |
| queue_t *wq; |
| mblk_t *ackmp; |
| |
| if (tep->te_closing) { |
| freemsg(mp); |
| return; |
| } |
| |
| wq = tep->te_wq; |
| |
| /* |
| * preallocate memory for max of T_OK_ACK and T_ERROR_ACK |
| * ==> allocate for T_ERROR_ACK (known max) |
| */ |
| if ((ackmp = reallocb(mp, sizeof (struct T_error_ack), 0)) == NULL) { |
| tl_memrecover(wq, mp, sizeof (struct T_error_ack)); |
| return; |
| } |
| /* |
| * memory resources committed |
| * Note: no message validation. T_UNBIND_REQ message is |
| * same size as PRIM_type field so already verified earlier. |
| */ |
| |
| /* |
| * validate state |
| */ |
| if (tep->te_state != TS_IDLE) { |
| (void) (STRLOG(TL_ID, tep->te_minor, 1, |
| SL_TRACE|SL_ERROR, |
| "tl_wput:T_UNBIND_REQ:out of state, state=%d", |
| tep->te_state)); |
| tl_error_ack(wq, ackmp, TOUTSTATE, 0, T_UNBIND_REQ); |
| return; |
| } |
| tep->te_state = NEXTSTATE(TE_UNBIND_REQ, tep->te_state); |
| |
| /* |
| * TPI says on T_UNBIND_REQ: |
| * send up a M_FLUSH to flush both |
| * read and write queues |
| */ |
| (void) putnextctl1(RD(wq), M_FLUSH, FLUSHRW); |
| |
| if (! IS_SOCKET(tep) || !IS_CLTS(tep) || tep->te_qlen != 0 || |
| tep->te_magic != SOU_MAGIC_EXPLICIT) { |
| |
| /* |
| * Sockets use bind with qlen==0 followed by bind() to |
| * the same address with qlen > 0 for listeners. |
| * We allow rebind with a new qlen value. |
| */ |
| tl_addr_unbind(tep); |
| } |
| |
| tep->te_state = NEXTSTATE(TE_OK_ACK1, tep->te_state); |
| /* |
| * send T_OK_ACK |
| */ |
| tl_ok_ack(wq, ackmp, T_UNBIND_REQ); |
| } |
| |
| |
| /* |
| * Option management code from drv/ip is used here |
| * Note: TL_PROT_LEVEL/TL_IOC_CREDOPT option is not part of tl_opt_arr |
| * database of options. So optcom_req() will fail T_SVR4_OPTMGMT_REQ. |
| * However, that is what we want as that option is 'unorthodox' |
| * and only valid in T_CONN_IND, T_CONN_CON and T_UNITDATA_IND |
| * and not in T_SVR4_OPTMGMT_REQ/ACK |
| * Note2: use of optcom_req means this routine is an exception to |
| * recovery from allocb() failures. |
| */ |
| |
| static void |
| tl_optmgmt(queue_t *wq, mblk_t *mp) |
| { |
| tl_endpt_t *tep; |
| mblk_t *ackmp; |
| union T_primitives *prim; |
| cred_t *cr; |
| |
| tep = (tl_endpt_t *)wq->q_ptr; |
| prim = (union T_primitives *)mp->b_rptr; |
| |
| /* |
| * All Solaris components should pass a db_credp |
| * for this TPI message, hence we ASSERT. |
| * But in case there is some other M_PROTO that looks |
| * like a TPI message sent by some other kernel |
| * component, we check and return an error. |
| */ |
| cr = msg_getcred(mp, NULL); |
| ASSERT(cr != NULL); |
| if (cr == NULL) { |
| tl_error_ack(wq, mp, TSYSERR, EINVAL, prim->type); |
| return; |
| } |
| |
| /* all states OK for AF_UNIX options ? */ |
| if (!IS_SOCKET(tep) && tep->te_state != TS_IDLE && |
| prim->type == T_SVR4_OPTMGMT_REQ) { |
| /* |
| * Broken TLI semantics that options can only be managed |
| * in TS_IDLE state. Needed for Sparc ABI test suite that |
| * tests this TLI (mis)feature using this device driver. |
| */ |
| (void) (STRLOG(TL_ID, tep->te_minor, 1, |
| SL_TRACE|SL_ERROR, |
| "tl_wput:T_SVR4_OPTMGMT_REQ:out of state, state=%d", |
| tep->te_state)); |
| /* |
| * preallocate memory for T_ERROR_ACK |
| */ |
| ackmp = allocb(sizeof (struct T_error_ack), BPRI_MED); |
| if (! ackmp) { |
| tl_memrecover(wq, mp, sizeof (struct T_error_ack)); |
| return; |
| } |
| |
| tl_error_ack(wq, ackmp, TOUTSTATE, 0, T_SVR4_OPTMGMT_REQ); |
| freemsg(mp); |
| return; |
| } |
| |
| /* |
| * call common option management routine from drv/ip |
| */ |
| if (prim->type == T_SVR4_OPTMGMT_REQ) { |
| svr4_optcom_req(wq, mp, cr, &tl_opt_obj); |
| } else { |
| ASSERT(prim->type == T_OPTMGMT_REQ); |
| tpi_optcom_req(wq, mp, cr, &tl_opt_obj); |
| } |
| } |
| |
| /* |
| * Handle T_conn_req - the driver part of accept(). |
| * If TL_SET[U]CRED generate the credentials options. |
| * If this is a socket pass through options unmodified. |
| * For sockets generate the T_CONN_CON here instead of |
| * waiting for the T_CONN_RES. |
| */ |
| static void |
| tl_conn_req(queue_t *wq, mblk_t *mp) |
| { |
| tl_endpt_t *tep = (tl_endpt_t *)wq->q_ptr; |
| struct T_conn_req *creq = (struct T_conn_req *)mp->b_rptr; |
| ssize_t msz = MBLKL(mp); |
| t_scalar_t alen, aoff, olen, ooff, err = 0; |
| tl_endpt_t *peer_tep = NULL; |
| mblk_t *ackmp; |
| mblk_t *dimp; |
| struct T_discon_ind *di; |
| soux_addr_t ux_addr; |
| tl_addr_t dst; |
| |
| ASSERT(IS_COTS(tep)); |
| |
| if (tep->te_closing) { |
| freemsg(mp); |
| return; |
| } |
| |
| /* |
| * preallocate memory for: |
| * 1. max of T_ERROR_ACK and T_OK_ACK |
| * ==> known max T_ERROR_ACK |
| * 2. max of T_DISCON_IND and T_CONN_IND |
| */ |
| ackmp = allocb(sizeof (struct T_error_ack), BPRI_MED); |
| if (! ackmp) { |
| tl_memrecover(wq, mp, sizeof (struct T_error_ack)); |
| return; |
| } |
| /* |
| * memory committed for T_OK_ACK/T_ERROR_ACK now |
| * will be committed for T_DISCON_IND/T_CONN_IND later |
| */ |
| |
| if (tep->te_state != TS_IDLE) { |
| (void) (STRLOG(TL_ID, tep->te_minor, 1, |
| SL_TRACE|SL_ERROR, |
| "tl_wput:T_CONN_REQ:out of state, state=%d", |
| tep->te_state)); |
| tl_error_ack(wq, ackmp, TOUTSTATE, 0, T_CONN_REQ); |
| freemsg(mp); |
| return; |
| } |
| |
| /* |
| * validate the message |
| * Note: dereference fields in struct inside message only |
| * after validating the message length. |
| */ |
| if (msz < sizeof (struct T_conn_req)) { |
| (void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR, |
| "tl_conn_req:invalid message length")); |
| tl_error_ack(wq, ackmp, TSYSERR, EINVAL, T_CONN_REQ); |
| freemsg(mp); |
| return; |
| } |
| alen = creq->DEST_length; |
| aoff = creq->DEST_offset; |
| olen = creq->OPT_length; |
| ooff = creq->OPT_offset; |
| if (olen == 0) |
| ooff = 0; |
| |
| if (IS_SOCKET(tep)) { |
| if ((alen != TL_SOUX_ADDRLEN) || |
| (aoff < 0) || |
| (aoff + alen > msz) || |
| (alen > msz - sizeof (struct T_conn_req))) { |
| |