| /* |
| * CDDL HEADER START |
| * |
| * The contents of this file are subject to the terms of the |
| * Common Development and Distribution License (the "License"). |
| * You may not use this file except in compliance with the License. |
| * |
| * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE |
| * or http://www.opensolaris.org/os/licensing. |
| * See the License for the specific language governing permissions |
| * and limitations under the License. |
| * |
| * When distributing Covered Code, include this CDDL HEADER in each |
| * file and include the License file at usr/src/OPENSOLARIS.LICENSE. |
| * If applicable, add the following below this CDDL HEADER, with the |
| * fields enclosed by brackets "[]" replaced with your own identifying |
| * information: Portions Copyright [yyyy] [name of copyright owner] |
| * |
| * CDDL HEADER END |
| */ |
| |
| /* |
| * Copyright 2009 Sun Microsystems, Inc. All rights reserved. |
| * Use is subject to license terms. |
| */ |
| |
| #include <inet/ip_arp.h> |
| #include <inet/ip_ndp.h> |
| #include <net/if_arp.h> |
| #include <netinet/if_ether.h> |
| #include <sys/strsubr.h> |
| #include <inet/ip6.h> |
| #include <inet/ip.h> |
| #include <inet/ip_ire.h> |
| #include <inet/ip_if.h> |
| #include <sys/dlpi.h> |
| #include <sys/sunddi.h> |
| #include <sys/strsun.h> |
| #include <sys/sdt.h> |
| #include <inet/mi.h> |
| #include <inet/arp.h> |
| #include <inet/ipdrop.h> |
| #include <sys/sockio.h> |
| #include <inet/ip_impl.h> |
| #include <sys/policy.h> |
| |
| #define ARL_LL_ADDR_OFFSET(arl) (((arl)->arl_sap_length) < 0 ? \ |
| (sizeof (dl_unitdata_req_t)) : \ |
| ((sizeof (dl_unitdata_req_t)) + (ABS((arl)->arl_sap_length)))) |
| |
| /* |
| * MAC-specific intelligence. Shouldn't be needed, but the DL_INFO_ACK |
| * doesn't quite do it for us. |
| */ |
| typedef struct arp_m_s { |
| t_uscalar_t arp_mac_type; |
| uint32_t arp_mac_arp_hw_type; |
| t_scalar_t arp_mac_sap_length; |
| uint32_t arp_mac_hw_addr_length; |
| } arp_m_t; |
| |
| static int arp_close(queue_t *, int); |
| static void arp_rput(queue_t *, mblk_t *); |
| static void arp_wput(queue_t *, mblk_t *); |
| static arp_m_t *arp_m_lookup(t_uscalar_t mac_type); |
| static void arp_notify(ipaddr_t, mblk_t *, uint32_t, ip_recv_attr_t *, |
| ncec_t *); |
| static int arp_output(ill_t *, uint32_t, const uchar_t *, const uchar_t *, |
| const uchar_t *, const uchar_t *, uchar_t *); |
| static int arp_modclose(arl_t *); |
| static void arp_mod_close_tail(arl_t *); |
| static mblk_t *arl_unbind(arl_t *); |
| static void arp_process_packet(ill_t *, mblk_t *); |
| static void arp_excl(ipsq_t *, queue_t *, mblk_t *, void *); |
| static void arp_drop_packet(const char *str, mblk_t *, ill_t *); |
| static int arp_open(queue_t *, dev_t *, int, int, cred_t *); |
| static int ip_sioctl_ifunitsel_arp(queue_t *, int *); |
| static int ip_sioctl_slifname_arp(queue_t *, void *); |
| static void arp_dlpi_send(arl_t *, mblk_t *); |
| static void arl_defaults_common(arl_t *, mblk_t *); |
| static int arp_modopen(queue_t *, dev_t *, int, int, cred_t *); |
| static void arp_ifname_notify(arl_t *); |
| static void arp_rput_dlpi_writer(ipsq_t *, queue_t *, mblk_t *, void *); |
| static arl_t *ill_to_arl(ill_t *); |
| |
| #define DL_PRIM(mp) (((union DL_primitives *)(mp)->b_rptr)->dl_primitive) |
| #define IS_DLPI_DATA(mp) \ |
| ((DB_TYPE(mp) == M_PROTO) && \ |
| MBLKL(mp) >= sizeof (dl_unitdata_ind_t) && \ |
| (DL_PRIM(mp) == DL_UNITDATA_IND)) |
| |
| #define AR_NOTFOUND 1 /* No matching ace found in cache */ |
| #define AR_MERGED 2 /* Matching ace updated (RFC 826 Merge_flag) */ |
| #define AR_LOOPBACK 3 /* Our own arp packet was received */ |
| #define AR_BOGON 4 /* Another host has our IP addr. */ |
| #define AR_FAILED 5 /* Duplicate Address Detection has failed */ |
| #define AR_CHANGED 6 /* Address has changed; tell IP (and merged) */ |
| |
| boolean_t arp_no_defense; |
| |
| struct module_info arp_mod_info = { |
| IP_MOD_ID, "arpip", 1, INFPSZ, 65536, 1024 |
| }; |
| static struct qinit rinit_arp = { |
| (pfi_t)arp_rput, NULL, arp_open, arp_close, NULL, &arp_mod_info |
| }; |
| static struct qinit winit_arp = { |
| (pfi_t)arp_wput, NULL, arp_open, arp_close, NULL, |
| &arp_mod_info |
| }; |
| struct streamtab arpinfo = { |
| &rinit_arp, &winit_arp |
| }; |
| #define ARH_FIXED_LEN 8 |
| #define AR_LL_HDR_SLACK 32 |
| |
| /* |
| * pfhooks for ARP. |
| */ |
| #define ARP_HOOK_IN(_hook, _event, _ilp, _hdr, _fm, _m, ipst) \ |
| \ |
| if ((_hook).he_interested) { \ |
| hook_pkt_event_t info; \ |
| \ |
| info.hpe_protocol = ipst->ips_arp_net_data; \ |
| info.hpe_ifp = _ilp; \ |
| info.hpe_ofp = 0; \ |
| info.hpe_hdr = _hdr; \ |
| info.hpe_mp = &(_fm); \ |
| info.hpe_mb = _m; \ |
| if (hook_run(ipst->ips_arp_net_data->netd_hooks, \ |
| _event, (hook_data_t)&info) != 0) { \ |
| if (_fm != NULL) { \ |
| freemsg(_fm); \ |
| _fm = NULL; \ |
| } \ |
| _hdr = NULL; \ |
| _m = NULL; \ |
| } else { \ |
| _hdr = info.hpe_hdr; \ |
| _m = info.hpe_mb; \ |
| } \ |
| } |
| |
| #define ARP_HOOK_OUT(_hook, _event, _olp, _hdr, _fm, _m, ipst) \ |
| \ |
| if ((_hook).he_interested) { \ |
| hook_pkt_event_t info; \ |
| \ |
| info.hpe_protocol = ipst->ips_arp_net_data; \ |
| info.hpe_ifp = 0; \ |
| info.hpe_ofp = _olp; \ |
| info.hpe_hdr = _hdr; \ |
| info.hpe_mp = &(_fm); \ |
| info.hpe_mb = _m; \ |
| if (hook_run(ipst->ips_arp_net_data->netd_hooks, \ |
| _event, (hook_data_t)&info) != 0) { \ |
| if (_fm != NULL) { \ |
| freemsg(_fm); \ |
| _fm = NULL; \ |
| } \ |
| _hdr = NULL; \ |
| _m = NULL; \ |
| } else { \ |
| _hdr = info.hpe_hdr; \ |
| _m = info.hpe_mb; \ |
| } \ |
| } |
| |
| static arp_m_t arp_m_tbl[] = { |
| { DL_CSMACD, ARPHRD_ETHER, -2, 6}, /* 802.3 */ |
| { DL_TPB, ARPHRD_IEEE802, -2, 6}, /* 802.4 */ |
| { DL_TPR, ARPHRD_IEEE802, -2, 6}, /* 802.5 */ |
| { DL_METRO, ARPHRD_IEEE802, -2, 6}, /* 802.6 */ |
| { DL_ETHER, ARPHRD_ETHER, -2, 6}, /* Ethernet */ |
| { DL_FDDI, ARPHRD_ETHER, -2, 6}, /* FDDI */ |
| { DL_IB, ARPHRD_IB, -2, 20}, /* Infiniband */ |
| { DL_OTHER, ARPHRD_ETHER, -2, 6} /* unknown */ |
| }; |
| |
| static void |
| arl_refhold_locked(arl_t *arl) |
| { |
| ASSERT(MUTEX_HELD(&arl->arl_lock)); |
| arl->arl_refcnt++; |
| ASSERT(arl->arl_refcnt != 0); |
| } |
| |
| static void |
| arl_refrele(arl_t *arl) |
| { |
| mutex_enter(&arl->arl_lock); |
| ASSERT(arl->arl_refcnt != 0); |
| arl->arl_refcnt--; |
| if (arl->arl_refcnt > 1) { |
| mutex_exit(&arl->arl_lock); |
| return; |
| } |
| |
| /* ill_close or arp_unbind_complete may be waiting */ |
| cv_broadcast(&arl->arl_cv); |
| mutex_exit(&arl->arl_lock); |
| } |
| |
| /* |
| * wake up any pending ip ioctls. |
| */ |
| static void |
| arp_cmd_done(ill_t *ill, int err, t_uscalar_t lastprim) |
| { |
| if (lastprim == DL_UNBIND_REQ && ill->ill_replumbing) |
| arp_replumb_done(ill, 0); |
| else |
| arp_bringup_done(ill, err); |
| } |
| |
| static int |
| ip_nce_resolve_all(ill_t *ill, uchar_t *src_haddr, uint32_t hlen, |
| const in_addr_t *src_paddr, ncec_t **sncec, int op) |
| { |
| int retv; |
| ncec_t *ncec; |
| boolean_t ll_changed; |
| uchar_t *lladdr = NULL; |
| int new_state; |
| |
| ASSERT(ill != NULL); |
| |
| ncec = ncec_lookup_illgrp_v4(ill, src_paddr); |
| *sncec = ncec; |
| |
| if (ncec == NULL) { |
| retv = AR_NOTFOUND; |
| goto done; |
| } |
| |
| mutex_enter(&ncec->ncec_lock); |
| /* |
| * IP addr and hardware address match what we already |
| * have, then this is a broadcast packet emitted by one of our |
| * interfaces, reflected by the switch and received on another |
| * interface. We return AR_LOOPBACK. |
| */ |
| lladdr = ncec->ncec_lladdr; |
| if (NCE_MYADDR(ncec) && hlen == ncec->ncec_ill->ill_phys_addr_length && |
| bcmp(lladdr, src_haddr, hlen) == 0) { |
| mutex_exit(&ncec->ncec_lock); |
| retv = AR_LOOPBACK; |
| goto done; |
| } |
| /* |
| * If the entry is unverified, then we've just verified that |
| * someone else already owns this address, because this is a |
| * message with the same protocol address but different |
| * hardware address. |
| */ |
| if (ncec->ncec_flags & NCE_F_UNVERIFIED) { |
| mutex_exit(&ncec->ncec_lock); |
| ncec_delete(ncec); |
| ncec_refrele(ncec); |
| *sncec = NULL; |
| retv = AR_FAILED; |
| goto done; |
| } |
| |
| /* |
| * If the IP address matches ours and we're authoritative for |
| * this entry, then some other node is using our IP addr, so |
| * return AR_BOGON. Also reset the transmit count to zero so |
| * that, if we're currently in initial announcement mode, we |
| * switch back to the lazier defense mode. Knowing that |
| * there's at least one duplicate out there, we ought not |
| * blindly announce. |
| * |
| * NCE_F_AUTHORITY is set in one of two ways: |
| * 1. /sbin/arp told us so, via the "permanent" flag. |
| * 2. This is one of my addresses. |
| */ |
| if (ncec->ncec_flags & NCE_F_AUTHORITY) { |
| ncec->ncec_unsolicit_count = 0; |
| mutex_exit(&ncec->ncec_lock); |
| retv = AR_BOGON; |
| goto done; |
| } |
| |
| /* |
| * No address conflict was detected, and we are getting |
| * ready to update the ncec's hwaddr. The nce MUST NOT be on an |
| * under interface, because all dynamic nce's are created on the |
| * native interface (in the non-IPMP case) or on the IPMP |
| * meta-interface (in the IPMP case) |
| */ |
| ASSERT(!IS_UNDER_IPMP(ncec->ncec_ill)); |
| |
| /* |
| * update ncec with src_haddr, hlen. |
| * |
| * We are trying to resolve this ncec_addr/src_paddr and we |
| * got a REQUEST/RESPONSE from the ncec_addr/src_paddr. |
| * So the new_state is at least "STALE". If, in addition, |
| * this a solicited, unicast ARP_RESPONSE, we can transition |
| * to REACHABLE. |
| */ |
| new_state = ND_STALE; |
| ip1dbg(("got info for ncec %p from addr %x\n", |
| (void *)ncec, *src_paddr)); |
| retv = AR_MERGED; |
| if (ncec->ncec_state == ND_INCOMPLETE || |
| ncec->ncec_state == ND_INITIAL) { |
| ll_changed = B_TRUE; |
| } else { |
| ll_changed = nce_cmp_ll_addr(ncec, src_haddr, hlen); |
| if (!ll_changed) |
| new_state = ND_UNCHANGED; |
| else |
| retv = AR_CHANGED; |
| } |
| /* |
| * We don't have the equivalent of the IPv6 'S' flag indicating |
| * a solicited response, so we assume that if we are in |
| * INCOMPLETE, or got back an unchanged lladdr in PROBE state, |
| * and this is an ARP_RESPONSE, it must be a |
| * solicited response allowing us to transtion to REACHABLE. |
| */ |
| if (op == ARP_RESPONSE) { |
| switch (ncec->ncec_state) { |
| case ND_PROBE: |
| new_state = (ll_changed ? ND_STALE : ND_REACHABLE); |
| break; |
| case ND_INCOMPLETE: |
| new_state = ND_REACHABLE; |
| break; |
| } |
| } |
| /* |
| * Call nce_update() to refresh fastpath information on any |
| * dependent nce_t entries. |
| */ |
| nce_update(ncec, new_state, (ll_changed ? src_haddr : NULL)); |
| mutex_exit(&ncec->ncec_lock); |
| nce_resolv_ok(ncec); |
| done: |
| return (retv); |
| } |
| |
| /* Find an entry for a particular MAC type in the arp_m_tbl. */ |
| static arp_m_t * |
| arp_m_lookup(t_uscalar_t mac_type) |
| { |
| arp_m_t *arm; |
| |
| for (arm = arp_m_tbl; arm < A_END(arp_m_tbl); arm++) { |
| if (arm->arp_mac_type == mac_type) |
| return (arm); |
| } |
| return (NULL); |
| } |
| |
| static uint32_t |
| arp_hw_type(t_uscalar_t mactype) |
| { |
| arp_m_t *arm; |
| |
| if ((arm = arp_m_lookup(mactype)) == NULL) |
| arm = arp_m_lookup(DL_OTHER); |
| return (arm->arp_mac_arp_hw_type); |
| } |
| |
| /* |
| * Called when an DLPI control message has been acked; send down the next |
| * queued message (if any). |
| * The DLPI messages of interest being bind, attach and unbind since |
| * these are the only ones sent by ARP via arp_dlpi_send. |
| */ |
| static void |
| arp_dlpi_done(arl_t *arl, ill_t *ill) |
| { |
| mblk_t *mp; |
| int err; |
| t_uscalar_t prim; |
| |
| mutex_enter(&arl->arl_lock); |
| prim = arl->arl_dlpi_pending; |
| |
| if ((mp = arl->arl_dlpi_deferred) == NULL) { |
| arl->arl_dlpi_pending = DL_PRIM_INVAL; |
| if (arl->arl_state_flags & ARL_LL_DOWN) |
| err = ENETDOWN; |
| else |
| err = 0; |
| mutex_exit(&arl->arl_lock); |
| |
| mutex_enter(&ill->ill_lock); |
| ill->ill_arl_dlpi_pending = 0; |
| mutex_exit(&ill->ill_lock); |
| arp_cmd_done(ill, err, prim); |
| return; |
| } |
| |
| arl->arl_dlpi_deferred = mp->b_next; |
| mp->b_next = NULL; |
| |
| ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); |
| |
| arl->arl_dlpi_pending = DL_PRIM(mp); |
| mutex_exit(&arl->arl_lock); |
| |
| mutex_enter(&ill->ill_lock); |
| ill->ill_arl_dlpi_pending = 1; |
| mutex_exit(&ill->ill_lock); |
| |
| putnext(arl->arl_wq, mp); |
| } |
| |
| /* |
| * This routine is called during module initialization when the DL_INFO_ACK |
| * comes back from the device. We set up defaults for all the device dependent |
| * doo-dads we are going to need. This will leave us ready to roll if we are |
| * attempting auto-configuration. Alternatively, these defaults can be |
| * overridden by initialization procedures possessing higher intelligence. |
| * |
| * Caller will free the mp. |
| */ |
| static void |
| arp_ll_set_defaults(arl_t *arl, mblk_t *mp) |
| { |
| arp_m_t *arm; |
| dl_info_ack_t *dlia = (dl_info_ack_t *)mp->b_rptr; |
| |
| if ((arm = arp_m_lookup(dlia->dl_mac_type)) == NULL) |
| arm = arp_m_lookup(DL_OTHER); |
| ASSERT(arm != NULL); |
| |
| /* |
| * We initialize based on parameters in the (currently) not too |
| * exhaustive arp_m_tbl. |
| */ |
| if (dlia->dl_version == DL_VERSION_2) { |
| arl->arl_sap_length = dlia->dl_sap_length; |
| arl->arl_phys_addr_length = dlia->dl_brdcst_addr_length; |
| if (dlia->dl_provider_style == DL_STYLE2) |
| arl->arl_needs_attach = 1; |
| } else { |
| arl->arl_sap_length = arm->arp_mac_sap_length; |
| arl->arl_phys_addr_length = arm->arp_mac_hw_addr_length; |
| } |
| /* |
| * Note: the arp_hw_type in the arp header may be derived from |
| * the ill_mac_type and arp_m_lookup(). |
| */ |
| arl->arl_sap = ETHERTYPE_ARP; |
| arl_defaults_common(arl, mp); |
| } |
| |
| static void |
| arp_wput(queue_t *q, mblk_t *mp) |
| { |
| int err = EINVAL; |
| struct iocblk *ioc; |
| mblk_t *mp1; |
| |
| switch (DB_TYPE(mp)) { |
| case M_IOCTL: |
| ASSERT(q->q_next != NULL); |
| ioc = (struct iocblk *)mp->b_rptr; |
| if (ioc->ioc_cmd != SIOCSLIFNAME && |
| ioc->ioc_cmd != IF_UNITSEL) { |
| DTRACE_PROBE4(arl__dlpi, char *, "arp_wput", |
| char *, "<some ioctl>", char *, "-", |
| arl_t *, (arl_t *)q->q_ptr); |
| putnext(q, mp); |
| return; |
| } |
| if ((mp1 = mp->b_cont) == 0) |
| err = EINVAL; |
| else if (ioc->ioc_cmd == SIOCSLIFNAME) |
| err = ip_sioctl_slifname_arp(q, mp1->b_rptr); |
| else if (ioc->ioc_cmd == IF_UNITSEL) |
| err = ip_sioctl_ifunitsel_arp(q, (int *)mp1->b_rptr); |
| if (err == 0) |
| miocack(q, mp, 0, 0); |
| else |
| miocnak(q, mp, 0, err); |
| return; |
| default: |
| DTRACE_PROBE4(arl__dlpi, char *, "arp_wput default", |
| char *, "default mblk", char *, "-", |
| arl_t *, (arl_t *)q->q_ptr); |
| putnext(q, mp); |
| return; |
| } |
| } |
| |
| /* |
| * similar to ill_dlpi_pending(): verify that the received DLPI response |
| * matches the one that is pending for the arl. |
| */ |
| static boolean_t |
| arl_dlpi_pending(arl_t *arl, t_uscalar_t prim) |
| { |
| t_uscalar_t pending; |
| |
| mutex_enter(&arl->arl_lock); |
| if (arl->arl_dlpi_pending == prim) { |
| mutex_exit(&arl->arl_lock); |
| return (B_TRUE); |
| } |
| |
| if (arl->arl_state_flags & ARL_CONDEMNED) { |
| mutex_exit(&arl->arl_lock); |
| return (B_FALSE); |
| } |
| pending = arl->arl_dlpi_pending; |
| mutex_exit(&arl->arl_lock); |
| |
| if (pending == DL_PRIM_INVAL) { |
| ip0dbg(("arl_dlpi_pending unsolicited ack for %s on %s", |
| dl_primstr(prim), arl->arl_name)); |
| } else { |
| ip0dbg(("arl_dlpi_pending ack for %s on %s expect %s", |
| dl_primstr(prim), arl->arl_name, dl_primstr(pending))); |
| } |
| return (B_FALSE); |
| } |
| |
| /* DLPI messages, other than DL_UNITDATA_IND are handled here. */ |
| static void |
| arp_rput_dlpi(queue_t *q, mblk_t *mp) |
| { |
| arl_t *arl = (arl_t *)q->q_ptr; |
| union DL_primitives *dlp; |
| t_uscalar_t prim; |
| t_uscalar_t reqprim = DL_PRIM_INVAL; |
| ill_t *ill; |
| |
| if ((mp->b_wptr - mp->b_rptr) < sizeof (dlp->dl_primitive)) { |
| putnext(q, mp); |
| return; |
| } |
| dlp = (union DL_primitives *)mp->b_rptr; |
| prim = dlp->dl_primitive; |
| |
| /* |
| * If we received an ACK but didn't send a request for it, then it |
| * can't be part of any pending operation; discard up-front. |
| */ |
| switch (prim) { |
| case DL_ERROR_ACK: |
| /* |
| * ce is confused about how DLPI works, so we have to interpret |
| * an "error" on DL_NOTIFY_ACK (which we never could have sent) |
| * as really meaning an error on DL_NOTIFY_REQ. |
| * |
| * Note that supporting DL_NOTIFY_REQ is optional, so printing |
| * out an error message on the console isn't warranted except |
| * for debug. |
| */ |
| if (dlp->error_ack.dl_error_primitive == DL_NOTIFY_ACK || |
| dlp->error_ack.dl_error_primitive == DL_NOTIFY_REQ) { |
| reqprim = DL_NOTIFY_REQ; |
| } else { |
| reqprim = dlp->error_ack.dl_error_primitive; |
| } |
| break; |
| case DL_INFO_ACK: |
| reqprim = DL_INFO_REQ; |
| break; |
| case DL_OK_ACK: |
| reqprim = dlp->ok_ack.dl_correct_primitive; |
| break; |
| case DL_BIND_ACK: |
| reqprim = DL_BIND_REQ; |
| break; |
| default: |
| DTRACE_PROBE2(rput_dl_badprim, arl_t *, arl, |
| union DL_primitives *, dlp); |
| putnext(q, mp); |
| return; |
| } |
| if (reqprim == DL_PRIM_INVAL || !arl_dlpi_pending(arl, reqprim)) { |
| freemsg(mp); |
| return; |
| } |
| DTRACE_PROBE4(arl__dlpi, char *, "arp_rput_dlpi received", |
| char *, dl_primstr(prim), char *, dl_primstr(reqprim), |
| arl_t *, arl); |
| |
| ASSERT(prim != DL_NOTIFY_IND); |
| |
| ill = arl_to_ill(arl); |
| |
| switch (reqprim) { |
| case DL_INFO_REQ: |
| /* |
| * ill has not been set up yet for this case. This is the |
| * DL_INFO_ACK for the first DL_INFO_REQ sent from |
| * arp_modopen(). There should be no other arl_dlpi_deferred |
| * messages pending. We initialize the arl here. |
| */ |
| ASSERT(!arl->arl_dlpi_style_set); |
| ASSERT(arl->arl_dlpi_pending == DL_INFO_REQ); |
| ASSERT(arl->arl_dlpi_deferred == NULL); |
| arl->arl_dlpi_pending = DL_PRIM_INVAL; |
| arp_ll_set_defaults(arl, mp); |
| freemsg(mp); |
| return; |
| case DL_UNBIND_REQ: |
| mutex_enter(&arl->arl_lock); |
| arl->arl_state_flags &= ~ARL_DL_UNBIND_IN_PROGRESS; |
| /* |
| * This is not an error, so we don't set ARL_LL_DOWN |
| */ |
| arl->arl_state_flags &= ~ARL_LL_UP; |
| arl->arl_state_flags |= ARL_LL_UNBOUND; |
| if (arl->arl_state_flags & ARL_CONDEMNED) { |
| /* |
| * if this is part of the unplumb the arl may |
| * vaporize any moment after we cv_signal the |
| * arl_cv so we reset arl_dlpi_pending here. |
| * All other cases (including replumb) will |
| * have the arl_dlpi_pending reset in |
| * arp_dlpi_done. |
| */ |
| arl->arl_dlpi_pending = DL_PRIM_INVAL; |
| } |
| cv_signal(&arl->arl_cv); |
| mutex_exit(&arl->arl_lock); |
| break; |
| } |
| if (ill != NULL) { |
| /* |
| * ill ref obtained by arl_to_ill() will be released |
| * by qwriter_ip() |
| */ |
| qwriter_ip(ill, ill->ill_wq, mp, arp_rput_dlpi_writer, |
| CUR_OP, B_TRUE); |
| return; |
| } |
| freemsg(mp); |
| } |
| |
| /* |
| * Handling of DLPI messages that require exclusive access to the ipsq. |
| */ |
| /* ARGSUSED */ |
| static void |
| arp_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) |
| { |
| union DL_primitives *dlp = (union DL_primitives *)mp->b_rptr; |
| ill_t *ill = (ill_t *)q->q_ptr; |
| arl_t *arl = ill_to_arl(ill); |
| |
| if (arl == NULL) { |
| /* |
| * happens as a result arp_modclose triggering unbind. |
| * arp_rput_dlpi will cv_signal the arl_cv and the modclose |
| * will complete, but when it does ipsq_exit, the waiting |
| * qwriter_ip gets into the ipsq but will find the arl null. |
| * There should be no deferred messages in this case, so |
| * just complete and exit. |
| */ |
| arp_cmd_done(ill, 0, DL_UNBIND_REQ); |
| freemsg(mp); |
| return; |
| } |
| switch (dlp->dl_primitive) { |
| case DL_ERROR_ACK: |
| switch (dlp->error_ack.dl_error_primitive) { |
| case DL_UNBIND_REQ: |
| mutex_enter(&arl->arl_lock); |
| arl->arl_state_flags &= ~ARL_DL_UNBIND_IN_PROGRESS; |
| arl->arl_state_flags &= ~ARL_LL_UP; |
| arl->arl_state_flags |= ARL_LL_UNBOUND; |
| arl->arl_state_flags |= ARL_LL_DOWN; |
| cv_signal(&arl->arl_cv); |
| mutex_exit(&arl->arl_lock); |
| break; |
| case DL_BIND_REQ: |
| mutex_enter(&arl->arl_lock); |
| arl->arl_state_flags &= ~ARL_LL_UP; |
| arl->arl_state_flags |= ARL_LL_DOWN; |
| arl->arl_state_flags |= ARL_LL_UNBOUND; |
| cv_signal(&arl->arl_cv); |
| mutex_exit(&arl->arl_lock); |
| break; |
| case DL_ATTACH_REQ: |
| break; |
| default: |
| /* If it's anything else, we didn't send it. */ |
| arl_refrele(arl); |
| putnext(q, mp); |
| return; |
| } |
| break; |
| case DL_OK_ACK: |
| DTRACE_PROBE4(arl__dlpi, char *, "arp_rput_dlpi_writer ok", |
| char *, dl_primstr(dlp->ok_ack.dl_correct_primitive), |
| char *, dl_primstr(dlp->ok_ack.dl_correct_primitive), |
| arl_t *, arl); |
| mutex_enter(&arl->arl_lock); |
| switch (dlp->ok_ack.dl_correct_primitive) { |
| case DL_UNBIND_REQ: |
| case DL_ATTACH_REQ: |
| break; |
| default: |
| ip0dbg(("Dropping unrecognized DL_OK_ACK for %s", |
| dl_primstr(dlp->ok_ack.dl_correct_primitive))); |
| mutex_exit(&arl->arl_lock); |
| arl_refrele(arl); |
| freemsg(mp); |
| return; |
| } |
| mutex_exit(&arl->arl_lock); |
| break; |
| case DL_BIND_ACK: |
| DTRACE_PROBE2(rput_dl_bind, arl_t *, arl, |
| dl_bind_ack_t *, &dlp->bind_ack); |
| |
| mutex_enter(&arl->arl_lock); |
| ASSERT(arl->arl_state_flags & ARL_LL_BIND_PENDING); |
| arl->arl_state_flags &= |
| ~(ARL_LL_BIND_PENDING|ARL_LL_DOWN|ARL_LL_UNBOUND); |
| arl->arl_state_flags |= ARL_LL_UP; |
| mutex_exit(&arl->arl_lock); |
| break; |
| case DL_UDERROR_IND: |
| DTRACE_PROBE2(rput_dl_uderror, arl_t *, arl, |
| dl_uderror_ind_t *, &dlp->uderror_ind); |
| arl_refrele(arl); |
| putnext(q, mp); |
| return; |
| default: |
| DTRACE_PROBE2(rput_dl_badprim, arl_t *, arl, |
| union DL_primitives *, dlp); |
| arl_refrele(arl); |
| putnext(q, mp); |
| return; |
| } |
| arp_dlpi_done(arl, ill); |
| arl_refrele(arl); |
| freemsg(mp); |
| } |
| |
| void |
| arp_rput(queue_t *q, mblk_t *mp) |
| { |
| arl_t *arl = q->q_ptr; |
| boolean_t need_refrele = B_FALSE; |
| |
| mutex_enter(&arl->arl_lock); |
| if (((arl->arl_state_flags & |
| (ARL_CONDEMNED | ARL_LL_REPLUMBING)) != 0)) { |
| /* |
| * Only allow high priority DLPI messages during unplumb or |
| * replumb, and we don't take an arl_refcnt for that case. |
| */ |
| if (DB_TYPE(mp) != M_PCPROTO) { |
| mutex_exit(&arl->arl_lock); |
| freemsg(mp); |
| return; |
| } |
| } else { |
| arl_refhold_locked(arl); |
| need_refrele = B_TRUE; |
| } |
| mutex_exit(&arl->arl_lock); |
| |
| switch (DB_TYPE(mp)) { |
| case M_PCPROTO: |
| case M_PROTO: { |
| ill_t *ill; |
| |
| /* |
| * could be one of |
| * (i) real message from the wire, (DLPI_DATA) |
| * (ii) DLPI message |
| * Take a ref on the ill associated with this arl to |
| * prevent the ill from being unplumbed until this thread |
| * is done. |
| */ |
| if (IS_DLPI_DATA(mp)) { |
| ill = arl_to_ill(arl); |
| if (ill == NULL) { |
| arp_drop_packet("No ill", mp, ill); |
| break; |
| } |
| arp_process_packet(ill, mp); |
| ill_refrele(ill); |
| break; |
| } |
| /* Miscellaneous DLPI messages get shuffled off. */ |
| arp_rput_dlpi(q, mp); |
| break; |
| } |
| case M_ERROR: |
| case M_HANGUP: |
| if (mp->b_rptr < mp->b_wptr) |
| arl->arl_error = (int)(*mp->b_rptr & 0xFF); |
| if (arl->arl_error == 0) |
| arl->arl_error = ENXIO; |
| freemsg(mp); |
| break; |
| default: |
| ip1dbg(("arp_rput other db type %x\n", DB_TYPE(mp))); |
| putnext(q, mp); |
| break; |
| } |
| if (need_refrele) |
| arl_refrele(arl); |
| } |
| |
| static void |
| arp_process_packet(ill_t *ill, mblk_t *mp) |
| { |
| mblk_t *mp1; |
| arh_t *arh; |
| in_addr_t src_paddr, dst_paddr; |
| uint32_t hlen, plen; |
| boolean_t is_probe; |
| int op; |
| ncec_t *dst_ncec, *src_ncec = NULL; |
| uchar_t *src_haddr, *arhp, *dst_haddr, *dp, *sp; |
| int err; |
| ip_stack_t *ipst; |
| boolean_t need_ill_refrele = B_FALSE; |
| nce_t *nce; |
| uchar_t *src_lladdr; |
| dl_unitdata_ind_t *dlui; |
| ip_recv_attr_t iras; |
| |
| ASSERT(ill != NULL); |
| if (ill->ill_flags & ILLF_NOARP) { |
| arp_drop_packet("Interface does not support ARP", mp, ill); |
| return; |
| } |
| ipst = ill->ill_ipst; |
| /* |
| * What we should have at this point is a DL_UNITDATA_IND message |
| * followed by an ARP packet. We do some initial checks and then |
| * get to work. |
| */ |
| dlui = (dl_unitdata_ind_t *)mp->b_rptr; |
| if (dlui->dl_group_address == 1) { |
| /* |
| * multicast or broadcast packet. Only accept on the ipmp |
| * nominated interface for multicasts ('cast_ill'). |
| * If we have no cast_ill we are liberal and accept everything. |
| */ |
| if (IS_UNDER_IPMP(ill)) { |
| /* For an under ill_grp can change under lock */ |
| rw_enter(&ipst->ips_ill_g_lock, RW_READER); |
| if (!ill->ill_nom_cast && ill->ill_grp != NULL && |
| ill->ill_grp->ig_cast_ill != NULL) { |
| rw_exit(&ipst->ips_ill_g_lock); |
| arp_drop_packet("Interface is not nominated " |
| "for multicast sends and receives", |
| mp, ill); |
| return; |
| } |
| rw_exit(&ipst->ips_ill_g_lock); |
| } |
| } |
| mp1 = mp->b_cont; |
| if (mp1 == NULL) { |
| arp_drop_packet("Missing ARP packet", mp, ill); |
| return; |
| } |
| if (mp1->b_cont != NULL) { |
| /* No fooling around with funny messages. */ |
| if (!pullupmsg(mp1, -1)) { |
| arp_drop_packet("Funny message: pullup failed", |
| mp, ill); |
| return; |
| } |
| } |
| arh = (arh_t *)mp1->b_rptr; |
| hlen = arh->arh_hlen; |
| plen = arh->arh_plen; |
| if (MBLKL(mp1) < ARH_FIXED_LEN + 2 * hlen + 2 * plen) { |
| arp_drop_packet("mblk len too small", mp, ill); |
| return; |
| } |
| /* |
| * hlen 0 is used for RFC 1868 UnARP. |
| * |
| * Note that the rest of the code checks that hlen is what we expect |
| * for this hardware address type, so might as well discard packets |
| * here that don't match. |
| */ |
| if ((hlen > 0 && hlen != ill->ill_phys_addr_length) || plen == 0) { |
| DTRACE_PROBE2(rput_bogus, ill_t *, ill, mblk_t *, mp1); |
| arp_drop_packet("Bogus hlen or plen", mp, ill); |
| return; |
| } |
| /* |
| * Historically, Solaris has been lenient about hardware type numbers. |
| * We should check here, but don't. |
| */ |
| DTRACE_PROBE3(arp__physical__in__start, ill_t *, ill, arh_t *, arh, |
| mblk_t *, mp); |
| /* |
| * If ill is in an ipmp group, it will be the under ill. If we want |
| * to report the packet as coming up the IPMP interface, we should |
| * convert it to the ipmp ill. |
| */ |
| ARP_HOOK_IN(ipst->ips_arp_physical_in_event, ipst->ips_arp_physical_in, |
| ill->ill_phyint->phyint_ifindex, arh, mp, mp1, ipst); |
| DTRACE_PROBE1(arp__physical__in__end, mblk_t *, mp); |
| if (mp == NULL) |
| return; |
| arhp = (uchar_t *)arh + ARH_FIXED_LEN; |
| src_haddr = arhp; /* ar$sha */ |
| arhp += hlen; |
| bcopy(arhp, &src_paddr, IP_ADDR_LEN); /* ar$spa */ |
| sp = arhp; |
| arhp += IP_ADDR_LEN; |
| dst_haddr = arhp; /* ar$dha */ |
| arhp += hlen; |
| bcopy(arhp, &dst_paddr, IP_ADDR_LEN); /* ar$tpa */ |
| dp = arhp; |
| op = BE16_TO_U16(arh->arh_operation); |
| |
| DTRACE_PROBE2(ip__arp__input, (in_addr_t), src_paddr, |
| (in_addr_t), dst_paddr); |
| |
| /* Determine if this is just a probe */ |
| is_probe = (src_paddr == INADDR_ANY); |
| |
| /* |
| * ira_ill is the only field used down the arp_notify path. |
| */ |
| bzero(&iras, sizeof (iras)); |
| iras.ira_ill = iras.ira_rill = ill; |
| /* |
| * RFC 826: first check if the <protocol, sender protocol address> is |
| * in the cache, if there is a sender protocol address. Note that this |
| * step also handles resolutions based on source. |
| */ |
| /* Note: after here we need to freeb(mp) and freemsg(mp1) separately */ |
| mp->b_cont = NULL; |
| if (is_probe) { |
| err = AR_NOTFOUND; |
| } else { |
| if (plen != 4) { |
| arp_drop_packet("bad protocol len", mp, ill); |
| return; |
| } |
| err = ip_nce_resolve_all(ill, src_haddr, hlen, &src_paddr, |
| &src_ncec, op); |
| switch (err) { |
| case AR_BOGON: |
| ASSERT(src_ncec != NULL); |
| arp_notify(src_paddr, mp1, AR_CN_BOGON, |
| &iras, src_ncec); |
| break; |
| case AR_FAILED: |
| arp_notify(src_paddr, mp1, AR_CN_FAILED, &iras, |
| src_ncec); |
| break; |
| case AR_LOOPBACK: |
| DTRACE_PROBE2(rput_loopback, ill_t *, ill, arh_t *, |
| arh); |
| freemsg(mp1); |
| break; |
| default: |
| goto update; |
| } |
| freemsg(mp); |
| if (src_ncec != NULL) |
| ncec_refrele(src_ncec); |
| return; |
| } |
| update: |
| /* |
| * Now look up the destination address. By RFC 826, we ignore the |
| * packet at this step if the target isn't one of our addresses (i.e., |
| * one we have been asked to PUBLISH). This is true even if the |
| * target is something we're trying to resolve and the packet |
| * is a response. |
| */ |
| dst_ncec = ncec_lookup_illgrp_v4(ill, &dst_paddr); |
| if (dst_ncec == NULL || !NCE_PUBLISH(dst_ncec)) { |
| /* |
| * Let the client know if the source mapping has changed, even |
| * if the destination provides no useful information for the |
| * client. |
| */ |
| if (err == AR_CHANGED) { |
| arp_notify(src_paddr, mp1, AR_CN_ANNOUNCE, &iras, |
| NULL); |
| freemsg(mp); |
| } else { |
| freemsg(mp); |
| arp_drop_packet("Target is not interesting", mp1, ill); |
| } |
| if (dst_ncec != NULL) |
| ncec_refrele(dst_ncec); |
| if (src_ncec != NULL) |
| ncec_refrele(src_ncec); |
| return; |
| } |
| |
| if (dst_ncec->ncec_flags & NCE_F_UNVERIFIED) { |
| /* |
| * Check for a reflection. Some misbehaving bridges will |
| * reflect our own transmitted packets back to us. |
| */ |
| ASSERT(NCE_PUBLISH(dst_ncec)); |
| if (hlen != dst_ncec->ncec_ill->ill_phys_addr_length) { |
| ncec_refrele(dst_ncec); |
| if (src_ncec != NULL) |
| ncec_refrele(src_ncec); |
| freemsg(mp); |
| arp_drop_packet("bad arh_len", mp1, ill); |
| return; |
| } |
| if (!nce_cmp_ll_addr(dst_ncec, src_haddr, hlen)) { |
| DTRACE_PROBE3(rput_probe_reflected, ill_t *, ill, |
| arh_t *, arh, ncec_t *, dst_ncec); |
| ncec_refrele(dst_ncec); |
| if (src_ncec != NULL) |
| ncec_refrele(src_ncec); |
| freemsg(mp); |
| arp_drop_packet("Reflected probe", mp1, ill); |
| return; |
| } |
| /* |
| * Responses targeting our HW address that are not responses to |
| * our DAD probe must be ignored as they are related to requests |
| * sent before DAD was restarted. |
| */ |
| if (op == ARP_RESPONSE && |
| (nce_cmp_ll_addr(dst_ncec, dst_haddr, hlen) == 0)) { |
| ncec_refrele(dst_ncec); |
| if (src_ncec != NULL) |
| ncec_refrele(src_ncec); |
| freemsg(mp); |
| arp_drop_packet( |
| "Response to request that was sent before DAD", |
| mp1, ill); |
| return; |
| } |
| /* |
| * Responses targeted to HW addresses which are not ours but |
| * sent to our unverified proto address are also conflicts. |
| * These may be reported by a proxy rather than the interface |
| * with the conflicting address, dst_paddr is in conflict |
| * rather than src_paddr. To ensure IP can locate the correct |
| * ipif to take down, it is necessary to copy dst_paddr to |
| * the src_paddr field before sending it to IP. The same is |
| * required for probes, where src_paddr will be INADDR_ANY. |
| */ |
| if (is_probe || op == ARP_RESPONSE) { |
| bcopy(dp, sp, plen); |
| arp_notify(src_paddr, mp1, AR_CN_FAILED, &iras, |
| NULL); |
| ncec_delete(dst_ncec); |
| } else if (err == AR_CHANGED) { |
| arp_notify(src_paddr, mp1, AR_CN_ANNOUNCE, &iras, |
| NULL); |
| } else { |
| DTRACE_PROBE3(rput_request_unverified, |
| ill_t *, ill, arh_t *, arh, ncec_t *, dst_ncec); |
| arp_drop_packet("Unverified request", mp1, ill); |
| } |
| freemsg(mp); |
| ncec_refrele(dst_ncec); |
| if (src_ncec != NULL) |
| ncec_refrele(src_ncec); |
| return; |
| } |
| /* |
| * If it's a request, then we reply to this, and if we think the |
| * sender's unknown, then we create an entry to avoid unnecessary ARPs. |
| * The design assumption is that someone ARPing us is likely to send us |
| * a packet soon, and that we'll want to reply to it. |
| */ |
| if (op == ARP_REQUEST) { |
| const uchar_t *nce_hwaddr; |
| struct in_addr nce_paddr; |
| clock_t now; |
| ill_t *under_ill = ill; |
| boolean_t send_unicast = B_TRUE; |
| |
| ASSERT(NCE_PUBLISH(dst_ncec)); |
| |
| if ((dst_ncec->ncec_flags & (NCE_F_BCAST|NCE_F_MCAST)) != 0) { |
| /* |
| * Ignore senders who are deliberately or accidentally |
| * confused. |
| */ |
| goto bail; |
| } |
| |
| if (!is_probe && err == AR_NOTFOUND) { |
| ASSERT(src_ncec == NULL); |
| |
| if (IS_UNDER_IPMP(under_ill)) { |
| /* |
| * create the ncec for the sender on ipmp_ill. |
| * We pass in the ipmp_ill itself to avoid |
| * creating an nce_t on the under_ill. |
| */ |
| ill = ipmp_ill_hold_ipmp_ill(under_ill); |
| if (ill == NULL) |
| ill = under_ill; |
| else |
| need_ill_refrele = B_TRUE; |
| } |
| |
| err = nce_lookup_then_add_v4(ill, src_haddr, hlen, |
| &src_paddr, 0, ND_STALE, &nce); |
| |
| switch (err) { |
| case 0: |
| case EEXIST: |
| ip1dbg(("added ncec %p in state %d ill %s\n", |
| (void *)src_ncec, src_ncec->ncec_state, |
| ill->ill_name)); |
| src_ncec = nce->nce_common; |
| break; |
| default: |
| /* |
| * Either no memory, or the outgoing interface |
| * is in the process of down/unplumb. In the |
| * latter case, we will fail the send anyway, |
| * and in the former case, we should try to send |
| * the ARP response. |
| */ |
| src_lladdr = src_haddr; |
| goto send_response; |
| } |
| ncec_refhold(src_ncec); |
| nce_refrele(nce); |
| /* set up cleanup interval on ncec */ |
| } |
| |
| /* |
| * This implements periodic address defense based on a modified |
| * version of the RFC 3927 requirements. Instead of sending a |
| * broadcasted reply every time, as demanded by the RFC, we |
| * send at most one broadcast reply per arp_broadcast_interval. |
| */ |
| now = ddi_get_lbolt(); |
| if ((now - dst_ncec->ncec_last_time_defended) > |
| MSEC_TO_TICK(ipst->ips_ipv4_dad_announce_interval)) { |
| dst_ncec->ncec_last_time_defended = now; |
| /* |
| * If this is one of the long-suffering entries, |
| * pull it out now. It no longer needs separate |
| * defense, because we're now doing that with this |
| * broadcasted reply. |
| */ |
| dst_ncec->ncec_flags &= ~NCE_F_DELAYED; |
| send_unicast = B_FALSE; |
| } |
| if (src_ncec != NULL && send_unicast) { |
| src_lladdr = src_ncec->ncec_lladdr; |
| } else { |
| src_lladdr = under_ill->ill_bcast_mp->b_rptr + |
| NCE_LL_ADDR_OFFSET(under_ill); |
| } |
| send_response: |
| nce_hwaddr = dst_ncec->ncec_lladdr; |
| IN6_V4MAPPED_TO_INADDR(&dst_ncec->ncec_addr, &nce_paddr); |
| |
| (void) arp_output(under_ill, ARP_RESPONSE, |
| nce_hwaddr, (uchar_t *)&nce_paddr, src_haddr, |
| (uchar_t *)&src_paddr, src_lladdr); |
| } |
| bail: |
| if (dst_ncec != NULL) { |
| ncec_refrele(dst_ncec); |
| } |
| if (src_ncec != NULL) { |
| ncec_refrele(src_ncec); |
| } |
| if (err == AR_CHANGED) { |
| mp->b_cont = NULL; |
| arp_notify(src_paddr, mp1, AR_CN_ANNOUNCE, &iras, NULL); |
| mp1 = NULL; |
| } |
| if (need_ill_refrele) |
| ill_refrele(ill); |
| done: |
| freemsg(mp); |
| freemsg(mp1); |
| } |
| |
| /* |
| * Basic initialization of the arl_t and the arl_common structure shared with |
| * the ill_t that is done after SLIFNAME/IF_UNITSEL. |
| */ |
| static int |
| arl_ill_init(arl_t *arl, char *ill_name) |
| { |
| ill_t *ill; |
| arl_ill_common_t *ai; |
| |
| ill = ill_lookup_on_name(ill_name, B_FALSE, B_FALSE, B_FALSE, |
| arl->arl_ipst); |
| |
| if (ill == NULL) |
| return (ENXIO); |
| |
| /* |
| * By the time we set up the arl, we expect the ETHERTYPE_IP |
| * stream to be fully bound and attached. So we copy/verify |
| * relevant information as possible from/against the ill. |
| * |
| * The following should have been set up in arp_ll_set_defaults() |
| * after the first DL_INFO_ACK was received. |
| */ |
| ASSERT(arl->arl_phys_addr_length == ill->ill_phys_addr_length); |
| ASSERT(arl->arl_sap == ETHERTYPE_ARP); |
| ASSERT(arl->arl_mactype == ill->ill_mactype); |
| ASSERT(arl->arl_sap_length == ill->ill_sap_length); |
| |
| ai = kmem_zalloc(sizeof (*ai), KM_SLEEP); |
| mutex_enter(&ill->ill_lock); |
| /* First ensure that the ill is not CONDEMNED. */ |
| if (ill->ill_state_flags & ILL_CONDEMNED) { |
| mutex_exit(&ill->ill_lock); |
| ill_refrele(ill); |
| kmem_free(ai, sizeof (*ai)); |
| return (ENXIO); |
| } |
| if (ill->ill_common != NULL || arl->arl_common != NULL) { |
| mutex_exit(&ill->ill_lock); |
| ip0dbg(("%s: PPA already exists", ill->ill_name)); |
| ill_refrele(ill); |
| kmem_free(ai, sizeof (*ai)); |
| return (EEXIST); |
| } |
| mutex_init(&ai->ai_lock, NULL, MUTEX_DEFAULT, NULL); |
| ai->ai_arl = arl; |
| ai->ai_ill = ill; |
| ill->ill_common = ai; |
| arl->arl_common = ai; |
| mutex_exit(&ill->ill_lock); |
| (void) strlcpy(arl->arl_name, ill->ill_name, LIFNAMSIZ); |
| arl->arl_name_length = ill->ill_name_length; |
| ill_refrele(ill); |
| arp_ifname_notify(arl); |
| return (0); |
| } |
| |
| /* Allocate and do common initializations for DLPI messages. */ |
| static mblk_t * |
| ip_ar_dlpi_comm(t_uscalar_t prim, size_t size) |
| { |
| mblk_t *mp; |
| |
| if ((mp = allocb(size, BPRI_HI)) == NULL) |
| return (NULL); |
| |
| /* |
| * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter |
| * of which we don't seem to use) are sent with M_PCPROTO, and |
| * that other DLPI are M_PROTO. |
| */ |
| DB_TYPE(mp) = (prim == DL_INFO_REQ) ? M_PCPROTO : M_PROTO; |
| |
| mp->b_wptr = mp->b_rptr + size; |
| bzero(mp->b_rptr, size); |
| DL_PRIM(mp) = prim; |
| return (mp); |
| } |
| |
| |
| int |
| ip_sioctl_ifunitsel_arp(queue_t *q, int *ppa) |
| { |
| arl_t *arl; |
| char *cp, ill_name[LIFNAMSIZ]; |
| |
| if (q->q_next == NULL) |
| return (EINVAL); |
| |
| do { |
| q = q->q_next; |
| } while (q->q_next != NULL); |
| cp = q->q_qinfo->qi_minfo->mi_idname; |
| |
| arl = (arl_t *)q->q_ptr; |
| (void) snprintf(ill_name, sizeof (ill_name), "%s%d", cp, *ppa); |
| arl->arl_ppa = *ppa; |
| return (arl_ill_init(arl, ill_name)); |
| } |
| |
| int |
| ip_sioctl_slifname_arp(queue_t *q, void *lifreq) |
| { |
| arl_t *arl; |
| struct lifreq *lifr = lifreq; |
| |
| /* ioctl not valid when IP opened as a device */ |
| if (q->q_next == NULL) |
| return (EINVAL); |
| |
| arl = (arl_t *)q->q_ptr; |
| arl->arl_ppa = lifr->lifr_ppa; |
| return (arl_ill_init(arl, lifr->lifr_name)); |
| } |
| |
| arl_t * |
| ill_to_arl(ill_t *ill) |
| { |
| arl_ill_common_t *ai = ill->ill_common; |
| arl_t *arl = NULL; |
| |
| if (ai == NULL) |
| return (NULL); |
| /* |
| * Find the arl_t that corresponds to this ill_t from the shared |
| * ill_common structure. We can safely access the ai here as it |
| * will only be freed in arp_modclose() after we have become |
| * single-threaded. |
| */ |
| mutex_enter(&ai->ai_lock); |
| if ((arl = ai->ai_arl) != NULL) { |
| mutex_enter(&arl->arl_lock); |
| if (!(arl->arl_state_flags & ARL_CONDEMNED)) { |
| arl_refhold_locked(arl); |
| mutex_exit(&arl->arl_lock); |
| } else { |
| mutex_exit(&arl->arl_lock); |
| arl = NULL; |
| } |
| } |
| mutex_exit(&ai->ai_lock); |
| return (arl); |
| } |
| |
| ill_t * |
| arl_to_ill(arl_t *arl) |
| { |
| arl_ill_common_t *ai = arl->arl_common; |
| ill_t *ill = NULL; |
| |
| if (ai == NULL) { |
| /* |
| * happens when the arp stream is just being opened, and |
| * arl_ill_init has not been executed yet. |
| */ |
| return (NULL); |
| } |
| /* |
| * Find the ill_t that corresponds to this arl_t from the shared |
| * arl_common structure. We can safely access the ai here as it |
| * will only be freed in arp_modclose() after we have become |
| * single-threaded. |
| */ |
| mutex_enter(&ai->ai_lock); |
| if ((ill = ai->ai_ill) != NULL) { |
| mutex_enter(&ill->ill_lock); |
| if (!ILL_IS_CONDEMNED(ill)) { |
| ill_refhold_locked(ill); |
| mutex_exit(&ill->ill_lock); |
| } else { |
| mutex_exit(&ill->ill_lock); |
| ill = NULL; |
| } |
| } |
| mutex_exit(&ai->ai_lock); |
| return (ill); |
| } |
| |
| int |
| arp_ll_up(ill_t *ill) |
| { |
| mblk_t *attach_mp = NULL; |
| mblk_t *bind_mp = NULL; |
| mblk_t *unbind_mp = NULL; |
| arl_t *arl; |
| |
| ASSERT(IAM_WRITER_ILL(ill)); |
| arl = ill_to_arl(ill); |
| |
| DTRACE_PROBE2(ill__downup, char *, "arp_ll_up", ill_t *, ill); |
| if (arl == NULL) |
| return (ENXIO); |
| DTRACE_PROBE2(arl__downup, char *, "arp_ll_up", arl_t *, arl); |
| if ((arl->arl_state_flags & ARL_LL_UP) != 0) { |
| arl_refrele(arl); |
| return (0); |
| } |
| if (arl->arl_needs_attach) { /* DL_STYLE2 */ |
| attach_mp = |
| ip_ar_dlpi_comm(DL_ATTACH_REQ, sizeof (dl_attach_req_t)); |
| if (attach_mp == NULL) |
| goto bad; |
| ((dl_attach_req_t *)attach_mp->b_rptr)->dl_ppa = arl->arl_ppa; |
| } |
| |
| /* Allocate and initialize a bind message. */ |
| bind_mp = ip_ar_dlpi_comm(DL_BIND_REQ, sizeof (dl_bind_req_t)); |
| if (bind_mp == NULL) |
| goto bad; |
| ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ETHERTYPE_ARP; |
| ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; |
| |
| unbind_mp = ip_ar_dlpi_comm(DL_UNBIND_REQ, sizeof (dl_unbind_req_t)); |
| if (unbind_mp == NULL) |
| goto bad; |
| if (arl->arl_needs_attach) { |
| arp_dlpi_send(arl, attach_mp); |
| } |
| arl->arl_unbind_mp = unbind_mp; |
| |
| arl->arl_state_flags |= ARL_LL_BIND_PENDING; |
| arp_dlpi_send(arl, bind_mp); |
| arl_refrele(arl); |
| return (EINPROGRESS); |
| |
| bad: |
| freemsg(attach_mp); |
| freemsg(bind_mp); |
| freemsg(unbind_mp); |
| arl_refrele(arl); |
| return (ENOMEM); |
| } |
| |
| /* |
| * consumes/frees mp |
| */ |
| static void |
| arp_notify(in_addr_t src, mblk_t *mp, uint32_t arcn_code, |
| ip_recv_attr_t *ira, ncec_t *ncec) |
| { |
| char hbuf[MAC_STR_LEN]; |
| char sbuf[INET_ADDRSTRLEN]; |
| ill_t *ill = ira->ira_ill; |
| ip_stack_t *ipst = ill->ill_ipst; |
| arh_t *arh = (arh_t *)mp->b_rptr; |
| |
| switch (arcn_code) { |
| case AR_CN_BOGON: |
| /* |
| * Someone is sending ARP packets with a source protocol |
| * address that we have published and for which we believe our |
| * entry is authoritative and verified to be unique on |
| * the network. |
| * |
| * arp_process_packet() sends AR_CN_FAILED for the case when |
| * a DAD probe is received and the hardware address of a |
| * non-authoritative entry has changed. Thus, AR_CN_BOGON |
| * indicates a real conflict, and we have to do resolution. |
| * |
| * We back away quickly from the address if it's from DHCP or |
| * otherwise temporary and hasn't been used recently (or at |
| * all). We'd like to include "deprecated" addresses here as |
| * well (as there's no real reason to defend something we're |
| * discarding), but IPMP "reuses" this flag to mean something |
| * other than the standard meaning. |
| */ |
| if (ip_nce_conflict(mp, ira, ncec)) { |
| (void) mac_colon_addr((uint8_t *)(arh + 1), |
| arh->arh_hlen, hbuf, sizeof (hbuf)); |
| (void) ip_dot_addr(src, sbuf); |
| cmn_err(CE_WARN, |
| "proxy ARP problem? Node '%s' is using %s on %s", |
| hbuf, sbuf, ill->ill_name); |
| if (!arp_no_defense) |
| (void) arp_announce(ncec); |
| /* |
| * ncec_last_time_defended has been adjusted in |
| * ip_nce_conflict. |
| */ |
| } else { |
| ncec_delete(ncec); |
| } |
| freemsg(mp); |
| break; |
| case AR_CN_ANNOUNCE: { |
| nce_hw_map_t hwm; |
| /* |
| * ARP gives us a copy of any packet where it thinks |
| * the address has changed, so that we can update our |
| * caches. We're responsible for caching known answers |
| * in the current design. We check whether the |
| * hardware address really has changed in all of our |
| * entries that have cached this mapping, and if so, we |
| * blow them away. This way we will immediately pick |
| * up the rare case of a host changing hardware |
| * address. |
| */ |
| if (src == 0) { |
| freemsg(mp); |
| break; |
| } |
| hwm.hwm_addr = src; |
| hwm.hwm_hwlen = arh->arh_hlen; |
| hwm.hwm_hwaddr = (uchar_t *)(arh + 1); |
| hwm.hwm_flags = 0; |
| ncec_walk_common(ipst->ips_ndp4, NULL, |
| (pfi_t)nce_update_hw_changed, &hwm, B_TRUE); |
| freemsg(mp); |
| break; |
| } |
| case AR_CN_FAILED: |
| if (arp_no_defense) { |
| (void) mac_colon_addr((uint8_t *)(arh + 1), |
| arh->arh_hlen, hbuf, sizeof (hbuf)); |
| (void) ip_dot_addr(src, sbuf); |
| |
| cmn_err(CE_WARN, |
| "node %s is using our IP address %s on %s", |
| hbuf, sbuf, ill->ill_name); |
| freemsg(mp); |
| break; |
| } |
| /* |
| * mp will be freed by arp_excl. |
| */ |
| ill_refhold(ill); |
| qwriter_ip(ill, ill->ill_rq, mp, arp_excl, NEW_OP, B_FALSE); |
| return; |
| default: |
| ASSERT(0); |
| freemsg(mp); |
| break; |
| } |
| } |
| |
| /* |
| * arp_output is called to transmit an ARP Request or Response. The mapping |
| * to RFC 826 variables is: |
| * haddr1 == ar$sha |
| * paddr1 == ar$spa |
| * haddr2 == ar$tha |
| * paddr2 == ar$tpa |
| * The ARP frame is sent to the ether_dst in dst_lladdr. |
| */ |
| static int |
| arp_output(ill_t *ill, uint32_t operation, |
| const uchar_t *haddr1, const uchar_t *paddr1, const uchar_t *haddr2, |
| const uchar_t *paddr2, uchar_t *dst_lladdr) |
| { |
| arh_t *arh; |
| uint8_t *cp; |
| uint_t hlen; |
| uint32_t plen = IPV4_ADDR_LEN; /* ar$pln from RFC 826 */ |
| uint32_t proto = IP_ARP_PROTO_TYPE; |
| mblk_t *mp; |
| arl_t *arl; |
| |
| ASSERT(dst_lladdr != NULL); |
| hlen = ill->ill_phys_addr_length; /* ar$hln from RFC 826 */ |
| mp = ill_dlur_gen(dst_lladdr, hlen, ETHERTYPE_ARP, ill->ill_sap_length); |
| |
| if (mp == NULL) |
| return (ENOMEM); |
| |
| /* IFF_NOARP flag is set or link down: do not send arp messages */ |
| if ((ill->ill_flags & ILLF_NOARP) || !ill->ill_dl_up) { |
| freemsg(mp); |
| return (ENXIO); |
| } |
| |
| mp->b_cont = allocb(AR_LL_HDR_SLACK + ARH_FIXED_LEN + (hlen * 4) + |
| plen + plen, BPRI_MED); |
| if (mp->b_cont == NULL) { |
| freeb(mp); |
| return (ENOMEM); |
| } |
| |
| /* Fill in the ARP header. */ |
| cp = mp->b_cont->b_rptr + (AR_LL_HDR_SLACK + hlen + hlen); |
| mp->b_cont->b_rptr = cp; |
| arh = (arh_t *)cp; |
| U16_TO_BE16(arp_hw_type(ill->ill_mactype), arh->arh_hardware); |
| U16_TO_BE16(proto, arh->arh_proto); |
| arh->arh_hlen = (uint8_t)hlen; |
| arh->arh_plen = (uint8_t)plen; |
| U16_TO_BE16(operation, arh->arh_operation); |
| cp += ARH_FIXED_LEN; |
| bcopy(haddr1, cp, hlen); |
| cp += hlen; |
| if (paddr1 == NULL) |
| bzero(cp, plen); |
| else |
| bcopy(paddr1, cp, plen); |
| cp += plen; |
| if (haddr2 == NULL) |
| bzero(cp, hlen); |
| else |
| bcopy(haddr2, cp, hlen); |
| cp += hlen; |
| bcopy(paddr2, cp, plen); |
| cp += plen; |
| mp->b_cont->b_wptr = cp; |
| |
| DTRACE_PROBE3(arp__physical__out__start, |
| ill_t *, ill, arh_t *, arh, mblk_t *, mp); |
| ARP_HOOK_OUT(ill->ill_ipst->ips_arp_physical_out_event, |
| ill->ill_ipst->ips_arp_physical_out, |
| ill->ill_phyint->phyint_ifindex, arh, mp, mp->b_cont, |
| ill->ill_ipst); |
| DTRACE_PROBE1(arp__physical__out__end, mblk_t *, mp); |
| if (mp == NULL) |
| return (0); |
| |
| /* Ship it out. */ |
| arl = ill_to_arl(ill); |
| if (arl == NULL) { |
| freemsg(mp); |
| return (0); |
| } |
| if (canputnext(arl->arl_wq)) |
| putnext(arl->arl_wq, mp); |
| else |
| freemsg(mp); |
| arl_refrele(arl); |
| return (0); |
| } |
| |
| /* |
| * Process resolve requests. |
| * If we are not yet reachable then we check and decrease ncec_rcnt; otherwise |
| * we leave it alone (the caller will check and manage ncec_pcnt in those |
| * cases.) |
| */ |
| int |
| arp_request(ncec_t *ncec, in_addr_t sender, ill_t *ill) |
| { |
| int err; |
| const uchar_t *target_hwaddr; |
| struct in_addr nce_paddr; |
| uchar_t *dst_lladdr; |
| boolean_t use_rcnt = !NCE_ISREACHABLE(ncec); |
| |
| ASSERT(MUTEX_HELD(&ncec->ncec_lock)); |
| ASSERT(!IS_IPMP(ill)); |
| |
| if (use_rcnt && ncec->ncec_rcnt == 0) { |
| /* not allowed any more retransmits. */ |
| return (0); |
| } |
| |
| if ((ill->ill_flags & ILLF_NOARP) != 0) |
| return (0); |
| |
| IN6_V4MAPPED_TO_INADDR(&ncec->ncec_addr, &nce_paddr); |
| |
| target_hwaddr = |
| ill->ill_bcast_mp->b_rptr + NCE_LL_ADDR_OFFSET(ill); |
| |
| if (NCE_ISREACHABLE(ncec)) { |
| dst_lladdr = ncec->ncec_lladdr; |
| } else { |
| dst_lladdr = ill->ill_bcast_mp->b_rptr + |
| NCE_LL_ADDR_OFFSET(ill); |
| } |
| |
| mutex_exit(&ncec->ncec_lock); |
| err = arp_output(ill, ARP_REQUEST, |
| ill->ill_phys_addr, (uchar_t *)&sender, target_hwaddr, |
| (uchar_t *)&nce_paddr, dst_lladdr); |
| mutex_enter(&ncec->ncec_lock); |
| |
| if (err != 0) { |
| /* |
| * Some transient error such as ENOMEM or a down link was |
| * encountered. If the link has been taken down permanently, |
| * the ncec will eventually be cleaned up (ipif_down_tail() |
| * will call ipif_nce_down() and flush the ncec), to terminate |
| * recurring attempts to send ARP requests. In all other cases, |
| * allow the caller another chance at success next time. |
| */ |
| return (ncec->ncec_ill->ill_reachable_retrans_time); |
| } |
| |
| if (use_rcnt) |
| ncec->ncec_rcnt--; |
| |
| return (ncec->ncec_ill->ill_reachable_retrans_time); |
| } |
| |
| /* return B_TRUE if dropped */ |
| boolean_t |
| arp_announce(ncec_t *ncec) |
| { |
| ill_t *ill; |
| int err; |
| uchar_t *sphys_addr, *bcast_addr; |
| struct in_addr ncec_addr; |
| boolean_t need_refrele = B_FALSE; |
| |
| ASSERT((ncec->ncec_flags & NCE_F_BCAST) == 0); |
| ASSERT((ncec->ncec_flags & NCE_F_MCAST) == 0); |
| |
| if (IS_IPMP(ncec->ncec_ill)) { |
| /* sent on the cast_ill */ |
| ill = ipmp_ill_get_xmit_ill(ncec->ncec_ill, B_FALSE); |
| if (ill == NULL) |
| return (B_TRUE); |
| need_refrele = B_TRUE; |
| } else { |
| ill = ncec->ncec_ill; |
| } |
| |
| /* |
| * broadcast an announce to ill_bcast address. |
| */ |
| IN6_V4MAPPED_TO_INADDR(&ncec->ncec_addr, &ncec_addr); |
| |
| sphys_addr = ncec->ncec_lladdr; |
| bcast_addr = ill->ill_bcast_mp->b_rptr + NCE_LL_ADDR_OFFSET(ill); |
| |
| err = arp_output(ill, ARP_REQUEST, |
| sphys_addr, (uchar_t *)&ncec_addr, bcast_addr, |
| (uchar_t *)&ncec_addr, bcast_addr); |
| |
| if (need_refrele) |
| ill_refrele(ill); |
| return (err != 0); |
| } |
| |
| /* return B_TRUE if dropped */ |
| boolean_t |
| arp_probe(ncec_t *ncec) |
| { |
| ill_t *ill; |
| int err; |
| struct in_addr ncec_addr; |
| uchar_t *sphys_addr, *dst_lladdr; |
| |
| if (IS_IPMP(ncec->ncec_ill)) { |
| ill = ipmp_ill_get_xmit_ill(ncec->ncec_ill, B_FALSE); |
| if (ill == NULL) |
| return (B_TRUE); |
| } else { |
| ill = ncec->ncec_ill; |
| } |
| |
| IN6_V4MAPPED_TO_INADDR(&ncec->ncec_addr, &ncec_addr); |
| |
| sphys_addr = ncec->ncec_lladdr; |
| dst_lladdr = ill->ill_bcast_mp->b_rptr + NCE_LL_ADDR_OFFSET(ill); |
| err = arp_output(ill, ARP_REQUEST, |
| sphys_addr, NULL, NULL, (uchar_t *)&ncec_addr, dst_lladdr); |
| |
| if (IS_IPMP(ncec->ncec_ill)) |
| ill_refrele(ill); |
| return (err != 0); |
| } |
| |
| static mblk_t * |
| arl_unbind(arl_t *arl) |
| { |
| mblk_t *mp; |
| |
| if ((mp = arl->arl_unbind_mp) != NULL) { |
| arl->arl_unbind_mp = NULL; |
| arl->arl_state_flags |= ARL_DL_UNBIND_IN_PROGRESS; |
| } |
| return (mp); |
| } |
| |
| int |
| arp_ll_down(ill_t *ill) |
| { |
| arl_t *arl; |
| mblk_t *unbind_mp; |
| int err = 0; |
| boolean_t replumb = (ill->ill_replumbing == 1); |
| |
| DTRACE_PROBE2(ill__downup, char *, "arp_ll_down", ill_t *, ill); |
| if ((arl = ill_to_arl(ill)) == NULL) |
| return (ENXIO); |
| DTRACE_PROBE2(arl__downup, char *, "arp_ll_down", arl_t *, arl); |
| mutex_enter(&arl->arl_lock); |
| unbind_mp = arl_unbind(arl); |
| if (unbind_mp != NULL) { |
| ASSERT(arl->arl_state_flags & ARL_DL_UNBIND_IN_PROGRESS); |
| DTRACE_PROBE2(arp__unbinding, mblk_t *, unbind_mp, |
| arl_t *, arl); |
| err = EINPROGRESS; |
| if (replumb) |
| arl->arl_state_flags |= ARL_LL_REPLUMBING; |
| } |
| mutex_exit(&arl->arl_lock); |
| if (unbind_mp != NULL) |
| arp_dlpi_send(arl, unbind_mp); |
| arl_refrele(arl); |
| return (err); |
| } |
| |
| /* ARGSUSED */ |
| int |
| arp_close(queue_t *q, int flags) |
| { |
| if (WR(q)->q_next != NULL) { |
| /* This is a module close */ |
| return (arp_modclose(q->q_ptr)); |
| } |
| qprocsoff(q); |
| q->q_ptr = WR(q)->q_ptr = NULL; |
| return (0); |
| } |
| |
| static int |
| arp_modclose(arl_t *arl) |
| { |
| arl_ill_common_t *ai = arl->arl_common; |
| ill_t *ill; |
| queue_t *q = arl->arl_rq; |
| mblk_t *mp, *nextmp; |
| ipsq_t *ipsq = NULL; |
| |
| ill = arl_to_ill(arl); |
| if (ill != NULL) { |
| if (!ill_waiter_inc(ill)) { |
| ill_refrele(ill); |
| } else { |
| ill_refrele(ill); |
| if (ipsq_enter(ill, B_FALSE, NEW_OP)) |
| ipsq = ill->ill_phyint->phyint_ipsq; |
| ill_waiter_dcr(ill); |
| } |
| if (ipsq == NULL) { |
| /* |
| * could not enter the ipsq because ill is already |
| * marked CONDEMNED. |
| */ |
| ill = NULL; |
| } |
| } |
| if (ai != NULL && ipsq == NULL) { |
| /* |
| * Either we did not get an ill because it was marked CONDEMNED |
| * or we could not enter the ipsq because it was unplumbing. |
| * In both cases, wait for the ill to complete ip_modclose(). |
| * |
| * If the arp_modclose happened even before SLIFNAME, the ai |
| * itself would be NULL, in which case we can complete the close |
| * without waiting. |
| */ |
| mutex_enter(&ai->ai_lock); |
| while (ai->ai_ill != NULL) |
| cv_wait(&ai->ai_ill_unplumb_done, &ai->ai_lock); |
| mutex_exit(&ai->ai_lock); |
| } |
| ASSERT(ill == NULL || IAM_WRITER_ILL(ill)); |
| |
| mutex_enter(&arl->arl_lock); |
| /* |
| * If the ill had completed unplumbing before arp_modclose(), there |
| * would be no ill (and therefore, no ipsq) to serialize arp_modclose() |
| * so that we need to explicitly check for ARL_CONDEMNED and back off |
| * if it is set. |
| */ |
| if ((arl->arl_state_flags & ARL_CONDEMNED) != 0) { |
| mutex_exit(&arl->arl_lock); |
| ASSERT(ipsq == NULL); |
| return (0); |
| } |
| arl->arl_state_flags |= ARL_CONDEMNED; |
| |
| /* |
| * send out all pending dlpi messages, don't wait for the ack (which |
| * will be ignored in arp_rput when CONDEMNED is set) |
| * |
| * We have to check for pending DL_UNBIND_REQ because, in the case |
| * that ip_modclose() executed before arp_modclose(), the call to |
| * ill_delete_tail->ipif_arp_down() would have triggered a |
| * DL_UNBIND_REQ. When arp_modclose() executes ipsq_enter() will fail |
| * (since ip_modclose() is in the ipsq) but the DL_UNBIND_ACK may not |
| * have been processed yet. In this scenario, we cannot reset |
| * arl_dlpi_pending, because the setting/clearing of arl_state_flags |
| * related to unbind, and the associated cv_waits must be allowed to |
| * continue. |
| */ |
| if (arl->arl_dlpi_pending != DL_UNBIND_REQ) |
| arl->arl_dlpi_pending = DL_PRIM_INVAL; |
| mp = arl->arl_dlpi_deferred; |
| arl->arl_dlpi_deferred = NULL; |
| mutex_exit(&arl->arl_lock); |
| |
| for (; mp != NULL; mp = nextmp) { |
| nextmp = mp->b_next; |
| mp->b_next = NULL; |
| putnext(arl->arl_wq, mp); |
| } |
| |
| /* Wait for data paths to quiesce */ |
| mutex_enter(&arl->arl_lock); |
| while (arl->arl_refcnt != 0) |
| cv_wait(&arl->arl_cv, &arl->arl_lock); |
| |
| /* |
| * unbind, so that nothing else can come up from driver. |
| */ |
| mp = arl_unbind(arl); |
| mutex_exit(&arl->arl_lock); |
| if (mp != NULL) |
| arp_dlpi_send(arl, mp); |
| mutex_enter(&arl->arl_lock); |
| |
| /* wait for unbind ack */ |
| while (arl->arl_state_flags & ARL_DL_UNBIND_IN_PROGRESS) |
| cv_wait(&arl->arl_cv, &arl->arl_lock); |
| mutex_exit(&arl->arl_lock); |
| |
| qprocsoff(q); |
| |
| if (ill != NULL) { |
| mutex_enter(&ill->ill_lock); |
| ill->ill_arl_dlpi_pending = 0; |
| mutex_exit(&ill->ill_lock); |
| } |
| |
| if (ai != NULL) { |
| mutex_enter(&ai->ai_lock); |
| ai->ai_arl = NULL; |
| if (ai->ai_ill == NULL) { |
| mutex_destroy(&ai->ai_lock); |
| kmem_free(ai, sizeof (*ai)); |
| } else { |
| mutex_exit(&ai->ai_lock); |
| } |
| } |
| |
| /* free up the rest */ |
| arp_mod_close_tail(arl); |
| |
| q->q_ptr = WR(q)->q_ptr = NULL; |
| |
| if (ipsq != NULL) |
| ipsq_exit(ipsq); |
| |
| return (0); |
| } |
| |
| static void |
| arp_mod_close_tail(arl_t *arl) |
| { |
| ip_stack_t *ipst = arl->arl_ipst; |
| mblk_t **mpp; |
| |
| netstack_hold(ipst->ips_netstack); |
| |
| mutex_enter(&ipst->ips_ip_mi_lock); |
| mi_close_unlink(&ipst->ips_arp_g_head, (IDP)arl); |
| mutex_exit(&ipst->ips_ip_mi_lock); |
| |
| /* |
| * credp could be null if the open didn't succeed and ip_modopen |
| * itself calls ip_close. |
| */ |
| if (arl->arl_credp != NULL) |
| crfree(arl->arl_credp); |
| |
| /* Free all retained control messages. */ |
| mpp = &arl->arl_first_mp_to_free; |
| do { |
| while (mpp[0]) { |
| mblk_t *mp; |
| mblk_t *mp1; |
| |
| mp = mpp[0]; |
| mpp[0] = mp->b_next; |
| for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { |
| mp1->b_next = NULL; |
| mp1->b_prev = NULL; |
| } |
| freemsg(mp); |
| } |
| } while (mpp++ != &arl->arl_last_mp_to_free); |
| |
| netstack_rele(ipst->ips_netstack); |
| mi_free(arl->arl_name); |
| mi_close_free((IDP)arl); |
| } |
| |
| /* |
| * DAD failed. Tear down ipifs with the specified srce address. Note that |
| * tearing down the ipif also meas deleting the ncec through ipif_down, |
| * so it is not possible to use nce_timer for recovery. Instead we start |
| * a timer on the ipif. Caller has to free the mp. |
| */ |
| void |
| arp_failure(mblk_t *mp, ip_recv_attr_t *ira) |
| { |
| ill_t *ill = ira->ira_ill; |
| |
| if ((mp = copymsg(mp)) != NULL) { |
| ill_refhold(ill); |
| qwriter_ip(ill, ill->ill_rq, mp, arp_excl, NEW_OP, B_FALSE); |
| } |
| } |
| |
| /* |
| * This is for exclusive changes due to ARP. Tear down an interface due |
| * to AR_CN_FAILED and AR_CN_BOGON. |
| */ |
| /* ARGSUSED */ |
| static void |
| arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) |
| { |
| ill_t *ill = rq->q_ptr; |
| arh_t *arh; |
| ipaddr_t src; |
| ipif_t *ipif; |
| ip_stack_t *ipst = ill->ill_ipst; |
| uchar_t *haddr; |
| uint_t haddrlen; |
| |
| /* first try src = ar$spa */ |
| arh = (arh_t *)mp->b_rptr; |
| bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); |
| |
| haddrlen = arh->arh_hlen; |
| haddr = (uint8_t *)(arh + 1); |
| |
| if (haddrlen == ill->ill_phys_addr_length) { |
| /* |
| * Ignore conflicts generated by misbehaving switches that |
| * just reflect our own messages back to us. For IPMP, we may |
| * see reflections across any ill in the illgrp. |
| */ |
| /* For an under ill_grp can change under lock */ |
| rw_enter(&ipst->ips_ill_g_lock, RW_READER); |
| if (bcmp(haddr, ill->ill_phys_addr, haddrlen) == 0 || |
| IS_UNDER_IPMP(ill) && ill->ill_grp != NULL && |
| ipmp_illgrp_find_ill(ill->ill_grp, haddr, |
| haddrlen) != NULL) { |
| rw_exit(&ipst->ips_ill_g_lock); |
| goto ignore_conflict; |
| } |
| rw_exit(&ipst->ips_ill_g_lock); |
| } |
| |
| /* |
| * Look up the appropriate ipif. |
| */ |
| ipif = ipif_lookup_addr(src, ill, ALL_ZONES, ipst); |
| if (ipif == NULL) |
| goto ignore_conflict; |
| |
| /* Reload the ill to match the ipif */ |
| ill = ipif->ipif_ill; |
| |
| /* If it's already duplicate or ineligible, then don't do anything. */ |
| if (ipif->ipif_flags & (IPIF_POINTOPOINT|IPIF_DUPLICATE)) { |
| ipif_refrele(ipif); |
| goto ignore_conflict; |
| } |
| |
| /* |
| * If we failed on a recovery probe, then restart the timer to |
| * try again later. |
| */ |
| if (!ipif->ipif_was_dup) { |
| char hbuf[MAC_STR_LEN]; |
| char sbuf[INET_ADDRSTRLEN]; |
| char ibuf[LIFNAMSIZ]; |
| |
| (void) mac_colon_addr(haddr, haddrlen, hbuf, sizeof (hbuf)); |
| (void) ip_dot_addr(src, sbuf); |
| ipif_get_name(ipif, ibuf, sizeof (ibuf)); |
| |
| cmn_err(CE_WARN, "%s has duplicate address %s (in use by %s);" |
| " disabled", ibuf, sbuf, hbuf); |
| } |
| mutex_enter(&ill->ill_lock); |
| ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); |
| ipif->ipif_flags |= IPIF_DUPLICATE; |
| ill->ill_ipif_dup_count++; |
| mutex_exit(&ill->ill_lock); |
| (void) ipif_down(ipif, NULL, NULL); |
| (void) ipif_down_tail(ipif); |
| mutex_enter(&ill->ill_lock); |
| if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && |
| ill->ill_net_type == IRE_IF_RESOLVER && |
| !(ipif->ipif_state_flags & IPIF_CONDEMNED) && |
| ipst->ips_ip_dup_recovery > 0) { |
| ASSERT(ipif->ipif_recovery_id == 0); |
| ipif->ipif_recovery_id = timeout(ipif_dup_recovery, |
| ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); |
| } |
| mutex_exit(&ill->ill_lock); |
| ipif_refrele(ipif); |
| |
| ignore_conflict: |
| freemsg(mp); |
| } |
| |
| /* |
| * This is a place for a dtrace hook. |
| * Note that mp can be either the DL_UNITDATA_IND with a b_cont payload, |
| * or just the ARP packet payload as an M_DATA. |
| */ |
| /* ARGSUSED */ |
| static void |
| arp_drop_packet(const char *str, mblk_t *mp, ill_t *ill) |
| { |
| freemsg(mp); |
| } |
| |
| static boolean_t |
| arp_over_driver(queue_t *q) |
| { |
| queue_t *qnext = STREAM(q)->sd_wrq->q_next; |
| |
| /* |
| * check if first module below stream head is IP or UDP. |
| */ |
| ASSERT(qnext != NULL); |
| if (strcmp(Q2NAME(qnext), "ip") != 0 && |
| strcmp(Q2NAME(qnext), "udp") != 0) { |
| /* |
| * module below is not ip or udp, so arp has been pushed |
| * on the driver. |
| */ |
| return (B_TRUE); |
| } |
| return (B_FALSE); |
| } |
| |
| static int |
| arp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) |
| { |
| int err; |
| |
| ASSERT(sflag & MODOPEN); |
| if (!arp_over_driver(q)) { |
| q->q_qinfo = dummymodinfo.st_rdinit; |
| WR(q)->q_qinfo = dummymodinfo.st_wrinit; |
| return ((*dummymodinfo.st_rdinit->qi_qopen)(q, devp, flag, |
| sflag, credp)); |
| } |
| err = arp_modopen(q, devp, flag, sflag, credp); |
| return (err); |
| } |
| |
| /* |
| * In most cases we must be a writer on the IP stream before coming to |
| * arp_dlpi_send(), to serialize DLPI sends to the driver. The exceptions |
| * when we are not a writer are very early duing initialization (in |
| * arl_init, before the arl has done a SLIFNAME, so that we don't yet know |
| * the associated ill) or during arp_mod_close, when we could not enter the |
| * ipsq because the ill has already unplumbed. |
| */ |
| static void |
| arp_dlpi_send(arl_t *arl, mblk_t *mp) |
| { |
| mblk_t **mpp; |
| t_uscalar_t prim; |
| arl_ill_common_t *ai; |
| |
| ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); |
| |
| #ifdef DEBUG |
| ai = arl->arl_common; |
| if (ai != NULL) { |
| mutex_enter(&ai->ai_lock); |
| if (ai->ai_ill != NULL) |
| ASSERT(IAM_WRITER_ILL(ai->ai_ill)); |
| mutex_exit(&ai->ai_lock); |
| } |
| #endif /* DEBUG */ |
| |
| mutex_enter(&arl->arl_lock); |
| if (arl->arl_dlpi_pending != DL_PRIM_INVAL) { |
| /* Must queue message. Tail insertion */ |
| mpp = &arl->arl_dlpi_deferred; |
| while (*mpp != NULL) |
| mpp = &((*mpp)->b_next); |
| |
| *mpp = mp; |
| mutex_exit(&arl->arl_lock); |
| return; |
| } |
| mutex_exit(&arl->arl_lock); |
| if ((prim = ((union DL_primitives *)mp->b_rptr)->dl_primitive) |
| == DL_BIND_REQ) { |
| ASSERT((arl->arl_state_flags & ARL_DL_UNBIND_IN_PROGRESS) == 0); |
| } |
| /* |
| * No need to take the arl_lock to examine ARL_CONDEMNED at this point |
| * because the only thread that can see ARL_CONDEMNED here is the |
| * closing arp_modclose() thread which sets the flag after becoming a |
| * writer on the ipsq. Threads from IP must have finished and |
| * cannot be active now. |
| */ |
| if (!(arl->arl_state_flags & ARL_CONDEMNED) || |
| (prim == DL_UNBIND_REQ)) { |
| if (prim != DL_NOTIFY_CONF) { |
| ill_t *ill = arl_to_ill(arl); |
| |
| arl->arl_dlpi_pending = prim; |
| if (ill != NULL) { |
| mutex_enter(&ill->ill_lock); |
| ill->ill_arl_dlpi_pending = 1; |
| mutex_exit(&ill->ill_lock); |
| ill_refrele(ill); |
| } |
| } |
| } |
| DTRACE_PROBE4(arl__dlpi, char *, "arp_dlpi_send", |
| char *, dl_primstr(prim), char *, "-", arl_t *, arl); |
| putnext(arl->arl_wq, mp); |
| } |
| |
| static void |
| arl_defaults_common(arl_t *arl, mblk_t *mp) |
| { |
| dl_info_ack_t *dlia = (dl_info_ack_t *)mp->b_rptr; |
| /* |
| * Till the ill is fully up the ill is not globally visible. |
| * So no need for a lock. |
| */ |
| arl->arl_mactype = dlia->dl_mac_type; |
| arl->arl_sap_length = dlia->dl_sap_length; |
| |
| if (!arl->arl_dlpi_style_set) { |
| if (dlia->dl_provider_style == DL_STYLE2) |
| arl->arl_needs_attach = 1; |
| mutex_enter(&arl->arl_lock); |
| ASSERT(arl->arl_dlpi_style_set == 0); |
| arl->arl_dlpi_style_set = 1; |
| arl->arl_state_flags &= ~ARL_LL_SUBNET_PENDING; |
| cv_broadcast(&arl->arl_cv); |
| mutex_exit(&arl->arl_lock); |
| } |
| } |
| |
| int |
| arl_init(queue_t *q, arl_t *arl) |
| { |
| mblk_t *info_mp; |
| dl_info_req_t *dlir; |
| |
| /* subset of ill_init */ |
| mutex_init(&arl->arl_lock, NULL, MUTEX_DEFAULT, 0); |
| |
| arl->arl_rq = q; |
| arl->arl_wq = WR(q); |
| |
| info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), |
| BPRI_HI); |
| if (info_mp == NULL) |
| return (ENOMEM); |
| /* |
| * allocate sufficient space to contain device name. |
| */ |
| arl->arl_name = (char *)(mi_zalloc(2 * LIFNAMSIZ)); |
| arl->arl_ppa = UINT_MAX; |
| arl->arl_state_flags |= (ARL_LL_SUBNET_PENDING | ARL_LL_UNBOUND); |
| |
| /* Send down the Info Request to the driver. */ |
| info_mp->b_datap->db_type = M_PCPROTO; |
| dlir = (dl_info_req_t *)info_mp->b_rptr; |
| info_mp->b_wptr = (uchar_t *)&dlir[1]; |
| dlir->dl_primitive = DL_INFO_REQ; |
| arl->arl_dlpi_pending = DL_PRIM_INVAL; |
| qprocson(q); |
| |
| arp_dlpi_send(arl, info_mp); |
| return (0); |
| } |
| |
| int |
| arl_wait_for_info_ack(arl_t *arl) |
| { |
| int err; |
| |
| mutex_enter(&arl->arl_lock); |
| while (arl->arl_state_flags & ARL_LL_SUBNET_PENDING) { |
| /* |
| * Return value of 0 indicates a pending signal. |
| */ |
| err = cv_wait_sig(&arl->arl_cv, &arl->arl_lock); |
| if (err == 0) { |
| mutex_exit(&arl->arl_lock); |
| return (EINTR); |
| } |
| } |
| mutex_exit(&arl->arl_lock); |
| /* |
| * ip_rput_other could have set an error in ill_error on |
| * receipt of M_ERROR. |
| */ |
| return (arl->arl_error); |
| } |
| |
| void |
| arl_set_muxid(ill_t *ill, int muxid) |
| { |
| arl_t *arl; |
| |
| arl = ill_to_arl(ill); |
| if (arl != NULL) { |
| arl->arl_muxid = muxid; |
| arl_refrele(arl); |
| } |
| } |
| |
| int |
| arl_get_muxid(ill_t *ill) |
| { |
| arl_t *arl; |
| int muxid = 0; |
| |
| arl = ill_to_arl(ill); |
| if (arl != NULL) { |
| muxid = arl->arl_muxid; |
| arl_refrele(arl); |
| } |
| return (muxid); |
| } |
| |
| static int |
| arp_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) |
| { |
| int err; |
| zoneid_t zoneid; |
| netstack_t *ns; |
| ip_stack_t *ipst; |
| arl_t *arl = NULL; |
| |
| /* |
| * Prevent unprivileged processes from pushing IP so that |
| * they can't send raw IP. |
| */ |
| if (secpolicy_net_rawaccess(credp) != 0) |
| return (EPERM); |
| |
| ns = netstack_find_by_cred(credp); |
| ASSERT(ns != NULL); |
| ipst = ns->netstack_ip; |
| ASSERT(ipst != NULL); |
| |
| /* |
| * For exclusive stacks we set the zoneid to zero |
| * to make IP operate as if in the global zone. |
| */ |
| if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) |
| zoneid = GLOBAL_ZONEID; |
| else |
| zoneid = crgetzoneid(credp); |
| |
| arl = (arl_t *)mi_open_alloc_sleep(sizeof (arl_t)); |
| q->q_ptr = WR(q)->q_ptr = arl; |
| arl->arl_ipst = ipst; |
| arl->arl_zoneid = zoneid; |
| err = arl_init(q, arl); |
| |
| if (err != 0) { |
| mi_free(arl->arl_name); |
| mi_free(arl); |
| netstack_rele(ipst->ips_netstack); |
| q->q_ptr = NULL; |
| WR(q)->q_ptr = NULL; |
| return (err); |
| } |
| |
| /* |
| * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent. |
| */ |
| err = arl_wait_for_info_ack(arl); |
| if (err == 0) |
| arl->arl_credp = credp; |
| else |
| goto fail; |
| |
| crhold(credp); |
| |
| mutex_enter(&ipst->ips_ip_mi_lock); |
| err = mi_open_link(&ipst->ips_arp_g_head, (IDP)q->q_ptr, devp, flag, |
| sflag, credp); |
| mutex_exit(&ipst->ips_ip_mi_lock); |
| fail: |
| if (err) { |
| (void) arp_close(q, 0); |
| return (err); |
| } |
| return (0); |
| } |
| |
| /* |
| * Notify any downstream modules (esp softmac and hitbox) of the name |
| * of this interface using an M_CTL. |
| */ |
| static void |
| arp_ifname_notify(arl_t *arl) |
| { |
| mblk_t *mp1, *mp2; |
| struct iocblk *iocp; |
| struct lifreq *lifr; |
| |
| if ((mp1 = mkiocb(SIOCSLIFNAME)) == NULL) |
| return; |
| if ((mp2 = allocb(sizeof (struct lifreq), BPRI_HI)) == NULL) { |
| freemsg(mp1); |
| return; |
| } |
| |
| lifr = (struct lifreq *)mp2->b_rptr; |
| mp2->b_wptr += sizeof (struct lifreq); |
| bzero(lifr, sizeof (struct lifreq)); |
| |
| (void) strncpy(lifr->lifr_name, arl->arl_name, LIFNAMSIZ); |
| lifr->lifr_ppa = arl->arl_ppa; |
| lifr->lifr_flags = ILLF_IPV4; |
| |
| /* Use M_CTL to avoid confusing anyone else who might be listening. */ |
| DB_TYPE(mp1) = M_CTL; |
| mp1->b_cont = mp2; |
| iocp = (struct iocblk *)mp1->b_rptr; |
| iocp->ioc_count = msgsize(mp1->b_cont); |
| DTRACE_PROBE4(arl__dlpi, char *, "arp_ifname_notify", |
| char *, "SIOCSLIFNAME", char *, "-", arl_t *, arl); |
| putnext(arl->arl_wq, mp1); |
| } |
| |
| void |
| arp_send_replumb_conf(ill_t *ill) |
| { |
| mblk_t *mp; |
| arl_t *arl = ill_to_arl(ill); |
| |
| if (arl == NULL) |
| return; |
| /* |
| * arl_got_replumb and arl_got_unbind to be cleared after we complete |
| * arp_cmd_done. |
| */ |
| mp = mexchange(NULL, NULL, sizeof (dl_notify_conf_t), M_PROTO, |
| DL_NOTIFY_CONF); |
| ((dl_notify_conf_t *)(mp->b_rptr))->dl_notification = |
| DL_NOTE_REPLUMB_DONE; |
| arp_dlpi_send(arl, mp); |
| mutex_enter(&arl->arl_lock); |
| arl->arl_state_flags &= ~ARL_LL_REPLUMBING; |
| mutex_exit(&arl->arl_lock); |
| arl_refrele(arl); |
| } |
| |
| /* |
| * The unplumb code paths call arp_unbind_complete() to make sure that it is |
| * safe to tear down the ill. We wait for DL_UNBIND_ACK to complete, and also |
| * for the arl_refcnt to fall to one so that, when we return from |
| * arp_unbind_complete(), we know for certain that there are no threads in |
| * arp_rput() that might access the arl_ill. |
| */ |
| void |
| arp_unbind_complete(ill_t *ill) |
| { |
| arl_t *arl = ill_to_arl(ill); |
| |
| if (arl == NULL) |
| return; |
| mutex_enter(&arl->arl_lock); |
| /* |
| * wait for unbind ack and arl_refcnt to drop to 1. Note that the |
| * quiescent arl_refcnt for this function is 1 (and not 0) because |
| * ill_to_arl() will itself return after taking a ref on the arl_t. |
| */ |
| while (arl->arl_state_flags & ARL_DL_UNBIND_IN_PROGRESS) |
| cv_wait(&arl->arl_cv, &arl->arl_lock); |
| while (arl->arl_refcnt != 1) |
| cv_wait(&arl->arl_cv, &arl->arl_lock); |
| mutex_exit(&arl->arl_lock); |
| arl_refrele(arl); |
| } |