blob: e6fe3f7dcf6c188d86dd2ef0a15c0db4b421de7c [file] [log] [blame]
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <mdb/mdb_param.h>
#include <mdb/mdb_modapi.h>
#include <mdb/mdb_ks.h>
#include <mdb/mdb_ctf.h>
#include <sys/types.h>
#include <sys/thread.h>
#include <sys/session.h>
#include <sys/user.h>
#include <sys/proc.h>
#include <sys/var.h>
#include <sys/t_lock.h>
#include <sys/systm.h>
#include <sys/callo.h>
#include <sys/priocntl.h>
#include <sys/class.h>
#include <sys/regset.h>
#include <sys/stack.h>
#include <sys/cpuvar.h>
#include <sys/vnode.h>
#include <sys/vfs.h>
#include <sys/flock_impl.h>
#include <sys/kmem_impl.h>
#include <sys/vmem_impl.h>
#include <sys/kstat.h>
#include <vm/seg_vn.h>
#include <vm/anon.h>
#include <vm/as.h>
#include <vm/seg_map.h>
#include <sys/dditypes.h>
#include <sys/ddi_impldefs.h>
#include <sys/sysmacros.h>
#include <sys/sysconf.h>
#include <sys/task.h>
#include <sys/project.h>
#include <sys/errorq_impl.h>
#include <sys/cred_impl.h>
#include <sys/zone.h>
#include <sys/panic.h>
#include <regex.h>
#include <sys/port_impl.h>
#include "avl.h"
#include "bio.h"
#include "bitset.h"
#include "combined.h"
#include "contract.h"
#include "cpupart_mdb.h"
#include "ctxop.h"
#include "cyclic.h"
#include "damap.h"
#include "devinfo.h"
#include "findstack.h"
#include "fm.h"
#include "group.h"
#include "irm.h"
#include "kgrep.h"
#include "kmem.h"
#include "ldi.h"
#include "leaky.h"
#include "lgrp.h"
#include "list.h"
#include "log.h"
#include "mdi.h"
#include "memory.h"
#include "mmd.h"
#include "modhash.h"
#include "ndievents.h"
#include "net.h"
#include "netstack.h"
#include "nvpair.h"
#include "pg.h"
#include "rctl.h"
#include "sobj.h"
#include "streams.h"
#include "sysevent.h"
#include "taskq.h"
#include "thread.h"
#include "tsd.h"
#include "tsol.h"
#include "typegraph.h"
#include "vfs.h"
#include "zone.h"
#include "hotplug.h"
/*
* Surely this is defined somewhere...
*/
#define NINTR 16
#define KILOS 10
#define MEGS 20
#define GIGS 30
#ifndef STACK_BIAS
#define STACK_BIAS 0
#endif
static char
pstat2ch(uchar_t state)
{
switch (state) {
case SSLEEP: return ('S');
case SRUN: return ('R');
case SZOMB: return ('Z');
case SIDL: return ('I');
case SONPROC: return ('O');
case SSTOP: return ('T');
case SWAIT: return ('W');
default: return ('?');
}
}
#define PS_PRTTHREADS 0x1
#define PS_PRTLWPS 0x2
#define PS_PSARGS 0x4
#define PS_TASKS 0x8
#define PS_PROJECTS 0x10
#define PS_ZONES 0x20
static int
ps_threadprint(uintptr_t addr, const void *data, void *private)
{
const kthread_t *t = (const kthread_t *)data;
uint_t prt_flags = *((uint_t *)private);
static const mdb_bitmask_t t_state_bits[] = {
{ "TS_FREE", UINT_MAX, TS_FREE },
{ "TS_SLEEP", TS_SLEEP, TS_SLEEP },
{ "TS_RUN", TS_RUN, TS_RUN },
{ "TS_ONPROC", TS_ONPROC, TS_ONPROC },
{ "TS_ZOMB", TS_ZOMB, TS_ZOMB },
{ "TS_STOPPED", TS_STOPPED, TS_STOPPED },
{ "TS_WAIT", TS_WAIT, TS_WAIT },
{ NULL, 0, 0 }
};
if (prt_flags & PS_PRTTHREADS)
mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits);
if (prt_flags & PS_PRTLWPS)
mdb_printf("\tL %?a ID: %u\n", t->t_lwp, t->t_tid);
return (WALK_NEXT);
}
int
ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
uint_t prt_flags = 0;
proc_t pr;
struct pid pid, pgid, sid;
sess_t session;
cred_t cred;
task_t tk;
kproject_t pj;
zone_t zn;
if (!(flags & DCMD_ADDRSPEC)) {
if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) {
mdb_warn("can't walk 'proc'");
return (DCMD_ERR);
}
return (DCMD_OK);
}
if (mdb_getopts(argc, argv,
'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags,
'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags,
'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags,
'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags,
'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags,
't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc)
return (DCMD_USAGE);
if (DCMD_HDRSPEC(flags)) {
mdb_printf("%<u>%1s %6s %6s %6s %6s ",
"S", "PID", "PPID", "PGID", "SID");
if (prt_flags & PS_TASKS)
mdb_printf("%5s ", "TASK");
if (prt_flags & PS_PROJECTS)
mdb_printf("%5s ", "PROJ");
if (prt_flags & PS_ZONES)
mdb_printf("%5s ", "ZONE");
mdb_printf("%6s %10s %?s %s%</u>\n",
"UID", "FLAGS", "ADDR", "NAME");
}
mdb_vread(&pr, sizeof (pr), addr);
mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp);
mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp);
mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred);
mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp);
mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp);
if (prt_flags & (PS_TASKS | PS_PROJECTS))
mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task);
if (prt_flags & PS_PROJECTS)
mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj);
if (prt_flags & PS_ZONES)
mdb_vread(&zn, sizeof (zone_t), (uintptr_t)pr.p_zone);
mdb_printf("%c %6d %6d %6d %6d ",
pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id,
sid.pid_id);
if (prt_flags & PS_TASKS)
mdb_printf("%5d ", tk.tk_tkid);
if (prt_flags & PS_PROJECTS)
mdb_printf("%5d ", pj.kpj_id);
if (prt_flags & PS_ZONES)
mdb_printf("%5d ", zn.zone_id);
mdb_printf("%6d 0x%08x %0?p %s\n",
cred.cr_uid, pr.p_flag, addr,
(prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm);
if (prt_flags & ~PS_PSARGS)
(void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr);
return (DCMD_OK);
}
#define PG_NEWEST 0x0001
#define PG_OLDEST 0x0002
#define PG_PIPE_OUT 0x0004
#define PG_EXACT_MATCH 0x0008
typedef struct pgrep_data {
uint_t pg_flags;
uint_t pg_psflags;
uintptr_t pg_xaddr;
hrtime_t pg_xstart;
const char *pg_pat;
#ifndef _KMDB
regex_t pg_reg;
#endif
} pgrep_data_t;
/*ARGSUSED*/
static int
pgrep_cb(uintptr_t addr, const void *pdata, void *data)
{
const proc_t *prp = pdata;
pgrep_data_t *pgp = data;
#ifndef _KMDB
regmatch_t pmatch;
#endif
/*
* kmdb doesn't have access to the reg* functions, so we fall back
* to strstr/strcmp.
*/
#ifdef _KMDB
if ((pgp->pg_flags & PG_EXACT_MATCH) ?
(strcmp(prp->p_user.u_comm, pgp->pg_pat) != 0) :
(strstr(prp->p_user.u_comm, pgp->pg_pat) == NULL))
return (WALK_NEXT);
#else
if (regexec(&pgp->pg_reg, prp->p_user.u_comm, 1, &pmatch, 0) != 0)
return (WALK_NEXT);
if ((pgp->pg_flags & PG_EXACT_MATCH) &&
(pmatch.rm_so != 0 || prp->p_user.u_comm[pmatch.rm_eo] != '\0'))
return (WALK_NEXT);
#endif
if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) {
hrtime_t start;
start = (hrtime_t)prp->p_user.u_start.tv_sec * NANOSEC +
prp->p_user.u_start.tv_nsec;
if (pgp->pg_flags & PG_NEWEST) {
if (pgp->pg_xaddr == NULL || start > pgp->pg_xstart) {
pgp->pg_xaddr = addr;
pgp->pg_xstart = start;
}
} else {
if (pgp->pg_xaddr == NULL || start < pgp->pg_xstart) {
pgp->pg_xaddr = addr;
pgp->pg_xstart = start;
}
}
} else if (pgp->pg_flags & PG_PIPE_OUT) {
mdb_printf("%p\n", addr);
} else {
if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) {
mdb_warn("can't invoke 'ps'");
return (WALK_DONE);
}
pgp->pg_psflags &= ~DCMD_LOOPFIRST;
}
return (WALK_NEXT);
}
/*ARGSUSED*/
int
pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
pgrep_data_t pg;
int i;
#ifndef _KMDB
int err;
#endif
if (flags & DCMD_ADDRSPEC)
return (DCMD_USAGE);
pg.pg_flags = 0;
pg.pg_xaddr = 0;
i = mdb_getopts(argc, argv,
'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags,
'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags,
'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags,
NULL);
argc -= i;
argv += i;
if (argc != 1)
return (DCMD_USAGE);
/*
* -n and -o are mutually exclusive.
*/
if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST))
return (DCMD_USAGE);
if (argv->a_type != MDB_TYPE_STRING)
return (DCMD_USAGE);
if (flags & DCMD_PIPE_OUT)
pg.pg_flags |= PG_PIPE_OUT;
pg.pg_pat = argv->a_un.a_str;
if (DCMD_HDRSPEC(flags))
pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST;
else
pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP;
#ifndef _KMDB
if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) {
size_t nbytes;
char *buf;
nbytes = regerror(err, &pg.pg_reg, NULL, 0);
buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC);
(void) regerror(err, &pg.pg_reg, buf, nbytes);
mdb_warn("%s\n", buf);
return (DCMD_ERR);
}
#endif
if (mdb_walk("proc", pgrep_cb, &pg) != 0) {
mdb_warn("can't walk 'proc'");
return (DCMD_ERR);
}
if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) {
if (pg.pg_flags & PG_PIPE_OUT) {
mdb_printf("%p\n", pg.pg_xaddr);
} else {
if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags,
0, NULL) != 0) {
mdb_warn("can't invoke 'ps'");
return (DCMD_ERR);
}
}
}
return (DCMD_OK);
}
int
task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
task_t tk;
kproject_t pj;
if (!(flags & DCMD_ADDRSPEC)) {
if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) {
mdb_warn("can't walk task_cache");
return (DCMD_ERR);
}
return (DCMD_OK);
}
if (DCMD_HDRSPEC(flags)) {
mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n",
"ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS");
}
if (mdb_vread(&tk, sizeof (task_t), addr) == -1) {
mdb_warn("can't read task_t structure at %p", addr);
return (DCMD_ERR);
}
if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) {
mdb_warn("can't read project_t structure at %p", addr);
return (DCMD_ERR);
}
mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n",
addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count,
tk.tk_flags);
return (DCMD_OK);
}
int
project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
kproject_t pj;
if (!(flags & DCMD_ADDRSPEC)) {
if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) {
mdb_warn("can't walk projects");
return (DCMD_ERR);
}
return (DCMD_OK);
}
if (DCMD_HDRSPEC(flags)) {
mdb_printf("%<u>%?s %6s %6s %6s%</u>\n",
"ADDR", "PROJID", "ZONEID", "REFCNT");
}
if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
mdb_warn("can't read kproject_t structure at %p", addr);
return (DCMD_ERR);
}
mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid,
pj.kpj_count);
return (DCMD_OK);
}
/* walk callouts themselves, either by list or id hash. */
int
callout_walk_init(mdb_walk_state_t *wsp)
{
if (wsp->walk_addr == NULL) {
mdb_warn("callout doesn't support global walk");
return (WALK_ERR);
}
wsp->walk_data = mdb_alloc(sizeof (callout_t), UM_SLEEP);
return (WALK_NEXT);
}
#define CALLOUT_WALK_BYLIST 0
#define CALLOUT_WALK_BYID 1
/* the walker arg switches between walking by list (0) and walking by id (1). */
int
callout_walk_step(mdb_walk_state_t *wsp)
{
int retval;
if (wsp->walk_addr == NULL) {
return (WALK_DONE);
}
if (mdb_vread(wsp->walk_data, sizeof (callout_t),
wsp->walk_addr) == -1) {
mdb_warn("failed to read callout at %p", wsp->walk_addr);
return (WALK_DONE);
}
retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data,
wsp->walk_cbdata);
if ((ulong_t)wsp->walk_arg == CALLOUT_WALK_BYID) {
wsp->walk_addr =
(uintptr_t)(((callout_t *)wsp->walk_data)->c_idnext);
} else {
wsp->walk_addr =
(uintptr_t)(((callout_t *)wsp->walk_data)->c_clnext);
}
return (retval);
}
void
callout_walk_fini(mdb_walk_state_t *wsp)
{
mdb_free(wsp->walk_data, sizeof (callout_t));
}
/*
* walker for callout lists. This is different from hashes and callouts.
* Thankfully, it's also simpler.
*/
int
callout_list_walk_init(mdb_walk_state_t *wsp)
{
if (wsp->walk_addr == NULL) {
mdb_warn("callout list doesn't support global walk");
return (WALK_ERR);
}
wsp->walk_data = mdb_alloc(sizeof (callout_list_t), UM_SLEEP);
return (WALK_NEXT);
}
int
callout_list_walk_step(mdb_walk_state_t *wsp)
{
int retval;
if (wsp->walk_addr == NULL) {
return (WALK_DONE);
}
if (mdb_vread(wsp->walk_data, sizeof (callout_list_t),
wsp->walk_addr) != sizeof (callout_list_t)) {
mdb_warn("failed to read callout_list at %p", wsp->walk_addr);
return (WALK_ERR);
}
retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data,
wsp->walk_cbdata);
wsp->walk_addr = (uintptr_t)
(((callout_list_t *)wsp->walk_data)->cl_next);
return (retval);
}
void
callout_list_walk_fini(mdb_walk_state_t *wsp)
{
mdb_free(wsp->walk_data, sizeof (callout_list_t));
}
/* routines/structs to walk callout table(s) */
typedef struct cot_data {
callout_table_t *ct0;
callout_table_t ct;
callout_hash_t cot_idhash[CALLOUT_BUCKETS];
callout_hash_t cot_clhash[CALLOUT_BUCKETS];
kstat_named_t ct_kstat_data[CALLOUT_NUM_STATS];
int cotndx;
int cotsize;
} cot_data_t;
int
callout_table_walk_init(mdb_walk_state_t *wsp)
{
int max_ncpus;
cot_data_t *cot_walk_data;
cot_walk_data = mdb_alloc(sizeof (cot_data_t), UM_SLEEP);
if (wsp->walk_addr == NULL) {
if (mdb_readvar(&cot_walk_data->ct0, "callout_table") == -1) {
mdb_warn("failed to read 'callout_table'");
return (WALK_ERR);
}
if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) {
mdb_warn("failed to get callout_table array size");
return (WALK_ERR);
}
cot_walk_data->cotsize = CALLOUT_NTYPES * max_ncpus;
wsp->walk_addr = (uintptr_t)cot_walk_data->ct0;
} else {
/* not a global walk */
cot_walk_data->cotsize = 1;
}
cot_walk_data->cotndx = 0;
wsp->walk_data = cot_walk_data;
return (WALK_NEXT);
}
int
callout_table_walk_step(mdb_walk_state_t *wsp)
{
int retval;
cot_data_t *cotwd = (cot_data_t *)wsp->walk_data;
size_t size;
if (cotwd->cotndx >= cotwd->cotsize) {
return (WALK_DONE);
}
if (mdb_vread(&(cotwd->ct), sizeof (callout_table_t),
wsp->walk_addr) != sizeof (callout_table_t)) {
mdb_warn("failed to read callout_table at %p", wsp->walk_addr);
return (WALK_ERR);
}
size = sizeof (callout_hash_t) * CALLOUT_BUCKETS;
if (cotwd->ct.ct_idhash != NULL) {
if (mdb_vread(cotwd->cot_idhash, size,
(uintptr_t)(cotwd->ct.ct_idhash)) != size) {
mdb_warn("failed to read id_hash at %p",
cotwd->ct.ct_idhash);
return (WALK_ERR);
}
}
if (cotwd->ct.ct_clhash != NULL) {
if (mdb_vread(&(cotwd->cot_clhash), size,
(uintptr_t)cotwd->ct.ct_clhash) == -1) {
mdb_warn("failed to read cl_hash at %p",
cotwd->ct.ct_clhash);
return (WALK_ERR);
}
}
size = sizeof (kstat_named_t) * CALLOUT_NUM_STATS;
if (cotwd->ct.ct_kstat_data != NULL) {
if (mdb_vread(&(cotwd->ct_kstat_data), size,
(uintptr_t)cotwd->ct.ct_kstat_data) == -1) {
mdb_warn("failed to read kstats at %p",
cotwd->ct.ct_kstat_data);
return (WALK_ERR);
}
}
retval = wsp->walk_callback(wsp->walk_addr, (void *)cotwd,
wsp->walk_cbdata);
cotwd->cotndx++;
if (cotwd->cotndx >= cotwd->cotsize) {
return (WALK_DONE);
}
wsp->walk_addr = (uintptr_t)((char *)wsp->walk_addr +
sizeof (callout_table_t));
return (retval);
}
void
callout_table_walk_fini(mdb_walk_state_t *wsp)
{
mdb_free(wsp->walk_data, sizeof (cot_data_t));
}
static const char *co_typenames[] = { "R", "N" };
#define CO_PLAIN_ID(xid) ((xid) & CALLOUT_ID_MASK)
#define TABLE_TO_SEQID(x) ((x) >> CALLOUT_TYPE_BITS)
/* callout flags, in no particular order */
#define COF_REAL 0x0000001
#define COF_NORM 0x0000002
#define COF_LONG 0x0000004
#define COF_SHORT 0x0000008
#define COF_EMPTY 0x0000010
#define COF_TIME 0x0000020
#define COF_BEFORE 0x0000040
#define COF_AFTER 0x0000080
#define COF_SEQID 0x0000100
#define COF_FUNC 0x0000200
#define COF_ADDR 0x0000400
#define COF_EXEC 0x0000800
#define COF_HIRES 0x0001000
#define COF_ABS 0x0002000
#define COF_TABLE 0x0004000
#define COF_BYIDH 0x0008000
#define COF_FREE 0x0010000
#define COF_LIST 0x0020000
#define COF_EXPREL 0x0040000
#define COF_HDR 0x0080000
#define COF_VERBOSE 0x0100000
#define COF_LONGLIST 0x0200000
#define COF_THDR 0x0400000
#define COF_LHDR 0x0800000
#define COF_CHDR 0x1000000
#define COF_PARAM 0x2000000
#define COF_DECODE 0x4000000
/* show real and normal, short and long, expired and unexpired. */
#define COF_DEFAULT (COF_REAL | COF_NORM | COF_LONG | COF_SHORT)
#define COF_LIST_FLAGS \
(CALLOUT_LIST_FLAG_HRESTIME | CALLOUT_LIST_FLAG_ABSOLUTE)
/* private callout data for callback functions */
typedef struct callout_data {
uint_t flags; /* COF_* */
cpu_t *cpu; /* cpu pointer if given */
int seqid; /* cpu seqid, or -1 */
hrtime_t time; /* expiration time value */
hrtime_t atime; /* expiration before value */
hrtime_t btime; /* expiration after value */
uintptr_t funcaddr; /* function address or NULL */
uintptr_t param; /* parameter to function or NULL */
hrtime_t now; /* current system time */
int nsec_per_tick; /* for conversions */
ulong_t ctbits; /* for decoding xid */
callout_table_t *co_table; /* top of callout table array */
int ndx; /* table index. */
int bucket; /* which list/id bucket are we in */
hrtime_t exp; /* expire time */
int list_flags; /* copy of cl_flags */
} callout_data_t;
/* this callback does the actual callback itself (finally). */
/*ARGSUSED*/
static int
callouts_cb(uintptr_t addr, const void *data, void *priv)
{
callout_data_t *coargs = (callout_data_t *)priv;
callout_t *co = (callout_t *)data;
int tableid, list_flags;
callout_id_t coid;
if ((coargs == NULL) || (co == NULL)) {
return (WALK_ERR);
}
if ((coargs->flags & COF_FREE) && !(co->c_xid & CALLOUT_FREE)) {
/*
* The callout must have been reallocated. No point in
* walking any more.
*/
return (WALK_DONE);
}
if (!(coargs->flags & COF_FREE) && (co->c_xid & CALLOUT_FREE)) {
/*
* The callout must have been freed. No point in
* walking any more.
*/
return (WALK_DONE);
}
if ((coargs->flags & COF_FUNC) &&
(coargs->funcaddr != (uintptr_t)co->c_func)) {
return (WALK_NEXT);
}
if ((coargs->flags & COF_PARAM) &&
(coargs->param != (uintptr_t)co->c_arg)) {
return (WALK_NEXT);
}
if (!(coargs->flags & COF_LONG) && (co->c_xid & CALLOUT_LONGTERM)) {
return (WALK_NEXT);
}
if (!(coargs->flags & COF_SHORT) && !(co->c_xid & CALLOUT_LONGTERM)) {
return (WALK_NEXT);
}
if ((coargs->flags & COF_EXEC) && !(co->c_xid & CALLOUT_EXECUTING)) {
return (WALK_NEXT);
}
/* it is possible we don't have the exp time or flags */
if (coargs->flags & COF_BYIDH) {
if (!(coargs->flags & COF_FREE)) {
/* we have to fetch the expire time ourselves. */
if (mdb_vread(&coargs->exp, sizeof (hrtime_t),
(uintptr_t)co->c_list + offsetof(callout_list_t,
cl_expiration)) == -1) {
mdb_warn("failed to read expiration "
"time from %p", co->c_list);
coargs->exp = 0;
}
/* and flags. */
if (mdb_vread(&coargs->list_flags, sizeof (int),
(uintptr_t)co->c_list + offsetof(callout_list_t,
cl_flags)) == -1) {
mdb_warn("failed to read list flags"
"from %p", co->c_list);
coargs->list_flags = 0;
}
} else {
/* free callouts can't use list pointer. */
coargs->exp = 0;
coargs->list_flags = 0;
}
if (coargs->exp != 0) {
if ((coargs->flags & COF_TIME) &&
(coargs->exp != coargs->time)) {
return (WALK_NEXT);
}
if ((coargs->flags & COF_BEFORE) &&
(coargs->exp > coargs->btime)) {
return (WALK_NEXT);
}
if ((coargs->flags & COF_AFTER) &&
(coargs->exp < coargs->atime)) {
return (WALK_NEXT);
}
}
/* tricky part, since both HIRES and ABS can be set */
list_flags = coargs->list_flags;
if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) {
/* both flags are set, only skip "regular" ones */
if (! (list_flags & COF_LIST_FLAGS)) {
return (WALK_NEXT);
}
} else {
/* individual flags, or no flags */
if ((coargs->flags & COF_HIRES) &&
!(list_flags & CALLOUT_LIST_FLAG_HRESTIME)) {
return (WALK_NEXT);
}
if ((coargs->flags & COF_ABS) &&
!(list_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) {
return (WALK_NEXT);
}
}
}
#define callout_table_mask ((1 << coargs->ctbits) - 1)
tableid = CALLOUT_ID_TO_TABLE(co->c_xid);
#undef callout_table_mask
coid = CO_PLAIN_ID(co->c_xid);
if ((coargs->flags & COF_CHDR) && !(coargs->flags & COF_ADDR)) {
/*
* We need to print the headers. If walking by id, then
* the list header isn't printed, so we must include
* that info here.
*/
if (!(coargs->flags & COF_VERBOSE)) {
mdb_printf("%<u>%3s %-1s %-14s %</u>",
"SEQ", "T", "EXP");
} else if (coargs->flags & COF_BYIDH) {
mdb_printf("%<u>%-14s %</u>", "EXP");
}
mdb_printf("%<u>%-4s %-?s %-20s%</u>",
"XHAL", "XID", "FUNC(ARG)");
if (coargs->flags & COF_LONGLIST) {
mdb_printf("%<u> %-?s %-?s %-?s %-?s%</u>",
"PREVID", "NEXTID", "PREVL", "NEXTL");
mdb_printf("%<u> %-?s %-4s %-?s%</u>",
"DONE", "UTOS", "THREAD");
}
mdb_printf("\n");
coargs->flags &= ~COF_CHDR;
coargs->flags |= (COF_THDR | COF_LHDR);
}
if (!(coargs->flags & COF_ADDR)) {
if (!(coargs->flags & COF_VERBOSE)) {
mdb_printf("%-3d %1s %-14llx ",
TABLE_TO_SEQID(tableid),
co_typenames[tableid & CALLOUT_TYPE_MASK],
(coargs->flags & COF_EXPREL) ?
coargs->exp - coargs->now : coargs->exp);
} else if (coargs->flags & COF_BYIDH) {
mdb_printf("%-14x ",
(coargs->flags & COF_EXPREL) ?
coargs->exp - coargs->now : coargs->exp);
}
list_flags = coargs->list_flags;
mdb_printf("%1s%1s%1s%1s %-?llx %a(%p)",
(co->c_xid & CALLOUT_EXECUTING) ? "X" : " ",
(list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? "H" : " ",
(list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? "A" : " ",
(co->c_xid & CALLOUT_LONGTERM) ? "L" : " ",
(long long)coid, co->c_func, co->c_arg);
if (coargs->flags & COF_LONGLIST) {
mdb_printf(" %-?p %-?p %-?p %-?p",
co->c_idprev, co->c_idnext, co->c_clprev,
co->c_clnext);
mdb_printf(" %-?p %-4d %-0?p",
co->c_done, co->c_waiting, co->c_executor);
}
} else {
/* address only */
mdb_printf("%-0p", addr);
}
mdb_printf("\n");
return (WALK_NEXT);
}
/* this callback is for callout list handling. idhash is done by callout_t_cb */
/*ARGSUSED*/
static int
callout_list_cb(uintptr_t addr, const void *data, void *priv)
{
callout_data_t *coargs = (callout_data_t *)priv;
callout_list_t *cl = (callout_list_t *)data;
callout_t *coptr;
int list_flags;
if ((coargs == NULL) || (cl == NULL)) {
return (WALK_ERR);
}
coargs->exp = cl->cl_expiration;
coargs->list_flags = cl->cl_flags;
if ((coargs->flags & COF_FREE) &&
!(cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) {
/*
* The callout list must have been reallocated. No point in
* walking any more.
*/
return (WALK_DONE);
}
if (!(coargs->flags & COF_FREE) &&
(cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) {
/*
* The callout list must have been freed. No point in
* walking any more.
*/
return (WALK_DONE);
}
if ((coargs->flags & COF_TIME) &&
(cl->cl_expiration != coargs->time)) {
return (WALK_NEXT);
}
if ((coargs->flags & COF_BEFORE) &&
(cl->cl_expiration > coargs->btime)) {
return (WALK_NEXT);
}
if ((coargs->flags & COF_AFTER) &&
(cl->cl_expiration < coargs->atime)) {
return (WALK_NEXT);
}
if (!(coargs->flags & COF_EMPTY) &&
(cl->cl_callouts.ch_head == NULL)) {
return (WALK_NEXT);
}
/* FOUR cases, each different, !A!B, !AB, A!B, AB */
if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) {
/* both flags are set, only skip "regular" ones */
if (! (cl->cl_flags & COF_LIST_FLAGS)) {
return (WALK_NEXT);
}
} else {
if ((coargs->flags & COF_HIRES) &&
!(cl->cl_flags & CALLOUT_LIST_FLAG_HRESTIME)) {
return (WALK_NEXT);
}
if ((coargs->flags & COF_ABS) &&
!(cl->cl_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) {
return (WALK_NEXT);
}
}
if ((coargs->flags & COF_LHDR) && !(coargs->flags & COF_ADDR) &&
(coargs->flags & (COF_LIST | COF_VERBOSE))) {
if (!(coargs->flags & COF_VERBOSE)) {
/* don't be redundant again */
mdb_printf("%<u>SEQ T %</u>");
}
mdb_printf("%<u>EXP HA BUCKET "
"CALLOUTS %</u>");
if (coargs->flags & COF_LONGLIST) {
mdb_printf("%<u> %-?s %-?s%</u>",
"PREV", "NEXT");
}
mdb_printf("\n");
coargs->flags &= ~COF_LHDR;
coargs->flags |= (COF_THDR | COF_CHDR);
}
if (coargs->flags & (COF_LIST | COF_VERBOSE)) {
if (!(coargs->flags & COF_ADDR)) {
if (!(coargs->flags & COF_VERBOSE)) {
mdb_printf("%3d %1s ",
TABLE_TO_SEQID(coargs->ndx),
co_typenames[coargs->ndx &
CALLOUT_TYPE_MASK]);
}
list_flags = coargs->list_flags;
mdb_printf("%-14llx %1s%1s %-6d %-0?p ",
(coargs->flags & COF_EXPREL) ?
coargs->exp - coargs->now : coargs->exp,
(list_flags & CALLOUT_LIST_FLAG_HRESTIME) ?
"H" : " ",
(list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ?
"A" : " ",
coargs->bucket, cl->cl_callouts.ch_head);
if (coargs->flags & COF_LONGLIST) {
mdb_printf(" %-?p %-?p",
cl->cl_prev, cl->cl_next);
}
} else {
/* address only */
mdb_printf("%-0p", addr);
}
mdb_printf("\n");
if (coargs->flags & COF_LIST) {
return (WALK_NEXT);
}
}
/* yet another layer as we walk the actual callouts via list. */
if (cl->cl_callouts.ch_head == NULL) {
return (WALK_NEXT);
}
/* free list structures do not have valid callouts off of them. */
if (coargs->flags & COF_FREE) {
return (WALK_NEXT);
}
coptr = (callout_t *)cl->cl_callouts.ch_head;
if (coargs->flags & COF_VERBOSE) {
mdb_inc_indent(4);
}
/*
* walk callouts using yet another callback routine.
* we use callouts_bytime because id hash is handled via
* the callout_t_cb callback.
*/
if (mdb_pwalk("callouts_bytime", callouts_cb, coargs,
(uintptr_t)coptr) == -1) {
mdb_warn("cannot walk callouts at %p", coptr);
return (WALK_ERR);
}
if (coargs->flags & COF_VERBOSE) {
mdb_dec_indent(4);
}
return (WALK_NEXT);
}
/* this callback handles the details of callout table walking. */
static int
callout_t_cb(uintptr_t addr, const void *data, void *priv)
{
callout_data_t *coargs = (callout_data_t *)priv;
cot_data_t *cotwd = (cot_data_t *)data;
callout_table_t *ct = &(cotwd->ct);
int index, seqid, cotype;
int i;
callout_list_t *clptr;
callout_t *coptr;
if ((coargs == NULL) || (ct == NULL) || (coargs->co_table == NULL)) {
return (WALK_ERR);
}
index = ((char *)addr - (char *)coargs->co_table) /
sizeof (callout_table_t);
cotype = index & CALLOUT_TYPE_MASK;
seqid = TABLE_TO_SEQID(index);
if ((coargs->flags & COF_SEQID) && (coargs->seqid != seqid)) {
return (WALK_NEXT);
}
if (!(coargs->flags & COF_REAL) && (cotype == CALLOUT_REALTIME)) {
return (WALK_NEXT);
}
if (!(coargs->flags & COF_NORM) && (cotype == CALLOUT_NORMAL)) {
return (WALK_NEXT);
}
if (!(coargs->flags & COF_EMPTY) && (
(ct->ct_heap == NULL) || (ct->ct_cyclic == NULL))) {
return (WALK_NEXT);
}
if ((coargs->flags & COF_THDR) && !(coargs->flags & COF_ADDR) &&
(coargs->flags & (COF_TABLE | COF_VERBOSE))) {
/* print table hdr */
mdb_printf("%<u>%-3s %-1s %-?s %-?s %-?s %-?s%</u>",
"SEQ", "T", "FREE", "LFREE", "CYCLIC", "HEAP");
coargs->flags &= ~COF_THDR;
coargs->flags |= (COF_LHDR | COF_CHDR);
if (coargs->flags & COF_LONGLIST) {
/* more info! */
mdb_printf("%<u> %-T%-7s %-7s %-?s %-?s"
" %-?s %-?s %-?s%</u>",
"HEAPNUM", "HEAPMAX", "TASKQ", "EXPQ",
"PEND", "FREE", "LOCK");
}
mdb_printf("\n");
}
if (coargs->flags & (COF_TABLE | COF_VERBOSE)) {
if (!(coargs->flags & COF_ADDR)) {
mdb_printf("%-3d %-1s %-0?p %-0?p %-0?p %-?p",
seqid, co_typenames[cotype],
ct->ct_free, ct->ct_lfree, ct->ct_cyclic,
ct->ct_heap);
if (coargs->flags & COF_LONGLIST) {
/* more info! */
mdb_printf(" %-7d %-7d %-?p %-?p"
" %-?lld %-?lld %-?p",
ct->ct_heap_num, ct->ct_heap_max,
ct->ct_taskq, ct->ct_expired.ch_head,
cotwd->ct_timeouts_pending,
cotwd->ct_allocations -
cotwd->ct_timeouts_pending,
ct->ct_mutex);
}
} else {
/* address only */
mdb_printf("%-0?p", addr);
}
mdb_printf("\n");
if (coargs->flags & COF_TABLE) {
return (WALK_NEXT);
}
}
coargs->ndx = index;
if (coargs->flags & COF_VERBOSE) {
mdb_inc_indent(4);
}
/* keep digging. */
if (!(coargs->flags & COF_BYIDH)) {
/* walk the list hash table */
if (coargs->flags & COF_FREE) {
clptr = ct->ct_lfree;
coargs->bucket = 0;
if (clptr == NULL) {
return (WALK_NEXT);
}
if (mdb_pwalk("callout_list", callout_list_cb, coargs,
(uintptr_t)clptr) == -1) {
mdb_warn("cannot walk callout free list at %p",
clptr);
return (WALK_ERR);
}
} else {
/* first print the expired list. */
clptr = (callout_list_t *)ct->ct_expired.ch_head;
if (clptr != NULL) {
coargs->bucket = -1;
if (mdb_pwalk("callout_list", callout_list_cb,
coargs, (uintptr_t)clptr) == -1) {
mdb_warn("cannot walk callout_list"
" at %p", clptr);
return (WALK_ERR);
}
}
for (i = 0; i < CALLOUT_BUCKETS; i++) {
if (ct->ct_clhash == NULL) {
/* nothing to do */
break;
}
if (cotwd->cot_clhash[i].ch_head == NULL) {
continue;
}
clptr = (callout_list_t *)
cotwd->cot_clhash[i].ch_head;
coargs->bucket = i;
/* walk list with callback routine. */
if (mdb_pwalk("callout_list", callout_list_cb,
coargs, (uintptr_t)clptr) == -1) {
mdb_warn("cannot walk callout_list"
" at %p", clptr);
return (WALK_ERR);
}
}
}
} else {
/* walk the id hash table. */
if (coargs->flags & COF_FREE) {
coptr = ct->ct_free;
coargs->bucket = 0;
if (coptr == NULL) {
return (WALK_NEXT);
}
if (mdb_pwalk("callouts_byid", callouts_cb, coargs,
(uintptr_t)coptr) == -1) {
mdb_warn("cannot walk callout id free list"
" at %p", coptr);
return (WALK_ERR);
}
} else {
for (i = 0; i < CALLOUT_BUCKETS; i++) {
if (ct->ct_idhash == NULL) {
break;
}
coptr = (callout_t *)
cotwd->cot_idhash[i].ch_head;
if (coptr == NULL) {
continue;
}
coargs->bucket = i;
/*
* walk callouts directly by id. For id
* chain, the callout list is just a header,
* so there's no need to walk it.
*/
if (mdb_pwalk("callouts_byid", callouts_cb,
coargs, (uintptr_t)coptr) == -1) {
mdb_warn("cannot walk callouts at %p",
coptr);
return (WALK_ERR);
}
}
}
}
if (coargs->flags & COF_VERBOSE) {
mdb_dec_indent(4);
}
return (WALK_NEXT);
}
/*
* initialize some common info for both callout dcmds.
*/
int
callout_common_init(callout_data_t *coargs)
{
/* we need a couple of things */
if (mdb_readvar(&(coargs->co_table), "callout_table") == -1) {
mdb_warn("failed to read 'callout_table'");
return (DCMD_ERR);
}
/* need to get now in nsecs. Approximate with hrtime vars */
if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), "hrtime_last") !=
sizeof (hrtime_t)) {
if (mdb_readsym(&(coargs->now), sizeof (hrtime_t),
"hrtime_base") != sizeof (hrtime_t)) {
mdb_warn("Could not determine current system time");
return (DCMD_ERR);
}
}
if (mdb_readvar(&(coargs->ctbits), "callout_table_bits") == -1) {
mdb_warn("failed to read 'callout_table_bits'");
return (DCMD_ERR);
}
if (mdb_readvar(&(coargs->nsec_per_tick), "nsec_per_tick") == -1) {
mdb_warn("failed to read 'nsec_per_tick'");
return (DCMD_ERR);
}
return (DCMD_OK);
}
/*
* dcmd to print callouts. Optional addr limits to specific table.
* Parses lots of options that get passed to callbacks for walkers.
* Has it's own help function.
*/
/*ARGSUSED*/
int
callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
callout_data_t coargs;
/* getopts doesn't help much with stuff like this */
boolean_t Sflag, Cflag, tflag, aflag, bflag, dflag, kflag;
char *funcname = NULL;
char *paramstr = NULL;
uintptr_t Stmp, Ctmp; /* for getopt. */
int retval;
coargs.flags = COF_DEFAULT;
Sflag = Cflag = tflag = bflag = aflag = dflag = kflag = FALSE;
coargs.seqid = -1;
if (mdb_getopts(argc, argv,
'r', MDB_OPT_CLRBITS, COF_NORM, &coargs.flags,
'n', MDB_OPT_CLRBITS, COF_REAL, &coargs.flags,
'l', MDB_OPT_CLRBITS, COF_SHORT, &coargs.flags,
's', MDB_OPT_CLRBITS, COF_LONG, &coargs.flags,
'x', MDB_OPT_SETBITS, COF_EXEC, &coargs.flags,
'h', MDB_OPT_SETBITS, COF_HIRES, &coargs.flags,
'B', MDB_OPT_SETBITS, COF_ABS, &coargs.flags,
'E', MDB_OPT_SETBITS, COF_EMPTY, &coargs.flags,
'd', MDB_OPT_SETBITS, 1, &dflag,
'C', MDB_OPT_UINTPTR_SET, &Cflag, &Ctmp,
'S', MDB_OPT_UINTPTR_SET, &Sflag, &Stmp,
't', MDB_OPT_UINTPTR_SET, &tflag, (uintptr_t *)&coargs.time,
'a', MDB_OPT_UINTPTR_SET, &aflag, (uintptr_t *)&coargs.atime,
'b', MDB_OPT_UINTPTR_SET, &bflag, (uintptr_t *)&coargs.btime,
'k', MDB_OPT_SETBITS, 1, &kflag,
'f', MDB_OPT_STR, &funcname,
'p', MDB_OPT_STR, &paramstr,
'T', MDB_OPT_SETBITS, COF_TABLE, &coargs.flags,
'D', MDB_OPT_SETBITS, COF_EXPREL, &coargs.flags,
'L', MDB_OPT_SETBITS, COF_LIST, &coargs.flags,
'V', MDB_OPT_SETBITS, COF_VERBOSE, &coargs.flags,
'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags,
'i', MDB_OPT_SETBITS, COF_BYIDH, &coargs.flags,
'F', MDB_OPT_SETBITS, COF_FREE, &coargs.flags,
'A', MDB_OPT_SETBITS, COF_ADDR, &coargs.flags,
NULL) != argc) {
return (DCMD_USAGE);
}
/* initialize from kernel variables */
if ((retval = callout_common_init(&coargs)) != DCMD_OK) {
return (retval);
}
/* do some option post-processing */
if (kflag) {
coargs.time *= coargs.nsec_per_tick;
coargs.atime *= coargs.nsec_per_tick;
coargs.btime *= coargs.nsec_per_tick;
}
if (dflag) {
coargs.time += coargs.now;
coargs.atime += coargs.now;
coargs.btime += coargs.now;
}
if (Sflag) {
if (flags & DCMD_ADDRSPEC) {
mdb_printf("-S option conflicts with explicit"
" address\n");
return (DCMD_USAGE);
}
coargs.flags |= COF_SEQID;
coargs.seqid = (int)Stmp;
}
if (Cflag) {
if (flags & DCMD_ADDRSPEC) {
mdb_printf("-C option conflicts with explicit"
" address\n");
return (DCMD_USAGE);
}
if (coargs.flags & COF_SEQID) {
mdb_printf("-C and -S are mutually exclusive\n");
return (DCMD_USAGE);
}
coargs.cpu = (cpu_t *)Ctmp;
if (mdb_vread(&coargs.seqid, sizeof (processorid_t),
(uintptr_t)&(coargs.cpu->cpu_seqid)) == -1) {
mdb_warn("failed to read cpu_t at %p", Ctmp);
return (DCMD_ERR);
}
coargs.flags |= COF_SEQID;
}
/* avoid null outputs. */
if (!(coargs.flags & (COF_REAL | COF_NORM))) {
coargs.flags |= COF_REAL | COF_NORM;
}
if (!(coargs.flags & (COF_LONG | COF_SHORT))) {
coargs.flags |= COF_LONG | COF_SHORT;
}
if (tflag) {
if (aflag || bflag) {
mdb_printf("-t and -a|b are mutually exclusive\n");
return (DCMD_USAGE);
}
coargs.flags |= COF_TIME;
}
if (aflag) {
coargs.flags |= COF_AFTER;
}
if (bflag) {
coargs.flags |= COF_BEFORE;
}
if ((aflag && bflag) && (coargs.btime <= coargs.atime)) {
mdb_printf("value for -a must be earlier than the value"
" for -b.\n");
return (DCMD_USAGE);
}
if (funcname != NULL) {
GElf_Sym sym;
if (mdb_lookup_by_name(funcname, &sym) != 0) {
coargs.funcaddr = mdb_strtoull(funcname);
} else {
coargs.funcaddr = sym.st_value;
}
coargs.flags |= COF_FUNC;
}
if (paramstr != NULL) {
GElf_Sym sym;
if (mdb_lookup_by_name(paramstr, &sym) != 0) {
coargs.param = mdb_strtoull(paramstr);
} else {
coargs.param = sym.st_value;
}
coargs.flags |= COF_PARAM;
}
if (!(flags & DCMD_ADDRSPEC)) {
/* don't pass "dot" if no addr. */
addr = NULL;
}
if (addr != NULL) {
/*
* a callout table was specified. Ignore -r|n option
* to avoid null output.
*/
coargs.flags |= (COF_REAL | COF_NORM);
}
if (DCMD_HDRSPEC(flags) || (coargs.flags & COF_VERBOSE)) {
coargs.flags |= COF_THDR | COF_LHDR | COF_CHDR;
}
if (coargs.flags & COF_FREE) {
coargs.flags |= COF_EMPTY;
/* -F = free callouts, -FL = free lists */
if (!(coargs.flags & COF_LIST)) {
coargs.flags |= COF_BYIDH;
}
}
/* walk table, using specialized callback routine. */
if (mdb_pwalk("callout_table", callout_t_cb, &coargs, addr) == -1) {
mdb_warn("cannot walk callout_table");
return (DCMD_ERR);
}
return (DCMD_OK);
}
/*
* Given an extended callout id, dump its information.
*/
/*ARGSUSED*/
int
calloutid(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
callout_data_t coargs;
callout_table_t *ctptr;
callout_table_t ct;
callout_id_t coid;
callout_t *coptr;
int tableid;
callout_id_t xid;
ulong_t idhash;
int i, retval;
const mdb_arg_t *arg;
size_t size;
callout_hash_t cot_idhash[CALLOUT_BUCKETS];
coargs.flags = COF_DEFAULT | COF_BYIDH;
i = mdb_getopts(argc, argv,
'd', MDB_OPT_SETBITS, COF_DECODE, &coargs.flags,
'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags,
NULL);
argc -= i;
argv += i;
if (argc != 1) {
return (DCMD_USAGE);
}
arg = &argv[0];
if (arg->a_type == MDB_TYPE_IMMEDIATE) {
xid = arg->a_un.a_val;
} else {
xid = (callout_id_t)mdb_strtoull(arg->a_un.a_str);
}
if (DCMD_HDRSPEC(flags)) {
coargs.flags |= COF_CHDR;
}
/* initialize from kernel variables */
if ((retval = callout_common_init(&coargs)) != DCMD_OK) {
return (retval);
}
/* we must massage the environment so that the macros will play nice */
#define callout_table_mask ((1 << coargs.ctbits) - 1)
#define callout_table_bits coargs.ctbits
#define nsec_per_tick coargs.nsec_per_tick
tableid = CALLOUT_ID_TO_TABLE(xid);
idhash = CALLOUT_IDHASH(xid);
#undef callouts_table_bits
#undef callout_table_mask
#undef nsec_per_tick
coid = CO_PLAIN_ID(xid);
if (flags & DCMD_ADDRSPEC) {
mdb_printf("calloutid does not accept explicit address.\n");
return (DCMD_USAGE);
}
if (coargs.flags & COF_DECODE) {
if (DCMD_HDRSPEC(flags)) {
mdb_printf("%<u>%3s %1s %2s %-?s %-6s %</u>\n",
"SEQ", "T", "XL", "XID", "IDHASH");
}
mdb_printf("%-3d %1s %1s%1s %-?llx %-6d\n",
TABLE_TO_SEQID(tableid),
co_typenames[tableid & CALLOUT_TYPE_MASK],
(xid & CALLOUT_EXECUTING) ? "X" : " ",
(xid & CALLOUT_LONGTERM) ? "L" : " ",
(long long)coid, idhash);
return (DCMD_OK);
}
/* get our table. Note this relies on the types being correct */
ctptr = coargs.co_table + tableid;
if (mdb_vread(&ct, sizeof (callout_table_t), (uintptr_t)ctptr) == -1) {
mdb_warn("failed to read callout_table at %p", ctptr);
return (DCMD_ERR);
}
size = sizeof (callout_hash_t) * CALLOUT_BUCKETS;
if (ct.ct_idhash != NULL) {
if (mdb_vread(&(cot_idhash), size,
(uintptr_t)ct.ct_idhash) == -1) {
mdb_warn("failed to read id_hash at %p",
ct.ct_idhash);
return (WALK_ERR);
}
}
/* callout at beginning of hash chain */
if (ct.ct_idhash == NULL) {
mdb_printf("id hash chain for this xid is empty\n");
return (DCMD_ERR);
}
coptr = (callout_t *)cot_idhash[idhash].ch_head;
if (coptr == NULL) {
mdb_printf("id hash chain for this xid is empty\n");
return (DCMD_ERR);
}
coargs.ndx = tableid;
coargs.bucket = idhash;
/* use the walker, luke */
if (mdb_pwalk("callouts_byid", callouts_cb, &coargs,
(uintptr_t)coptr) == -1) {
mdb_warn("cannot walk callouts at %p", coptr);
return (WALK_ERR);
}
return (DCMD_OK);
}
void
callout_help(void)
{
mdb_printf("callout: display callouts.\n"
"Given a callout table address, display callouts from table.\n"
"Without an address, display callouts from all tables.\n"
"options:\n"
" -r|n : limit display to (r)ealtime or (n)ormal type callouts\n"
" -s|l : limit display to (s)hort-term ids or (l)ong-term ids\n"
" -x : limit display to callouts which are executing\n"
" -h : limit display to callouts based on hrestime\n"
" -B : limit display to callouts based on absolute time\n"
" -t|a|b nsec: limit display to callouts that expire a(t) time,"
" (a)fter time,\n or (b)efore time. Use -a and -b together "
" to specify a range.\n For \"now\", use -d[t|a|b] 0.\n"
" -d : interpret time option to -t|a|b as delta from current time\n"
" -k : use ticks instead of nanoseconds as arguments to"
" -t|a|b. Note that\n ticks are less accurate and may not"
" match other tick times (ie: lbolt).\n"
" -D : display exiration time as delta from current time\n"
" -S seqid : limit display to callouts for this cpu sequence id\n"
" -C addr : limit display to callouts for this cpu pointer\n"
" -f name|addr : limit display to callouts with this function\n"
" -p name|addr : limit display to callouts functions with this"
" parameter\n"
" -T : display the callout table itself, instead of callouts\n"
" -L : display callout lists instead of callouts\n"
" -E : with -T or L, display empty data structures.\n"
" -i : traverse callouts by id hash instead of list hash\n"
" -F : walk free callout list (free list with -i) instead\n"
" -v : display more info for each item\n"
" -V : show details of each level of info as it is traversed\n"
" -A : show only addresses. Useful for pipelines.\n");
}
void
calloutid_help(void)
{
mdb_printf("calloutid: display callout by id.\n"
"Given an extended callout id, display the callout infomation.\n"
"options:\n"
" -d : do not dereference callout, just decode the id.\n"
" -v : verbose display more info about the callout\n");
}
/*ARGSUSED*/
int
class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
long num_classes, i;
sclass_t *class_tbl;
GElf_Sym g_sclass;
char class_name[PC_CLNMSZ];
size_t tbl_size;
if (mdb_lookup_by_name("sclass", &g_sclass) == -1) {
mdb_warn("failed to find symbol sclass\n");
return (DCMD_ERR);
}
tbl_size = (size_t)g_sclass.st_size;
num_classes = tbl_size / (sizeof (sclass_t));
class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC);
if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) {
mdb_warn("failed to read sclass");
return (DCMD_ERR);
}
mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME",
"INIT FCN", "CLASS FCN");
for (i = 0; i < num_classes; i++) {
if (mdb_vread(class_name, sizeof (class_name),
(uintptr_t)class_tbl[i].cl_name) == -1)
(void) strcpy(class_name, "???");
mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name,
class_tbl[i].cl_init, class_tbl[i].cl_funcs);
}
return (DCMD_OK);
}
#define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */
int
vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
uintptr_t rootdir;
vnode_t vn;
char buf[MAXPATHLEN];
uint_t opt_F = FALSE;
if (mdb_getopts(argc, argv,
'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc)
return (DCMD_USAGE);
if (!(flags & DCMD_ADDRSPEC)) {
mdb_warn("expected explicit vnode_t address before ::\n");
return (DCMD_USAGE);
}
if (mdb_readvar(&rootdir, "rootdir") == -1) {
mdb_warn("failed to read rootdir");
return (DCMD_ERR);
}
if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1)
return (DCMD_ERR);
if (*buf == '\0') {
mdb_printf("??\n");
return (DCMD_OK);
}
mdb_printf("%s", buf);
if (opt_F && buf[strlen(buf)-1] != '/' &&
mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn))
mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0));
mdb_printf("\n");
return (DCMD_OK);
}
int
ld_walk_init(mdb_walk_state_t *wsp)
{
wsp->walk_data = (void *)wsp->walk_addr;
return (WALK_NEXT);
}
int
ld_walk_step(mdb_walk_state_t *wsp)
{
int status;
lock_descriptor_t ld;
if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) {
mdb_warn("couldn't read lock_descriptor_t at %p\n",
wsp->walk_addr);
return (WALK_ERR);
}
status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata);
if (status == WALK_ERR)
return (WALK_ERR);
wsp->walk_addr = (uintptr_t)ld.l_next;
if (wsp->walk_addr == (uintptr_t)wsp->walk_data)
return (WALK_DONE);
return (status);
}
int
lg_walk_init(mdb_walk_state_t *wsp)
{
GElf_Sym sym;
if (mdb_lookup_by_name("lock_graph", &sym) == -1) {
mdb_warn("failed to find symbol 'lock_graph'\n");
return (WALK_ERR);
}
wsp->walk_addr = (uintptr_t)sym.st_value;
wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size);
return (WALK_NEXT);
}
typedef struct lg_walk_data {
uintptr_t startaddr;
mdb_walk_cb_t callback;
void *data;
} lg_walk_data_t;
/*
* We can't use ::walk lock_descriptor directly, because the head of each graph
* is really a dummy lock. Rather than trying to dynamically determine if this
* is a dummy node or not, we just filter out the initial element of the
* list.
*/
static int
lg_walk_cb(uintptr_t addr, const void *data, void *priv)
{
lg_walk_data_t *lw = priv;
if (addr != lw->startaddr)
return (lw->callback(addr, data, lw->data));
return (WALK_NEXT);
}
int
lg_walk_step(mdb_walk_state_t *wsp)
{
graph_t *graph;
lg_walk_data_t lw;
if (wsp->walk_addr >= (uintptr_t)wsp->walk_data)
return (WALK_DONE);
if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) {
mdb_warn("failed to read graph_t at %p", wsp->walk_addr);
return (WALK_ERR);
}
wsp->walk_addr += sizeof (graph);
if (graph == NULL)
return (WALK_NEXT);
lw.callback = wsp->walk_callback;
lw.data = wsp->walk_cbdata;
lw.startaddr = (uintptr_t)&(graph->active_locks);
if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
return (WALK_ERR);
}
lw.startaddr = (uintptr_t)&(graph->sleeping_locks);
if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
return (WALK_ERR);
}
return (WALK_NEXT);
}
/*
* The space available for the path corresponding to the locked vnode depends
* on whether we are printing 32- or 64-bit addresses.
*/
#ifdef _LP64
#define LM_VNPATHLEN 20
#else
#define LM_VNPATHLEN 30
#endif
/*ARGSUSED*/
static int
lminfo_cb(uintptr_t addr, const void *data, void *priv)
{
const lock_descriptor_t *ld = data;
char buf[LM_VNPATHLEN];
proc_t p;
mdb_printf("%-?p %2s %04x %6d %-16s %-?p ",
addr, ld->l_type == F_RDLCK ? "RD" :
ld->l_type == F_WRLCK ? "WR" : "??",
ld->l_state, ld->l_flock.l_pid,
ld->l_flock.l_pid == 0 ? "<kernel>" :
mdb_pid2proc(ld->l_flock.l_pid, &p) == NULL ?
"<defunct>" : p.p_user.u_comm,
ld->l_vnode);
mdb_vnode2path((uintptr_t)ld->l_vnode, buf,
sizeof (buf));
mdb_printf("%s\n", buf);
return (WALK_NEXT);
}
/*ARGSUSED*/
int
lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
if (DCMD_HDRSPEC(flags))
mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n",
"ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH");
return (mdb_pwalk("lock_graph", lminfo_cb, NULL, NULL));
}
/*ARGSUSED*/
int
seg(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
struct seg s;
if (argc != 0)
return (DCMD_USAGE);
if ((flags & DCMD_LOOPFIRST) || !(flags & DCMD_LOOP)) {
mdb_printf("%<u>%?s %?s %?s %?s %s%</u>\n",
"SEG", "BASE", "SIZE", "DATA", "OPS");
}
if (mdb_vread(&s, sizeof (s), addr) == -1) {
mdb_warn("failed to read seg at %p", addr);
return (DCMD_ERR);
}
mdb_printf("%?p %?p %?lx %?p %a\n",
addr, s.s_base, s.s_size, s.s_data, s.s_ops);
return (DCMD_OK);
}
/*ARGSUSED*/
static int
pmap_walk_anon(uintptr_t addr, const struct anon *anon, int *nres)
{
uintptr_t pp =
mdb_vnode2page((uintptr_t)anon->an_vp, (uintptr_t)anon->an_off);
if (pp != NULL)
(*nres)++;
return (WALK_NEXT);
}
static int
pmap_walk_seg(uintptr_t addr, const struct seg *seg, uintptr_t segvn)
{
mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024);
if (segvn == (uintptr_t)seg->s_ops) {
struct segvn_data svn;
int nres = 0;
(void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data);
if (svn.amp == NULL) {
mdb_printf(" %8s", "");
goto drive_on;
}
/*
* We've got an amp for this segment; walk through
* the amp, and determine mappings.
*/
if (mdb_pwalk("anon", (mdb_walk_cb_t)pmap_walk_anon,
&nres, (uintptr_t)svn.amp) == -1)
mdb_warn("failed to walk anon (amp=%p)", svn.amp);
mdb_printf(" %7dk", (nres * PAGESIZE) / 1024);
drive_on:
if (svn.vp != NULL) {
char buf[29];
mdb_vnode2path((uintptr_t)svn.vp, buf, sizeof (buf));
mdb_printf(" %s", buf);
} else
mdb_printf(" [ anon ]");
}
mdb_printf("\n");
return (WALK_NEXT);
}
static int
pmap_walk_seg_quick(uintptr_t addr, const struct seg *seg, uintptr_t segvn)
{
mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024);
if (segvn == (uintptr_t)seg->s_ops) {
struct segvn_data svn;
(void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data);
if (svn.vp != NULL) {
mdb_printf(" %0?p", svn.vp);
} else {
mdb_printf(" [ anon ]");
}
}
mdb_printf("\n");
return (WALK_NEXT);
}
/*ARGSUSED*/
int
pmap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
uintptr_t segvn;
proc_t proc;
uint_t quick = FALSE;
mdb_walk_cb_t cb = (mdb_walk_cb_t)pmap_walk_seg;
GElf_Sym sym;
if (!(flags & DCMD_ADDRSPEC))
return (DCMD_USAGE);
if (mdb_getopts(argc, argv,
'q', MDB_OPT_SETBITS, TRUE, &quick, NULL) != argc)
return (DCMD_USAGE);
if (mdb_vread(&proc, sizeof (proc), addr) == -1) {
mdb_warn("failed to read proc at %p", addr);
return (DCMD_ERR);
}
if (mdb_lookup_by_name("segvn_ops", &sym) == 0)
segvn = (uintptr_t)sym.st_value;
else
segvn = NULL;
mdb_printf("%?s %?s %8s ", "SEG", "BASE", "SIZE");
if (quick) {
mdb_printf("VNODE\n");
cb = (mdb_walk_cb_t)pmap_walk_seg_quick;
} else {
mdb_printf("%8s %s\n", "RES", "PATH");
}
if (mdb_pwalk("seg", cb, (void *)segvn, (uintptr_t)proc.p_as) == -1) {
mdb_warn("failed to walk segments of as %p", proc.p_as);
return (DCMD_ERR);
}
return (DCMD_OK);
}
typedef struct anon_walk_data {
uintptr_t *aw_levone;
uintptr_t *aw_levtwo;
int aw_nlevone;
int aw_levone_ndx;
int aw_levtwo_ndx;
struct anon_map aw_amp;
struct anon_hdr aw_ahp;
} anon_walk_data_t;
int
anon_walk_init(mdb_walk_state_t *wsp)
{
anon_walk_data_t *aw;
if (wsp->walk_addr == NULL) {
mdb_warn("anon walk doesn't support global walks\n");
return (WALK_ERR);
}
aw = mdb_alloc(sizeof (anon_walk_data_t), UM_SLEEP);
if (mdb_vread(&aw->aw_amp, sizeof (aw->aw_amp), wsp->walk_addr) == -1) {
mdb_warn("failed to read anon map at %p", wsp->walk_addr);
mdb_free(aw, sizeof (anon_walk_data_t));
return (WALK_ERR);
}
if (mdb_vread(&aw->aw_ahp, sizeof (aw->aw_ahp),
(uintptr_t)(aw->aw_amp.ahp)) == -1) {
mdb_warn("failed to read anon hdr ptr at %p", aw->aw_amp.ahp);
mdb_free(aw, sizeof (anon_walk_data_t));
return (WALK_ERR);
}
if (aw->aw_ahp.size <= ANON_CHUNK_SIZE ||
(aw->aw_ahp.flags & ANON_ALLOC_FORCE)) {
aw->aw_nlevone = aw->aw_ahp.size;
aw->aw_levtwo = NULL;
} else {
aw->aw_nlevone =
(aw->aw_ahp.size + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT;
aw->aw_levtwo =
mdb_zalloc(ANON_CHUNK_SIZE * sizeof (uintptr_t), UM_SLEEP);
}
aw->aw_levone =
mdb_alloc(aw->aw_nlevone * sizeof (uintptr_t), UM_SLEEP);
aw->aw_levone_ndx = 0;
aw->aw_levtwo_ndx = 0;
mdb_vread(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t),
(uintptr_t)aw->aw_ahp.array_chunk);
if (aw->aw_levtwo != NULL) {
while (aw->aw_levone[aw->aw_levone_ndx] == NULL) {
aw->aw_levone_ndx++;
if (aw->aw_levone_ndx == aw->aw_nlevone) {
mdb_warn("corrupt anon; couldn't"
"find ptr to lev two map");
goto out;
}
}
mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t),
aw->aw_levone[aw->aw_levone_ndx]);
}
out:
wsp->walk_data = aw;
return (0);
}
int
anon_walk_step(mdb_walk_state_t *wsp)
{
int status;
anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data;
struct anon anon;
uintptr_t anonptr;
again:
/*
* Once we've walked through level one, we're done.
*/
if (aw->aw_levone_ndx == aw->aw_nlevone)
return (WALK_DONE);
if (aw->aw_levtwo == NULL) {
anonptr = aw->aw_levone[aw->aw_levone_ndx];
aw->aw_levone_ndx++;
} else {
anonptr = aw->aw_levtwo[aw->aw_levtwo_ndx];
aw->aw_levtwo_ndx++;
if (aw->aw_levtwo_ndx == ANON_CHUNK_SIZE) {
aw->aw_levtwo_ndx = 0;
do {
aw->aw_levone_ndx++;
if (aw->aw_levone_ndx == aw->aw_nlevone)
return (WALK_DONE);
} while (aw->aw_levone[aw->aw_levone_ndx] == NULL);
mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE *
sizeof (uintptr_t),
aw->aw_levone[aw->aw_levone_ndx]);
}
}
if (anonptr != NULL) {
mdb_vread(&anon, sizeof (anon), anonptr);
status = wsp->walk_callback(anonptr, &anon, wsp->walk_cbdata);
} else
goto again;
return (status);
}
void
anon_walk_fini(mdb_walk_state_t *wsp)
{
anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data;
if (aw->aw_levtwo != NULL)
mdb_free(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t));
mdb_free(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t));
mdb_free(aw, sizeof (anon_walk_data_t));
}
/*ARGSUSED*/
int
whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target)
{
if ((uintptr_t)f->f_vnode == *target) {
mdb_printf("file %p\n", addr);
*target = NULL;
}
return (WALK_NEXT);
}
/*ARGSUSED*/
int
whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target)
{
uintptr_t t = *target;
if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) {
mdb_warn("couldn't file walk proc %p", addr);
return (WALK_ERR);
}
if (t == NULL)
mdb_printf("%p\n", addr);
return (WALK_NEXT);
}
/*ARGSUSED*/
int
whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
uintptr_t target = addr;
if (!(flags & DCMD_ADDRSPEC) || addr == NULL)
return (DCMD_USAGE);
if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) {
mdb_warn("can't proc walk");
return (DCMD_ERR);
}
return (DCMD_OK);
}
typedef struct datafmt {
char *hdr1;
char *hdr2;
char *dashes;
char *fmt;
} datafmt_t;
static datafmt_t kmemfmt[] = {
{ "cache ", "name ",
"-------------------------", "%-25s " },
{ " buf", " size", "------", "%6u " },
{ " buf", "in use", "------", "%6u " },
{ " buf", " total", "------", "%6u " },
{ " memory", " in use", "----------", "%9u%c " },
{ " alloc", " succeed", "---------", "%9u " },
{ "alloc", " fail", "-----", "%5u " },
{ NULL, NULL, NULL, NULL }
};
static datafmt_t vmemfmt[] = {
{ "vmem ", "name ",
"-------------------------", "%-*s " },
{ " memory", " in use", "----------", "%9llu%c " },
{ " memory", " total", "-----------", "%10llu%c " },
{ " memory", " import", "----------", "%9llu%c " },
{ " alloc", " succeed", "---------", "%9llu " },
{ "alloc", " fail", "-----", "%5llu " },
{ NULL, NULL, NULL, NULL }
};
/*ARGSUSED*/
static int
kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail)
{
if (ccp->cc_rounds > 0)
*avail += ccp->cc_rounds;
if (ccp->cc_prounds > 0)
*avail += ccp->cc_prounds;
return (WALK_NEXT);
}
/*ARGSUSED*/
static int
kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc)
{
*alloc += ccp->cc_alloc;
return (WALK_NEXT);
}
/*ARGSUSED*/
static int
kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail)
{
*avail += sp->slab_chunks - sp->slab_refcnt;
return (WALK_NEXT);
}
typedef struct kmastat_vmem {
uintptr_t kv_addr;
struct kmastat_vmem *kv_next;
int kv_meminuse;
int kv_alloc;
int kv_fail;
} kmastat_vmem_t;
typedef struct kmastat_args {
kmastat_vmem_t **ka_kvpp;
uint_t ka_shift;
} kmastat_args_t;
static int
kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap)
{
kmastat_vmem_t **kvp = kap->ka_kvpp;
kmastat_vmem_t *kv;
datafmt_t *dfp = kmemfmt;
int magsize;
int avail, alloc, total;
size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) *
cp->cache_slabsize;
mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail;
mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc;
mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail;
magsize = kmem_get_magsize(cp);
alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc;
avail = cp->cache_full.ml_total * magsize;
total = cp->cache_buftotal;
(void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr);
(void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr);
(void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr);
for (kv = *kvp; kv != NULL; kv = kv->kv_next) {
if (kv->kv_addr == (uintptr_t)cp->cache_arena)
goto out;
}
kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC);
kv->kv_next = *kvp;
kv->kv_addr = (uintptr_t)cp->cache_arena;
*kvp = kv;
out:
kv->kv_meminuse += meminuse;
kv->kv_alloc += alloc;
kv->kv_fail += cp->cache_alloc_fail;
mdb_printf((dfp++)->fmt, cp->cache_name);
mdb_printf((dfp++)->fmt, cp->cache_bufsize);
mdb_printf((dfp++)->fmt, total - avail);
mdb_printf((dfp++)->fmt, total);
mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift,
kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' :
kap->ka_shift == KILOS ? 'K' : 'B');
mdb_printf((dfp++)->fmt, alloc);
mdb_printf((dfp++)->fmt, cp->cache_alloc_fail);
mdb_printf("\n");
return (WALK_NEXT);
}
static int
kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap)
{
kmastat_vmem_t *kv = *kap->ka_kvpp;
size_t len;
while (kv != NULL && kv->kv_addr != addr)
kv = kv->kv_next;
if (kv == NULL || kv->kv_alloc == 0)
return (WALK_NEXT);
len = MIN(17, strlen(v->vm_name));
mdb_printf("Total [%s]%*s %6s %6s %6s %9u%c %9u %5u\n", v->vm_name,
17 - len, "", "", "", "",
kv->kv_meminuse >> kap->ka_shift,
kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' :
kap->ka_shift == KILOS ? 'K' : 'B', kv->kv_alloc, kv->kv_fail);
return (WALK_NEXT);
}
/*ARGSUSED*/
static int
kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp)
{
datafmt_t *dfp = vmemfmt;
const vmem_kstat_t *vkp = &v->vm_kstat;
uintptr_t paddr;
vmem_t parent;
int ident = 0;
for (paddr = (uintptr_t)v->vm_source; paddr != NULL; ident += 4) {
if (mdb_vread(&parent, sizeof (parent), paddr) == -1) {
mdb_warn("couldn't trace %p's ancestry", addr);
ident = 0;
break;
}
paddr = (uintptr_t)parent.vm_source;
}
mdb_printf("%*s", ident, "");
mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name);
mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64 >> *shiftp,
*shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
*shiftp == KILOS ? 'K' : 'B');
mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64 >> *shiftp,
*shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
*shiftp == KILOS ? 'K' : 'B');
mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp,
*shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
*shiftp == KILOS ? 'K' : 'B');
mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64);
mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64);
mdb_printf("\n");
return (WALK_NEXT);
}
/*ARGSUSED*/
int
kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{
kmastat_vmem_t *kv = NULL;
datafmt_t *dfp;
kmastat_args_t ka;
ka.ka_shift = 0;
if (mdb_getopts(argc, argv,
'k', MDB_OPT_SETBITS, KILOS, &ka.ka_shift,
'm', MDB_OPT_SETBITS, MEGS, &ka.ka_shift,
'g', MDB_OPT_SETBITS, GIGS, &ka.ka_shift, NULL) != argc)
return (DCMD_USAGE);
for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
mdb_printf("%s ", dfp->hdr1);
mdb_printf("\n");
for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
mdb_printf("%s ", dfp->hdr2);
mdb_printf("\n");
for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
mdb_printf("%s ", dfp->dashes);
mdb_printf("\n");
ka.ka_kvpp = &kv;
if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) {
mdb_warn("can't walk 'kmem_cache'");
return (DCMD_ERR);
}
for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
mdb_printf("%s ", dfp->dashes);
mdb_printf("\n");
if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) {
mdb_warn("can't walk 'vmem'");
return (DCMD_ERR);
}
for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
mdb_printf("%s ", dfp->dashes);
mdb_printf("\n");
mdb_printf("\n");
for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
mdb_printf("%s ", dfp->hdr1);
mdb_printf("\n");
for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
mdb_printf("%s ", dfp->hdr2);
mdb_printf("\n");
for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
mdb_printf("%s ", dfp->dashes);
mdb_printf("\n");
if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) {
mdb_warn("can't walk 'vmem'");
return (DCMD_ERR);
}
for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
mdb_printf("%s ", dfp->dashes);
mdb_printf("\n");
return (DCMD_OK);
}
/*
* Our ::kgrep callback scans the entire kernel VA space (kas). kas is made
* up of a set of 'struct seg's. We could just scan each seg en masse, but
* unfortunately, a few of the segs are both large and sparse, so we could
* spend quite a bit of time scanning VAs which have no backing pages.
*
* So for the few very sparse segs, we skip the segment itself, and scan
* the allocated vmem_segs in the vmem arena which manages that part of kas.
* Currently, we do this for:
*
* SEG VMEM ARENA
* kvseg heap_arena
* kvseg32 heap32_arena
* kvseg_core heap_core_arena
*
* In addition, we skip the segkpm segment in its entirety, since it is very
* sparse, and contains no new kernel data.
*/
typedef struct kgrep_walk_data {
kgrep_cb_func *kg_cb;
void *kg_cbdata;
uintptr_t kg_kvseg;
uintptr_t kg_kvseg32;
uintptr_t kg_kvseg_core;
uintptr_t kg_segkpm;
uintptr_t kg_heap_lp_base;
uintptr_t kg_heap_lp_end;
} kgrep_walk_data_t;
static int
kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg)
{
uintptr_t base = (uintptr_t)seg->s_base;
if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 ||
addr == kg->kg_kvseg_core)
return (WALK_NEXT);
if ((uintptr_t)seg->s_ops == kg->kg_segkpm)
return (WALK_NEXT);
return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata));
}
/*ARGSUSED*/
static int
kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
{
/*
* skip large page heap address range - it is scanned by walking
* allocated vmem_segs in the heap_lp_arena
*/
if (seg->vs_start == kg->kg_heap_lp_base &&
seg->vs_end == kg->kg_heap_lp_end)
return (WALK_NEXT);
return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
}
/*ARGSUSED*/
static int
kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
{
return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
}
static int
kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg)
{
mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg;
if (strcmp(vmem->vm_name, "heap") != 0 &&
strcmp(vmem->vm_name, "heap32") != 0 &&
strcmp(vmem->vm_name, "heap_core") != 0 &&
strcmp(vmem->vm_name, "heap_lp") != 0)
return (WALK_NEXT);
if (strcmp(vmem->vm_name, "heap_lp") == 0)
walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg;
if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) {
mdb_warn("couldn't walk vmem_alloc for vmem %p", addr);
return (WALK_ERR);
}
return (WALK_NEXT);
}
int
kgrep_subr(kgrep_cb_func *cb, void *cbdata)
{
GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm;
kgrep_walk_data_t kg;
if (mdb_get_state() == MDB_STATE_RUNNING) {
mdb_warn("kgrep can only be run on a system "
"dump or under kmdb; see dumpadm(1M)\n");
return (DCMD_ERR);
}
if (mdb_lookup_by_name("kas", &kas) == -1) {
mdb_warn("failed to locate 'kas' symbol\n");
return (DCMD_ERR);
}
if (mdb_lookup_by_name("kvseg", &kvseg) == -1) {
mdb_warn("failed to locate 'kvseg' symbol\n");
return (DCMD_ERR);
}
if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) {
mdb_warn("failed to locate 'kvseg32' symbol\n");
return (DCMD_ERR);
}
if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) {
mdb_warn("failed to locate 'kvseg_core' symbol\n");
return (DCMD_ERR);
}
if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) {
mdb_warn("failed to locate 'segkpm_ops' symbol\n");
return (DCMD_ERR);
}
if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) {
mdb_warn("failed to read 'heap_lp_base'\n");
return (DCMD_ERR);
}
if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) {
mdb_warn("failed to read 'heap_lp_end'\n");
return (DCMD_ERR);
}
kg.kg_cb = cb;
kg.kg_cbdata = cbdata;
kg.kg_kvseg = (uintptr_t)kvseg.st_value;
kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value;
kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value;
kg.kg_segkpm = (uintptr_t)segkpm.st_value;
if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg,
&kg, kas.st_value) == -1) {
mdb_warn("failed to walk kas segments");
return (DCMD_ERR);
}
if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) {
mdb_warn("failed to walk heap/heap32 vmem arenas");
return (DCMD_ERR);
}
return (DCMD_OK);
}
size_t
kgrep_subr_pagesize(void)
{
return (PAGESIZE);
}
typedef struct file_walk_data {
struct uf_entry *fw_flist;
int fw_flistsz;
int fw_ndx;
int fw_nofiles;
} file_walk_data_t;
int
file_walk_init(mdb_walk_state_t *wsp)
{
file_walk_data_t *fw;
proc_t p;
if (wsp->walk_addr == NULL) {
mdb_warn("file walk doesn't support global walks\n");
return (WALK_ERR);
}
fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP);
if (mdb_vread(&p, sizeof (p), wsp->walk_addr) == -1) {
mdb_free(fw, sizeof (file_walk_data_t));
mdb_warn("failed to read proc structure at %p", wsp->walk_addr);
return (WALK_ERR);
}
if (p.p_user.u_finfo.fi_nfiles == 0) {
mdb_free(fw, sizeof (file_walk_data_t));
return (WALK_DONE);
}
fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles;
fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles;
fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP);
if (mdb_vread(fw->fw_flist, fw->fw_flistsz