| /* |
| * CDDL HEADER START |
| * |
| * The contents of this file are subject to the terms of the |
| * Common Development and Distribution License (the "License"). |
| * You may not use this file except in compliance with the License. |
| * |
| * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE |
| * or http://www.opensolaris.org/os/licensing. |
| * See the License for the specific language governing permissions |
| * and limitations under the License. |
| * |
| * When distributing Covered Code, include this CDDL HEADER in each |
| * file and include the License file at usr/src/OPENSOLARIS.LICENSE. |
| * If applicable, add the following below this CDDL HEADER, with the |
| * fields enclosed by brackets "[]" replaced with your own identifying |
| * information: Portions Copyright [yyyy] [name of copyright owner] |
| * |
| * CDDL HEADER END |
| */ |
| /* |
| * Copyright 2008 Sun Microsystems, Inc. All rights reserved. |
| * Use is subject to license terms. |
| */ |
| |
| #pragma ident "%Z%%M% %I% %E% SMI" |
| |
| /* |
| * This file contains global data and code shared between master and slave parts |
| * of the pseudo-terminal driver. |
| * |
| * Pseudo terminals (or pt's for short) are allocated dynamically. |
| * pt's are put in the global ptms_slots array indexed by minor numbers. |
| * |
| * The slots array is initially small (of the size NPTY_MIN). When more pt's are |
| * needed than the slot array size, the larger slot array is allocated and all |
| * opened pt's move to the new one. |
| * |
| * Resource allocation: |
| * |
| * pt_ttys structures are allocated via pt_ttys_alloc, which uses |
| * kmem_cache_alloc(). |
| * Minor number space is allocated via vmem_alloc() interface. |
| * ptms_slots arrays are allocated via kmem_alloc(). |
| * |
| * Minors are started from 1 instead of 0 because vmem_alloc returns 0 in case |
| * of failure. Also, in anticipation of removing clone device interface to |
| * pseudo-terminal subsystem, minor 0 should not be used. (Potential future |
| * development). |
| * |
| * After the table slot size reaches pt_maxdelta, we stop 2^N extension |
| * algorithm and start extending the slot table size by pt_maxdelta. |
| * |
| * Device entries /dev/pts directory are created dynamically by the |
| * /dev filesystem. We no longer call ddi_create_minor_node() on |
| * behalf of the slave driver. The /dev filesystem creates /dev/pts |
| * nodes based on the pt_ttys array. |
| * |
| * Synchronization: |
| * |
| * All global data synchronization between ptm/pts is done via global |
| * ptms_lock mutex which is implicitly initialized by declaring it global. |
| * |
| * Individual fields of pt_ttys structure (except ptm_rdq, pts_rdq and |
| * pt_nullmsg) are protected by pt_ttys.pt_lock mutex. |
| * |
| * PT_ENTER_READ/PT_ENTER_WRITE are reference counter based read-write locks |
| * which allow reader locks to be reacquired by the same thread (usual |
| * reader/writer locks can't be used for that purpose since it is illegal for |
| * a thread to acquire a lock it already holds, even as a reader). The sole |
| * purpose of these macros is to guarantee that the peer queue will not |
| * disappear (due to closing peer) while it is used. It is safe to use |
| * PT_ENTER_READ/PT_EXIT_READ brackets across calls like putq/putnext (since |
| * they are not real locks but reference counts). |
| * |
| * PT_ENTER_WRITE/PT_EXIT_WRITE brackets are used ONLY in master/slave |
| * open/close paths to modify ptm_rdq and pts_rdq fields. These fields should |
| * be set to appropriate queues *after* qprocson() is called during open (to |
| * prevent peer from accessing the queue with incomplete plumbing) and set to |
| * NULL before qprocsoff() is called during close. Put and service procedures |
| * use PT_ENTER_READ/PT_EXIT_READ to prevent peer closes. |
| * |
| * The pt_nullmsg field is only used in open/close routines and is also |
| * protected by PT_ENTER_WRITE/PT_EXIT_WRITE brackets to avoid extra mutex |
| * holds. |
| * |
| * Lock Ordering: |
| * |
| * If both ptms_lock and per-pty lock should be held, ptms_lock should always |
| * be entered first, followed by per-pty lock. |
| * |
| * Global functions: |
| * |
| * void ptms_init(void); |
| * |
| * Called by pts/ptm _init entry points. It performes one-time |
| * initialization needed for both pts and ptm. This initialization is done |
| * here and not in ptms_initspace because all these data structures are not |
| * needed if pseudo-terminals are not used in the system. |
| * |
| * struct pt_ttys *pt_ttys_alloc(void); |
| * |
| * Allocate new minor number and pseudo-terminal entry. May sleep. |
| * New minor number is recorded in pt_minor field of the entry returned. |
| * This routine also initializes pt_minor and pt_state fields of the new |
| * pseudo-terminal and puts a pointer to it into ptms_slots array. |
| * |
| * struct pt_ttys *ptms_minor2ptty(minor_t minor) |
| * |
| * Find pt_ttys structure by minor number. |
| * Returns NULL when minor is out of range. |
| * |
| * int ptms_minor_valid(minor_t minor, uid_t *ruid, gid_t *rgid) |
| * |
| * Check if minor refers to an allocated pty in the current zone. |
| * Returns |
| * 0 if not allocated or not for this zone. |
| * 1 if an allocated pty in the current zone. |
| * Also returns owner of pty. |
| * |
| * int ptms_minor_exists(minor_t minor) |
| * Check if minor refers to an allocated pty (in any zone) |
| * Returns |
| * 0 if not an allocated pty |
| * 1 if an allocated pty |
| * |
| * void ptms_set_owner(minor_t minor, uid_t ruid, gid_t rgid) |
| * |
| * Sets the owner associated with a pty. |
| * |
| * void ptms_close(struct pt_ttys *pt, uint_t flags_to_clear); |
| * |
| * Clear flags_to_clear in pt and if no one owns it (PTMOPEN/PTSOPEN not |
| * set) free pt entry and corresponding slot. |
| * |
| * Tuneables and configuration: |
| * |
| * pt_cnt: minimum number of pseudo-terminals in the system. The system |
| * should provide at least this number of ptys (provided sufficient |
| * memory is available). It is different from the older semantics |
| * of pt_cnt meaning maximum number of ptys. |
| * Set to 0 by default. |
| * |
| * pt_max_pty: Maximum number of pseudo-terminals in the system. The system |
| * should not allocate more ptys than pt_max_pty (although, it may |
| * impose stricter maximum). Zero value means no user-defined |
| * maximum. This is intended to be used as "denial-of-service" |
| * protection. |
| * Set to 0 by default. |
| * |
| * Both pt_cnt and pt_max_pty may be modified during system lifetime |
| * with their semantics preserved. |
| * |
| * pt_init_cnt: Initial size of ptms_slots array. Set to NPTY_INITIAL. |
| * |
| * pt_ptyofmem: Approximate percentage of system memory that may be |
| * occupied by pty data structures. Initially set to NPTY_PERCENT. |
| * This variable is used once during initialization to estimate |
| * maximum number of ptys in the system. The actual maximum is |
| * determined as minimum of pt_max_pty and calculated value. |
| * |
| * pt_maxdelta: Maximum extension chunk of the slot table. |
| */ |
| |
| |
| |
| #include <sys/types.h> |
| #include <sys/param.h> |
| #include <sys/termios.h> |
| #include <sys/stream.h> |
| #include <sys/stropts.h> |
| #include <sys/kmem.h> |
| #include <sys/ptms.h> |
| #include <sys/stat.h> |
| #include <sys/sunddi.h> |
| #include <sys/ddi.h> |
| #include <sys/bitmap.h> |
| #include <sys/sysmacros.h> |
| #include <sys/ddi_impldefs.h> |
| #include <sys/zone.h> |
| #ifdef DEBUG |
| #include <sys/strlog.h> |
| #endif |
| |
| |
| /* Initial number of ptms slots */ |
| #define NPTY_INITIAL 16 |
| |
| #define NPTY_PERCENT 5 |
| |
| /* Maximum increment of the slot table size */ |
| #define PTY_MAXDELTA 128 |
| |
| /* |
| * Tuneable variables. |
| */ |
| uint_t pt_cnt = 0; /* Minimum number of ptys */ |
| size_t pt_max_pty = 0; /* Maximum number of ptys */ |
| uint_t pt_init_cnt = NPTY_INITIAL; /* Initial number of ptms slots */ |
| uint_t pt_pctofmem = NPTY_PERCENT; /* Percent of memory to use for ptys */ |
| uint_t pt_maxdelta = PTY_MAXDELTA; /* Max increment for slot table size */ |
| |
| /* Other global variables */ |
| |
| kmutex_t ptms_lock; /* Global data access lock */ |
| |
| /* |
| * Slot array and its management variables |
| */ |
| static struct pt_ttys **ptms_slots = NULL; /* Slots for actual pt structures */ |
| static size_t ptms_nslots = 0; /* Size of slot array */ |
| static size_t ptms_ptymax = 0; /* Maximum number of ptys */ |
| static size_t ptms_inuse = 0; /* # of ptys currently allocated */ |
| |
| dev_info_t *pts_dip = NULL; /* set if slave is attached */ |
| |
| static struct kmem_cache *ptms_cache = NULL; /* pty cache */ |
| |
| static vmem_t *ptms_minor_arena = NULL; /* Arena for device minors */ |
| |
| static uint_t ptms_roundup(uint_t); |
| static int ptms_constructor(void *, void *, int); |
| static void ptms_destructor(void *, void *); |
| static minor_t ptms_grow(void); |
| |
| /* |
| * Total size occupied by one pty. Each pty master/slave pair consumes one |
| * pointer for ptms_slots array, one pt_ttys structure and one empty message |
| * preallocated for pts close. |
| */ |
| |
| #define PTY_SIZE (sizeof (struct pt_ttys) + \ |
| sizeof (struct pt_ttys *) + \ |
| sizeof (dblk_t)) |
| |
| #ifdef DEBUG |
| int ptms_debug = 0; |
| #define PTMOD_ID 5 |
| #endif |
| |
| /* |
| * Clear all bits of x except the highest bit |
| */ |
| #define truncate(x) ((x) <= 2 ? (x) : (1 << (highbit(x) - 1))) |
| |
| /* |
| * Roundup the number to the nearest power of 2 |
| */ |
| static uint_t |
| ptms_roundup(uint_t x) |
| { |
| uint_t p = truncate(x); /* x with non-high bits stripped */ |
| |
| /* |
| * If x is a power of 2, return x, otherwise roundup. |
| */ |
| return (p == x ? p : (p * 2)); |
| } |
| |
| /* |
| * Allocate ptms_slots array and kmem cache for pt_ttys. This initialization is |
| * only called once during system lifetime. Called from ptm or pts _init |
| * routine. |
| */ |
| void |
| ptms_init(void) |
| { |
| mutex_enter(&ptms_lock); |
| |
| if (ptms_slots == NULL) { |
| ptms_slots = kmem_zalloc(pt_init_cnt * |
| sizeof (struct pt_ttys *), KM_SLEEP); |
| |
| ptms_cache = kmem_cache_create("pty_map", |
| sizeof (struct pt_ttys), 0, ptms_constructor, |
| ptms_destructor, NULL, NULL, NULL, 0); |
| |
| ptms_nslots = pt_init_cnt; |
| |
| /* Allocate integer space for minor numbers */ |
| ptms_minor_arena = vmem_create("ptms_minor", (void *)1, |
| ptms_nslots, 1, NULL, NULL, NULL, 0, |
| VM_SLEEP | VMC_IDENTIFIER); |
| |
| /* |
| * Calculate available number of ptys - how many ptys can we |
| * allocate in pt_pctofmem % of available memory. The value is |
| * rounded up to the nearest power of 2. |
| */ |
| ptms_ptymax = ptms_roundup((pt_pctofmem * kmem_maxavail()) / |
| (100 * PTY_SIZE)); |
| } |
| mutex_exit(&ptms_lock); |
| } |
| |
| /* |
| * This routine attaches the pts dip. |
| */ |
| int |
| ptms_attach_slave(void) |
| { |
| if (pts_dip == NULL && i_ddi_attach_pseudo_node("pts") == NULL) |
| return (-1); |
| |
| ASSERT(pts_dip); |
| return (0); |
| } |
| |
| /* |
| * Called from /dev fs. Checks if dip is attached, |
| * and if it is, returns its major number. |
| */ |
| major_t |
| ptms_slave_attached(void) |
| { |
| major_t maj = DDI_MAJOR_T_NONE; |
| |
| mutex_enter(&ptms_lock); |
| if (pts_dip) |
| maj = ddi_driver_major(pts_dip); |
| mutex_exit(&ptms_lock); |
| |
| return (maj); |
| } |
| |
| /* |
| * Allocate new minor number and pseudo-terminal entry. Returns the new entry or |
| * NULL if no memory or maximum number of entries reached. |
| */ |
| struct pt_ttys * |
| pt_ttys_alloc(void) |
| { |
| minor_t dminor; |
| struct pt_ttys *pt = NULL; |
| |
| mutex_enter(&ptms_lock); |
| |
| /* |
| * Always try to allocate new pty when pt_cnt minimum limit is not |
| * achieved. If it is achieved, the maximum is determined by either |
| * user-specified value (if it is non-zero) or our memory estimations - |
| * whatever is less. |
| */ |
| if (ptms_inuse >= pt_cnt) { |
| /* |
| * When system achieved required minimum of ptys, check for the |
| * denial of service limits. |
| * |
| * Since pt_max_pty may be zero, the formula below is used to |
| * avoid conditional expression. It will equal to pt_max_pty if |
| * it is not zero and ptms_ptymax otherwise. |
| */ |
| size_t user_max = (pt_max_pty == 0 ? ptms_ptymax : pt_max_pty); |
| |
| /* Do not try to allocate more than allowed */ |
| if (ptms_inuse >= min(ptms_ptymax, user_max)) { |
| mutex_exit(&ptms_lock); |
| return (NULL); |
| } |
| } |
| ptms_inuse++; |
| |
| /* |
| * Allocate new minor number. If this fails, all slots are busy and |
| * we need to grow the hash. |
| */ |
| dminor = (minor_t)(uintptr_t) |
| vmem_alloc(ptms_minor_arena, 1, VM_NOSLEEP); |
| |
| if (dminor == 0) { |
| /* Grow the cache and retry allocation */ |
| dminor = ptms_grow(); |
| } |
| |
| if (dminor == 0) { |
| /* Not enough memory now */ |
| ptms_inuse--; |
| mutex_exit(&ptms_lock); |
| return (NULL); |
| } |
| |
| pt = kmem_cache_alloc(ptms_cache, KM_NOSLEEP); |
| if (pt == NULL) { |
| /* Not enough memory - this entry can't be used now. */ |
| vmem_free(ptms_minor_arena, (void *)(uintptr_t)dminor, 1); |
| ptms_inuse--; |
| } else { |
| pt->pt_minor = dminor; |
| pt->pt_pid = curproc->p_pid; /* For debugging */ |
| pt->pt_state = (PTMOPEN | PTLOCK); |
| pt->pt_zoneid = getzoneid(); |
| pt->pt_ruid = 0; /* we don't know uid/gid yet. Report as root */ |
| pt->pt_rgid = 0; |
| ASSERT(ptms_slots[dminor - 1] == NULL); |
| ptms_slots[dminor - 1] = pt; |
| } |
| |
| mutex_exit(&ptms_lock); |
| return (pt); |
| } |
| |
| /* |
| * Get pt_ttys structure by minor number. |
| * Returns NULL when minor is out of range. |
| */ |
| struct pt_ttys * |
| ptms_minor2ptty(minor_t dminor) |
| { |
| struct pt_ttys *pt = NULL; |
| |
| ASSERT(mutex_owned(&ptms_lock)); |
| if ((dminor >= 1) && (dminor <= ptms_nslots) && ptms_slots != NULL) |
| pt = ptms_slots[dminor - 1]; |
| |
| return (pt); |
| } |
| |
| /* |
| * Invoked in response to chown on /dev/pts nodes to change the |
| * permission on a pty |
| */ |
| void |
| ptms_set_owner(minor_t dminor, uid_t ruid, gid_t rgid) |
| { |
| struct pt_ttys *pt; |
| |
| ASSERT(ruid >= 0); |
| ASSERT(rgid >= 0); |
| |
| if (ruid < 0 || rgid < 0) |
| return; |
| |
| /* |
| * /dev/pts/0 is not used, but some applications may check it. There |
| * is no pty backing it - so we have nothing to do. |
| */ |
| if (dminor == 0) |
| return; |
| |
| mutex_enter(&ptms_lock); |
| pt = ptms_minor2ptty(dminor); |
| if (pt != NULL && pt->pt_zoneid == getzoneid()) { |
| pt->pt_ruid = ruid; |
| pt->pt_rgid = rgid; |
| } |
| mutex_exit(&ptms_lock); |
| } |
| |
| /* |
| * Given a ptm/pts minor number |
| * returns: |
| * 1 if the pty is allocated to the current zone. |
| * 0 otherwise |
| * |
| * If the pty is allocated to the current zone, it also returns the owner. |
| */ |
| int |
| ptms_minor_valid(minor_t dminor, uid_t *ruid, gid_t *rgid) |
| { |
| struct pt_ttys *pt; |
| int ret; |
| |
| ASSERT(ruid); |
| ASSERT(rgid); |
| |
| *ruid = (uid_t)-1; |
| *rgid = (gid_t)-1; |
| |
| /* |
| * /dev/pts/0 is not used, but some applications may check it, so create |
| * it also. Report the owner as root. It belongs to all zones. |
| */ |
| if (dminor == 0) { |
| *ruid = 0; |
| *rgid = 0; |
| return (1); |
| } |
| |
| ret = 0; |
| mutex_enter(&ptms_lock); |
| pt = ptms_minor2ptty(dminor); |
| if (pt != NULL) { |
| ASSERT(pt->pt_ruid >= 0); |
| ASSERT(pt->pt_rgid >= 0); |
| if (pt->pt_zoneid == getzoneid()) { |
| ret = 1; |
| *ruid = pt->pt_ruid; |
| *rgid = pt->pt_rgid; |
| } |
| } |
| mutex_exit(&ptms_lock); |
| |
| return (ret); |
| } |
| |
| /* |
| * Given a ptm/pts minor number |
| * returns: |
| * 0 if the pty is not allocated |
| * 1 if the pty is allocated |
| */ |
| int |
| ptms_minor_exists(minor_t dminor) |
| { |
| int ret; |
| |
| mutex_enter(&ptms_lock); |
| ret = ptms_minor2ptty(dminor) ? 1 : 0; |
| mutex_exit(&ptms_lock); |
| |
| return (ret); |
| } |
| |
| /* |
| * Close the pt and clear flags_to_clear. |
| * If pt device is not opened by someone else, free it and clear its slot. |
| */ |
| void |
| ptms_close(struct pt_ttys *pt, uint_t flags_to_clear) |
| { |
| uint_t flags; |
| |
| ASSERT(MUTEX_NOT_HELD(&ptms_lock)); |
| ASSERT(pt != NULL); |
| |
| mutex_enter(&ptms_lock); |
| |
| mutex_enter(&pt->pt_lock); |
| pt->pt_state &= ~flags_to_clear; |
| flags = pt->pt_state; |
| mutex_exit(&pt->pt_lock); |
| |
| if (! (flags & (PTMOPEN | PTSOPEN))) { |
| /* No one owns the entry - free it */ |
| |
| ASSERT(pt->ptm_rdq == NULL); |
| ASSERT(pt->pts_rdq == NULL); |
| ASSERT(pt->pt_nullmsg == NULL); |
| ASSERT(pt->pt_refcnt == 0); |
| ASSERT(pt->pt_minor <= ptms_nslots); |
| ASSERT(ptms_slots[pt->pt_minor - 1] == pt); |
| ASSERT(ptms_inuse > 0); |
| |
| ptms_inuse--; |
| |
| pt->pt_pid = 0; |
| |
| ptms_slots[pt->pt_minor - 1] = NULL; |
| /* Return minor number to the pool of minors */ |
| vmem_free(ptms_minor_arena, (void *)(uintptr_t)pt->pt_minor, 1); |
| /* Return pt to the cache */ |
| kmem_cache_free(ptms_cache, pt); |
| } |
| mutex_exit(&ptms_lock); |
| } |
| |
| /* |
| * Allocate another slot table twice as large as the original one (limited to |
| * global maximum). Migrate all pt to the new slot table and free the original |
| * one. Create more /devices entries for new devices. |
| */ |
| static minor_t |
| ptms_grow() |
| { |
| minor_t old_size = ptms_nslots; |
| minor_t delta = MIN(pt_maxdelta, old_size); |
| minor_t new_size = old_size + delta; |
| struct pt_ttys **ptms_old = ptms_slots; |
| struct pt_ttys **ptms_new; |
| void *vaddr; /* vmem_add return value */ |
| |
| ASSERT(MUTEX_HELD(&ptms_lock)); |
| |
| DDBG("ptmopen(%d): need to grow\n", (int)ptms_inuse); |
| |
| /* Allocate new ptms array */ |
| ptms_new = kmem_zalloc(new_size * sizeof (struct pt_ttys *), |
| KM_NOSLEEP); |
| if (ptms_new == NULL) |
| return ((minor_t)0); |
| |
| /* Increase clone index space */ |
| vaddr = vmem_add(ptms_minor_arena, (void *)(uintptr_t)(old_size + 1), |
| new_size - old_size, VM_NOSLEEP); |
| |
| if (vaddr == NULL) { |
| kmem_free(ptms_new, new_size * sizeof (struct pt_ttys *)); |
| return ((minor_t)0); |
| } |
| |
| /* Migrate pt entries to a new location */ |
| ptms_nslots = new_size; |
| bcopy(ptms_old, ptms_new, old_size * sizeof (struct pt_ttys *)); |
| ptms_slots = ptms_new; |
| kmem_free(ptms_old, old_size * sizeof (struct pt_ttys *)); |
| |
| /* Allocate minor number and return it */ |
| return ((minor_t)(uintptr_t) |
| vmem_alloc(ptms_minor_arena, 1, VM_NOSLEEP)); |
| } |
| |
| /*ARGSUSED*/ |
| static int |
| ptms_constructor(void *maddr, void *arg, int kmflags) |
| { |
| struct pt_ttys *pt = maddr; |
| |
| pt->pts_rdq = NULL; |
| pt->ptm_rdq = NULL; |
| pt->pt_nullmsg = NULL; |
| pt->pt_pid = NULL; |
| pt->pt_minor = NULL; |
| pt->pt_refcnt = 0; |
| pt->pt_state = 0; |
| pt->pt_zoneid = GLOBAL_ZONEID; |
| |
| cv_init(&pt->pt_cv, NULL, CV_DEFAULT, NULL); |
| mutex_init(&pt->pt_lock, NULL, MUTEX_DEFAULT, NULL); |
| return (0); |
| } |
| |
| /*ARGSUSED*/ |
| static void |
| ptms_destructor(void *maddr, void *arg) |
| { |
| struct pt_ttys *pt = maddr; |
| |
| ASSERT(pt->pt_refcnt == 0); |
| ASSERT(pt->pt_state == 0); |
| ASSERT(pt->ptm_rdq == NULL); |
| ASSERT(pt->pts_rdq == NULL); |
| |
| mutex_destroy(&pt->pt_lock); |
| cv_destroy(&pt->pt_cv); |
| } |
| |
| #ifdef DEBUG |
| void |
| ptms_log(char *str, uint_t arg) |
| { |
| if (ptms_debug) { |
| if (ptms_debug & 2) |
| cmn_err(CE_CONT, str, arg); |
| if (ptms_debug & 4) |
| (void) strlog(PTMOD_ID, -1, 0, SL_TRACE | SL_ERROR, |
| str, arg); |
| else |
| (void) strlog(PTMOD_ID, -1, 0, SL_TRACE, str, arg); |
| } |
| } |
| |
| void |
| ptms_logp(char *str, uintptr_t arg) |
| { |
| if (ptms_debug) { |
| if (ptms_debug & 2) |
| cmn_err(CE_CONT, str, arg); |
| if (ptms_debug & 4) |
| (void) strlog(PTMOD_ID, -1, 0, SL_TRACE | SL_ERROR, |
| str, arg); |
| else |
| (void) strlog(PTMOD_ID, -1, 0, SL_TRACE, str, arg); |
| } |
| } |
| #endif |