| /* |
| * CDDL HEADER START |
| * |
| * The contents of this file are subject to the terms of the |
| * Common Development and Distribution License (the "License"). |
| * You may not use this file except in compliance with the License. |
| * |
| * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE |
| * or http://www.opensolaris.org/os/licensing. |
| * See the License for the specific language governing permissions |
| * and limitations under the License. |
| * |
| * When distributing Covered Code, include this CDDL HEADER in each |
| * file and include the License file at usr/src/OPENSOLARIS.LICENSE. |
| * If applicable, add the following below this CDDL HEADER, with the |
| * fields enclosed by brackets "[]" replaced with your own identifying |
| * information: Portions Copyright [yyyy] [name of copyright owner] |
| * |
| * CDDL HEADER END |
| */ |
| /* |
| * Copyright 2009 Sun Microsystems, Inc. All rights reserved. |
| * Use is subject to license terms. |
| */ |
| |
| |
| /* |
| * |
| * IEEE 1284 Parallel Port Device Driver |
| * |
| */ |
| |
| #include <sys/param.h> |
| #include <sys/errno.h> |
| #include <sys/file.h> |
| #include <sys/cmn_err.h> |
| #include <sys/stropts.h> |
| #include <sys/debug.h> |
| #include <sys/stream.h> |
| #include <sys/strsun.h> |
| #include <sys/kmem.h> |
| #include <sys/ddi.h> |
| #include <sys/sunddi.h> |
| #include <sys/conf.h> /* req. by dev_ops flags MTSAFE etc. */ |
| #include <sys/modctl.h> /* for modldrv */ |
| #include <sys/stat.h> /* ddi_create_minor_node S_IFCHR */ |
| #include <sys/open.h> |
| #include <sys/ddi_impldefs.h> |
| #include <sys/kstat.h> |
| |
| #include <sys/prnio.h> |
| #include <sys/ecppreg.h> /* hw description */ |
| #include <sys/ecppio.h> /* ioctl description */ |
| #include <sys/ecppvar.h> /* driver description */ |
| #include <sys/dma_engine.h> |
| #include <sys/dma_i8237A.h> |
| |
| /* |
| * Background |
| * ========== |
| * IEEE 1284-1994 standard defines "a signalling method for asynchronous, |
| * fully interlocked, bidirectional parallel communications between hosts |
| * and printers or other peripherals." (1.1) The standard defines 5 modes |
| * of operation - Compatibility, Nibble, Byte, ECP and EPP - which differ |
| * in direction, bandwidth, pins assignment, DMA capability, etc. |
| * |
| * Negotiation is a mechanism for moving between modes. Compatibility mode |
| * is a default mode, from which negotiations to other modes occur and |
| * to which both host and peripheral break in case of interface errors. |
| * Compatibility mode provides a unidirectional (forward) channel for |
| * communicating with old pre-1284 peripherals. |
| * |
| * Each mode has a number of phases. [Mode, phase] pair represents the |
| * interface state. Host initiates all transfers, though peripheral can |
| * request backchannel transfer by asserting nErr pin. |
| * |
| * Ecpp driver implements an IEEE 1284-compliant host using a combination |
| * of hardware and software. Hardware part is represented by a controller, |
| * which is a part of the SuperIO chip. Ecpp supports the following SuperIOs: |
| * PC82332/PC82336 (U5/U10/U60), PC97317 (U100), M1553 (Grover). |
| * Struct ecpp_hw describes each SuperIO and is determined in ecpp_attach(). |
| * |
| * Negotiation is performed in software. Transfer may be performed either |
| * in software by driving output pins for each byte (PIO method), or with |
| * hardware assistance - SuperIO has a 16-byte FIFO, which is filled by |
| * the driver (normally using DMA), while the chip performs the actual xfer. |
| * PIO is used for Nibble and Compat, DMA is used for ECP and Compat modes. |
| * |
| * Driver currently supports the following modes: |
| * |
| * - Compatibility mode: byte-wide forward channel ~50KB/sec; |
| * pp->io_mode defines PIO or DMA method of transfer; |
| * - Nibble mode: nibble-wide (4-bit) reverse channel ~30KB/sec; |
| * - ECP mode: byte-wide bidirectional channel (~1MB/sec); |
| * |
| * Theory of operation |
| * =================== |
| * The manner in which ecpp drives 1284 interface is that of a state machine. |
| * State is a combination of 1284 mode {ECPP_*_MODE}, 1284 phase {ECPP_PHASE_*} |
| * and transfer method {PIO, DMA}. State is a function of application actions |
| * {write(2), ioctl(2)} and peripheral reaction. |
| * |
| * 1284 interface state is described by the following variables: |
| * pp->current_mode -- 1284 mode used for forward transfers; |
| * pp->backchannel -- 1284 mode used for backward transfers; |
| * pp->curent_phase -- 1284 phase; |
| * |
| * Bidirectional operation in Compatibility mode is provided by a combination: |
| * pp->current_mode == ECPP_COMPAT_MODE && pp->backchannel == ECPP_NIBBLE_MODE |
| * ECPP_CENTRONICS means no backchannel |
| * |
| * Driver internal state is defined by pp->e_busy as follows: |
| * ECPP_IDLE -- idle, no active transfers; |
| * ECPP_BUSY -- transfer is in progress; |
| * ECPP_ERR -- have data to transfer, but peripheral can`t receive data; |
| * ECPP_FLUSH -- flushing the queues; |
| * |
| * When opened, driver is in ECPP_IDLE state, current mode is ECPP_CENTRONICS |
| * Default negotiation tries to negotiate to the best mode supported by printer, |
| * sets pp->current_mode and pp->backchannel accordingly. |
| * |
| * When output data arrives in M_DATA mblks ecpp_wput() puts them on the queue |
| * to let ecpp_wsrv() concatenate small blocks into one big transfer |
| * by copying them into pp->ioblock. If first the mblk data is bigger than |
| * pp->ioblock, then it is used instead of i/o block (pointed by pp->msg) |
| * |
| * Before starting the transfer the driver will check if peripheral is ready |
| * by calling ecpp_check_status() and if it is not, driver goes ECPP_ERR state |
| * and schedules ecpp_wsrv_timer() which would qenable() the wq, effectively |
| * rechecking the peripheral readiness and restarting itself until it is ready. |
| * The transfer is then started by calling ecpp_start(), driver goes ECPP_BUSY |
| * |
| * While transfer is in progress all arriving messages will be queued up. |
| * Transfer can end up in either of two ways: |
| * - interrupt occurs, ecpp_isr() checks if all the data was transferred, if so |
| * cleanup and go ECPP_IDLE, otherwise putback untransferred and qenable(); |
| * - ecpp_xfer_timeout() cancels the transfer and puts back untransferred data; |
| * |
| * PIO transfer method is very CPU intensive: for each sent byte the peripheral |
| * state is checked, then the byte is transfered and driver waits for an nAck |
| * interrupt; ecpp_isr() will then look if there is more data and if so |
| * triggers the soft interrupt, which transfers the next byte. PIO method |
| * is needed only for legacy printers which are sensitive to strobe problem |
| * (Bugid 4192788). |
| * |
| * ecpp_wsrv() is responsible for both starting transfers (ecpp_start()) and |
| * going idle (ecpp_idle_phase()). Many routines qenable() the write queue, |
| * meaning "check if there are pending requests, process them and go idle". |
| * |
| * In it`s idle state the driver will always try to listen to the backchannel |
| * (as advised by 1284). |
| * |
| * The mechanism for handling backchannel requests is as follows: |
| * - when the peripheral has data to send it asserts nErr pin |
| * (and also nAck in Nibble Mode) which results in an interrupt on the host; |
| * - ISR creates M_CTL message containing an ECPP_BACKCHANNEL byte and |
| * puts it back on the write queue; |
| * - ecpp_wsrv() gets M_CTL and calls ecpp_peripheral2host(), which kicks off |
| * the transfer; |
| * |
| * This way Nibble and ECP mode backchannel are implemented. |
| * If the read queue gets full, backchannel request is rejected. |
| * As the application reads data and queue size falls below the low watermark, |
| * ecpp_rsrv() gets called and enables the backchannel again. |
| * |
| * Future enhancements |
| * =================== |
| * |
| * Support new modes: Byte and EPP. |
| */ |
| |
| #ifndef ECPP_DEBUG |
| #define ECPP_DEBUG 0 |
| #endif /* ECPP_DEBUG */ |
| int ecpp_debug = ECPP_DEBUG; |
| |
| int noecp = 0; /* flag not to use ECP mode */ |
| |
| /* driver entry point fn definitions */ |
| static int ecpp_open(queue_t *, dev_t *, int, int, cred_t *); |
| static int ecpp_close(queue_t *, int, cred_t *); |
| static uint_t ecpp_isr(caddr_t); |
| static uint_t ecpp_softintr(caddr_t); |
| |
| /* configuration entry point fn definitions */ |
| static int ecpp_getinfo(dev_info_t *, ddi_info_cmd_t, void *, void **); |
| static int ecpp_attach(dev_info_t *, ddi_attach_cmd_t); |
| static int ecpp_detach(dev_info_t *, ddi_detach_cmd_t); |
| static struct ecpp_hw_bind *ecpp_determine_sio_type(struct ecppunit *); |
| |
| /* isr support routines */ |
| static uint_t ecpp_nErr_ihdlr(struct ecppunit *); |
| static uint_t ecpp_pio_ihdlr(struct ecppunit *); |
| static uint_t ecpp_dma_ihdlr(struct ecppunit *); |
| static uint_t ecpp_M1553_intr(struct ecppunit *); |
| |
| /* configuration support routines */ |
| static void ecpp_get_props(struct ecppunit *); |
| |
| /* Streams Routines */ |
| static int ecpp_wput(queue_t *, mblk_t *); |
| static int ecpp_wsrv(queue_t *); |
| static int ecpp_rsrv(queue_t *); |
| static void ecpp_flush(struct ecppunit *, int); |
| static void ecpp_start(struct ecppunit *, caddr_t, size_t); |
| |
| /* ioctl handling */ |
| static void ecpp_putioc(queue_t *, mblk_t *); |
| static void ecpp_srvioc(queue_t *, mblk_t *); |
| static void ecpp_wput_iocdata_devid(queue_t *, mblk_t *, uintptr_t); |
| static void ecpp_putioc_copyout(queue_t *, mblk_t *, void *, int); |
| static void ecpp_putioc_stateful_copyin(queue_t *, mblk_t *, size_t); |
| static void ecpp_srvioc_devid(queue_t *, mblk_t *, |
| struct ecpp_device_id *, int *); |
| static void ecpp_srvioc_prnif(queue_t *, mblk_t *); |
| static void ecpp_ack_ioctl(queue_t *, mblk_t *); |
| static void ecpp_nack_ioctl(queue_t *, mblk_t *, int); |
| |
| /* kstat routines */ |
| static void ecpp_kstat_init(struct ecppunit *); |
| static int ecpp_kstat_update(kstat_t *, int); |
| static int ecpp_kstatintr_update(kstat_t *, int); |
| |
| /* dma routines */ |
| static void ecpp_putback_untransfered(struct ecppunit *, void *, uint_t); |
| static uint8_t ecpp_setup_dma_resources(struct ecppunit *, caddr_t, size_t); |
| static uint8_t ecpp_init_dma_xfer(struct ecppunit *, caddr_t, size_t); |
| |
| /* pio routines */ |
| static void ecpp_pio_writeb(struct ecppunit *); |
| static void ecpp_xfer_cleanup(struct ecppunit *); |
| static uint8_t ecpp_prep_pio_xfer(struct ecppunit *, caddr_t, size_t); |
| |
| /* misc */ |
| static uchar_t ecpp_reset_port_regs(struct ecppunit *); |
| static void ecpp_xfer_timeout(void *); |
| static void ecpp_fifo_timer(void *); |
| static void ecpp_wsrv_timer(void *); |
| static uchar_t dcr_write(struct ecppunit *, uint8_t); |
| static uchar_t ecr_write(struct ecppunit *, uint8_t); |
| static uchar_t ecpp_check_status(struct ecppunit *); |
| static int ecpp_backchan_req(struct ecppunit *); |
| static void ecpp_untimeout_unblock(struct ecppunit *, timeout_id_t *); |
| static uint_t ecpp_get_prn_ifcap(struct ecppunit *); |
| |
| /* stubs */ |
| static void empty_config_mode(struct ecppunit *); |
| static void empty_mask_intr(struct ecppunit *); |
| |
| /* PC87332 support */ |
| static int pc87332_map_regs(struct ecppunit *); |
| static void pc87332_unmap_regs(struct ecppunit *); |
| static int pc87332_config_chip(struct ecppunit *); |
| static void pc87332_config_mode(struct ecppunit *); |
| static uint8_t pc87332_read_config_reg(struct ecppunit *, uint8_t); |
| static void pc87332_write_config_reg(struct ecppunit *, uint8_t, uint8_t); |
| static void cheerio_mask_intr(struct ecppunit *); |
| static void cheerio_unmask_intr(struct ecppunit *); |
| static int cheerio_dma_start(struct ecppunit *); |
| static int cheerio_dma_stop(struct ecppunit *, size_t *); |
| static size_t cheerio_getcnt(struct ecppunit *); |
| static void cheerio_reset_dcsr(struct ecppunit *); |
| |
| /* PC97317 support */ |
| static int pc97317_map_regs(struct ecppunit *); |
| static void pc97317_unmap_regs(struct ecppunit *); |
| static int pc97317_config_chip(struct ecppunit *); |
| static void pc97317_config_mode(struct ecppunit *); |
| |
| /* M1553 Southbridge support */ |
| static int m1553_map_regs(struct ecppunit *pp); |
| static void m1553_unmap_regs(struct ecppunit *pp); |
| static int m1553_config_chip(struct ecppunit *); |
| static uint8_t m1553_read_config_reg(struct ecppunit *, uint8_t); |
| static void m1553_write_config_reg(struct ecppunit *, uint8_t, uint8_t); |
| |
| /* M1553 Southbridge DMAC 8237 support routines */ |
| static int dma8237_dma_start(struct ecppunit *); |
| static int dma8237_dma_stop(struct ecppunit *, size_t *); |
| static size_t dma8237_getcnt(struct ecppunit *); |
| static void dma8237_write_addr(struct ecppunit *, uint32_t); |
| static void dma8237_write_count(struct ecppunit *, uint32_t); |
| static uint32_t dma8237_read_count(struct ecppunit *); |
| static void dma8237_write(struct ecppunit *, int, uint8_t); |
| static uint8_t dma8237_read(struct ecppunit *, int); |
| #ifdef INCLUDE_DMA8237_READ_ADDR |
| static uint32_t dma8237_read_addr(struct ecppunit *); |
| #endif |
| |
| /* i86 PC support rountines */ |
| |
| #if defined(__x86) |
| static int x86_dma_start(struct ecppunit *); |
| static int x86_dma_stop(struct ecppunit *, size_t *); |
| static int x86_map_regs(struct ecppunit *); |
| static void x86_unmap_regs(struct ecppunit *); |
| static int x86_config_chip(struct ecppunit *); |
| static size_t x86_getcnt(struct ecppunit *); |
| #endif |
| |
| /* IEEE 1284 phase transitions */ |
| static void ecpp_1284_init_interface(struct ecppunit *); |
| static int ecpp_1284_termination(struct ecppunit *); |
| static uchar_t ecpp_idle_phase(struct ecppunit *); |
| static int ecp_forward2reverse(struct ecppunit *); |
| static int ecp_reverse2forward(struct ecppunit *); |
| static int read_nibble_backchan(struct ecppunit *); |
| |
| /* reverse transfers */ |
| static uint_t ecpp_peripheral2host(struct ecppunit *); |
| static uchar_t ecp_peripheral2host(struct ecppunit *); |
| static uchar_t nibble_peripheral2host(struct ecppunit *pp, uint8_t *); |
| static int ecpp_getdevid(struct ecppunit *, uint8_t *, int *, int); |
| static void ecpp_ecp_read_timeout(void *); |
| static void ecpp_ecp_read_completion(struct ecppunit *); |
| |
| /* IEEE 1284 mode transitions */ |
| static void ecpp_default_negotiation(struct ecppunit *); |
| static int ecpp_mode_negotiation(struct ecppunit *, uchar_t); |
| static int ecpp_1284_negotiation(struct ecppunit *, uint8_t, uint8_t *); |
| static int ecp_negotiation(struct ecppunit *); |
| static int nibble_negotiation(struct ecppunit *); |
| static int devidnib_negotiation(struct ecppunit *); |
| |
| /* IEEE 1284 utility routines */ |
| static int wait_dsr(struct ecppunit *, uint8_t, uint8_t, int); |
| |
| /* debugging functions */ |
| static void ecpp_error(dev_info_t *, char *, ...); |
| static uchar_t ecpp_get_error_status(uchar_t); |
| |
| /* |
| * Chip-dependent structures |
| */ |
| static ddi_dma_attr_t cheerio_dma_attr = { |
| DMA_ATTR_VERSION, /* version */ |
| 0x00000000ull, /* dlim_addr_lo */ |
| 0xfffffffeull, /* dlim_addr_hi */ |
| 0xffffff, /* DMA counter register */ |
| 1, /* DMA address alignment */ |
| 0x74, /* burst sizes */ |
| 0x0001, /* min effective DMA size */ |
| 0xffff, /* maximum transfer size */ |
| 0xffff, /* segment boundary */ |
| 1, /* s/g list length */ |
| 1, /* granularity of device */ |
| 0 /* DMA flags */ |
| }; |
| |
| static struct ecpp_hw pc87332 = { |
| pc87332_map_regs, |
| pc87332_unmap_regs, |
| pc87332_config_chip, |
| pc87332_config_mode, |
| cheerio_mask_intr, |
| cheerio_unmask_intr, |
| cheerio_dma_start, |
| cheerio_dma_stop, |
| cheerio_getcnt, |
| &cheerio_dma_attr |
| }; |
| |
| static struct ecpp_hw pc97317 = { |
| pc97317_map_regs, |
| pc97317_unmap_regs, |
| pc97317_config_chip, |
| pc97317_config_mode, |
| cheerio_mask_intr, |
| cheerio_unmask_intr, |
| cheerio_dma_start, |
| cheerio_dma_stop, |
| cheerio_getcnt, |
| &cheerio_dma_attr |
| }; |
| |
| static ddi_dma_attr_t i8237_dma_attr = { |
| DMA_ATTR_VERSION, /* version */ |
| 0x00000000ull, /* dlim_addr_lo */ |
| 0xfffffffeull, /* dlim_addr_hi */ |
| 0xffff, /* DMA counter register */ |
| 1, /* DMA address alignment */ |
| 0x01, /* burst sizes */ |
| 0x0001, /* min effective DMA size */ |
| 0xffff, /* maximum transfer size */ |
| 0x7fff, /* segment boundary */ |
| 1, /* s/g list length */ |
| 1, /* granularity of device */ |
| 0 /* DMA flags */ |
| }; |
| |
| static struct ecpp_hw m1553 = { |
| m1553_map_regs, |
| m1553_unmap_regs, |
| m1553_config_chip, |
| empty_config_mode, /* no config_mode */ |
| empty_mask_intr, /* no mask_intr */ |
| empty_mask_intr, /* no unmask_intr */ |
| dma8237_dma_start, |
| dma8237_dma_stop, |
| dma8237_getcnt, |
| &i8237_dma_attr |
| }; |
| |
| #if defined(__x86) |
| static ddi_dma_attr_t sb_dma_attr = { |
| DMA_ATTR_VERSION, /* version */ |
| 0x00000000ull, /* dlim_addr_lo */ |
| 0xffffff, /* dlim_addr_hi */ |
| 0xffff, /* DMA counter register */ |
| 1, /* DMA address alignment */ |
| 0x01, /* burst sizes */ |
| 0x0001, /* min effective DMA size */ |
| 0xffffffff, /* maximum transfer size */ |
| 0xffff, /* segment boundary */ |
| 1, /* s/g list length */ |
| 1, /* granularity of device */ |
| 0 /* DMA flags */ |
| }; |
| |
| static struct ecpp_hw x86 = { |
| x86_map_regs, |
| x86_unmap_regs, |
| x86_config_chip, |
| empty_config_mode, /* no config_mode */ |
| empty_mask_intr, /* no mask_intr */ |
| empty_mask_intr, /* no unmask_intr */ |
| x86_dma_start, |
| x86_dma_stop, |
| x86_getcnt, |
| &sb_dma_attr |
| }; |
| #endif |
| |
| /* |
| * list of supported devices |
| */ |
| struct ecpp_hw_bind ecpp_hw_bind[] = { |
| { "ns87317-ecpp", &pc97317, "PC97317" }, |
| { "pnpALI,1533,3", &m1553, "M1553" }, |
| { "ecpp", &pc87332, "PC87332" }, |
| #if defined(__x86) |
| { "lp", &x86, "i86pc"}, |
| #endif |
| }; |
| |
| static ddi_device_acc_attr_t acc_attr = { |
| DDI_DEVICE_ATTR_V0, |
| DDI_STRUCTURE_LE_ACC, |
| DDI_STRICTORDER_ACC |
| }; |
| |
| static struct ecpp_transfer_parms default_xfer_parms = { |
| FWD_TIMEOUT_DEFAULT, /* write timeout in seconds */ |
| ECPP_CENTRONICS /* supported mode */ |
| }; |
| |
| /* prnio interface info string */ |
| static const char prn_ifinfo[] = PRN_PARALLEL; |
| |
| /* prnio timeouts */ |
| static const struct prn_timeouts prn_timeouts_default = { |
| FWD_TIMEOUT_DEFAULT, /* forward timeout */ |
| REV_TIMEOUT_DEFAULT /* reverse timeout */ |
| }; |
| |
| static int ecpp_isr_max_delay = ECPP_ISR_MAX_DELAY; |
| static int ecpp_def_timeout = 90; /* left in for 2.7 compatibility */ |
| |
| static void *ecppsoft_statep; |
| |
| /* |
| * STREAMS framework manages locks for these structures |
| */ |
| _NOTE(SCHEME_PROTECTS_DATA("unique per call", iocblk)) |
| _NOTE(SCHEME_PROTECTS_DATA("unique per call", datab)) |
| _NOTE(SCHEME_PROTECTS_DATA("unique per call", msgb)) |
| _NOTE(SCHEME_PROTECTS_DATA("unique per call", queue)) |
| _NOTE(SCHEME_PROTECTS_DATA("unique per call", copyreq)) |
| _NOTE(SCHEME_PROTECTS_DATA("unique per call", stroptions)) |
| |
| struct module_info ecppinfo = { |
| /* id, name, min pkt siz, max pkt siz, hi water, low water */ |
| 42, "ecpp", 0, IO_BLOCK_SZ, ECPPHIWAT, ECPPLOWAT |
| }; |
| |
| static struct qinit ecpp_rinit = { |
| putq, ecpp_rsrv, ecpp_open, ecpp_close, NULL, &ecppinfo, NULL |
| }; |
| |
| static struct qinit ecpp_wint = { |
| ecpp_wput, ecpp_wsrv, ecpp_open, ecpp_close, NULL, &ecppinfo, NULL |
| }; |
| |
| struct streamtab ecpp_str_info = { |
| &ecpp_rinit, &ecpp_wint, NULL, NULL |
| }; |
| |
| static struct cb_ops ecpp_cb_ops = { |
| nodev, /* cb_open */ |
| nodev, /* cb_close */ |
| nodev, /* cb_strategy */ |
| nodev, /* cb_print */ |
| nodev, /* cb_dump */ |
| nodev, /* cb_read */ |
| nodev, /* cb_write */ |
| nodev, /* cb_ioctl */ |
| nodev, /* cb_devmap */ |
| nodev, /* cb_mmap */ |
| nodev, /* cb_segmap */ |
| nochpoll, /* cb_chpoll */ |
| ddi_prop_op, /* cb_prop_op */ |
| &ecpp_str_info, /* cb_stream */ |
| (D_NEW | D_MP | D_MTPERQ) /* cb_flag */ |
| }; |
| |
| /* |
| * Declare ops vectors for auto configuration. |
| */ |
| struct dev_ops ecpp_ops = { |
| DEVO_REV, /* devo_rev */ |
| 0, /* devo_refcnt */ |
| ecpp_getinfo, /* devo_getinfo */ |
| nulldev, /* devo_identify */ |
| nulldev, /* devo_probe */ |
| ecpp_attach, /* devo_attach */ |
| ecpp_detach, /* devo_detach */ |
| nodev, /* devo_reset */ |
| &ecpp_cb_ops, /* devo_cb_ops */ |
| (struct bus_ops *)NULL, /* devo_bus_ops */ |
| nulldev, /* devo_power */ |
| ddi_quiesce_not_needed, /* devo_quiesce */ |
| }; |
| |
| extern struct mod_ops mod_driverops; |
| |
| static struct modldrv ecppmodldrv = { |
| &mod_driverops, /* type of module - driver */ |
| "parallel port driver", |
| &ecpp_ops, |
| }; |
| |
| static struct modlinkage ecppmodlinkage = { |
| MODREV_1, |
| &ecppmodldrv, |
| 0 |
| }; |
| |
| |
| /* |
| * |
| * DDI/DKI entry points and supplementary routines |
| * |
| */ |
| |
| |
| int |
| _init(void) |
| { |
| int error; |
| |
| if ((error = mod_install(&ecppmodlinkage)) == 0) { |
| (void) ddi_soft_state_init(&ecppsoft_statep, |
| sizeof (struct ecppunit), 1); |
| } |
| |
| return (error); |
| } |
| |
| int |
| _fini(void) |
| { |
| int error; |
| |
| if ((error = mod_remove(&ecppmodlinkage)) == 0) { |
| ddi_soft_state_fini(&ecppsoft_statep); |
| } |
| |
| return (error); |
| } |
| |
| int |
| _info(struct modinfo *modinfop) |
| { |
| return (mod_info(&ecppmodlinkage, modinfop)); |
| } |
| |
| static int |
| ecpp_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) |
| { |
| int instance; |
| char name[16]; |
| struct ecppunit *pp; |
| struct ecpp_hw_bind *hw_bind; |
| |
| instance = ddi_get_instance(dip); |
| |
| switch (cmd) { |
| case DDI_ATTACH: |
| break; |
| |
| case DDI_RESUME: |
| if (!(pp = ddi_get_soft_state(ecppsoft_statep, instance))) { |
| return (DDI_FAILURE); |
| } |
| |
| mutex_enter(&pp->umutex); |
| |
| pp->suspended = FALSE; |
| |
| /* |
| * Initialize the chip and restore current mode if needed |
| */ |
| (void) ECPP_CONFIG_CHIP(pp); |
| (void) ecpp_reset_port_regs(pp); |
| |
| if (pp->oflag == TRUE) { |
| int current_mode = pp->current_mode; |
| |
| (void) ecpp_1284_termination(pp); |
| (void) ecpp_mode_negotiation(pp, current_mode); |
| } |
| |
| mutex_exit(&pp->umutex); |
| |
| return (DDI_SUCCESS); |
| |
| default: |
| return (DDI_FAILURE); |
| } |
| |
| if (ddi_soft_state_zalloc(ecppsoft_statep, instance) != 0) { |
| ecpp_error(dip, "ddi_soft_state_zalloc failed\n"); |
| goto fail; |
| } |
| |
| pp = ddi_get_soft_state(ecppsoft_statep, instance); |
| |
| pp->dip = dip; |
| pp->suspended = FALSE; |
| |
| /* |
| * Determine SuperIO type and set chip-dependent variables |
| */ |
| hw_bind = ecpp_determine_sio_type(pp); |
| |
| if (hw_bind == NULL) { |
| cmn_err(CE_NOTE, "parallel port controller not supported"); |
| goto fail_sio; |
| } else { |
| pp->hw = hw_bind->hw; |
| ecpp_error(pp->dip, "SuperIO type: %s\n", hw_bind->info); |
| } |
| |
| /* |
| * Map registers |
| */ |
| if (ECPP_MAP_REGS(pp) != SUCCESS) { |
| goto fail_map; |
| } |
| |
| if (ddi_dma_alloc_handle(dip, pp->hw->attr, DDI_DMA_DONTWAIT, |
| NULL, &pp->dma_handle) != DDI_SUCCESS) { |
| ecpp_error(dip, "ecpp_attach: failed ddi_dma_alloc_handle\n"); |
| goto fail_dma; |
| } |
| |
| if (ddi_get_iblock_cookie(dip, 0, |
| &pp->ecpp_trap_cookie) != DDI_SUCCESS) { |
| ecpp_error(dip, "ecpp_attach: failed ddi_get_iblock_cookie\n"); |
| goto fail_ibc; |
| } |
| |
| mutex_init(&pp->umutex, NULL, MUTEX_DRIVER, |
| (void *)pp->ecpp_trap_cookie); |
| |
| cv_init(&pp->pport_cv, NULL, CV_DRIVER, NULL); |
| |
| if (ddi_add_intr(dip, 0, &pp->ecpp_trap_cookie, NULL, ecpp_isr, |
| (caddr_t)pp) != DDI_SUCCESS) { |
| ecpp_error(dip, "ecpp_attach: failed to add hard intr\n"); |
| goto fail_intr; |
| } |
| |
| if (ddi_add_softintr(dip, DDI_SOFTINT_LOW, |
| &pp->softintr_id, 0, 0, ecpp_softintr, |
| (caddr_t)pp) != DDI_SUCCESS) { |
| ecpp_error(dip, "ecpp_attach: failed to add soft intr\n"); |
| goto fail_softintr; |
| } |
| |
| (void) sprintf(name, "ecpp%d", instance); |
| |
| if (ddi_create_minor_node(dip, name, S_IFCHR, instance, |
| DDI_NT_PRINTER, NULL) == DDI_FAILURE) { |
| ecpp_error(dip, "ecpp_attach: create_minor_node failed\n"); |
| goto fail_minor; |
| } |
| |
| pp->ioblock = (caddr_t)kmem_alloc(IO_BLOCK_SZ, KM_SLEEP); |
| if (pp->ioblock == NULL) { |
| ecpp_error(dip, "ecpp_attach: kmem_alloc failed\n"); |
| goto fail_iob; |
| } else { |
| ecpp_error(pp->dip, "ecpp_attach: ioblock=0x%x\n", pp->ioblock); |
| } |
| |
| ecpp_get_props(pp); |
| #if defined(__x86) |
| if (pp->hw == &x86 && pp->uh.x86.chn != 0xff) { |
| if (ddi_dmae_alloc(dip, pp->uh.x86.chn, |
| DDI_DMA_DONTWAIT, NULL) == DDI_SUCCESS) |
| ecpp_error(pp->dip, "dmae_alloc success!\n"); |
| } |
| #endif |
| if (ECPP_CONFIG_CHIP(pp) == FAILURE) { |
| ecpp_error(pp->dip, "config_chip failed.\n"); |
| goto fail_config; |
| } |
| |
| ecpp_kstat_init(pp); |
| |
| ddi_report_dev(dip); |
| |
| return (DDI_SUCCESS); |
| |
| fail_config: |
| ddi_prop_remove_all(dip); |
| kmem_free(pp->ioblock, IO_BLOCK_SZ); |
| fail_iob: |
| ddi_remove_minor_node(dip, NULL); |
| fail_minor: |
| ddi_remove_softintr(pp->softintr_id); |
| fail_softintr: |
| ddi_remove_intr(dip, (uint_t)0, pp->ecpp_trap_cookie); |
| fail_intr: |
| mutex_destroy(&pp->umutex); |
| cv_destroy(&pp->pport_cv); |
| fail_ibc: |
| ddi_dma_free_handle(&pp->dma_handle); |
| fail_dma: |
| ECPP_UNMAP_REGS(pp); |
| fail_map: |
| fail_sio: |
| ddi_soft_state_free(ecppsoft_statep, instance); |
| fail: |
| ecpp_error(dip, "ecpp_attach: failed.\n"); |
| |
| return (DDI_FAILURE); |
| } |
| |
| static int |
| ecpp_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) |
| { |
| int instance; |
| struct ecppunit *pp; |
| |
| instance = ddi_get_instance(dip); |
| |
| switch (cmd) { |
| case DDI_DETACH: |
| break; |
| |
| case DDI_SUSPEND: |
| if (!(pp = ddi_get_soft_state(ecppsoft_statep, instance))) { |
| return (DDI_FAILURE); |
| } |
| |
| mutex_enter(&pp->umutex); |
| ASSERT(pp->suspended == FALSE); |
| |
| pp->suspended = TRUE; /* prevent new transfers */ |
| |
| /* |
| * Wait if there's any activity on the port |
| */ |
| if ((pp->e_busy == ECPP_BUSY) || (pp->e_busy == ECPP_FLUSH)) { |
| (void) cv_reltimedwait(&pp->pport_cv, &pp->umutex, |
| SUSPEND_TOUT * drv_usectohz(1000000), |
| TR_CLOCK_TICK); |
| if ((pp->e_busy == ECPP_BUSY) || |
| (pp->e_busy == ECPP_FLUSH)) { |
| pp->suspended = FALSE; |
| mutex_exit(&pp->umutex); |
| ecpp_error(pp->dip, |
| "ecpp_detach: suspend timeout\n"); |
| return (DDI_FAILURE); |
| } |
| } |
| |
| mutex_exit(&pp->umutex); |
| return (DDI_SUCCESS); |
| |
| default: |
| return (DDI_FAILURE); |
| } |
| |
| pp = ddi_get_soft_state(ecppsoft_statep, instance); |
| #if defined(__x86) |
| if (pp->hw == &x86 && pp->uh.x86.chn != 0xff) |
| (void) ddi_dmae_release(pp->dip, pp->uh.x86.chn); |
| #endif |
| if (pp->dma_handle != NULL) |
| ddi_dma_free_handle(&pp->dma_handle); |
| |
| ddi_remove_minor_node(dip, NULL); |
| |
| ddi_remove_softintr(pp->softintr_id); |
| |
| ddi_remove_intr(dip, (uint_t)0, pp->ecpp_trap_cookie); |
| |
| if (pp->ksp) { |
| kstat_delete(pp->ksp); |
| } |
| if (pp->intrstats) { |
| kstat_delete(pp->intrstats); |
| } |
| |
| cv_destroy(&pp->pport_cv); |
| |
| mutex_destroy(&pp->umutex); |
| |
| ECPP_UNMAP_REGS(pp); |
| |
| kmem_free(pp->ioblock, IO_BLOCK_SZ); |
| |
| ddi_prop_remove_all(dip); |
| |
| ddi_soft_state_free(ecppsoft_statep, instance); |
| |
| return (DDI_SUCCESS); |
| |
| } |
| |
| /* |
| * ecpp_get_props() reads ecpp.conf for user defineable tuneables. |
| * If the file or a particular variable is not there, a default value |
| * is assigned. |
| */ |
| |
| static void |
| ecpp_get_props(struct ecppunit *pp) |
| { |
| char *prop; |
| #if defined(__x86) |
| int len; |
| int value; |
| #endif |
| /* |
| * If fast_centronics is TRUE, non-compliant IEEE 1284 |
| * peripherals ( Centronics peripherals) will operate in DMA mode. |
| * Transfers betwee main memory and the device will be via DMA; |
| * peripheral handshaking will be conducted by superio logic. |
| * If ecpp can not read the variable correctly fast_centronics will |
| * be set to FALSE. In this case, transfers and handshaking |
| * will be conducted by PIO for Centronics devices. |
| */ |
| if (ddi_prop_lookup_string(DDI_DEV_T_ANY, pp->dip, 0, |
| "fast-centronics", &prop) == DDI_PROP_SUCCESS) { |
| pp->fast_centronics = |
| (strcmp(prop, "true") == 0) ? TRUE : FALSE; |
| ddi_prop_free(prop); |
| } else { |
| pp->fast_centronics = FALSE; |
| } |
| |
| /* |
| * If fast-1284-compatible is set to TRUE, when ecpp communicates |
| * with IEEE 1284 compliant peripherals, data transfers between |
| * main memory and the parallel port will be conducted by DMA. |
| * Handshaking between the port and peripheral will be conducted |
| * by superio logic. This is the default characteristic. If |
| * fast-1284-compatible is set to FALSE, transfers and handshaking |
| * will be conducted by PIO. |
| */ |
| |
| if (ddi_prop_lookup_string(DDI_DEV_T_ANY, pp->dip, 0, |
| "fast-1284-compatible", &prop) == DDI_PROP_SUCCESS) { |
| pp->fast_compat = (strcmp(prop, "true") == 0) ? TRUE : FALSE; |
| ddi_prop_free(prop); |
| } else { |
| pp->fast_compat = TRUE; |
| } |
| |
| /* |
| * Some centronics peripherals require the nInit signal to be |
| * toggled to reset the device. If centronics_init_seq is set |
| * to TRUE, ecpp will toggle the nInit signal upon every ecpp_open(). |
| * Applications have the opportunity to toggle the nInit signal |
| * with ioctl(2) calls as well. The default is to set it to FALSE. |
| */ |
| if (ddi_prop_lookup_string(DDI_DEV_T_ANY, pp->dip, 0, |
| "centronics-init-seq", &prop) == DDI_PROP_SUCCESS) { |
| pp->init_seq = (strcmp(prop, "true") == 0) ? TRUE : FALSE; |
| ddi_prop_free(prop); |
| } else { |
| pp->init_seq = FALSE; |
| } |
| |
| /* |
| * If one of the centronics status signals are in an erroneous |
| * state, ecpp_wsrv() will be reinvoked centronics-retry ms to |
| * check if the status is ok to transfer. If the property is not |
| * found, wsrv_retry will be set to CENTRONICS_RETRY ms. |
| */ |
| pp->wsrv_retry = ddi_prop_get_int(DDI_DEV_T_ANY, pp->dip, 0, |
| "centronics-retry", CENTRONICS_RETRY); |
| |
| /* |
| * In PIO mode, ecpp_isr() will loop for wait for the busy signal |
| * to be deasserted before transferring the next byte. wait_for_busy |
| * is specificied in microseconds. If the property is not found |
| * ecpp_isr() will wait for a maximum of WAIT_FOR_BUSY us. |
| */ |
| pp->wait_for_busy = ddi_prop_get_int(DDI_DEV_T_ANY, pp->dip, 0, |
| "centronics-wait-for-busy", WAIT_FOR_BUSY); |
| |
| /* |
| * In PIO mode, centronics transfers must hold the data signals |
| * for a data_setup_time milliseconds before the strobe is asserted. |
| */ |
| pp->data_setup_time = ddi_prop_get_int(DDI_DEV_T_ANY, pp->dip, 0, |
| "centronics-data-setup-time", DATA_SETUP_TIME); |
| |
| /* |
| * In PIO mode, centronics transfers asserts the strobe signal |
| * for a period of strobe_pulse_width milliseconds. |
| */ |
| pp->strobe_pulse_width = ddi_prop_get_int(DDI_DEV_T_ANY, pp->dip, 0, |
| "centronics-strobe-pulse-width", STROBE_PULSE_WIDTH); |
| |
| /* |
| * Upon a transfer the peripheral, ecpp waits write_timeout seconds |
| * for the transmission to complete. |
| */ |
| default_xfer_parms.write_timeout = ddi_prop_get_int(DDI_DEV_T_ANY, |
| pp->dip, 0, "ecpp-transfer-timeout", ecpp_def_timeout); |
| |
| pp->xfer_parms = default_xfer_parms; |
| |
| /* |
| * Get dma channel for M1553 |
| */ |
| if (pp->hw == &m1553) { |
| pp->uh.m1553.chn = ddi_prop_get_int(DDI_DEV_T_ANY, |
| pp->dip, 0, "dma-channel", 0x1); |
| ecpp_error(pp->dip, "ecpp_get_prop:chn=%x\n", pp->uh.m1553.chn); |
| } |
| #if defined(__x86) |
| len = sizeof (value); |
| /* Get dma channel for i86 pc */ |
| if (pp->hw == &x86) { |
| if (ddi_prop_op(DDI_DEV_T_ANY, pp->dip, PROP_LEN_AND_VAL_BUF, |
| DDI_PROP_DONTPASS, "dma-channels", (caddr_t)&value, &len) |
| != DDI_PROP_SUCCESS) { |
| ecpp_error(pp->dip, "No dma channel found\n"); |
| pp->uh.x86.chn = 0xff; |
| pp->fast_compat = FALSE; |
| pp->noecpregs = TRUE; |
| } else |
| pp->uh.x86.chn = (uint8_t)value; |
| } |
| #endif |
| /* |
| * these properties are not yet public |
| */ |
| pp->ecp_rev_speed = ddi_prop_get_int(DDI_DEV_T_ANY, pp->dip, 0, |
| "ecp-rev-speed", ECP_REV_SPEED); |
| |
| pp->rev_watchdog = ddi_prop_get_int(DDI_DEV_T_ANY, pp->dip, 0, |
| "rev-watchdog", REV_WATCHDOG); |
| |
| ecpp_error(pp->dip, |
| "ecpp_get_prop: fast_centronics=%x, fast-1284=%x\n" |
| "ecpp_get_prop: wsrv_retry=%d, wait_for_busy=%d\n" |
| "ecpp_get_prop: data_setup=%d, strobe_pulse=%d\n" |
| "ecpp_get_prop: transfer-timeout=%d\n", |
| pp->fast_centronics, pp->fast_compat, |
| pp->wsrv_retry, pp->wait_for_busy, |
| pp->data_setup_time, pp->strobe_pulse_width, |
| pp->xfer_parms.write_timeout); |
| } |
| |
| /*ARGSUSED*/ |
| int |
| ecpp_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) |
| { |
| dev_t dev = (dev_t)arg; |
| struct ecppunit *pp; |
| int instance, ret; |
| |
| instance = getminor(dev); |
| |
| switch (infocmd) { |
| case DDI_INFO_DEVT2DEVINFO: |
| pp = ddi_get_soft_state(ecppsoft_statep, instance); |
| if (pp != NULL) { |
| *result = pp->dip; |
| ret = DDI_SUCCESS; |
| } else { |
| ret = DDI_FAILURE; |
| } |
| break; |
| |
| case DDI_INFO_DEVT2INSTANCE: |
| *result = (void *)(uintptr_t)instance; |
| ret = DDI_SUCCESS; |
| break; |
| |
| default: |
| ret = DDI_FAILURE; |
| break; |
| } |
| |
| return (ret); |
| } |
| |
| /*ARGSUSED2*/ |
| static int |
| ecpp_open(queue_t *q, dev_t *dev, int flag, int sflag, cred_t *credp) |
| { |
| struct ecppunit *pp; |
| int instance; |
| struct stroptions *sop; |
| mblk_t *mop; |
| |
| instance = getminor(*dev); |
| |
| if (instance < 0) { |
| return (ENXIO); |
| } |
| |
| pp = (struct ecppunit *)ddi_get_soft_state(ecppsoft_statep, instance); |
| |
| if (pp == NULL) { |
| return (ENXIO); |
| } |
| |
| mutex_enter(&pp->umutex); |
| |
| /* |
| * Parallel port is an exclusive-use device |
| * thus providing print job integrity |
| */ |
| if (pp->oflag == TRUE) { |
| ecpp_error(pp->dip, "ecpp open failed"); |
| mutex_exit(&pp->umutex); |
| return (EBUSY); |
| } |
| |
| pp->oflag = TRUE; |
| |
| /* initialize state variables */ |
| pp->prn_timeouts = prn_timeouts_default; |
| pp->xfer_parms = default_xfer_parms; |
| pp->current_mode = ECPP_CENTRONICS; |
| pp->backchannel = ECPP_CENTRONICS; |
| pp->current_phase = ECPP_PHASE_PO; |
| pp->port = ECPP_PORT_DMA; |
| pp->instance = instance; |
| pp->timeout_error = 0; |
| pp->saved_dsr = DSR_READ(pp); |
| pp->ecpp_drain_counter = 0; |
| pp->dma_cancelled = FALSE; |
| pp->io_mode = ECPP_DMA; |
| pp->joblen = 0; |
| pp->tfifo_intr = 0; |
| pp->softintr_pending = 0; |
| pp->nread = 0; |
| |
| /* clear the state flag */ |
| pp->e_busy = ECPP_IDLE; |
| |
| pp->readq = RD(q); |
| pp->writeq = WR(q); |
| pp->msg = NULL; |
| |
| RD(q)->q_ptr = WR(q)->q_ptr = (caddr_t)pp; |
| |
| /* |
| * Get ready: check host/peripheral, negotiate into default mode |
| */ |
| if (ecpp_reset_port_regs(pp) == FAILURE) { |
| mutex_exit(&pp->umutex); |
| return (EIO); |
| } |
| |
| mutex_exit(&pp->umutex); |
| |
| /* |
| * Configure the Stream head and enable the Stream |
| */ |
| if (!(mop = allocb(sizeof (struct stroptions), BPRI_MED))) { |
| return (EAGAIN); |
| } |
| |
| mop->b_datap->db_type = M_SETOPTS; |
| mop->b_wptr += sizeof (struct stroptions); |
| |
| /* |
| * if device is open with O_NONBLOCK flag set, let read(2) return 0 |
| * if no data waiting to be read. Writes will block on flow control. |
| */ |
| sop = (struct stroptions *)mop->b_rptr; |
| sop->so_flags = SO_HIWAT | SO_LOWAT | SO_NDELON | SO_MREADON; |
| sop->so_hiwat = ECPPHIWAT; |
| sop->so_lowat = ECPPLOWAT; |
| |
| /* enable the stream */ |
| qprocson(q); |
| |
| putnext(q, mop); |
| |
| mutex_enter(&pp->umutex); |
| |
| ecpp_default_negotiation(pp); |
| |
| /* go revidle */ |
| (void) ecpp_idle_phase(pp); |
| |
| ecpp_error(pp->dip, |
| "ecpp_open: mode=%x, phase=%x ecr=%x, dsr=%x, dcr=%x\n", |
| pp->current_mode, pp->current_phase, |
| ECR_READ(pp), DSR_READ(pp), DCR_READ(pp)); |
| |
| mutex_exit(&pp->umutex); |
| |
| return (0); |
| } |
| |
| /*ARGSUSED1*/ |
| static int |
| ecpp_close(queue_t *q, int flag, cred_t *cred_p) |
| { |
| struct ecppunit *pp; |
| timeout_id_t timeout_id, fifo_timer_id, wsrv_timer_id; |
| |
| pp = (struct ecppunit *)q->q_ptr; |
| |
| ecpp_error(pp->dip, "ecpp_close: entering ...\n"); |
| |
| mutex_enter(&pp->umutex); |
| |
| /* |
| * ecpp_close() will continue to loop until the |
| * queue has been drained or if the thread |
| * has received a SIG. Typically, when the queue |
| * has data, the port will be ECPP_BUSY. However, |
| * after a dma completes and before the wsrv |
| * starts the next transfer, the port may be IDLE. |
| * In this case, ecpp_close() will loop within this |
| * while(qsize) segment. Since, ecpp_wsrv() runs |
| * at software interupt level, this shouldn't loop |
| * very long. |
| */ |
| while (pp->e_busy != ECPP_IDLE || qsize(WR(q))) { |
| if (!cv_wait_sig(&pp->pport_cv, &pp->umutex)) { |
| ecpp_error(pp->dip, "ecpp_close:B: received SIG\n"); |
| /* |
| * Returning from a signal such as |
| * SIGTERM or SIGKILL |
| */ |
| ecpp_flush(pp, FWRITE); |
| break; |
| } else { |
| ecpp_error(pp->dip, "ecpp_close:rcvd cv-sig\n"); |
| } |
| } |
| |
| ecpp_error(pp->dip, "ecpp_close: joblen=%d, ctx_cf=%d, " |
| "qsize(WR(q))=%d, qsize(RD(q))=%d\n", |
| pp->joblen, pp->ctx_cf, qsize(pp->writeq), qsize(q)); |
| |
| /* |
| * Cancel all timeouts, disable interrupts |
| * |
| * Note that we can`t call untimeout(9F) with mutex held: |
| * callout may be blocked on the same mutex, and untimeout() will |
| * cv_wait() while callout is executing, thus creating a deadlock |
| * So we zero the timeout id's inside mutex and call untimeout later |
| */ |
| timeout_id = pp->timeout_id; |
| fifo_timer_id = pp->fifo_timer_id; |
| wsrv_timer_id = pp->wsrv_timer_id; |
| |
| pp->timeout_id = pp->fifo_timer_id = pp->wsrv_timer_id = 0; |
| |
| pp->softintr_pending = 0; |
| pp->dma_cancelled = TRUE; |
| ECPP_MASK_INTR(pp); |
| |
| mutex_exit(&pp->umutex); |
| |
| qprocsoff(q); |
| |
| if (timeout_id) { |
| (void) untimeout(timeout_id); |
| } |
| if (fifo_timer_id) { |
| (void) untimeout(fifo_timer_id); |
| } |
| if (wsrv_timer_id) { |
| (void) untimeout(wsrv_timer_id); |
| } |
| |
| mutex_enter(&pp->umutex); |
| |
| /* set link to Compatible mode */ |
| if ((pp->current_mode == ECPP_ECP_MODE) && |
| (pp->current_phase != ECPP_PHASE_ECP_FWD_IDLE)) { |
| (void) ecp_reverse2forward(pp); |
| } |
| |
| (void) ecpp_1284_termination(pp); |
| |
| pp->oflag = FALSE; |
| q->q_ptr = WR(q)->q_ptr = NULL; |
| pp->readq = pp->writeq = NULL; |
| pp->msg = NULL; |
| |
| ecpp_error(pp->dip, "ecpp_close: ecr=%x, dsr=%x, dcr=%x\n", |
| ECR_READ(pp), DSR_READ(pp), DCR_READ(pp)); |
| |
| mutex_exit(&pp->umutex); |
| |
| return (0); |
| } |
| |
| /* |
| * standard put procedure for ecpp |
| */ |
| static int |
| ecpp_wput(queue_t *q, mblk_t *mp) |
| { |
| struct msgb *nmp; |
| struct ecppunit *pp; |
| |
| pp = (struct ecppunit *)q->q_ptr; |
| |
| if (!mp) { |
| return (0); |
| } |
| |
| if ((mp->b_wptr - mp->b_rptr) <= 0) { |
| ecpp_error(pp->dip, |
| "ecpp_wput:bogus packet recieved mp=%x\n", mp); |
| freemsg(mp); |
| return (0); |
| } |
| |
| switch (DB_TYPE(mp)) { |
| case M_DATA: |
| /* |
| * This is a quick fix for multiple message block problem, |
| * it will be changed later with better performance code. |
| */ |
| if (mp->b_cont) { |
| /* |
| * mblk has scattered data ... do msgpullup |
| * if it fails, continue with the current mblk |
| */ |
| if ((nmp = msgpullup(mp, -1)) != NULL) { |
| freemsg(mp); |
| mp = nmp; |
| ecpp_error(pp->dip, |
| "ecpp_wput:msgpullup: mp=%p len=%d\n", |
| mp, mp->b_wptr - mp->b_rptr); |
| } |
| } |
| |
| /* let ecpp_wsrv() concatenate small blocks */ |
| (void) putq(q, mp); |
| |
| break; |
| |
| case M_CTL: |
| (void) putq(q, mp); |
| |
| break; |
| |
| case M_IOCTL: { |
| struct iocblk *iocbp; |
| |
| iocbp = (struct iocblk *)mp->b_rptr; |
| |
| ecpp_error(pp->dip, "ecpp_wput:M_IOCTL %x\n", iocbp->ioc_cmd); |
| |
| mutex_enter(&pp->umutex); |
| |
| /* TESTIO and GET_STATUS can be used during transfer */ |
| if ((pp->e_busy == ECPP_BUSY) && |
| (iocbp->ioc_cmd != BPPIOC_TESTIO) && |
| (iocbp->ioc_cmd != PRNIOC_GET_STATUS)) { |
| mutex_exit(&pp->umutex); |
| (void) putq(q, mp); |
| } else { |
| mutex_exit(&pp->umutex); |
| ecpp_putioc(q, mp); |
| } |
| |
| break; |
| } |
| |
| case M_IOCDATA: { |
| struct copyresp *csp; |
| |
| ecpp_error(pp->dip, "ecpp_wput:M_IOCDATA\n"); |
| |
| csp = (struct copyresp *)mp->b_rptr; |
| |
| /* |
| * If copy request failed, quit now |
| */ |
| if (csp->cp_rval != 0) { |
| freemsg(mp); |
| return (0); |
| } |
| |
| switch (csp->cp_cmd) { |
| case ECPPIOC_SETPARMS: |
| case ECPPIOC_SETREGS: |
| case ECPPIOC_SETPORT: |
| case ECPPIOC_SETDATA: |
| case PRNIOC_SET_IFCAP: |
| case PRNIOC_SET_TIMEOUTS: |
| /* |
| * need to retrieve and use the data, but if the |
| * device is busy, wait. |
| */ |
| (void) putq(q, mp); |
| break; |
| |
| case ECPPIOC_GETPARMS: |
| case ECPPIOC_GETREGS: |
| case ECPPIOC_GETPORT: |
| case ECPPIOC_GETDATA: |
| case BPPIOC_GETERR: |
| case BPPIOC_TESTIO: |
| case PRNIOC_GET_IFCAP: |
| case PRNIOC_GET_STATUS: |
| case PRNIOC_GET_1284_STATUS: |
| case PRNIOC_GET_TIMEOUTS: |
| /* data transfered to user space okay */ |
| ecpp_ack_ioctl(q, mp); |
| break; |
| |
| case ECPPIOC_GETDEVID: |
| ecpp_wput_iocdata_devid(q, mp, |
| offsetof(struct ecpp_device_id, rlen)); |
| break; |
| |
| case PRNIOC_GET_1284_DEVID: |
| ecpp_wput_iocdata_devid(q, mp, |
| offsetof(struct prn_1284_device_id, id_rlen)); |
| break; |
| |
| case PRNIOC_GET_IFINFO: |
| ecpp_wput_iocdata_devid(q, mp, |
| offsetof(struct prn_interface_info, if_rlen)); |
| break; |
| |
| default: |
| ecpp_nack_ioctl(q, mp, EINVAL); |
| break; |
| } |
| |
| break; |
| } |
| |
| case M_FLUSH: |
| ecpp_error(pp->dip, "ecpp_wput:M_FLUSH\n"); |
| |
| if (*mp->b_rptr & FLUSHW) { |
| mutex_enter(&pp->umutex); |
| ecpp_flush(pp, FWRITE); |
| mutex_exit(&pp->umutex); |
| } |
| |
| if (*mp->b_rptr & FLUSHR) { |
| mutex_enter(&pp->umutex); |
| ecpp_flush(pp, FREAD); |
| mutex_exit(&pp->umutex); |
| qreply(q, mp); |
| } else { |
| freemsg(mp); |
| } |
| |
| break; |
| |
| case M_READ: |
| /* |
| * When the user calls read(2), M_READ message is sent to us, |
| * first byte of which is the number of requested bytes |
| * We add up user requests and use resulting number |
| * to calculate the reverse transfer block size |
| */ |
| mutex_enter(&pp->umutex); |
| if (pp->e_busy == ECPP_IDLE) { |
| pp->nread += *(size_t *)mp->b_rptr; |
| ecpp_error(pp->dip, "ecpp_wput: M_READ %d", pp->nread); |
| freemsg(mp); |
| } else { |
| ecpp_error(pp->dip, "ecpp_wput: M_READ queueing"); |
| (void) putq(q, mp); |
| } |
| mutex_exit(&pp->umutex); |
| break; |
| |
| default: |
| ecpp_error(pp->dip, "ecpp_wput: bad messagetype 0x%x\n", |
| DB_TYPE(mp)); |
| freemsg(mp); |
| break; |
| } |
| |
| return (0); |
| } |
| |
| /* |
| * Process ECPPIOC_GETDEVID-like ioctls |
| */ |
| static void |
| ecpp_wput_iocdata_devid(queue_t *q, mblk_t *mp, uintptr_t rlen_offset) |
| { |
| struct copyresp *csp; |
| struct ecpp_copystate *stp; |
| mblk_t *datamp; |
| |
| csp = (struct copyresp *)mp->b_rptr; |
| stp = (struct ecpp_copystate *)csp->cp_private->b_rptr; |
| |
| /* determine the state of copyin/copyout process */ |
| switch (stp->state) { |
| case ECPP_STRUCTIN: |
| /* user structure has arrived */ |
| (void) putq(q, mp); |
| break; |
| |
| case ECPP_ADDROUT: |
| /* |
| * data transfered to user space okay |
| * now update user structure |
| */ |
| datamp = allocb(sizeof (int), BPRI_MED); |
| if (datamp == NULL) { |
| ecpp_nack_ioctl(q, mp, ENOSR); |
| break; |
| } |
| |
| *(int *)datamp->b_rptr = |
| *(int *)((char *)&stp->un + rlen_offset); |
| stp->state = ECPP_STRUCTOUT; |
| |
| mcopyout(mp, csp->cp_private, sizeof (int), |
| (char *)stp->uaddr + rlen_offset, datamp); |
| qreply(q, mp); |
| break; |
| |
| case ECPP_STRUCTOUT: |
| /* user structure was updated okay */ |
| freemsg(csp->cp_private); |
| ecpp_ack_ioctl(q, mp); |
| break; |
| |
| default: |
| ecpp_nack_ioctl(q, mp, EINVAL); |
| break; |
| } |
| } |
| |
| static uchar_t |
| ecpp_get_error_status(uchar_t status) |
| { |
| uchar_t pin_status = 0; |
| |
| if (!(status & ECPP_nERR)) { |
| pin_status |= BPP_ERR_ERR; |
| } |
| |
| if (status & ECPP_PE) { |
| pin_status |= BPP_PE_ERR; |
| } |
| |
| if (!(status & ECPP_SLCT)) { |
| pin_status |= BPP_SLCT_ERR; |
| } |
| |
| if (!(status & ECPP_nBUSY)) { |
| pin_status |= BPP_SLCT_ERR; |
| } |
| |
| return (pin_status); |
| } |
| |
| /* |
| * ioctl handler for output PUT procedure. |
| */ |
| static void |
| ecpp_putioc(queue_t *q, mblk_t *mp) |
| { |
| struct iocblk *iocbp; |
| struct ecppunit *pp; |
| |
| pp = (struct ecppunit *)q->q_ptr; |
| |
| iocbp = (struct iocblk *)mp->b_rptr; |
| |
| /* I_STR ioctls are invalid */ |
| if (iocbp->ioc_count != TRANSPARENT) { |
| ecpp_nack_ioctl(q, mp, EINVAL); |
| return; |
| } |
| |
| switch (iocbp->ioc_cmd) { |
| case ECPPIOC_SETPARMS: { |
| mcopyin(mp, NULL, sizeof (struct ecpp_transfer_parms), NULL); |
| qreply(q, mp); |
| break; |
| } |
| |
| case ECPPIOC_GETPARMS: { |
| struct ecpp_transfer_parms xfer_parms; |
| |
| mutex_enter(&pp->umutex); |
| |
| pp->xfer_parms.mode = pp->current_mode; |
| xfer_parms = pp->xfer_parms; |
| |
| mutex_exit(&pp->umutex); |
| |
| ecpp_putioc_copyout(q, mp, &xfer_parms, sizeof (xfer_parms)); |
| break; |
| } |
| |
| case ECPPIOC_SETREGS: { |
| mutex_enter(&pp->umutex); |
| if (pp->current_mode != ECPP_DIAG_MODE) { |
| mutex_exit(&pp->umutex); |
| ecpp_nack_ioctl(q, mp, EINVAL); |
| break; |
| } |
| mutex_exit(&pp->umutex); |
| |
| mcopyin(mp, NULL, sizeof (struct ecpp_regs), NULL); |
| qreply(q, mp); |
| break; |
| } |
| |
| case ECPPIOC_GETREGS: { |
| struct ecpp_regs rg; |
| |
| mutex_enter(&pp->umutex); |
| |
| if (pp->current_mode != ECPP_DIAG_MODE) { |
| mutex_exit(&pp->umutex); |
| ecpp_nack_ioctl(q, mp, EINVAL); |
| break; |
| } |
| |
| rg.dsr = DSR_READ(pp); |
| rg.dcr = DCR_READ(pp); |
| |
| mutex_exit(&pp->umutex); |
| |
| ecpp_error(pp->dip, "ECPPIOC_GETREGS: dsr=%x,dcr=%x\n", |
| rg.dsr, rg.dcr); |
| |
| /* these bits must be 1 */ |
| rg.dsr |= ECPP_SETREGS_DSR_MASK; |
| rg.dcr |= ECPP_SETREGS_DCR_MASK; |
| |
| ecpp_putioc_copyout(q, mp, &rg, sizeof (rg)); |
| break; |
| } |
| |
| case ECPPIOC_SETPORT: |
| case ECPPIOC_SETDATA: { |
| mutex_enter(&pp->umutex); |
| if (pp->current_mode != ECPP_DIAG_MODE) { |
| mutex_exit(&pp->umutex); |
| ecpp_nack_ioctl(q, mp, EINVAL); |
| break; |
| } |
| mutex_exit(&pp->umutex); |
| |
| /* |
| * each of the commands fetches a byte quantity. |
| */ |
| mcopyin(mp, NULL, sizeof (uchar_t), NULL); |
| qreply(q, mp); |
| break; |
| } |
| |
| case ECPPIOC_GETDATA: |
| case ECPPIOC_GETPORT: { |
| uchar_t byte; |
| |
| mutex_enter(&pp->umutex); |
| |
| /* must be in diagnostic mode for these commands to work */ |
| if (pp->current_mode != ECPP_DIAG_MODE) { |
| mutex_exit(&pp->umutex); |
| ecpp_nack_ioctl(q, mp, EINVAL); |
| break; |
| } |
| |
| if (iocbp->ioc_cmd == ECPPIOC_GETPORT) { |
| byte = pp->port; |
| } else if (iocbp->ioc_cmd == ECPPIOC_GETDATA) { |
| switch (pp->port) { |
| case ECPP_PORT_PIO: |
| byte = DATAR_READ(pp); |
| break; |
| case ECPP_PORT_TDMA: |
| byte = TFIFO_READ(pp); |
| ecpp_error(pp->dip, "GETDATA=0x%x\n", byte); |
| break; |
| default: |
| ecpp_nack_ioctl(q, mp, EINVAL); |
| break; |
| } |
| } else { |
| mutex_exit(&pp->umutex); |
| ecpp_error(pp->dip, "weird command"); |
| ecpp_nack_ioctl(q, mp, EINVAL); |
| break; |
| } |
| |
| mutex_exit(&pp->umutex); |
| |
| ecpp_putioc_copyout(q, mp, &byte, sizeof (byte)); |
| |
| break; |
| } |
| |
| case BPPIOC_GETERR: { |
| struct bpp_error_status bpp_status; |
| |
| mutex_enter(&pp->umutex); |
| |
| bpp_status.timeout_occurred = pp->timeout_error; |
| bpp_status.bus_error = 0; /* not used */ |
| bpp_status.pin_status = ecpp_get_error_status(pp->saved_dsr); |
| |
| mutex_exit(&pp->umutex); |
| |
| ecpp_putioc_copyout(q, mp, &bpp_status, sizeof (bpp_status)); |
| |
| break; |
| } |
| |
| case BPPIOC_TESTIO: { |
| mutex_enter(&pp->umutex); |
| |
| if (!((pp->current_mode == ECPP_CENTRONICS) || |
| (pp->current_mode == ECPP_COMPAT_MODE))) { |
| ecpp_nack_ioctl(q, mp, EINVAL); |
| } else { |
| pp->saved_dsr = DSR_READ(pp); |
| |
| if ((pp->saved_dsr & ECPP_PE) || |
| !(pp->saved_dsr & ECPP_SLCT) || |
| !(pp->saved_dsr & ECPP_nERR)) { |
| ecpp_nack_ioctl(q, mp, EIO); |
| } else { |
| ecpp_ack_ioctl(q, mp); |
| } |
| } |
| |
| mutex_exit(&pp->umutex); |
| |
| break; |
| } |
| |
| case PRNIOC_RESET: |
| /* |
| * Initialize interface only if no transfer is in progress |
| */ |
| mutex_enter(&pp->umutex); |
| if (pp->e_busy == ECPP_BUSY) { |
| mutex_exit(&pp->umutex); |
| ecpp_nack_ioctl(q, mp, EIO); |
| } else { |
| (void) ecpp_mode_negotiation(pp, ECPP_CENTRONICS); |
| |
| DCR_WRITE(pp, ECPP_SLCTIN); |
| drv_usecwait(2); |
| DCR_WRITE(pp, ECPP_SLCTIN | ECPP_nINIT); |
| |
| ecpp_default_negotiation(pp); |
| |
| mutex_exit(&pp->umutex); |
| ecpp_ack_ioctl(q, mp); |
| } |
| break; |
| |
| case PRNIOC_GET_IFCAP: { |
| uint_t ifcap; |
| |
| mutex_enter(&pp->umutex); |
| |
| ifcap = ecpp_get_prn_ifcap(pp); |
| |
| mutex_exit(&pp->umutex); |
| |
| ecpp_putioc_copyout(q, mp, &ifcap, sizeof (ifcap)); |
| break; |
| } |
| |
| case PRNIOC_SET_IFCAP: { |
| mcopyin(mp, NULL, sizeof (uint_t), NULL); |
| qreply(q, mp); |
| break; |
| } |
| |
| case PRNIOC_GET_TIMEOUTS: { |
| struct prn_timeouts timeouts; |
| |
| mutex_enter(&pp->umutex); |
| timeouts = pp->prn_timeouts; |
| mutex_exit(&pp->umutex); |
| |
| ecpp_putioc_copyout(q, mp, &timeouts, sizeof (timeouts)); |
| |
| break; |
| } |
| |
| case PRNIOC_SET_TIMEOUTS: |
| mcopyin(mp, NULL, sizeof (struct prn_timeouts), |
| *(caddr_t *)(void *)mp->b_cont->b_rptr); |
| qreply(q, mp); |
| break; |
| |
| case PRNIOC_GET_STATUS: { |
| uint8_t dsr; |
| uint_t status; |
| |
| mutex_enter(&pp->umutex); |
| |
| /* DSR only makes sense in Centronics & Compat mode */ |
| if (pp->current_mode == ECPP_CENTRONICS || |
| pp->current_mode == ECPP_COMPAT_MODE) { |
| dsr = DSR_READ(pp); |
| if ((dsr & ECPP_PE) || |
| !(dsr & ECPP_SLCT) || !(dsr & ECPP_nERR)) { |
| status = PRN_ONLINE; |
| } else { |
| status = PRN_ONLINE | PRN_READY; |
| } |
| } else { |
| status = PRN_ONLINE | PRN_READY; |
| } |
| |
| mutex_exit(&pp->umutex); |
| |
| ecpp_putioc_copyout(q, mp, &status, sizeof (status)); |
| break; |
| } |
| |
| case PRNIOC_GET_1284_STATUS: { |
| uint8_t dsr; |
| uchar_t status; |
| |
| mutex_enter(&pp->umutex); |
| |
| /* status only makes sense in Centronics & Compat mode */ |
| if (pp->current_mode != ECPP_COMPAT_MODE && |
| pp->current_mode != ECPP_CENTRONICS) { |
| mutex_exit(&pp->umutex); |
| ecpp_nack_ioctl(q, mp, EINVAL); |
| break; |
| } |
| |
| dsr = DSR_READ(pp); /* read status */ |
| |
| mutex_exit(&pp->umutex); |
| |
| ecpp_error(pp->dip, "PRNIOC_GET_STATUS: %x\n", dsr); |
| |
| status = (dsr & (ECPP_SLCT | ECPP_PE | ECPP_nERR)) | |
| (~dsr & ECPP_nBUSY); |
| |
| ecpp_putioc_copyout(q, mp, &status, sizeof (status)); |
| break; |
| } |
| |
| case ECPPIOC_GETDEVID: |
| ecpp_putioc_stateful_copyin(q, mp, |
| sizeof (struct ecpp_device_id)); |
| break; |
| |
| case PRNIOC_GET_1284_DEVID: |
| ecpp_putioc_stateful_copyin(q, mp, |
| sizeof (struct prn_1284_device_id)); |
| break; |
| |
| case PRNIOC_GET_IFINFO: |
| ecpp_putioc_stateful_copyin(q, mp, |
| sizeof (struct prn_interface_info)); |
| break; |
| |
| default: |
| ecpp_error(pp->dip, "putioc: unknown IOCTL: %x\n", |
| iocbp->ioc_cmd); |
| ecpp_nack_ioctl(q, mp, EINVAL); |
| break; |
| } |
| } |
| |
| /* |
| * allocate mblk and copyout the requested number of bytes |
| */ |
| static void |
| ecpp_putioc_copyout(queue_t *q, mblk_t *mp, void *buf, int len) |
| { |
| mblk_t *tmp; |
| |
| if ((tmp = allocb(len, BPRI_MED)) == NULL) { |
| ecpp_nack_ioctl(q, mp, ENOSR); |
| return; |
| } |
| |
| bcopy(buf, tmp->b_wptr, len); |
| |
| mcopyout(mp, NULL, len, NULL, tmp); |
| qreply(q, mp); |
| } |
| |
| /* |
| * copyin the structure using struct ecpp_copystate |
| */ |
| static void |
| ecpp_putioc_stateful_copyin(queue_t *q, mblk_t *mp, size_t size) |
| { |
| mblk_t *tmp; |
| struct ecpp_copystate *stp; |
| |
| if ((tmp = allocb(sizeof (struct ecpp_copystate), BPRI_MED)) == NULL) { |
| ecpp_nack_ioctl(q, mp, EAGAIN); |
| return; |
| } |
| |
| stp = (struct ecpp_copystate *)tmp->b_rptr; |
| stp->state = ECPP_STRUCTIN; |
| stp->uaddr = *(caddr_t *)mp->b_cont->b_rptr; |
| |
| tmp->b_wptr += sizeof (struct ecpp_copystate); |
| |
| mcopyin(mp, tmp, size, stp->uaddr); |
| qreply(q, mp); |
| } |
| |
| /* |
| * read queue is only used when the peripheral sends data faster, |
| * then the application consumes it; |
| * once the low water mark is reached, this routine will be scheduled |
| */ |
| static int |
| ecpp_rsrv(queue_t *q) |
| { |
| struct msgb *mp; |
| |
| /* |
| * send data upstream until next queue is full or the queue is empty |
| */ |
| while (canputnext(q) && (mp = getq(q))) { |
| putnext(q, mp); |
| } |
| |
| /* |
| * if there is still space on the queue, enable backchannel |
| */ |
| if (canputnext(q)) { |
| struct ecppunit *pp = (struct ecppunit *)q->q_ptr; |
| |
| mutex_enter(&pp->umutex); |
| |
| if (pp->e_busy == ECPP_IDLE) { |
| (void) ecpp_idle_phase(pp); |
| cv_signal(&pp->pport_cv); /* signal ecpp_close() */ |
| } |
| |
| mutex_exit(&pp->umutex); |
| } |
| |
| return (0); |
| } |
| |
| static int |
| ecpp_wsrv(queue_t *q) |
| { |
| struct ecppunit *pp = (struct ecppunit *)q->q_ptr; |
| struct msgb *mp; |
| size_t len, total_len; |
| size_t my_ioblock_sz; |
| caddr_t my_ioblock; |
| caddr_t start_addr; |
| |
| mutex_enter(&pp->umutex); |
| |
| ecpp_error(pp->dip, "ecpp_wsrv: e_busy=%x\n", pp->e_busy); |
| |
| /* if channel is actively doing work, wait till completed */ |
| if (pp->e_busy == ECPP_BUSY || pp->e_busy == ECPP_FLUSH) { |
| mutex_exit(&pp->umutex); |
| return (0); |
| } else if (pp->suspended == TRUE) { |
| /* |
| * if the system is about to suspend and ecpp_detach() |
| * is blocked due to active transfers, wake it up and exit |
| */ |
| cv_signal(&pp->pport_cv); |
| mutex_exit(&pp->umutex); |
| return (0); |
| } |
| |
| /* peripheral status should be okay before starting transfer */ |
| if (pp->e_busy == ECPP_ERR) { |
| if (ecpp_check_status(pp) == FAILURE) { |
| if (pp->wsrv_timer_id == 0) { |
| ecpp_error(pp->dip, "wsrv: start wrsv_timer\n"); |
| pp->wsrv_timer_id = timeout(ecpp_wsrv_timer, |
| (caddr_t)pp, |
| drv_usectohz(pp->wsrv_retry * 1000)); |
| } else { |
| ecpp_error(pp->dip, |
| "ecpp_wsrv: wrsv_timer is active\n"); |
| } |
| |
| mutex_exit(&pp->umutex); |
| return (0); |
| } else { |
| pp->e_busy = ECPP_IDLE; |
| } |
| } |
| |
| my_ioblock = pp->ioblock; |
| my_ioblock_sz = IO_BLOCK_SZ; |
| |
| /* |
| * it`s important to null pp->msg here, |
| * cleaning up from the previous transfer attempts |
| */ |
| pp->msg = NULL; |
| |
| start_addr = NULL; |
| len = total_len = 0; |
| /* |
| * The following loop is implemented to gather the |
| * many small writes that the lp subsystem makes and |
| * compile them into one large dma transfer. The len and |
| * total_len variables are a running count of the number of |
| * bytes that have been gathered. They are bcopied to the |
| * ioblock buffer. The pp->e_busy is set to E_BUSY as soon as |
| * we start gathering packets to indicate the following transfer. |
| */ |
| while (mp = getq(q)) { |
| switch (DB_TYPE(mp)) { |
| case M_DATA: |
| pp->e_busy = ECPP_BUSY; |
| len = mp->b_wptr - mp->b_rptr; |
| |
| if ((total_len == 0) && (len >= my_ioblock_sz)) { |
| /* |
| * if the first M_DATA is bigger than ioblock, |
| * just use this mblk and start the transfer |
| */ |
| total_len = len; |
| start_addr = (caddr_t)mp->b_rptr; |
| pp->msg = mp; |
| goto breakout; |
| } else if (total_len + len > my_ioblock_sz) { |
| /* |
| * current M_DATA does not fit in ioblock, |
| * put it back and start the transfer |
| */ |
| (void) putbq(q, mp); |
| goto breakout; |
| } else { |
| /* |
| * otherwise add data to ioblock and free mblk |
| */ |
| bcopy(mp->b_rptr, my_ioblock, len); |
| my_ioblock += len; |
| total_len += len; |
| start_addr = (caddr_t)pp->ioblock; |
| freemsg(mp); |
| } |
| break; |
| |
| case M_IOCTL: |
| /* |
| * Assume a simple loopback test: an application |
| * writes data into the TFIFO, reads it using |
| * ECPPIOC_GETDATA and compares. If the transfer |
| * times out (which is only possible on Grover), |
| * the ioctl might be processed before the data |
| * got to the TFIFO, which leads to miscompare. |
| * So if we met ioctl, postpone it until after xfer. |
| */ |
| if (total_len > 0) { |
| (void) putbq(q, mp); |
| goto breakout; |
| } |
| |
| ecpp_error(pp->dip, "M_IOCTL.\n"); |
| |
| mutex_exit(&pp->umutex); |
| |
| ecpp_putioc(q, mp); |
| |
| mutex_enter(&pp->umutex); |
| |
| break; |
| |
| case M_IOCDATA: { |
| struct copyresp *csp = (struct copyresp *)mp->b_rptr; |
| |
| ecpp_error(pp->dip, "M_IOCDATA\n"); |
| |
| /* |
| * If copy request failed, quit now |
| */ |
| if (csp->cp_rval != 0) { |
| freemsg(mp); |
| break; |
| } |
| |
| switch (csp->cp_cmd) { |
| case ECPPIOC_SETPARMS: |
| case ECPPIOC_SETREGS: |
| case ECPPIOC_SETPORT: |
| case ECPPIOC_SETDATA: |
| case ECPPIOC_GETDEVID: |
| case PRNIOC_SET_IFCAP: |
| case PRNIOC_GET_1284_DEVID: |
| case PRNIOC_SET_TIMEOUTS: |
| case PRNIOC_GET_IFINFO: |
| ecpp_srvioc(q, mp); |
| break; |
| |
| default: |
| ecpp_nack_ioctl(q, mp, EINVAL); |
| break; |
| } |
| |
| break; |
| } |
| |
| case M_CTL: |
| if (pp->e_busy != ECPP_IDLE) { |
| ecpp_error(pp->dip, "wsrv: M_CTL postponed\n"); |
| (void) putbq(q, mp); |
| goto breakout; |
| } else { |
| ecpp_error(pp->dip, "wsrv: M_CTL\n"); |
| } |
| |
| /* sanity check */ |
| if ((mp->b_wptr - mp->b_rptr != sizeof (int)) || |
| (*(int *)mp->b_rptr != ECPP_BACKCHANNEL)) { |
| ecpp_error(pp->dip, "wsrv: bogus M_CTL"); |
| freemsg(mp); |
| break; |
| } else { |
| freemsg(mp); |
| } |
| |
| /* This was a backchannel request */ |
| (void) ecpp_peripheral2host(pp); |
| |
| /* exit if transfer have been initiated */ |
| if (pp->e_busy == ECPP_BUSY) { |
| goto breakout; |
| } |
| break; |
| |
| case M_READ: |
| pp->nread += *(size_t *)mp->b_rptr; |
| freemsg(mp); |
| ecpp_error(pp->dip, "wsrv: M_READ %d", pp->nread); |
| break; |
| |
| default: |
| ecpp_error(pp->dip, "wsrv: should never get here\n"); |
| freemsg(mp); |
| break; |
| } |
| } |
| breakout: |
| /* |
| * If total_len > 0 then start the transfer, otherwise goto idle state |
| */ |
| if (total_len > 0) { |
| ecpp_error(pp->dip, "wsrv:starting: total_len=%d\n", total_len); |
| pp->e_busy = ECPP_BUSY; |
| ecpp_start(pp, start_addr, total_len); |
| } else { |
| ecpp_error(pp->dip, "wsrv:finishing: ebusy=%x\n", pp->e_busy); |
| |
| /* IDLE if xfer_timeout, or FIFO_EMPTY */ |
| if (pp->e_busy == ECPP_IDLE) { |
| (void) ecpp_idle_phase(pp); |
| cv_signal(&pp->pport_cv); /* signal ecpp_close() */ |
| } |
| } |
| |
| mutex_exit(&pp->umutex); |
| return (1); |
| } |
| |
| /* |
| * Ioctl processor for queued ioctl data transfer messages. |
| */ |
| static void |
| ecpp_srvioc(queue_t *q, mblk_t *mp) |
| { |
| struct iocblk *iocbp; |
| struct ecppunit *pp; |
| |
| iocbp = (struct iocblk *)mp->b_rptr; |
| pp = (struct ecppunit *)q->q_ptr; |
| |
| switch (iocbp->ioc_cmd) { |
| case ECPPIOC_SETPARMS: { |
| struct ecpp_transfer_parms *xferp; |
| |
| xferp = (struct ecpp_transfer_parms *)mp->b_cont->b_rptr; |
| |
| if (xferp->write_timeout <= 0 || |
| xferp->write_timeout >= ECPP_MAX_TIMEOUT) { |
| ecpp_nack_ioctl(q, mp, EINVAL); |
| break; |
| } |
| |
| if (!((xferp->mode == ECPP_CENTRONICS) || |
| (xferp->mode == ECPP_COMPAT_MODE) || |
| (xferp->mode == ECPP_NIBBLE_MODE) || |
| (xferp->mode == ECPP_ECP_MODE) || |
| (xferp->mode == ECPP_DIAG_MODE))) { |
| ecpp_nack_ioctl(q, mp, EINVAL); |
| break; |
| } |
| |
| pp->xfer_parms = *xferp; |
| pp->prn_timeouts.tmo_forward = pp->xfer_parms.write_timeout; |
| |
| ecpp_error(pp->dip, "srvioc: current_mode =%x new mode=%x\n", |
| pp->current_mode, pp->xfer_parms.mode); |
| |
| if (ecpp_mode_negotiation(pp, pp->xfer_parms.mode) == FAILURE) { |
| ecpp_nack_ioctl(q, mp, EPROTONOSUPPORT); |
| } else { |
| /* |
| * mode nego was a success. If nibble mode check |
| * back channel and set into REVIDLE. |
| */ |
| if ((pp->current_mode == ECPP_NIBBLE_MODE) && |
| (read_nibble_backchan(pp) == FAILURE)) { |
| /* |
| * problems reading the backchannel |
| * returned to centronics; |
| * ioctl fails. |
| */ |
| ecpp_nack_ioctl(q, mp, EPROTONOSUPPORT); |
| break; |
| } |
| |
| ecpp_ack_ioctl(q, mp); |
| } |
| if (pp->current_mode != ECPP_DIAG_MODE) { |
| pp->port = ECPP_PORT_DMA; |
| } else { |
| pp->port = ECPP_PORT_PIO; |
| } |
| |
| pp->xfer_parms.mode = pp->current_mode; |
| |
| break; |
| } |
| |
| case ECPPIOC_SETREGS: { |
| struct ecpp_regs *rg; |
| uint8_t dcr; |
| |
| rg = (struct ecpp_regs *)mp->b_cont->b_rptr; |
| |
| /* must be in diagnostic mode for these commands to work */ |
| if (pp->current_mode != ECPP_DIAG_MODE) { |
| ecpp_nack_ioctl(q, mp, EINVAL); |
| break; |
| } |
| |
| /* bits 4-7 must be 1 or return EINVAL */ |
| if ((rg->dcr & ECPP_SETREGS_DCR_MASK) != |
| ECPP_SETREGS_DCR_MASK) { |
| ecpp_nack_ioctl(q, mp, EINVAL); |
| break; |
| } |
| |
| /* get the old dcr */ |
| dcr = DCR_READ(pp) & ~ECPP_REV_DIR; |
| /* get the new dcr */ |
| dcr = (dcr & ECPP_SETREGS_DCR_MASK) | |
| (rg->dcr & ~ECPP_SETREGS_DCR_MASK); |
| DCR_WRITE(pp, dcr); |
| ecpp_error(pp->dip, "ECPPIOC_SETREGS:dcr=%x\n", dcr); |
| ecpp_ack_ioctl(q, mp); |
| break; |
| } |
| |
| case ECPPIOC_SETPORT: { |
| uchar_t *port; |
| |
| port = (uchar_t *)mp->b_cont->b_rptr; |
| |
| /* must be in diagnostic mode for these commands to work */ |
| if (pp->current_mode != ECPP_DIAG_MODE) { |
| ecpp_nack_ioctl(q, mp, EINVAL); |
| break; |
| } |
| |
| switch (*port) { |
| case ECPP_PORT_PIO: |
| /* put superio into PIO mode */ |
| ECR_WRITE(pp, |
| ECR_mode_001 | ECPP_INTR_MASK | ECPP_INTR_SRV); |
| pp->port = *port; |
| ecpp_ack_ioctl(q, mp); |
| break; |
| |
| case ECPP_PORT_TDMA: |
| ecpp_error(pp->dip, "SETPORT: to TDMA\n"); |
| pp->tfifo_intr = 1; |
| /* change to mode 110 */ |
| ECR_WRITE(pp, |
| ECR_mode_110 | ECPP_INTR_MASK | ECPP_INTR_SRV); |
| pp->port = *port; |
| ecpp_ack_ioctl(q, mp); |
| break; |
| |
| default: |
| ecpp_nack_ioctl(q, mp, EINVAL); |
| } |
| |
| break; |
| } |
| |
| case ECPPIOC_SETDATA: { |
| uchar_t *data; |
| |
| data = (uchar_t *)mp->b_cont->b_rptr; |
| |
| /* must be in diagnostic mode for these commands to work */ |
| if (pp->current_mode != ECPP_DIAG_MODE) { |
| ecpp_nack_ioctl(q, mp, EINVAL); |
| break; |
| } |
| |
| switch (pp->port) { |
| case ECPP_PORT_PIO: |
| DATAR_WRITE(pp, *data); |
| ecpp_ack_ioctl(q, mp); |
| break; |
| |
| case ECPP_PORT_TDMA: |
| TFIFO_WRITE(pp, *data); |
| ecpp_ack_ioctl(q, mp); |
| break; |
| |
| default: |
| ecpp_nack_ioctl(q, mp, EINVAL); |
| } |
| |
| break; |
| } |
| |
| case ECPPIOC_GETDEVID: { |
| struct copyresp *csp; |
| struct ecpp_copystate *stp; |
| struct ecpp_device_id *dp; |
| struct ecpp_device_id id; |
| |
| csp = (struct copyresp *)mp->b_rptr; |
| stp = (struct ecpp_copystate *)csp->cp_private->b_rptr; |
| dp = (struct ecpp_device_id *)mp->b_cont->b_rptr; |
| |
| #ifdef _MULTI_DATAMODEL |
| if (IOC_CONVERT_FROM(iocbp) == IOC_ILP32) { |
| struct ecpp_device_id32 *dp32; |
| |
| dp32 = (struct ecpp_device_id32 *)dp; |
| id.mode = dp32->mode; |
| id.len = dp32->len; |
| id.addr = (char *)(uintptr_t)dp32->addr; |
| } else { |
| #endif /* _MULTI_DATAMODEL */ |
| id = *dp; |
| #ifdef _MULTI_DATAMODEL |
| } |
| #endif /* _MULTI_DATAMODEL */ |
| |
| ecpp_srvioc_devid(q, mp, &id, &stp->un.devid.rlen); |
| break; |
| } |
| |
| case PRNIOC_GET_1284_DEVID: { |
| struct copyresp *csp; |
| struct ecpp_copystate *stp; |
| struct prn_1284_device_id *dp; |
| struct ecpp_device_id id; |
| |
| csp = (struct copyresp *)mp->b_rptr; |
| stp = (struct ecpp_copystate *)csp->cp_private->b_rptr; |
| dp = (struct prn_1284_device_id *)mp->b_cont->b_rptr; |
| |
| /* imitate struct ecpp_device_id */ |
| id.mode = ECPP_NIBBLE_MODE; |
| |
| #ifdef _MULTI_DATAMODEL |
| if (IOC_CONVERT_FROM(iocbp) == IOC_ILP32) { |
| struct prn_1284_device_id32 *dp32; |
| |
| dp32 = (struct prn_1284_device_id32 *)dp; |
| id.len = dp32->id_len; |
| id.addr = (char *)(uintptr_t)dp32->id_data; |
| } else { |
| #endif /* _MULTI_DATAMODEL */ |
| id.len = dp->id_len; |
| id.addr = (char *)dp->id_data; |
| #ifdef _MULTI_DATAMODEL |
| } |
| #endif /* _MULTI_DATAMODEL */ |
| |
| ecpp_srvioc_devid(q, mp, &id, |
| (int *)&stp->un.prn_devid.id_rlen); |
| break; |
| } |
| |
| case PRNIOC_SET_IFCAP: { |
| uint_t ifcap, new_ifcap; |
| |
| ifcap = ecpp_get_prn_ifcap(pp); |
| new_ifcap = *(uint_t *)mp->b_cont->b_rptr; |
| |
| if (ifcap == new_ifcap) { |
| ecpp_ack_ioctl(q, mp); |
| break; |
| } |
| |
| /* only changing PRN_BIDI is supported */ |
| if ((ifcap ^ new_ifcap) & ~PRN_BIDI) { |
| ecpp_nack_ioctl(q, mp, EINVAL); |
| break; |
| } |
| |
| if (new_ifcap & PRN_BIDI) { /* go bidirectional */ |
| ecpp_default_negotiation(pp); |
| } else { /* go unidirectional */ |
| (void) ecpp_mode_negotiation(pp, ECPP_CENTRONICS); |
| } |
| |
| ecpp_ack_ioctl(q, mp); |
| break; |
| } |
| |
| case PRNIOC_SET_TIMEOUTS: { |
| struct prn_timeouts *prn_timeouts; |
| |
| prn_timeouts = (struct prn_timeouts *)mp->b_cont->b_rptr; |
| |
| if (prn_timeouts->tmo_forward > ECPP_MAX_TIMEOUT) { |
| ecpp_nack_ioctl(q, mp, EINVAL); |
| break; |
| } |
| |
| pp->prn_timeouts = *prn_timeouts; |
| pp->xfer_parms.write_timeout = (int)prn_timeouts->tmo_forward; |
| |
| ecpp_ack_ioctl(q, mp); |
| break; |
| } |
| |
| case PRNIOC_GET_IFINFO: |
| ecpp_srvioc_prnif(q, mp); |
| break; |
| |
| default: /* unexpected ioctl type */ |
| ecpp_nack_ioctl(q, mp, EINVAL); |
| break; |
| } |
| } |
| |
| static void |
| ecpp_srvioc_devid(queue_t *q, mblk_t *mp, struct ecpp_device_id *id, int *rlen) |
| { |
| struct ecppunit *pp; |
| struct copyresp *csp; |
| struct ecpp_copystate *stp; |
| int error; |
| int len; |
| int mode; |
| mblk_t *datamp; |
| |
| pp = (struct ecppunit *)q->q_ptr; |
| csp = (struct copyresp *)mp->b_rptr; |
| stp = (struct ecpp_copystate *)csp->cp_private->b_rptr; |
| mode = id->mode; |
| |
| /* check arguments */ |
| if ((mode < ECPP_CENTRONICS) || (mode > ECPP_ECP_MODE)) { |
| ecpp_error(pp->dip, "ecpp_srvioc_devid: mode=%x, len=%x\n", |
| mode, id->len); |
| ecpp_nack_ioctl(q, mp, EINVAL); |
| return; |
| } |
| |
| /* Currently only Nibble mode is supported */ |
| if (mode != ECPP_NIBBLE_MODE) { |
| ecpp_nack_ioctl(q, mp, EPROTONOSUPPORT); |
| return; |
| } |
| |
| if ((id->addr == NULL) && (id->len != 0)) { |
| ecpp_nack_ioctl(q, mp, EFAULT); |
| return; |
| } |
| |
| /* read device ID length */ |
| if (error = ecpp_getdevid(pp, NULL, &len, mode)) { |
| ecpp_nack_ioctl(q, mp, error); |
| goto breakout; |
| } |
| |
| /* don't take into account two length bytes */ |
| len -= 2; |
| *rlen = len; |
| |
| /* limit transfer to user buffer length */ |
| if (id->len < len) { |
| len = id->len; |
| } |
| |
| if (len == 0) { |
| /* just return rlen */ |
| stp->state = ECPP_ADDROUT; |
| ecpp_wput_iocdata_devid(q, mp, |
| (uintptr_t)rlen - (uintptr_t)&stp->un); |
| goto breakout; |
| } |
| |
| if ((datamp = allocb(len, BPRI_MED)) == NULL) { |
| ecpp_nack_ioctl(q, mp, ENOSR); |
| goto breakout; |
| } |
| |
| /* read ID string */ |
| error = ecpp_getdevid(pp, datamp->b_rptr, &len, mode); |
| if (error) { |
| freemsg(datamp); |
| ecpp_nack_ioctl(q, mp, error); |
| goto breakout; |
| } else { |
| datamp->b_wptr += len; |
| |
| stp->state = ECPP_ADDROUT; |
| mcopyout(mp, csp->cp_private, len, id->addr, datamp); |
| qreply(q, mp); |
| } |
| |
| return; |
| |
| breakout: |
| (void) ecpp_1284_termination(pp); |
| } |
| |
| /* |
| * PRNIOC_GET_IFINFO: return prnio interface info string |
| */ |
| static void |
| ecpp_srvioc_prnif(queue_t *q, mblk_t *mp) |
| { |
| struct copyresp *csp; |
| struct ecpp_copystate *stp; |
| uint_t len; |
| struct prn_interface_info *ip; |
| struct prn_interface_info info; |
| mblk_t *datamp; |
| #ifdef _MULTI_DATAMODEL |
| struct iocblk *iocbp = (struct iocblk *)mp->b_rptr; |
| #endif |
| |
| csp = (struct copyresp *)mp->b_rptr; |
| stp = (struct ecpp_copystate *)csp->cp_private->b_rptr; |
| ip = (struct prn_interface_info *)mp->b_cont->b_rptr; |
| |
| #ifdef _MULTI_DATAMODEL |
| if (IOC_CONVERT_FROM(iocbp) == IOC_ILP32) { |
| struct prn_interface_info32 *ip32; |
| |
| ip32 = (struct prn_interface_info32 *)ip; |
| info.if_len = ip32->if_len; |
| info.if_data = (char *)(uintptr_t)ip32->if_data; |
| } else { |
| #endif /* _MULTI_DATAMODEL */ |
| info = *ip; |
| #ifdef _MULTI_DATAMODEL |
| } |
| #endif /* _MULTI_DATAMODEL */ |
| |
| len = strlen(prn_ifinfo); |
| stp->un.prn_if.if_rlen = len; |
| stp->state = ECPP_ADDROUT; |
| |
| /* check arguments */ |
| if ((info.if_data == NULL) && (info.if_len != 0)) { |
| ecpp_nack_ioctl(q, mp, EFAULT); |
| return; |
| } |
| |
| if (info.if_len == 0) { |
| /* just copyout rlen */ |
| ecpp_wput_iocdata_devid(q, mp, |
| offsetof(struct prn_interface_info, if_rlen)); |
| return; |
| } |
| |
| /* if needed, trim to the buffer size */ |
| if (len > info.if_len) { |
| len = info.if_len; |
| } |
| |
| if ((datamp = allocb(len, BPRI_MED)) == NULL) { |
| ecpp_nack_ioctl(q, mp, ENOSR); |
| return; |
| } |
| |
| bcopy(&prn_ifinfo[0], datamp->b_wptr, len); |
| datamp->b_wptr += len; |
| |
| mcopyout(mp, csp->cp_private, len, info.if_data, datamp); |
| qreply(q, mp); |
| } |
| |
| static void |
| ecpp_flush(struct ecppunit *pp, int cmd) |
| { |
| queue_t *q; |
| uint8_t ecr, dcr; |
| timeout_id_t timeout_id, fifo_timer_id, wsrv_timer_id; |
| |
| ASSERT(mutex_owned(&pp->umutex)); |
| |
| if (!(cmd & FWRITE)) { |
| return; |
| } |
| |
| q = pp->writeq; |
| timeout_id = fifo_timer_id = wsrv_timer_id = 0; |
| |
| ecpp_error(pp->dip, "ecpp_flush e_busy=%x\n", pp->e_busy); |
| |
| /* if there is an ongoing DMA, it needs to be turned off. */ |
| switch (pp->e_busy) { |
| case ECPP_BUSY: |
| /* |
| * Change the port status to ECPP_FLUSH to |
| * indicate to ecpp_wsrv that the wq is being flushed. |
| */ |
| pp->e_busy = ECPP_FLUSH; |
| |
| /* |
| * dma_cancelled indicates to ecpp_isr() that we have |
| * turned off the DMA. Since the mutex is held, ecpp_isr() |
| * may be blocked. Once ecpp_flush() finishes and ecpp_isr() |
| * gains the mutex, ecpp_isr() will have a _reset_ DMAC. Most |
| * significantly, the DMAC will be reset after ecpp_isr() was |
| * invoked. Therefore we need to have a flag "dma_cancelled" |
| * to signify when the described condition has occured. If |
| * ecpp_isr() notes a dma_cancelled, it will ignore the DMAC csr |
| * and simply claim the interupt. |
| */ |
| |
| pp->dma_cancelled = TRUE; |
| |
| /* either DMA or PIO transfer */ |
| if (COMPAT_DMA(pp) || |
| (pp->current_mode == ECPP_ECP_MODE) || |
| (pp->current_mode == ECPP_DIAG_MODE)) { |
| /* |
| * if the bcr is zero, then DMA is complete and |
| * we are waiting for the fifo to drain. Therefore, |
| * turn off dma. |
| */ |
| if (ECPP_DMA_STOP(pp, NULL) == FAILURE) { |
| ecpp_error(pp->dip, |
| "ecpp_flush: dma_stop failed.\n"); |
| } |
| |
| /* |
| * If the status of the port is ECPP_BUSY, |
| * the DMA is stopped by either explicitly above, or by |
| * ecpp_isr() but the FIFO hasn't drained yet. In either |
| * case, we need to unbind the dma mappings. |
| */ |
| if (ddi_dma_unbind_handle( |
| pp->dma_handle) != DDI_SUCCESS) |
| ecpp_error(pp->dip, |
| "ecpp_flush: unbind failed.\n"); |
| |
| if (pp->msg != NULL) { |
| freemsg(pp->msg); |
| pp->msg = NULL; |
| } |
| } else { |
| /* |
| * PIO transfer: disable nAck interrups |
| */ |
| dcr = DCR_READ(pp); |
| dcr &= ~(ECPP_REV_DIR | ECPP_INTR_EN); |
| DCR_WRITE(pp, dcr); |
| ECPP_MASK_INTR(pp); |
| } |
| |
| /* |
| * The transfer is cleaned up. There may or may not be data |
| * in the fifo. We don't care at this point. Ie. SuperIO may |
| * transfer the remaining bytes in the fifo or not. it doesn't |
| * matter. All that is important at this stage is that no more |
| * fifo timers are started. |
| */ |
| |
| timeout_id = pp->timeout_id; |
| fifo_timer_id = pp->fifo_timer_id; |
| pp->timeout_id = pp->fifo_timer_id = 0; |
| pp->softintr_pending = 0; |
| |
| break; |
| |
| case ECPP_ERR: |
| /* |
| * Change the port status to ECPP_FLUSH to |
| * indicate to ecpp_wsrv that the wq is being flushed. |
| */ |
| pp->e_busy = ECPP_FLUSH; |
| |
| /* |
| * Most likely there are mblks in the queue, |
| * but the driver can not transmit because |
| * of the bad port status. In this case, |
| * ecpp_flush() should make sure ecpp_wsrv_timer() |
| * is turned off. |
| */ |
| wsrv_timer_id = pp->wsrv_timer_id; |
| pp->wsrv_timer_id = 0; |
| |
| break; |
| |
| case ECPP_IDLE: |
| /* No work to do. Ready to flush */ |
| break; |
| |
| default: |
| ecpp_error(pp->dip, |
| "ecpp_flush: illegal state %x\n", pp->e_busy); |
| } |
| |
| /* in DIAG mode clear TFIFO if needed */ |
| if (pp->current_mode == ECPP_DIAG_MODE) { |
| ecr = ECR_READ(pp); |
| if (!(ecr & ECPP_FIFO_EMPTY)) { |
| ECR_WRITE(pp, |
| ECPP_INTR_SRV | ECPP_INTR_MASK | ECR_mode_001); |
| ECR_WRITE(pp, ecr); |
| } |
| } |
| |
| /* Discard all messages on the output queue. */ |
| flushq(q, FLUSHDATA); |
| |
| /* The port is no longer flushing or dma'ing for that matter. */ |
| pp->e_busy = ECPP_IDLE; |
| |
| /* Set the right phase */ |
| if (pp->current_mode == ECPP_ECP_MODE) { |
| if (pp->current_phase == ECPP_PHASE_ECP_REV_XFER) { |
| pp->current_phase = ECPP_PHASE_ECP_REV_IDLE; |
| } else { |
| pp->current_phase = ECPP_PHASE_ECP_FWD_IDLE; |
| } |
| } |
| |
| /* cancel timeouts if any */ |
| mutex_exit(&pp->umutex); |
| |
| if (timeout_id) { |
| (void) untimeout(timeout_id); |
| } |
| if (fifo_timer_id) { |
| (void) untimeout(fifo_timer_id); |
| } |
| if (wsrv_timer_id) { |
| (void) untimeout(wsrv_timer_id); |
| } |
| |
| mutex_enter(&pp->umutex); |
| |
| cv_signal(&pp->pport_cv); /* wake up ecpp_close() */ |
| } |
| |
| static void |
| ecpp_start(struct ecppunit *pp, caddr_t addr, size_t len) |
| { |
| ASSERT(mutex_owned(&pp->umutex)); |
| ASSERT(pp->e_busy == ECPP_BUSY); |
| |
| ecpp_error(pp->dip, |
| "ecpp_start:current_mode=%x,current_phase=%x,ecr=%x,len=%d\n", |
| pp->current_mode, pp->current_phase, ECR_READ(pp), len); |
| |
| pp->dma_dir = DDI_DMA_WRITE; /* this is a forward transfer */ |
| |
| switch (pp->current_mode) { |
| case ECPP_NIBBLE_MODE: |
| (void) ecpp_1284_termination(pp); |
| |
| /* After termination we are either Compatible or Centronics */ |
| |
| /* FALLTHRU */ |
| |
| case ECPP_CENTRONICS: |
| case ECPP_COMPAT_MODE: |
| if (pp->io_mode == ECPP_DMA) { |
| if (ecpp_init_dma_xfer(pp, addr, len) == FAILURE) { |
| return; |
| } |
| } else { |
| /* PIO mode */ |
| if (ecpp_prep_pio_xfer(pp, addr, len) == FAILURE) { |
| return; |
| } |
| (void) ecpp_pio_writeb(pp); |
| } |
| break; |
| |
| case ECPP_DIAG_MODE: { |
| int oldlen; |
| |
| /* put superio into TFIFO mode, if not already */ |
| ECR_WRITE(pp, ECPP_INTR_SRV | ECPP_INTR_MASK | ECR_mode_110); |
| /* |
| * DMA would block if the TFIFO is not empty |
| * if by this moment nobody read these bytes, they`re gone |
| */ |
| drv_usecwait(1); |
| if (!(ECR_READ(pp) & ECPP_FIFO_EMPTY)) { |
| ecpp_error(pp->dip, |
| "ecpp_start: TFIFO not empty, clearing\n"); |
| ECR_WRITE(pp, |
| ECPP_INTR_SRV | ECPP_INTR_MASK | ECR_mode_001); |
| ECR_WRITE(pp, |
| ECPP_INTR_SRV | ECPP_INTR_MASK | ECR_mode_110); |
| } |
| |
| /* we can DMA at most 16 bytes into TFIFO */ |
| oldlen = len; |
| if (len > ECPP_FIFO_SZ) { |
| len = ECPP_FIFO_SZ; |
| } |
| |
| if (ecpp_init_dma_xfer(pp, addr, len) == FAILURE) { |
| return; |
| } |
| |
| /* put the rest of data back on the queue */ |
| if (oldlen > len) { |
| ecpp_putback_untransfered(pp, addr + len, oldlen - len); |
| } |
| |
| break; |
| } |
| |
| case ECPP_ECP_MODE: |
| ASSERT(pp->current_phase == ECPP_PHASE_ECP_FWD_IDLE || |
| pp->current_phase == ECPP_PHASE_ECP_REV_IDLE); |
| |
| /* if in Reverse Phase negotiate to Forward */ |
| if (pp->current_phase == ECPP_PHASE_ECP_REV_IDLE) { |
| if (ecp_reverse2forward(pp) == FAILURE) { |
| if (pp->msg) { |
| (void) putbq(pp->writeq, pp->msg); |
| } else { |
| ecpp_putback_untransfered(pp, |
| addr, len); |
| } |
| } |
| } |
| |
| if (ecpp_init_dma_xfer(pp, addr, len) == FAILURE) { |
| return; |
| } |
| |
| break; |
| } |
| |
| /* schedule transfer timeout */ |
| pp->timeout_id = timeout(ecpp_xfer_timeout, (caddr_t)pp, |
| pp->xfer_parms.write_timeout * drv_usectohz(1000000)); |
| } |
| |
| /* |
| * Transfer a PIO "block" a byte at a time. |
| * The block is starts at addr and ends at pp->last_byte |
| */ |
| static uint8_t |
| ecpp_prep_pio_xfer(struct ecppunit *pp, caddr_t addr, size_t len) |
| { |
| pp->next_byte = addr; |
| pp->last_byte = (caddr_t)((ulong_t)addr + len); |
| |
| if (ecpp_check_status(pp) == FAILURE) { |
| /* |
| * if status signals are bad, do not start PIO, |
| * put everything back on the queue. |
| */ |
| ecpp_error(pp->dip, |
| "ecpp_prep_pio_xfer:suspend PIO len=%d\n", len); |
| |
| if (pp->msg != NULL) { |
| /* |
| * this circumstance we want to copy the |
| * untransfered section of msg to a new mblk, |
| * then free the orignal one. |
| */ |
| ecpp_putback_untransfered(pp, |
| (void *)pp->msg->b_rptr, len); |
| ecpp_error(pp->dip, |
| "ecpp_prep_pio_xfer: len1=%d\n", len); |
| |
| freemsg(pp->msg); |
| pp->msg = NULL; |
| } else { |
| ecpp_putback_untransfered(pp, pp->ioblock, len); |
| ecpp_error(pp->dip, |
| "ecpp_prep_pio_xfer: len2=%d\n", len); |
| } |
| qenable(pp->writeq); |
| |
| return (FAILURE); |
| } |
| |
| pp->dma_cancelled = FALSE; |
| |
| /* pport must be in PIO mode */ |
| if (ecr_write(pp, ECR_mode_001 | |
| ECPP_INTR_MASK | ECPP_INTR_SRV) != SUCCESS) { |
| ecpp_error(pp->dip, "ecpp_prep_pio_xfer: failed w/ECR.\n"); |
| } |
| |
| ecpp_error(pp->dip, "ecpp_prep_pio_xfer: dcr=%x ecr=%x\n", |
| DCR_READ(pp), ECR_READ(pp)); |
| |
| return (SUCCESS); |
| } |
| |
| static uint8_t |
| ecpp_init_dma_xfer(struct ecppunit *pp, caddr_t addr, size_t len) |
| { |
| uint8_t ecr_mode[] = { |
| 0, |
| ECR_mode_010, /* Centronix */ |
| ECR_mode_010, /* Compat */ |
| 0, /* Byte */ |
| 0, /* Nibble */ |
| ECR_mode_011, /* ECP */ |
| 0, /* Failure */ |
| ECR_mode_110, /* Diag */ |
|