blob: ce0ac3dbe322d19221d7f6952d63dc4bc528d5a5 [file] [log] [blame]
/*
* This file and its contents are supplied under the terms of the
* Common Development and Distribution License ("CDDL"), version 1.0.
* You may only use this file in accordance with the terms of version
* 1.0 of the CDDL.
*
* A full copy of the text of the CDDL should have accompanied this
* source. A copy of the CDDL is also available via the Internet at
* http://www.illumos.org/license/CDDL.
*/
/*
* This file is part of the Chelsio T4 support code.
*
* Copyright (C) 2010-2013 Chelsio Communications. All rights reserved.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the LICENSE file included in this
* release for licensing terms and conditions.
*/
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/sunndi.h>
#include <sys/atomic.h>
#include <sys/dlpi.h>
#include <sys/pattr.h>
#include <sys/strsubr.h>
#include <sys/stream.h>
#include <sys/strsun.h>
#include <inet/ip.h>
#include <inet/tcp.h>
#include "version.h"
#include "common/common.h"
#include "common/t4_msg.h"
#include "common/t4_regs.h"
#include "common/t4_regs_values.h"
/* TODO: Tune. */
int rx_buf_size = 8192;
int tx_copy_threshold = 256;
uint16_t rx_copy_threshold = 256;
/* Used to track coalesced tx work request */
struct txpkts {
mblk_t *tail; /* head is in the software descriptor */
uint64_t *flitp; /* ptr to flit where next pkt should start */
uint8_t npkt; /* # of packets in this work request */
uint8_t nflits; /* # of flits used by this work request */
uint16_t plen; /* total payload (sum of all packets) */
};
/* All information needed to tx a frame */
struct txinfo {
uint32_t len; /* Total length of frame */
uint32_t flags; /* Checksum and LSO flags */
uint32_t mss; /* MSS for LSO */
uint8_t nsegs; /* # of segments in the SGL, 0 means imm. tx */
uint8_t nflits; /* # of flits needed for the SGL */
uint8_t hdls_used; /* # of DMA handles used */
uint32_t txb_used; /* txb_space used */
struct ulptx_sgl sgl __attribute__((aligned(8)));
struct ulptx_sge_pair reserved[TX_SGL_SEGS / 2];
};
static int service_iq(struct sge_iq *iq, int budget);
static inline void init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx,
int8_t pktc_idx, int qsize, uint8_t esize);
static inline void init_fl(struct sge_fl *fl, uint16_t qsize);
static inline void init_eq(struct adapter *sc, struct sge_eq *eq,
uint16_t eqtype, uint16_t qsize,uint8_t tx_chan, uint16_t iqid);
static int alloc_iq_fl(struct port_info *pi, struct sge_iq *iq,
struct sge_fl *fl, int intr_idx, int cong);
static int free_iq_fl(struct port_info *pi, struct sge_iq *iq,
struct sge_fl *fl);
static int alloc_fwq(struct adapter *sc);
static int free_fwq(struct adapter *sc);
#ifdef TCP_OFFLOAD_ENABLE
static int alloc_mgmtq(struct adapter *sc);
#endif
static int alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx,
int i);
static int free_rxq(struct port_info *pi, struct sge_rxq *rxq);
#ifdef TCP_OFFLOAD_ENABLE
static int alloc_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq,
int intr_idx);
static int free_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq);
#endif
static int ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq);
static int eth_eq_alloc(struct adapter *sc, struct port_info *pi,
struct sge_eq *eq);
#ifdef TCP_OFFLOAD_ENABLE
static int ofld_eq_alloc(struct adapter *sc, struct port_info *pi,
struct sge_eq *eq);
#endif
static int alloc_eq(struct adapter *sc, struct port_info *pi,
struct sge_eq *eq);
static int free_eq(struct adapter *sc, struct sge_eq *eq);
#ifdef TCP_OFFLOAD_ENABLE
static int alloc_wrq(struct adapter *sc, struct port_info *pi,
struct sge_wrq *wrq, int idx);
static int free_wrq(struct adapter *sc, struct sge_wrq *wrq);
#endif
static int alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx);
static int free_txq(struct port_info *pi, struct sge_txq *txq);
static int alloc_dma_memory(struct adapter *sc, size_t len, int flags,
ddi_device_acc_attr_t *acc_attr, ddi_dma_attr_t *dma_attr,
ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl, uint64_t *pba,
caddr_t *pva);
static int free_dma_memory(ddi_dma_handle_t *dhdl, ddi_acc_handle_t *ahdl);
static int alloc_desc_ring(struct adapter *sc, size_t len, int rw,
ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl, uint64_t *pba,
caddr_t *pva);
static int free_desc_ring(ddi_dma_handle_t *dhdl, ddi_acc_handle_t *ahdl);
static int alloc_tx_copybuffer(struct adapter *sc, size_t len,
ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl, uint64_t *pba,
caddr_t *pva);
static inline bool is_new_response(const struct sge_iq *iq,
struct rsp_ctrl **ctrl);
static inline void iq_next(struct sge_iq *iq);
static int refill_fl(struct adapter *sc, struct sge_fl *fl, int nbufs);
static void refill_sfl(void *arg);
static void add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl);
static void free_fl_bufs(struct sge_fl *fl);
static mblk_t *get_fl_payload(struct adapter *sc, struct sge_fl *fl,
uint32_t len_newbuf, int *fl_bufs_used);
static int get_frame_txinfo(struct sge_txq *txq, mblk_t **fp,
struct txinfo *txinfo, int sgl_only);
static inline int fits_in_txb(struct sge_txq *txq, int len, int *waste);
static inline int copy_into_txb(struct sge_txq *txq, mblk_t *m, int len,
struct txinfo *txinfo);
static inline void add_seg(struct txinfo *txinfo, uint64_t ba, uint32_t len);
static inline int add_mblk(struct sge_txq *txq, struct txinfo *txinfo,
mblk_t *m, int len);
static void free_txinfo_resources(struct sge_txq *txq, struct txinfo *txinfo);
static int add_to_txpkts(struct sge_txq *txq, struct txpkts *txpkts, mblk_t *m,
struct txinfo *txinfo);
static void write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts);
static int write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, mblk_t *m,
struct txinfo *txinfo);
static inline void write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq,
struct txpkts *txpkts, struct txinfo *txinfo);
static inline void copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to,
int len);
static inline void ring_tx_db(struct adapter *sc, struct sge_eq *eq);
static int reclaim_tx_descs(struct sge_txq *txq, int howmany);
static void write_txqflush_wr(struct sge_txq *txq);
static int t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss,
mblk_t *m);
static inline void ring_fl_db(struct adapter *sc, struct sge_fl *fl);
static kstat_t *setup_port_config_kstats(struct port_info *pi);
static kstat_t *setup_port_info_kstats(struct port_info *pi);
static kstat_t *setup_rxq_kstats(struct port_info *pi, struct sge_rxq *rxq,
int idx);
static int update_rxq_kstats(kstat_t *ksp, int rw);
static int update_port_info_kstats(kstat_t *ksp, int rw);
static kstat_t *setup_txq_kstats(struct port_info *pi, struct sge_txq *txq,
int idx);
static int update_txq_kstats(kstat_t *ksp, int rw);
static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
mblk_t *);
static int handle_fw_rpl(struct sge_iq *iq, const struct rss_header *rss,
mblk_t *m);
static inline int
reclaimable(struct sge_eq *eq)
{
unsigned int cidx;
cidx = eq->spg->cidx; /* stable snapshot */
cidx = be16_to_cpu(cidx);
if (cidx >= eq->cidx)
return (cidx - eq->cidx);
else
return (cidx + eq->cap - eq->cidx);
}
void
t4_sge_init(struct adapter *sc)
{
struct driver_properties *p = &sc->props;
ddi_dma_attr_t *dma_attr;
ddi_device_acc_attr_t *acc_attr;
uint32_t sge_control, sge_conm_ctrl;
int egress_threshold;
/*
* Device access and DMA attributes for descriptor rings
*/
acc_attr = &sc->sge.acc_attr_desc;
acc_attr->devacc_attr_version = DDI_DEVICE_ATTR_V0;
acc_attr->devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
acc_attr->devacc_attr_dataorder = DDI_STRICTORDER_ACC;
dma_attr = &sc->sge.dma_attr_desc;
dma_attr->dma_attr_version = DMA_ATTR_V0;
dma_attr->dma_attr_addr_lo = 0;
dma_attr->dma_attr_addr_hi = UINT64_MAX;
dma_attr->dma_attr_count_max = UINT64_MAX;
dma_attr->dma_attr_align = 512;
dma_attr->dma_attr_burstsizes = 0xfff;
dma_attr->dma_attr_minxfer = 1;
dma_attr->dma_attr_maxxfer = UINT64_MAX;
dma_attr->dma_attr_seg = UINT64_MAX;
dma_attr->dma_attr_sgllen = 1;
dma_attr->dma_attr_granular = 1;
dma_attr->dma_attr_flags = 0;
/*
* Device access and DMA attributes for tx buffers
*/
acc_attr = &sc->sge.acc_attr_tx;
acc_attr->devacc_attr_version = DDI_DEVICE_ATTR_V0;
acc_attr->devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
dma_attr = &sc->sge.dma_attr_tx;
dma_attr->dma_attr_version = DMA_ATTR_V0;
dma_attr->dma_attr_addr_lo = 0;
dma_attr->dma_attr_addr_hi = UINT64_MAX;
dma_attr->dma_attr_count_max = UINT64_MAX;
dma_attr->dma_attr_align = 1;
dma_attr->dma_attr_burstsizes = 0xfff;
dma_attr->dma_attr_minxfer = 1;
dma_attr->dma_attr_maxxfer = UINT64_MAX;
dma_attr->dma_attr_seg = UINT64_MAX;
dma_attr->dma_attr_sgllen = TX_SGL_SEGS;
dma_attr->dma_attr_granular = 1;
dma_attr->dma_attr_flags = 0;
/*
* Ingress Padding Boundary and Egress Status Page Size are set up by
* t4_fixup_host_params().
*/
sge_control = t4_read_reg(sc, A_SGE_CONTROL);
sc->sge.pktshift = G_PKTSHIFT(sge_control);
sc->sge.stat_len = (sge_control & F_EGRSTATUSPAGESIZE) ? 128 : 64;
/* t4_nex uses FLM packed mode */
sc->sge.fl_align = t4_fl_pkt_align(sc, true);
/*
* Device access and DMA attributes for rx buffers
*/
sc->sge.rxb_params.dip = sc->dip;
sc->sge.rxb_params.buf_size = rx_buf_size;
acc_attr = &sc->sge.rxb_params.acc_attr_rx;
acc_attr->devacc_attr_version = DDI_DEVICE_ATTR_V0;
acc_attr->devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
dma_attr = &sc->sge.rxb_params.dma_attr_rx;
dma_attr->dma_attr_version = DMA_ATTR_V0;
dma_attr->dma_attr_addr_lo = 0;
dma_attr->dma_attr_addr_hi = UINT64_MAX;
dma_attr->dma_attr_count_max = UINT64_MAX;
/*
* Low 4 bits of an rx buffer address have a special meaning to the SGE
* and an rx buf cannot have an address with any of these bits set.
* FL_ALIGN is >= 32 so we're sure things are ok.
*/
dma_attr->dma_attr_align = sc->sge.fl_align;
dma_attr->dma_attr_burstsizes = 0xfff;
dma_attr->dma_attr_minxfer = 1;
dma_attr->dma_attr_maxxfer = UINT64_MAX;
dma_attr->dma_attr_seg = UINT64_MAX;
dma_attr->dma_attr_sgllen = 1;
dma_attr->dma_attr_granular = 1;
dma_attr->dma_attr_flags = 0;
sc->sge.rxbuf_cache = rxbuf_cache_create(&sc->sge.rxb_params);
/*
* A FL with <= fl_starve_thres buffers is starving and a periodic
* timer will attempt to refill it. This needs to be larger than the
* SGE's Egress Congestion Threshold. If it isn't, then we can get
* stuck waiting for new packets while the SGE is waiting for us to
* give it more Free List entries. (Note that the SGE's Egress
* Congestion Threshold is in units of 2 Free List pointers.) For T4,
* there was only a single field to control this. For T5 there's the
* original field which now only applies to Unpacked Mode Free List
* buffers and a new field which only applies to Packed Mode Free List
* buffers.
*/
sge_conm_ctrl = t4_read_reg(sc, A_SGE_CONM_CTRL);
switch (CHELSIO_CHIP_VERSION(sc->params.chip)) {
case CHELSIO_T4:
egress_threshold = G_EGRTHRESHOLD(sge_conm_ctrl);
break;
case CHELSIO_T5:
egress_threshold = G_EGRTHRESHOLDPACKING(sge_conm_ctrl);
break;
case CHELSIO_T6:
default:
egress_threshold = G_T6_EGRTHRESHOLDPACKING(sge_conm_ctrl);
}
sc->sge.fl_starve_threshold = 2*egress_threshold + 1;
t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0, rx_buf_size);
t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD,
V_THRESHOLD_0(p->counter_val[0]) |
V_THRESHOLD_1(p->counter_val[1]) |
V_THRESHOLD_2(p->counter_val[2]) |
V_THRESHOLD_3(p->counter_val[3]));
t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1,
V_TIMERVALUE0(us_to_core_ticks(sc, p->timer_val[0])) |
V_TIMERVALUE1(us_to_core_ticks(sc, p->timer_val[1])));
t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3,
V_TIMERVALUE2(us_to_core_ticks(sc, p->timer_val[2])) |
V_TIMERVALUE3(us_to_core_ticks(sc, p->timer_val[3])));
t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5,
V_TIMERVALUE4(us_to_core_ticks(sc, p->timer_val[4])) |
V_TIMERVALUE5(us_to_core_ticks(sc, p->timer_val[5])));
(void) t4_register_cpl_handler(sc, CPL_FW4_MSG, handle_fw_rpl);
(void) t4_register_cpl_handler(sc, CPL_FW6_MSG, handle_fw_rpl);
(void) t4_register_cpl_handler(sc, CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
(void) t4_register_cpl_handler(sc, CPL_RX_PKT, t4_eth_rx);
(void) t4_register_fw_msg_handler(sc, FW6_TYPE_CMD_RPL,
t4_handle_fw_rpl);
}
/*
* Allocate and initialize the firmware event queue and the forwarded interrupt
* queues, if any. The adapter owns all these queues as they are not associated
* with any particular port.
*
* Returns errno on failure. Resources allocated up to that point may still be
* allocated. Caller is responsible for cleanup in case this function fails.
*/
int
t4_setup_adapter_queues(struct adapter *sc)
{
int rc;
ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
/*
* Firmware event queue
*/
rc = alloc_fwq(sc);
if (rc != 0)
return (rc);
#ifdef TCP_OFFLOAD_ENABLE
/*
* Management queue. This is just a control queue that uses the fwq as
* its associated iq.
*/
rc = alloc_mgmtq(sc);
#endif
return (rc);
}
/*
* Idempotent
*/
int
t4_teardown_adapter_queues(struct adapter *sc)
{
ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
(void) free_fwq(sc);
return (0);
}
static inline int
first_vector(struct port_info *pi)
{
struct adapter *sc = pi->adapter;
int rc = T4_EXTRA_INTR, i;
if (sc->intr_count == 1)
return (0);
for_each_port(sc, i) {
struct port_info *p = sc->port[i];
if (i == pi->port_id)
break;
#ifdef TCP_OFFLOAD_ENABLE
if (!(sc->flags & INTR_FWD))
rc += p->nrxq + p->nofldrxq;
else
rc += max(p->nrxq, p->nofldrxq);
#else
/*
* Not compiled with offload support and intr_count > 1. Only
* NIC queues exist and they'd better be taking direct
* interrupts.
*/
ASSERT(!(sc->flags & INTR_FWD));
rc += p->nrxq;
#endif
}
return (rc);
}
/*
* Given an arbitrary "index," come up with an iq that can be used by other
* queues (of this port) for interrupt forwarding, SGE egress updates, etc.
* The iq returned is guaranteed to be something that takes direct interrupts.
*/
static struct sge_iq *
port_intr_iq(struct port_info *pi, int idx)
{
struct adapter *sc = pi->adapter;
struct sge *s = &sc->sge;
struct sge_iq *iq = NULL;
if (sc->intr_count == 1)
return (&sc->sge.fwq);
#ifdef TCP_OFFLOAD_ENABLE
if (!(sc->flags & INTR_FWD)) {
idx %= pi->nrxq + pi->nofldrxq;
if (idx >= pi->nrxq) {
idx -= pi->nrxq;
iq = &s->ofld_rxq[pi->first_ofld_rxq + idx].iq;
} else
iq = &s->rxq[pi->first_rxq + idx].iq;
} else {
idx %= max(pi->nrxq, pi->nofldrxq);
if (pi->nrxq >= pi->nofldrxq)
iq = &s->rxq[pi->first_rxq + idx].iq;
else
iq = &s->ofld_rxq[pi->first_ofld_rxq + idx].iq;
}
#else
/*
* Not compiled with offload support and intr_count > 1. Only NIC
* queues exist and they'd better be taking direct interrupts.
*/
ASSERT(!(sc->flags & INTR_FWD));
idx %= pi->nrxq;
iq = &s->rxq[pi->first_rxq + idx].iq;
#endif
return (iq);
}
int
t4_setup_port_queues(struct port_info *pi)
{
int rc = 0, i, intr_idx, j;
struct sge_rxq *rxq;
struct sge_txq *txq;
#ifdef TCP_OFFLOAD_ENABLE
int iqid;
struct sge_wrq *ctrlq;
struct sge_ofld_rxq *ofld_rxq;
struct sge_wrq *ofld_txq;
#endif
struct adapter *sc = pi->adapter;
struct driver_properties *p = &sc->props;
pi->ksp_config = setup_port_config_kstats(pi);
pi->ksp_info = setup_port_info_kstats(pi);
/* Interrupt vector to start from (when using multiple vectors) */
intr_idx = first_vector(pi);
/*
* First pass over all rx queues (NIC and TOE):
* a) initialize iq and fl
* b) allocate queue iff it will take direct interrupts.
*/
for_each_rxq(pi, i, rxq) {
init_iq(&rxq->iq, sc, pi->tmr_idx, pi->pktc_idx, p->qsize_rxq,
RX_IQ_ESIZE);
init_fl(&rxq->fl, p->qsize_rxq / 8); /* 8 bufs in each entry */
if ((!(sc->flags & INTR_FWD))
#ifdef TCP_OFFLOAD_ENABLE
|| (sc->intr_count > 1 && pi->nrxq >= pi->nofldrxq)
#else
|| (sc->intr_count > 1 && pi->nrxq)
#endif
) {
rxq->iq.flags |= IQ_INTR;
rc = alloc_rxq(pi, rxq, intr_idx, i);
if (rc != 0)
goto done;
intr_idx++;
}
}
#ifdef TCP_OFFLOAD_ENABLE
for_each_ofld_rxq(pi, i, ofld_rxq) {
init_iq(&ofld_rxq->iq, sc, pi->tmr_idx, pi->pktc_idx,
p->qsize_rxq, RX_IQ_ESIZE);
init_fl(&ofld_rxq->fl, p->qsize_rxq / 8);
if (!(sc->flags & INTR_FWD) ||
(sc->intr_count > 1 && pi->nofldrxq > pi->nrxq)) {
ofld_rxq->iq.flags = IQ_INTR;
rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx);
if (rc != 0)
goto done;
intr_idx++;
}
}
#endif
/*
* Second pass over all rx queues (NIC and TOE). The queues forwarding
* their interrupts are allocated now.
*/
j = 0;
for_each_rxq(pi, i, rxq) {
if (rxq->iq.flags & IQ_INTR)
continue;
intr_idx = port_intr_iq(pi, j)->abs_id;
rc = alloc_rxq(pi, rxq, intr_idx, i);
if (rc != 0)
goto done;
j++;
}
#ifdef TCP_OFFLOAD_ENABLE
for_each_ofld_rxq(pi, i, ofld_rxq) {
if (ofld_rxq->iq.flags & IQ_INTR)
continue;
intr_idx = port_intr_iq(pi, j)->abs_id;
rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx);
if (rc != 0)
goto done;
j++;
}
#endif
/*
* Now the tx queues. Only one pass needed.
*/
j = 0;
for_each_txq(pi, i, txq) {
uint16_t iqid;
iqid = port_intr_iq(pi, j)->cntxt_id;
init_eq(sc, &txq->eq, EQ_ETH, p->qsize_txq, pi->tx_chan, iqid);
rc = alloc_txq(pi, txq, i);
if (rc != 0)
goto done;
}
#ifdef TCP_OFFLOAD_ENABLE
for_each_ofld_txq(pi, i, ofld_txq) {
uint16_t iqid;
iqid = port_intr_iq(pi, j)->cntxt_id;
init_eq(sc, &ofld_txq->eq, EQ_OFLD, p->qsize_txq, pi->tx_chan,
iqid);
rc = alloc_wrq(sc, pi, ofld_txq, i);
if (rc != 0)
goto done;
}
/*
* Finally, the control queue.
*/
ctrlq = &sc->sge.ctrlq[pi->port_id];
iqid = port_intr_iq(pi, 0)->cntxt_id;
init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan, iqid);
rc = alloc_wrq(sc, pi, ctrlq, 0);
#endif
done:
if (rc != 0)
(void) t4_teardown_port_queues(pi);
return (rc);
}
/*
* Idempotent
*/
int
t4_teardown_port_queues(struct port_info *pi)
{
int i;
struct sge_rxq *rxq;
struct sge_txq *txq;
#ifdef TCP_OFFLOAD_ENABLE
struct adapter *sc = pi->adapter;
struct sge_ofld_rxq *ofld_rxq;
struct sge_wrq *ofld_txq;
#endif
if (pi->ksp_config != NULL) {
kstat_delete(pi->ksp_config);
pi->ksp_config = NULL;
}
if (pi->ksp_info != NULL) {
kstat_delete(pi->ksp_info);
pi->ksp_info = NULL;
}
#ifdef TCP_OFFLOAD_ENABLE
(void) free_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
#endif
for_each_txq(pi, i, txq) {
(void) free_txq(pi, txq);
}
#ifdef TCP_OFFLOAD_ENABLE
for_each_ofld_txq(pi, i, ofld_txq) {
(void) free_wrq(sc, ofld_txq);
}
for_each_ofld_rxq(pi, i, ofld_rxq) {
if ((ofld_rxq->iq.flags & IQ_INTR) == 0)
(void) free_ofld_rxq(pi, ofld_rxq);
}
#endif
for_each_rxq(pi, i, rxq) {
if ((rxq->iq.flags & IQ_INTR) == 0)
(void) free_rxq(pi, rxq);
}
/*
* Then take down the rx queues that take direct interrupts.
*/
for_each_rxq(pi, i, rxq) {
if (rxq->iq.flags & IQ_INTR)
(void) free_rxq(pi, rxq);
}
#ifdef TCP_OFFLOAD_ENABLE
for_each_ofld_rxq(pi, i, ofld_rxq) {
if (ofld_rxq->iq.flags & IQ_INTR)
(void) free_ofld_rxq(pi, ofld_rxq);
}
#endif
return (0);
}
/* Deals with errors and forwarded interrupts */
uint_t
t4_intr_all(caddr_t arg1, caddr_t arg2)
{
(void) t4_intr_err(arg1, arg2);
(void) t4_intr(arg1, arg2);
return (DDI_INTR_CLAIMED);
}
static void
t4_intr_rx_work(struct sge_iq *iq)
{
mblk_t *mp = NULL;
struct sge_rxq *rxq = iq_to_rxq(iq); /* Use iff iq is part of rxq */
RXQ_LOCK(rxq);
if (!iq->polling) {
mp = t4_ring_rx(rxq, iq->qsize/8);
t4_write_reg(iq->adapter, MYPF_REG(A_SGE_PF_GTS),
V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_next));
}
RXQ_UNLOCK(rxq);
if (mp != NULL)
mac_rx_ring(rxq->port->mh, rxq->ring_handle, mp,
rxq->ring_gen_num);
}
/* Deals with interrupts on the given ingress queue */
/* ARGSUSED */
uint_t
t4_intr(caddr_t arg1, caddr_t arg2)
{
struct sge_iq *iq = (struct sge_iq *)arg2;
int state;
/* Right now receive polling is only enabled for MSI-X and
* when we have enough msi-x vectors i.e no interrupt forwarding.
*/
if (iq->adapter->props.multi_rings) {
t4_intr_rx_work(iq);
} else {
state = atomic_cas_uint(&iq->state, IQS_IDLE, IQS_BUSY);
if (state == IQS_IDLE) {
(void) service_iq(iq, 0);
(void) atomic_cas_uint(&iq->state, IQS_BUSY, IQS_IDLE);
}
}
return (DDI_INTR_CLAIMED);
}
/* Deals with error interrupts */
/* ARGSUSED */
uint_t
t4_intr_err(caddr_t arg1, caddr_t arg2)
{
/* LINTED: E_BAD_PTR_CAST_ALIGN */
struct adapter *sc = (struct adapter *)arg1;
t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
(void) t4_slow_intr_handler(sc);
return (DDI_INTR_CLAIMED);
}
/*
* t4_ring_rx - Process responses from an SGE response queue.
*
* This function processes responses from an SGE response queue up to the supplied budget.
* Responses include received packets as well as control messages from FW
* or HW.
* It returns a chain of mblks containing the received data, to be
* passed up to mac_ring_rx().
*/
mblk_t *
t4_ring_rx(struct sge_rxq *rxq, int budget)
{
struct sge_iq *iq = &rxq->iq;
struct sge_fl *fl = &rxq->fl; /* Use iff IQ_HAS_FL */
struct adapter *sc = iq->adapter;
struct rsp_ctrl *ctrl;
const struct rss_header *rss;
int ndescs = 0, fl_bufs_used = 0;
int rsp_type;
uint32_t lq;
mblk_t *mblk_head = NULL, **mblk_tail, *m;
struct cpl_rx_pkt *cpl;
uint32_t received_bytes = 0, pkt_len = 0;
bool csum_ok;
uint16_t err_vec;
mblk_tail = &mblk_head;
while (is_new_response(iq, &ctrl)) {
membar_consumer();
m = NULL;
rsp_type = G_RSPD_TYPE(ctrl->u.type_gen);
lq = be32_to_cpu(ctrl->pldbuflen_qid);
rss = (const void *)iq->cdesc;
switch (rsp_type) {
case X_RSPD_TYPE_FLBUF:
ASSERT(iq->flags & IQ_HAS_FL);
if (CPL_RX_PKT == rss->opcode) {
cpl = (void *)(rss + 1);
pkt_len = be16_to_cpu(cpl->len);
if (iq->polling && ((received_bytes + pkt_len) > budget))
goto done;
m = get_fl_payload(sc, fl, lq, &fl_bufs_used);
if (m == NULL)
goto done;
iq->intr_next = iq->intr_params;
m->b_rptr += sc->sge.pktshift;
if (sc->params.tp.rx_pkt_encap)
/* It is enabled only in T6 config file */
err_vec = G_T6_COMPR_RXERR_VEC(ntohs(cpl->err_vec));
else
err_vec = ntohs(cpl->err_vec);
csum_ok = cpl->csum_calc && !err_vec;
/* TODO: what about cpl->ip_frag? */
if (csum_ok && !cpl->ip_frag) {
mac_hcksum_set(m, 0, 0, 0, 0xffff,
HCK_FULLCKSUM_OK | HCK_FULLCKSUM |
HCK_IPV4_HDRCKSUM_OK);
rxq->rxcsum++;
}
rxq->rxpkts++;
rxq->rxbytes += pkt_len;
received_bytes += pkt_len;
*mblk_tail = m;
mblk_tail = &m->b_next;
break;
}
m = get_fl_payload(sc, fl, lq, &fl_bufs_used);
if (m == NULL)
goto done;
/* FALLTHROUGH */
case X_RSPD_TYPE_CPL:
ASSERT(rss->opcode < NUM_CPL_CMDS);
sc->cpl_handler[rss->opcode](iq, rss, m);
break;
default:
break;
}
iq_next(iq);
++ndescs;
if (!iq->polling && (ndescs == budget))
break;
}
done:
t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
V_CIDXINC(ndescs) | V_INGRESSQID(iq->cntxt_id) |
V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
if ((fl_bufs_used > 0) || (iq->flags & IQ_HAS_FL)) {
int starved;
FL_LOCK(fl);
fl->needed += fl_bufs_used;
starved = refill_fl(sc, fl, fl->cap / 8);
FL_UNLOCK(fl);
if (starved)
add_fl_to_sfl(sc, fl);
}
return (mblk_head);
}
/*
* Deals with anything and everything on the given ingress queue.
*/
static int
service_iq(struct sge_iq *iq, int budget)
{
struct sge_iq *q;
struct sge_rxq *rxq = iq_to_rxq(iq); /* Use iff iq is part of rxq */
struct sge_fl *fl = &rxq->fl; /* Use iff IQ_HAS_FL */
struct adapter *sc = iq->adapter;
struct rsp_ctrl *ctrl;
const struct rss_header *rss;
int ndescs = 0, limit, fl_bufs_used = 0;
int rsp_type;
uint32_t lq;
int starved;
mblk_t *m;
STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
limit = budget ? budget : iq->qsize / 8;
/*
* We always come back and check the descriptor ring for new indirect
* interrupts and other responses after running a single handler.
*/
for (;;) {
while (is_new_response(iq, &ctrl)) {
membar_consumer();
m = NULL;
rsp_type = G_RSPD_TYPE(ctrl->u.type_gen);
lq = be32_to_cpu(ctrl->pldbuflen_qid);
rss = (const void *)iq->cdesc;
switch (rsp_type) {
case X_RSPD_TYPE_FLBUF:
ASSERT(iq->flags & IQ_HAS_FL);
m = get_fl_payload(sc, fl, lq, &fl_bufs_used);
if (m == NULL) {
/*
* Rearm the iq with a
* longer-than-default timer
*/
t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) |
V_INGRESSQID((u32)iq->cntxt_id) |
V_SEINTARM(V_QINTR_TIMER_IDX(SGE_NTIMERS-1)));
if (fl_bufs_used > 0) {
ASSERT(iq->flags & IQ_HAS_FL);
FL_LOCK(fl);
fl->needed += fl_bufs_used;
starved = refill_fl(sc, fl, fl->cap / 8);
FL_UNLOCK(fl);
if (starved)
add_fl_to_sfl(sc, fl);
}
return (0);
}
/* FALLTHRU */
case X_RSPD_TYPE_CPL:
ASSERT(rss->opcode < NUM_CPL_CMDS);
sc->cpl_handler[rss->opcode](iq, rss, m);
break;
case X_RSPD_TYPE_INTR:
/*
* Interrupts should be forwarded only to queues
* that are not forwarding their interrupts.
* This means service_iq can recurse but only 1
* level deep.
*/
ASSERT(budget == 0);
q = sc->sge.iqmap[lq - sc->sge.iq_start];
if (atomic_cas_uint(&q->state, IQS_IDLE,
IQS_BUSY) == IQS_IDLE) {
if (service_iq(q, q->qsize / 8) == 0) {
(void) atomic_cas_uint(
&q->state, IQS_BUSY,
IQS_IDLE);
} else {
STAILQ_INSERT_TAIL(&iql, q,
link);
}
}
break;
default:
break;
}
iq_next(iq);
if (++ndescs == limit) {
t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
V_CIDXINC(ndescs) |
V_INGRESSQID(iq->cntxt_id) |
V_SEINTARM(V_QINTR_TIMER_IDX(
X_TIMERREG_UPDATE_CIDX)));
ndescs = 0;
if (fl_bufs_used > 0) {
ASSERT(iq->flags & IQ_HAS_FL);
FL_LOCK(fl);
fl->needed += fl_bufs_used;
(void) refill_fl(sc, fl, fl->cap / 8);
FL_UNLOCK(fl);
fl_bufs_used = 0;
}
if (budget != 0)
return (EINPROGRESS);
}
}
if (STAILQ_EMPTY(&iql) != 0)
break;
/*
* Process the head only, and send it to the back of the list if
* it's still not done.
*/
q = STAILQ_FIRST(&iql);
STAILQ_REMOVE_HEAD(&iql, link);
if (service_iq(q, q->qsize / 8) == 0)
(void) atomic_cas_uint(&q->state, IQS_BUSY, IQS_IDLE);
else
STAILQ_INSERT_TAIL(&iql, q, link);
}
t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) |
V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_next));
if (iq->flags & IQ_HAS_FL) {
FL_LOCK(fl);
fl->needed += fl_bufs_used;
starved = refill_fl(sc, fl, fl->cap / 4);
FL_UNLOCK(fl);
if (starved != 0)
add_fl_to_sfl(sc, fl);
}
return (0);
}
#ifdef TCP_OFFLOAD_ENABLE
int
t4_mgmt_tx(struct adapter *sc, mblk_t *m)
{
return (t4_wrq_tx(sc, &sc->sge.mgmtq, m));
}
/*
* Doesn't fail. Holds on to work requests it can't send right away.
*/
int
t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, mblk_t *m0)
{
struct sge_eq *eq = &wrq->eq;
struct mblk_pair *wr_list = &wrq->wr_list;
int can_reclaim;
caddr_t dst;
mblk_t *wr, *next;
TXQ_LOCK_ASSERT_OWNED(wrq);
#ifdef TCP_OFFLOAD_ENABLE
ASSERT((eq->flags & EQ_TYPEMASK) == EQ_OFLD ||
(eq->flags & EQ_TYPEMASK) == EQ_CTRL);
#else
ASSERT((eq->flags & EQ_TYPEMASK) == EQ_CTRL);
#endif
if (m0 != NULL) {
if (wr_list->head != NULL)
wr_list->tail->b_next = m0;
else
wr_list->head = m0;
while (m0->b_next)
m0 = m0->b_next;
wr_list->tail = m0;
}
can_reclaim = reclaimable(eq);
eq->cidx += can_reclaim;
eq->avail += can_reclaim;
if (eq->cidx >= eq->cap)
eq->cidx -= eq->cap;
for (wr = wr_list->head; wr; wr = next) {
int ndesc, len = 0;
mblk_t *m;
next = wr->b_next;
wr->b_next = NULL;
for (m = wr; m; m = m->b_cont)
len += MBLKL(m);
ASSERT(len > 0 && (len & 0x7) == 0);
ASSERT(len <= SGE_MAX_WR_LEN);
ndesc = howmany(len, EQ_ESIZE);
if (eq->avail < ndesc) {
wr->b_next = next;
wrq->no_desc++;
break;
}
dst = (void *)&eq->desc[eq->pidx];
for (m = wr; m; m = m->b_cont)
copy_to_txd(eq, (void *)m->b_rptr, &dst, MBLKL(m));
eq->pidx += ndesc;
eq->avail -= ndesc;
if (eq->pidx >= eq->cap)
eq->pidx -= eq->cap;
eq->pending += ndesc;
if (eq->pending > 16)
ring_tx_db(sc, eq);
wrq->tx_wrs++;
freemsg(wr);
if (eq->avail < 8) {
can_reclaim = reclaimable(eq);
eq->cidx += can_reclaim;
eq->avail += can_reclaim;
if (eq->cidx >= eq->cap)
eq->cidx -= eq->cap;
}
}
if (eq->pending != 0)
ring_tx_db(sc, eq);
if (wr == NULL)
wr_list->head = wr_list->tail = NULL;
else {
wr_list->head = wr;
ASSERT(wr_list->tail->b_next == NULL);
}
return (0);
}
#endif
/* Per-packet header in a coalesced tx WR, before the SGL starts (in flits) */
#define TXPKTS_PKT_HDR ((\
sizeof (struct ulp_txpkt) + \
sizeof (struct ulptx_idata) + \
sizeof (struct cpl_tx_pkt_core)) / 8)
/* Header of a coalesced tx WR, before SGL of first packet (in flits) */
#define TXPKTS_WR_HDR (\
sizeof (struct fw_eth_tx_pkts_wr) / 8 + \
TXPKTS_PKT_HDR)
/* Header of a tx WR, before SGL of first packet (in flits) */
#define TXPKT_WR_HDR ((\
sizeof (struct fw_eth_tx_pkt_wr) + \
sizeof (struct cpl_tx_pkt_core)) / 8)
/* Header of a tx LSO WR, before SGL of first packet (in flits) */
#define TXPKT_LSO_WR_HDR ((\
sizeof (struct fw_eth_tx_pkt_wr) + \
sizeof(struct cpl_tx_pkt_lso_core) + \
sizeof (struct cpl_tx_pkt_core)) / 8)
mblk_t *
t4_eth_tx(void *arg, mblk_t *frame)
{
struct sge_txq *txq = (struct sge_txq *) arg;
struct port_info *pi = txq->port;
struct adapter *sc = pi->adapter;
struct sge_eq *eq = &txq->eq;
mblk_t *next_frame;
int rc, coalescing;
struct txpkts txpkts;
struct txinfo txinfo;
txpkts.npkt = 0; /* indicates there's nothing in txpkts */
coalescing = 0;
TXQ_LOCK(txq);
if (eq->avail < 8)
(void) reclaim_tx_descs(txq, 8);
for (; frame; frame = next_frame) {
if (eq->avail < 8)
break;
next_frame = frame->b_next;
frame->b_next = NULL;
if (next_frame != NULL)
coalescing = 1;
rc = get_frame_txinfo(txq, &frame, &txinfo, coalescing);
if (rc != 0) {
if (rc == ENOMEM) {
/* Short of resources, suspend tx */
frame->b_next = next_frame;
break;
}
/*
* Unrecoverable error for this frame, throw it
* away and move on to the next.
*/
freemsg(frame);
continue;
}
if (coalescing != 0 &&
add_to_txpkts(txq, &txpkts, frame, &txinfo) == 0) {
/* Successfully absorbed into txpkts */
write_ulp_cpl_sgl(pi, txq, &txpkts, &txinfo);
goto doorbell;
}
/*
* We weren't coalescing to begin with, or current frame could
* not be coalesced (add_to_txpkts flushes txpkts if a frame
* given to it can't be coalesced). Either way there should be
* nothing in txpkts.
*/
ASSERT(txpkts.npkt == 0);
/* We're sending out individual frames now */
coalescing = 0;
if (eq->avail < 8)
(void) reclaim_tx_descs(txq, 8);
rc = write_txpkt_wr(pi, txq, frame, &txinfo);
if (rc != 0) {
/* Short of hardware descriptors, suspend tx */
/*
* This is an unlikely but expensive failure. We've
* done all the hard work (DMA bindings etc.) and now we
* can't send out the frame. What's worse, we have to
* spend even more time freeing up everything in txinfo.
*/
txq->qfull++;
free_txinfo_resources(txq, &txinfo);
frame->b_next = next_frame;
break;
}
doorbell:
/* Fewer and fewer doorbells as the queue fills up */
if (eq->pending >= (1 << (fls(eq->qsize - eq->avail) / 2))) {
txq->txbytes += txinfo.len;
txq->txpkts++;
ring_tx_db(sc, eq);
}
(void) reclaim_tx_descs(txq, 32);
}
if (txpkts.npkt > 0)
write_txpkts_wr(txq, &txpkts);
/*
* frame not NULL means there was an error but we haven't thrown it
* away. This can happen when we're short of tx descriptors (qfull) or
* maybe even DMA handles (dma_hdl_failed). Either way, a credit flush
* and reclaim will get things going again.
*
* If eq->avail is already 0 we know a credit flush was requested in the
* WR that reduced it to 0 so we don't need another flush (we don't have
* any descriptor for a flush WR anyway, duh).
*/
if (frame && eq->avail > 0)
write_txqflush_wr(txq);
if (eq->pending != 0)
ring_tx_db(sc, eq);
(void) reclaim_tx_descs(txq, eq->qsize);
TXQ_UNLOCK(txq);
return (frame);
}
static inline void
init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int8_t pktc_idx,
int qsize, uint8_t esize)
{
ASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS);
ASSERT(pktc_idx < SGE_NCOUNTERS); /* -ve is ok, means don't use */
iq->flags = 0;
iq->adapter = sc;
iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
if (pktc_idx >= 0) {
iq->intr_params |= F_QINTR_CNT_EN;
iq->intr_pktc_idx = pktc_idx;
}
iq->qsize = roundup(qsize, 16); /* See FW_IQ_CMD/iqsize */
iq->esize = max(esize, 16); /* See FW_IQ_CMD/iqesize */
}
static inline void
init_fl(struct sge_fl *fl, uint16_t qsize)
{
fl->qsize = qsize;
fl->allocb_fail = 0;
}
static inline void
init_eq(struct adapter *sc, struct sge_eq *eq, uint16_t eqtype, uint16_t qsize,
uint8_t tx_chan, uint16_t iqid)
{
struct sge *s = &sc->sge;
uint32_t r;
ASSERT(tx_chan < NCHAN);
ASSERT(eqtype <= EQ_TYPEMASK);
if (is_t5(sc->params.chip)) {
r = t4_read_reg(sc, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
r >>= S_QUEUESPERPAGEPF0 +
(S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * sc->pf;
s->s_qpp = r & M_QUEUESPERPAGEPF0;
}
eq->flags = eqtype & EQ_TYPEMASK;
eq->tx_chan = tx_chan;
eq->iqid = iqid;
eq->qsize = qsize;
}
/*
* Allocates the ring for an ingress queue and an optional freelist. If the
* freelist is specified it will be allocated and then associated with the
* ingress queue.
*
* Returns errno on failure. Resources allocated up to that point may still be
* allocated. Caller is responsible for cleanup in case this function fails.
*
* If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then
* the intr_idx specifies the vector, starting from 0. Otherwise it specifies
* the index of the queue to which its interrupts will be forwarded.
*/
static int
alloc_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl,
int intr_idx, int cong)
{
int rc, i, cntxt_id;
size_t len;
struct fw_iq_cmd c;
struct adapter *sc = iq->adapter;
uint32_t v = 0;
len = iq->qsize * iq->esize;
rc = alloc_desc_ring(sc, len, DDI_DMA_READ, &iq->dhdl, &iq->ahdl,
&iq->ba, (caddr_t *)&iq->desc);
if (rc != 0)
return (rc);
bzero(&c, sizeof (c));
c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
V_FW_IQ_CMD_VFN(0));
c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
FW_LEN16(c));
/* Special handling for firmware event queue */
if (iq == &sc->sge.fwq)
v |= F_FW_IQ_CMD_IQASYNCH;
if (iq->flags & IQ_INTR)
ASSERT(intr_idx < sc->intr_count);
else
v |= F_FW_IQ_CMD_IQANDST;
v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
c.type_to_iqandstindex = cpu_to_be32(v |
V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
V_FW_IQ_CMD_VIID(pi->viid) |
V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
c.iqdroprss_to_iqesize = cpu_to_be16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
F_FW_IQ_CMD_IQGTSMODE |
V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
V_FW_IQ_CMD_IQESIZE(ilog2(iq->esize) - 4));
c.iqsize = cpu_to_be16(iq->qsize);
c.iqaddr = cpu_to_be64(iq->ba);
if (cong >= 0)
c.iqns_to_fl0congen = BE_32(F_FW_IQ_CMD_IQFLINTCONGEN);
if (fl != NULL) {
unsigned int chip_ver = CHELSIO_CHIP_VERSION(sc->params.chip);
mutex_init(&fl->lock, NULL, MUTEX_DRIVER,
DDI_INTR_PRI(sc->intr_pri));
fl->flags |= FL_MTX;
len = fl->qsize * RX_FL_ESIZE;
rc = alloc_desc_ring(sc, len, DDI_DMA_WRITE, &fl->dhdl,
&fl->ahdl, &fl->ba, (caddr_t *)&fl->desc);
if (rc != 0)
return (rc);
/* Allocate space for one software descriptor per buffer. */
fl->cap = (fl->qsize - sc->sge.stat_len / RX_FL_ESIZE) * 8;
fl->sdesc = kmem_zalloc(sizeof (struct fl_sdesc) * fl->cap,
KM_SLEEP);
fl->needed = fl->cap;
fl->lowat = roundup(sc->sge.fl_starve_threshold, 8);
c.iqns_to_fl0congen |=
cpu_to_be32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
F_FW_IQ_CMD_FL0PACKEN | F_FW_IQ_CMD_FL0PADEN);
if (cong >= 0) {
c.iqns_to_fl0congen |=
BE_32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
F_FW_IQ_CMD_FL0CONGCIF |
F_FW_IQ_CMD_FL0CONGEN);
}
/* In T6, for egress queue type FL there is internal overhead
* of 16B for header going into FLM module. Hence the maximum
* allowed burst size is 448 bytes. For T4/T5, the hardware
* doesn't coalesce fetch requests if more than 64 bytes of
* Free List pointers are provided, so we use a 128-byte Fetch
* Burst Minimum there (T6 implements coalescing so we can use
* the smaller 64-byte value there).
*/
c.fl0dcaen_to_fl0cidxfthresh =
cpu_to_be16(V_FW_IQ_CMD_FL0FBMIN(chip_ver <= CHELSIO_T5
? X_FETCHBURSTMIN_128B
: X_FETCHBURSTMIN_64B) |
V_FW_IQ_CMD_FL0FBMAX(chip_ver <= CHELSIO_T5
? X_FETCHBURSTMAX_512B
: X_FETCHBURSTMAX_256B));
c.fl0size = cpu_to_be16(fl->qsize);
c.fl0addr = cpu_to_be64(fl->ba);
}
rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof (c), &c);
if (rc != 0) {
cxgb_printf(sc->dip, CE_WARN,
"failed to create ingress queue: %d", rc);
return (rc);
}
iq->cdesc = iq->desc;
iq->cidx = 0;
iq->gen = 1;
iq->intr_next = iq->intr_params;
iq->adapter = sc;
iq->cntxt_id = be16_to_cpu(c.iqid);
iq->abs_id = be16_to_cpu(c.physiqid);
iq->flags |= IQ_ALLOCATED;
mutex_init(&iq->lock, NULL,
MUTEX_DRIVER, DDI_INTR_PRI(DDI_INTR_PRI(sc->intr_pri)));
iq->polling = 0;
cntxt_id = iq->cntxt_id - sc->sge.iq_start;
if (cntxt_id >= sc->sge.niq) {
panic("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
cntxt_id, sc->sge.niq - 1);
}
sc->sge.iqmap[cntxt_id] = iq;
if (fl != NULL) {
fl->cntxt_id = be16_to_cpu(c.fl0id);
fl->pidx = fl->cidx = 0;
fl->copy_threshold = rx_copy_threshold;
cntxt_id = fl->cntxt_id - sc->sge.eq_start;
if (cntxt_id >= sc->sge.neq) {
panic("%s: fl->cntxt_id (%d) more than the max (%d)",
__func__, cntxt_id, sc->sge.neq - 1);
}
sc->sge.eqmap[cntxt_id] = (void *)fl;
FL_LOCK(fl);
(void) refill_fl(sc, fl, fl->lowat);
FL_UNLOCK(fl);
iq->flags |= IQ_HAS_FL;
}
if (is_t5(sc->params.chip) && cong >= 0) {
uint32_t param, val;
param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
if (cong == 0)
val = 1 << 19;
else {
val = 2 << 19;
for (i = 0; i < 4; i++) {
if (cong & (1 << i))
val |= 1 << (i << 2);
}
}
rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
if (rc != 0) {
/* report error but carry on */
cxgb_printf(sc->dip, CE_WARN,
"failed to set congestion manager context for "
"ingress queue %d: %d", iq->cntxt_id, rc);
}
}
/* Enable IQ interrupts */
iq->state = IQS_IDLE;
t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) |
V_INGRESSQID(iq->cntxt_id));
return (0);
}
static int
free_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl)
{
int rc;
struct adapter *sc = iq->adapter;
dev_info_t *dip;
dip = pi ? pi->dip : sc->dip;
if (iq != NULL) {
if (iq->flags & IQ_ALLOCATED) {
rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
fl ? fl->cntxt_id : 0xffff, 0xffff);
if (rc != 0) {
cxgb_printf(dip, CE_WARN,
"failed to free queue %p: %d", iq, rc);
return (rc);
}
mutex_destroy(&iq->lock);
iq->flags &= ~IQ_ALLOCATED;
}
if (iq->desc != NULL) {
(void) free_desc_ring(&iq->dhdl, &iq->ahdl);
iq->desc = NULL;
}
bzero(iq, sizeof (*iq));
}
if (fl != NULL) {
if (fl->sdesc != NULL) {
FL_LOCK(fl);
free_fl_bufs(fl);
FL_UNLOCK(fl);
kmem_free(fl->sdesc, sizeof (struct fl_sdesc) *
fl->cap);
fl->sdesc = NULL;
}
if (fl->desc != NULL) {
(void) free_desc_ring(&fl->dhdl, &fl->ahdl);
fl->desc = NULL;
}
if (fl->flags & FL_MTX) {
mutex_destroy(&fl->lock);
fl->flags &= ~FL_MTX;
}
bzero(fl, sizeof (struct sge_fl));
}
return (0);
}
static int
alloc_fwq(struct adapter *sc)
{
int rc, intr_idx;
struct sge_iq *fwq = &sc->sge.fwq;
init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, FW_IQ_ESIZE);
fwq->flags |= IQ_INTR; /* always */
intr_idx = sc->intr_count > 1 ? 1 : 0;
rc = alloc_iq_fl(sc->port[0], fwq, NULL, intr_idx, -1);
if (rc != 0) {
cxgb_printf(sc->dip, CE_WARN,
"failed to create firmware event queue: %d.", rc);
return (rc);
}
return (0);
}
static int
free_fwq(struct adapter *sc)
{
return (free_iq_fl(NULL, &sc->sge.fwq, NULL));
}
#ifdef TCP_OFFLOAD_ENABLE
static int
alloc_mgmtq(struct adapter *sc)
{
int rc;
struct sge_wrq *mgmtq = &sc->sge.mgmtq;
init_eq(sc, &mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan,
sc->sge.fwq.cntxt_id);
rc = alloc_wrq(sc, NULL, mgmtq, 0);
if (rc != 0) {
cxgb_printf(sc->dip, CE_WARN,
"failed to create management queue: %d\n", rc);
return (rc);
}
return (0);
}
#endif
static int
alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx, int i)
{
int rc;
rxq->port = pi;
rc = alloc_iq_fl(pi, &rxq->iq, &rxq->fl, intr_idx, 1 << pi->tx_chan);
if (rc != 0)
return (rc);
rxq->ksp = setup_rxq_kstats(pi, rxq, i);
return (rc);
}
static int
free_rxq(struct port_info *pi, struct sge_rxq *rxq)
{
int rc;
if (rxq->ksp != NULL) {
kstat_delete(rxq->ksp);
rxq->ksp = NULL;
}
rc = free_iq_fl(pi, &rxq->iq, &rxq->fl);
if (rc == 0)
bzero(&rxq->fl, sizeof (*rxq) - offsetof(struct sge_rxq, fl));
return (rc);
}
#ifdef TCP_OFFLOAD_ENABLE
static int
alloc_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq,
int intr_idx)
{
int rc;
rc = alloc_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx,
1 << pi->tx_chan);
if (rc != 0)
return (rc);
return (rc);
}
static int
free_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq)
{
int rc;
rc = free_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl);
if (rc == 0)
bzero(&ofld_rxq->fl, sizeof (*ofld_rxq) -
offsetof(struct sge_ofld_rxq, fl));
return (rc);
}
#endif
static int
ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
{
int rc, cntxt_id;
struct fw_eq_ctrl_cmd c;
bzero(&c, sizeof (c));
c.op_to_vfn = BE_32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
V_FW_EQ_CTRL_CMD_VFN(0));
c.alloc_to_len16 = BE_32(F_FW_EQ_CTRL_CMD_ALLOC |
F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid)); /* TODO */
c.physeqid_pkd = BE_32(0);
c.fetchszm_to_iqid =
BE_32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
c.dcaen_to_eqsize =
BE_32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
V_FW_EQ_CTRL_CMD_EQSIZE(eq->qsize));
c.eqaddr = BE_64(eq->ba);
rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof (c), &c);
if (rc != 0) {
cxgb_printf(sc->dip, CE_WARN,
"failed to create control queue %d: %d", eq->tx_chan, rc);
return (rc);
}
eq->flags |= EQ_ALLOCATED;
eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(BE_32(c.cmpliqid_eqid));
cntxt_id = eq->cntxt_id - sc->sge.eq_start;
if (cntxt_id >= sc->sge.neq)
panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
cntxt_id, sc->sge.neq - 1);
sc->sge.eqmap[cntxt_id] = eq;
return (rc);
}
static int
eth_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
{
int rc, cntxt_id;
struct fw_eq_eth_cmd c;
bzero(&c, sizeof (c));
c.op_to_vfn = BE_32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
V_FW_EQ_ETH_CMD_VFN(0));
c.alloc_to_len16 = BE_32(F_FW_EQ_ETH_CMD_ALLOC |
F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
c.autoequiqe_to_viid = BE_32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(pi->viid));
c.fetchszm_to_iqid =
BE_32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
V_FW_EQ_ETH_CMD_IQID(eq->iqid));
c.dcaen_to_eqsize = BE_32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
V_FW_EQ_ETH_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
V_FW_EQ_ETH_CMD_EQSIZE(eq->qsize));
c.eqaddr = BE_64(eq->ba);
rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof (c), &c);
if (rc != 0) {
cxgb_printf(pi->dip, CE_WARN,
"failed to create Ethernet egress queue: %d", rc);
return (rc);
}
eq->flags |= EQ_ALLOCATED;
eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(BE_32(c.eqid_pkd));
cntxt_id = eq->cntxt_id - sc->sge.eq_start;
if (cntxt_id >= sc->sge.neq)
panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
cntxt_id, sc->sge.neq - 1);
sc->sge.eqmap[cntxt_id] = eq;
return (rc);
}
#ifdef TCP_OFFLOAD_ENABLE
static int
ofld_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
{
int rc, cntxt_id;
struct fw_eq_ofld_cmd c;
bzero(&c, sizeof (c));
c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
V_FW_EQ_OFLD_CMD_VFN(0));
c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
c.fetchszm_to_iqid =
htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
c.dcaen_to_eqsize =
BE_32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
V_FW_EQ_OFLD_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
V_FW_EQ_OFLD_CMD_EQSIZE(eq->qsize));
c.eqaddr = BE_64(eq->ba);
rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof (c), &c);
if (rc != 0) {
cxgb_printf(pi->dip, CE_WARN,
"failed to create egress queue for TCP offload: %d", rc);
return (rc);
}
eq->flags |= EQ_ALLOCATED;
eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(BE_32(c.eqid_pkd));
cntxt_id = eq->cntxt_id - sc->sge.eq_start;
if (cntxt_id >= sc->sge.neq)
panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
cntxt_id, sc->sge.neq - 1);
sc->sge.eqmap[cntxt_id] = eq;
return (rc);
}
#endif
static int
alloc_eq(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
{
int rc;
size_t len;
mutex_init(&eq->lock, NULL, MUTEX_DRIVER, DDI_INTR_PRI(sc->intr_pri));
eq->flags |= EQ_MTX;
len = eq->qsize * EQ_ESIZE;
rc = alloc_desc_ring(sc, len, DDI_DMA_WRITE, &eq->desc_dhdl,
&eq->desc_ahdl, &eq->ba, (caddr_t *)&eq->desc);
if (rc != 0)
return (rc);
eq->cap = eq->qsize - sc->sge.stat_len / EQ_ESIZE;
eq->spg = (void *)&eq->desc[eq->cap];
eq->avail = eq->cap - 1; /* one less to avoid cidx = pidx */
eq->pidx = eq->cidx = 0;
eq->doorbells = sc->doorbells;
switch (eq->flags & EQ_TYPEMASK) {
case EQ_CTRL:
rc = ctrl_eq_alloc(sc, eq);
break;
case EQ_ETH:
rc = eth_eq_alloc(sc, pi, eq);
break;
#ifdef TCP_OFFLOAD_ENABLE
case EQ_OFLD:
rc = ofld_eq_alloc(sc, pi, eq);
break;
#endif
default:
panic("%s: invalid eq type %d.", __func__,
eq->flags & EQ_TYPEMASK);
}
if (eq->doorbells &
(DOORBELL_UDB | DOORBELL_UDBWC | DOORBELL_WCWR)) {
uint32_t s_qpp = sc->sge.s_qpp;
uint32_t mask = (1 << s_qpp) - 1;
volatile uint8_t *udb;
udb = (volatile uint8_t *)sc->reg1p + UDBS_DB_OFFSET;
udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT; /* pg offset */
eq->udb_qid = eq->cntxt_id & mask; /* id in page */
if (eq->udb_qid > PAGE_SIZE / UDBS_SEG_SIZE)
eq->doorbells &= ~DOORBELL_WCWR;
else {
udb += eq->udb_qid << UDBS_SEG_SHIFT; /* seg offset */
eq->udb_qid = 0;
}
eq->udb = (volatile void *)udb;
}
if (rc != 0) {
cxgb_printf(sc->dip, CE_WARN,
"failed to allocate egress queue(%d): %d",
eq->flags & EQ_TYPEMASK, rc);
}
return (rc);
}
static int
free_eq(struct adapter *sc, struct sge_eq *eq)
{
int rc;
if (eq->flags & EQ_ALLOCATED) {
switch (eq->flags & EQ_TYPEMASK) {
case EQ_CTRL:
rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
eq->cntxt_id);
break;
case EQ_ETH:
rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
eq->cntxt_id);
break;
#ifdef TCP_OFFLOAD_ENABLE
case EQ_OFLD:
rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
eq->cntxt_id);
break;
#endif
default:
panic("%s: invalid eq type %d.", __func__,
eq->flags & EQ_TYPEMASK);
}
if (rc != 0) {
cxgb_printf(sc->dip, CE_WARN,
"failed to free egress queue (%d): %d",
eq->flags & EQ_TYPEMASK, rc);
return (rc);
}
eq->flags &= ~EQ_ALLOCATED;
}
if (eq->desc != NULL) {
(void) free_desc_ring(&eq->desc_dhdl, &eq->desc_ahdl);
eq->desc = NULL;
}
if (eq->flags & EQ_MTX)
mutex_destroy(&eq->lock);
bzero(eq, sizeof (*eq));
return (0);
}
#ifdef TCP_OFFLOAD_ENABLE
/* ARGSUSED */
static int
alloc_wrq(struct adapter *sc, struct port_info *pi, struct sge_wrq *wrq,
int idx)
{
int rc;
rc = alloc_eq(sc, pi, &wrq->eq);
if (rc != 0)
return (rc);
wrq->adapter = sc;
wrq->wr_list.head = NULL;
wrq->wr_list.tail = NULL;
/*
* TODO: use idx to figure out what kind of wrq this is and install
* useful kstats for it.
*/
return (rc);
}
static int
free_wrq(struct adapter *sc, struct sge_wrq *wrq)
{
int rc;
rc = free_eq(sc, &wrq->eq);
if (rc != 0)
return (rc);
bzero(wrq, sizeof (*wrq));
return (0);
}
#endif
static int
alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx)
{
int rc, i;
struct adapter *sc = pi->adapter;
struct sge_eq *eq = &txq->eq;
rc = alloc_eq(sc, pi, eq);
if (rc != 0)
return (rc);
txq->port = pi;
txq->sdesc = kmem_zalloc(sizeof (struct tx_sdesc) * eq->cap, KM_SLEEP);
txq->txb_size = eq->qsize * tx_copy_threshold;
rc = alloc_tx_copybuffer(sc, txq->txb_size, &txq->txb_dhdl,
&txq->txb_ahdl, &txq->txb_ba, &txq->txb_va);
if (rc == 0)
txq->txb_avail = txq->txb_size;
else
txq->txb_avail = txq->txb_size = 0;
/*
* TODO: is this too low? Worst case would need around 4 times qsize
* (all tx descriptors filled to the brim with SGLs, with each entry in
* the SGL coming from a distinct DMA handle). Increase tx_dhdl_total
* if you see too many dma_hdl_failed.
*/
txq->tx_dhdl_total = eq->qsize * 2;
txq->tx_dhdl = kmem_zalloc(sizeof (ddi_dma_handle_t) *
txq->tx_dhdl_total, KM_SLEEP);
for (i = 0; i < txq->tx_dhdl_total; i++) {
rc = ddi_dma_alloc_handle(sc->dip, &sc->sge.dma_attr_tx,
DDI_DMA_SLEEP, 0, &txq->tx_dhdl[i]);
if (rc != DDI_SUCCESS) {
cxgb_printf(sc->dip, CE_WARN,
"%s: failed to allocate DMA handle (%d)",
__func__, rc);
return (rc == DDI_DMA_NORESOURCES ? ENOMEM : EINVAL);
}
txq->tx_dhdl_avail++;
}
txq->ksp = setup_txq_kstats(pi, txq, idx);
return (rc);
}
static int
free_txq(struct port_info *pi, struct sge_txq *txq)
{
int i;
struct adapter *sc = pi->adapter;
struct sge_eq *eq = &txq->eq;
if (txq->ksp != NULL) {
kstat_delete(txq->ksp);
txq->ksp = NULL;
}
if (txq->txb_va != NULL) {
(void) free_desc_ring(&txq->txb_dhdl, &txq->txb_ahdl);
txq->txb_va = NULL;
}
if (txq->sdesc != NULL) {
struct tx_sdesc *sd;
ddi_dma_handle_t hdl;
TXQ_LOCK(txq);
while (eq->cidx != eq->pidx) {
sd = &txq->sdesc[eq->cidx];
for (i = sd->hdls_used; i; i--) {
hdl = txq->tx_dhdl[txq->tx_dhdl_cidx];
(void) ddi_dma_unbind_handle(hdl);
if (++txq->tx_dhdl_cidx == txq->tx_dhdl_total)
txq->tx_dhdl_cidx = 0;
}
ASSERT(sd->m);
freemsgchain(sd->m);
eq->cidx += sd->desc_used;
if (eq->cidx >= eq->cap)
eq->cidx -= eq->cap;
txq->txb_avail += txq->txb_used;
}
ASSERT(txq->tx_dhdl_cidx == txq->tx_dhdl_pidx);
ASSERT(txq->txb_avail == txq->txb_size);
TXQ_UNLOCK(txq);
kmem_free(txq->sdesc, sizeof (struct tx_sdesc) * eq->cap);
txq->sdesc = NULL;
}
if (txq->tx_dhdl != NULL) {
for (i = 0; i < txq->tx_dhdl_total; i++) {
if (txq->tx_dhdl[i] != NULL)
ddi_dma_free_handle(&txq->tx_dhdl[i]);
}
}
(void) free_eq(sc, &txq->eq);
bzero(txq, sizeof (*txq));
return (0);
}
/*
* Allocates a block of contiguous memory for DMA. Can be used to allocate
* memory for descriptor rings or for tx/rx copy buffers.
*
* Caller does not have to clean up anything if this function fails, it cleans
* up after itself.
*
* Caller provides the following:
* len length of the block of memory to allocate.
* flags DDI_DMA_* flags to use (CONSISTENT/STREAMING, READ/WRITE/RDWR)
* acc_attr device access attributes for the allocation.
* dma_attr DMA attributes for the allocation
*
* If the function is successful it fills up this information:
* dma_hdl DMA handle for the allocated memory
* acc_hdl access handle for the allocated memory
* ba bus address of the allocated memory
* va KVA of the allocated memory.
*/
static int
alloc_dma_memory(struct adapter *sc, size_t len, int flags,
ddi_device_acc_attr_t *acc_attr, ddi_dma_attr_t *dma_attr,
ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl,
uint64_t *pba, caddr_t *pva)
{
int rc;
ddi_dma_handle_t dhdl;
ddi_acc_handle_t ahdl;
ddi_dma_cookie_t cookie;
uint_t ccount;
caddr_t va;
size_t real_len;
*pva = NULL;
/*
* DMA handle.
*/
rc = ddi_dma_alloc_handle(sc->dip, dma_attr, DDI_DMA_SLEEP, 0, &dhdl);
if (rc != DDI_SUCCESS) {
cxgb_printf(sc->dip, CE_WARN,
"failed to allocate DMA handle: %d", rc);
return (rc == DDI_DMA_NORESOURCES ? ENOMEM : EINVAL);
}
/*
* Memory suitable for DMA.
*/
rc = ddi_dma_mem_alloc(dhdl, len, acc_attr,
flags & DDI_DMA_CONSISTENT ? DDI_DMA_CONSISTENT : DDI_DMA_STREAMING,
DDI_DMA_SLEEP, 0, &va, &real_len, &ahdl);
if (rc != DDI_SUCCESS) {
cxgb_printf(sc->dip, CE_WARN,
"failed to allocate DMA memory: %d", rc);
ddi_dma_free_handle(&dhdl);
return (ENOMEM);
}
if (len != real_len) {
cxgb_printf(sc->dip, CE_WARN,
"%s: len (%u) != real_len (%u)\n", len, real_len);
}
/*
* DMA bindings.
*/
rc = ddi_dma_addr_bind_handle(dhdl, NULL, va, real_len, flags, NULL,
NULL, &cookie, &ccount);
if (rc != DDI_DMA_MAPPED) {
cxgb_printf(sc->dip, CE_WARN,
"failed to map DMA memory: %d", rc);
ddi_dma_mem_free(&ahdl);
ddi_dma_free_handle(&dhdl);
return (ENOMEM);
}
if (ccount != 1) {
cxgb_printf(sc->dip, CE_WARN,
"unusable DMA mapping (%d segments)", ccount);
(void) free_desc_ring(&dhdl, &ahdl);
}
bzero(va, real_len);
*dma_hdl = dhdl;
*acc_hdl = ahdl;
*pba = cookie.dmac_laddress;
*pva = va;
return (0);
}
static int
free_dma_memory(ddi_dma_handle_t *dhdl, ddi_acc_handle_t *ahdl)
{
(void) ddi_dma_unbind_handle(*dhdl);
ddi_dma_mem_free(ahdl);
ddi_dma_free_handle(dhdl);
return (0);
}
static int
alloc_desc_ring(struct adapter *sc, size_t len, int rw,
ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl,
uint64_t *pba, caddr_t *pva)
{
ddi_device_acc_attr_t *acc_attr = &sc->sge.acc_attr_desc;
ddi_dma_attr_t *dma_attr = &sc->sge.dma_attr_desc;
return (alloc_dma_memory(sc, len, DDI_DMA_CONSISTENT | rw, acc_attr,
dma_attr, dma_hdl, acc_hdl, pba, pva));
}
static int
free_desc_ring(ddi_dma_handle_t *dhdl, ddi_acc_handle_t *ahdl)
{
return (free_dma_memory(dhdl, ahdl));
}
static int
alloc_tx_copybuffer(struct adapter *sc, size_t len,
ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl,
uint64_t *pba, caddr_t *pva)
{
ddi_device_acc_attr_t *acc_attr = &sc->sge.acc_attr_tx;
ddi_dma_attr_t *dma_attr = &sc->sge.dma_attr_desc; /* NOT dma_attr_tx */
return (alloc_dma_memory(sc, len, DDI_DMA_STREAMING | DDI_DMA_WRITE,
acc_attr, dma_attr, dma_hdl, acc_hdl, pba, pva));
}
static inline bool
is_new_response(const struct sge_iq *iq, struct rsp_ctrl **ctrl)
{
(void) ddi_dma_sync(iq->dhdl, (uintptr_t)iq->cdesc -
(uintptr_t)iq->desc, iq->esize, DDI_DMA_SYNC_FORKERNEL);
*ctrl = (void *)((uintptr_t)iq->cdesc +
(iq->esize - sizeof (struct rsp_ctrl)));
return ((((*ctrl)->u.type_gen >> S_RSPD_GEN) == iq->gen));
}
static inline void
iq_next(struct sge_iq *iq)
{
iq->cdesc = (void *) ((uintptr_t)iq->cdesc + iq->esize);
if (++iq->cidx == iq->qsize - 1) {
iq->cidx = 0;
iq->gen ^= 1;
iq->cdesc = iq->desc;
}
}
/*
* Fill up the freelist by upto nbufs and maybe ring its doorbell.
*
* Returns non-zero to indicate that it should be added to the list of starving
* freelists.
*/
static int
refill_fl(struct adapter *sc, struct sge_fl *fl, int nbufs)
{
uint64_t *d = &fl->desc[fl->pidx];
struct fl_sdesc *sd = &fl->sdesc[fl->pidx];
FL_LOCK_ASSERT_OWNED(fl);
ASSERT(nbufs >= 0);
if (nbufs > fl->needed)
nbufs = fl->needed;
while (nbufs--) {
if (sd->rxb != NULL) {
if (sd->rxb->ref_cnt == 1) {
/*
* Buffer is available for recycling. Two ways
* this can happen:
*
* a) All the packets DMA'd into it last time
* around were within the rx_copy_threshold
* and no part of the buffer was ever passed
* up (ref_cnt never went over 1).
*
* b) Packets DMA'd into the buffer were passed
* up but have all been freed by the upper
* layers by now (ref_cnt went over 1 but is
* now back to 1).
*
* Either way the bus address in the descriptor
* ring is already valid.
*/
ASSERT(*d == cpu_to_be64(sd->rxb->ba));
d++;
goto recycled;
} else {
/*
* Buffer still in use and we need a
* replacement. But first release our reference
* on the existing buffer.
*/
rxbuf_free(sd->rxb);
}
}
sd->rxb = rxbuf_alloc(sc->sge.rxbuf_cache, KM_NOSLEEP, 1);
if (sd->rxb == NULL)
break;
*d++ = cpu_to_be64(sd->rxb->ba);
recycled: fl->pending++;
sd++;
fl->needed--;
if (++fl->pidx == fl->cap) {
fl->pidx = 0;
sd = fl->sdesc;
d = fl->desc;
}
}
if (fl->pending >= 8)
ring_fl_db(sc, fl);
return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
}
#ifndef TAILQ_FOREACH_SAFE
#define TAILQ_FOREACH_SAFE(var, head, field, tvar) \
for ((var) = TAILQ_FIRST((head)); \
(var) && ((tvar) = TAILQ_NEXT((var), field), 1); \
(var) = (tvar))
#endif
/*
* Attempt to refill all starving freelists.
*/
static void
refill_sfl(void *arg)
{
struct adapter *sc = arg;
struct sge_fl *fl, *fl_temp;
mutex_enter(&sc->sfl_lock);
TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
FL_LOCK(fl);
(void) refill_fl(sc, fl, 64);
if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
TAILQ_REMOVE(&sc->sfl, fl, link);
fl->flags &= ~FL_STARVING;
}
FL_UNLOCK(fl);
}
if (!TAILQ_EMPTY(&sc->sfl) != 0)
sc->sfl_timer = timeout(refill_sfl, sc, drv_usectohz(100000));
mutex_exit(&sc->sfl_lock);
}
static void
add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
{
mutex_enter(&sc->sfl_lock);
FL_LOCK(fl);
if ((fl->flags & FL_DOOMED) == 0) {
if (TAILQ_EMPTY(&sc->sfl) != 0) {
sc->sfl_timer = timeout(refill_sfl, sc,
drv_usectohz(100000));
}
fl->flags |= FL_STARVING;
TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
}
FL_UNLOCK(fl);
mutex_exit(&sc->sfl_lock);
}
static void
free_fl_bufs(struct sge_fl *fl)
{
struct fl_sdesc *sd;
unsigned int i;
FL_LOCK_ASSERT_OWNED(fl);
for (i = 0; i < fl->cap; i++) {
sd = &fl->sdesc[i];
if (sd->rxb != NULL) {
rxbuf_free(sd->rxb);
sd->rxb = NULL;
}
}
}
/*
* Note that fl->cidx and fl->offset are left unchanged in case of failure.
*/
static mblk_t *
get_fl_payload(struct adapter *sc, struct sge_fl *fl,
uint32_t len_newbuf, int *fl_bufs_used)
{
struct mblk_pair frame = {0};
struct rxbuf *rxb;
mblk_t *m = NULL;
uint_t nbuf = 0, len, copy, n;
uint32_t cidx, offset, rcidx, roffset;
/*
* The SGE won't pack a new frame into the current buffer if the entire
* payload doesn't fit in the remaining space. Move on to the next buf
* in that case.
*/
rcidx = fl->cidx;
roffset = fl->offset;
if (fl->offset > 0 && len_newbuf & F_RSPD_NEWBUF) {
fl->offset = 0;
if (++fl->cidx == fl->cap)
fl->cidx = 0;
nbuf++;
}
cidx = fl->cidx;
offset = fl->offset;
len = G_RSPD_LEN(len_newbuf); /* pktshift + payload length */
copy = (len <= fl->copy_threshold);
if (copy != 0) {
frame.head = m = allocb(len, BPRI_HI);
if (m == NULL) {
fl->allocb_fail++;
cmn_err(CE_WARN,"%s: mbuf allocation failure "
"count = %llu", __func__,
(unsigned long long)fl->allocb_fail);
fl->cidx = rcidx;
fl->offset = roffset;
return (NULL);
}
}
while (len) {
rxb = fl->sdesc[cidx].rxb;
n = min(len, rxb->buf_size - offset);
(void) ddi_dma_sync(rxb->dhdl, offset, n,
DDI_DMA_SYNC_FORKERNEL);
if (copy != 0)
bcopy(rxb->va + offset, m->b_wptr, n);
else {
m = desballoc((unsigned char *)rxb->va + offset, n,
BPRI_HI, &rxb->freefunc);
if (m == NULL) {
fl->allocb_fail++;
cmn_err(CE_WARN,
"%s: mbuf allocation failure "
"count = %llu", __func__,
(unsigned long long)fl->allocb_fail);
if (frame.head)
freemsgchain(frame.head);
fl->cidx = rcidx;
fl->offset = roffset;
return (NULL);
}
atomic_inc_uint(&rxb->ref_cnt);
if (frame.head != NULL)
frame.tail->b_cont = m;
else
frame.head = m;
frame.tail = m;
}
m->b_wptr += n;
len -= n;
offset += roundup(n, sc->sge.fl_align);
ASSERT(offset <= rxb->buf_size);
if (offset == rxb->buf_size) {
offset = 0;
if (++cidx == fl->cap)
cidx = 0;
nbuf++;
}
}
fl->cidx = cidx;
fl->offset = offset;
(*fl_bufs_used) += nbuf;
ASSERT(frame.head != NULL);
return (frame.head);
}
/*
* We'll do immediate data tx for non-LSO, but only when not coalescing. We're
* willing to use upto 2 hardware descriptors which means a maximum of 96 bytes
* of immediate data.
*/
#define IMM_LEN ( \
2 * EQ_ESIZE \
- sizeof (struct fw_eth_tx_pkt_wr) \
- sizeof (struct cpl_tx_pkt_core))
/*
* Returns non-zero on failure, no need to cleanup anything in that case.
*
* Note 1: We always try to pull up the mblk if required and return E2BIG only
* if this fails.
*
* Note 2: We'll also pullup incoming mblk if HW_LSO is set and the first mblk
* does not have the TCP header in it.
*/
static int
get_frame_txinfo(struct sge_txq *txq, mblk_t **fp, struct txinfo *txinfo,
int sgl_only)
{
uint32_t flags = 0, len, n;
mblk_t *m = *fp;
int rc;
TXQ_LOCK_ASSERT_OWNED(txq); /* will manipulate txb and dma_hdls */
mac_hcksum_get(m, NULL, NULL, NULL, NULL, &flags);
txinfo->flags = flags;
mac_lso_get(m, &txinfo->mss, &flags);
txinfo->flags |= flags;
if (flags & HW_LSO)
sgl_only = 1; /* Do not allow immediate data with LSO */
start: txinfo->nsegs = 0;
txinfo->hdls_used = 0;
txinfo->txb_used = 0;
txinfo->len = 0;
/* total length and a rough estimate of # of segments */
n = 0;
for (; m; m = m->b_cont) {
len = MBLKL(m);
n += (len / PAGE_SIZE) + 1;
txinfo->len += len;
}
m = *fp;
if (n >= TX_SGL_SEGS || (flags & HW_LSO && MBLKL(m) < 50)) {
txq->pullup_early++;
m = msgpullup(*fp, -1);
if (m == NULL) {
txq->pullup_failed++;
return (E2BIG); /* (*fp) left as it was */
}
freemsg(*fp);
*fp = m;
mac_hcksum_set(m, NULL, NULL, NULL, NULL, txinfo->flags);
}
if (txinfo->len <= IMM_LEN && !sgl_only)
return (0); /* nsegs = 0 tells caller to use imm. tx */
if (txinfo->len <= txq->copy_threshold &&
copy_into_txb(txq, m, txinfo->len, txinfo) == 0)
goto done;
for (; m; m = m->b_cont) {
len = MBLKL(m);
/* Use tx copy buffer if this mblk is small enough */
if (len <= txq->copy_threshold &&
copy_into_txb(txq, m, len, txinfo) == 0)
continue;
/* Add DMA bindings for this mblk to the SGL */
rc = add_mblk(txq, txinfo, m, len);
if (rc == E2BIG ||
(txinfo->nsegs == TX_SGL_SEGS && m->b_cont)) {
txq->pullup_late++;
m = msgpullup(*fp, -1);
if (m != NULL) {
free_txinfo_resources(txq, txinfo);
freemsg(*fp);
*fp = m;
mac_hcksum_set(m, NULL, NULL, NULL, NULL,
txinfo->flags);
goto start;
}
txq->pullup_failed++;
rc = E2BIG;
}
if (rc != 0) {
free_txinfo_resources(txq, txinfo);
return (rc);
}
}
ASSERT(txinfo->nsegs > 0 && txinfo->nsegs <= TX_SGL_SEGS);
done:
/*
* Store the # of flits required to hold this frame's SGL in nflits. An
* SGL has a (ULPTX header + len0, addr0) tuple optionally followed by
* multiple (len0 + len1, addr0, addr1) tuples. If addr1 is not used
* then len1 must be set to 0.
*/
n = txinfo->nsegs - 1;
txinfo->nflits = (3 * n) / 2 + (n & 1) + 2;
if (n & 1)
txinfo->sgl.sge[n / 2].len[1] = cpu_to_be32(0);
txinfo->sgl.cmd_nsge = cpu_to_be32(V_ULPTX_CMD((u32)ULP_TX_SC_DSGL) |
V_ULPTX_NSGE(txinfo->nsegs));
return (0);
}
static inline int
fits_in_txb(struct sge_txq *txq, int len, int *waste)
{
if (txq->txb_avail < len)
return (0);
if (txq->txb_next + len <= txq->txb_size) {
*waste = 0;
return (1);
}
*waste = txq->txb_size - txq->txb_next;
return (txq->txb_avail - *waste < len ? 0 : 1);
}
#define TXB_CHUNK 64
/*
* Copies the specified # of bytes into txq's tx copy buffer and updates txinfo
* and txq to indicate resources used. Caller has to make sure that those many
* bytes are available in the mblk chain (b_cont linked).
*/
static inline int
copy_into_txb(struct sge_txq *txq, mblk_t *m, int len, struct txinfo *txinfo)
{
int waste, n;
TXQ_LOCK_ASSERT_OWNED(txq); /* will manipulate txb */
if (!fits_in_txb(txq, len, &waste)) {
txq->txb_full++;
return (ENOMEM);
}
if (waste != 0) {
ASSERT((waste & (TXB_CHUNK - 1)) == 0);
txinfo->txb_used += waste;
txq->txb_avail -= waste;
txq->txb_next = 0;
}
for (n = 0; n < len; m = m->b_cont) {
bcopy(m->b_rptr, txq->txb_va + txq->txb_next + n, MBLKL(m));
n += MBLKL(m);
}
add_seg(txinfo, txq->txb_ba + txq->txb_next, len);
n = roundup(len, TXB_CHUNK);
txinfo->txb_used += n;
txq->txb_avail -= n;
txq->txb_next += n;
ASSERT(txq->txb_next <= txq->txb_size);
if (txq->txb_next == txq->txb_size)
txq->txb_next = 0;
return (0);
}
static inline void
add_seg(struct txinfo *txinfo, uint64_t ba, uint32_t len)
{
ASSERT(txinfo->nsegs < TX_SGL_SEGS); /* must have room */
if (txinfo->nsegs != 0) {
int idx = txinfo->nsegs - 1;
txinfo->sgl.sge[idx / 2].len[idx & 1] = cpu_to_be32(len);
txinfo->sgl.sge[idx / 2].addr[idx & 1] = cpu_to_be64(ba);
} else {
txinfo->sgl.len0 = cpu_to_be32(len);
txinfo->sgl.