| /* |
| * Copyright 2010 Sun Microsystems, Inc. All rights reserved. |
| * Use is subject to license terms. |
| */ |
| |
| /* |
| * Copyright (c) 2004 Video54 Technologies, Inc. |
| * Copyright (c) 2004-2008 Atheros Communications, Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| */ |
| #include <sys/time.h> |
| #include <sys/types.h> |
| #include <sys/ddi.h> |
| #include <sys/net80211_ht.h> |
| |
| #include "arn_core.h" |
| #include "arn_hw.h" |
| #include "arn_reg.h" |
| |
| static struct ath_rate_table ar5416_11na_ratetable = { |
| 42, |
| {0}, |
| { |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */ |
| 5400, 0x0b, 0x00, 12, |
| 0, 2, 1, 0, 0, 0, 0, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */ |
| 7800, 0x0f, 0x00, 18, |
| 0, 3, 1, 1, 1, 1, 1, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */ |
| 10000, 0x0a, 0x00, 24, |
| 2, 4, 2, 2, 2, 2, 2, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */ |
| 13900, 0x0e, 0x00, 36, |
| 2, 6, 2, 3, 3, 3, 3, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */ |
| 17300, 0x09, 0x00, 48, |
| 4, 10, 3, 4, 4, 4, 4, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */ |
| 23000, 0x0d, 0x00, 72, |
| 4, 14, 3, 5, 5, 5, 5, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */ |
| 27400, 0x08, 0x00, 96, |
| 4, 20, 3, 6, 6, 6, 6, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */ |
| 29300, 0x0c, 0x00, 108, |
| 4, 23, 3, 7, 7, 7, 7, 0 }, |
| { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 6500, /* 6.5 Mb */ |
| 6400, 0x80, 0x00, 0, |
| 0, 2, 3, 8, 24, 8, 24, 3216 }, |
| { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 13000, /* 13 Mb */ |
| 12700, 0x81, 0x00, 1, |
| 2, 4, 3, 9, 25, 9, 25, 6434 }, |
| { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 19500, /* 19.5 Mb */ |
| 18800, 0x82, 0x00, 2, |
| 2, 6, 3, 10, 26, 10, 26, 9650 }, |
| { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 26000, /* 26 Mb */ |
| 25000, 0x83, 0x00, 3, |
| 4, 10, 3, 11, 27, 11, 27, 12868 }, |
| { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 39000, /* 39 Mb */ |
| 36700, 0x84, 0x00, 4, |
| 4, 14, 3, 12, 28, 12, 28, 19304 }, |
| { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 52000, /* 52 Mb */ |
| 48100, 0x85, 0x00, 5, |
| 4, 20, 3, 13, 29, 13, 29, 25740 }, |
| { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 58500, /* 58.5 Mb */ |
| 53500, 0x86, 0x00, 6, |
| 4, 23, 3, 14, 30, 14, 30, 28956 }, |
| { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 65000, /* 65 Mb */ |
| 59000, 0x87, 0x00, 7, |
| 4, 25, 3, 15, 31, 15, 32, 32180 }, |
| { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 13000, /* 13 Mb */ |
| 12700, 0x88, 0x00, |
| 8, 0, 2, 3, 16, 33, 16, 33, 6430 }, |
| { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 26000, /* 26 Mb */ |
| 24800, 0x89, 0x00, 9, |
| 2, 4, 3, 17, 34, 17, 34, 12860 }, |
| { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 39000, /* 39 Mb */ |
| 36600, 0x8a, 0x00, 10, |
| 2, 6, 3, 18, 35, 18, 35, 19300 }, |
| { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 52000, /* 52 Mb */ |
| 48100, 0x8b, 0x00, 11, |
| 4, 10, 3, 19, 36, 19, 36, 25736 }, |
| { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 78000, /* 78 Mb */ |
| 69500, 0x8c, 0x00, 12, |
| 4, 14, 3, 20, 37, 20, 37, 38600 }, |
| { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 104000, /* 104 Mb */ |
| 89500, 0x8d, 0x00, 13, |
| 4, 20, 3, 21, 38, 21, 38, 51472 }, |
| { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 117000, /* 117 Mb */ |
| 98900, 0x8e, 0x00, 14, |
| 4, 23, 3, 22, 39, 22, 39, 57890 }, |
| { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 130000, /* 130 Mb */ |
| 108300, 0x8f, 0x00, 15, |
| 4, 25, 3, 23, 40, 23, 41, 64320 }, |
| { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 13500, /* 13.5 Mb */ |
| 13200, 0x80, 0x00, 0, |
| 0, 2, 3, 8, 24, 24, 24, 6684 }, |
| { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 27500, /* 27.0 Mb */ |
| 25900, 0x81, 0x00, 1, |
| 2, 4, 3, 9, 25, 25, 25, 13368 }, |
| { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 40500, /* 40.5 Mb */ |
| 38600, 0x82, 0x00, 2, |
| 2, 6, 3, 10, 26, 26, 26, 20052 }, |
| { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 54000, /* 54 Mb */ |
| 49800, 0x83, 0x00, 3, |
| 4, 10, 3, 11, 27, 27, 27, 26738 }, |
| { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 81500, /* 81 Mb */ |
| 72200, 0x84, 0x00, 4, |
| 4, 14, 3, 12, 28, 28, 28, 40104 }, |
| { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 108000, /* 108 Mb */ |
| 92900, 0x85, 0x00, 5, |
| 4, 20, 3, 13, 29, 29, 29, 53476 }, |
| { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 121500, /* 121.5Mb */ |
| 102700, 0x86, 0x00, 6, |
| 4, 23, 3, 14, 30, 30, 30, 60156 }, |
| { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 135000, /* 135 Mb */ |
| 112000, 0x87, 0x00, 7, |
| 4, 25, 3, 15, 31, 32, 32, 66840 }, |
| { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS_HGI, |
| 150000, /* 150Mb */ |
| 122000, 0x87, 0x00, 7, |
| 4, 25, 3, 15, 31, 32, 32, 74200 }, |
| { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 27000, /* 27 Mb */ |
| 25800, 0x88, 0x00, 8, |
| 0, 2, 3, 16, 33, 33, 33, 13360 }, |
| { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 54000, /* 54 Mb */ |
| 49800, 0x89, 0x00, 9, |
| 2, 4, 3, 17, 34, 34, 34, 26720 }, |
| { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 81000, /* 81 Mb */ |
| 71900, 0x8a, 0x00, 10, |
| 2, 6, 3, 18, 35, 35, 35, 40080 }, |
| { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 108000, /* 108 Mb */ |
| 92500, 0x8b, 0x00, 11, |
| 4, 10, 3, 19, 36, 36, 36, 53440 }, |
| { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 162000, /* 162 Mb */ |
| 130300, 0x8c, 0x00, 12, |
| 4, 14, 3, 20, 37, 37, 37, 80160 }, |
| { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 216000, /* 216 Mb */ |
| 162800, 0x8d, 0x00, 13, |
| 4, 20, 3, 21, 38, 38, 38, 106880 }, |
| { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 243000, /* 243 Mb */ |
| 178200, 0x8e, 0x00, 14, |
| 4, 23, 3, 22, 39, 39, 39, 120240 }, |
| { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 270000, /* 270 Mb */ |
| 192100, 0x8f, 0x00, 15, |
| 4, 25, 3, 23, 40, 41, 41, 133600 }, |
| { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS_HGI, |
| 300000, /* 300 Mb */ |
| 207000, 0x8f, 0x00, 15, |
| 4, 25, 3, 23, 40, 41, 41, 148400 }, |
| }, |
| 50, /* probe interval */ |
| 50, /* rssi reduce interval */ |
| WLAN_RC_HT_FLAG, /* Phy rates allowed initially */ |
| }; |
| |
| /* |
| * 4ms frame limit not used for NG mode. The values filled |
| * for HT are the 64K max aggregate limit |
| */ |
| |
| static struct ath_rate_table ar5416_11ng_ratetable = { |
| 46, |
| {0}, |
| { |
| { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */ |
| 900, 0x1b, 0x00, 2, |
| 0, 0, 1, 0, 0, 0, 0, 0 }, |
| { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */ |
| 1900, 0x1a, 0x04, 4, |
| 1, 1, 1, 1, 1, 1, 1, 0 }, |
| { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */ |
| 4900, 0x19, 0x04, 11, |
| 2, 2, 2, 2, 2, 2, 2, 0 }, |
| { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */ |
| 8100, 0x18, 0x04, 22, |
| 3, 3, 2, 3, 3, 3, 3, 0 }, |
| { INVALID, INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */ |
| 5400, 0x0b, 0x00, 12, |
| 4, 2, 1, 4, 4, 4, 4, 0 }, |
| { INVALID, INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */ |
| 7800, 0x0f, 0x00, 18, |
| 4, 3, 1, 5, 5, 5, 5, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */ |
| 10100, 0x0a, 0x00, 24, |
| 6, 4, 1, 6, 6, 6, 6, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */ |
| 14100, 0x0e, 0x00, 36, |
| 6, 6, 2, 7, 7, 7, 7, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */ |
| 17700, 0x09, 0x00, 48, |
| 8, 10, 3, 8, 8, 8, 8, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */ |
| 23700, 0x0d, 0x00, 72, |
| 8, 14, 3, 9, 9, 9, 9, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */ |
| 27400, 0x08, 0x00, 96, |
| 8, 20, 3, 10, 10, 10, 10, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */ |
| 30900, 0x0c, 0x00, 108, |
| 8, 23, 3, 11, 11, 11, 11, 0 }, |
| { INVALID, INVALID, WLAN_RC_PHY_HT_20_SS, 6500, /* 6.5 Mb */ |
| 6400, 0x80, 0x00, 0, |
| 4, 2, 3, 12, 28, 12, 28, 3216 }, |
| { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 13000, /* 13 Mb */ |
| 12700, 0x81, 0x00, 1, |
| 6, 4, 3, 13, 29, 13, 29, 6434 }, |
| { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 19500, /* 19.5 Mb */ |
| 18800, 0x82, 0x00, 2, |
| 6, 6, 3, 14, 30, 14, 30, 9650 }, |
| { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 26000, /* 26 Mb */ |
| 25000, 0x83, 0x00, 3, |
| 8, 10, 3, 15, 31, 15, 31, 12868 }, |
| { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 39000, /* 39 Mb */ |
| 36700, 0x84, 0x00, 4, |
| 8, 14, 3, 16, 32, 16, 32, 19304 }, |
| { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 52000, /* 52 Mb */ |
| 48100, 0x85, 0x00, 5, |
| 8, 20, 3, 17, 33, 17, 33, 25740 }, |
| { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 58500, /* 58.5 Mb */ |
| 53500, 0x86, 0x00, 6, |
| 8, 23, 3, 18, 34, 18, 34, 28956 }, |
| { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 65000, /* 65 Mb */ |
| 59000, 0x87, 0x00, 7, |
| 8, 25, 3, 19, 35, 19, 36, 32180 }, |
| { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 13000, /* 13 Mb */ |
| 12700, 0x88, 0x00, 8, |
| 4, 2, 3, 20, 37, 20, 37, 6430 }, |
| { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 26000, /* 26 Mb */ |
| 24800, 0x89, 0x00, 9, |
| 6, 4, 3, 21, 38, 21, 38, 12860 }, |
| { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 39000, /* 39 Mb */ |
| 36600, 0x8a, 0x00, 10, |
| 6, 6, 3, 22, 39, 22, 39, 19300 }, |
| { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 52000, /* 52 Mb */ |
| 48100, 0x8b, 0x00, 11, |
| 8, 10, 3, 23, 40, 23, 40, 25736 }, |
| { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 78000, /* 78 Mb */ |
| 69500, 0x8c, 0x00, 12, |
| 8, 14, 3, 24, 41, 24, 41, 38600 }, |
| { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 104000, /* 104 Mb */ |
| 89500, 0x8d, 0x00, 13, |
| 8, 20, 3, 25, 42, 25, 42, 51472 }, |
| { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 117000, /* 117 Mb */ |
| 98900, 0x8e, 0x00, 14, |
| 8, 23, 3, 26, 43, 26, 44, 57890 }, |
| { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 130000, /* 130 Mb */ |
| 108300, 0x8f, 0x00, 15, |
| 8, 25, 3, 27, 44, 27, 45, 64320 }, |
| { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 13500, /* 13.5 Mb */ |
| 13200, 0x80, 0x00, 0, |
| 8, 2, 3, 12, 28, 28, 28, 6684 }, |
| { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 27500, /* 27.0 Mb */ |
| 25900, 0x81, 0x00, 1, |
| 8, 4, 3, 13, 29, 29, 29, 13368 }, |
| { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 40500, /* 40.5 Mb */ |
| 38600, 0x82, 0x00, 2, |
| 8, 6, 3, 14, 30, 30, 30, 20052 }, |
| { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 54000, /* 54 Mb */ |
| 49800, 0x83, 0x00, 3, |
| 8, 10, 3, 15, 31, 31, 31, 26738 }, |
| { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 81500, /* 81 Mb */ |
| 72200, 0x84, 0x00, 4, |
| 8, 14, 3, 16, 32, 32, 32, 40104 }, |
| { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 108000, /* 108 Mb */ |
| 92900, 0x85, 0x00, 5, |
| 8, 20, 3, 17, 33, 33, 33, 53476 }, |
| { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, |
| 121500, /* 121.5 Mb */ |
| 102700, 0x86, 0x00, 6, |
| 8, 23, 3, 18, 34, 34, 34, 60156 }, |
| { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 135000, /* 135 Mb */ |
| 112000, 0x87, 0x00, 7, |
| 8, 23, 3, 19, 35, 36, 36, 66840 }, |
| { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS_HGI, |
| 150000, /* 150 Mb */ |
| 122000, 0x87, 0x00, 7, |
| 8, 25, 3, 19, 35, 36, 36, 74200 }, |
| { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 27000, /* 27 Mb */ |
| 25800, 0x88, 0x00, 8, |
| 8, 2, 3, 20, 37, 37, 37, 13360 }, |
| { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 54000, /* 54 Mb */ |
| 49800, 0x89, 0x00, 9, |
| 8, 4, 3, 21, 38, 38, 38, 26720 }, |
| { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 81000, /* 81 Mb */ |
| 71900, 0x8a, 0x00, 10, |
| 8, 6, 3, 22, 39, 39, 39, 40080 }, |
| { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 108000, /* 108 Mb */ |
| 92500, 0x8b, 0x00, 11, |
| 8, 10, 3, 23, 40, 40, 40, 53440 }, |
| { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 162000, /* 162 Mb */ |
| 130300, 0x8c, 0x00, 12, |
| 8, 14, 3, 24, 41, 41, 41, 80160 }, |
| { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 216000, /* 216 Mb */ |
| 162800, 0x8d, 0x00, 13, |
| 8, 20, 3, 25, 42, 42, 42, 106880 }, |
| { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 243000, /* 243 Mb */ |
| 178200, 0x8e, 0x00, 14, |
| 8, 23, 3, 26, 43, 43, 43, 120240 }, |
| { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 270000, /* 270 Mb */ |
| 192100, 0x8f, 0x00, 15, |
| 8, 23, 3, 27, 44, 45, 45, 133600 }, |
| { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS_HGI, |
| 300000, /* 300 Mb */ |
| 207000, 0x8f, 0x00, 15, |
| 8, 25, 3, 27, 44, 45, 45, 148400 }, |
| }, |
| 50, /* probe interval */ |
| 50, /* rssi reduce interval */ |
| WLAN_RC_HT_FLAG, /* Phy rates allowed initially */ |
| }; |
| |
| static struct ath_rate_table ar5416_11a_ratetable = { |
| 8, |
| {0}, |
| { |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */ |
| 5400, 0x0b, 0x00, (0x80|12), |
| 0, 2, 1, 0, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */ |
| 7800, 0x0f, 0x00, 18, |
| 0, 3, 1, 1, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */ |
| 10000, 0x0a, 0x00, (0x80|24), |
| 2, 4, 2, 2, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */ |
| 13900, 0x0e, 0x00, 36, |
| 2, 6, 2, 3, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */ |
| 17300, 0x09, 0x00, (0x80|48), |
| 4, 10, 3, 4, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */ |
| 23000, 0x0d, 0x00, 72, |
| 4, 14, 3, 5, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */ |
| 27400, 0x08, 0x00, 96, |
| 4, 19, 3, 6, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */ |
| 29300, 0x0c, 0x00, 108, |
| 4, 23, 3, 7, 0 }, |
| }, |
| 50, /* probe interval */ |
| 50, /* rssi reduce interval */ |
| 0, /* Phy rates allowed initially */ |
| }; |
| |
| static struct ath_rate_table ar5416_11g_ratetable = { |
| 12, |
| {0}, |
| { |
| { VALID, VALID, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */ |
| 900, 0x1b, 0x00, 2, |
| 0, 0, 1, 0, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */ |
| 1900, 0x1a, 0x04, 4, |
| 1, 1, 1, 1, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */ |
| 4900, 0x19, 0x04, 11, |
| 2, 2, 2, 2, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */ |
| 8100, 0x18, 0x04, 22, |
| 3, 3, 2, 3, 0 }, |
| { INVALID, INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */ |
| 5400, 0x0b, 0x00, 12, |
| 4, 2, 1, 4, 0 }, |
| { INVALID, INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */ |
| 7800, 0x0f, 0x00, 18, |
| 4, 3, 1, 5, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */ |
| 10000, 0x0a, 0x00, 24, |
| 6, 4, 1, 6, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */ |
| 13900, 0x0e, 0x00, 36, |
| 6, 6, 2, 7, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */ |
| 17300, 0x09, 0x00, 48, |
| 8, 10, 3, 8, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */ |
| 23000, 0x0d, 0x00, 72, |
| 8, 14, 3, 9, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */ |
| 27400, 0x08, 0x00, 96, |
| 8, 19, 3, 10, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */ |
| 29300, 0x0c, 0x00, 108, |
| 8, 23, 3, 11, 0 }, |
| }, |
| 50, /* probe interval */ |
| 50, /* rssi reduce interval */ |
| 0, /* Phy rates allowed initially */ |
| }; |
| |
| static struct ath_rate_table ar5416_11b_ratetable = { |
| 4, |
| {0}, |
| { |
| { VALID, VALID, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */ |
| 900, 0x1b, 0x00, (0x80|2), |
| 0, 0, 1, 0, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */ |
| 1800, 0x1a, 0x04, (0x80|4), |
| 1, 1, 1, 1, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */ |
| 4300, 0x19, 0x04, (0x80|11), |
| 1, 2, 2, 2, 0 }, |
| { VALID, VALID, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */ |
| 7100, 0x18, 0x04, (0x80|22), |
| 1, 4, 100, 3, 0 }, |
| }, |
| 100, /* probe interval */ |
| 100, /* rssi reduce interval */ |
| 0, /* Phy rates allowed initially */ |
| }; |
| |
| static inline int8_t |
| median(int8_t a, int8_t b, int8_t c) |
| { |
| if (a >= b) { |
| if (b >= c) |
| return (b); |
| else if (a > c) |
| return (c); |
| else |
| return (a); |
| } else { |
| if (a >= c) |
| return (a); |
| else if (b >= c) |
| return (c); |
| else |
| return (b); |
| } |
| } |
| |
| static void |
| arn_rc_sort_validrates(struct ath_rate_table *rate_table, |
| struct ath_rate_priv *ath_rc_priv) |
| { |
| uint8_t i, j, idx, idx_next; |
| |
| for (i = ath_rc_priv->max_valid_rate - 1; i > 0; i--) { |
| for (j = 0; j <= i-1; j++) { |
| idx = ath_rc_priv->valid_rate_index[j]; |
| idx_next = ath_rc_priv->valid_rate_index[j+1]; |
| |
| if (rate_table->info[idx].ratekbps > |
| rate_table->info[idx_next].ratekbps) { |
| ath_rc_priv->valid_rate_index[j] = idx_next; |
| ath_rc_priv->valid_rate_index[j+1] = idx; |
| } |
| } |
| } |
| } |
| |
| static void |
| arn_rc_init_valid_txmask(struct ath_rate_priv *ath_rc_priv) |
| { |
| uint8_t i; |
| |
| for (i = 0; i < ath_rc_priv->rate_table_size; i++) |
| ath_rc_priv->valid_rate_index[i] = 0; |
| } |
| |
| static inline void |
| arn_rc_set_valid_txmask(struct ath_rate_priv *ath_rc_priv, |
| uint8_t index, int valid_tx_rate) |
| { |
| ASSERT(index <= ath_rc_priv->rate_table_size); |
| ath_rc_priv->valid_rate_index[index] = valid_tx_rate ? 1 : 0; |
| } |
| |
| static inline int |
| /* LINTED E_STATIC_UNUSED */ |
| arn_rc_isvalid_txmask(struct ath_rate_priv *ath_rc_priv, uint8_t index) |
| { |
| ASSERT(index <= ath_rc_priv->rate_table_size); |
| return (ath_rc_priv->valid_rate_index[index]); |
| } |
| |
| /* ARGSUSED */ |
| static inline int |
| arn_rc_get_nextvalid_txrate(struct ath_rate_table *rate_table, |
| struct ath_rate_priv *ath_rc_priv, |
| uint8_t cur_valid_txrate, |
| uint8_t *next_idx) |
| { |
| uint8_t i; |
| |
| for (i = 0; i < ath_rc_priv->max_valid_rate - 1; i++) { |
| if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) { |
| *next_idx = ath_rc_priv->valid_rate_index[i+1]; |
| return (1); |
| } |
| } |
| |
| /* No more valid rates */ |
| *next_idx = 0; |
| |
| return (0); |
| } |
| |
| /* Return true only for single stream */ |
| static int |
| arn_rc_valid_phyrate(uint32_t phy, uint32_t capflag, int ignore_cw) |
| { |
| if (WLAN_RC_PHY_HT(phy) && !(capflag & WLAN_RC_HT_FLAG)) |
| return (0); |
| if (WLAN_RC_PHY_DS(phy) && !(capflag & WLAN_RC_DS_FLAG)) |
| return (0); |
| if (WLAN_RC_PHY_SGI(phy) && !(capflag & WLAN_RC_SGI_FLAG)) |
| return (0); |
| if (!ignore_cw && WLAN_RC_PHY_HT(phy)) { |
| if (WLAN_RC_PHY_40(phy) && !(capflag & WLAN_RC_40_FLAG)) |
| return (0); |
| if (!WLAN_RC_PHY_40(phy) && (capflag & WLAN_RC_40_FLAG)) |
| return (0); |
| } |
| return (1); |
| } |
| |
| /* ARGSUSED */ |
| static inline int |
| arn_rc_get_nextlowervalid_txrate(struct ath_rate_table *rate_table, |
| struct ath_rate_priv *ath_rc_priv, |
| uint8_t cur_valid_txrate, uint8_t *next_idx) |
| { |
| int8_t i; |
| |
| for (i = 1; i < ath_rc_priv->max_valid_rate; i++) { |
| if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) { |
| *next_idx = ath_rc_priv->valid_rate_index[i-1]; |
| return (1); |
| } |
| } |
| |
| return (0); |
| } |
| |
| static uint8_t |
| arn_rc_init_validrates(struct ath_rate_priv *ath_rc_priv, |
| struct ath_rate_table *rate_table, uint32_t capflag) |
| { |
| uint8_t i, hi = 0; |
| uint32_t valid; |
| |
| for (i = 0; i < rate_table->rate_cnt; i++) { |
| valid = (ath_rc_priv->single_stream ? |
| rate_table->info[i].valid_single_stream : |
| rate_table->info[i].valid); |
| if (valid == 1) { |
| uint32_t phy = rate_table->info[i].phy; |
| uint8_t valid_rate_count = 0; |
| |
| if (!arn_rc_valid_phyrate(phy, capflag, 0)) |
| continue; |
| |
| valid_rate_count = ath_rc_priv->valid_phy_ratecnt[phy]; |
| |
| ath_rc_priv-> |
| valid_phy_rateidx[phy][valid_rate_count] = i; |
| ath_rc_priv->valid_phy_ratecnt[phy] += 1; |
| arn_rc_set_valid_txmask(ath_rc_priv, i, 1); |
| hi = A_MAX(hi, i); |
| } |
| } |
| |
| return (hi); |
| } |
| |
| static uint8_t |
| arn_rc_setvalid_rates(struct ath_rate_priv *ath_rc_priv, |
| struct ath_rate_table *rate_table, |
| struct ath_rateset *rateset, |
| uint32_t capflag) |
| { |
| uint8_t i, j, hi = 0; |
| |
| /* Use intersection of working rates and valid rates */ |
| for (i = 0; i < rateset->rs_nrates; i++) { |
| for (j = 0; j < rate_table->rate_cnt; j++) { |
| uint32_t phy = rate_table->info[j].phy; |
| uint32_t valid = (ath_rc_priv->single_stream ? |
| rate_table->info[j].valid_single_stream : |
| rate_table->info[j].valid); |
| uint8_t rate = rateset->rs_rates[i]; |
| uint8_t dot11rate = rate_table->info[j].dot11rate; |
| |
| /* |
| * We allow a rate only if its valid and the |
| * capflag matches one of the validity |
| * (VALID/VALID_20/VALID_40) flags |
| */ |
| if (((rate & 0x7F) == (dot11rate & 0x7F)) && |
| ((valid & WLAN_RC_CAP_MODE(capflag)) == |
| WLAN_RC_CAP_MODE(capflag)) && |
| !WLAN_RC_PHY_HT(phy)) { |
| uint8_t valid_rate_count = 0; |
| |
| if (!arn_rc_valid_phyrate(phy, capflag, 0)) |
| continue; |
| |
| valid_rate_count = |
| ath_rc_priv->valid_phy_ratecnt[phy]; |
| |
| ath_rc_priv->valid_phy_rateidx[phy] |
| [valid_rate_count] = j; |
| ath_rc_priv->valid_phy_ratecnt[phy] += 1; |
| arn_rc_set_valid_txmask(ath_rc_priv, j, 1); |
| hi = A_MAX(hi, j); |
| } |
| } |
| } |
| |
| return (hi); |
| } |
| |
| static uint8_t |
| arn_rc_setvalid_htrates(struct ath_rate_priv *ath_rc_priv, |
| struct ath_rate_table *rate_table, |
| uint8_t *mcs_set, uint32_t capflag) |
| { |
| struct ath_rateset *rateset = (struct ath_rateset *)mcs_set; |
| |
| uint8_t i, j, hi = 0; |
| |
| /* Use intersection of working rates and valid rates */ |
| for (i = 0; i < rateset->rs_nrates; i++) { |
| for (j = 0; j < rate_table->rate_cnt; j++) { |
| uint32_t phy = rate_table->info[j].phy; |
| uint32_t valid = (ath_rc_priv->single_stream ? |
| rate_table->info[j].valid_single_stream : |
| rate_table->info[j].valid); |
| uint8_t rate = rateset->rs_rates[i]; |
| uint8_t dot11rate = rate_table->info[j].dot11rate; |
| |
| if (((rate & 0x7F) != (dot11rate & 0x7F)) || |
| !WLAN_RC_PHY_HT(phy) || |
| !WLAN_RC_PHY_HT_VALID(valid, capflag)) |
| continue; |
| |
| if (!arn_rc_valid_phyrate(phy, capflag, 0)) |
| continue; |
| |
| ath_rc_priv->valid_phy_rateidx[phy] |
| [ath_rc_priv->valid_phy_ratecnt[phy]] = j; |
| ath_rc_priv->valid_phy_ratecnt[phy] += 1; |
| arn_rc_set_valid_txmask(ath_rc_priv, j, 1); |
| hi = A_MAX(hi, j); |
| } |
| } |
| |
| return (hi); |
| } |
| |
| /* ARGSUSED */ |
| static uint8_t |
| arn_rc_ratefind_ht(struct arn_softc *sc, |
| struct ath_rate_priv *ath_rc_priv, |
| struct ath_rate_table *rate_table, |
| int probe_allowed, int *is_probing, |
| int is_retry) |
| { |
| uint32_t dt, best_thruput, this_thruput, now_msec; |
| uint8_t rate, next_rate, best_rate, maxindex, minindex; |
| int8_t rssi_last, rssi_reduce = 0, index = 0; |
| |
| *is_probing = 0; |
| |
| rssi_last = median(ath_rc_priv->rssi_last, |
| ath_rc_priv->rssi_last_prev, |
| ath_rc_priv->rssi_last_prev2); |
| |
| /* |
| * Age (reduce) last ack rssi based on how old it is. |
| * The bizarre numbers are so the delta is 160msec, |
| * meaning we divide by 16. |
| * 0msec <= dt <= 25msec: don't derate |
| * 25msec <= dt <= 185msec: derate linearly from 0 to 10dB |
| * 185msec <= dt: derate by 10dB |
| */ |
| |
| /* now_msec = jiffies_to_msecs(jiffies); */ |
| now_msec = drv_hztousec(ddi_get_lbolt())/1000; /* mescs ? */ |
| dt = now_msec - ath_rc_priv->rssi_time; |
| |
| if (dt >= 185) |
| rssi_reduce = 10; |
| else if (dt >= 25) |
| rssi_reduce = (uint8_t)((dt - 25) >> 4); |
| |
| /* Now reduce rssi_last by rssi_reduce */ |
| if (rssi_last < rssi_reduce) |
| rssi_last = 0; |
| else |
| rssi_last -= rssi_reduce; |
| |
| /* |
| * Now look up the rate in the rssi table and return it. |
| * If no rates match then we return 0 (lowest rate) |
| */ |
| |
| best_thruput = 0; |
| maxindex = ath_rc_priv->max_valid_rate-1; |
| |
| minindex = 0; |
| best_rate = minindex; |
| |
| /* |
| * Try the higher rate first. It will reduce memory moving time |
| * if we have very good channel characteristics. |
| */ |
| for (index = maxindex; index >= minindex; index--) { |
| uint8_t per_thres; |
| |
| rate = ath_rc_priv->valid_rate_index[index]; |
| if (rate > ath_rc_priv->rate_max_phy) |
| continue; |
| |
| /* |
| * For TCP the average collision rate is around 11%, |
| * so we ignore PERs less than this. This is to |
| * prevent the rate we are currently using (whose |
| * PER might be in the 10-15 range because of TCP |
| * collisions) looking worse than the next lower |
| * rate whose PER has decayed close to 0. If we |
| * used to next lower rate, its PER would grow to |
| * 10-15 and we would be worse off then staying |
| * at the current rate. |
| */ |
| per_thres = ath_rc_priv->state[rate].per; |
| if (per_thres < 12) |
| per_thres = 12; |
| |
| this_thruput = rate_table->info[rate].user_ratekbps * |
| (100 - per_thres); |
| |
| if (best_thruput <= this_thruput) { |
| best_thruput = this_thruput; |
| best_rate = rate; |
| } |
| } |
| |
| rate = best_rate; |
| |
| /* |
| * if we are retrying for more than half the number |
| * of max retries, use the min rate for the next retry |
| */ |
| if (is_retry) |
| rate = ath_rc_priv->valid_rate_index[minindex]; |
| |
| ath_rc_priv->rssi_last_lookup = rssi_last; |
| |
| /* |
| * Must check the actual rate (ratekbps) to account for |
| * non-monoticity of 11g's rate table |
| */ |
| |
| if (rate >= ath_rc_priv->rate_max_phy && probe_allowed) { |
| rate = ath_rc_priv->rate_max_phy; |
| |
| /* Probe the next allowed phy state */ |
| /* FIXME:XXXX Check to make sure ratMax is checked properly */ |
| if (arn_rc_get_nextvalid_txrate(rate_table, |
| ath_rc_priv, rate, &next_rate) && |
| (now_msec - ath_rc_priv->probe_time > |
| rate_table->probe_interval) && |
| (ath_rc_priv->hw_maxretry_pktcnt >= 1)) { |
| rate = next_rate; |
| ath_rc_priv->probe_rate = rate; |
| ath_rc_priv->probe_time = now_msec; |
| ath_rc_priv->hw_maxretry_pktcnt = 0; |
| *is_probing = 1; |
| } |
| } |
| |
| if (rate > (ath_rc_priv->rate_table_size - 1)) |
| rate = ath_rc_priv->rate_table_size - 1; |
| |
| ASSERT((rate_table->info[rate].valid && !ath_rc_priv->single_stream) || |
| (rate_table->info[rate].valid_single_stream && |
| ath_rc_priv->single_stream)); |
| |
| return (rate); |
| } |
| |
| static void |
| arn_rc_rate_set_series(struct ath_rate_table *rate_table, |
| struct ath9k_tx_rate *rate, |
| uint8_t tries, |
| uint8_t rix, |
| int rtsctsenable) |
| { |
| #if 0 |
| struct ieee80211_node *in; |
| ieee80211com_t *ic = (ieee80211com_t *)sc; |
| #endif |
| rate->count = tries; |
| rate->idx = rix; |
| |
| if (rtsctsenable) |
| rate->flags |= ATH9K_TX_RC_USE_RTS_CTS; |
| #if 0 |
| if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && |
| (in->in_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) { |
| rate->flags |= ATH9K_TX_RC_USE_SHORT_PREAMBLE; |
| } |
| #endif |
| if (WLAN_RC_PHY_40(rate_table->info[rix].phy)) |
| rate->flags |= ATH9K_TX_RC_40_MHZ_WIDTH; |
| if (WLAN_RC_PHY_SGI(rate_table->info[rix].phy)) |
| rate->flags |= ATH9K_TX_RC_SHORT_GI; |
| if (WLAN_RC_PHY_HT(rate_table->info[rix].phy)) |
| rate->flags |= ATH9K_TX_RC_MCS; |
| } |
| |
| /* ARGSUSED */ |
| static uint8_t |
| arn_rc_rate_getidx(struct arn_softc *sc, |
| struct ath_rate_priv *ath_rc_priv, |
| struct ath_rate_table *rate_table, |
| uint8_t rix, uint16_t stepdown, |
| uint16_t min_rate) |
| { |
| uint32_t j; |
| uint8_t nextindex; |
| |
| if (min_rate) { |
| for (j = RATE_TABLE_SIZE; j > 0; j--) { |
| if (arn_rc_get_nextlowervalid_txrate(rate_table, |
| ath_rc_priv, rix, &nextindex)) |
| rix = nextindex; |
| else |
| break; |
| } |
| } else { |
| for (j = stepdown; j > 0; j--) { |
| if (arn_rc_get_nextlowervalid_txrate(rate_table, |
| ath_rc_priv, rix, &nextindex)) |
| rix = nextindex; |
| else |
| break; |
| } |
| } |
| return (rix); |
| } |
| |
| static void |
| arn_rc_ratefind(struct arn_softc *sc, struct ath_rate_priv *ath_rc_priv, |
| struct ath_buf *bf, int num_tries, int num_rates, int *is_probe, |
| boolean_t is_retry) |
| { |
| uint8_t try_per_rate = 0, i = 0, rix, nrix; |
| struct ath_rate_table *rate_table; |
| struct ath9k_tx_rate *rates = bf->rates; |
| ieee80211com_t *ic = (ieee80211com_t *)sc; |
| |
| rate_table = sc->sc_currates; |
| rix = arn_rc_ratefind_ht(sc, ath_rc_priv, rate_table, 1, |
| is_probe, is_retry); |
| nrix = rix; |
| |
| if (*is_probe) { |
| /* |
| * set one try for probe rates. For the |
| * probes don't enable rts |
| */ |
| arn_rc_rate_set_series(rate_table, |
| &rates[i++], 1, nrix, 0); |
| |
| try_per_rate = (num_tries/num_rates); |
| /* |
| * Get the next tried/allowed rate. No RTS for the next series |
| * after the probe rate |
| */ |
| nrix = arn_rc_rate_getidx(sc, |
| ath_rc_priv, rate_table, nrix, 1, 0); |
| arn_rc_rate_set_series(rate_table, |
| &rates[i++], try_per_rate, nrix, 0); |
| } else { |
| try_per_rate = (num_tries/num_rates); |
| /* Set the choosen rate. No RTS for first series entry. */ |
| arn_rc_rate_set_series(rate_table, |
| &rates[i++], try_per_rate, nrix, 0); |
| } |
| |
| /* Fill in the other rates for multirate retry */ |
| for (; i < num_rates; i++) { |
| uint8_t try_num; |
| uint8_t min_rate; |
| |
| try_num = ((i + 1) == num_rates) ? |
| num_tries - (try_per_rate * i) : try_per_rate; |
| /* LINTED E_FALSE_LOGICAL_EXPR */ |
| min_rate = (((i + 1) == num_rates) && 0); |
| |
| nrix = arn_rc_rate_getidx(sc, ath_rc_priv, |
| rate_table, nrix, 1, min_rate); |
| /* All other rates in the series have RTS enabled */ |
| arn_rc_rate_set_series(rate_table, &rates[i], try_num, nrix, 1); |
| } |
| |
| /* |
| * NB:Change rate series to enable aggregation when operating |
| * at lower MCS rates. When first rate in series is MCS2 |
| * in HT40 @ 2.4GHz, series should look like: |
| * |
| * {MCS2, MCS1, MCS0, MCS0}. |
| * |
| * When first rate in series is MCS3 in HT20 @ 2.4GHz, series should |
| * look like: |
| * |
| * {MCS3, MCS2, MCS1, MCS1} |
| * |
| * So, set fourth rate in series to be same as third one for |
| * above conditions. |
| */ |
| |
| if (IEEE80211_IS_CHAN_HTG(ic->ic_curchan)) { |
| uint8_t dot11rate = rate_table->info[rix].dot11rate; |
| uint8_t phy = rate_table->info[rix].phy; |
| if (i == 4 && |
| ((dot11rate == 2 && phy == WLAN_RC_PHY_HT_40_SS) || |
| (dot11rate == 3 && phy == WLAN_RC_PHY_HT_20_SS))) { |
| rates[3].idx = rates[2].idx; |
| rates[3].flags = rates[2].flags; |
| } |
| } |
| } |
| |
| /* ARGSUSED */ |
| static boolean_t |
| arn_rc_update_per(struct arn_softc *sc, |
| struct ath_rate_table *rate_table, |
| struct ath_rate_priv *ath_rc_priv, |
| struct ath_tx_info_priv *tx_info_priv, |
| int tx_rate, int xretries, int retries, |
| uint32_t now_msec) |
| { |
| boolean_t state_change = B_FALSE; |
| int count; |
| uint8_t last_per; |
| static uint32_t nretry_to_per_lookup[10] = { |
| 100 * 0 / 1, |
| 100 * 1 / 4, |
| 100 * 1 / 2, |
| 100 * 3 / 4, |
| 100 * 4 / 5, |
| 100 * 5 / 6, |
| 100 * 6 / 7, |
| 100 * 7 / 8, |
| 100 * 8 / 9, |
| 100 * 9 / 10 |
| }; |
| |
| last_per = ath_rc_priv->state[tx_rate].per; |
| |
| if (xretries) { |
| if (xretries == 1) { |
| ath_rc_priv->state[tx_rate].per += 30; |
| if (ath_rc_priv->state[tx_rate].per > 100) |
| ath_rc_priv->state[tx_rate].per = 100; |
| } else { |
| /* xretries == 2 */ |
| count = ARRAY_SIZE(nretry_to_per_lookup); |
| if (retries >= count) |
| retries = count - 1; |
| |
| /* new_PER = 7/8*old_PER + 1/8*(currentPER) */ |
| ath_rc_priv->state[tx_rate].per = |
| (uint8_t)(last_per - (last_per >> 3) + (100 >> 3)); |
| } |
| |
| /* xretries == 1 or 2 */ |
| |
| if (ath_rc_priv->probe_rate == tx_rate) |
| ath_rc_priv->probe_rate = 0; |
| |
| } else { /* xretries == 0 */ |
| count = ARRAY_SIZE(nretry_to_per_lookup); |
| if (retries >= count) |
| retries = count - 1; |
| |
| if (tx_info_priv->n_bad_frames) { |
| /* |
| * new_PER = 7/8*old_PER + 1/8*(currentPER) |
| * Assuming that n_frames is not 0. The current PER |
| * from the retries is 100 * retries / (retries+1), |
| * since the first retries attempts failed, and the |
| * next one worked. For the one that worked, |
| * n_bad_frames subframes out of n_frames wored, |
| * so the PER for that part is |
| * 100 * n_bad_frames / n_frames, and it contributes |
| * 100 * n_bad_frames / (n_frames * (retries+1)) to |
| * the above PER. The expression below is a |
| * simplified version of the sum of these two terms. |
| */ |
| if (tx_info_priv->n_frames > 0) { |
| int n_frames, n_bad_frames; |
| uint8_t cur_per, new_per; |
| |
| n_bad_frames = retries * |
| tx_info_priv->n_frames + |
| tx_info_priv->n_bad_frames; |
| n_frames = |
| tx_info_priv->n_frames * (retries + 1); |
| cur_per = |
| (100 * n_bad_frames / n_frames) >> 3; |
| new_per = (uint8_t) |
| (last_per - (last_per >> 3) + cur_per); |
| ath_rc_priv->state[tx_rate].per = new_per; |
| } |
| } else { |
| ath_rc_priv->state[tx_rate].per = |
| (uint8_t)(last_per - (last_per >> 3) + |
| (nretry_to_per_lookup[retries] >> 3)); |
| } |
| |
| ath_rc_priv->rssi_last_prev2 = ath_rc_priv->rssi_last_prev; |
| ath_rc_priv->rssi_last_prev = ath_rc_priv->rssi_last; |
| ath_rc_priv->rssi_last = tx_info_priv->tx.ts_rssi; |
| ath_rc_priv->rssi_time = now_msec; |
| |
| /* |
| * If we got at most one retry then increase the max rate if |
| * this was a probe. Otherwise, ignore the probe. |
| */ |
| if (ath_rc_priv->probe_rate && |
| ath_rc_priv->probe_rate == tx_rate) { |
| if (retries > 0 || 2 * tx_info_priv->n_bad_frames > |
| tx_info_priv->n_frames) { |
| /* |
| * Since we probed with just a single attempt, |
| * any retries means the probe failed. Also, |
| * if the attempt worked, but more than half |
| * the subframes were bad then also consider |
| * the probe a failure. |
| */ |
| ath_rc_priv->probe_rate = 0; |
| } else { |
| uint8_t probe_rate = 0; |
| |
| ath_rc_priv->rate_max_phy = |
| ath_rc_priv->probe_rate; |
| probe_rate = ath_rc_priv->probe_rate; |
| |
| if (ath_rc_priv->state[probe_rate].per > 30) |
| ath_rc_priv->state[probe_rate].per = 20; |
| |
| ath_rc_priv->probe_rate = 0; |
| |
| /* |
| * Since this probe succeeded, we allow the next |
| * probe twice as soon. This allows the maxRate |
| * to move up faster if the probes are |
| * succesful. |
| */ |
| ath_rc_priv->probe_time = |
| now_msec - rate_table->probe_interval / 2; |
| } |
| } |
| |
| if (retries > 0) { |
| /* |
| * Don't update anything. We don't know if |
| * this was because of collisions or poor signal. |
| * |
| * Later: if rssi_ack is close to |
| * ath_rc_priv->state[txRate].rssi_thres and we see lots |
| * of retries, then we could increase |
| * ath_rc_priv->state[txRate].rssi_thres. |
| */ |
| ath_rc_priv->hw_maxretry_pktcnt = 0; |
| } else { |
| int32_t rssi_ackAvg; |
| int8_t rssi_thres; |
| int8_t rssi_ack_vmin; |
| |
| /* |
| * It worked with no retries. First ignore bogus (small) |
| * rssi_ack values. |
| */ |
| if (tx_rate == ath_rc_priv->rate_max_phy && |
| ath_rc_priv->hw_maxretry_pktcnt < 255) { |
| ath_rc_priv->hw_maxretry_pktcnt++; |
| } |
| |
| if (tx_info_priv->tx.ts_rssi < |
| rate_table->info[tx_rate].rssi_ack_validmin) |
| goto exit; |
| |
| /* Average the rssi */ |
| if (tx_rate != ath_rc_priv->rssi_sum_rate) { |
| ath_rc_priv->rssi_sum_rate = tx_rate; |
| ath_rc_priv->rssi_sum = |
| ath_rc_priv->rssi_sum_cnt = 0; |
| } |
| |
| ath_rc_priv->rssi_sum += tx_info_priv->tx.ts_rssi; |
| ath_rc_priv->rssi_sum_cnt++; |
| |
| if (ath_rc_priv->rssi_sum_cnt < 4) |
| goto exit; |
| |
| rssi_ackAvg = |
| (ath_rc_priv->rssi_sum + 2) / 4; |
| rssi_thres = |
| ath_rc_priv->state[tx_rate].rssi_thres; |
| rssi_ack_vmin = |
| rate_table->info[tx_rate].rssi_ack_validmin; |
| |
| ath_rc_priv->rssi_sum = |
| ath_rc_priv->rssi_sum_cnt = 0; |
| |
| /* Now reduce the current rssi threshold */ |
| if ((rssi_ackAvg < rssi_thres + 2) && |
| (rssi_thres > rssi_ack_vmin)) { |
| ath_rc_priv->state[tx_rate].rssi_thres--; |
| } |
| |
| state_change = B_TRUE; |
| } |
| } |
| exit: |
| return (state_change); |
| } |
| |
| /* |
| * Update PER, RSSI and whatever else that the code thinks |
| * it is doing. If you can make sense of all this, you really |
| * need to go out more. |
| */ |
| static void |
| arn_rc_update_ht(struct arn_softc *sc, |
| struct ath_rate_priv *ath_rc_priv, |
| struct ath_tx_info_priv *tx_info_priv, |
| int tx_rate, int xretries, int retries) |
| { |
| #define CHK_RSSI(rate) \ |
| ((ath_rc_priv->state[(rate)].rssi_thres + \ |
| rate_table->info[(rate)].rssi_ack_deltamin) > \ |
| ath_rc_priv->state[(rate)+1].rssi_thres) |
| |
| /* u32 now_msec = jiffies_to_msecs(jiffies); */ |
| uint32_t now_msec = drv_hztousec(ddi_get_lbolt())/1000; /* mescs ? */ |
| int rate; |
| uint8_t last_per; |
| boolean_t state_change = B_FALSE; |
| struct ath_rate_table *rate_table = sc->sc_currates; |
| int size = ath_rc_priv->rate_table_size; |
| |
| if ((tx_rate < 0) || (tx_rate > rate_table->rate_cnt)) |
| return; |
| |
| /* To compensate for some imbalance between ctrl and ext. channel */ |
| |
| if (WLAN_RC_PHY_40(rate_table->info[tx_rate].phy)) |
| tx_info_priv->tx.ts_rssi = |
| tx_info_priv->tx.ts_rssi < 3 ? 0 : |
| tx_info_priv->tx.ts_rssi - 3; |
| |
| last_per = ath_rc_priv->state[tx_rate].per; |
| |
| /* Update PER first */ |
| state_change = arn_rc_update_per(sc, rate_table, ath_rc_priv, |
| tx_info_priv, tx_rate, xretries, |
| retries, now_msec); |
| |
| /* |
| * If this rate looks bad (high PER) then stop using it for |
| * a while (except if we are probing). |
| */ |
| if (ath_rc_priv->state[tx_rate].per >= 55 && tx_rate > 0 && |
| rate_table->info[tx_rate].ratekbps <= |
| rate_table->info[ath_rc_priv->rate_max_phy].ratekbps) { |
| (void) arn_rc_get_nextlowervalid_txrate(rate_table, |
| ath_rc_priv, |
| (uint8_t)tx_rate, |
| &ath_rc_priv->rate_max_phy); |
| |
| /* Don't probe for a little while. */ |
| ath_rc_priv->probe_time = now_msec; |
| } |
| |
| if (state_change) { |
| /* |
| * Make sure the rates above this have higher rssi thresholds. |
| * (Note: Monotonicity is kept within the OFDM rates and |
| * within the CCK rates. However, no adjustment is |
| * made to keep the rssi thresholds monotonically |
| * increasing between the CCK and OFDM rates.) |
| */ |
| for (rate = tx_rate; rate < size - 1; rate++) { |
| if (rate_table->info[rate+1].phy != |
| rate_table->info[tx_rate].phy) |
| break; |
| |
| if (CHK_RSSI(rate)) { |
| ath_rc_priv->state[rate+1].rssi_thres = |
| ath_rc_priv->state[rate].rssi_thres + |
| rate_table->info[rate].rssi_ack_deltamin; |
| } |
| } |
| |
| /* Make sure the rates below this have lower rssi thresholds. */ |
| for (rate = tx_rate - 1; rate >= 0; rate--) { |
| if (rate_table->info[rate].phy != |
| rate_table->info[tx_rate].phy) |
| break; |
| |
| if (CHK_RSSI(rate)) { |
| if (ath_rc_priv->state[rate+1].rssi_thres < |
| rate_table->info[rate].rssi_ack_deltamin) |
| ath_rc_priv->state[rate].rssi_thres = 0; |
| else { |
| ath_rc_priv->state[rate].rssi_thres = |
| ath_rc_priv->state[rate+1]. |
| rssi_thres - |
| rate_table->info[rate]. |
| rssi_ack_deltamin; |
| } |
| |
| if (ath_rc_priv->state[rate].rssi_thres < |
| rate_table->info[rate].rssi_ack_validmin) { |
| ath_rc_priv->state[rate].rssi_thres = |
| rate_table->info[rate]. |
| rssi_ack_validmin; |
| } |
| } |
| } |
| } |
| |
| /* Make sure the rates below this have lower PER */ |
| /* Monotonicity is kept only for rates below the current rate. */ |
| if (ath_rc_priv->state[tx_rate].per < last_per) { |
| for (rate = tx_rate - 1; rate >= 0; rate--) { |
| if (rate_table->info[rate].phy != |
| rate_table->info[tx_rate].phy) |
| break; |
| |
| if (ath_rc_priv->state[rate].per > |
| ath_rc_priv->state[rate+1].per) { |
| ath_rc_priv->state[rate].per = |
| ath_rc_priv->state[rate+1].per; |
| } |
| } |
| } |
| |
| /* Maintain monotonicity for rates above the current rate */ |
| for (rate = tx_rate; rate < size - 1; rate++) { |
| if (ath_rc_priv->state[rate+1].per < |
| ath_rc_priv->state[rate].per) |
| ath_rc_priv->state[rate+1].per = |
| ath_rc_priv->state[rate].per; |
| } |
| |
| /* |
| * Every so often, we reduce the thresholds and |
| * PER (different for CCK and OFDM). |
| */ |
| if (now_msec - ath_rc_priv->rssi_down_time >= |
| rate_table->rssi_reduce_interval) { |
| |
| for (rate = 0; rate < size; rate++) { |
| if (ath_rc_priv->state[rate].rssi_thres > |
| rate_table->info[rate].rssi_ack_validmin) |
| ath_rc_priv->state[rate].rssi_thres -= 1; |
| } |
| ath_rc_priv->rssi_down_time = now_msec; |
| } |
| |
| /* |
| * Every so often, we reduce the thresholds |
| * and PER (different for CCK and OFDM). |
| */ |
| if (now_msec - ath_rc_priv->per_down_time >= |
| rate_table->rssi_reduce_interval) { |
| for (rate = 0; rate < size; rate++) { |
| ath_rc_priv->state[rate].per = |
| 7 * ath_rc_priv->state[rate].per / 8; |
| } |
| |
| ath_rc_priv->per_down_time = now_msec; |
| } |
| |
| #undef CHK_RSSI |
| } |
| |
| static int |
| ath_rc_get_rateindex(struct ath_rate_table *rate_table, |
| struct ath9k_tx_rate *rate) |
| { |
| int rix; |
| |
| if ((rate->flags & ATH9K_TX_RC_40_MHZ_WIDTH) && |
| (rate->flags & ATH9K_TX_RC_SHORT_GI)) |
| rix = rate_table->info[rate->idx].ht_index; |
| else if (rate->flags & ATH9K_TX_RC_SHORT_GI) |
| rix = rate_table->info[rate->idx].sgi_index; |
| else if (rate->flags & ATH9K_TX_RC_40_MHZ_WIDTH) |
| rix = rate_table->info[rate->idx].cw40index; |
| else |
| rix = rate_table->info[rate->idx].base_index; |
| |
| return (rix); |
| } |
| |
| static void |
| ath_rc_tx_status(struct arn_softc *sc, struct ath_rate_priv *ath_rc_priv, |
| struct ath_buf *bf, int final_ts_idx, int xretries, int long_retry) |
| { |
| struct ath_tx_info_priv *tx_info_priv = |
| (struct ath_tx_info_priv *)&bf->tx_info_priv; |
| struct ath9k_tx_rate *rates = bf->rates; |
| struct ath_rate_table *rate_table; |
| uint32_t i = 0, rix; |
| uint8_t flags; |
| |
| rate_table = sc->sc_currates; |
| |
| /* |
| * If the first rate is not the final index, there |
| * are intermediate rate failures to be processed. |
| */ |
| if (final_ts_idx != 0) { |
| /* Process intermediate rates that failed. */ |
| for (i = 0; i < final_ts_idx; i++) { |
| if (rates[i].count != 0 && (rates[i].idx >= 0)) { |
| flags = rates[i].flags; |
| |
| /* |
| * If HT40 and we have switched mode from |
| * 40 to 20 => don't update |
| */ |
| |
| if ((flags & ATH9K_TX_RC_40_MHZ_WIDTH) && |
| (ath_rc_priv->rc_phy_mode != |
| WLAN_RC_40_FLAG)) |
| return; |
| |
| rix = |
| ath_rc_get_rateindex(rate_table, &rates[i]); |
| arn_rc_update_ht(sc, ath_rc_priv, |
| tx_info_priv, rix, |
| xretries ? 1 : 2, |
| rates[i].count); |
| } |
| } |
| } else { |
| /* |
| * Handle the special case of MIMO PS burst, where the second |
| * aggregate is sent out with only one rate and one try. |
| * Treating it as an excessive retry penalizes the rate |
| * inordinately. |
| */ |
| if (rates[0].count == 1 && xretries == 1) |
| xretries = 2; |
| } |
| |
| flags = rates[i].flags; |
| |
| /* If HT40 and we have switched mode from 40 to 20 => don't update */ |
| if ((flags & ATH9K_TX_RC_40_MHZ_WIDTH) && |
| (ath_rc_priv->rc_phy_mode != WLAN_RC_40_FLAG)) { |
| return; |
| } |
| |
| rix = ath_rc_get_rateindex(rate_table, &rates[i]); |
| arn_rc_update_ht(sc, ath_rc_priv, tx_info_priv, rix, |
| xretries, long_retry); |
| } |
| |
| static struct ath_rate_table * |
| arn_choose_rate_table(struct arn_softc *sc, uint32_t cur_mode, |
| boolean_t is_ht, boolean_t is_cw_40) |
| { |
| int ath9k_mode; |
| switch (cur_mode) { |
| case IEEE80211_MODE_11A: |
| case IEEE80211_MODE_11NA: |
| ath9k_mode = ATH9K_MODE_11A; |
| if (is_ht) |
| ath9k_mode = ATH9K_MODE_11NA_HT20; |
| if (is_cw_40) |
| ath9k_mode = ATH9K_MODE_11NA_HT40PLUS; |
| break; |
| case IEEE80211_MODE_11B: |
| ath9k_mode = ATH9K_MODE_11B; |
| break; |
| case IEEE80211_MODE_11G: |
| case IEEE80211_MODE_11NG: |
| ath9k_mode = ATH9K_MODE_11G; |
| if (is_ht) |
| ath9k_mode = ATH9K_MODE_11NG_HT20; |
| if (is_cw_40) |
| ath9k_mode = ATH9K_MODE_11NG_HT40PLUS; |
| break; |
| default: |
| ARN_DBG((ARN_DBG_RATE, "Invalid band\n")); |
| return (NULL); |
| } |
| |
| switch (ath9k_mode) { |
| case ATH9K_MODE_11A: |
| ARN_DBG((ARN_DBG_RATE, "choose rate table:ATH9K_MODE_11A\n")); |
| break; |
| case ATH9K_MODE_11B: |
| ARN_DBG((ARN_DBG_RATE, "choose rate table:ATH9K_MODE_11B\n")); |
| break; |
| case ATH9K_MODE_11G: |
| ARN_DBG((ARN_DBG_RATE, "choose rate table:ATH9K_MODE_11G\n")); |
| break; |
| case ATH9K_MODE_11NA_HT20: |
| ARN_DBG((ARN_DBG_RATE, |
| "choose rate table:ATH9K_MODE_11NA_HT20\n")); |
| break; |
| case ATH9K_MODE_11NA_HT40PLUS: |
| ARN_DBG((ARN_DBG_RATE, |
| "choose rate table:ATH9K_MODE_11NA_HT40PLUS\n")); |
| break; |
| case ATH9K_MODE_11NG_HT20: |
| ARN_DBG((ARN_DBG_RATE, |
| "choose rate table:ATH9K_MODE_11NG_HT20\n")); |
| break; |
| case ATH9K_MODE_11NG_HT40PLUS: |
| ARN_DBG((ARN_DBG_RATE, |
| "choose rate table:ATH9K_MODE_11NG_HT40PLUS\n")); |
| break; |
| default: |
| arn_problem("Invalid band\n"); |
| break; |
| } |
| |
| ARN_DBG((ARN_DBG_RATE, "Choosing rate table for mode: %d\n", |
| ath9k_mode)); |
| return (sc->hw_rate_table[ath9k_mode]); |
| } |
| |
| /* Private rate contral initialization */ |
| static void |
| arn_rc_init(struct arn_softc *sc, |
| struct ath_rate_priv *ath_rc_priv, |
| struct ieee80211_node *in) |
| { |
| struct ath_rate_table *rate_table = NULL; |
| struct ath_rateset *rateset = &ath_rc_priv->neg_rates; |
| ieee80211com_t *ic = (ieee80211com_t *)sc; |
| uint32_t cur_mode = ic->ic_curmode; |
| uint8_t *ht_mcs = (uint8_t *)&ath_rc_priv->neg_ht_rates; |
| uint8_t i, j, k, hi = 0, hthi = 0; |
| boolean_t is_rc_ds; |
| |
| /* FIXME: Adhoc */ |
| if ((sc->sc_ah->ah_opmode == ATH9K_M_STA) || |
| (sc->sc_ah->ah_opmode == ATH9K_M_IBSS)) { |
| boolean_t is_ht = in->in_flags & IEEE80211_NODE_HT; |
| /* 20/40 support */ |
| boolean_t is_cw_40 = |
| in->in_htcap & IEEE80211_HTCAP_CHWIDTH40; |
| rate_table = |
| arn_choose_rate_table(sc, cur_mode, is_ht, is_cw_40); |
| } else if (sc->sc_ah->ah_opmode == ATH9K_M_HOSTAP) { |
| /* cur_rate_table would be set on init */ |
| rate_table = sc->sc_currates; |
| } |
| |
| if (!rate_table) { |
| ARN_DBG((ARN_DBG_FATAL, "Rate table not initialized\n")); |
| return; |
| } |
| |
| if (in->in_flags & IEEE80211_NODE_HT) { |
| /* 2.6.30 */ |
| ath_rc_priv->ht_cap = WLAN_RC_HT_FLAG; |
| is_rc_ds = (AR_SREV_9280_20_OR_LATER(sc->sc_ah) && |
| (ath9k_hw_get_eeprom(sc->sc_ah, EEP_RC_CHAIN_MASK) == 1)) ? |
| B_FALSE: B_TRUE; |
| if (sc->sc_ah->ah_caps.tx_chainmask != 1 && is_rc_ds) { |
| if (sc->sc_ht_conf.rx_mcs_mask[1]) { |
| ath_rc_priv->ht_cap |= WLAN_RC_DS_FLAG; |
| } |
| } |
| |
| if (in->in_htcap & IEEE80211_HTCAP_CHWIDTH40) |
| ath_rc_priv->ht_cap |= WLAN_RC_40_FLAG; |
| if (in->in_htcap & IEEE80211_HTCAP_SHORTGI40) |
| ath_rc_priv->ht_cap |= WLAN_RC_SGI_FLAG; |
| } |
| |
| /* |
| * Initial rate table size. Will change depending |
| * on the working rate set |
| */ |
| ath_rc_priv->rate_table_size = RATE_TABLE_SIZE; |
| |
| /* Initialize thresholds according to the global rate table */ |
| for (i = 0; i < ath_rc_priv->rate_table_size; i++) { |
| ath_rc_priv->state[i].rssi_thres = |
| rate_table->info[i].rssi_ack_validmin; |
| ath_rc_priv->state[i].per = 0; |
| } |
| |
| /* Determine the valid rates */ |
| arn_rc_init_valid_txmask(ath_rc_priv); |
| |
| for (i = 0; i < WLAN_RC_PHY_MAX; i++) { |
| for (j = 0; j < MAX_TX_RATE_PHY; j++) |
| ath_rc_priv->valid_phy_rateidx[i][j] = 0; |
| ath_rc_priv->valid_phy_ratecnt[i] = 0; |
| } |
| ath_rc_priv->rc_phy_mode = (ath_rc_priv->ht_cap & WLAN_RC_40_FLAG); |
| |
| /* Set stream capability */ |
| ath_rc_priv->single_stream = |
| (ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG) ? 0 : 1; |
| |
| if (!rateset->rs_nrates) { |
| /* No working rate, just initialize valid rates */ |
| hi = arn_rc_init_validrates(ath_rc_priv, rate_table, |
| ath_rc_priv->ht_cap); |
| } else { |
| /* Use intersection of working rates and valid rates */ |
| hi = arn_rc_setvalid_rates(ath_rc_priv, rate_table, |
| rateset, ath_rc_priv->ht_cap); |
| if (ath_rc_priv->ht_cap & WLAN_RC_HT_FLAG) { |
| hthi = arn_rc_setvalid_htrates(ath_rc_priv, |
| rate_table, |
| ht_mcs, |
| ath_rc_priv->ht_cap); |
| } |
| hi = A_MAX(hi, hthi); |
| } |
| |
| ath_rc_priv->rate_table_size = hi + 1; |
| ath_rc_priv->rate_max_phy = 0; |
| ASSERT(ath_rc_priv->rate_table_size <= RATE_TABLE_SIZE); |
| |
| for (i = 0, k = 0; i < WLAN_RC_PHY_MAX; i++) { |
| for (j = 0; j < ath_rc_priv->valid_phy_ratecnt[i]; j++) { |
| ath_rc_priv->valid_rate_index[k++] = |
| ath_rc_priv->valid_phy_rateidx[i][j]; |
| } |
| |
| if (!arn_rc_valid_phyrate(i, rate_table->initial_ratemax, 1) || |
| !ath_rc_priv->valid_phy_ratecnt[i]) |
| continue; |
| |
| ath_rc_priv->rate_max_phy = |
| ath_rc_priv->valid_phy_rateidx[i][j-1]; |
| } |
| ASSERT(ath_rc_priv->rate_table_size <= RATE_TABLE_SIZE); |
| ASSERT(k <= RATE_TABLE_SIZE); |
| |
| ath_rc_priv->max_valid_rate = k; |
| arn_rc_sort_validrates(rate_table, ath_rc_priv); |
| ath_rc_priv->rate_max_phy = ath_rc_priv->valid_rate_index[k-4]; |
| sc->sc_currates = rate_table; |
| } |
| |
| void |
| arn_tx_status(struct arn_softc *sc, struct ath_buf *bf, boolean_t is_data) |
| { |
| struct ieee80211_node *in = (struct ieee80211_node *)(bf->bf_in); |
| struct ath_node *an = ATH_NODE(in); |
| struct ath_rate_priv *ath_rc_priv = |
| (struct ath_rate_priv *)&an->rate_priv; |
| struct ath_tx_info_priv *tx_info_priv = |
| (struct ath_tx_info_priv *)&bf->tx_info_priv; |
| int final_ts_idx, tx_status = 0, is_underrun = 0; |
| |
| final_ts_idx = tx_info_priv->tx.ts_rateindex; |
| |
| if (!is_data || !tx_info_priv->update_rc) |
| return; |
| |
| if (tx_info_priv->tx.ts_status & ATH9K_TXERR_FILT) |
| return; |
| |
| /* |
| * If underrun error is seen assume it as an excessive retry only |
| * if prefetch trigger level have reached the max (0x3f for 5416) |
| * Adjust the long retry as if the frame was tried ATH_11N_TXMAXTRY |
| * times. This affects how ratectrl updates PER for the failed rate. |
| */ |
| if (tx_info_priv->tx.ts_flags & |
| (ATH9K_TX_DATA_UNDERRUN | ATH9K_TX_DELIM_UNDERRUN) && |
| ((sc->sc_ah->ah_txTrigLevel) >= ath_rc_priv->tx_triglevel_max)) { |
| tx_status = 1; |
| is_underrun = 1; |
| } |
| |
| if ((tx_info_priv->tx.ts_status & ATH9K_TXERR_XRETRY) || |
| (tx_info_priv->tx.ts_status & ATH9K_TXERR_FIFO)) |
| tx_status = 1; |
| |
| ath_rc_tx_status(sc, |
| ath_rc_priv, |
| bf, |
| final_ts_idx, |
| tx_status, |
| (is_underrun) ? ATH_11N_TXMAXTRY : tx_info_priv->tx.ts_longretry); |
| } |
| |
| void |
| arn_get_rate(struct arn_softc *sc, struct ath_buf *bf, |
| struct ieee80211_frame *wh) |
| { |
| struct ieee80211_node *in = (struct ieee80211_node *)(bf->bf_in); |
| struct ath_node *an = ATH_NODE(in); |
| struct ath_rate_priv *ath_rc_priv = |
| (struct ath_rate_priv *)&an->rate_priv; |
| struct ath_rate_table *rt = sc->sc_currates; |
| ieee80211com_t *ic = (ieee80211com_t *)sc; |
| int is_probe = 0; |
| uint8_t i; |
| |
| /* lowest rate for management and multicast/broadcast frames */ |
| if (!IEEE80211_IS_DATA(wh) || IEEE80211_IS_MULTICAST(wh->i_addr1)) { |
| bf->rates[0].idx = 0; /* xxx Fix me */ |
| bf->rates[0].count = |
| IEEE80211_IS_MULTICAST(wh->i_addr1) ? |
| 1 : ATH_MGT_TXMAXTRY; |
| return; |
| } |
| |
| /* Find tx rate for unicast frames */ |
| arn_rc_ratefind(sc, ath_rc_priv, bf, ATH_11N_TXMAXTRY, 4, |
| &is_probe, B_FALSE); |
| |
| /* Temporary workaround for 'dladm show-wifi' */ |
| for (i = 0; i < in->in_rates.ir_nrates; i++) { |
| ARN_DBG((ARN_DBG_RATE, "arn: arn_get_rate(): " |
| "in->in_rates.ir_rates[%d] = %d," |
| "bf->rates[0].idx = %d," |
| "rt->info[bf->rates[0].idx].dot11rate = %d\n", |
| i, |
| in->in_rates.ir_rates[i], |
| bf->rates[0].idx, |
| rt->info[bf->rates[0].idx].dot11rate)); |
| if (rt->info[bf->rates[0].idx].dot11rate == |
| in->in_rates.ir_rates[i]) |
| break; |
| } |
| in->in_txrate = i; |
| if (ic->ic_curmode == IEEE80211_MODE_11NA || |
| ic->ic_curmode == IEEE80211_MODE_11NG) |
| in->in_txrate = in->in_rates.ir_nrates - 1; |
| |
| /* Check if aggregation has to be enabled for this tid */ |
| #ifdef ARN_TX_AGGREGATION |
| /* should check if enabled, not supported */ |
| if (sc->sc_ht_conf.ht_supported) { |
| if (ieee80211_is_data_qos(wh)) { |
| uint8_t *qc, tid; |
| struct ath_node *an; |
| struct ieee80211_qosframe *qwh = NULL; |
| |
| qwh = (struct ieee80211_qosframe *)wh; |
| tid = qc[0] & 0xf; |
| an = (struct ath_node *)sta->drv_priv; |
| |
| if (arn_tx_aggr_check(sc, an, tid)) |
| /* to do */ |
| } |
| } |
| #endif /* ARN_TX_AGGREGATION */ |
| } |
| |
| void |
| arn_rate_init(struct arn_softc *sc, struct ieee80211_node *in) |
| { |
| int i; |
| struct ath_node *an = ATH_NODE(in); |
| struct ath_rate_priv *ath_rc_priv = |
| (struct ath_rate_priv *)&an->rate_priv; |
| |
| /* should be moved to arn_node_init later */ |
| ath_rc_priv->rssi_down_time = |
| drv_hztousec(ddi_get_lbolt())/1000; /* mesc */ |
| ath_rc_priv->tx_triglevel_max = |
| sc->sc_ah->ah_caps.tx_triglevel_max; |
| |
| for (i = 0; i < in->in_rates.ir_nrates; i++) { |
| ath_rc_priv->neg_rates.rs_rates[i] = in->in_rates.ir_rates[i]; |
| ARN_DBG((ARN_DBG_RATE, "arn:arn_rate_init()" |
| "ath_rc_priv->neg_rates.rs_rates[%d] = %d\n", |
| i, ath_rc_priv->neg_rates.rs_rates[i])); |
| } |
| ath_rc_priv->neg_rates.rs_nrates = in->in_rates.ir_nrates; |
| |
| /* negotiated ht rate set ??? */ |
| if (in->in_flags & IEEE80211_NODE_HT) { |
| for (i = 0; i < in->in_htrates.rs_nrates; i++) { |
| ath_rc_priv->neg_ht_rates.rs_rates[i] = |
| in->in_htrates.rs_rates[i]; |
| ARN_DBG((ARN_DBG_RATE, "arn:arn_rate_init()" |
| "ath_rc_priv->neg_ht_rates.rs_rates[%d] = %d\n", |
| i, ath_rc_priv->neg_ht_rates.rs_rates[i])); |
| } |
| ath_rc_priv->neg_ht_rates.rs_nrates = in->in_htrates.rs_nrates; |
| |
| /* arn_update_chainmask(sc); */ |
| } |
| |
| #ifdef ARN_TX_AGGREGATION |
| /* Temply put the following ht info init here */ |
| uint8_t ampdu_factor, ampdu_density; |
| if (sc->sc_ht_conf.ht_support && |
| (in->in_htcap_ie != NULL) && |
| (in->in_htcap != 0) && |
| (in->in_htparam != 0)) { |
| ampdu_factor = in->in_htparam & HT_RX_AMPDU_FACTOR_MSK; |
| ampdu_density = (in->in_htparam & HT_MPDU_DENSITY_MSK) >> |
| HT_MPDU_DENSITY_POS; |
| an->maxampdu = |
| 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR + ampdu_factor); |
| an->mpdudensity = parse_mpdudensity(ampdu_density); |
| } |
| /* end */ |
| #endif /* ARN_TX_AGGREGATION */ |
| |
| arn_rc_init(sc, ath_rc_priv, in); |
| } |
| |
| static void |
| arn_setup_rate_table(struct arn_softc *sc, |
| struct ath_rate_table *rate_table) |
| { |
| int i; |
| |
| for (i = 0; i < 256; i++) |
| rate_table->rateCodeToIndex[i] = (uint8_t)-1; |
| |
| for (i = 0; i < rate_table->rate_cnt; i++) { |
| uint8_t code = rate_table->info[i].ratecode; |
| uint8_t cix = rate_table->info[i].ctrl_rate; |
| uint8_t sh = rate_table->info[i].short_preamble; |
| |
| rate_table->rateCodeToIndex[code] = (int)i; |
| rate_table->rateCodeToIndex[code | sh] = (int)i; |
| |
| rate_table->info[i].lpAckDuration = |
| ath9k_hw_computetxtime(sc->sc_ah, rate_table, |
| WLAN_CTRL_FRAME_SIZE, |
| cix, |
| B_FALSE); |
| rate_table->info[i].spAckDuration = |
| ath9k_hw_computetxtime(sc->sc_ah, rate_table, |
| WLAN_CTRL_FRAME_SIZE, |
| cix, |
| B_TRUE); |
| } |
| } |
| |
| void |
| arn_rate_attach(struct arn_softc *sc) |
| { |
| sc->hw_rate_table[ATH9K_MODE_11B] = |
| &ar5416_11b_ratetable; |
| sc->hw_rate_table[ATH9K_MODE_11A] = |
| &ar5416_11a_ratetable; |
| sc->hw_rate_table[ATH9K_MODE_11G] = |
| &ar5416_11g_ratetable; |
| sc->hw_rate_table[ATH9K_MODE_11NA_HT20] = |
| &ar5416_11na_ratetable; |
| sc->hw_rate_table[ATH9K_MODE_11NG_HT20] = |
| &ar5416_11ng_ratetable; |
| sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS] = |
| &ar5416_11na_ratetable; |
| sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS] = |
| &ar5416_11na_ratetable; |
| sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS] = |
| &ar5416_11ng_ratetable; |
| sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS] = |
| &ar5416_11ng_ratetable; |
| |
| arn_setup_rate_table(sc, &ar5416_11b_ratetable); |
| arn_setup_rate_table(sc, &ar5416_11a_ratetable); |
| arn_setup_rate_table(sc, &ar5416_11g_ratetable); |
| arn_setup_rate_table(sc, &ar5416_11na_ratetable); |
| arn_setup_rate_table(sc, &ar5416_11ng_ratetable); |
| } |
| |
| #ifdef ARN_LEGACY_RC |
| void |
| arn_rate_update(struct arn_softc *sc, struct ieee80211_node *in, int32_t rate) |
| { |
| struct ath_node *an = ATH_NODE(in); |
| const struct ath_rate_table *rt = sc->sc_currates; |
| uint8_t rix; |
| |
| ASSERT(rt != NULL); |
| |
| in->in_txrate = rate; |
| |
| /* management/control frames always go at the lowest speed */ |
| an->an_tx_mgtrate = rt->info[0].ratecode; |
| an->an_tx_mgtratesp = an->an_tx_mgtrate | rt->info[0].short_preamble; |
| |
| ARN_DBG((ARN_DBG_RATE, "arn: arn_rate_update(): " |
| "mgtrate=%d mgtratesp=%d\n", |
| an->an_tx_mgtrate, an->an_tx_mgtratesp)); |
| |
| /* |
| * Before associating a node has no rate set setup |
| * so we can't calculate any transmit codes to use. |
| * This is ok since we should never be sending anything |
| * but management frames and those always go at the |
| * lowest hardware rate. |
| */ |
| if (in->in_rates.ir_nrates == 0) |
| goto done; |
| an->an_tx_rix0 = sc->asc_rixmap[ |
| in->in_rates.ir_rates[rate] & IEEE80211_RATE_VAL]; |
| an->an_tx_rate0 = rt->info[an->an_tx_rix0].ratecode; |
| an->an_tx_rate0sp = an->an_tx_rate0 | |
| rt->info[an->an_tx_rix0].short_preamble; |
| if (sc->sc_mrretry) { |
| /* |
| * Hardware supports multi-rate retry; setup two |
| * step-down retry rates and make the lowest rate |
| * be the ``last chance''. We use 4, 2, 2, 2 tries |
| * respectively (4 is set here, the rest are fixed |
| * in the xmit routine). |
| */ |
| an->an_tx_try0 = 1 + 3; /* 4 tries at rate 0 */ |
| if (--rate >= 0) { |
| rix = sc->asc_rixmap[ |
| in->in_rates.ir_rates[rate]&IEEE80211_RATE_VAL]; |
| an->an_tx_rate1 = rt->info[rix].ratecode; |
| an->an_tx_rate1sp = an->an_tx_rate1 | |
| rt->info[rix].short_preamble; |
| } else { |
| an->an_tx_rate1 = an->an_tx_rate1sp = 0; |
| } |
| if (--rate >= 0) { |
| rix = sc->asc_rixmap[ |
| in->in_rates.ir_rates[rate]&IEEE80211_RATE_VAL]; |
| an->an_tx_rate2 = rt->info[rix].ratecode; |
| an->an_tx_rate2sp = an->an_tx_rate2 | |
| rt->info[rix].short_preamble; |
| } else { |
| an->an_tx_rate2 = an->an_tx_rate2sp = 0; |
| } |
| if (rate > 0) { |
| an->an_tx_rate3 = rt->info[0].ratecode; |
| an->an_tx_rate3sp = |
| an->an_tx_mgtrate | rt->info[0].short_preamble; |
| } else { |
| an->an_tx_rate3 = an->an_tx_rate3sp = 0; |
| } |
| } else { |
| an->an_tx_try0 = ATH_TXMAXTRY; /* max tries at rate 0 */ |
| an->an_tx_rate1 = an->an_tx_rate1sp = 0; |
| an->an_tx_rate2 = an->an_tx_rate2sp = 0; |
| an->an_tx_rate3 = an->an_tx_rate3sp = 0; |
| } |
| done: |
| an->an_tx_ok = an->an_tx_err = an->an_tx_retr = an->an_tx_upper = 0; |
| } |
| |
| /* |
| * Set the starting transmit rate for a node. |
| */ |
| void |
| arn_rate_ctl_start(struct arn_softc *sc, struct ieee80211_node *in) |
| { |
| ieee80211com_t *ic = (ieee80211com_t *)sc; |
| int32_t srate; |
| |
| if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) { |
| /* |
| * No fixed rate is requested. For 11b start with |
| * the highest negotiated rate; otherwise, for 11g |
| * and 11a, we start "in the middle" at 24Mb or 36Mb. |
| */ |
| srate = in->in_rates.ir_nrates - 1; |
| if (sc->sc_curmode != IEEE80211_MODE_11B) { |
| /* |
| * Scan the negotiated rate set to find the |
| * closest rate. |
| */ |
| /* NB: the rate set is assumed sorted */ |
| for (; srate >= 0 && IEEE80211_RATE(srate) > 72; |
| srate--) {} |
| } |
| } else { |
| /* |
| * A fixed rate is to be used; We know the rate is |
| * there because the rate set is checked when the |
| * station associates. |
| */ |
| /* NB: the rate set is assumed sorted */ |
| srate = in->in_rates.ir_nrates - 1; |
| for (; srate >= 0 && IEEE80211_RATE(srate) != ic->ic_fixed_rate; |
| srate--) {} |
| } |
| |
| ARN_DBG((ARN_DBG_RATE, "arn: arn_rate_ctl_start(): " |
| "srate=%d rate=%d\n", srate, IEEE80211_RATE(srate))); |
| |
| arn_rate_update(sc, in, srate); |
| } |
| |
| void |
| arn_rate_cb(void *arg, struct ieee80211_node *in) |
| { |
| arn_rate_update((struct arn_softc *)arg, in, 0); |
| } |
| #endif /* ARN_LEGACY_RC */ |
| /* |
| * Reset the rate control state for each 802.11 state transition. |
| */ |
| void |
| arn_rate_ctl_reset(struct arn_softc *sc, enum ieee80211_state state) |
| { |
| ieee80211com_t *ic = (ieee80211com_t *)sc; |
| struct ieee80211_node *in; |
| |
| if (ic->ic_opmode == IEEE80211_M_STA) { |
| /* |
| * Reset local xmit state; this is really only |
| * meaningful when operating in station mode. |
| */ |
| in = (struct ieee80211_node *)ic->ic_bss; |
| |
| #ifdef ARN_LEGACY_RC |
| if (state == IEEE80211_S_RUN) { |
| arn_rate_ctl_start(sc, in); |
| } else { |
| arn_rate_update(sc, in, 0); |
| } |
| #else |
| if (state == IEEE80211_S_RUN) |
| arn_rate_init(sc, in); |
| #endif |
| /* LINTED E_NOP_ELSE_STMT */ |
| } else { |
| /* |
| * When operating as a station the node table holds |
| * the AP's that were discovered during scanning. |
| * For any other operating mode we want to reset the |
| * tx rate state of each node. |
| */ |
| #ifdef ARN_LEGACY_RC |
| ieee80211_iterate_nodes(&ic->ic_sta, arn_rate_cb, sc); |
| #endif |
| } |
| } |
| |
| #ifdef ARN_LEGACY_RC |
| /* |
| * Examine and potentially adjust the transmit rate. |
| */ |
| void |
| arn_rate_ctl(void *arg, struct ieee80211_node *in) |
| { |
| struct arn_softc *sc = arg; |
| struct ath_node *an = ATH_NODE(in); |
| struct ieee80211_rateset *rs = &in->in_rates; |
| int32_t mod = 0, nrate, enough; |
| |
| /* |
| * Rate control(very primitive version). |
| */ |
| sc->sc_stats.ast_rate_calls++; |
| |
| enough = (an->an_tx_ok + an->an_tx_err >= 10); |
| |
| /* no packet reached -> down */ |
| if (an->an_tx_err > 0 && an->an_tx_ok == 0) |
| mod = -1; |
| |
| /* all packets needs retry in average -> down */ |
| if (enough && an->an_tx_ok < an->an_tx_retr) |
| mod = -1; |
| |
| /* no error and less than 10% of packets needs retry -> up */ |
| if (enough && an->an_tx_err == 0 && an->an_tx_ok > an->an_tx_retr * 10) |
| mod = 1; |
| |
| nrate = in->in_txrate; |
| switch (mod) { |
| case 0: |
| if (enough && an->an_tx_upper > 0) |
| an->an_tx_upper--; |
| break; |
| case -1: |
| if (nrate > 0) { |
| nrate--; |
| sc->sc_stats.ast_rate_drop++; |
| } |
| an->an_tx_upper = 0; |
| break; |
| case 1: |
| if (++an->an_tx_upper < 10) |
| break; |
| an->an_tx_upper = 0; |
| if (nrate + 1 < rs->ir_nrates) { |
| nrate++; |
| sc->sc_stats.ast_rate_raise++; |
| } |
| break; |
| } |
| |
| if (nrate != in->in_txrate) { |
| ARN_DBG((ARN_DBG_RATE, "arn: arn_rate_ctl(): %dM -> %dM " |
| "(%d ok, %d err, %d retr)\n", |
| (rs->ir_rates[in->in_txrate] & IEEE80211_RATE_VAL) / 2, |
| (rs->ir_rates[nrate] & IEEE80211_RATE_VAL) / 2, |
| an->an_tx_ok, an->an_tx_err, an->an_tx_retr)); |
| arn_rate_update(sc, in, nrate); |
| } else if (enough) |
| an->an_tx_ok = an->an_tx_err = an->an_tx_retr = 0; |
| } |
| #endif /* ARN_LEGACY_RC */ |