| /* |
| * Copyright 2010 Sun Microsystems, Inc. All rights reserved. |
| * Use is subject to license terms. |
| */ |
| |
| /* |
| * Copyright (c) 2008 Atheros Communications Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| */ |
| |
| #include <sys/param.h> |
| #include <sys/types.h> |
| #include <sys/signal.h> |
| #include <sys/stream.h> |
| #include <sys/termio.h> |
| #include <sys/errno.h> |
| #include <sys/file.h> |
| #include <sys/cmn_err.h> |
| #include <sys/stropts.h> |
| #include <sys/strsubr.h> |
| #include <sys/strtty.h> |
| #include <sys/kbio.h> |
| #include <sys/cred.h> |
| #include <sys/stat.h> |
| #include <sys/consdev.h> |
| #include <sys/kmem.h> |
| #include <sys/modctl.h> |
| #include <sys/ddi.h> |
| #include <sys/sunddi.h> |
| #include <sys/pci.h> |
| #include <sys/errno.h> |
| #include <sys/gld.h> |
| #include <sys/dlpi.h> |
| #include <sys/ethernet.h> |
| #include <sys/list.h> |
| #include <sys/byteorder.h> |
| #include <sys/strsun.h> |
| #include <inet/common.h> |
| #include <inet/nd.h> |
| #include <inet/mi.h> |
| #include <inet/wifi_ioctl.h> |
| |
| #include "arn_core.h" |
| #include "arn_hw.h" |
| #include "arn_reg.h" |
| #include "arn_phy.h" |
| |
| static void |
| ath9k_hw_analog_shift_rmw(struct ath_hal *ah, |
| uint32_t reg, uint32_t mask, |
| uint32_t shift, uint32_t val) |
| { |
| uint32_t regVal; |
| |
| regVal = REG_READ(ah, reg) & ~mask; |
| regVal |= (val << shift) & mask; |
| |
| REG_WRITE(ah, reg, regVal); |
| |
| if (ah->ah_config.analog_shiftreg) |
| drv_usecwait(100); |
| } |
| |
| static inline uint16_t |
| ath9k_hw_fbin2freq(uint8_t fbin, boolean_t is2GHz) |
| { |
| |
| if (fbin == AR5416_BCHAN_UNUSED) |
| return (fbin); |
| |
| return ((uint16_t)((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin))); |
| } |
| |
| static inline int16_t |
| ath9k_hw_interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight, |
| int16_t targetLeft, int16_t targetRight) |
| { |
| int16_t rv; |
| |
| if (srcRight == srcLeft) { |
| rv = targetLeft; |
| } else { |
| rv = (int16_t)(((target - srcLeft) * targetRight + |
| (srcRight - target) * targetLeft) / |
| (srcRight - srcLeft)); |
| } |
| return (rv); |
| } |
| |
| static inline boolean_t |
| ath9k_hw_get_lower_upper_index(uint8_t target, uint8_t *pList, |
| uint16_t listSize, uint16_t *indexL, uint16_t *indexR) |
| { |
| uint16_t i; |
| |
| if (target <= pList[0]) { |
| *indexL = *indexR = 0; |
| return (B_TRUE); |
| } |
| if (target >= pList[listSize - 1]) { |
| *indexL = *indexR = (uint16_t)(listSize - 1); |
| return (B_TRUE); |
| } |
| |
| for (i = 0; i < listSize - 1; i++) { |
| if (pList[i] == target) { |
| *indexL = *indexR = i; |
| return (B_TRUE); |
| } |
| if (target < pList[i + 1]) { |
| *indexL = i; |
| *indexR = (uint16_t)(i + 1); |
| return (B_FALSE); |
| } |
| } |
| return (B_FALSE); |
| } |
| |
| static boolean_t |
| ath9k_hw_eeprom_read(struct ath_hal *ah, uint32_t off, uint16_t *data) |
| { |
| (void) REG_READ(ah, AR5416_EEPROM_OFFSET + (off << AR5416_EEPROM_S)); |
| |
| if (!ath9k_hw_wait(ah, AR_EEPROM_STATUS_DATA, |
| AR_EEPROM_STATUS_DATA_BUSY | |
| AR_EEPROM_STATUS_DATA_PROT_ACCESS, 0)) { |
| return (B_FALSE); |
| } |
| |
| *data = MS(REG_READ(ah, AR_EEPROM_STATUS_DATA), |
| AR_EEPROM_STATUS_DATA_VAL); |
| |
| return (B_TRUE); |
| } |
| |
| /* ARGSUSED */ |
| static int |
| ath9k_hw_flash_map(struct ath_hal *ah) |
| { |
| ARN_DBG((ARN_DBG_EEPROM, "arn: ath9k_hw_flash_map(): " |
| "using flash but eepom\n")); |
| |
| return (0); |
| } |
| |
| static boolean_t |
| ath9k_hw_flash_read(struct ath_hal *ah, uint32_t off, uint16_t *data) |
| { |
| *data = FLASH_READ(ah, off); |
| |
| return (B_TRUE); |
| } |
| |
| static inline boolean_t |
| ath9k_hw_nvram_read(struct ath_hal *ah, uint32_t off, uint16_t *data) |
| { |
| if (ath9k_hw_use_flash(ah)) |
| return (ath9k_hw_flash_read(ah, off, data)); |
| else |
| return (ath9k_hw_eeprom_read(ah, off, data)); |
| } |
| |
| static boolean_t |
| ath9k_hw_fill_4k_eeprom(struct ath_hal *ah) |
| { |
| #define SIZE_EEPROM_4K (sizeof (struct ar5416_eeprom_4k) / sizeof (uint16_t)) |
| struct ath_hal_5416 *ahp = AH5416(ah); |
| struct ar5416_eeprom_4k *eep = &ahp->ah_eeprom.map4k; |
| uint16_t *eep_data; |
| int addr, eep_start_loc = 0; |
| |
| eep_start_loc = 64; |
| |
| if (!ath9k_hw_use_flash(ah)) { |
| ARN_DBG((ARN_DBG_EEPROM, |
| "Reading from EEPROM, not flash\n")); |
| } |
| |
| eep_data = (uint16_t *)eep; |
| |
| for (addr = 0; addr < SIZE_EEPROM_4K; addr++) { |
| if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data)) { |
| ARN_DBG((ARN_DBG_EEPROM, |
| "Unable to read eeprom region \n")); |
| return (B_FALSE); |
| } |
| eep_data++; |
| } |
| return (B_TRUE); |
| #undef SIZE_EEPROM_4K |
| } |
| |
| static boolean_t |
| ath9k_hw_fill_def_eeprom(struct ath_hal *ah) |
| { |
| #define SIZE_EEPROM_DEF (sizeof (struct ar5416_eeprom_def) / sizeof (uint16_t)) |
| struct ath_hal_5416 *ahp = AH5416(ah); |
| struct ar5416_eeprom_def *eep = &ahp->ah_eeprom.def; |
| uint16_t *eep_data; |
| int addr, ar5416_eep_start_loc = 0x100; |
| |
| eep_data = (uint16_t *)eep; |
| |
| for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) { |
| if (!ath9k_hw_nvram_read(ah, addr + ar5416_eep_start_loc, |
| eep_data)) { |
| ARN_DBG((ARN_DBG_EEPROM, |
| "Unable to read eeprom region\n")); |
| return (B_FALSE); |
| } |
| eep_data++; |
| } |
| return (B_TRUE); |
| #undef SIZE_EEPROM_DEF |
| } |
| |
| static boolean_t (*ath9k_fill_eeprom[]) (struct ath_hal *) = { |
| ath9k_hw_fill_def_eeprom, |
| ath9k_hw_fill_4k_eeprom |
| }; |
| |
| static inline boolean_t |
| ath9k_hw_fill_eeprom(struct ath_hal *ah) |
| { |
| struct ath_hal_5416 *ahp = AH5416(ah); |
| |
| return (ath9k_fill_eeprom[ahp->ah_eep_map](ah)); |
| } |
| |
| static int |
| ath9k_hw_check_def_eeprom(struct ath_hal *ah) |
| { |
| struct ath_hal_5416 *ahp = AH5416(ah); |
| struct ar5416_eeprom_def *eep = |
| (struct ar5416_eeprom_def *)&ahp->ah_eeprom.def; |
| uint16_t *eepdata, temp, magic, magic2; |
| uint32_t sum = 0, el; |
| boolean_t need_swap = B_FALSE; |
| int i, addr, size; |
| if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) { |
| ARN_DBG((ARN_DBG_EEPROM, "arn: " |
| "%s: Reading Magic # failed\n", __func__)); |
| return (B_FALSE); |
| } |
| |
| if (!ath9k_hw_use_flash(ah)) { |
| ARN_DBG((ARN_DBG_EEPROM, "ath9k: " |
| "%s: Read Magic = 0x%04X\n", __func__, magic)); |
| |
| if (magic != AR5416_EEPROM_MAGIC) { |
| magic2 = swab16(magic); |
| |
| if (magic2 == AR5416_EEPROM_MAGIC) { |
| size = sizeof (struct ar5416_eeprom_def); |
| need_swap = B_TRUE; |
| eepdata = (uint16_t *)(&ahp->ah_eeprom); |
| |
| for (addr = 0; addr < size / sizeof (uint16_t); |
| addr++) { |
| temp = swab16(*eepdata); |
| *eepdata = temp; |
| eepdata++; |
| |
| ARN_DBG((ARN_DBG_EEPROM, |
| "0x%04X ", *eepdata)); |
| |
| if (((addr + 1) % 6) == 0) |
| ARN_DBG((ARN_DBG_EEPROM, |
| "arn: " |
| "%s\n", __func__)); |
| } |
| } else { |
| ARN_DBG((ARN_DBG_EEPROM, |
| "Invalid EEPROM Magic. " |
| "endianness mismatch.\n")); |
| return (EINVAL); |
| } |
| } |
| } |
| |
| ARN_DBG((ARN_DBG_EEPROM, "need_swap = %s.\n", |
| need_swap ? "TRUE" : "FALSE")); |
| |
| if (need_swap) |
| el = swab16(ahp->ah_eeprom.def.baseEepHeader.length); |
| else |
| el = ahp->ah_eeprom.def.baseEepHeader.length; |
| |
| if (el > sizeof (struct ar5416_eeprom_def)) |
| el = sizeof (struct ar5416_eeprom_def) / sizeof (uint16_t); |
| else |
| el = el / sizeof (uint16_t); |
| |
| eepdata = (uint16_t *)(&ahp->ah_eeprom); |
| |
| for (i = 0; i < el; i++) |
| sum ^= *eepdata++; |
| |
| if (need_swap) { |
| uint32_t integer, j; |
| uint16_t word; |
| |
| ARN_DBG((ARN_DBG_EEPROM, |
| "EEPROM Endianness is not native.. Changing \n")); |
| |
| word = swab16(eep->baseEepHeader.length); |
| eep->baseEepHeader.length = word; |
| |
| word = swab16(eep->baseEepHeader.checksum); |
| eep->baseEepHeader.checksum = word; |
| |
| word = swab16(eep->baseEepHeader.version); |
| eep->baseEepHeader.version = word; |
| |
| word = swab16(eep->baseEepHeader.regDmn[0]); |
| eep->baseEepHeader.regDmn[0] = word; |
| |
| word = swab16(eep->baseEepHeader.regDmn[1]); |
| eep->baseEepHeader.regDmn[1] = word; |
| |
| word = swab16(eep->baseEepHeader.rfSilent); |
| eep->baseEepHeader.rfSilent = word; |
| |
| word = swab16(eep->baseEepHeader.blueToothOptions); |
| eep->baseEepHeader.blueToothOptions = word; |
| |
| word = swab16(eep->baseEepHeader.deviceCap); |
| eep->baseEepHeader.deviceCap = word; |
| |
| for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) { |
| struct modal_eep_header *pModal = |
| &eep->modalHeader[j]; |
| integer = swab32(pModal->antCtrlCommon); |
| pModal->antCtrlCommon = integer; |
| |
| for (i = 0; i < AR5416_MAX_CHAINS; i++) { |
| integer = swab32(pModal->antCtrlChain[i]); |
| pModal->antCtrlChain[i] = integer; |
| } |
| |
| for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) { |
| word = swab16(pModal->spurChans[i].spurChan); |
| pModal->spurChans[i].spurChan = word; |
| } |
| } |
| } |
| |
| if (sum != 0xffff || ar5416_get_eep_ver(ahp) != AR5416_EEP_VER || |
| ar5416_get_eep_rev(ahp) < AR5416_EEP_NO_BACK_VER) { |
| ARN_DBG((ARN_DBG_EEPROM, |
| "Bad EEPROM checksum 0x%x or revision 0x%04x\n", |
| sum, ar5416_get_eep_ver(ahp))); |
| return (EINVAL); |
| } |
| |
| return (0); |
| } |
| |
| static int |
| ath9k_hw_check_4k_eeprom(struct ath_hal *ah) |
| { |
| #define EEPROM_4K_SIZE (sizeof (struct ar5416_eeprom_4k) / sizeof (uint16_t)) |
| struct ath_hal_5416 *ahp = AH5416(ah); |
| struct ar5416_eeprom_4k *eep = |
| (struct ar5416_eeprom_4k *)&ahp->ah_eeprom.map4k; |
| uint16_t *eepdata, temp, magic, magic2; |
| uint32_t sum = 0, el; |
| boolean_t need_swap = B_FALSE; |
| int i, addr; |
| |
| |
| if (!ath9k_hw_use_flash(ah)) { |
| |
| if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, |
| &magic)) { |
| ARN_DBG((ARN_DBG_EEPROM, |
| "Reading Magic # failed\n")); |
| return (B_FALSE); |
| } |
| |
| ARN_DBG((ARN_DBG_EEPROM, |
| "Read Magic = 0x%04X\n", magic)); |
| |
| if (magic != AR5416_EEPROM_MAGIC) { |
| magic2 = swab16(magic); |
| |
| if (magic2 == AR5416_EEPROM_MAGIC) { |
| need_swap = B_TRUE; |
| eepdata = (uint16_t *)(&ahp->ah_eeprom); |
| |
| for (addr = 0; addr < EEPROM_4K_SIZE; addr++) { |
| temp = swab16(*eepdata); |
| *eepdata = temp; |
| eepdata++; |
| |
| ARN_DBG((ARN_DBG_EEPROM, |
| "0x%04X ", *eepdata)); |
| |
| if (((addr + 1) % 6) == 0) |
| ARN_DBG((ARN_DBG_EEPROM, "\n")); |
| } |
| } else { |
| ARN_DBG((ARN_DBG_EEPROM, |
| "Invalid EEPROM Magic. " |
| "endianness mismatch.\n")); |
| return (EINVAL); |
| } |
| } |
| } |
| |
| ARN_DBG((ARN_DBG_EEPROM, "need_swap = %s.\n", |
| need_swap ? "True" : "False")); |
| |
| if (need_swap) |
| el = swab16(ahp->ah_eeprom.map4k.baseEepHeader.length); |
| else |
| el = ahp->ah_eeprom.map4k.baseEepHeader.length; |
| |
| if (el > sizeof (struct ar5416_eeprom_def)) |
| el = sizeof (struct ar5416_eeprom_4k) / sizeof (uint16_t); |
| else |
| el = el / sizeof (uint16_t); |
| |
| eepdata = (uint16_t *)(&ahp->ah_eeprom); |
| |
| for (i = 0; i < el; i++) |
| sum ^= *eepdata++; |
| |
| if (need_swap) { |
| uint32_t integer; |
| uint16_t word; |
| |
| ARN_DBG((ARN_DBG_EEPROM, |
| "EEPROM Endianness is not native.. Changing \n")); |
| |
| word = swab16(eep->baseEepHeader.length); |
| eep->baseEepHeader.length = word; |
| |
| word = swab16(eep->baseEepHeader.checksum); |
| eep->baseEepHeader.checksum = word; |
| |
| word = swab16(eep->baseEepHeader.version); |
| eep->baseEepHeader.version = word; |
| |
| word = swab16(eep->baseEepHeader.regDmn[0]); |
| eep->baseEepHeader.regDmn[0] = word; |
| |
| word = swab16(eep->baseEepHeader.regDmn[1]); |
| eep->baseEepHeader.regDmn[1] = word; |
| |
| word = swab16(eep->baseEepHeader.rfSilent); |
| eep->baseEepHeader.rfSilent = word; |
| |
| word = swab16(eep->baseEepHeader.blueToothOptions); |
| eep->baseEepHeader.blueToothOptions = word; |
| |
| word = swab16(eep->baseEepHeader.deviceCap); |
| eep->baseEepHeader.deviceCap = word; |
| |
| integer = swab32(eep->modalHeader.antCtrlCommon); |
| eep->modalHeader.antCtrlCommon = integer; |
| |
| for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) { |
| integer = swab32(eep->modalHeader.antCtrlChain[i]); |
| eep->modalHeader.antCtrlChain[i] = integer; |
| } |
| |
| for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) { |
| word = swab16(eep->modalHeader.spurChans[i].spurChan); |
| eep->modalHeader.spurChans[i].spurChan = word; |
| } |
| } |
| |
| if (sum != 0xffff || ar5416_get_eep4k_ver(ahp) != AR5416_EEP_VER || |
| ar5416_get_eep4k_rev(ahp) < AR5416_EEP_NO_BACK_VER) { |
| ARN_DBG((ARN_DBG_EEPROM, |
| "Bad EEPROM checksum 0x%x or revision 0x%04x\n", |
| sum, ar5416_get_eep4k_ver(ahp))); |
| return (EINVAL); |
| } |
| |
| return (0); |
| #undef EEPROM_4K_SIZE |
| } |
| |
| static int |
| (*ath9k_check_eeprom[]) (struct ath_hal *) = { |
| ath9k_hw_check_def_eeprom, |
| ath9k_hw_check_4k_eeprom |
| }; |
| |
| static inline int |
| ath9k_hw_check_eeprom(struct ath_hal *ah) |
| { |
| struct ath_hal_5416 *ahp = AH5416(ah); |
| |
| return (ath9k_check_eeprom[ahp->ah_eep_map](ah)); |
| } |
| |
| static inline boolean_t |
| ath9k_hw_fill_vpd_table(uint8_t pwrMin, uint8_t pwrMax, uint8_t *pPwrList, |
| uint8_t *pVpdList, uint16_t numIntercepts, uint8_t *pRetVpdList) |
| { |
| uint16_t i, k; |
| uint8_t currPwr = pwrMin; |
| uint16_t idxL = 0, idxR = 0; |
| |
| for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) { |
| (void) ath9k_hw_get_lower_upper_index(currPwr, pPwrList, |
| numIntercepts, &(idxL), &(idxR)); |
| if (idxR < 1) |
| idxR = 1; |
| if (idxL == numIntercepts - 1) |
| idxL = (uint16_t)(numIntercepts - 2); |
| if (pPwrList[idxL] == pPwrList[idxR]) |
| k = pVpdList[idxL]; |
| else |
| k = (uint16_t) |
| (((currPwr - pPwrList[idxL]) * pVpdList[idxR] + |
| (pPwrList[idxR] - currPwr) * pVpdList[idxL]) / |
| (pPwrList[idxR] - pPwrList[idxL])); |
| pRetVpdList[i] = (uint8_t)k; |
| currPwr += 2; |
| } |
| |
| return (B_TRUE); |
| } |
| |
| static void |
| ath9k_hw_get_4k_gain_boundaries_pdadcs(struct ath_hal *ah, |
| struct ath9k_channel *chan, |
| struct cal_data_per_freq_4k *pRawDataSet, |
| uint8_t *bChans, uint16_t availPiers, |
| uint16_t tPdGainOverlap, int16_t *pMinCalPower, |
| uint16_t *pPdGainBoundaries, uint8_t *pPDADCValues, |
| uint16_t numXpdGains) |
| { |
| #define TMP_VAL_VPD_TABLE \ |
| ((vpdTableI[i][sizeCurrVpdTable - 1] + (ss - maxIndex + 1) * vpdStep)); |
| int i, j, k; |
| int16_t ss; |
| uint16_t idxL = 0, idxR = 0, numPiers; |
| static uint8_t vpdTableL[AR5416_EEP4K_NUM_PD_GAINS] |
| [AR5416_MAX_PWR_RANGE_IN_HALF_DB]; |
| static uint8_t vpdTableR[AR5416_EEP4K_NUM_PD_GAINS] |
| [AR5416_MAX_PWR_RANGE_IN_HALF_DB]; |
| static uint8_t vpdTableI[AR5416_EEP4K_NUM_PD_GAINS] |
| [AR5416_MAX_PWR_RANGE_IN_HALF_DB]; |
| |
| uint8_t *pVpdL, *pVpdR, *pPwrL, *pPwrR; |
| uint8_t minPwrT4[AR5416_EEP4K_NUM_PD_GAINS]; |
| uint8_t maxPwrT4[AR5416_EEP4K_NUM_PD_GAINS]; |
| int16_t vpdStep; |
| int16_t tmpVal; |
| uint16_t sizeCurrVpdTable, maxIndex, tgtIndex; |
| boolean_t match; |
| int16_t minDelta = 0; |
| struct chan_centers centers; |
| #define PD_GAIN_BOUNDARY_DEFAULT 58; |
| |
| ath9k_hw_get_channel_centers(ah, chan, ¢ers); |
| |
| for (numPiers = 0; numPiers < availPiers; numPiers++) { |
| if (bChans[numPiers] == AR5416_BCHAN_UNUSED) |
| break; |
| } |
| |
| match = ath9k_hw_get_lower_upper_index( |
| (uint8_t)FREQ2FBIN(centers.synth_center, |
| IS_CHAN_2GHZ(chan)), bChans, numPiers, |
| &idxL, &idxR); |
| |
| if (match) { |
| for (i = 0; i < numXpdGains; i++) { |
| minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0]; |
| maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4]; |
| (void) ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i], |
| pRawDataSet[idxL].pwrPdg[i], |
| pRawDataSet[idxL].vpdPdg[i], |
| AR5416_EEP4K_PD_GAIN_ICEPTS, |
| vpdTableI[i]); |
| } |
| } else { |
| for (i = 0; i < numXpdGains; i++) { |
| pVpdL = pRawDataSet[idxL].vpdPdg[i]; |
| pPwrL = pRawDataSet[idxL].pwrPdg[i]; |
| pVpdR = pRawDataSet[idxR].vpdPdg[i]; |
| pPwrR = pRawDataSet[idxR].pwrPdg[i]; |
| |
| minPwrT4[i] = max(pPwrL[0], pPwrR[0]); |
| |
| maxPwrT4[i] = |
| min(pPwrL[AR5416_EEP4K_PD_GAIN_ICEPTS - 1], |
| pPwrR[AR5416_EEP4K_PD_GAIN_ICEPTS - 1]); |
| |
| |
| (void) ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i], |
| pPwrL, pVpdL, |
| AR5416_EEP4K_PD_GAIN_ICEPTS, |
| vpdTableL[i]); |
| (void) ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i], |
| pPwrR, pVpdR, |
| AR5416_EEP4K_PD_GAIN_ICEPTS, |
| vpdTableR[i]); |
| |
| for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) { |
| vpdTableI[i][j] = |
| (uint8_t)(ath9k_hw_interpolate((uint16_t) |
| FREQ2FBIN(centers. |
| synth_center, |
| IS_CHAN_2GHZ |
| (chan)), |
| bChans[idxL], bChans[idxR], |
| vpdTableL[i][j], vpdTableR[i][j])); |
| } |
| } |
| } |
| |
| *pMinCalPower = (int16_t)(minPwrT4[0] / 2); |
| |
| k = 0; |
| |
| for (i = 0; i < numXpdGains; i++) { |
| if (i == (numXpdGains - 1)) |
| pPdGainBoundaries[i] = |
| (uint16_t)(maxPwrT4[i] / 2); |
| else |
| pPdGainBoundaries[i] = |
| (uint16_t)((maxPwrT4[i] + minPwrT4[i + 1]) / 4); |
| |
| pPdGainBoundaries[i] = |
| min((uint16_t)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]); |
| |
| if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah)) { |
| minDelta = pPdGainBoundaries[0] - 23; |
| pPdGainBoundaries[0] = 23; |
| } else { |
| minDelta = 0; |
| } |
| |
| if (i == 0) { |
| if (AR_SREV_9280_10_OR_LATER(ah)) |
| ss = (int16_t)(0 - (minPwrT4[i] / 2)); |
| else |
| ss = 0; |
| } else { |
| ss = (int16_t)((pPdGainBoundaries[i - 1] - |
| (minPwrT4[i] / 2)) - |
| tPdGainOverlap + 1 + minDelta); |
| } |
| vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]); |
| vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep); |
| |
| while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) { |
| tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep); |
| pPDADCValues[k++] = |
| (uint8_t)((tmpVal < 0) ? 0 : tmpVal); |
| ss++; |
| } |
| |
| sizeCurrVpdTable = |
| (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 + 1); |
| tgtIndex = (uint8_t) |
| (pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2)); |
| maxIndex = |
| (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable; |
| |
| while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) |
| pPDADCValues[k++] = vpdTableI[i][ss++]; |
| |
| vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - |
| vpdTableI[i][sizeCurrVpdTable - 2]); |
| vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep); |
| |
| if (tgtIndex > maxIndex) { |
| while ((ss <= tgtIndex) && |
| (k < (AR5416_NUM_PDADC_VALUES - 1))) { |
| tmpVal = (int16_t)TMP_VAL_VPD_TABLE; |
| pPDADCValues[k++] = (uint8_t) |
| ((tmpVal > 255) ? 255 : tmpVal); |
| ss++; |
| } |
| } |
| } |
| |
| while (i < AR5416_EEP4K_PD_GAINS_IN_MASK) { |
| pPdGainBoundaries[i] = PD_GAIN_BOUNDARY_DEFAULT; |
| i++; |
| } |
| |
| while (k < AR5416_NUM_PDADC_VALUES) { |
| pPDADCValues[k] = pPDADCValues[k - 1]; |
| k++; |
| } |
| |
| return; |
| #undef TMP_VAL_VPD_TABLE |
| } |
| |
| static void |
| ath9k_hw_get_def_gain_boundaries_pdadcs(struct ath_hal *ah, |
| struct ath9k_channel *chan, |
| struct cal_data_per_freq *pRawDataSet, |
| uint8_t *bChans, uint16_t availPiers, |
| uint16_t tPdGainOverlap, int16_t *pMinCalPower, |
| uint16_t *pPdGainBoundaries, uint8_t *pPDADCValues, |
| uint16_t numXpdGains) |
| { |
| int i, j, k; |
| int16_t ss; |
| uint16_t idxL = 0, idxR = 0, numPiers; |
| static uint8_t vpdTableL[AR5416_NUM_PD_GAINS] |
| [AR5416_MAX_PWR_RANGE_IN_HALF_DB]; |
| static uint8_t vpdTableR[AR5416_NUM_PD_GAINS] |
| [AR5416_MAX_PWR_RANGE_IN_HALF_DB]; |
| static uint8_t vpdTableI[AR5416_NUM_PD_GAINS] |
| [AR5416_MAX_PWR_RANGE_IN_HALF_DB]; |
| |
| uint8_t *pVpdL, *pVpdR, *pPwrL, *pPwrR; |
| uint8_t minPwrT4[AR5416_NUM_PD_GAINS]; |
| uint8_t maxPwrT4[AR5416_NUM_PD_GAINS]; |
| int16_t vpdStep; |
| int16_t tmpVal; |
| uint16_t sizeCurrVpdTable, maxIndex, tgtIndex; |
| boolean_t match; |
| int16_t minDelta = 0; |
| struct chan_centers centers; |
| |
| ath9k_hw_get_channel_centers(ah, chan, ¢ers); |
| |
| for (numPiers = 0; numPiers < availPiers; numPiers++) { |
| if (bChans[numPiers] == AR5416_BCHAN_UNUSED) |
| break; |
| } |
| |
| match = |
| ath9k_hw_get_lower_upper_index( |
| (uint8_t)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)), |
| bChans, numPiers, &idxL, &idxR); |
| |
| if (match) { |
| for (i = 0; i < numXpdGains; i++) { |
| minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0]; |
| maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4]; |
| (void) ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i], |
| pRawDataSet[idxL].pwrPdg[i], |
| pRawDataSet[idxL].vpdPdg[i], |
| AR5416_PD_GAIN_ICEPTS, |
| vpdTableI[i]); |
| } |
| } else { |
| for (i = 0; i < numXpdGains; i++) { |
| pVpdL = pRawDataSet[idxL].vpdPdg[i]; |
| pPwrL = pRawDataSet[idxL].pwrPdg[i]; |
| pVpdR = pRawDataSet[idxR].vpdPdg[i]; |
| pPwrR = pRawDataSet[idxR].pwrPdg[i]; |
| |
| minPwrT4[i] = max(pPwrL[0], pPwrR[0]); |
| |
| maxPwrT4[i] = |
| min(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], |
| pPwrR[AR5416_PD_GAIN_ICEPTS - 1]); |
| |
| |
| (void) ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i], |
| pPwrL, pVpdL, |
| AR5416_PD_GAIN_ICEPTS, |
| vpdTableL[i]); |
| (void) ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i], |
| pPwrR, pVpdR, |
| AR5416_PD_GAIN_ICEPTS, |
| vpdTableR[i]); |
| |
| for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) { |
| vpdTableI[i][j] = |
| (uint8_t)(ath9k_hw_interpolate((uint16_t) |
| FREQ2FBIN(centers. |
| synth_center, |
| IS_CHAN_2GHZ |
| (chan)), |
| bChans[idxL], bChans[idxR], |
| vpdTableL[i][j], vpdTableR[i][j])); |
| } |
| } |
| } |
| |
| *pMinCalPower = (int16_t)(minPwrT4[0] / 2); |
| |
| k = 0; |
| |
| for (i = 0; i < numXpdGains; i++) { |
| if (i == (numXpdGains - 1)) |
| pPdGainBoundaries[i] = |
| (uint16_t)(maxPwrT4[i] / 2); |
| else |
| pPdGainBoundaries[i] = |
| (uint16_t)((maxPwrT4[i] + minPwrT4[i + 1]) / 4); |
| |
| pPdGainBoundaries[i] = |
| min((uint16_t)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]); |
| |
| if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah)) { |
| minDelta = pPdGainBoundaries[0] - 23; |
| pPdGainBoundaries[0] = 23; |
| } else { |
| minDelta = 0; |
| } |
| |
| if (i == 0) { |
| if (AR_SREV_9280_10_OR_LATER(ah)) |
| ss = (int16_t)(0 - (minPwrT4[i] / 2)); |
| else |
| ss = 0; |
| } else { |
| ss = (int16_t)((pPdGainBoundaries[i - 1] - |
| (minPwrT4[i] / 2)) - |
| tPdGainOverlap + 1 + minDelta); |
| } |
| vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]); |
| vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep); |
| |
| while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) { |
| tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep); |
| pPDADCValues[k++] = |
| (uint8_t)((tmpVal < 0) ? 0 : tmpVal); |
| ss++; |
| } |
| |
| sizeCurrVpdTable = |
| (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 + 1); |
| tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - |
| (minPwrT4[i] / 2)); |
| maxIndex = (tgtIndex < sizeCurrVpdTable) ? |
| tgtIndex : sizeCurrVpdTable; |
| |
| while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) { |
| pPDADCValues[k++] = vpdTableI[i][ss++]; |
| } |
| |
| vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - |
| vpdTableI[i][sizeCurrVpdTable - 2]); |
| vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep); |
| |
| if (tgtIndex > maxIndex) { |
| while ((ss <= tgtIndex) && |
| (k < (AR5416_NUM_PDADC_VALUES - 1))) { |
| tmpVal = |
| (int16_t) |
| ((vpdTableI[i][sizeCurrVpdTable - 1] + |
| (ss - maxIndex + 1) * vpdStep)); |
| pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? |
| 255 : tmpVal); |
| ss++; |
| } |
| } |
| } |
| |
| while (i < AR5416_PD_GAINS_IN_MASK) { |
| pPdGainBoundaries[i] = pPdGainBoundaries[i - 1]; |
| i++; |
| } |
| |
| while (k < AR5416_NUM_PDADC_VALUES) { |
| pPDADCValues[k] = pPDADCValues[k - 1]; |
| k++; |
| } |
| } |
| |
| static void |
| ath9k_hw_get_legacy_target_powers(struct ath_hal *ah, |
| struct ath9k_channel *chan, |
| struct cal_target_power_leg *powInfo, |
| uint16_t numChannels, |
| struct cal_target_power_leg *pNewPower, |
| uint16_t numRates, boolean_t isExtTarget) |
| { |
| struct chan_centers centers; |
| uint16_t clo, chi; |
| int i; |
| int matchIndex = -1, lowIndex = -1; |
| uint16_t freq; |
| |
| ath9k_hw_get_channel_centers(ah, chan, ¢ers); |
| freq = (isExtTarget) ? centers.ext_center : centers.ctl_center; |
| |
| if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, |
| IS_CHAN_2GHZ(chan))) { |
| matchIndex = 0; |
| } else { |
| for (i = 0; (i < numChannels) && |
| (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) { |
| if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel, |
| IS_CHAN_2GHZ(chan))) { |
| matchIndex = i; |
| break; |
| } else if ((freq < |
| ath9k_hw_fbin2freq(powInfo[i].bChannel, |
| IS_CHAN_2GHZ(chan))) && |
| (freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel, |
| IS_CHAN_2GHZ(chan)))) { |
| lowIndex = i - 1; |
| break; |
| } |
| } |
| if ((matchIndex == -1) && (lowIndex == -1)) |
| matchIndex = i - 1; |
| } |
| |
| if (matchIndex != -1) { |
| *pNewPower = powInfo[matchIndex]; |
| } else { |
| clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel, |
| IS_CHAN_2GHZ(chan)); |
| chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel, |
| IS_CHAN_2GHZ(chan)); |
| |
| for (i = 0; i < numRates; i++) { |
| pNewPower->tPow2x[i] = |
| (uint8_t)ath9k_hw_interpolate(freq, clo, chi, |
| powInfo[lowIndex].tPow2x[i], |
| powInfo[lowIndex + 1].tPow2x[i]); |
| } |
| } |
| } |
| |
| static void |
| ath9k_hw_get_target_powers(struct ath_hal *ah, |
| struct ath9k_channel *chan, |
| struct cal_target_power_ht *powInfo, |
| uint16_t numChannels, |
| struct cal_target_power_ht *pNewPower, |
| uint16_t numRates, boolean_t isHt40Target) |
| { |
| struct chan_centers centers; |
| uint16_t clo, chi; |
| int i; |
| int matchIndex = -1, lowIndex = -1; |
| uint16_t freq; |
| |
| ath9k_hw_get_channel_centers(ah, chan, ¢ers); |
| freq = isHt40Target ? centers.synth_center : centers.ctl_center; |
| |
| if (freq <= |
| ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) { |
| matchIndex = 0; |
| } else { |
| for (i = 0; (i < numChannels) && |
| (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) { |
| if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel, |
| IS_CHAN_2GHZ(chan))) { |
| matchIndex = i; |
| break; |
| } else |
| if ((freq < |
| ath9k_hw_fbin2freq(powInfo[i].bChannel, |
| IS_CHAN_2GHZ(chan))) && |
| (freq > ath9k_hw_fbin2freq |
| (powInfo[i - 1].bChannel, |
| IS_CHAN_2GHZ(chan)))) { |
| lowIndex = i - 1; |
| break; |
| } |
| } |
| if ((matchIndex == -1) && (lowIndex == -1)) |
| matchIndex = i - 1; |
| } |
| |
| if (matchIndex != -1) { |
| *pNewPower = powInfo[matchIndex]; |
| } else { |
| clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel, |
| IS_CHAN_2GHZ(chan)); |
| chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel, |
| IS_CHAN_2GHZ(chan)); |
| |
| for (i = 0; i < numRates; i++) { |
| pNewPower->tPow2x[i] = |
| (uint8_t)ath9k_hw_interpolate(freq, |
| clo, chi, |
| powInfo[lowIndex].tPow2x[i], |
| powInfo[lowIndex + 1].tPow2x[i]); |
| } |
| } |
| } |
| |
| static uint16_t |
| ath9k_hw_get_max_edge_power(uint16_t freq, |
| struct cal_ctl_edges *pRdEdgesPower, |
| boolean_t is2GHz, int num_band_edges) |
| { |
| uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER; |
| int i; |
| |
| for (i = 0; (i < num_band_edges) && |
| (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) { |
| if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, |
| is2GHz)) { |
| twiceMaxEdgePower = pRdEdgesPower[i].tPower; |
| break; |
| } else if ((i > 0) && |
| (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, |
| is2GHz))) { |
| if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel, |
| is2GHz) < freq && |
| pRdEdgesPower[i - 1].flag) { |
| twiceMaxEdgePower = |
| pRdEdgesPower[i - 1].tPower; |
| } |
| break; |
| } |
| } |
| |
| return (twiceMaxEdgePower); |
| } |
| |
| static boolean_t |
| ath9k_hw_set_def_power_cal_table(struct ath_hal *ah, |
| struct ath9k_channel *chan, int16_t *pTxPowerIndexOffset) |
| { |
| struct ath_hal_5416 *ahp = AH5416(ah); |
| struct ar5416_eeprom_def *pEepData = &ahp->ah_eeprom.def; |
| struct cal_data_per_freq *pRawDataset; |
| uint8_t *pCalBChans = NULL; |
| uint16_t pdGainOverlap_t2; |
| static uint8_t pdadcValues[AR5416_NUM_PDADC_VALUES]; |
| uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK]; |
| uint16_t numPiers, i, j; |
| int16_t tMinCalPower; |
| uint16_t numXpdGain, xpdMask; |
| uint16_t xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 }; |
| uint32_t reg32, regOffset, regChainOffset; |
| int16_t modalIdx; |
| |
| modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0; |
| xpdMask = pEepData->modalHeader[modalIdx].xpdGain; |
| |
| if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= |
| AR5416_EEP_MINOR_VER_2) { |
| pdGainOverlap_t2 = |
| pEepData->modalHeader[modalIdx].pdGainOverlap; |
| } else { |
| pdGainOverlap_t2 = |
| (uint16_t)(MS(REG_READ(ah, AR_PHY_TPCRG5), |
| AR_PHY_TPCRG5_PD_GAIN_OVERLAP)); |
| } |
| |
| if (IS_CHAN_2GHZ(chan)) { |
| pCalBChans = pEepData->calFreqPier2G; |
| numPiers = AR5416_NUM_2G_CAL_PIERS; |
| } else { |
| pCalBChans = pEepData->calFreqPier5G; |
| numPiers = AR5416_NUM_5G_CAL_PIERS; |
| } |
| |
| numXpdGain = 0; |
| |
| for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) { |
| if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) { |
| if (numXpdGain >= AR5416_NUM_PD_GAINS) |
| break; |
| xpdGainValues[numXpdGain] = |
| (uint16_t)(AR5416_PD_GAINS_IN_MASK - i); |
| numXpdGain++; |
| } |
| } |
| |
| REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, |
| (numXpdGain - 1) & 0x3); |
| REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1, |
| xpdGainValues[0]); |
| REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2, |
| xpdGainValues[1]); |
| REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, |
| xpdGainValues[2]); |
| |
| for (i = 0; i < AR5416_MAX_CHAINS; i++) { |
| if (AR_SREV_5416_V20_OR_LATER(ah) && |
| (ahp->ah_rxchainmask == 5 || ahp->ah_txchainmask == 5) && |
| (i != 0)) { |
| regChainOffset = (i == 1) ? 0x2000 : 0x1000; |
| } else |
| regChainOffset = i * 0x1000; |
| |
| if (pEepData->baseEepHeader.txMask & (1 << i)) { |
| if (IS_CHAN_2GHZ(chan)) |
| pRawDataset = pEepData->calPierData2G[i]; |
| else |
| pRawDataset = pEepData->calPierData5G[i]; |
| |
| ath9k_hw_get_def_gain_boundaries_pdadcs(ah, chan, |
| pRawDataset, pCalBChans, |
| numPiers, pdGainOverlap_t2, |
| &tMinCalPower, gainBoundaries, |
| pdadcValues, numXpdGain); |
| |
| if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) { |
| REG_WRITE(ah, |
| AR_PHY_TPCRG5 + regChainOffset, |
| SM(pdGainOverlap_t2, |
| AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | |
| SM(gainBoundaries[0], |
| AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) | |
| SM(gainBoundaries[1], |
| AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) | |
| SM(gainBoundaries[2], |
| AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) | |
| SM(gainBoundaries[3], |
| AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4)); |
| } |
| |
| regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset; |
| for (j = 0; j < 32; j++) { |
| reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) | |
| ((pdadcValues[4 * j + 1] & 0xFF) << 8) | |
| ((pdadcValues[4 * j + 2] & 0xFF) << 16)| |
| ((pdadcValues[4 * j + 3] & 0xFF) << 24); |
| REG_WRITE(ah, regOffset, reg32); |
| |
| ARN_DBG((ARN_DBG_REG_IO, |
| "PDADC (%d,%4x): %4.4x %8.8x\n", |
| i, regChainOffset, regOffset, |
| reg32)); |
| ARN_DBG((ARN_DBG_REG_IO, |
| "PDADC: Chain %d | PDADC %3d " |
| "Value %3d | PDADC %3d Value %3d | " |
| "PDADC %3d Value %3d | PDADC %3d " |
| "Value %3d |\n", |
| i, 4 * j, pdadcValues[4 * j], |
| 4 * j + 1, pdadcValues[4 * j + 1], |
| 4 * j + 2, pdadcValues[4 * j + 2], |
| 4 * j + 3, |
| pdadcValues[4 * j + 3])); |
| |
| regOffset += 4; |
| } |
| } |
| } |
| |
| *pTxPowerIndexOffset = 0; |
| |
| return (B_TRUE); |
| } |
| |
| static boolean_t |
| ath9k_hw_set_4k_power_cal_table(struct ath_hal *ah, |
| struct ath9k_channel *chan, int16_t *pTxPowerIndexOffset) |
| { |
| struct ath_hal_5416 *ahp = AH5416(ah); |
| struct ar5416_eeprom_4k *pEepData = &ahp->ah_eeprom.map4k; |
| struct cal_data_per_freq_4k *pRawDataset; |
| uint8_t *pCalBChans = NULL; |
| uint16_t pdGainOverlap_t2; |
| static uint8_t pdadcValues[AR5416_NUM_PDADC_VALUES]; |
| uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK]; |
| uint16_t numPiers, i, j; |
| int16_t tMinCalPower; |
| uint16_t numXpdGain, xpdMask; |
| uint16_t xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 }; |
| uint32_t reg32, regOffset, regChainOffset; |
| |
| xpdMask = pEepData->modalHeader.xpdGain; |
| |
| if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= |
| AR5416_EEP_MINOR_VER_2) { |
| pdGainOverlap_t2 = |
| pEepData->modalHeader.pdGainOverlap; |
| } else { |
| pdGainOverlap_t2 = (uint16_t)(MS(REG_READ(ah, AR_PHY_TPCRG5), |
| AR_PHY_TPCRG5_PD_GAIN_OVERLAP)); |
| } |
| |
| pCalBChans = pEepData->calFreqPier2G; |
| numPiers = AR5416_NUM_2G_CAL_PIERS; |
| |
| numXpdGain = 0; |
| |
| for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) { |
| if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) { |
| if (numXpdGain >= AR5416_NUM_PD_GAINS) |
| break; |
| xpdGainValues[numXpdGain] = |
| (uint16_t)(AR5416_PD_GAINS_IN_MASK - i); |
| numXpdGain++; |
| } |
| } |
| |
| REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, |
| (numXpdGain - 1) & 0x3); |
| REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1, |
| xpdGainValues[0]); |
| REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2, |
| xpdGainValues[1]); |
| REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, |
| xpdGainValues[2]); |
| |
| for (i = 0; i < AR5416_MAX_CHAINS; i++) { |
| if (AR_SREV_5416_V20_OR_LATER(ah) && |
| (ahp->ah_rxchainmask == 5 || ahp->ah_txchainmask == 5) && |
| (i != 0)) { |
| regChainOffset = (i == 1) ? 0x2000 : 0x1000; |
| } else |
| regChainOffset = i * 0x1000; |
| |
| if (pEepData->baseEepHeader.txMask & (1 << i)) { |
| pRawDataset = pEepData->calPierData2G[i]; |
| |
| ath9k_hw_get_4k_gain_boundaries_pdadcs(ah, chan, |
| pRawDataset, pCalBChans, |
| numPiers, pdGainOverlap_t2, |
| &tMinCalPower, gainBoundaries, |
| pdadcValues, numXpdGain); |
| |
| if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) { |
| REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset, |
| SM(pdGainOverlap_t2, |
| AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | |
| SM(gainBoundaries[0], |
| AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) | |
| SM(gainBoundaries[1], |
| AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) | |
| SM(gainBoundaries[2], |
| AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) | |
| SM(gainBoundaries[3], |
| AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4)); |
| } |
| |
| regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset; |
| for (j = 0; j < 32; j++) { |
| reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) | |
| ((pdadcValues[4 * j + 1] & 0xFF) << 8) | |
| ((pdadcValues[4 * j + 2] & 0xFF) << 16)| |
| ((pdadcValues[4 * j + 3] & 0xFF) << 24); |
| REG_WRITE(ah, regOffset, reg32); |
| |
| ARN_DBG((ARN_DBG_REG_IO, |
| "PDADC (%d,%4x): %4.4x %8.8x\n", |
| i, regChainOffset, regOffset, |
| reg32)); |
| ARN_DBG((ARN_DBG_REG_IO, |
| "PDADC: Chain %d | " |
| "PDADC %3d Value %3d | " |
| "PDADC %3d Value %3d | " |
| "PDADC %3d Value %3d | " |
| "PDADC %3d Value %3d |\n", |
| i, 4 * j, pdadcValues[4 * j], |
| 4 * j + 1, pdadcValues[4 * j + 1], |
| 4 * j + 2, pdadcValues[4 * j + 2], |
| 4 * j + 3, |
| pdadcValues[4 * j + 3])); |
| |
| regOffset += 4; |
| } |
| } |
| } |
| |
| *pTxPowerIndexOffset = 0; |
| |
| return (B_TRUE); |
| } |
| |
| static boolean_t |
| ath9k_hw_set_def_power_per_rate_table(struct ath_hal *ah, |
| struct ath9k_channel *chan, |
| int16_t *ratesArray, |
| uint16_t cfgCtl, |
| uint16_t AntennaReduction, |
| uint16_t twiceMaxRegulatoryPower, |
| uint16_t powerLimit) |
| { |
| #define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6 /* 10*log10(2)*2 */ |
| #define REDUCE_SCALED_POWER_BY_THREE_CHAIN 10 /* 10*log10(3)*2 */ |
| struct ath_hal_5416 *ahp = AH5416(ah); |
| struct ar5416_eeprom_def *pEepData = &ahp->ah_eeprom.def; |
| uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER; |
| static const uint16_t tpScaleReductionTable[5] = |
| { 0, 3, 6, 9, AR5416_MAX_RATE_POWER }; |
| |
| int i; |
| int8_t twiceLargestAntenna; |
| struct cal_ctl_data *rep; |
| struct cal_target_power_leg targetPowerOfdm, targetPowerCck = { |
| 0, { 0, 0, 0, 0} |
| }; |
| struct cal_target_power_leg targetPowerOfdmExt = { |
| 0, { 0, 0, 0, 0} }, targetPowerCckExt = { |
| 0, { 0, 0, 0, 0 } |
| }; |
| struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = { |
| 0, {0, 0, 0, 0} |
| }; |
| uint16_t scaledPower = 0, minCtlPower, maxRegAllowedPower; |
| uint16_t ctlModesFor11a[] = |
| { CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40 }; |
| uint16_t ctlModesFor11g[] = |
| { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, |
| CTL_2GHT40 |
| }; |
| uint16_t numCtlModes, *pCtlMode, ctlMode, freq; |
| struct chan_centers centers; |
| int tx_chainmask; |
| uint16_t twiceMinEdgePower; |
| |
| tx_chainmask = ahp->ah_txchainmask; |
| |
| ath9k_hw_get_channel_centers(ah, chan, ¢ers); |
| |
| twiceLargestAntenna = max( |
| pEepData->modalHeader |
| [IS_CHAN_2GHZ(chan)].antennaGainCh[0], |
| pEepData->modalHeader |
| [IS_CHAN_2GHZ(chan)].antennaGainCh[1]); |
| |
| twiceLargestAntenna = |
| max((uint8_t)twiceLargestAntenna, |
| pEepData->modalHeader |
| [IS_CHAN_2GHZ(chan)].antennaGainCh[2]); |
| |
| twiceLargestAntenna = |
| (int16_t)min(AntennaReduction - twiceLargestAntenna, 0); |
| |
| maxRegAllowedPower = |
| twiceMaxRegulatoryPower + twiceLargestAntenna; |
| |
| if (ah->ah_tpScale != ATH9K_TP_SCALE_MAX) { |
| maxRegAllowedPower -= |
| (tpScaleReductionTable[(ah->ah_tpScale)] * 2); |
| } |
| |
| scaledPower = min(powerLimit, maxRegAllowedPower); |
| |
| switch (ar5416_get_ntxchains(tx_chainmask)) { |
| case 1: |
| break; |
| case 2: |
| scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN; |
| break; |
| case 3: |
| scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN; |
| break; |
| } |
| |
| scaledPower = max((uint16_t)0, scaledPower); |
| |
| if (IS_CHAN_2GHZ(chan)) { |
| numCtlModes = ARRAY_SIZE(ctlModesFor11g) - |
| SUB_NUM_CTL_MODES_AT_2G_40; |
| pCtlMode = ctlModesFor11g; |
| |
| ath9k_hw_get_legacy_target_powers(ah, chan, |
| pEepData->calTargetPowerCck, |
| AR5416_NUM_2G_CCK_TARGET_POWERS, |
| &targetPowerCck, 4, B_FALSE); |
| ath9k_hw_get_legacy_target_powers(ah, chan, |
| pEepData->calTargetPower2G, |
| AR5416_NUM_2G_20_TARGET_POWERS, |
| &targetPowerOfdm, 4, B_FALSE); |
| ath9k_hw_get_target_powers(ah, chan, |
| pEepData->calTargetPower2GHT20, |
| AR5416_NUM_2G_20_TARGET_POWERS, |
| &targetPowerHt20, 8, B_FALSE); |
| |
| if (IS_CHAN_HT40(chan)) { |
| numCtlModes = ARRAY_SIZE(ctlModesFor11g); |
| ath9k_hw_get_target_powers(ah, chan, |
| pEepData->calTargetPower2GHT40, |
| AR5416_NUM_2G_40_TARGET_POWERS, |
| &targetPowerHt40, 8, B_TRUE); |
| ath9k_hw_get_legacy_target_powers(ah, chan, |
| pEepData->calTargetPowerCck, |
| AR5416_NUM_2G_CCK_TARGET_POWERS, |
| &targetPowerCckExt, 4, B_TRUE); |
| ath9k_hw_get_legacy_target_powers(ah, chan, |
| pEepData->calTargetPower2G, |
| AR5416_NUM_2G_20_TARGET_POWERS, |
| &targetPowerOfdmExt, 4, B_TRUE); |
| } |
| } else { |
| numCtlModes = ARRAY_SIZE(ctlModesFor11a) - |
| SUB_NUM_CTL_MODES_AT_5G_40; |
| pCtlMode = ctlModesFor11a; |
| |
| ath9k_hw_get_legacy_target_powers(ah, chan, |
| pEepData->calTargetPower5G, |
| AR5416_NUM_5G_20_TARGET_POWERS, |
| &targetPowerOfdm, 4, B_FALSE); |
| ath9k_hw_get_target_powers(ah, chan, |
| pEepData->calTargetPower5GHT20, |
| AR5416_NUM_5G_20_TARGET_POWERS, |
| &targetPowerHt20, 8, B_FALSE); |
| |
| if (IS_CHAN_HT40(chan)) { |
| numCtlModes = ARRAY_SIZE(ctlModesFor11a); |
| ath9k_hw_get_target_powers(ah, chan, |
| pEepData->calTargetPower5GHT40, |
| AR5416_NUM_5G_40_TARGET_POWERS, |
| &targetPowerHt40, 8, B_TRUE); |
| ath9k_hw_get_legacy_target_powers(ah, chan, |
| pEepData->calTargetPower5G, |
| AR5416_NUM_5G_20_TARGET_POWERS, |
| &targetPowerOfdmExt, 4, B_TRUE); |
| } |
| } |
| |
| for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) { |
| boolean_t isHt40CtlMode = |
| (pCtlMode[ctlMode] == CTL_5GHT40) || |
| (pCtlMode[ctlMode] == CTL_2GHT40); |
| if (isHt40CtlMode) |
| freq = centers.synth_center; |
| else if (pCtlMode[ctlMode] & EXT_ADDITIVE) |
| freq = centers.ext_center; |
| else |
| freq = centers.ctl_center; |
| |
| if (ar5416_get_eep_ver(ahp) == 14 && |
| ar5416_get_eep_rev(ahp) <= 2) |
| twiceMaxEdgePower = AR5416_MAX_RATE_POWER; |
| |
| ARN_DBG((ARN_DBG_EEPROM, "arn: " |
| "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, " |
| "EXT_ADDITIVE %d\n", |
| ctlMode, numCtlModes, isHt40CtlMode, |
| (pCtlMode[ctlMode] & EXT_ADDITIVE))); |
| |
| for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; |
| i++) { |
| |
| ARN_DBG((ARN_DBG_EEPROM, "arn: " |
| "LOOP-Ctlidx %d: cfgCtl 0x%2.2x " |
| "pCtlMode 0x%2.2x ctlIndex 0x%2.2x " |
| "chan %d\n", |
| i, cfgCtl, pCtlMode[ctlMode], |
| pEepData->ctlIndex[i], chan->channel)); |
| |
| if ((((cfgCtl & ~CTL_MODE_M) | |
| (pCtlMode[ctlMode] & CTL_MODE_M)) == |
| pEepData->ctlIndex[i]) || |
| (((cfgCtl & ~CTL_MODE_M) | |
| (pCtlMode[ctlMode] & CTL_MODE_M)) == |
| ((pEepData->ctlIndex[i] & CTL_MODE_M) | |
| SD_NO_CTL))) { |
| rep = &(pEepData->ctlData[i]); |
| |
| twiceMinEdgePower = |
| ath9k_hw_get_max_edge_power(freq, |
| rep->ctlEdges[ar5416_get_ntxchains |
| (tx_chainmask) - 1], |
| IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES); |
| |
| ARN_DBG((ARN_DBG_EEPROM, "arn: " |
| "MATCH-EE_IDX %d: ch %d is2 %d " |
| "2xMinEdge %d chainmask %d chains %d\n", |
| i, freq, IS_CHAN_2GHZ(chan), |
| twiceMinEdgePower, tx_chainmask, |
| ar5416_get_ntxchains(tx_chainmask))); |
| |
| if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) { |
| twiceMaxEdgePower = |
| min(twiceMaxEdgePower, |
| twiceMinEdgePower); |
| } else { |
| twiceMaxEdgePower = twiceMinEdgePower; |
| break; |
| } |
| } |
| } |
| |
| minCtlPower = min(twiceMaxEdgePower, scaledPower); |
| |
| ARN_DBG((ARN_DBG_EEPROM, "arn: " |
| "SEL-Min ctlMode %d pCtlMode %d " |
| "2xMaxEdge %d sP %d minCtlPwr %d\n", |
| ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower, |
| scaledPower, minCtlPower)); |
| |
| switch (pCtlMode[ctlMode]) { |
| case CTL_11B: |
| for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); |
| i++) { |
| targetPowerCck.tPow2x[i] = |
| min((uint16_t)targetPowerCck.tPow2x[i], |
| minCtlPower); |
| } |
| break; |
| case CTL_11A: |
| case CTL_11G: |
| for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); |
| i++) { |
| targetPowerOfdm.tPow2x[i] = |
| min((uint16_t)targetPowerOfdm.tPow2x[i], |
| minCtlPower); |
| } |
| break; |
| case CTL_5GHT20: |
| case CTL_2GHT20: |
| for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); |
| i++) { |
| targetPowerHt20.tPow2x[i] = |
| min((uint16_t)targetPowerHt20.tPow2x[i], |
| minCtlPower); |
| } |
| break; |
| case CTL_11B_EXT: |
| targetPowerCckExt.tPow2x[0] = |
| min((uint16_t)targetPowerCckExt.tPow2x[0], |
| minCtlPower); |
| break; |
| case CTL_11A_EXT: |
| case CTL_11G_EXT: |
| targetPowerOfdmExt.tPow2x[0] = |
| min((uint16_t)targetPowerOfdmExt.tPow2x[0], |
| minCtlPower); |
| break; |
| case CTL_5GHT40: |
| case CTL_2GHT40: |
| for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); |
| i++) { |
| targetPowerHt40.tPow2x[i] = |
| min((uint16_t)targetPowerHt40.tPow2x[i], |
| minCtlPower); |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| |
| ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] = |
| ratesArray[rate18mb] = ratesArray[rate24mb] = |
| targetPowerOfdm.tPow2x[0]; |
| ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1]; |
| ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2]; |
| ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3]; |
| ratesArray[rateXr] = targetPowerOfdm.tPow2x[0]; |
| |
| for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) |
| ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i]; |
| |
| if (IS_CHAN_2GHZ(chan)) { |
| ratesArray[rate1l] = targetPowerCck.tPow2x[0]; |
| ratesArray[rate2s] = ratesArray[rate2l] = |
| targetPowerCck.tPow2x[1]; |
| ratesArray[rate5_5s] = ratesArray[rate5_5l] = |
| targetPowerCck.tPow2x[2]; |
| ; |
| ratesArray[rate11s] = ratesArray[rate11l] = |
| targetPowerCck.tPow2x[3]; |
| ; |
| } |
| if (IS_CHAN_HT40(chan)) { |
| for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) { |
| ratesArray[rateHt40_0 + i] = |
| targetPowerHt40.tPow2x[i]; |
| } |
| ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0]; |
| ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0]; |
| ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0]; |
| if (IS_CHAN_2GHZ(chan)) { |
| ratesArray[rateExtCck] = |
| targetPowerCckExt.tPow2x[0]; |
| } |
| } |
| return (B_TRUE); |
| } |
| |
| static boolean_t |
| ath9k_hw_set_4k_power_per_rate_table(struct ath_hal *ah, |
| struct ath9k_channel *chan, |
| int16_t *ratesArray, |
| uint16_t cfgCtl, |
| uint16_t AntennaReduction, |
| uint16_t twiceMaxRegulatoryPower, |
| uint16_t powerLimit) |
| { |
| struct ath_hal_5416 *ahp = AH5416(ah); |
| struct ar5416_eeprom_4k *pEepData = &ahp->ah_eeprom.map4k; |
| uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER; |
| static const uint16_t tpScaleReductionTable[5] = |
| { 0, 3, 6, 9, AR5416_MAX_RATE_POWER }; |
| |
| int i; |
| int16_t twiceLargestAntenna; |
| struct cal_ctl_data_4k *rep; |
| struct cal_target_power_leg targetPowerOfdm, targetPowerCck = { |
| 0, { 0, 0, 0, 0} |
| }; |
| struct cal_target_power_leg targetPowerOfdmExt = { |
| 0, { 0, 0, 0, 0} }, targetPowerCckExt = { |
| 0, { 0, 0, 0, 0 } |
| }; |
| struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = { |
| 0, {0, 0, 0, 0} |
| }; |
| uint16_t scaledPower = 0, minCtlPower, maxRegAllowedPower; |
| uint16_t ctlModesFor11g[] = |
| { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, |
| CTL_2GHT40 |
| }; |
| uint16_t numCtlModes, *pCtlMode, ctlMode, freq; |
| struct chan_centers centers; |
| int tx_chainmask; |
| uint16_t twiceMinEdgePower; |
| |
| tx_chainmask = ahp->ah_txchainmask; |
| |
| ath9k_hw_get_channel_centers(ah, chan, ¢ers); |
| |
| twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0]; |
| |
| twiceLargestAntenna = |
| (int16_t)min(AntennaReduction - twiceLargestAntenna, 0); |
| |
| maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna; |
| |
| if (ah->ah_tpScale != ATH9K_TP_SCALE_MAX) { |
| maxRegAllowedPower -= |
| (tpScaleReductionTable[(ah->ah_tpScale)] * 2); |
| } |
| |
| scaledPower = min(powerLimit, maxRegAllowedPower); |
| scaledPower = max((uint16_t)0, scaledPower); |
| |
| numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; |
| pCtlMode = ctlModesFor11g; |
| |
| ath9k_hw_get_legacy_target_powers(ah, chan, |
| pEepData->calTargetPowerCck, |
| AR5416_NUM_2G_CCK_TARGET_POWERS, |
| &targetPowerCck, 4, B_FALSE); |
| ath9k_hw_get_legacy_target_powers(ah, chan, |
| pEepData->calTargetPower2G, |
| AR5416_NUM_2G_20_TARGET_POWERS, |
| &targetPowerOfdm, 4, B_FALSE); |
| ath9k_hw_get_target_powers(ah, chan, |
| pEepData->calTargetPower2GHT20, |
| AR5416_NUM_2G_20_TARGET_POWERS, |
| &targetPowerHt20, 8, B_FALSE); |
| |
| if (IS_CHAN_HT40(chan)) { |
| numCtlModes = ARRAY_SIZE(ctlModesFor11g); |
| ath9k_hw_get_target_powers(ah, chan, |
| pEepData->calTargetPower2GHT40, |
| AR5416_NUM_2G_40_TARGET_POWERS, |
| &targetPowerHt40, 8, B_TRUE); |
| ath9k_hw_get_legacy_target_powers(ah, chan, |
| pEepData->calTargetPowerCck, |
| AR5416_NUM_2G_CCK_TARGET_POWERS, |
| &targetPowerCckExt, 4, B_TRUE); |
| ath9k_hw_get_legacy_target_powers(ah, chan, |
| pEepData->calTargetPower2G, |
| AR5416_NUM_2G_20_TARGET_POWERS, |
| &targetPowerOfdmExt, 4, B_TRUE); |
| } |
| |
| for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) { |
| boolean_t isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) || |
| (pCtlMode[ctlMode] == CTL_2GHT40); |
| if (isHt40CtlMode) |
| freq = centers.synth_center; |
| else if (pCtlMode[ctlMode] & EXT_ADDITIVE) |
| freq = centers.ext_center; |
| else |
| freq = centers.ctl_center; |
| |
| if (ar5416_get_eep_ver(ahp) == 14 && |
| ar5416_get_eep_rev(ahp) <= 2) |
| twiceMaxEdgePower = AR5416_MAX_RATE_POWER; |
| |
| ARN_DBG((ARN_DBG_POWER_MGMT, |
| "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, " |
| "EXT_ADDITIVE %d\n", |
| ctlMode, numCtlModes, isHt40CtlMode, |
| (pCtlMode[ctlMode] & EXT_ADDITIVE))); |
| |
| for (i = 0; (i < AR5416_NUM_CTLS) && |
| pEepData->ctlIndex[i]; i++) { |
| ARN_DBG((ARN_DBG_POWER_MGMT, |
| " LOOP-Ctlidx %d: cfgCtl 0x%2.2x " |
| "pCtlMode 0x%2.2x ctlIndex 0x%2.2x " |
| "chan %d\n", |
| i, cfgCtl, pCtlMode[ctlMode], |
| pEepData->ctlIndex[i], chan->channel)); |
| |
| if ((((cfgCtl & ~CTL_MODE_M) | |
| (pCtlMode[ctlMode] & CTL_MODE_M)) == |
| pEepData->ctlIndex[i]) || |
| (((cfgCtl & ~CTL_MODE_M) | |
| (pCtlMode[ctlMode] & CTL_MODE_M)) == |
| ((pEepData->ctlIndex[i] & CTL_MODE_M) | |
| SD_NO_CTL))) { |
| rep = &(pEepData->ctlData[i]); |
| |
| twiceMinEdgePower = |
| ath9k_hw_get_max_edge_power(freq, |
| rep->ctlEdges[ar5416_get_ntxchains |
| (tx_chainmask) - 1], |
| IS_CHAN_2GHZ(chan), |
| AR5416_EEP4K_NUM_BAND_EDGES); |
| |
| ARN_DBG((ARN_DBG_POWER_MGMT, |
| " MATCH-EE_IDX %d: ch %d is2 %d " |
| "2xMinEdge %d chainmask %d chains %d\n", |
| i, freq, IS_CHAN_2GHZ(chan), |
| twiceMinEdgePower, tx_chainmask, |
| ar5416_get_ntxchains |
| (tx_chainmask))); |
| if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) { |
| twiceMaxEdgePower = |
| min(twiceMaxEdgePower, |
| twiceMinEdgePower); |
| } else { |
| twiceMaxEdgePower = twiceMinEdgePower; |
| break; |
| } |
| } |
| } |
| |
| minCtlPower = (uint8_t)min(twiceMaxEdgePower, scaledPower); |
| |
| ARN_DBG((ARN_DBG_POWER_MGMT, |
| " SEL-Min ctlMode %d pCtlMode %d " |
| "2xMaxEdge %d sP %d minCtlPwr %d\n", |
| ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower, |
| scaledPower, minCtlPower)); |
| |
| switch (pCtlMode[ctlMode]) { |
| case CTL_11B: |
| for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); |
| i++) { |
| targetPowerCck.tPow2x[i] = |
| min((uint16_t)targetPowerCck.tPow2x[i], |
| minCtlPower); |
| } |
| break; |
| case CTL_11G: |
| for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); |
| i++) { |
| targetPowerOfdm.tPow2x[i] = |
| min((uint16_t)targetPowerOfdm.tPow2x[i], |
| minCtlPower); |
| } |
| break; |
| case CTL_2GHT20: |
| for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); |
| i++) { |
| targetPowerHt20.tPow2x[i] = |
| min((uint16_t)targetPowerHt20.tPow2x[i], |
| minCtlPower); |
| } |
| break; |
| case CTL_11B_EXT: |
| targetPowerCckExt.tPow2x[0] = min((uint16_t) |
| targetPowerCckExt.tPow2x[0], |
| minCtlPower); |
| break; |
| case CTL_11G_EXT: |
| targetPowerOfdmExt.tPow2x[0] = min((uint16_t) |
| targetPowerOfdmExt.tPow2x[0], |
| minCtlPower); |
| break; |
| case CTL_2GHT40: |
| for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); |
| i++) { |
| targetPowerHt40.tPow2x[i] = |
| min((uint16_t)targetPowerHt40.tPow2x[i], |
| minCtlPower); |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| |
| ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] = |
| ratesArray[rate18mb] = ratesArray[rate24mb] = |
| targetPowerOfdm.tPow2x[0]; |
| ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1]; |
| ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2]; |
| ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3]; |
| ratesArray[rateXr] = targetPowerOfdm.tPow2x[0]; |
| |
| for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) |
| ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i]; |
| |
| ratesArray[rate1l] = targetPowerCck.tPow2x[0]; |
| ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1]; |
| ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2]; |
| ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3]; |
| |
| if (IS_CHAN_HT40(chan)) { |
| for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) { |
| ratesArray[rateHt40_0 + i] = |
| targetPowerHt40.tPow2x[i]; |
| } |
| ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0]; |
| ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0]; |
| ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0]; |
| ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0]; |
| } |
| return (B_TRUE); |
| } |
| |
| static int |
| ath9k_hw_def_set_txpower(struct ath_hal *ah, struct ath9k_channel *chan, |
| uint16_t cfgCtl, uint8_t twiceAntennaReduction, |
| uint8_t twiceMaxRegulatoryPower, uint8_t powerLimit) |
| { |
| struct ath_hal_5416 *ahp = AH5416(ah); |
| struct ar5416_eeprom_def *pEepData = &ahp->ah_eeprom.def; |
| struct modal_eep_header *pModal = |
| &(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]); |
| int16_t ratesArray[Ar5416RateSize]; |
| int16_t txPowerIndexOffset = 0; |
| uint8_t ht40PowerIncForPdadc = 2; |
| int i; |
| |
| (void) memset(ratesArray, 0, sizeof (ratesArray)); |
| |
| if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= |
| AR5416_EEP_MINOR_VER_2) { |
| ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc; |
| } |
| |
| if (!ath9k_hw_set_def_power_per_rate_table(ah, chan, |
| &ratesArray[0], cfgCtl, |
| twiceAntennaReduction, |
| twiceMaxRegulatoryPower, |
| powerLimit)) { |
| |
| ARN_DBG((ARN_DBG_EEPROM, |
| "ath9k_hw_set_txpower: unable to set " |
| "tx power per rate table\n")); |
| |
| return (EIO); |
| } |
| |
| if (!ath9k_hw_set_def_power_cal_table(ah, chan, &txPowerIndexOffset)) { |
| ARN_DBG((ARN_DBG_EEPROM, "ath9k: " |
| "ath9k_hw_set_txpower: unable to set power table\n")); |
| return (EIO); |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(ratesArray); i++) { |
| ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]); |
| if (ratesArray[i] > AR5416_MAX_RATE_POWER) |
| ratesArray[i] = AR5416_MAX_RATE_POWER; |
| } |
| |
| if (AR_SREV_9280_10_OR_LATER(ah)) { |
| for (i = 0; i < Ar5416RateSize; i++) |
| ratesArray[i] -= AR5416_PWR_TABLE_OFFSET * 2; |
| } |
| |
| REG_WRITE(ah, AR_PHY_POWER_TX_RATE1, |
| ATH9K_POW_SM(ratesArray[rate18mb], 24) | |
| ATH9K_POW_SM(ratesArray[rate12mb], 16) | |
| ATH9K_POW_SM(ratesArray[rate9mb], 8) | |
| ATH9K_POW_SM(ratesArray[rate6mb], 0)); |
| REG_WRITE(ah, AR_PHY_POWER_TX_RATE2, |
| ATH9K_POW_SM(ratesArray[rate54mb], 24) | |
| ATH9K_POW_SM(ratesArray[rate48mb], 16) | |
| ATH9K_POW_SM(ratesArray[rate36mb], 8) | |
| ATH9K_POW_SM(ratesArray[rate24mb], 0)); |
| |
| if (IS_CHAN_2GHZ(chan)) { |
| REG_WRITE(ah, AR_PHY_POWER_TX_RATE3, |
| ATH9K_POW_SM(ratesArray[rate2s], 24) | |
| ATH9K_POW_SM(ratesArray[rate2l], 16) | |
| ATH9K_POW_SM(ratesArray[rateXr], 8) | |
| ATH9K_POW_SM(ratesArray[rate1l], 0)); |
| REG_WRITE(ah, AR_PHY_POWER_TX_RATE4, |
| ATH9K_POW_SM(ratesArray[rate11s], 24) | |
| ATH9K_POW_SM(ratesArray[rate11l], 16) | |
| ATH9K_POW_SM(ratesArray[rate5_5s], 8) | |
| ATH9K_POW_SM(ratesArray[rate5_5l], 0)); |
| } |
| |
| REG_WRITE(ah, AR_PHY_POWER_TX_RATE5, |
| ATH9K_POW_SM(ratesArray[rateHt20_3], 24) | |
| ATH9K_POW_SM(ratesArray[rateHt20_2], 16) | |
| ATH9K_POW_SM(ratesArray[rateHt20_1], 8) | |
| ATH9K_POW_SM(ratesArray[rateHt20_0], 0)); |
| REG_WRITE(ah, AR_PHY_POWER_TX_RATE6, |
| ATH9K_POW_SM(ratesArray[rateHt20_7], 24) | |
| ATH9K_POW_SM(ratesArray[rateHt20_6], 16) | |
| ATH9K_POW_SM(ratesArray[rateHt20_5], 8) | |
| ATH9K_POW_SM(ratesArray[rateHt20_4], 0)); |
| |
| if (IS_CHAN_HT40(chan)) { |
| REG_WRITE(ah, AR_PHY_POWER_TX_RATE7, |
| ATH9K_POW_SM(ratesArray[rateHt40_3] + |
| ht40PowerIncForPdadc, 24) | |
| ATH9K_POW_SM(ratesArray[rateHt40_2] + |
| ht40PowerIncForPdadc, 16) | |
| ATH9K_POW_SM(ratesArray[rateHt40_1] + |
| ht40PowerIncForPdadc, 8) | |
| ATH9K_POW_SM(ratesArray[rateHt40_0] + |
| ht40PowerIncForPdadc, 0)); |
| REG_WRITE(ah, AR_PHY_POWER_TX_RATE8, |
| ATH9K_POW_SM(ratesArray[rateHt40_7] + |
| ht40PowerIncForPdadc, 24) | |
| ATH9K_POW_SM(ratesArray[rateHt40_6] + |
| ht40PowerIncForPdadc, 16) | |
| ATH9K_POW_SM(ratesArray[rateHt40_5] + |
| ht40PowerIncForPdadc, 8) | |
| ATH9K_POW_SM(ratesArray[rateHt40_4] + |
| ht40PowerIncForPdadc, 0)); |
| |
| REG_WRITE(ah, AR_PHY_POWER_TX_RATE9, |
| ATH9K_POW_SM(ratesArray[rateExtOfdm], 24) | |
| ATH9K_POW_SM(ratesArray[rateExtCck], 16) | |
| ATH9K_POW_SM(ratesArray[rateDupOfdm], 8) | |
| ATH9K_POW_SM(ratesArray[rateDupCck], 0)); |
| } |
| |
| REG_WRITE(ah, AR_PHY_POWER_TX_SUB, |
| ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6) | |
| ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0)); |
| |
| i = rate6mb; |
| |
| if (IS_CHAN_HT40(chan)) |
| i = rateHt40_0; |
| else if (IS_CHAN_HT20(chan)) |
| i = rateHt20_0; |
| |
| if (AR_SREV_9280_10_OR_LATER(ah)) |
| ah->ah_maxPowerLevel = |
| ratesArray[i] + AR5416_PWR_TABLE_OFFSET * 2; |
| else |
| ah->ah_maxPowerLevel = ratesArray[i]; |
| |
| return (0); |
| } |
| |
| static int |
| ath9k_hw_4k_set_txpower(struct ath_hal *ah, |
| struct ath9k_channel *chan, |
| uint16_t cfgCtl, |
| uint8_t twiceAntennaReduction, |
| uint8_t twiceMaxRegulatoryPower, |
| uint8_t powerLimit) |
| { |
| struct ath_hal_5416 *ahp = AH5416(ah); |
| struct ar5416_eeprom_4k *pEepData = &ahp->ah_eeprom.map4k; |
| struct modal_eep_4k_header *pModal = &pEepData->modalHeader; |
| int16_t ratesArray[Ar5416RateSize]; |
| int16_t txPowerIndexOffset = 0; |
| uint8_t ht40PowerIncForPdadc = 2; |
| int i; |
| |
| (void) memset(ratesArray, 0, sizeof (ratesArray)); |
| |
| if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= |
| AR5416_EEP_MINOR_VER_2) { |
| ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc; |
| } |
| |
| if (!ath9k_hw_set_4k_power_per_rate_table(ah, chan, |
| &ratesArray[0], cfgCtl, |
| twiceAntennaReduction, |
| twiceMaxRegulatoryPower, |
| powerLimit)) { |
| ARN_DBG((ARN_DBG_EEPROM, |
| "ath9k_hw_set_txpower: unable to set " |
| "tx power per rate table\n")); |
| return (EIO); |
| } |
| |
| if (!ath9k_hw_set_4k_power_cal_table(ah, chan, &txPowerIndexOffset)) { |
| ARN_DBG((ARN_DBG_EEPROM, |
| "ath9k_hw_set_txpower: unable to set power table\n")); |
| return (EIO); |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(ratesArray); i++) { |
| ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]); |
| if (ratesArray[i] > AR5416_MAX_RATE_POWER) |
| ratesArray[i] = AR5416_MAX_RATE_POWER; |
| } |
| |
| if (AR_SREV_9280_10_OR_LATER(ah)) { |
| for (i = 0; i < Ar5416RateSize; i++) |
| ratesArray[i] -= AR5416_PWR_TABLE_OFFSET * 2; |
| } |
| |
| REG_WRITE(ah, AR_PHY_POWER_TX_RATE1, |
| ATH9K_POW_SM(ratesArray[rate18mb], 24) | |
| ATH9K_POW_SM(ratesArray[rate12mb], 16) | |
| ATH9K_POW_SM(ratesArray[rate9mb], 8) | |
| ATH9K_POW_SM(ratesArray[rate6mb], 0)); |
| REG_WRITE(ah, AR_PHY_POWER_TX_RATE2, |
| ATH9K_POW_SM(ratesArray[rate54mb], 24) | |
| ATH9K_POW_SM(ratesArray[rate48mb], 16) | |
| ATH9K_POW_SM(ratesArray[rate36mb], 8) | |
| ATH9K_POW_SM(ratesArray[rate24mb], 0)); |
| |
| if (IS_CHAN_2GHZ(chan)) { |
| REG_WRITE(ah, AR_PHY_POWER_TX_RATE3, |
| ATH9K_POW_SM(ratesArray[rate2s], 24) | |
| ATH9K_POW_SM(ratesArray[rate2l], 16) | |
| ATH9K_POW_SM(ratesArray[rateXr], 8) | |
| ATH9K_POW_SM(ratesArray[rate1l], 0)); |
| REG_WRITE(ah, AR_PHY_POWER_TX_RATE4, |
| ATH9K_POW_SM(ratesArray[rate11s], 24) | |
| ATH9K_POW_SM(ratesArray[rate11l], 16) | |
| ATH9K_POW_SM(ratesArray[rate5_5s], 8) | |
| ATH9K_POW_SM(ratesArray[rate5_5l], 0)); |
| } |
| |
| REG_WRITE(ah, AR_PHY_POWER_TX_RATE5, |
| ATH9K_POW_SM(ratesArray[rateHt20_3], 24) | |
| ATH9K_POW_SM(ratesArray[rateHt20_2], 16) | |
| ATH9K_POW_SM(ratesArray[rateHt20_1], 8) | |
| ATH9K_POW_SM(ratesArray[rateHt20_0], 0)); |
| REG_WRITE(ah, AR_PHY_POWER_TX_RATE6, |
| ATH9K_POW_SM(ratesArray[rateHt20_7], 24) | |
| ATH9K_POW_SM(ratesArray[rateHt20_6], 16) | |
| ATH9K_POW_SM(ratesArray[rateHt20_5], 8) | |
| ATH9K_POW_SM(ratesArray[rateHt20_4], 0)); |
| |
| if (IS_CHAN_HT40(chan)) { |
| REG_WRITE(ah, AR_PHY_POWER_TX_RATE7, |
| ATH9K_POW_SM(ratesArray[rateHt40_3] + |
| ht40PowerIncForPdadc, 24) | |
| ATH9K_POW_SM(ratesArray[rateHt40_2] + |
| ht40PowerIncForPdadc, 16) | |
| ATH9K_POW_SM(ratesArray[rateHt40_1] + |
| ht40PowerIncForPdadc, 8) | |
| ATH9K_POW_SM(ratesArray[rateHt40_0] + |
| ht40PowerIncForPdadc, 0)); |
| |
| REG_WRITE(ah, AR_PHY_POWER_TX_RATE8, |
| ATH9K_POW_SM(ratesArray[rateHt40_7] + |
| ht40PowerIncForPdadc, 24) | |
| ATH9K_POW_SM(ratesArray[rateHt40_6] + |
| ht40PowerIncForPdadc, 16) | |
| ATH9K_POW_SM(ratesArray[rateHt40_5] + |
| ht40PowerIncForPdadc, 8) | |
| ATH9K_POW_SM(ratesArray[rateHt40_4] + |
| ht40PowerIncForPdadc, 0)); |
| |
| REG_WRITE(ah, AR_PHY_POWER_TX_RATE9, |
| ATH9K_POW_SM(ratesArray[rateExtOfdm], 24) | |
| ATH9K_POW_SM(ratesArray[rateExtCck], 16) | |
| ATH9K_POW_SM(ratesArray[rateDupOfdm], 8) | |
| ATH9K_POW_SM(ratesArray[rateDupCck], 0)); |
| } |
| |
| i = rate6mb; |
| |
| if (IS_CHAN_HT40(chan)) |
| i = rateHt40_0; |
| else if (IS_CHAN_HT20(chan)) |
| i = rateHt20_0; |
| |
| if (AR_SREV_9280_10_OR_LATER(ah)) |
| ah->ah_maxPowerLevel = |
| ratesArray[i] + AR5416_PWR_TABLE_OFFSET * 2; |
| else |
| ah->ah_maxPowerLevel = ratesArray[i]; |
| |
| return (0); |
| } |
| |
| int |
| ath9k_hw_set_txpower(struct ath_hal *ah, |
| struct ath9k_channel *chan, |
| uint16_t cfgCtl, |
| uint8_t twiceAntennaReduction, |
| uint8_t twiceMaxRegulatoryPower, |
| uint8_t powerLimit) |
| { |
| struct ath_hal_5416 *ahp = AH5416(ah); |
| int val; |
| |
| if (ahp->ah_eep_map == EEP_MAP_DEFAULT) |
| val = ath9k_hw_def_set_txpower(ah, chan, cfgCtl, |
| twiceAntennaReduction, twiceMaxRegulatoryPower, |
| powerLimit); |
| else if (ahp->ah_eep_map == EEP_MAP_4KBITS) |
| val = ath9k_hw_4k_set_txpower(ah, chan, cfgCtl, |
| twiceAntennaReduction, twiceMaxRegulatoryPower, |
| powerLimit); |
| return (val); |
| } |
| |
| static void |
| ath9k_hw_set_def_addac(struct ath_hal *ah, struct ath9k_channel *chan) |
| { |
| #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt]) |
| struct modal_eep_header *pModal; |
| struct ath_hal_5416 *ahp = AH5416(ah); |
| struct ar5416_eeprom_def *eep = &ahp->ah_eeprom.def; |
| uint8_t biaslevel; |
| |
| if (ah->ah_macVersion != AR_SREV_VERSION_9160) |
| return; |
| |
| if (ar5416_get_eep_rev(ahp) < AR5416_EEP_MINOR_VER_7) |
| return; |
| |
| pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]); |
| |
| if (pModal->xpaBiasLvl != 0xff) { |
| biaslevel = pModal->xpaBiasLvl; |
| } else { |
| uint16_t resetFreqBin, freqBin, freqCount = 0; |
| struct chan_centers centers; |
| |
| ath9k_hw_get_channel_centers(ah, chan, ¢ers); |
| |
| resetFreqBin = |
| FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)); |
| freqBin = XPA_LVL_FREQ(freqCount) & 0xff; |
| biaslevel = (uint8_t)(XPA_LVL_FREQ(0) >> 14); |
| |
| freqCount++; |
| |
| while (freqCount < 3) { |
| if (XPA_LVL_FREQ(freqCount) == 0x0) |
| break; |
| |
| freqBin = XPA_LVL_FREQ(freqCount) & 0xff; |
| if (resetFreqBin >= freqBin) { |
| biaslevel = |
| (uint8_t) |
| (XPA_LVL_FREQ(freqCount) >> 14); |
| } else { |
| break; |
| } |
| freqCount++; |
| } |
| } |
| |
| if (IS_CHAN_2GHZ(chan)) { |
| INI_RA(&ahp->ah_iniAddac, 7, 1) = |
| (INI_RA(&ahp->ah_iniAddac, 7, 1) & |
| (~0x18)) | biaslevel << 3; |
| } else { |
| INI_RA(&ahp->ah_iniAddac, 6, 1) = |
| (INI_RA(&ahp->ah_iniAddac, 6, 1) & |
| (~0xc0)) | biaslevel << 6; |
| } |
| #undef XPA_LVL_FREQ |
| } |
| |
| /* ARGSUSED */ |
| static void |
| ath9k_hw_set_4k_addac(struct ath_hal *ah, struct ath9k_channel *chan) |
| { |
| struct modal_eep_4k_header *pModal; |
| struct ath_hal_5416 *ahp = AH5416(ah); |
| struct ar5416_eeprom_4k *eep = &ahp->ah_eeprom.map4k; |
| uint8_t biaslevel; |
| |
| if (ah->ah_macVersion != AR_SREV_VERSION_9160) |
| return; |
| |
| if (ar5416_get_eep_rev(ahp) < AR5416_EEP_MINOR_VER_7) |
| return; |
| |
| pModal = &eep->modalHeader; |
| |
| if (pModal->xpaBiasLvl != 0xff) { |
| biaslevel = pModal->xpaBiasLvl; |
| INI_RA(&ahp->ah_iniAddac, 7, 1) = |
| (INI_RA(&ahp->ah_iniAddac, 7, 1) & (~0x18)) | |
| biaslevel << 3; |
| } |
| } |
| |
| void |
| ath9k_hw_set_addac(struct ath_hal *ah, struct ath9k_channel *chan) |
| { |
| struct ath_hal_5416 *ahp = AH5416(ah); |
| |
| if (ahp->ah_eep_map == EEP_MAP_DEFAULT) |
| ath9k_hw_set_def_addac(ah, chan); |
| else if (ahp->ah_eep_map == EEP_MAP_4KBITS) |
| ath9k_hw_set_4k_addac(ah, chan); |
| } |
| |
| /* XXX: Clean me up, make me more legible */ |
| static boolean_t |
| ath9k_hw_eeprom_set_def_board_values(struct ath_hal *ah, |
| struct ath9k_channel *chan) |
| { |
| struct modal_eep_header *pModal; |
| struct ath_hal_5416 *ahp = AH5416(ah); |
| struct ar5416_eeprom_def *eep = &ahp->ah_eeprom.def; |
| int i, regChainOffset; |
| uint8_t txRxAttenLocal; |
| uint16_t ant_config; |
| |
| pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]); |
| |
| txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44; |
| |
| (void) ath9k_hw_get_eeprom_antenna_cfg(ah, chan, 0, &ant_config); |
| REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config); |
| |
| for (i = 0; i < AR5416_MAX_CHAINS; i++) { |
| if (AR_SREV_9280(ah)) { |
| if (i >= 2) |
| break; |
| } |
| |
| if (AR_SREV_5416_V20_OR_LATER(ah) && |
| (ahp->ah_rxchainmask == 5 || ahp->ah_txchainmask == 5) && |
| (i != 0)) |
| regChainOffset = (i == 1) ? 0x2000 : 0x1000; |
| else |
| regChainOffset = i * 0x1000; |
| |
| REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset, |
| pModal->antCtrlChain[i]); |
| |
| REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset, |
| (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) & |
| ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | |
| AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) | |
| SM(pModal->iqCalICh[i], |
| AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) | |
| SM(pModal->iqCalQCh[i], |
| AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF)); |
| |
| if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) { |
| if ((eep->baseEepHeader.version & |
| AR5416_EEP_VER_MINOR_MASK) >= |
| AR5416_EEP_MINOR_VER_3) { |
| txRxAttenLocal = pModal->txRxAttenCh[i]; |
| if (AR_SREV_9280_10_OR_LATER(ah)) { |
| REG_RMW_FIELD(ah, |
| AR_PHY_GAIN_2GHZ + |
| regChainOffset, |
| AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, |
| pModal-> |
| bswMargin[i]); |
| REG_RMW_FIELD(ah, |
| AR_PHY_GAIN_2GHZ + |
| regChainOffset, |
| AR_PHY_GAIN_2GHZ_XATTEN1_DB, |
| pModal-> |
| bswAtten[i]); |
| REG_RMW_FIELD(ah, |
| AR_PHY_GAIN_2GHZ + |
| regChainOffset, |
| AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, |
| pModal-> |
| xatten2Margin[i]); |
| REG_RMW_FIELD(ah, |
| AR_PHY_GAIN_2GHZ + |
| regChainOffset, |
| AR_PHY_GAIN_2GHZ_XATTEN2_DB, |
| pModal-> |
| xatten2Db[i]); |
| } else { |
| REG_WRITE(ah, |
| AR_PHY_GAIN_2GHZ + |
| regChainOffset, |
| (REG_READ(ah, |
| AR_PHY_GAIN_2GHZ + |
| regChainOffset) & |
| ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
| | SM(pModal-> |
| bswMargin[i], |
| AR_PHY_GAIN_2GHZ_BSW_MARGIN)); |
| REG_WRITE(ah, |
| AR_PHY_GAIN_2GHZ + |
| regChainOffset, |
| (REG_READ(ah, |
| AR_PHY_GAIN_2GHZ + |
| regChainOffset) & |
| ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
| | SM(pModal->bswAtten[i], |
| AR_PHY_GAIN_2GHZ_BSW_ATTEN)); |
| } |
| } |
| if (AR_SREV_9280_10_OR_LATER(ah)) { |
| REG_RMW_FIELD(ah, |
| AR_PHY_RXGAIN + |
| regChainOffset, |
| AR9280_PHY_RXGAIN_TXRX_ATTEN, |
| txRxAttenLocal); |
| REG_RMW_FIELD(ah, |
| AR_PHY_RXGAIN + |
| regChainOffset, |
| AR9280_PHY_RXGAIN_TXRX_MARGIN, |
| pModal->rxTxMarginCh[i]); |
| } else { |
| REG_WRITE(ah, |
| AR_PHY_RXGAIN + regChainOffset, |
| (REG_READ(ah, |
| AR_PHY_RXGAIN + |
| regChainOffset) & |
| ~AR_PHY_RXGAIN_TXRX_ATTEN) | |
| SM(txRxAttenLocal, |
| AR_PHY_RXGAIN_TXRX_ATTEN)); |
| REG_WRITE(ah, |
| AR_PHY_GAIN_2GHZ + |
| regChainOffset, |
| (REG_READ(ah, |
| AR_PHY_GAIN_2GHZ + |
| regChainOffset) & |
| ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) | |
| SM(pModal->rxTxMarginCh[i], |
| AR_PHY_GAIN_2GHZ_RXTX_MARGIN)); |
| } |
| } |
| } |
| |
| if (AR_SREV_9280_10_OR_LATER(ah)) { |
| if (IS_CHAN_2GHZ(chan)) { |
| ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0, |
| AR_AN_RF2G1_CH0_OB, |
| AR_AN_RF2G1_CH0_OB_S, |
| pModal->ob); |
| ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0, |
| AR_AN_RF2G1_CH0_DB, |
| AR_AN_RF2G1_CH0_DB_S, |
| pModal->db); |
| ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1, |
| AR_AN_RF2G1_CH1_OB, |
| AR_AN_RF2G1_CH1_OB_S, |
| pModal->ob_ch1); |
| ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1, |
| AR_AN_RF2G1_CH1_DB, |
| AR_AN_RF2G1_CH1_DB_S, |
| pModal->db_ch1); |
| } else { |
| ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0, |
| AR_AN_RF5G1_CH0_OB5, |
| AR_AN_RF5G1_CH0_OB5_S, |
| pModal->ob); |
| ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0, |
| AR_AN_RF5G1_CH0_DB5, |
| AR_AN_RF5G1_CH0_DB5_S, |
| pModal->db); |
| ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1, |
| AR_AN_RF5G1_CH1_OB5, |
| AR_AN_RF5G1_CH1_OB5_S, |
| pModal->ob_ch1); |
| ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1, |
| AR_AN_RF5G1_CH1_DB5, |
| AR_AN_RF5G1_CH1_DB5_S, |
| pModal->db_ch1); |
| } |
| ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2, |
| AR_AN_TOP2_XPABIAS_LVL, |
| AR_AN_TOP2_XPABIAS_LVL_S, |
| pModal->xpaBiasLvl); |
| ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2, |
| AR_AN_TOP2_LOCALBIAS, |
| AR_AN_TOP2_LOCALBIAS_S, |
| pModal->local_bias); |
| |
| ARN_DBG((ARN_DBG_EEPROM, "arn: " |
| "ForceXPAon: %d\n", pModal->force_xpaon)); |
| |
| REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG, |
| pModal->force_xpaon); |
| } |
| |
| REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, |
| pModal->switchSettling); |
| REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, |
| pModal->adcDesiredSize); |
| |
| if (!AR_SREV_9280_10_OR_LATER(ah)) |
| REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, |
| AR_PHY_DESIRED_SZ_PGA, |
| pModal->pgaDesiredSize); |
| |
| REG_WRITE(ah, AR_PHY_RF_CTL4, |
| SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) | |
| SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) | |
| SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) | |
| SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON)); |
| |
| REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON, |
| pModal->txEndToRxOn); |
| if (AR_SREV_9280_10_OR_LATER(ah)) { |
| REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62, |
| pModal->thresh62); |
| REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, |
| AR_PHY_EXT_CCA0_THRESH62, |
| pModal->thresh62); |
| } else { |
| REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62, |
| pModal->thresh62); |
| REG_RMW_FIELD(ah, AR_PHY_EXT_CCA, |
| AR_PHY_EXT_CCA_THRESH62, |
| pModal->thresh62); |
| } |
| |
| if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= |
| AR5416_EEP_MINOR_VER_2) { |
| REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, |
| AR_PHY_TX_END_DATA_START, |
| pModal->txFrameToDataStart); |
| REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON, |
| pModal->txFrameToPaOn); |
| } |
| |
| if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= |
| AR5416_EEP_MINOR_VER_3) { |
| if (IS_CHAN_HT40(chan)) |
| REG_RMW_FIELD(ah, AR_PHY_SETTLING, |
| AR_PHY_SETTLING_SWITCH, |
| pModal->swSettleHt40); |
| } |
| |
| return (B_TRUE); |
| } |
| |
| static boolean_t |
| ath9k_hw_eeprom_set_4k_board_values(struct ath_hal *ah, |
| struct ath9k_channel *chan) |
| { |
| struct modal_eep_4k_header *pModal; |
| struct ath_hal_5416 *ahp = AH5416(ah); |
| struct ar5416_eeprom_4k *eep = &ahp->ah_eeprom.map4k; |
| int regChainOffset; |
| uint8_t txRxAttenLocal; |
| uint16_t ant_config = 0; |
| uint8_t ob[5], db1[5], db2[5]; |
| uint8_t ant_div_control1, ant_div_control2; |
| uint32_t regVal; |
| |
| |
| pModal = &eep->modalHeader; |
| |
| txRxAttenLocal = 23; |
| |
| (void) ath9k_hw_get_eeprom_antenna_cfg(ah, chan, 0, &ant_config); |
| REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config); |
| |
| regChainOffset = 0; |
| REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset, |
| pModal->antCtrlChain[0]); |
| |
| REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset, |
| (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) & |
| ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | |
| AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) | |
| SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) | |
| SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF)); |
| |
| if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= |
| AR5416_EEP_MINOR_VER_3) { |
| txRxAttenLocal = pModal->txRxAttenCh[0]; |
| REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, |
| AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]); |
| REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, |
| AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]); |
| REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, |
| AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, |
| pModal->xatten2Margin[0]); |
| REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, |
| AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]); |
| } |
| |
| REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset, |
| AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal); |
| REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset, |
| AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]); |
| |
| if (AR_SREV_9285_11(ah)) |
| REG_WRITE(ah, AR9285_AN_TOP4, (AR9285_AN_TOP4_DEFAULT | 0x14)); |
| |
| /* Initialize Ant Diversity settings from EEPROM */ |
| if (pModal->version == 3) { |
| ant_div_control1 = ((pModal->ob_234 >> 12) & 0xf); |
| ant_div_control2 = ((pModal->db1_234 >> 12) & 0xf); |
| regVal = REG_READ(ah, 0x99ac); |
| regVal &= (~(0x7f000000)); |
| regVal |= ((ant_div_control1 & 0x1) << 24); |
| regVal |= (((ant_div_control1 >> 1) & 0x1) << 29); |
| regVal |= (((ant_div_control1 >> 2) & 0x1) << 30); |
| regVal |= ((ant_div_control2 & 0x3) << 25); |
| regVal |= (((ant_div_control2 >> 2) & 0x3) << 27); |
| REG_WRITE(ah, 0x99ac, regVal); |
| regVal = REG_READ(ah, 0x99ac); |
| regVal = REG_READ(ah, 0xa208); |
| regVal &= (~(0x1 << 13)); |
| regVal |= (((ant_div_control1 >> 3) & 0x1) << 13); |
| REG_WRITE(ah, 0xa208, regVal); |
| regVal = REG_READ(ah, 0xa208); |
| } |
| |
| if (pModal->version >= 2) { |
| ob[0] = (pModal->ob_01 & 0xf); |
| ob[1] = (pModal->ob_01 >> 4) & 0xf; |
| ob[2] = (pModal->ob_234 & 0xf); |
| ob[3] = ((pModal->ob_234 >> 4) & 0xf); |
| ob[4] = ((pModal->ob_234 >> 8) & 0xf); |
| |
| db1[0] = (pModal->db1_01 & 0xf); |
| db1[1] = ((pModal->db1_01 >> 4) & 0xf); |
| db1[2] = (pModal->db1_234 & 0xf); |
| db1[3] = ((pModal->db1_234 >> 4) & 0xf); |
| db1[4] = ((pModal->db1_234 >> 8) & 0xf); |
| |
| db2[0] = (pModal->db2_01 & 0xf); |
| db2[1] = ((pModal->db2_01 >> 4) & 0xf); |
| db2[2] = (pModal->db2_234 & 0xf); |
| db2[3] = ((pModal->db2_234 >> 4) & 0xf); |
| db2[4] = ((pModal->db2_234 >> 8) & 0xf); |
| |
| } else if (pModal->version == 1) { |
| |
| ARN_DBG((ARN_DBG_EEPROM, |
| "EEPROM Model version is set to 1 \n")); |
| ob[0] = (pModal->ob_01 & 0xf); |
| ob[1] = ob[2] = ob[3] = ob[4] = (pModal->ob_01 >> 4) & 0xf; |
| db1[0] = (pModal->db1_01 & 0xf); |
| db1[1] = db1[2] = db1[3] = db1[4] = |
| ((pModal->db1_01 >> 4) & 0xf); |
| db2[0] = (pModal->db2_01 & 0xf); |
| db2[1] = db2[2] = db2[3] = db2[4] = |
| ((pModal->db2_01 >> 4) & 0xf); |
| } else { |
| int i; |
| for (i = 0; i < 5; i |