| /* |
| * Solaris driver for ethernet cards based on the ADMtek Centaur |
| * |
| * Copyright (c) 2007 by Garrett D'Amore <garrett@damore.org>. |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. Neither the name of the author nor the names of any co-contributors |
| * may be used to endorse or promote products derived from this software |
| * without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS ``AS IS'' |
| * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE |
| * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| * POSSIBILITY OF SUCH DAMAGE. |
| */ |
| /* |
| * Copyright 2010 Sun Microsystems, Inc. All rights reserved. |
| * Use is subject to license terms. |
| */ |
| |
| |
| #include <sys/varargs.h> |
| #include <sys/types.h> |
| #include <sys/modctl.h> |
| #include <sys/conf.h> |
| #include <sys/devops.h> |
| #include <sys/stream.h> |
| #include <sys/strsun.h> |
| #include <sys/cmn_err.h> |
| #include <sys/ethernet.h> |
| #include <sys/kmem.h> |
| #include <sys/time.h> |
| #include <sys/crc32.h> |
| #include <sys/mii.h> |
| #include <sys/miiregs.h> |
| #include <sys/mac.h> |
| #include <sys/mac_ether.h> |
| #include <sys/ddi.h> |
| #include <sys/sunddi.h> |
| #include <sys/vlan.h> |
| |
| #include "afe.h" |
| #include "afeimpl.h" |
| |
| /* |
| * Driver globals. |
| */ |
| |
| /* table of supported devices */ |
| static afe_card_t afe_cards[] = { |
| |
| /* |
| * ADMtek Centaur and Comet |
| */ |
| { 0x1317, 0x0981, "ADMtek AL981", MODEL_COMET }, |
| { 0x1317, 0x0985, "ADMtek AN983", MODEL_CENTAUR }, |
| { 0x1317, 0x1985, "ADMtek AN985", MODEL_CENTAUR }, |
| { 0x1317, 0x9511, "ADMtek ADM9511", MODEL_CENTAUR }, |
| { 0x1317, 0x9513, "ADMtek ADM9513", MODEL_CENTAUR }, |
| /* |
| * Accton just relabels other companies' controllers |
| */ |
| { 0x1113, 0x1216, "Accton EN5251", MODEL_CENTAUR }, |
| /* |
| * Models listed here. |
| */ |
| { 0x10b7, 0x9300, "3Com 3CSOHO100B-TX", MODEL_CENTAUR }, |
| { 0x1113, 0xec02, "SMC SMC1244TX", MODEL_CENTAUR }, |
| { 0x10b8, 0x1255, "SMC SMC1255TX", MODEL_CENTAUR }, |
| { 0x111a, 0x1020, "Siemens SpeedStream PCI 10/100", MODEL_CENTAUR }, |
| { 0x1113, 0x1207, "Accton EN1207F", MODEL_CENTAUR }, |
| { 0x1113, 0x2242, "Accton EN2242", MODEL_CENTAUR }, |
| { 0x1113, 0x2220, "Accton EN2220", MODEL_CENTAUR }, |
| { 0x1113, 0x9216, "3M VOL-N100VF+TX", MODEL_CENTAUR }, |
| { 0x1317, 0x0574, "Linksys LNE100TX", MODEL_CENTAUR }, |
| { 0x1317, 0x0570, "Linksys NC100", MODEL_CENTAUR }, |
| { 0x1385, 0x511a, "Netgear FA511", MODEL_CENTAUR }, |
| { 0x13d1, 0xab02, "AboCom FE2500", MODEL_CENTAUR }, |
| { 0x13d1, 0xab03, "AboCom PCM200", MODEL_CENTAUR }, |
| { 0x13d1, 0xab08, "AboCom FE2500MX", MODEL_CENTAUR }, |
| { 0x1414, 0x0001, "Microsoft MN-120", MODEL_CENTAUR }, |
| { 0x16ec, 0x00ed, "U.S. Robotics USR997900", MODEL_CENTAUR }, |
| { 0x1734, 0x100c, "Fujitsu-Siemens D1961", MODEL_CENTAUR }, |
| { 0x1737, 0xab08, "Linksys PCMPC200", MODEL_CENTAUR }, |
| { 0x1737, 0xab09, "Linksys PCM200", MODEL_CENTAUR }, |
| { 0x17b3, 0xab08, "Hawking PN672TX", MODEL_CENTAUR }, |
| }; |
| |
| #define ETHERVLANMTU (ETHERMAX + 4) |
| |
| /* |
| * Function prototypes |
| */ |
| static int afe_attach(dev_info_t *, ddi_attach_cmd_t); |
| static int afe_detach(dev_info_t *, ddi_detach_cmd_t); |
| static int afe_resume(dev_info_t *); |
| static int afe_quiesce(dev_info_t *); |
| static int afe_m_unicst(void *, const uint8_t *); |
| static int afe_m_multicst(void *, boolean_t, const uint8_t *); |
| static int afe_m_promisc(void *, boolean_t); |
| static mblk_t *afe_m_tx(void *, mblk_t *); |
| static void afe_m_ioctl(void *, queue_t *, mblk_t *); |
| static int afe_m_stat(void *, uint_t, uint64_t *); |
| static int afe_m_start(void *); |
| static void afe_m_stop(void *); |
| static int afe_m_getprop(void *, const char *, mac_prop_id_t, uint_t, |
| void *); |
| static int afe_m_setprop(void *, const char *, mac_prop_id_t, uint_t, |
| const void *); |
| static void afe_m_propinfo(void *, const char *, mac_prop_id_t, |
| mac_prop_info_handle_t); |
| static unsigned afe_intr(caddr_t); |
| static void afe_startmac(afe_t *); |
| static void afe_stopmac(afe_t *); |
| static void afe_resetrings(afe_t *); |
| static boolean_t afe_initialize(afe_t *); |
| static void afe_startall(afe_t *); |
| static void afe_stopall(afe_t *); |
| static void afe_resetall(afe_t *); |
| static afe_txbuf_t *afe_alloctxbuf(afe_t *); |
| static void afe_destroytxbuf(afe_txbuf_t *); |
| static afe_rxbuf_t *afe_allocrxbuf(afe_t *); |
| static void afe_destroyrxbuf(afe_rxbuf_t *); |
| static boolean_t afe_send(afe_t *, mblk_t *); |
| static int afe_allocrxring(afe_t *); |
| static void afe_freerxring(afe_t *); |
| static int afe_alloctxring(afe_t *); |
| static void afe_freetxring(afe_t *); |
| static void afe_error(dev_info_t *, char *, ...); |
| static void afe_setrxfilt(afe_t *); |
| static int afe_watchdog(afe_t *); |
| static uint8_t afe_sromwidth(afe_t *); |
| static uint16_t afe_readsromword(afe_t *, unsigned); |
| static void afe_readsrom(afe_t *, unsigned, unsigned, char *); |
| static void afe_getfactaddr(afe_t *, uchar_t *); |
| static uint8_t afe_miireadbit(afe_t *); |
| static void afe_miiwritebit(afe_t *, uint8_t); |
| static void afe_miitristate(afe_t *); |
| static uint16_t afe_miireadgeneral(afe_t *, uint8_t, uint8_t); |
| static void afe_miiwritegeneral(afe_t *, uint8_t, uint8_t, uint16_t); |
| static uint16_t afe_miireadcomet(afe_t *, uint8_t, uint8_t); |
| static void afe_miiwritecomet(afe_t *, uint8_t, uint8_t, uint16_t); |
| static uint16_t afe_mii_read(void *, uint8_t, uint8_t); |
| static void afe_mii_write(void *, uint8_t, uint8_t, uint16_t); |
| static void afe_mii_notify(void *, link_state_t); |
| static void afe_mii_reset(void *); |
| static void afe_disableinterrupts(afe_t *); |
| static void afe_enableinterrupts(afe_t *); |
| static void afe_reclaim(afe_t *); |
| static mblk_t *afe_receive(afe_t *); |
| |
| #define KIOIP KSTAT_INTR_PTR(afep->afe_intrstat) |
| |
| static mii_ops_t afe_mii_ops = { |
| MII_OPS_VERSION, |
| afe_mii_read, |
| afe_mii_write, |
| afe_mii_notify, |
| afe_mii_reset |
| }; |
| |
| static mac_callbacks_t afe_m_callbacks = { |
| MC_IOCTL | MC_SETPROP | MC_GETPROP | MC_PROPINFO, |
| afe_m_stat, |
| afe_m_start, |
| afe_m_stop, |
| afe_m_promisc, |
| afe_m_multicst, |
| afe_m_unicst, |
| afe_m_tx, |
| NULL, |
| afe_m_ioctl, /* mc_ioctl */ |
| NULL, /* mc_getcapab */ |
| NULL, /* mc_open */ |
| NULL, /* mc_close */ |
| afe_m_setprop, |
| afe_m_getprop, |
| afe_m_propinfo |
| }; |
| |
| |
| /* |
| * Stream information |
| */ |
| DDI_DEFINE_STREAM_OPS(afe_devops, nulldev, nulldev, afe_attach, afe_detach, |
| nodev, NULL, D_MP, NULL, afe_quiesce); |
| |
| /* |
| * Module linkage information. |
| */ |
| |
| static struct modldrv afe_modldrv = { |
| &mod_driverops, /* drv_modops */ |
| "ADMtek Fast Ethernet", /* drv_linkinfo */ |
| &afe_devops /* drv_dev_ops */ |
| }; |
| |
| static struct modlinkage afe_modlinkage = { |
| MODREV_1, /* ml_rev */ |
| { &afe_modldrv, NULL } /* ml_linkage */ |
| }; |
| |
| /* |
| * Device attributes. |
| */ |
| static ddi_device_acc_attr_t afe_devattr = { |
| DDI_DEVICE_ATTR_V0, |
| DDI_STRUCTURE_LE_ACC, |
| DDI_STRICTORDER_ACC |
| }; |
| |
| static ddi_device_acc_attr_t afe_bufattr = { |
| DDI_DEVICE_ATTR_V0, |
| DDI_NEVERSWAP_ACC, |
| DDI_STRICTORDER_ACC |
| }; |
| |
| static ddi_dma_attr_t afe_dma_attr = { |
| DMA_ATTR_V0, /* dma_attr_version */ |
| 0, /* dma_attr_addr_lo */ |
| 0xFFFFFFFFU, /* dma_attr_addr_hi */ |
| 0x7FFFFFFFU, /* dma_attr_count_max */ |
| 4, /* dma_attr_align */ |
| 0x3F, /* dma_attr_burstsizes */ |
| 1, /* dma_attr_minxfer */ |
| 0xFFFFFFFFU, /* dma_attr_maxxfer */ |
| 0xFFFFFFFFU, /* dma_attr_seg */ |
| 1, /* dma_attr_sgllen */ |
| 1, /* dma_attr_granular */ |
| 0 /* dma_attr_flags */ |
| }; |
| |
| /* |
| * Tx buffers can be arbitrarily aligned. Additionally, they can |
| * cross a page boundary, so we use the two buffer addresses of the |
| * chip to provide a two-entry scatter-gather list. |
| */ |
| static ddi_dma_attr_t afe_dma_txattr = { |
| DMA_ATTR_V0, /* dma_attr_version */ |
| 0, /* dma_attr_addr_lo */ |
| 0xFFFFFFFFU, /* dma_attr_addr_hi */ |
| 0x7FFFFFFFU, /* dma_attr_count_max */ |
| 1, /* dma_attr_align */ |
| 0x3F, /* dma_attr_burstsizes */ |
| 1, /* dma_attr_minxfer */ |
| 0xFFFFFFFFU, /* dma_attr_maxxfer */ |
| 0xFFFFFFFFU, /* dma_attr_seg */ |
| 2, /* dma_attr_sgllen */ |
| 1, /* dma_attr_granular */ |
| 0 /* dma_attr_flags */ |
| }; |
| |
| /* |
| * Ethernet addresses. |
| */ |
| static uchar_t afe_broadcast[ETHERADDRL] = { |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff |
| }; |
| |
| /* |
| * DDI entry points. |
| */ |
| int |
| _init(void) |
| { |
| int rv; |
| mac_init_ops(&afe_devops, "afe"); |
| if ((rv = mod_install(&afe_modlinkage)) != DDI_SUCCESS) { |
| mac_fini_ops(&afe_devops); |
| } |
| return (rv); |
| } |
| |
| int |
| _fini(void) |
| { |
| int rv; |
| if ((rv = mod_remove(&afe_modlinkage)) == DDI_SUCCESS) { |
| mac_fini_ops(&afe_devops); |
| } |
| return (rv); |
| } |
| |
| int |
| _info(struct modinfo *modinfop) |
| { |
| return (mod_info(&afe_modlinkage, modinfop)); |
| } |
| |
| int |
| afe_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) |
| { |
| afe_t *afep; |
| mac_register_t *macp; |
| int inst = ddi_get_instance(dip); |
| ddi_acc_handle_t pci; |
| uint16_t venid; |
| uint16_t devid; |
| uint16_t svid; |
| uint16_t ssid; |
| uint16_t cachesize; |
| afe_card_t *cardp; |
| int i; |
| |
| switch (cmd) { |
| case DDI_RESUME: |
| return (afe_resume(dip)); |
| |
| case DDI_ATTACH: |
| break; |
| |
| default: |
| return (DDI_FAILURE); |
| } |
| |
| /* this card is a bus master, reject any slave-only slot */ |
| if (ddi_slaveonly(dip) == DDI_SUCCESS) { |
| afe_error(dip, "slot does not support PCI bus-master"); |
| return (DDI_FAILURE); |
| } |
| /* PCI devices shouldn't generate hilevel interrupts */ |
| if (ddi_intr_hilevel(dip, 0) != 0) { |
| afe_error(dip, "hilevel interrupts not supported"); |
| return (DDI_FAILURE); |
| } |
| if (pci_config_setup(dip, &pci) != DDI_SUCCESS) { |
| afe_error(dip, "unable to setup PCI config handle"); |
| return (DDI_FAILURE); |
| } |
| |
| venid = pci_config_get16(pci, PCI_VID); |
| devid = pci_config_get16(pci, PCI_DID); |
| svid = pci_config_get16(pci, PCI_SVID); |
| ssid = pci_config_get16(pci, PCI_SSID); |
| |
| /* |
| * Note: ADMtek boards seem to misprogram themselves with bogus |
| * timings, which do not seem to work properly on SPARC. We |
| * reprogram them zero (but only if they appear to be broken), |
| * which seems to at least work. Its unclear that this is a |
| * legal or wise practice to me, but it certainly works better |
| * than the original values. (I would love to hear |
| * suggestions for better values, or a better strategy.) |
| */ |
| if ((pci_config_get8(pci, PCI_MINGNT) == 0xff) && |
| (pci_config_get8(pci, PCI_MAXLAT) == 0xff)) { |
| pci_config_put8(pci, PCI_MINGNT, 0); |
| pci_config_put8(pci, PCI_MAXLAT, 0); |
| } |
| |
| /* |
| * the last entry in the card table matches every possible |
| * card, so the for-loop always terminates properly. |
| */ |
| cardp = NULL; |
| for (i = 0; i < (sizeof (afe_cards) / sizeof (afe_card_t)); i++) { |
| if ((venid == afe_cards[i].card_venid) && |
| (devid == afe_cards[i].card_devid)) { |
| cardp = &afe_cards[i]; |
| } |
| if ((svid == afe_cards[i].card_venid) && |
| (ssid == afe_cards[i].card_devid)) { |
| cardp = &afe_cards[i]; |
| break; |
| } |
| } |
| |
| if (cardp == NULL) { |
| pci_config_teardown(&pci); |
| afe_error(dip, "Unable to identify PCI card"); |
| return (DDI_FAILURE); |
| } |
| |
| if (ddi_prop_update_string(DDI_DEV_T_NONE, dip, "model", |
| cardp->card_cardname) != DDI_PROP_SUCCESS) { |
| pci_config_teardown(&pci); |
| afe_error(dip, "Unable to create model property"); |
| return (DDI_FAILURE); |
| } |
| |
| /* |
| * Grab the PCI cachesize -- we use this to program the |
| * cache-optimization bus access bits. |
| */ |
| cachesize = pci_config_get8(pci, PCI_CLS); |
| |
| /* this cannot fail */ |
| afep = kmem_zalloc(sizeof (afe_t), KM_SLEEP); |
| ddi_set_driver_private(dip, afep); |
| |
| /* get the interrupt block cookie */ |
| if (ddi_get_iblock_cookie(dip, 0, &afep->afe_icookie) != DDI_SUCCESS) { |
| afe_error(dip, "ddi_get_iblock_cookie failed"); |
| pci_config_teardown(&pci); |
| kmem_free(afep, sizeof (afe_t)); |
| return (DDI_FAILURE); |
| } |
| |
| afep->afe_dip = dip; |
| afep->afe_cardp = cardp; |
| afep->afe_phyaddr = -1; |
| afep->afe_cachesize = cachesize; |
| |
| afep->afe_forcefiber = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0, |
| "fiber", 0); |
| |
| mutex_init(&afep->afe_xmtlock, NULL, MUTEX_DRIVER, afep->afe_icookie); |
| mutex_init(&afep->afe_intrlock, NULL, MUTEX_DRIVER, afep->afe_icookie); |
| |
| /* |
| * Enable bus master, IO space, and memory space accesses. |
| */ |
| pci_config_put16(pci, PCI_CMD, |
| pci_config_get16(pci, PCI_CMD) | PCI_CMD_BME | PCI_CMD_MAE); |
| |
| /* we're done with this now, drop it */ |
| pci_config_teardown(&pci); |
| |
| /* |
| * Initialize interrupt kstat. This should not normally fail, since |
| * we don't use a persistent stat. We do it this way to avoid having |
| * to test for it at run time on the hot path. |
| */ |
| afep->afe_intrstat = kstat_create("afe", inst, "intr", "controller", |
| KSTAT_TYPE_INTR, 1, 0); |
| if (afep->afe_intrstat == NULL) { |
| afe_error(dip, "kstat_create failed"); |
| goto failed; |
| } |
| kstat_install(afep->afe_intrstat); |
| |
| /* |
| * Set up the MII. |
| */ |
| if ((afep->afe_mii = mii_alloc(afep, dip, &afe_mii_ops)) == NULL) { |
| goto failed; |
| } |
| |
| /* |
| * Centaur can support PAUSE, but Comet can't. |
| */ |
| if (AFE_MODEL(afep) == MODEL_CENTAUR) { |
| mii_set_pauseable(afep->afe_mii, B_TRUE, B_FALSE); |
| } else { |
| mii_set_pauseable(afep->afe_mii, B_FALSE, B_FALSE); |
| } |
| |
| /* |
| * Map in the device registers. |
| */ |
| if (ddi_regs_map_setup(dip, 1, (caddr_t *)&afep->afe_regs, |
| 0, 0, &afe_devattr, &afep->afe_regshandle)) { |
| afe_error(dip, "ddi_regs_map_setup failed"); |
| goto failed; |
| } |
| |
| /* |
| * Allocate DMA resources (descriptor rings and buffers). |
| */ |
| if ((afe_allocrxring(afep) != DDI_SUCCESS) || |
| (afe_alloctxring(afep) != DDI_SUCCESS)) { |
| afe_error(dip, "unable to allocate DMA resources"); |
| goto failed; |
| } |
| |
| /* Initialize the chip. */ |
| mutex_enter(&afep->afe_intrlock); |
| mutex_enter(&afep->afe_xmtlock); |
| if (!afe_initialize(afep)) { |
| mutex_exit(&afep->afe_xmtlock); |
| mutex_exit(&afep->afe_intrlock); |
| goto failed; |
| } |
| mutex_exit(&afep->afe_xmtlock); |
| mutex_exit(&afep->afe_intrlock); |
| |
| /* Determine the number of address bits to our EEPROM. */ |
| afep->afe_sromwidth = afe_sromwidth(afep); |
| |
| /* |
| * Get the factory ethernet address. This becomes the current |
| * ethernet address (it can be overridden later via ifconfig). |
| */ |
| afe_getfactaddr(afep, afep->afe_curraddr); |
| afep->afe_promisc = B_FALSE; |
| |
| /* make sure we add configure the initial filter */ |
| (void) afe_m_unicst(afep, afep->afe_curraddr); |
| (void) afe_m_multicst(afep, B_TRUE, afe_broadcast); |
| |
| /* |
| * Establish interrupt handler. |
| */ |
| if (ddi_add_intr(dip, 0, NULL, NULL, afe_intr, (caddr_t)afep) != |
| DDI_SUCCESS) { |
| afe_error(dip, "unable to add interrupt"); |
| goto failed; |
| } |
| |
| /* TODO: do the power management stuff */ |
| |
| if ((macp = mac_alloc(MAC_VERSION)) == NULL) { |
| afe_error(dip, "mac_alloc failed"); |
| goto failed; |
| } |
| |
| macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER; |
| macp->m_driver = afep; |
| macp->m_dip = dip; |
| macp->m_src_addr = afep->afe_curraddr; |
| macp->m_callbacks = &afe_m_callbacks; |
| macp->m_min_sdu = 0; |
| macp->m_max_sdu = ETHERMTU; |
| macp->m_margin = VLAN_TAGSZ; |
| |
| if (mac_register(macp, &afep->afe_mh) == DDI_SUCCESS) { |
| mac_free(macp); |
| return (DDI_SUCCESS); |
| } |
| |
| /* failed to register with MAC */ |
| mac_free(macp); |
| failed: |
| if (afep->afe_icookie != NULL) { |
| ddi_remove_intr(dip, 0, afep->afe_icookie); |
| } |
| if (afep->afe_intrstat) { |
| kstat_delete(afep->afe_intrstat); |
| } |
| mutex_destroy(&afep->afe_intrlock); |
| mutex_destroy(&afep->afe_xmtlock); |
| |
| afe_freerxring(afep); |
| afe_freetxring(afep); |
| |
| if (afep->afe_regshandle != NULL) { |
| ddi_regs_map_free(&afep->afe_regshandle); |
| } |
| kmem_free(afep, sizeof (afe_t)); |
| return (DDI_FAILURE); |
| } |
| |
| int |
| afe_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) |
| { |
| afe_t *afep; |
| |
| afep = ddi_get_driver_private(dip); |
| if (afep == NULL) { |
| afe_error(dip, "no soft state in detach!"); |
| return (DDI_FAILURE); |
| } |
| |
| switch (cmd) { |
| case DDI_DETACH: |
| |
| if (mac_unregister(afep->afe_mh) != 0) { |
| return (DDI_FAILURE); |
| } |
| |
| /* make sure hardware is quiesced */ |
| mutex_enter(&afep->afe_intrlock); |
| mutex_enter(&afep->afe_xmtlock); |
| afep->afe_flags &= ~AFE_RUNNING; |
| afe_stopall(afep); |
| mutex_exit(&afep->afe_xmtlock); |
| mutex_exit(&afep->afe_intrlock); |
| |
| /* clean up and shut down device */ |
| ddi_remove_intr(dip, 0, afep->afe_icookie); |
| |
| /* clean up MII layer */ |
| mii_free(afep->afe_mii); |
| |
| /* clean up kstats */ |
| kstat_delete(afep->afe_intrstat); |
| |
| ddi_prop_remove_all(dip); |
| |
| /* free up any left over buffers or DMA resources */ |
| afe_freerxring(afep); |
| afe_freetxring(afep); |
| |
| ddi_regs_map_free(&afep->afe_regshandle); |
| mutex_destroy(&afep->afe_intrlock); |
| mutex_destroy(&afep->afe_xmtlock); |
| |
| kmem_free(afep, sizeof (afe_t)); |
| return (DDI_SUCCESS); |
| |
| case DDI_SUSPEND: |
| /* stop MII monitoring */ |
| mii_suspend(afep->afe_mii); |
| |
| /* quiesce the hardware */ |
| mutex_enter(&afep->afe_intrlock); |
| mutex_enter(&afep->afe_xmtlock); |
| afep->afe_flags |= AFE_SUSPENDED; |
| afe_stopall(afep); |
| mutex_exit(&afep->afe_xmtlock); |
| mutex_exit(&afep->afe_intrlock); |
| return (DDI_SUCCESS); |
| default: |
| return (DDI_FAILURE); |
| } |
| } |
| |
| int |
| afe_resume(dev_info_t *dip) |
| { |
| afe_t *afep; |
| |
| if ((afep = ddi_get_driver_private(dip)) == NULL) { |
| return (DDI_FAILURE); |
| } |
| |
| mutex_enter(&afep->afe_intrlock); |
| mutex_enter(&afep->afe_xmtlock); |
| |
| afep->afe_flags &= ~AFE_SUSPENDED; |
| |
| /* re-initialize chip */ |
| if (!afe_initialize(afep)) { |
| afe_error(afep->afe_dip, "unable to resume chip!"); |
| afep->afe_flags |= AFE_SUSPENDED; |
| mutex_exit(&afep->afe_intrlock); |
| mutex_exit(&afep->afe_xmtlock); |
| return (DDI_SUCCESS); |
| } |
| |
| /* start the chip */ |
| if (afep->afe_flags & AFE_RUNNING) { |
| afe_startall(afep); |
| } |
| |
| /* drop locks */ |
| mutex_exit(&afep->afe_xmtlock); |
| mutex_exit(&afep->afe_intrlock); |
| |
| mii_resume(afep->afe_mii); |
| |
| return (DDI_SUCCESS); |
| } |
| |
| int |
| afe_quiesce(dev_info_t *dip) |
| { |
| afe_t *afep; |
| |
| if ((afep = ddi_get_driver_private(dip)) == NULL) { |
| return (DDI_FAILURE); |
| } |
| |
| SETBIT(afep, CSR_PAR, PAR_RESET); |
| /* |
| * At 66 MHz it is 16 nsec per access or more (always more) |
| * So we need 3,333 times to retry for 50 usec. We just |
| * round up to 5000 times. Unless the hardware is horked, |
| * it will always terminate *well* before that anyway. |
| */ |
| for (int i = 0; i < 5000; i++) { |
| if ((GETCSR(afep, CSR_PAR) & PAR_RESET) == 0) { |
| return (DDI_SUCCESS); |
| } |
| } |
| |
| /* hardware didn't quiesce - force a full reboot (PCI reset) */ |
| return (DDI_FAILURE); |
| } |
| |
| void |
| afe_setrxfilt(afe_t *afep) |
| { |
| unsigned rxen, pa0, pa1; |
| |
| if (afep->afe_flags & AFE_SUSPENDED) { |
| /* don't touch a suspended interface */ |
| return; |
| } |
| |
| rxen = GETCSR(afep, CSR_NAR) & NAR_RX_ENABLE; |
| |
| /* stop receiver */ |
| if (rxen) { |
| afe_stopmac(afep); |
| } |
| |
| /* program promiscuous mode */ |
| if (afep->afe_promisc) |
| SETBIT(afep, CSR_NAR, NAR_RX_PROMISC); |
| else |
| CLRBIT(afep, CSR_NAR, NAR_RX_PROMISC); |
| |
| /* program mac address */ |
| pa0 = (afep->afe_curraddr[3] << 24) | (afep->afe_curraddr[2] << 16) | |
| (afep->afe_curraddr[1] << 8) | afep->afe_curraddr[0]; |
| pa1 = (afep->afe_curraddr[5] << 8) | afep->afe_curraddr[4]; |
| |
| PUTCSR(afep, CSR_PAR0, pa0); |
| PUTCSR(afep, CSR_PAR1, pa1); |
| if (rxen) { |
| SETBIT(afep, CSR_NAR, rxen); |
| } |
| |
| /* program multicast filter */ |
| if (AFE_MODEL(afep) == MODEL_COMET) { |
| if (afep->afe_mctab[0] || afep->afe_mctab[1]) { |
| SETBIT(afep, CSR_NAR, NAR_RX_MULTI); |
| } else { |
| CLRBIT(afep, CSR_NAR, NAR_RX_MULTI); |
| } |
| } else { |
| CLRBIT(afep, CSR_NAR, NAR_RX_MULTI); |
| PUTCSR(afep, CSR_MAR0, afep->afe_mctab[0]); |
| PUTCSR(afep, CSR_MAR1, afep->afe_mctab[1]); |
| } |
| |
| /* restart receiver */ |
| if (rxen) { |
| afe_startmac(afep); |
| } |
| } |
| |
| int |
| afe_watchdog(afe_t *afep) |
| { |
| if ((afep->afe_txstall_time != 0) && |
| (gethrtime() > afep->afe_txstall_time) && |
| (afep->afe_txavail != AFE_TXRING)) { |
| afep->afe_txstall_time = 0; |
| afe_error(afep->afe_dip, "TX stall detected!"); |
| return (DDI_FAILURE); |
| } else { |
| return (DDI_SUCCESS); |
| } |
| } |
| |
| int |
| afe_m_multicst(void *arg, boolean_t add, const uint8_t *macaddr) |
| { |
| afe_t *afep = arg; |
| int index; |
| uint32_t crc; |
| uint32_t bit; |
| uint32_t newval, oldval; |
| |
| CRC32(crc, macaddr, ETHERADDRL, -1U, crc32_table); |
| crc %= AFE_MCHASH; |
| |
| /* bit within a 32-bit word */ |
| index = crc / 32; |
| bit = (1 << (crc % 32)); |
| |
| mutex_enter(&afep->afe_intrlock); |
| mutex_enter(&afep->afe_xmtlock); |
| newval = oldval = afep->afe_mctab[index]; |
| |
| if (add) { |
| afep->afe_mccount[crc]++; |
| if (afep->afe_mccount[crc] == 1) |
| newval |= bit; |
| } else { |
| afep->afe_mccount[crc]--; |
| if (afep->afe_mccount[crc] == 0) |
| newval &= ~bit; |
| } |
| if (newval != oldval) { |
| afep->afe_mctab[index] = newval; |
| afe_setrxfilt(afep); |
| } |
| |
| mutex_exit(&afep->afe_xmtlock); |
| mutex_exit(&afep->afe_intrlock); |
| |
| return (0); |
| } |
| |
| int |
| afe_m_promisc(void *arg, boolean_t on) |
| { |
| afe_t *afep = arg; |
| |
| /* exclusive access to the card while we reprogram it */ |
| mutex_enter(&afep->afe_intrlock); |
| mutex_enter(&afep->afe_xmtlock); |
| /* save current promiscuous mode state for replay in resume */ |
| afep->afe_promisc = on; |
| |
| afe_setrxfilt(afep); |
| mutex_exit(&afep->afe_xmtlock); |
| mutex_exit(&afep->afe_intrlock); |
| |
| return (0); |
| } |
| |
| int |
| afe_m_unicst(void *arg, const uint8_t *macaddr) |
| { |
| afe_t *afep = arg; |
| |
| /* exclusive access to the card while we reprogram it */ |
| mutex_enter(&afep->afe_intrlock); |
| mutex_enter(&afep->afe_xmtlock); |
| |
| bcopy(macaddr, afep->afe_curraddr, ETHERADDRL); |
| afe_setrxfilt(afep); |
| |
| mutex_exit(&afep->afe_xmtlock); |
| mutex_exit(&afep->afe_intrlock); |
| |
| return (0); |
| } |
| |
| mblk_t * |
| afe_m_tx(void *arg, mblk_t *mp) |
| { |
| afe_t *afep = arg; |
| mblk_t *nmp; |
| |
| mutex_enter(&afep->afe_xmtlock); |
| |
| if (afep->afe_flags & AFE_SUSPENDED) { |
| while ((nmp = mp) != NULL) { |
| afep->afe_carrier_errors++; |
| mp = mp->b_next; |
| freemsg(nmp); |
| } |
| mutex_exit(&afep->afe_xmtlock); |
| return (NULL); |
| } |
| |
| while (mp != NULL) { |
| nmp = mp->b_next; |
| mp->b_next = NULL; |
| |
| if (!afe_send(afep, mp)) { |
| mp->b_next = nmp; |
| break; |
| } |
| mp = nmp; |
| } |
| mutex_exit(&afep->afe_xmtlock); |
| |
| return (mp); |
| } |
| |
| void |
| afe_m_ioctl(void *arg, queue_t *wq, mblk_t *mp) |
| { |
| afe_t *afep = arg; |
| |
| if (mii_m_loop_ioctl(afep->afe_mii, wq, mp)) |
| return; |
| |
| miocnak(wq, mp, 0, EINVAL); |
| } |
| |
| /* |
| * Hardware management. |
| */ |
| static boolean_t |
| afe_initialize(afe_t *afep) |
| { |
| int i; |
| unsigned val; |
| uint32_t par, nar; |
| |
| ASSERT(mutex_owned(&afep->afe_intrlock)); |
| ASSERT(mutex_owned(&afep->afe_xmtlock)); |
| |
| SETBIT(afep, CSR_PAR, PAR_RESET); |
| for (i = 1; i < 10; i++) { |
| drv_usecwait(5); |
| val = GETCSR(afep, CSR_PAR); |
| if (!(val & PAR_RESET)) { |
| break; |
| } |
| } |
| if (i == 10) { |
| afe_error(afep->afe_dip, "timed out waiting for reset!"); |
| return (B_FALSE); |
| } |
| |
| /* |
| * Updated Centaur data sheets show that the Comet and Centaur are |
| * alike here (contrary to earlier versions of the data sheet). |
| */ |
| /* XXX:? chip problems */ |
| /* par = PAR_MRLE | PAR_MRME | PAR_MWIE; */ |
| par = 0; |
| switch (afep->afe_cachesize) { |
| case 8: |
| par |= PAR_CALIGN_8 | PAR_BURST_8; |
| break; |
| case 16: |
| par |= PAR_CALIGN_16 | PAR_BURST_16; |
| break; |
| case 32: |
| par |= PAR_CALIGN_32 | PAR_BURST_32; |
| break; |
| default: |
| par |= PAR_BURST_32; |
| par &= ~(PAR_MWIE | PAR_MRLE | PAR_MRME); |
| break; |
| |
| } |
| |
| PUTCSR(afep, CSR_PAR, par); |
| |
| /* enable transmit underrun auto-recovery */ |
| SETBIT(afep, CSR_CR, CR_TXURAUTOR); |
| |
| afe_resetrings(afep); |
| |
| /* clear the lost packet counter (cleared on read) */ |
| (void) GETCSR(afep, CSR_LPC); |
| |
| nar = GETCSR(afep, CSR_NAR); |
| nar &= ~NAR_TR; /* clear tx threshold */ |
| nar |= NAR_SF; /* store-and-forward */ |
| nar |= NAR_HBD; /* disable SQE test */ |
| PUTCSR(afep, CSR_NAR, nar); |
| |
| afe_setrxfilt(afep); |
| |
| return (B_TRUE); |
| } |
| |
| /* |
| * Serial EEPROM access - inspired by the FreeBSD implementation. |
| */ |
| |
| uint8_t |
| afe_sromwidth(afe_t *afep) |
| { |
| int i; |
| uint32_t eeread; |
| uint8_t addrlen = 8; |
| |
| eeread = SPR_SROM_READ | SPR_SROM_SEL | SPR_SROM_CHIP; |
| |
| PUTCSR(afep, CSR_SPR, eeread & ~SPR_SROM_CHIP); |
| drv_usecwait(1); |
| PUTCSR(afep, CSR_SPR, eeread); |
| |
| /* command bits first */ |
| for (i = 4; i != 0; i >>= 1) { |
| unsigned val = (SROM_READCMD & i) ? SPR_SROM_DIN : 0; |
| |
| PUTCSR(afep, CSR_SPR, eeread | val); |
| drv_usecwait(1); |
| PUTCSR(afep, CSR_SPR, eeread | val | SPR_SROM_CLOCK); |
| drv_usecwait(1); |
| } |
| |
| PUTCSR(afep, CSR_SPR, eeread); |
| |
| for (addrlen = 1; addrlen <= 12; addrlen++) { |
| PUTCSR(afep, CSR_SPR, eeread | SPR_SROM_CLOCK); |
| drv_usecwait(1); |
| if (!(GETCSR(afep, CSR_SPR) & SPR_SROM_DOUT)) { |
| PUTCSR(afep, CSR_SPR, eeread); |
| drv_usecwait(1); |
| break; |
| } |
| PUTCSR(afep, CSR_SPR, eeread); |
| drv_usecwait(1); |
| } |
| |
| /* turn off accesses to the EEPROM */ |
| PUTCSR(afep, CSR_SPR, eeread &~ SPR_SROM_CHIP); |
| |
| return ((addrlen < 4 || addrlen > 12) ? 6 : addrlen); |
| } |
| |
| /* |
| * The words in EEPROM are stored in little endian order. We |
| * shift bits out in big endian order, though. This requires |
| * a byte swap on some platforms. |
| */ |
| uint16_t |
| afe_readsromword(afe_t *afep, unsigned romaddr) |
| { |
| int i; |
| uint16_t word = 0; |
| uint16_t retval; |
| int eeread; |
| uint8_t addrlen; |
| int readcmd; |
| uchar_t *ptr; |
| |
| eeread = SPR_SROM_READ | SPR_SROM_SEL | SPR_SROM_CHIP; |
| addrlen = afep->afe_sromwidth; |
| readcmd = (SROM_READCMD << addrlen) | romaddr; |
| |
| if (romaddr >= (1 << addrlen)) { |
| /* too big to fit! */ |
| return (0); |
| } |
| |
| PUTCSR(afep, CSR_SPR, eeread & ~SPR_SROM_CHIP); |
| PUTCSR(afep, CSR_SPR, eeread); |
| |
| /* command and address bits */ |
| for (i = 4 + addrlen; i >= 0; i--) { |
| short val = (readcmd & (1 << i)) ? SPR_SROM_DIN : 0; |
| |
| PUTCSR(afep, CSR_SPR, eeread | val); |
| drv_usecwait(1); |
| PUTCSR(afep, CSR_SPR, eeread | val | SPR_SROM_CLOCK); |
| drv_usecwait(1); |
| } |
| |
| PUTCSR(afep, CSR_SPR, eeread); |
| |
| for (i = 0; i < 16; i++) { |
| PUTCSR(afep, CSR_SPR, eeread | SPR_SROM_CLOCK); |
| drv_usecwait(1); |
| word <<= 1; |
| if (GETCSR(afep, CSR_SPR) & SPR_SROM_DOUT) { |
| word |= 1; |
| } |
| PUTCSR(afep, CSR_SPR, eeread); |
| drv_usecwait(1); |
| } |
| |
| /* turn off accesses to the EEPROM */ |
| PUTCSR(afep, CSR_SPR, eeread &~ SPR_SROM_CHIP); |
| |
| /* |
| * Fix up the endianness thing. Note that the values |
| * are stored in little endian format on the SROM. |
| */ |
| ptr = (uchar_t *)&word; |
| retval = (ptr[1] << 8) | ptr[0]; |
| return (retval); |
| } |
| |
| void |
| afe_readsrom(afe_t *afep, unsigned romaddr, unsigned len, char *dest) |
| { |
| int i; |
| uint16_t word; |
| uint16_t *ptr = (uint16_t *)((void *)dest); |
| for (i = 0; i < len; i++) { |
| word = afe_readsromword(afep, romaddr + i); |
| *ptr = word; |
| ptr++; |
| } |
| } |
| |
| void |
| afe_getfactaddr(afe_t *afep, uchar_t *eaddr) |
| { |
| afe_readsrom(afep, SROM_ENADDR, ETHERADDRL / 2, (char *)eaddr); |
| } |
| |
| |
| |
| /* |
| * MII management. |
| */ |
| void |
| afe_mii_reset(void *arg) |
| { |
| afe_t *afep = arg; |
| int fiber; |
| uint16_t mcr; |
| uint16_t pilr; |
| uint8_t phyaddr; |
| |
| /* |
| * Its entirely possible that this belongs as a PHY specific |
| * override. |
| */ |
| if ((mii_get_id(afep->afe_mii) & 0xfffffff0) != 0x225410) { |
| /* if its not an AN983B, we don't care */ |
| return; |
| } |
| |
| phyaddr = mii_get_addr(afep->afe_mii); |
| |
| fiber = 0; |
| |
| switch (afep->afe_forcefiber) { |
| case 0: |
| /* UTP Port */ |
| fiber = 0; |
| break; |
| case 1: |
| /* Fiber Port */ |
| fiber = 1; |
| break; |
| } |
| |
| mcr = afe_mii_read(afep, phyaddr, PHY_MCR); |
| switch (fiber) { |
| case 0: |
| mcr &= ~MCR_FIBER; |
| break; |
| |
| case 1: |
| mcr |= MCR_FIBER; |
| break; |
| } |
| afe_mii_write(afep, phyaddr, PHY_MCR, mcr); |
| drv_usecwait(500); |
| |
| /* |
| * work around for errata 983B_0416 -- duplex light flashes |
| * in 10 HDX. we just disable SQE testing on the device. |
| */ |
| pilr = afe_mii_read(afep, phyaddr, PHY_PILR); |
| pilr |= PILR_NOSQE; |
| afe_mii_write(afep, phyaddr, PHY_PILR, pilr); |
| } |
| |
| void |
| afe_mii_notify(void *arg, link_state_t link) |
| { |
| afe_t *afep = arg; |
| |
| if (AFE_MODEL(afep) == MODEL_CENTAUR) { |
| if (mii_get_flowctrl(afep->afe_mii) == LINK_FLOWCTRL_BI) { |
| SETBIT(afep, CSR_CR, CR_PAUSE); |
| } else { |
| CLRBIT(afep, CSR_CR, CR_PAUSE); |
| } |
| } |
| mac_link_update(afep->afe_mh, link); |
| } |
| |
| void |
| afe_miitristate(afe_t *afep) |
| { |
| uint32_t val = SPR_SROM_WRITE | SPR_MII_CTRL; |
| |
| PUTCSR(afep, CSR_SPR, val); |
| drv_usecwait(1); |
| PUTCSR(afep, CSR_SPR, val | SPR_MII_CLOCK); |
| drv_usecwait(1); |
| } |
| |
| void |
| afe_miiwritebit(afe_t *afep, uint8_t bit) |
| { |
| uint32_t val = bit ? SPR_MII_DOUT : 0; |
| |
| PUTCSR(afep, CSR_SPR, val); |
| drv_usecwait(1); |
| PUTCSR(afep, CSR_SPR, val | SPR_MII_CLOCK); |
| drv_usecwait(1); |
| } |
| |
| uint8_t |
| afe_miireadbit(afe_t *afep) |
| { |
| uint32_t val = SPR_MII_CTRL | SPR_SROM_READ; |
| uint8_t bit; |
| |
| PUTCSR(afep, CSR_SPR, val); |
| drv_usecwait(1); |
| bit = (GETCSR(afep, CSR_SPR) & SPR_MII_DIN) ? 1 : 0; |
| PUTCSR(afep, CSR_SPR, val | SPR_MII_CLOCK); |
| drv_usecwait(1); |
| return (bit); |
| } |
| |
| uint16_t |
| afe_mii_read(void *arg, uint8_t phy, uint8_t reg) |
| { |
| afe_t *afep = arg; |
| /* |
| * ADMtek bugs ignore address decode bits -- they only |
| * support PHY at 1. |
| */ |
| if (phy != 1) { |
| return (0xffff); |
| } |
| switch (AFE_MODEL(afep)) { |
| case MODEL_COMET: |
| return (afe_miireadcomet(afep, phy, reg)); |
| case MODEL_CENTAUR: |
| return (afe_miireadgeneral(afep, phy, reg)); |
| } |
| return (0xffff); |
| } |
| |
| uint16_t |
| afe_miireadgeneral(afe_t *afep, uint8_t phy, uint8_t reg) |
| { |
| uint16_t value = 0; |
| int i; |
| |
| /* send the 32 bit preamble */ |
| for (i = 0; i < 32; i++) { |
| afe_miiwritebit(afep, 1); |
| } |
| |
| /* send the start code - 01b */ |
| afe_miiwritebit(afep, 0); |
| afe_miiwritebit(afep, 1); |
| |
| /* send the opcode for read, - 10b */ |
| afe_miiwritebit(afep, 1); |
| afe_miiwritebit(afep, 0); |
| |
| /* next we send the 5 bit phy address */ |
| for (i = 0x10; i > 0; i >>= 1) { |
| afe_miiwritebit(afep, (phy & i) ? 1 : 0); |
| } |
| |
| /* the 5 bit register address goes next */ |
| for (i = 0x10; i > 0; i >>= 1) { |
| afe_miiwritebit(afep, (reg & i) ? 1 : 0); |
| } |
| |
| /* turnaround - tristate followed by logic 0 */ |
| afe_miitristate(afep); |
| afe_miiwritebit(afep, 0); |
| |
| /* read the 16 bit register value */ |
| for (i = 0x8000; i > 0; i >>= 1) { |
| value <<= 1; |
| value |= afe_miireadbit(afep); |
| } |
| afe_miitristate(afep); |
| return (value); |
| } |
| |
| uint16_t |
| afe_miireadcomet(afe_t *afep, uint8_t phy, uint8_t reg) |
| { |
| if (phy != 1) { |
| return (0xffff); |
| } |
| switch (reg) { |
| case MII_CONTROL: |
| reg = CSR_BMCR; |
| break; |
| case MII_STATUS: |
| reg = CSR_BMSR; |
| break; |
| case MII_PHYIDH: |
| reg = CSR_PHYIDR1; |
| break; |
| case MII_PHYIDL: |
| reg = CSR_PHYIDR2; |
| break; |
| case MII_AN_ADVERT: |
| reg = CSR_ANAR; |
| break; |
| case MII_AN_LPABLE: |
| reg = CSR_ANLPAR; |
| break; |
| case MII_AN_EXPANSION: |
| reg = CSR_ANER; |
| break; |
| default: |
| return (0); |
| } |
| return (GETCSR16(afep, reg) & 0xFFFF); |
| } |
| |
| void |
| afe_mii_write(void *arg, uint8_t phy, uint8_t reg, uint16_t val) |
| { |
| afe_t *afep = arg; |
| |
| /* |
| * ADMtek bugs ignore address decode bits -- they only |
| * support PHY at 1. |
| */ |
| if (phy != 1) { |
| return; |
| } |
| switch (AFE_MODEL(afep)) { |
| case MODEL_COMET: |
| afe_miiwritecomet(afep, phy, reg, val); |
| break; |
| case MODEL_CENTAUR: |
| afe_miiwritegeneral(afep, phy, reg, val); |
| break; |
| } |
| } |
| |
| void |
| afe_miiwritegeneral(afe_t *afep, uint8_t phy, uint8_t reg, uint16_t val) |
| { |
| int i; |
| |
| /* send the 32 bit preamble */ |
| for (i = 0; i < 32; i++) { |
| afe_miiwritebit(afep, 1); |
| } |
| |
| /* send the start code - 01b */ |
| afe_miiwritebit(afep, 0); |
| afe_miiwritebit(afep, 1); |
| |
| /* send the opcode for write, - 01b */ |
| afe_miiwritebit(afep, 0); |
| afe_miiwritebit(afep, 1); |
| |
| /* next we send the 5 bit phy address */ |
| for (i = 0x10; i > 0; i >>= 1) { |
| afe_miiwritebit(afep, (phy & i) ? 1 : 0); |
| } |
| |
| /* the 5 bit register address goes next */ |
| for (i = 0x10; i > 0; i >>= 1) { |
| afe_miiwritebit(afep, (reg & i) ? 1 : 0); |
| } |
| |
| /* turnaround - 1 bit followed by logic 0 */ |
| afe_miiwritebit(afep, 1); |
| afe_miiwritebit(afep, 0); |
| |
| /* now write out our data (16 bits) */ |
| for (i = 0x8000; i > 0; i >>= 1) { |
| afe_miiwritebit(afep, (val & i) ? 1 : 0); |
| } |
| |
| /* idle mode */ |
| afe_miitristate(afep); |
| } |
| |
| void |
| afe_miiwritecomet(afe_t *afep, uint8_t phy, uint8_t reg, uint16_t val) |
| { |
| if (phy != 1) { |
| return; |
| } |
| switch (reg) { |
| case MII_CONTROL: |
| reg = CSR_BMCR; |
| break; |
| case MII_STATUS: |
| reg = CSR_BMSR; |
| break; |
| case MII_PHYIDH: |
| reg = CSR_PHYIDR1; |
| break; |
| case MII_PHYIDL: |
| reg = CSR_PHYIDR2; |
| break; |
| case MII_AN_ADVERT: |
| reg = CSR_ANAR; |
| break; |
| case MII_AN_LPABLE: |
| reg = CSR_ANLPAR; |
| break; |
| case MII_AN_EXPANSION: |
| reg = CSR_ANER; |
| break; |
| default: |
| return; |
| } |
| PUTCSR16(afep, reg, val); |
| } |
| |
| int |
| afe_m_start(void *arg) |
| { |
| afe_t *afep = arg; |
| |
| /* grab exclusive access to the card */ |
| mutex_enter(&afep->afe_intrlock); |
| mutex_enter(&afep->afe_xmtlock); |
| |
| afe_startall(afep); |
| afep->afe_flags |= AFE_RUNNING; |
| |
| mutex_exit(&afep->afe_xmtlock); |
| mutex_exit(&afep->afe_intrlock); |
| |
| mii_start(afep->afe_mii); |
| |
| return (0); |
| } |
| |
| void |
| afe_m_stop(void *arg) |
| { |
| afe_t *afep = arg; |
| |
| mii_stop(afep->afe_mii); |
| |
| /* exclusive access to the hardware! */ |
| mutex_enter(&afep->afe_intrlock); |
| mutex_enter(&afep->afe_xmtlock); |
| |
| afe_stopall(afep); |
| afep->afe_flags &= ~AFE_RUNNING; |
| |
| mutex_exit(&afep->afe_xmtlock); |
| mutex_exit(&afep->afe_intrlock); |
| } |
| |
| void |
| afe_startmac(afe_t *afep) |
| { |
| /* verify exclusive access to the card */ |
| ASSERT(mutex_owned(&afep->afe_intrlock)); |
| ASSERT(mutex_owned(&afep->afe_xmtlock)); |
| |
| /* start the card */ |
| SETBIT(afep, CSR_NAR, NAR_TX_ENABLE | NAR_RX_ENABLE); |
| |
| if (afep->afe_txavail != AFE_TXRING) |
| PUTCSR(afep, CSR_TDR, 0); |
| |
| /* tell the mac that we are ready to go! */ |
| if (afep->afe_flags & AFE_RUNNING) |
| mac_tx_update(afep->afe_mh); |
| |
| /* start watchdog timer */ |
| PUTCSR(afep, CSR_TIMER, TIMER_LOOP | |
| (AFE_WDOGTIMER * 1000 / TIMER_USEC)); |
| } |
| |
| void |
| afe_stopmac(afe_t *afep) |
| { |
| int i; |
| |
| /* exclusive access to the hardware! */ |
| ASSERT(mutex_owned(&afep->afe_intrlock)); |
| ASSERT(mutex_owned(&afep->afe_xmtlock)); |
| |
| CLRBIT(afep, CSR_NAR, NAR_TX_ENABLE | NAR_RX_ENABLE); |
| |
| /* |
| * A 1518 byte frame at 10Mbps takes about 1.2 msec to drain. |
| * We just add up to the nearest msec (2), which should be |
| * plenty to complete. |
| * |
| * Note that some chips never seem to indicate the transition to |
| * the stopped state properly. Experience shows that we can safely |
| * proceed anyway, after waiting the requisite timeout. |
| */ |
| for (i = 2000; i != 0; i -= 10) { |
| if ((GETCSR(afep, CSR_SR) & (SR_TX_STATE | SR_RX_STATE)) == 0) |
| break; |
| drv_usecwait(10); |
| } |
| |
| /* prevent an interrupt */ |
| PUTCSR(afep, CSR_SR2, INT_RXSTOPPED | INT_TXSTOPPED); |
| |
| /* stop the watchdog timer */ |
| PUTCSR(afep, CSR_TIMER, 0); |
| } |
| |
| void |
| afe_resetrings(afe_t *afep) |
| { |
| int i; |
| |
| /* now we need to reset the pointers... */ |
| PUTCSR(afep, CSR_RDB, 0); |
| PUTCSR(afep, CSR_TDB, 0); |
| |
| /* reset the descriptor ring pointers */ |
| afep->afe_rxhead = 0; |
| afep->afe_txreclaim = 0; |
| afep->afe_txsend = 0; |
| afep->afe_txavail = AFE_TXRING; |
| |
| /* set up transmit descriptor ring */ |
| for (i = 0; i < AFE_TXRING; i++) { |
| afe_desc_t *tmdp = &afep->afe_txdescp[i]; |
| unsigned control = 0; |
| if (i == (AFE_TXRING - 1)) { |
| control |= TXCTL_ENDRING; |
| } |
| PUTTXDESC(afep, tmdp->desc_status, 0); |
| PUTTXDESC(afep, tmdp->desc_control, control); |
| PUTTXDESC(afep, tmdp->desc_buffer1, 0); |
| PUTTXDESC(afep, tmdp->desc_buffer2, 0); |
| SYNCTXDESC(afep, i, DDI_DMA_SYNC_FORDEV); |
| } |
| PUTCSR(afep, CSR_TDB, afep->afe_txdesc_paddr); |
| |
| /* make the receive buffers available */ |
| for (i = 0; i < AFE_RXRING; i++) { |
| afe_rxbuf_t *rxb = afep->afe_rxbufs[i]; |
| afe_desc_t *rmdp = &afep->afe_rxdescp[i]; |
| unsigned control; |
| |
| control = AFE_BUFSZ & RXCTL_BUFLEN1; |
| if (i == (AFE_RXRING - 1)) { |
| control |= RXCTL_ENDRING; |
| } |
| PUTRXDESC(afep, rmdp->desc_buffer1, rxb->rxb_paddr); |
| PUTRXDESC(afep, rmdp->desc_buffer2, 0); |
| PUTRXDESC(afep, rmdp->desc_control, control); |
| PUTRXDESC(afep, rmdp->desc_status, RXSTAT_OWN); |
| SYNCRXDESC(afep, i, DDI_DMA_SYNC_FORDEV); |
| } |
| PUTCSR(afep, CSR_RDB, afep->afe_rxdesc_paddr); |
| } |
| |
| void |
| afe_stopall(afe_t *afep) |
| { |
| afe_disableinterrupts(afep); |
| afe_stopmac(afep); |
| } |
| |
| void |
| afe_startall(afe_t *afep) |
| { |
| ASSERT(mutex_owned(&afep->afe_intrlock)); |
| ASSERT(mutex_owned(&afep->afe_xmtlock)); |
| |
| /* make sure interrupts are disabled to begin */ |
| afe_disableinterrupts(afep); |
| |
| /* initialize the chip */ |
| (void) afe_initialize(afep); |
| |
| /* now we can enable interrupts */ |
| afe_enableinterrupts(afep); |
| |
| /* start up the mac */ |
| afe_startmac(afep); |
| } |
| |
| void |
| afe_resetall(afe_t *afep) |
| { |
| afe_stopall(afep); |
| afe_startall(afep); |
| } |
| |
| afe_txbuf_t * |
| afe_alloctxbuf(afe_t *afep) |
| { |
| ddi_dma_cookie_t dmac; |
| unsigned ncookies; |
| afe_txbuf_t *txb; |
| size_t len; |
| |
| txb = kmem_zalloc(sizeof (*txb), KM_SLEEP); |
| |
| if (ddi_dma_alloc_handle(afep->afe_dip, &afe_dma_txattr, |
| DDI_DMA_SLEEP, NULL, &txb->txb_dmah) != DDI_SUCCESS) { |
| return (NULL); |
| } |
| |
| if (ddi_dma_mem_alloc(txb->txb_dmah, AFE_BUFSZ, &afe_bufattr, |
| DDI_DMA_STREAMING, DDI_DMA_SLEEP, NULL, &txb->txb_buf, &len, |
| &txb->txb_acch) != DDI_SUCCESS) { |
| return (NULL); |
| } |
| if (ddi_dma_addr_bind_handle(txb->txb_dmah, NULL, txb->txb_buf, |
| len, DDI_DMA_WRITE | DDI_DMA_STREAMING, DDI_DMA_SLEEP, NULL, |
| &dmac, &ncookies) != DDI_DMA_MAPPED) { |
| return (NULL); |
| } |
| txb->txb_paddr = dmac.dmac_address; |
| |
| return (txb); |
| } |
| |
| void |
| afe_destroytxbuf(afe_txbuf_t *txb) |
| { |
| if (txb != NULL) { |
| if (txb->txb_paddr) |
| (void) ddi_dma_unbind_handle(txb->txb_dmah); |
| if (txb->txb_acch) |
| ddi_dma_mem_free(&txb->txb_acch); |
| if (txb->txb_dmah) |
| ddi_dma_free_handle(&txb->txb_dmah); |
| kmem_free(txb, sizeof (*txb)); |
| } |
| } |
| |
| afe_rxbuf_t * |
| afe_allocrxbuf(afe_t *afep) |
| { |
| afe_rxbuf_t *rxb; |
| size_t len; |
| unsigned ccnt; |
| ddi_dma_cookie_t dmac; |
| |
| rxb = kmem_zalloc(sizeof (*rxb), KM_SLEEP); |
| |
| if (ddi_dma_alloc_handle(afep->afe_dip, &afe_dma_attr, |
| DDI_DMA_SLEEP, NULL, &rxb->rxb_dmah) != DDI_SUCCESS) { |
| kmem_free(rxb, sizeof (*rxb)); |
| return (NULL); |
| } |
| if (ddi_dma_mem_alloc(rxb->rxb_dmah, AFE_BUFSZ, &afe_bufattr, |
| DDI_DMA_STREAMING, DDI_DMA_SLEEP, NULL, &rxb->rxb_buf, &len, |
| &rxb->rxb_acch) != DDI_SUCCESS) { |
| ddi_dma_free_handle(&rxb->rxb_dmah); |
| kmem_free(rxb, sizeof (*rxb)); |
| return (NULL); |
| } |
| if (ddi_dma_addr_bind_handle(rxb->rxb_dmah, NULL, rxb->rxb_buf, len, |
| DDI_DMA_READ | DDI_DMA_STREAMING, DDI_DMA_SLEEP, NULL, &dmac, |
| &ccnt) != DDI_DMA_MAPPED) { |
| ddi_dma_mem_free(&rxb->rxb_acch); |
| ddi_dma_free_handle(&rxb->rxb_dmah); |
| kmem_free(rxb, sizeof (*rxb)); |
| return (NULL); |
| } |
| rxb->rxb_paddr = dmac.dmac_address; |
| |
| return (rxb); |
| } |
| |
| void |
| afe_destroyrxbuf(afe_rxbuf_t *rxb) |
| { |
| if (rxb) { |
| (void) ddi_dma_unbind_handle(rxb->rxb_dmah); |
| ddi_dma_mem_free(&rxb->rxb_acch); |
| ddi_dma_free_handle(&rxb->rxb_dmah); |
| kmem_free(rxb, sizeof (*rxb)); |
| } |
| } |
| |
| /* |
| * Allocate receive resources. |
| */ |
| int |
| afe_allocrxring(afe_t *afep) |
| { |
| int rval; |
| int i; |
| size_t size; |
| size_t len; |
| ddi_dma_cookie_t dmac; |
| unsigned ncookies; |
| caddr_t kaddr; |
| |
| size = AFE_RXRING * sizeof (afe_desc_t); |
| |
| rval = ddi_dma_alloc_handle(afep->afe_dip, &afe_dma_attr, |
| DDI_DMA_SLEEP, NULL, &afep->afe_rxdesc_dmah); |
| if (rval != DDI_SUCCESS) { |
| afe_error(afep->afe_dip, |
| "unable to allocate DMA handle for rx descriptors"); |
| return (DDI_FAILURE); |
| } |
| |
| rval = ddi_dma_mem_alloc(afep->afe_rxdesc_dmah, size, &afe_devattr, |
| DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &kaddr, &len, |
| &afep->afe_rxdesc_acch); |
| if (rval != DDI_SUCCESS) { |
| afe_error(afep->afe_dip, |
| "unable to allocate DMA memory for rx descriptors"); |
| return (DDI_FAILURE); |
| } |
| |
| rval = ddi_dma_addr_bind_handle(afep->afe_rxdesc_dmah, NULL, kaddr, |
| size, DDI_DMA_RDWR | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, |
| &dmac, &ncookies); |
| if (rval != DDI_DMA_MAPPED) { |
| afe_error(afep->afe_dip, |
| "unable to bind DMA for rx descriptors"); |
| return (DDI_FAILURE); |
| } |
| |
| /* because of afe_dma_attr */ |
| ASSERT(ncookies == 1); |
| |
| /* we take the 32-bit physical address out of the cookie */ |
| afep->afe_rxdesc_paddr = dmac.dmac_address; |
| afep->afe_rxdescp = (void *)kaddr; |
| |
| /* allocate buffer pointers (not the buffers themselves, yet) */ |
| afep->afe_rxbufs = kmem_zalloc(AFE_RXRING * sizeof (afe_rxbuf_t *), |
| KM_SLEEP); |
| |
| /* now allocate rx buffers */ |
| for (i = 0; i < AFE_RXRING; i++) { |
| afe_rxbuf_t *rxb = afe_allocrxbuf(afep); |
| if (rxb == NULL) |
| return (DDI_FAILURE); |
| afep->afe_rxbufs[i] = rxb; |
| } |
| |
| return (DDI_SUCCESS); |
| } |
| |
| /* |
| * Allocate transmit resources. |
| */ |
| int |
| afe_alloctxring(afe_t *afep) |
| { |
| int rval; |
| int i; |
| size_t size; |
| size_t len; |
| ddi_dma_cookie_t dmac; |
| unsigned ncookies; |
| caddr_t kaddr; |
| |
| size = AFE_TXRING * sizeof (afe_desc_t); |
| |
| rval = ddi_dma_alloc_handle(afep->afe_dip, &afe_dma_attr, |
| DDI_DMA_SLEEP, NULL, &afep->afe_txdesc_dmah); |
| if (rval != DDI_SUCCESS) { |
| afe_error(afep->afe_dip, |
| "unable to allocate DMA handle for tx descriptors"); |
| return (DDI_FAILURE); |
| } |
| |
| rval = ddi_dma_mem_alloc(afep->afe_txdesc_dmah, size, &afe_devattr, |
| DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &kaddr, &len, |
| &afep->afe_txdesc_acch); |
| if (rval != DDI_SUCCESS) { |
| afe_error(afep->afe_dip, |
| "unable to allocate DMA memory for tx descriptors"); |
| return (DDI_FAILURE); |
| } |
| |
| rval = ddi_dma_addr_bind_handle(afep->afe_txdesc_dmah, NULL, kaddr, |
| size, DDI_DMA_RDWR | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, |
| &dmac, &ncookies); |
| if (rval != DDI_DMA_MAPPED) { |
| afe_error(afep->afe_dip, |
| "unable to bind DMA for tx descriptors"); |
| return (DDI_FAILURE); |
| } |
| |
| /* because of afe_dma_attr */ |
| ASSERT(ncookies == 1); |
| |
| /* we take the 32-bit physical address out of the cookie */ |
| afep->afe_txdesc_paddr = dmac.dmac_address; |
| afep->afe_txdescp = (void *)kaddr; |
| |
| /* allocate buffer pointers (not the buffers themselves, yet) */ |
| afep->afe_txbufs = kmem_zalloc(AFE_TXRING * sizeof (afe_txbuf_t *), |
| KM_SLEEP); |
| |
| /* now allocate tx buffers */ |
| for (i = 0; i < AFE_TXRING; i++) { |
| afe_txbuf_t *txb = afe_alloctxbuf(afep); |
| if (txb == NULL) |
| return (DDI_FAILURE); |
| afep->afe_txbufs[i] = txb; |
| } |
| |
| return (DDI_SUCCESS); |
| } |
| |
| void |
| afe_freerxring(afe_t *afep) |
| { |
| int i; |
| |
| for (i = 0; i < AFE_RXRING; i++) { |
| afe_destroyrxbuf(afep->afe_rxbufs[i]); |
| } |
| |
| if (afep->afe_rxbufs) { |
| kmem_free(afep->afe_rxbufs, |
| AFE_RXRING * sizeof (afe_rxbuf_t *)); |
| } |
| |
| if (afep->afe_rxdesc_paddr) |
| (void) ddi_dma_unbind_handle(afep->afe_rxdesc_dmah); |
| if (afep->afe_rxdesc_acch) |
| ddi_dma_mem_free(&afep->afe_rxdesc_acch); |
| if (afep->afe_rxdesc_dmah) |
| ddi_dma_free_handle(&afep->afe_rxdesc_dmah); |
| } |
| |
| void |
| afe_freetxring(afe_t *afep) |
| { |
| int i; |
| |
| for (i = 0; i < AFE_TXRING; i++) { |
| afe_destroytxbuf(afep->afe_txbufs[i]); |
| } |
| |
| if (afep->afe_txbufs) { |
| kmem_free(afep->afe_txbufs, |
| AFE_TXRING * sizeof (afe_txbuf_t *)); |
| } |
| if (afep->afe_txdesc_paddr) |
| (void) ddi_dma_unbind_handle(afep->afe_txdesc_dmah); |
| if (afep->afe_txdesc_acch) |
| ddi_dma_mem_free(&afep->afe_txdesc_acch); |
| if (afep->afe_txdesc_dmah) |
| ddi_dma_free_handle(&afep->afe_txdesc_dmah); |
| } |
| |
| /* |
| * Interrupt service routine. |
| */ |
| unsigned |
| afe_intr(caddr_t arg) |
| { |
| afe_t *afep = (void *)arg; |
| uint32_t status; |
| mblk_t *mp = NULL; |
| boolean_t doreset = B_FALSE; |
| |
| mutex_enter(&afep->afe_intrlock); |
| |
| if (afep->afe_flags & AFE_SUSPENDED) { |
| /* we cannot receive interrupts! */ |
| mutex_exit(&afep->afe_intrlock); |
| return (DDI_INTR_UNCLAIMED); |
| } |
| |
| /* check interrupt status bits, did we interrupt? */ |
| status = GETCSR(afep, CSR_SR2) & INT_ALL; |
| |
| if (status == 0) { |
| KIOIP->intrs[KSTAT_INTR_SPURIOUS]++; |
| mutex_exit(&afep->afe_intrlock); |
| return (DDI_INTR_UNCLAIMED); |
| } |
| /* ack the interrupt */ |
| PUTCSR(afep, CSR_SR2, status); |
| KIOIP->intrs[KSTAT_INTR_HARD]++; |
| |
| if (!(afep->afe_flags & AFE_RUNNING)) { |
| /* not running, don't touch anything */ |
| mutex_exit(&afep->afe_intrlock); |
| return (DDI_INTR_CLAIMED); |
| } |
| |
| if (status & (INT_RXOK|INT_RXNOBUF)) { |
| /* receive packets */ |
| mp = afe_receive(afep); |
| if (status & INT_RXNOBUF) |
| PUTCSR(afep, CSR_RDR, 0); /* wake up chip */ |
| } |
| |
| if (status & INT_TXOK) { |
| /* transmit completed */ |
| mutex_enter(&afep->afe_xmtlock); |
| afe_reclaim(afep); |
| mutex_exit(&afep->afe_xmtlock); |
| } |
| |
| if ((status & INT_TIMER) && (afe_watchdog(afep) != DDI_SUCCESS)) { |
| doreset = B_TRUE; |
| } |
| |
| if (status & (INT_RXSTOPPED|INT_TXSTOPPED| |
| INT_RXJABBER|INT_TXJABBER|INT_TXUNDERFLOW)) { |
| |
| if (status & (INT_RXJABBER | INT_TXJABBER)) { |
| afep->afe_jabber++; |
| } |
| doreset = B_TRUE; |
| } |
| |
| if (status & INT_BUSERR) { |
| switch (GETCSR(afep, CSR_SR) & SR_BERR_TYPE) { |
| case SR_BERR_PARITY: |
| afe_error(afep->afe_dip, "PCI parity error"); |
| break; |
| case SR_BERR_TARGET_ABORT: |
| afe_error(afep->afe_dip, "PCI target abort"); |
| break; |
| case SR_BERR_MASTER_ABORT: |
| afe_error(afep->afe_dip, "PCI master abort"); |
| break; |
| default: |
| afe_error(afep->afe_dip, "Unknown PCI error"); |
| break; |
| } |
| |
| /* reset the chip in an attempt to fix things */ |
| doreset = B_TRUE; |
| } |
| |
| |
| if (doreset) { |
| mutex_enter(&afep->afe_xmtlock); |
| afe_resetall(afep); |
| mutex_exit(&afep->afe_xmtlock); |
| mutex_exit(&afep->afe_intrlock); |
| |
| mii_reset(afep->afe_mii); |
| } else { |
| mutex_exit(&afep->afe_intrlock); |
| } |
| |
| if (status & INT_LINKCHG) { |
| mii_check(afep->afe_mii); |
| } |
| |
| /* |
| * Send up packets. We do this outside of the intrlock. |
| */ |
| if (mp) { |
| mac_rx(afep->afe_mh, NULL, mp); |
| } |
| |
| return (DDI_INTR_CLAIMED); |
| } |
| |
| void |
| afe_enableinterrupts(afe_t *afep) |
| { |
| unsigned mask = INT_WANTED; |
| |
| if (afep->afe_wantw) |
| mask |= INT_TXOK; |
| |
| PUTCSR(afep, CSR_IER2, mask); |
| |
| if (AFE_MODEL(afep) == MODEL_COMET) { |
| /* |
| * On the Comet, this is the internal transceiver |
| * interrupt. We program the Comet's built-in PHY to |
| * enable certain interrupts. |
| */ |
| PUTCSR16(afep, CSR_XIE, XIE_LDE | XIE_ANCE); |
| } |
| } |
| |
| void |
| afe_disableinterrupts(afe_t *afep) |
| { |
| /* disable further interrupts */ |
| PUTCSR(afep, CSR_IER2, INT_NONE); |
| |
| /* clear any pending interrupts */ |
| PUTCSR(afep, CSR_SR2, INT_ALL); |
| } |
| |
| boolean_t |
| afe_send(afe_t *afep, mblk_t *mp) |
| { |
| size_t len; |
| afe_txbuf_t *txb; |
| afe_desc_t *tmd; |
| uint32_t control; |
| int txsend; |
| |
| ASSERT(mutex_owned(&afep->afe_xmtlock)); |
| ASSERT(mp != NULL); |
| |
| len = msgsize(mp); |
| if (len > ETHERVLANMTU) { |
| afep->afe_macxmt_errors++; |
| freemsg(mp); |
| return (B_TRUE); |
| } |
| |
| if (afep->afe_txavail < AFE_TXRECLAIM) |
| afe_reclaim(afep); |
| |
| if (afep->afe_txavail == 0) { |
| /* no more tmds */ |
| afep->afe_wantw = B_TRUE; |
| /* enable TX interrupt */ |
| afe_enableinterrupts(afep); |
| return (B_FALSE); |
| } |
| |
| txsend = afep->afe_txsend; |
| |
| /* |
| * For simplicity, we just do a copy into a preallocated |
| * DMA buffer. |
| */ |
| |
| txb = afep->afe_txbufs[txsend]; |
| mcopymsg(mp, txb->txb_buf); /* frees mp! */ |
| |
| /* |
| * Statistics. |
| */ |
| afep->afe_opackets++; |
| afep->afe_obytes += len; |
| if (txb->txb_buf[0] & 0x1) { |
| if (bcmp(txb->txb_buf, afe_broadcast, ETHERADDRL) != 0) |
| afep->afe_multixmt++; |
| else |
| afep->afe_brdcstxmt++; |
| } |
| |
| /* note len is already known to be a small unsigned */ |
| control = len | TXCTL_FIRST | TXCTL_LAST | TXCTL_INTCMPLTE; |
| |
| if (txsend == (AFE_TXRING - 1)) |
| control |= TXCTL_ENDRING; |
| |
| tmd = &afep->afe_txdescp[txsend]; |
| |
| SYNCTXBUF(txb, len, DDI_DMA_SYNC_FORDEV); |
| PUTTXDESC(afep, tmd->desc_control, control); |
| PUTTXDESC(afep, tmd->desc_buffer1, txb->txb_paddr); |
| PUTTXDESC(afep, tmd->desc_buffer2, 0); |
| PUTTXDESC(afep, tmd->desc_status, TXSTAT_OWN); |
| /* sync the descriptor out to the device */ |
| SYNCTXDESC(afep, txsend, DDI_DMA_SYNC_FORDEV); |
| |
| /* |
| * Note the new values of txavail and txsend. |
| */ |
| afep->afe_txavail--; |
| afep->afe_txsend = (txsend + 1) % AFE_TXRING; |
| |
| /* |
| * It should never, ever take more than 5 seconds to drain |
| * the ring. If it happens, then we are stuck! |
| */ |
| afep->afe_txstall_time = gethrtime() + (5 * 1000000000ULL); |
| |
| /* |
| * wake up the chip ... inside the lock to protect against DR suspend, |
| * etc. |
| */ |
| PUTCSR(afep, CSR_TDR, 0); |
| |
| return (B_TRUE); |
| } |
| |
| /* |
| * Reclaim buffers that have completed transmission. |
| */ |
| void |
| afe_reclaim(afe_t *afep) |
| { |
| afe_desc_t *tmdp; |
| |
| while (afep->afe_txavail != AFE_TXRING) { |
| uint32_t status; |
| uint32_t control; |
| int index = afep->afe_txreclaim; |
| |
| tmdp = &afep->afe_txdescp[index]; |
| |
| /* sync it before we read it */ |
| SYNCTXDESC(afep, index, DDI_DMA_SYNC_FORKERNEL); |
| |
| control = GETTXDESC(afep, tmdp->desc_control); |
| status = GETTXDESC(afep, tmdp->desc_status); |
| |
| if (status & TXSTAT_OWN) { |
| /* chip is still working on it, we're done */ |
| break; |
| } |
| |
| afep->afe_txavail++; |
| afep->afe_txreclaim = (index + 1) % AFE_TXRING; |
| |
| /* in the most common successful case, all bits are clear */ |
| if (status == 0) |
| continue; |
| |
| if ((control & TXCTL_LAST) == 0) |
| continue; |
| |
| if (status & TXSTAT_TXERR) { |
| afep->afe_errxmt++; |
| |
| if (status & TXSTAT_JABBER) { |
| /* transmit jabber timeout */ |
| afep->afe_macxmt_errors++; |
| } |
| if (status & |
| (TXSTAT_CARRLOST | TXSTAT_NOCARR)) { |
| afep->afe_carrier_errors++; |
| } |
| if (status & TXSTAT_UFLOW) { |
| afep->afe_underflow++; |
| } |
| if (status & TXSTAT_LATECOL) { |
| afep->afe_tx_late_collisions++; |
| } |
| if (status & TXSTAT_EXCOLL) { |
| afep->afe_ex_collisions++; |
| afep->afe_collisions += 16; |
| } |
| } |
| |
| if (status & TXSTAT_DEFER) { |
| afep->afe_defer_xmts++; |
| } |
| |
| /* collision counting */ |
| if (TXCOLLCNT(status) == 1) { |
| afep->afe_collisions++; |
| afep->afe_first_collisions++; |
| } else if (TXCOLLCNT(status)) { |
| afep->afe_collisions += TXCOLLCNT(status); |
| afep->afe_multi_collisions += TXCOLLCNT(status); |
| } |
| } |
| |
| if (afep->afe_txavail >= AFE_TXRESCHED) { |
| if (afep->afe_wantw) { |
| /* |
| * we were able to reclaim some packets, so |
| * disable tx interrupts |
| */ |
| afep->afe_wantw = B_FALSE; |
| afe_enableinterrupts(afep); |
| mac_tx_update(afep->afe_mh); |
| } |
| } |
| } |
| |
| mblk_t * |
| afe_receive(afe_t *afep) |
| { |
| unsigned len; |
| afe_rxbuf_t *rxb; |
| afe_desc_t *rmd; |
| uint32_t status; |
| mblk_t *mpchain, **mpp, *mp; |
| int head, cnt; |
| |
| mpchain = NULL; |
| mpp = &mpchain; |
| head = afep->afe_rxhead; |
| |
| /* limit the number of packets we process to a half ring size */ |
| for (cnt = 0; cnt < AFE_RXRING / 2; cnt++) { |
| |
| rmd = &afep->afe_rxdescp[head]; |
| rxb = afep->afe_rxbufs[head]; |
| |
| SYNCRXDESC(afep, head, DDI_DMA_SYNC_FORKERNEL); |
| status = GETRXDESC(afep, rmd->desc_status); |
| if (status & RXSTAT_OWN) { |
| /* chip is still chewing on it */ |
| break; |
| } |
| |
| /* discard the ethernet frame checksum */ |
| len = RXLENGTH(status) - ETHERFCSL; |
| |
| if ((status & (RXSTAT_ERRS | RXSTAT_FIRST | RXSTAT_LAST)) != |
| (RXSTAT_FIRST | RXSTAT_LAST)) { |
| |
| afep->afe_errrcv++; |
| |
| /* |
| * Abnormal status bits detected, analyze further. |
| */ |
| if ((status & (RXSTAT_LAST|RXSTAT_FIRST)) != |
| (RXSTAT_LAST|RXSTAT_FIRST)) { |
| |
| if (status & RXSTAT_FIRST) { |
| afep->afe_toolong_errors++; |
| } |
| } else if (status & RXSTAT_DESCERR) { |
| afep->afe_macrcv_errors++; |
| |
| } else if (status & RXSTAT_RUNT) { |
| afep->afe_runt++; |
| |
| } else if (status & RXSTAT_COLLSEEN) { |
| /* this should really be rx_late_collisions */ |
| afep->afe_macrcv_errors++; |
| |
| } else if (status & RXSTAT_DRIBBLE) { |
| afep->afe_align_errors++; |
| |
| } else if (status & RXSTAT_CRCERR) { |
| afep->afe_fcs_errors++; |
| |
| } else if (status & RXSTAT_OFLOW) { |
| afep->afe_overflow++; |
| } |
| } |
| |
| else if (len > ETHERVLANMTU) { |
| afep->afe_errrcv++; |
| afep->afe_toolong_errors++; |
| } |
| |
| /* |
| * At this point, the chip thinks the packet is OK. |
| */ |
| else { |
| mp = allocb(len + AFE_HEADROOM, 0); |
| if (mp == NULL) { |
| afep->afe_errrcv++; |
| afep->afe_norcvbuf++; |
| goto skip; |
| } |
| |
| /* sync the buffer before we look at it */ |
| SYNCRXBUF(rxb, len, DDI_DMA_SYNC_FORKERNEL); |
| mp->b_rptr += AFE_HEADROOM; |
| mp->b_wptr = mp->b_rptr + len; |
| bcopy((char *)rxb->rxb_buf, mp->b_rptr, len); |
| |
| afep->afe_ipackets++; |
| afep->afe_rbytes += len; |
| if (status & RXSTAT_GROUP) { |
| if (bcmp(mp->b_rptr, afe_broadcast, |
| ETHERADDRL) == 0) |
| afep->afe_brdcstrcv++; |
| else |
| afep->afe_multircv++; |
| } |
| *mpp = mp; |
| mpp = &mp->b_next; |
| } |
| |
| skip: |
| /* return ring entry to the hardware */ |
| PUTRXDESC(afep, rmd->desc_status, RXSTAT_OWN); |
| SYNCRXDESC(afep, head, DDI_DMA_SYNC_FORDEV); |
| |
| /* advance to next RMD */ |
| head = (head + 1) % AFE_RXRING; |
| } |
| |
| afep->afe_rxhead = head; |
| |
| return (mpchain); |
| } |
| |
| int |
| afe_m_stat(void *arg, uint_t stat, uint64_t *val) |
| { |
| afe_t *afep = arg; |
| |
| mutex_enter(&afep->afe_xmtlock); |
| if ((afep->afe_flags & (AFE_RUNNING|AFE_SUSPENDED)) == AFE_RUNNING) |
| afe_reclaim(afep); |
| mutex_exit(&afep->afe_xmtlock); |
| |
| if (mii_m_getstat(afep->afe_mii, stat, val) == 0) { |
| return (0); |
| } |
| switch (stat) { |
| case MAC_STAT_MULTIRCV: |
| *val = afep->afe_multircv; |
| break; |
| |
| case MAC_STAT_BRDCSTRCV: |
| *val = afep->afe_brdcstrcv; |
| break; |
| |
| case MAC_STAT_MULTIXMT: |
| *val = afep->afe_multixmt; |
| break; |
| |
| case MAC_STAT_BRDCSTXMT: |
| *val = afep->afe_brdcstxmt; |
| break; |
| |
| case MAC_STAT_IPACKETS: |
| *val = afep->afe_ipackets; |
| break; |
| |
| case MAC_STAT_RBYTES: |
| *val = afep->afe_rbytes; |
| break; |
| |
| case MAC_STAT_OPACKETS: |
| *val = afep->afe_opackets; |
| break; |
| |
| case MAC_STAT_OBYTES: |
| *val = afep->afe_obytes; |
| break; |
| |
| case MAC_STAT_NORCVBUF: |
| *val = afep->afe_norcvbuf; |
| break; |
| |
| case MAC_STAT_NOXMTBUF: |
| *val = 0; |
| break; |
| |
| case MAC_STAT_COLLISIONS: |
| *val = afep->afe_collisions; |
| break; |
| |
| case MAC_STAT_IERRORS: |
| *val = afep->afe_errrcv; |
| break; |
| |
| case MAC_STAT_OERRORS: |
| *val = afep->afe_errxmt; |
| break; |
| |
| case ETHER_STAT_ALIGN_ERRORS: |
| *val = afep->afe_align_errors; |
| break; |
| |
| case ETHER_STAT_FCS_ERRORS: |
| *val = afep->afe_fcs_errors; |
| break; |
| |
| case ETHER_STAT_SQE_ERRORS: |
| *val = afep->afe_sqe_errors; |
| break; |
| |
| case ETHER_STAT_DEFER_XMTS: |
| *val = afep->afe_defer_xmts; |
| break; |
| |
| case ETHER_STAT_FIRST_COLLISIONS: |
| *val = afep->afe_first_collisions; |
| break; |
| |
| case ETHER_STAT_MULTI_COLLISIONS: |
| *val = afep->afe_multi_collisions; |
| break; |
| |
| case ETHER_STAT_TX_LATE_COLLISIONS: |
| *val = afep->afe_tx_late_collisions; |
| break; |
| |
| case ETHER_STAT_EX_COLLISIONS: |
| *val = afep->afe_ex_collisions; |
| break; |
| |
| case ETHER_STAT_MACXMT_ERRORS: |
| *val = afep->afe_macxmt_errors; |
| break; |
| |
| case ETHER_STAT_CARRIER_ERRORS: |
| *val = afep->afe_carrier_errors; |
| break; |
| |
| case ETHER_STAT_TOOLONG_ERRORS: |
| *val = afep->afe_toolong_errors; |
| break; |
| |
| case ETHER_STAT_MACRCV_ERRORS: |
| *val = afep->afe_macrcv_errors; |
| break; |
| |
| case MAC_STAT_OVERFLOWS: |
| *val = afep->afe_overflow; |
| break; |
| |
| case MAC_STAT_UNDERFLOWS: |
| *val = afep->afe_underflow; |
| break; |
| |
| case ETHER_STAT_TOOSHORT_ERRORS: |
| *val = afep->afe_runt; |
| break; |
| |
| case ETHER_STAT_JABBER_ERRORS: |
| *val = afep->afe_jabber; |
| break; |
| |
| default: |
| return (ENOTSUP); |
| } |
| return (0); |
| } |
| |
| int |
| afe_m_getprop(void *arg, const char *name, mac_prop_id_t num, uint_t sz, |
| void *val) |
| { |
| afe_t *afep = arg; |
| |
| return (mii_m_getprop(afep->afe_mii, name, num, sz, val)); |
| } |
| |
| int |
| afe_m_setprop(void *arg, const char *name, mac_prop_id_t num, uint_t sz, |
| const void *val) |
| { |
| afe_t *afep = arg; |
| |
| return (mii_m_setprop(afep->afe_mii, name, num, sz, val)); |
| } |
| |
| static void |
| afe_m_propinfo(void *arg, const char *name, mac_prop_id_t num, |
| mac_prop_info_handle_t prh) |
| { |
| afe_t *afep = arg; |
| |
| mii_m_propinfo(afep->afe_mii, name, num, prh); |
| } |
| |
| /* |
| * Debugging and error reporting. |
| */ |
| void |
| afe_error(dev_info_t *dip, char *fmt, ...) |
| { |
| va_list ap; |
| char buf[256]; |
| |
| va_start(ap, fmt); |
| (void) vsnprintf(buf, sizeof (buf), fmt, ap); |
| va_end(ap); |
| |
| if (dip) { |
| cmn_err(CE_WARN, "%s%d: %s", |
| ddi_driver_name(dip), ddi_get_instance(dip), buf); |
| } else { |
| cmn_err(CE_WARN, "afe: %s", buf); |
| } |
| } |