| /* |
| * CDDL HEADER START |
| * |
| * The contents of this file are subject to the terms of the |
| * Common Development and Distribution License, Version 1.0 only |
| * (the "License"). You may not use this file except in compliance |
| * with the License. |
| * |
| * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE |
| * or http://www.opensolaris.org/os/licensing. |
| * See the License for the specific language governing permissions |
| * and limitations under the License. |
| * |
| * When distributing Covered Code, include this CDDL HEADER in each |
| * file and include the License file at usr/src/OPENSOLARIS.LICENSE. |
| * If applicable, add the following below this CDDL HEADER, with the |
| * fields enclosed by brackets "[]" replaced with your own identifying |
| * information: Portions Copyright [yyyy] [name of copyright owner] |
| * |
| * CDDL HEADER END |
| */ |
| /* |
| * Copyright 2005 Sun Microsystems, Inc. All rights reserved. |
| * Use is subject to license terms. |
| */ |
| /* Copyright (c) 1990 Mentat Inc. */ |
| |
| #pragma ident "%Z%%M% %I% %E% SMI" |
| |
| const char udp_version[] = "%Z%%M% %I% %E% SMI"; |
| |
| #include <sys/types.h> |
| #include <sys/stream.h> |
| #include <sys/stropts.h> |
| #include <sys/strlog.h> |
| #include <sys/strsun.h> |
| #define _SUN_TPI_VERSION 2 |
| #include <sys/tihdr.h> |
| #include <sys/timod.h> |
| #include <sys/tiuser.h> |
| #include <sys/ddi.h> |
| #include <sys/sunddi.h> |
| #include <sys/strsubr.h> |
| #include <sys/suntpi.h> |
| #include <sys/xti_inet.h> |
| #include <sys/cmn_err.h> |
| #include <sys/kmem.h> |
| #include <sys/policy.h> |
| #include <sys/ucred.h> |
| #include <sys/zone.h> |
| |
| #include <sys/socket.h> |
| #include <sys/vtrace.h> |
| #include <sys/debug.h> |
| #include <sys/isa_defs.h> |
| #include <sys/random.h> |
| #include <netinet/in.h> |
| #include <netinet/ip6.h> |
| #include <netinet/icmp6.h> |
| #include <netinet/udp.h> |
| #include <net/if.h> |
| |
| #include <inet/common.h> |
| #include <inet/ip.h> |
| #include <inet/ip6.h> |
| #include <inet/ip_ire.h> |
| #include <inet/mi.h> |
| #include <inet/mib2.h> |
| #include <inet/nd.h> |
| #include <inet/optcom.h> |
| #include <inet/snmpcom.h> |
| #include <inet/kstatcom.h> |
| #include <inet/udp_impl.h> |
| |
| /* |
| * The ipsec_info.h header file is here since it has the defination for the |
| * M_CTL message types used by IP to convey information to the ULP. The |
| * ipsec_info.h needs the pfkeyv2.h, hence the latters presence. |
| */ |
| #include <net/pfkeyv2.h> |
| #include <inet/ipsec_info.h> |
| |
| /* |
| * Object to represent database of options to search passed to |
| * {sock,tpi}optcom_req() interface routine to take care of option |
| * management and associated methods. |
| * XXX. These and other externs should really move to a udp header file. |
| */ |
| extern optdb_obj_t udp_opt_obj; |
| extern uint_t udp_max_optsize; |
| |
| |
| /* |
| * Synchronization notes: |
| * |
| * UDP uses a combination of the queue-pair STREAMS perimeter, a global |
| * lock and a set of bind hash locks to protect its data structures. |
| * |
| * The queue-pair perimeter is not acquired exclusively in the put |
| * procedures thus when udp_rput or udp_wput needs exclusive access to |
| * the udp_t instance structure it will use qwriter(..., PERIM_INNER) to |
| * asynchronously acquire exclusive access to the udp_t instance. |
| * |
| * When UDP global data needs to be modified the udp_g_lock mutex is acquired. |
| * Currently, udp_g_head and udp_g_epriv_ports[] are protected by it. |
| * |
| * When an UDP endpoint is bound to a local port, it is inserted into |
| * a bind hash list. The list consists of an array of udp_fanout_t buckets. |
| * The size of the array is controlled by the udp_bind_fanout_size variable. |
| * This variable can be changed in /etc/system if the default value is |
| * not large enough. Each bind hash bucket is protected by a per bucket lock. |
| * It protects the udp_bind_hash and udp_ptpbhn fields in the udp_t |
| * structure. An UDP endpoint is removed from the bind hash list only |
| * when it is being unbound or being closed. The per bucket lock also |
| * protects an UDP endpoint's state changes. |
| */ |
| |
| /* |
| * Bind hash list size and hash function. It has to be a power of 2 for |
| * hashing. |
| */ |
| #define UDP_BIND_FANOUT_SIZE 512 |
| #define UDP_BIND_HASH(lport) \ |
| ((ntohs((uint16_t)lport)) & (udp_bind_fanout_size - 1)) |
| |
| /* UDP bind fanout hash structure. */ |
| typedef struct udp_fanout_s { |
| udp_t *uf_udp; |
| kmutex_t uf_lock; |
| #if defined(_LP64) || defined(_I32LPx) |
| char uf_pad[48]; |
| #else |
| char uf_pad[56]; |
| #endif |
| } udp_fanout_t; |
| |
| uint_t udp_bind_fanout_size = UDP_BIND_FANOUT_SIZE; |
| /* udp_fanout_t *udp_bind_fanout. */ |
| static udp_fanout_t *udp_bind_fanout; |
| |
| /* |
| * This controls the rate some ndd info report functions can be used |
| * by non-priviledged users. It stores the last time such info is |
| * requested. When those report functions are called again, this |
| * is checked with the current time and compare with the ndd param |
| * udp_ndd_get_info_interval. |
| */ |
| static clock_t udp_last_ndd_get_info_time; |
| #define NDD_TOO_QUICK_MSG \ |
| "ndd get info rate too high for non-priviledged users, try again " \ |
| "later.\n" |
| #define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n" |
| |
| /* Named Dispatch Parameter Management Structure */ |
| typedef struct udpparam_s { |
| uint32_t udp_param_min; |
| uint32_t udp_param_max; |
| uint32_t udp_param_value; |
| char *udp_param_name; |
| } udpparam_t; |
| |
| static void udp_addr_req(queue_t *q, mblk_t *mp); |
| static void udp_bind(queue_t *q, mblk_t *mp); |
| static void udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp); |
| static void udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock); |
| static int udp_build_hdrs(queue_t *q, udp_t *udp); |
| static void udp_capability_req(queue_t *q, mblk_t *mp); |
| static int udp_close(queue_t *q); |
| static void udp_connect(queue_t *q, mblk_t *mp); |
| static void udp_disconnect(queue_t *q, mblk_t *mp); |
| static void udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, |
| int sys_error); |
| static void udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive, |
| t_scalar_t tlierr, int unixerr); |
| static int udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, |
| cred_t *cr); |
| static int udp_extra_priv_ports_add(queue_t *q, mblk_t *mp, |
| char *value, caddr_t cp, cred_t *cr); |
| static int udp_extra_priv_ports_del(queue_t *q, mblk_t *mp, |
| char *value, caddr_t cp, cred_t *cr); |
| static void udp_icmp_error(queue_t *q, mblk_t *mp); |
| static void udp_icmp_error_ipv6(queue_t *q, mblk_t *mp); |
| static void udp_info_req(queue_t *q, mblk_t *mp); |
| static mblk_t *udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim, |
| t_scalar_t addr_length); |
| static int udp_open(queue_t *q, dev_t *devp, int flag, int sflag, |
| cred_t *credp); |
| static int udp_unitdata_opt_process(queue_t *q, mblk_t *mp, |
| int *errorp, void *thisdg_attrs); |
| static boolean_t udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name); |
| int udp_opt_default(queue_t *q, t_scalar_t level, t_scalar_t name, |
| uchar_t *ptr); |
| int udp_opt_get(queue_t *q, t_scalar_t level, t_scalar_t name, |
| uchar_t *ptr); |
| int udp_opt_set(queue_t *q, uint_t optset_context, |
| int level, int name, |
| uint_t inlen, uchar_t *invalp, |
| uint_t *outlenp, uchar_t *outvalp, |
| void *thisdg_attrs, cred_t *cr, mblk_t *mblk); |
| static int udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); |
| static boolean_t udp_param_register(udpparam_t *udppa, int cnt); |
| static int udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, |
| cred_t *cr); |
| static int udp_pkt_set(uchar_t *invalp, uint_t inlen, boolean_t sticky, |
| uchar_t **optbufp, uint_t *optlenp); |
| static void udp_report_item(mblk_t *mp, udp_t *udp); |
| static void udp_rput(queue_t *q, mblk_t *mp); |
| static void udp_rput_bind_ack(queue_t *q, mblk_t *mp); |
| static void udp_rput_other(queue_t *q, mblk_t *mp); |
| static int udp_snmp_get(queue_t *q, mblk_t *mpctl); |
| static int udp_snmp_set(queue_t *q, t_scalar_t level, t_scalar_t name, |
| uchar_t *ptr, int len); |
| static int udp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, |
| cred_t *cr); |
| static void udp_ud_err(queue_t *q, mblk_t *mp, t_scalar_t err); |
| static void udp_unbind(queue_t *q, mblk_t *mp); |
| static in_port_t udp_update_next_port(in_port_t port, boolean_t random); |
| static void udp_wput(queue_t *q, mblk_t *mp); |
| static void udp_wput_ipv6(queue_t *q, mblk_t *mp, sin6_t *sin6, |
| t_scalar_t tudr_optlen); |
| static void udp_wput_other(queue_t *q, mblk_t *mp); |
| static void udp_wput_iocdata(queue_t *q, mblk_t *mp); |
| |
| static void udp_kstat_init(void); |
| static void udp_kstat_fini(void); |
| static int udp_kstat_update(kstat_t *kp, int rw); |
| |
| major_t UDP6_MAJ; |
| #define UDP6 "udp6" |
| |
| #define UDP_MAXPACKET_IPV4 \ |
| (IP_MAXPACKET - UDPH_SIZE - IP_SIMPLE_HDR_LENGTH) |
| #define UDP_MAXPACKET_IPV6 \ |
| (IP_MAXPACKET - UDPH_SIZE - IPV6_HDR_LEN) |
| |
| static struct module_info info = { |
| 5607, "udp", 1, INFPSZ, 512, 128 |
| }; |
| |
| static struct qinit rinit = { |
| (pfi_t)udp_rput, NULL, udp_open, udp_close, NULL, &info |
| }; |
| |
| static struct qinit winit = { |
| (pfi_t)udp_wput, NULL, NULL, NULL, NULL, &info |
| }; |
| |
| struct streamtab udpinfo = { |
| &rinit, &winit |
| }; |
| |
| static sin_t sin_null; /* Zero address for quick clears */ |
| static sin6_t sin6_null; /* Zero address for quick clears */ |
| |
| /* Protected by udp_g_lock */ |
| static void *udp_g_head; /* Head for list of open udp streams. */ |
| kmutex_t udp_g_lock; /* Protects the above variable */ |
| |
| /* Hint not protected by any lock */ |
| static in_port_t udp_g_next_port_to_try; |
| |
| /* |
| * Extra privileged ports. In host byte order. Protected by udp_g_lock. |
| */ |
| #define UDP_NUM_EPRIV_PORTS 64 |
| static int udp_g_num_epriv_ports = UDP_NUM_EPRIV_PORTS; |
| static in_port_t udp_g_epriv_ports[UDP_NUM_EPRIV_PORTS] = { 2049, 4045 }; |
| |
| /* Only modified during _init and _fini thus no locking is needed. */ |
| static IDP udp_g_nd; /* Points to table of UDP ND variables. */ |
| |
| /* MIB-2 stuff for SNMP */ |
| static mib2_udp_t udp_mib; /* SNMP fixed size info */ |
| static kstat_t *udp_mibkp; /* kstat exporting udp_mib data */ |
| |
| |
| /* Default structure copied into T_INFO_ACK messages */ |
| static struct T_info_ack udp_g_t_info_ack_ipv4 = { |
| T_INFO_ACK, |
| UDP_MAXPACKET_IPV4, /* TSDU_size. Excl. headers */ |
| T_INVALID, /* ETSU_size. udp does not support expedited data. */ |
| T_INVALID, /* CDATA_size. udp does not support connect data. */ |
| T_INVALID, /* DDATA_size. udp does not support disconnect data. */ |
| sizeof (sin_t), /* ADDR_size. */ |
| 0, /* OPT_size - not initialized here */ |
| UDP_MAXPACKET_IPV4, /* TIDU_size. Excl. headers */ |
| T_CLTS, /* SERV_type. udp supports connection-less. */ |
| TS_UNBND, /* CURRENT_state. This is set from udp_state. */ |
| (XPG4_1|SENDZERO) /* PROVIDER_flag */ |
| }; |
| |
| static struct T_info_ack udp_g_t_info_ack_ipv6 = { |
| T_INFO_ACK, |
| UDP_MAXPACKET_IPV6, /* TSDU_size. Excl. headers */ |
| T_INVALID, /* ETSU_size. udp does not support expedited data. */ |
| T_INVALID, /* CDATA_size. udp does not support connect data. */ |
| T_INVALID, /* DDATA_size. udp does not support disconnect data. */ |
| sizeof (sin6_t), /* ADDR_size. */ |
| 0, /* OPT_size - not initialized here */ |
| UDP_MAXPACKET_IPV6, /* TIDU_size. Excl. headers */ |
| T_CLTS, /* SERV_type. udp supports connection-less. */ |
| TS_UNBND, /* CURRENT_state. This is set from udp_state. */ |
| (XPG4_1|SENDZERO) /* PROVIDER_flag */ |
| }; |
| |
| /* largest UDP port number */ |
| #define UDP_MAX_PORT 65535 |
| |
| /* |
| * Table of ND variables supported by udp. These are loaded into udp_g_nd |
| * in udp_open. |
| * All of these are alterable, within the min/max values given, at run time. |
| */ |
| static udpparam_t udp_param_arr[] = { |
| /* min max value name */ |
| { 0L, 256, 32, "udp_wroff_extra" }, |
| { 1L, 255, 255, "udp_ipv4_ttl" }, |
| { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "udp_ipv6_hoplimit"}, |
| { 1024, (32 * 1024), 1024, "udp_smallest_nonpriv_port" }, |
| { 0, 1, 1, "udp_do_checksum" }, |
| { 1024, UDP_MAX_PORT, (32 * 1024), "udp_smallest_anon_port" }, |
| { 1024, UDP_MAX_PORT, UDP_MAX_PORT, "udp_largest_anon_port" }, |
| { 4096, 1024*1024, 56*1024, "udp_xmit_hiwat"}, |
| { 0, 1024*1024, 1024, "udp_xmit_lowat"}, |
| { 4096, 1024*1024, 56*1024, "udp_recv_hiwat"}, |
| { 65536, 1024*1024*1024, 2*1024*1024, "udp_max_buf"}, |
| { 100, 60000, 1000, "udp_ndd_get_info_interval"}, |
| }; |
| #define udp_wroff_extra udp_param_arr[0].udp_param_value |
| #define udp_ipv4_ttl udp_param_arr[1].udp_param_value |
| #define udp_ipv6_hoplimit udp_param_arr[2].udp_param_value |
| #define udp_smallest_nonpriv_port udp_param_arr[3].udp_param_value |
| #define udp_do_checksum udp_param_arr[4].udp_param_value |
| #define udp_smallest_anon_port udp_param_arr[5].udp_param_value |
| #define udp_largest_anon_port udp_param_arr[6].udp_param_value |
| #define udp_xmit_hiwat udp_param_arr[7].udp_param_value |
| #define udp_xmit_lowat udp_param_arr[8].udp_param_value |
| #define udp_recv_hiwat udp_param_arr[9].udp_param_value |
| #define udp_max_buf udp_param_arr[10].udp_param_value |
| #define udp_ndd_get_info_interval udp_param_arr[11].udp_param_value |
| |
| /* |
| * The smallest anonymous port in the priviledged port range which UDP |
| * looks for free port. Use in the option UDP_ANONPRIVBIND. |
| */ |
| static in_port_t udp_min_anonpriv_port = 512; |
| |
| /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ |
| uint32_t udp_random_anon_port = 1; |
| |
| /* |
| * Hook functions to enable cluster networking. |
| * On non-clustered systems these vectors must always be NULL |
| */ |
| |
| void (*cl_inet_bind)(uchar_t protocol, sa_family_t addr_family, |
| uint8_t *laddrp, in_port_t lport) = NULL; |
| void (*cl_inet_unbind)(uint8_t protocol, sa_family_t addr_family, |
| uint8_t *laddrp, in_port_t lport) = NULL; |
| |
| /* |
| * Return the next anonymous port in the priviledged port range for |
| * bind checking. |
| */ |
| static in_port_t |
| udp_get_next_priv_port(void) |
| { |
| static in_port_t next_priv_port = IPPORT_RESERVED - 1; |
| |
| if (next_priv_port < udp_min_anonpriv_port) { |
| next_priv_port = IPPORT_RESERVED - 1; |
| } |
| return (next_priv_port--); |
| } |
| |
| /* UDP bind hash report triggered via the Named Dispatch mechanism. */ |
| /* ARGSUSED */ |
| static int |
| udp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) |
| { |
| udp_fanout_t *udpf; |
| udp_t *udp; |
| int i; |
| zoneid_t zoneid; |
| |
| /* Refer to comments in udp_status_report(). */ |
| if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { |
| if (ddi_get_lbolt() - udp_last_ndd_get_info_time < |
| drv_usectohz(udp_ndd_get_info_interval * 1000)) { |
| (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); |
| return (0); |
| } |
| } |
| if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { |
| /* The following may work even if we cannot get a large buf. */ |
| (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); |
| return (0); |
| } |
| |
| (void) mi_mpprintf(mp, |
| "UDP " MI_COL_HDRPAD_STR |
| /* 12345678[89ABCDEF] */ |
| " zone lport src addr dest addr port state"); |
| /* 1234 12345 xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 12345 UNBOUND */ |
| |
| udp = (udp_t *)q->q_ptr; |
| zoneid = udp->udp_zoneid; |
| |
| for (i = 0; i < udp_bind_fanout_size; i++) { |
| udpf = &udp_bind_fanout[i]; |
| mutex_enter(&udpf->uf_lock); |
| |
| /* Print the hash index. */ |
| udp = udpf->uf_udp; |
| if (zoneid != GLOBAL_ZONEID) { |
| /* skip to first entry in this zone; might be none */ |
| while (udp != NULL && |
| udp->udp_zoneid != zoneid) |
| udp = udp->udp_bind_hash; |
| } |
| if (udp != NULL) { |
| uint_t print_len, buf_len; |
| |
| buf_len = mp->b_cont->b_datap->db_lim - |
| mp->b_cont->b_wptr; |
| print_len = snprintf((char *)mp->b_cont->b_wptr, |
| buf_len, "%d\n", i); |
| if (print_len < buf_len) { |
| mp->b_cont->b_wptr += print_len; |
| } else { |
| mp->b_cont->b_wptr += buf_len; |
| } |
| for (; udp != NULL; udp = udp->udp_bind_hash) { |
| if (zoneid == GLOBAL_ZONEID || |
| zoneid == udp->udp_zoneid) |
| udp_report_item(mp->b_cont, udp); |
| } |
| } |
| mutex_exit(&udpf->uf_lock); |
| } |
| udp_last_ndd_get_info_time = ddi_get_lbolt(); |
| return (0); |
| } |
| |
| /* |
| * Hash list removal routine for udp_t structures. |
| */ |
| static void |
| udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock) |
| { |
| udp_t *udpnext; |
| kmutex_t *lockp; |
| |
| if (udp->udp_ptpbhn == NULL) |
| return; |
| |
| /* |
| * Extract the lock pointer in case there are concurrent |
| * hash_remove's for this instance. |
| */ |
| ASSERT(udp->udp_port != 0); |
| if (!caller_holds_lock) { |
| lockp = &udp_bind_fanout[UDP_BIND_HASH(udp->udp_port)].uf_lock; |
| ASSERT(lockp != NULL); |
| mutex_enter(lockp); |
| } |
| if (udp->udp_ptpbhn != NULL) { |
| udpnext = udp->udp_bind_hash; |
| if (udpnext != NULL) { |
| udpnext->udp_ptpbhn = udp->udp_ptpbhn; |
| udp->udp_bind_hash = NULL; |
| } |
| *udp->udp_ptpbhn = udpnext; |
| udp->udp_ptpbhn = NULL; |
| } |
| if (!caller_holds_lock) { |
| mutex_exit(lockp); |
| } |
| } |
| |
| static void |
| udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp) |
| { |
| udp_t **udpp; |
| udp_t *udpnext; |
| |
| ASSERT(MUTEX_HELD(&uf->uf_lock)); |
| if (udp->udp_ptpbhn != NULL) { |
| udp_bind_hash_remove(udp, B_TRUE); |
| } |
| udpp = &uf->uf_udp; |
| udpnext = udpp[0]; |
| if (udpnext != NULL) { |
| /* |
| * If the new udp bound to the INADDR_ANY address |
| * and the first one in the list is not bound to |
| * INADDR_ANY we skip all entries until we find the |
| * first one bound to INADDR_ANY. |
| * This makes sure that applications binding to a |
| * specific address get preference over those binding to |
| * INADDR_ANY. |
| */ |
| if (V6_OR_V4_INADDR_ANY(udp->udp_bound_v6src) && |
| !V6_OR_V4_INADDR_ANY(udpnext->udp_bound_v6src)) { |
| while ((udpnext = udpp[0]) != NULL && |
| !V6_OR_V4_INADDR_ANY( |
| udpnext->udp_bound_v6src)) { |
| udpp = &(udpnext->udp_bind_hash); |
| } |
| if (udpnext != NULL) |
| udpnext->udp_ptpbhn = &udp->udp_bind_hash; |
| } else { |
| udpnext->udp_ptpbhn = &udp->udp_bind_hash; |
| } |
| } |
| udp->udp_bind_hash = udpnext; |
| udp->udp_ptpbhn = udpp; |
| udpp[0] = udp; |
| } |
| |
| /* |
| * This routine is called to handle each O_T_BIND_REQ/T_BIND_REQ message |
| * passed to udp_wput. |
| * It associates a port number and local address with the stream. |
| * The O_T_BIND_REQ/T_BIND_REQ is passed downstream to ip with the UDP |
| * protocol type (IPPROTO_UDP) placed in the message following the address. |
| * A T_BIND_ACK message is passed upstream when ip acknowledges the request. |
| * (Called as writer.) |
| * |
| * Note that UDP over IPv4 and IPv6 sockets can use the same port number |
| * without setting SO_REUSEADDR. This is needed so that they |
| * can be viewed as two independent transport protocols. |
| * However, anonymouns ports are allocated from the same range to avoid |
| * duplicating the udp_g_next_port_to_try. |
| */ |
| static void |
| udp_bind(queue_t *q, mblk_t *mp) |
| { |
| sin_t *sin; |
| sin6_t *sin6; |
| mblk_t *mp1; |
| in_port_t port; /* Host byte order */ |
| in_port_t requested_port; /* Host byte order */ |
| struct T_bind_req *tbr; |
| udp_t *udp; |
| int count; |
| in6_addr_t v6src; |
| boolean_t bind_to_req_port_only; |
| int loopmax; |
| udp_fanout_t *udpf; |
| in_port_t lport; /* Network byte order */ |
| zoneid_t zoneid; |
| |
| udp = (udp_t *)q->q_ptr; |
| if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { |
| (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, |
| "udp_bind: bad req, len %u", |
| (uint_t)(mp->b_wptr - mp->b_rptr)); |
| udp_err_ack(q, mp, TPROTO, 0); |
| return; |
| } |
| if (udp->udp_state != TS_UNBND) { |
| (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, |
| "udp_bind: bad state, %u", udp->udp_state); |
| udp_err_ack(q, mp, TOUTSTATE, 0); |
| return; |
| } |
| /* |
| * Reallocate the message to make sure we have enough room for an |
| * address and the protocol type. |
| */ |
| mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); |
| if (!mp1) { |
| udp_err_ack(q, mp, TSYSERR, ENOMEM); |
| return; |
| } |
| |
| mp = mp1; |
| tbr = (struct T_bind_req *)mp->b_rptr; |
| switch (tbr->ADDR_length) { |
| case 0: /* Request for a generic port */ |
| tbr->ADDR_offset = sizeof (struct T_bind_req); |
| if (udp->udp_family == AF_INET) { |
| tbr->ADDR_length = sizeof (sin_t); |
| sin = (sin_t *)&tbr[1]; |
| *sin = sin_null; |
| sin->sin_family = AF_INET; |
| mp->b_wptr = (uchar_t *)&sin[1]; |
| } else { |
| ASSERT(udp->udp_family == AF_INET6); |
| tbr->ADDR_length = sizeof (sin6_t); |
| sin6 = (sin6_t *)&tbr[1]; |
| *sin6 = sin6_null; |
| sin6->sin6_family = AF_INET6; |
| mp->b_wptr = (uchar_t *)&sin6[1]; |
| } |
| port = 0; |
| break; |
| |
| case sizeof (sin_t): /* Complete IPv4 address */ |
| sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset, |
| sizeof (sin_t)); |
| if (sin == NULL || !OK_32PTR((char *)sin)) { |
| udp_err_ack(q, mp, TSYSERR, EINVAL); |
| return; |
| } |
| if (udp->udp_family != AF_INET || |
| sin->sin_family != AF_INET) { |
| udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT); |
| return; |
| } |
| port = ntohs(sin->sin_port); |
| break; |
| |
| case sizeof (sin6_t): /* complete IPv6 address */ |
| sin6 = (sin6_t *)mi_offset_param(mp, tbr->ADDR_offset, |
| sizeof (sin6_t)); |
| if (sin6 == NULL || !OK_32PTR((char *)sin6)) { |
| udp_err_ack(q, mp, TSYSERR, EINVAL); |
| return; |
| } |
| if (udp->udp_family != AF_INET6 || |
| sin6->sin6_family != AF_INET6) { |
| udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT); |
| return; |
| } |
| port = ntohs(sin6->sin6_port); |
| break; |
| |
| default: /* Invalid request */ |
| (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, |
| "udp_bind: bad ADDR_length length %u", tbr->ADDR_length); |
| udp_err_ack(q, mp, TBADADDR, 0); |
| return; |
| } |
| |
| requested_port = port; |
| |
| if (requested_port == 0 || tbr->PRIM_type == O_T_BIND_REQ) |
| bind_to_req_port_only = B_FALSE; |
| else /* T_BIND_REQ and requested_port != 0 */ |
| bind_to_req_port_only = B_TRUE; |
| |
| if (requested_port == 0) { |
| /* |
| * If the application passed in zero for the port number, it |
| * doesn't care which port number we bind to. Get one in the |
| * valid range. |
| */ |
| if (udp->udp_anon_priv_bind) { |
| port = udp_get_next_priv_port(); |
| } else { |
| port = udp_update_next_port(udp_g_next_port_to_try, |
| B_TRUE); |
| } |
| } else { |
| /* |
| * If the port is in the well-known privileged range, |
| * make sure the caller was privileged. |
| */ |
| int i; |
| boolean_t priv = B_FALSE; |
| |
| if (port < udp_smallest_nonpriv_port) { |
| priv = B_TRUE; |
| } else { |
| for (i = 0; i < udp_g_num_epriv_ports; i++) { |
| if (port == udp_g_epriv_ports[i]) { |
| priv = B_TRUE; |
| break; |
| } |
| } |
| } |
| |
| if (priv) { |
| cred_t *cr = DB_CREDDEF(mp, udp->udp_credp); |
| |
| if (secpolicy_net_privaddr(cr, port) != 0) { |
| udp_err_ack(q, mp, TACCES, 0); |
| return; |
| } |
| } |
| } |
| |
| /* |
| * Copy the source address into our udp structure. This address |
| * may still be zero; if so, IP will fill in the correct address |
| * each time an outbound packet is passed to it. |
| */ |
| if (udp->udp_family == AF_INET) { |
| ASSERT(sin != NULL); |
| ASSERT(udp->udp_ipversion == IPV4_VERSION); |
| udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE + |
| udp->udp_ip_snd_options_len; |
| IN6_IPADDR_TO_V4MAPPED(sin->sin_addr.s_addr, &v6src); |
| } else { |
| ASSERT(sin6 != NULL); |
| v6src = sin6->sin6_addr; |
| if (IN6_IS_ADDR_V4MAPPED(&v6src)) { |
| udp->udp_ipversion = IPV4_VERSION; |
| udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + |
| UDPH_SIZE + udp->udp_ip_snd_options_len; |
| } else { |
| udp->udp_ipversion = IPV6_VERSION; |
| udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len; |
| } |
| } |
| |
| /* |
| * If udp_reuseaddr is not set, then we have to make sure that |
| * the IP address and port number the application requested |
| * (or we selected for the application) is not being used by |
| * another stream. If another stream is already using the |
| * requested IP address and port, the behavior depends on |
| * "bind_to_req_port_only". If set the bind fails; otherwise we |
| * search for any an unused port to bind to the the stream. |
| * |
| * As per the BSD semantics, as modified by the Deering multicast |
| * changes, if udp_reuseaddr is set, then we allow multiple binds |
| * to the same port independent of the local IP address. |
| * |
| * This is slightly different than in SunOS 4.X which did not |
| * support IP multicast. Note that the change implemented by the |
| * Deering multicast code effects all binds - not only binding |
| * to IP multicast addresses. |
| * |
| * Note that when binding to port zero we ignore SO_REUSEADDR in |
| * order to guarantee a unique port. |
| */ |
| |
| count = 0; |
| if (udp->udp_anon_priv_bind) { |
| /* loopmax = (IPPORT_RESERVED-1) - udp_min_anonpriv_port + 1 */ |
| loopmax = IPPORT_RESERVED - udp_min_anonpriv_port; |
| } else { |
| loopmax = udp_largest_anon_port - udp_smallest_anon_port + 1; |
| } |
| |
| zoneid = udp->udp_zoneid; |
| for (;;) { |
| udp_t *udp1; |
| boolean_t is_inaddr_any; |
| boolean_t found_exclbind = B_FALSE; |
| |
| is_inaddr_any = V6_OR_V4_INADDR_ANY(v6src); |
| /* |
| * Walk through the list of udp streams bound to |
| * requested port with the same IP address. |
| */ |
| lport = htons(port); |
| udpf = &udp_bind_fanout[UDP_BIND_HASH(lport)]; |
| mutex_enter(&udpf->uf_lock); |
| for (udp1 = udpf->uf_udp; udp1 != NULL; |
| udp1 = udp1->udp_bind_hash) { |
| if (lport != udp1->udp_port || |
| zoneid != udp1->udp_zoneid) |
| continue; |
| |
| /* |
| * If UDP_EXCLBIND is set for either the bound or |
| * binding endpoint, the semantics of bind |
| * is changed according to the following chart. |
| * |
| * spec = specified address (v4 or v6) |
| * unspec = unspecified address (v4 or v6) |
| * A = specified addresses are different for endpoints |
| * |
| * bound bind to allowed? |
| * ------------------------------------- |
| * unspec unspec no |
| * unspec spec no |
| * spec unspec no |
| * spec spec yes if A |
| */ |
| if (udp1->udp_exclbind || udp->udp_exclbind) { |
| if (V6_OR_V4_INADDR_ANY( |
| udp1->udp_bound_v6src) || |
| is_inaddr_any || |
| IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src, |
| &v6src)) { |
| found_exclbind = B_TRUE; |
| break; |
| } |
| continue; |
| } |
| |
| /* |
| * Check ipversion to allow IPv4 and IPv6 sockets to |
| * have disjoint port number spaces. |
| */ |
| if (udp->udp_ipversion != udp1->udp_ipversion) |
| continue; |
| |
| /* |
| * No difference depending on SO_REUSEADDR. |
| * |
| * If existing port is bound to a |
| * non-wildcard IP address and |
| * the requesting stream is bound to |
| * a distinct different IP addresses |
| * (non-wildcard, also), keep going. |
| */ |
| if (!is_inaddr_any && |
| !V6_OR_V4_INADDR_ANY(udp1->udp_bound_v6src) && |
| !IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src, |
| &v6src)) { |
| continue; |
| } |
| break; |
| } |
| |
| if (!found_exclbind && |
| (udp->udp_reuseaddr && requested_port != 0)) { |
| break; |
| } |
| |
| if (udp1 == NULL) { |
| /* |
| * No other stream has this IP address |
| * and port number. We can use it. |
| */ |
| break; |
| } |
| mutex_exit(&udpf->uf_lock); |
| if (bind_to_req_port_only) { |
| /* |
| * We get here only when requested port |
| * is bound (and only first of the for() |
| * loop iteration). |
| * |
| * The semantics of this bind request |
| * require it to fail so we return from |
| * the routine (and exit the loop). |
| * |
| */ |
| udp_err_ack(q, mp, TADDRBUSY, 0); |
| return; |
| } |
| |
| if (udp->udp_anon_priv_bind) { |
| port = udp_get_next_priv_port(); |
| } else { |
| if ((count == 0) && (requested_port != 0)) { |
| /* |
| * If the application wants us to find |
| * a port, get one to start with. Set |
| * requested_port to 0, so that we will |
| * update udp_g_next_port_to_try below. |
| */ |
| port = udp_update_next_port( |
| udp_g_next_port_to_try, B_TRUE); |
| requested_port = 0; |
| } else { |
| port = udp_update_next_port(port + 1, B_FALSE); |
| } |
| } |
| |
| if (++count >= loopmax) { |
| /* |
| * We've tried every possible port number and |
| * there are none available, so send an error |
| * to the user. |
| */ |
| udp_err_ack(q, mp, TNOADDR, 0); |
| return; |
| } |
| } |
| |
| /* |
| * Copy the source address into our udp structure. This address |
| * may still be zero; if so, ip will fill in the correct address |
| * each time an outbound packet is passed to it. |
| * If we are binding to a broadcast or multicast address udp_rput |
| * will clear the source address when it receives the T_BIND_ACK. |
| */ |
| udp->udp_v6src = udp->udp_bound_v6src = v6src; |
| udp->udp_port = lport; |
| /* |
| * Now reset the the next anonymous port if the application requested |
| * an anonymous port, or we handed out the next anonymous port. |
| */ |
| if ((requested_port == 0) && (!udp->udp_anon_priv_bind)) { |
| udp_g_next_port_to_try = port + 1; |
| } |
| |
| /* Initialize the O_T_BIND_REQ/T_BIND_REQ for ip. */ |
| if (udp->udp_family == AF_INET) { |
| sin->sin_port = udp->udp_port; |
| } else { |
| int error; |
| |
| sin6->sin6_port = udp->udp_port; |
| /* Rebuild the header template */ |
| error = udp_build_hdrs(q, udp); |
| if (error != 0) { |
| mutex_exit(&udpf->uf_lock); |
| udp_err_ack(q, mp, TSYSERR, error); |
| return; |
| } |
| } |
| udp->udp_state = TS_IDLE; |
| udp_bind_hash_insert(udpf, udp); |
| mutex_exit(&udpf->uf_lock); |
| |
| if (cl_inet_bind) { |
| /* |
| * Running in cluster mode - register bind information |
| */ |
| if (udp->udp_ipversion == IPV4_VERSION) { |
| (*cl_inet_bind)(IPPROTO_UDP, AF_INET, |
| (uint8_t *)(&V4_PART_OF_V6(udp->udp_v6src)), |
| (in_port_t)udp->udp_port); |
| } else { |
| (*cl_inet_bind)(IPPROTO_UDP, AF_INET6, |
| (uint8_t *)&(udp->udp_v6src), |
| (in_port_t)udp->udp_port); |
| } |
| |
| } |
| |
| /* Pass the protocol number in the message following the address. */ |
| *mp->b_wptr++ = IPPROTO_UDP; |
| if (!V6_OR_V4_INADDR_ANY(udp->udp_v6src)) { |
| /* |
| * Append a request for an IRE if udp_v6src not |
| * zero (IPv4 - INADDR_ANY, or IPv6 - all-zeroes address). |
| */ |
| mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); |
| if (!mp->b_cont) { |
| udp_err_ack(q, mp, TSYSERR, ENOMEM); |
| return; |
| } |
| mp->b_cont->b_wptr += sizeof (ire_t); |
| mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; |
| } |
| putnext(q, mp); |
| } |
| |
| /* |
| * This routine handles each T_CONN_REQ message passed to udp. It |
| * associates a default destination address with the stream. |
| * |
| * This routine sends down a T_BIND_REQ to IP with the following mblks: |
| * T_BIND_REQ - specifying local and remote address/port |
| * IRE_DB_REQ_TYPE - to get an IRE back containing ire_type and src |
| * T_OK_ACK - for the T_CONN_REQ |
| * T_CONN_CON - to keep the TPI user happy |
| * |
| * The connect completes in udp_rput. |
| * When a T_BIND_ACK is received information is extracted from the IRE |
| * and the two appended messages are sent to the TPI user. |
| * Should udp_rput receive T_ERROR_ACK for the T_BIND_REQ it will convert |
| * it to an error ack for the appropriate primitive. |
| */ |
| static void |
| udp_connect(queue_t *q, mblk_t *mp) |
| { |
| sin6_t *sin6; |
| sin_t *sin; |
| struct T_conn_req *tcr; |
| udp_t *udp, *udp1; |
| in6_addr_t v6dst; |
| ipaddr_t v4dst; |
| uint16_t dstport; |
| uint32_t flowinfo; |
| mblk_t *mp1, *mp2; |
| udp_fanout_t *udpf; |
| |
| udp = (udp_t *)q->q_ptr; |
| tcr = (struct T_conn_req *)mp->b_rptr; |
| |
| /* A bit of sanity checking */ |
| if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_req)) { |
| udp_err_ack(q, mp, TPROTO, 0); |
| return; |
| } |
| /* |
| * This UDP must have bound to a port already before doing |
| * a connect. |
| */ |
| if (udp->udp_state == TS_UNBND) { |
| (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, |
| "udp_connect: bad state, %u", udp->udp_state); |
| udp_err_ack(q, mp, TOUTSTATE, 0); |
| return; |
| } |
| ASSERT(udp->udp_port != 0 && udp->udp_ptpbhn != NULL); |
| |
| udpf = &udp_bind_fanout[UDP_BIND_HASH(udp->udp_port)]; |
| if (udp->udp_state == TS_DATA_XFER) { |
| /* Already connected - clear out state */ |
| mutex_enter(&udpf->uf_lock); |
| udp->udp_v6src = udp->udp_bound_v6src; |
| udp->udp_state = TS_IDLE; |
| mutex_exit(&udpf->uf_lock); |
| } |
| |
| if (tcr->OPT_length != 0) { |
| udp_err_ack(q, mp, TBADOPT, 0); |
| return; |
| } |
| |
| /* |
| * Determine packet type based on type of address passed in |
| * the request should contain an IPv4 or IPv6 address. |
| * Make sure that address family matches the type of |
| * family of the the address passed down |
| */ |
| switch (tcr->DEST_length) { |
| default: |
| udp_err_ack(q, mp, TBADADDR, 0); |
| return; |
| |
| case sizeof (sin_t): |
| sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, |
| sizeof (sin_t)); |
| if (sin == NULL || !OK_32PTR((char *)sin)) { |
| udp_err_ack(q, mp, TSYSERR, EINVAL); |
| return; |
| } |
| if (udp->udp_family != AF_INET || |
| sin->sin_family != AF_INET) { |
| udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT); |
| return; |
| } |
| v4dst = sin->sin_addr.s_addr; |
| dstport = sin->sin_port; |
| IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst); |
| ASSERT(udp->udp_ipversion == IPV4_VERSION); |
| udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE + |
| udp->udp_ip_snd_options_len; |
| break; |
| |
| case sizeof (sin6_t): |
| sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset, |
| sizeof (sin6_t)); |
| if (sin6 == NULL || !OK_32PTR((char *)sin6)) { |
| udp_err_ack(q, mp, TSYSERR, EINVAL); |
| return; |
| } |
| if (udp->udp_family != AF_INET6 || |
| sin6->sin6_family != AF_INET6) { |
| udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT); |
| return; |
| } |
| v6dst = sin6->sin6_addr; |
| if (IN6_IS_ADDR_V4MAPPED(&v6dst)) { |
| IN6_V4MAPPED_TO_IPADDR(&v6dst, v4dst); |
| udp->udp_ipversion = IPV4_VERSION; |
| udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + |
| UDPH_SIZE + udp->udp_ip_snd_options_len; |
| flowinfo = 0; |
| } else { |
| udp->udp_ipversion = IPV6_VERSION; |
| udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len; |
| flowinfo = sin6->sin6_flowinfo; |
| } |
| dstport = sin6->sin6_port; |
| break; |
| } |
| if (dstport == 0) { |
| udp_err_ack(q, mp, TBADADDR, 0); |
| return; |
| } |
| |
| /* |
| * Create a default IP header with no IP options. |
| */ |
| udp->udp_dstport = dstport; |
| if (udp->udp_ipversion == IPV4_VERSION) { |
| /* |
| * Interpret a zero destination to mean loopback. |
| * Update the T_CONN_REQ (sin/sin6) since it is used to |
| * generate the T_CONN_CON. |
| */ |
| if (v4dst == INADDR_ANY) { |
| v4dst = htonl(INADDR_LOOPBACK); |
| IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst); |
| if (udp->udp_family == AF_INET) { |
| sin->sin_addr.s_addr = v4dst; |
| } else { |
| sin6->sin6_addr = v6dst; |
| } |
| } |
| udp->udp_v6dst = v6dst; |
| udp->udp_flowinfo = 0; |
| |
| /* |
| * If the destination address is multicast and |
| * an outgoing multicast interface has been set, |
| * use the address of that interface as our |
| * source address if no source address has been set. |
| */ |
| if (V4_PART_OF_V6(udp->udp_v6src) == INADDR_ANY && |
| CLASSD(v4dst) && |
| udp->udp_multicast_if_addr != INADDR_ANY) { |
| IN6_IPADDR_TO_V4MAPPED(udp->udp_multicast_if_addr, |
| &udp->udp_v6src); |
| } |
| } else { |
| ASSERT(udp->udp_ipversion == IPV6_VERSION); |
| /* |
| * Interpret a zero destination to mean loopback. |
| * Update the T_CONN_REQ (sin/sin6) since it is used to |
| * generate the T_CONN_CON. |
| */ |
| if (IN6_IS_ADDR_UNSPECIFIED(&v6dst)) { |
| v6dst = ipv6_loopback; |
| sin6->sin6_addr = v6dst; |
| } |
| udp->udp_v6dst = v6dst; |
| udp->udp_flowinfo = flowinfo; |
| /* |
| * If the destination address is multicast and |
| * an outgoing multicast interface has been set, |
| * then the ip bind logic will pick the correct source |
| * address (i.e. matching the outgoing multicast interface). |
| */ |
| } |
| |
| /* |
| * Verify that the src/port/dst/port is unique for all |
| * connections in TS_DATA_XFER |
| */ |
| mutex_enter(&udpf->uf_lock); |
| for (udp1 = udpf->uf_udp; udp1 != NULL; udp1 = udp1->udp_bind_hash) { |
| if (udp1->udp_state != TS_DATA_XFER) |
| continue; |
| if (udp->udp_port != udp1->udp_port || |
| udp->udp_ipversion != udp1->udp_ipversion || |
| dstport != udp1->udp_dstport || |
| !IN6_ARE_ADDR_EQUAL(&udp->udp_v6src, &udp1->udp_v6src) || |
| !IN6_ARE_ADDR_EQUAL(&v6dst, &udp1->udp_v6dst)) |
| continue; |
| mutex_exit(&udpf->uf_lock); |
| udp_err_ack(q, mp, TBADADDR, 0); |
| return; |
| } |
| udp->udp_state = TS_DATA_XFER; |
| mutex_exit(&udpf->uf_lock); |
| |
| /* |
| * Send down bind to IP to verify that there is a route |
| * and to determine the source address. |
| * This will come back as T_BIND_ACK with an IRE_DB_TYPE in rput. |
| */ |
| if (udp->udp_family == AF_INET) |
| mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa_conn_t)); |
| else |
| mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa6_conn_t)); |
| if (mp1 == NULL) { |
| udp_err_ack(q, mp, TSYSERR, ENOMEM); |
| bind_failed: |
| mutex_enter(&udpf->uf_lock); |
| udp->udp_state = TS_IDLE; |
| mutex_exit(&udpf->uf_lock); |
| return; |
| } |
| |
| /* |
| * We also have to send a connection confirmation to |
| * keep TLI happy. Prepare it for udp_rput. |
| */ |
| if (udp->udp_family == AF_INET) |
| mp2 = mi_tpi_conn_con(NULL, (char *)sin, |
| sizeof (*sin), NULL, 0); |
| else |
| mp2 = mi_tpi_conn_con(NULL, (char *)sin6, |
| sizeof (*sin6), NULL, 0); |
| if (mp2 == NULL) { |
| freemsg(mp1); |
| udp_err_ack(q, mp, TSYSERR, ENOMEM); |
| goto bind_failed; |
| } |
| |
| mp = mi_tpi_ok_ack_alloc(mp); |
| if (mp == NULL) { |
| /* Unable to reuse the T_CONN_REQ for the ack. */ |
| freemsg(mp2); |
| udp_err_ack_prim(q, mp1, T_CONN_REQ, TSYSERR, ENOMEM); |
| goto bind_failed; |
| } |
| |
| /* Hang onto the T_OK_ACK and T_CONN_CON for later. */ |
| linkb(mp1, mp); |
| linkb(mp1, mp2); |
| |
| putnext(q, mp1); |
| } |
| |
| /* This is the close routine for udp. It frees the per-stream data. */ |
| static int |
| udp_close(queue_t *q) |
| { |
| udp_t *udp = (udp_t *)q->q_ptr; |
| |
| TRACE_1(TR_FAC_UDP, TR_UDP_CLOSE, |
| "udp_close: q %p", q); |
| |
| qprocsoff(q); |
| |
| if (cl_inet_unbind != NULL && udp->udp_state == TS_IDLE) { |
| /* |
| * Running in cluster mode - register unbind information |
| */ |
| if (udp->udp_ipversion == IPV4_VERSION) { |
| (*cl_inet_unbind)(IPPROTO_UDP, AF_INET, |
| (uint8_t *)(&(V4_PART_OF_V6(udp->udp_v6src))), |
| (in_port_t)udp->udp_port); |
| } else { |
| (*cl_inet_unbind)(IPPROTO_UDP, AF_INET6, |
| (uint8_t *)(&(udp->udp_v6src)), |
| (in_port_t)udp->udp_port); |
| } |
| } |
| |
| udp_bind_hash_remove(udp, B_FALSE); |
| mutex_enter(&udp_g_lock); |
| /* Unlink the udp structure and release the minor device number. */ |
| mi_close_unlink(&udp_g_head, (IDP)udp); |
| mutex_exit(&udp_g_lock); |
| /* If there are any options associated with the stream, free them. */ |
| if (udp->udp_ip_snd_options) |
| mi_free((char *)udp->udp_ip_snd_options); |
| |
| if (udp->udp_ip_rcv_options) |
| mi_free((char *)udp->udp_ip_rcv_options); |
| |
| /* Free memory associated with sticky options */ |
| if (udp->udp_sticky_hdrs_len != 0) { |
| kmem_free(udp->udp_sticky_hdrs, |
| udp->udp_sticky_hdrs_len); |
| udp->udp_sticky_hdrs = NULL; |
| udp->udp_sticky_hdrs_len = 0; |
| } |
| if (udp->udp_sticky_ipp.ipp_fields & IPPF_HOPOPTS) { |
| kmem_free(udp->udp_sticky_ipp.ipp_hopopts, |
| udp->udp_sticky_ipp.ipp_hopoptslen); |
| } |
| if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTDSTOPTS) { |
| kmem_free(udp->udp_sticky_ipp.ipp_rtdstopts, |
| udp->udp_sticky_ipp.ipp_rtdstoptslen); |
| } |
| if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTHDR) { |
| kmem_free(udp->udp_sticky_ipp.ipp_rthdr, |
| udp->udp_sticky_ipp.ipp_rthdrlen); |
| } |
| if (udp->udp_sticky_ipp.ipp_fields & IPPF_DSTOPTS) { |
| kmem_free(udp->udp_sticky_ipp.ipp_dstopts, |
| udp->udp_sticky_ipp.ipp_dstoptslen); |
| } |
| udp->udp_sticky_ipp.ipp_fields &= |
| ~(IPPF_HOPOPTS|IPPF_RTDSTOPTS|IPPF_RTHDR|IPPF_DSTOPTS); |
| |
| crfree(udp->udp_credp); |
| /* Free the data structure */ |
| mi_close_free((IDP)udp); |
| q->q_ptr = WR(q)->q_ptr = NULL; |
| return (0); |
| } |
| |
| /* |
| * This routine handles each T_DISCON_REQ message passed to udp |
| * as an indicating that UDP is no longer connected. This results |
| * in sending a T_BIND_REQ to IP to restore the binding to just |
| * the local address/port. |
| * |
| * This routine sends down a T_BIND_REQ to IP with the following mblks: |
| * T_BIND_REQ - specifying just the local address/port |
| * T_OK_ACK - for the T_DISCON_REQ |
| * |
| * The disconnect completes in udp_rput. |
| * When a T_BIND_ACK is received the appended T_OK_ACK is sent to the TPI user. |
| * Should udp_rput receive T_ERROR_ACK for the T_BIND_REQ it will convert |
| * it to an error ack for the appropriate primitive. |
| */ |
| static void |
| udp_disconnect(queue_t *q, mblk_t *mp) |
| { |
| udp_t *udp; |
| mblk_t *mp1; |
| udp_fanout_t *udpf; |
| |
| udp = (udp_t *)q->q_ptr; |
| |
| if (udp->udp_state != TS_DATA_XFER) { |
| (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, |
| "udp_disconnect: bad state, %u", udp->udp_state); |
| udp_err_ack(q, mp, TOUTSTATE, 0); |
| return; |
| } |
| udpf = &udp_bind_fanout[UDP_BIND_HASH(udp->udp_port)]; |
| mutex_enter(&udpf->uf_lock); |
| udp->udp_v6src = udp->udp_bound_v6src; |
| udp->udp_state = TS_IDLE; |
| mutex_exit(&udpf->uf_lock); |
| |
| /* |
| * Send down bind to IP to remove the full binding and revert |
| * to the local address binding. |
| */ |
| if (udp->udp_family == AF_INET) |
| mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin_t)); |
| else |
| mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin6_t)); |
| if (mp1 == NULL) { |
| udp_err_ack(q, mp, TSYSERR, ENOMEM); |
| return; |
| } |
| mp = mi_tpi_ok_ack_alloc(mp); |
| if (mp == NULL) { |
| /* Unable to reuse the T_DISCON_REQ for the ack. */ |
| udp_err_ack_prim(q, mp1, T_DISCON_REQ, TSYSERR, ENOMEM); |
| return; |
| } |
| |
| if (udp->udp_family == AF_INET6) { |
| int error; |
| |
| /* Rebuild the header template */ |
| error = udp_build_hdrs(q, udp); |
| if (error != 0) { |
| udp_err_ack_prim(q, mp, T_DISCON_REQ, TSYSERR, error); |
| freemsg(mp1); |
| return; |
| } |
| } |
| mutex_enter(&udpf->uf_lock); |
| udp->udp_discon_pending = 1; |
| mutex_exit(&udpf->uf_lock); |
| |
| /* Append the T_OK_ACK to the T_BIND_REQ for udp_rput */ |
| linkb(mp1, mp); |
| putnext(q, mp1); |
| } |
| |
| /* This routine creates a T_ERROR_ACK message and passes it upstream. */ |
| static void |
| udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, int sys_error) |
| { |
| if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) |
| qreply(q, mp); |
| } |
| |
| /* Shorthand to generate and send TPI error acks to our client */ |
| static void |
| udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive, t_scalar_t t_error, |
| int sys_error) |
| { |
| struct T_error_ack *teackp; |
| |
| if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), |
| M_PCPROTO, T_ERROR_ACK)) != NULL) { |
| teackp = (struct T_error_ack *)mp->b_rptr; |
| teackp->ERROR_prim = primitive; |
| teackp->TLI_error = t_error; |
| teackp->UNIX_error = sys_error; |
| qreply(q, mp); |
| } |
| } |
| |
| /*ARGSUSED*/ |
| static int |
| udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) |
| { |
| int i; |
| |
| for (i = 0; i < udp_g_num_epriv_ports; i++) { |
| if (udp_g_epriv_ports[i] != 0) |
| (void) mi_mpprintf(mp, "%d ", udp_g_epriv_ports[i]); |
| } |
| return (0); |
| } |
| |
| /* |
| * Hold udp_g_lock to prevent multiple threads from changing udp_g_epriv_ports |
| * at the same time. |
| */ |
| /* ARGSUSED */ |
| static int |
| udp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, |
| cred_t *cr) |
| { |
| long new_value; |
| int i; |
| |
| /* |
| * Fail the request if the new value does not lie within the |
| * port number limits. |
| */ |
| if (ddi_strtol(value, NULL, 10, &new_value) != 0 || |
| new_value <= 0 || new_value >= 65536) { |
| return (EINVAL); |
| } |
| |
| mutex_enter(&udp_g_lock); |
| /* Check if the value is already in the list */ |
| for (i = 0; i < udp_g_num_epriv_ports; i++) { |
| if (new_value == udp_g_epriv_ports[i]) { |
| mutex_exit(&udp_g_lock); |
| return (EEXIST); |
| } |
| } |
| /* Find an empty slot */ |
| for (i = 0; i < udp_g_num_epriv_ports; i++) { |
| if (udp_g_epriv_ports[i] == 0) |
| break; |
| } |
| if (i == udp_g_num_epriv_ports) { |
| mutex_exit(&udp_g_lock); |
| return (EOVERFLOW); |
| } |
| |
| /* Set the new value */ |
| udp_g_epriv_ports[i] = (in_port_t)new_value; |
| mutex_exit(&udp_g_lock); |
| return (0); |
| } |
| |
| /* |
| * Hold udp_g_lock to prevent multiple threads from changing udp_g_epriv_ports |
| * at the same time. |
| */ |
| /* ARGSUSED */ |
| static int |
| udp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, |
| cred_t *cr) |
| { |
| long new_value; |
| int i; |
| |
| /* |
| * Fail the request if the new value does not lie within the |
| * port number limits. |
| */ |
| if (ddi_strtol(value, NULL, 10, &new_value) != 0 || |
| new_value <= 0 || new_value >= 65536) { |
| return (EINVAL); |
| } |
| |
| mutex_enter(&udp_g_lock); |
| /* Check that the value is already in the list */ |
| for (i = 0; i < udp_g_num_epriv_ports; i++) { |
| if (udp_g_epriv_ports[i] == new_value) |
| break; |
| } |
| if (i == udp_g_num_epriv_ports) { |
| mutex_exit(&udp_g_lock); |
| return (ESRCH); |
| } |
| |
| /* Clear the value */ |
| udp_g_epriv_ports[i] = 0; |
| mutex_exit(&udp_g_lock); |
| return (0); |
| } |
| |
| /* At minimum we need 4 bytes of UDP header */ |
| #define ICMP_MIN_UDP_HDR 4 |
| |
| /* |
| * udp_icmp_error is called by udp_rput to process ICMP msgs. passed up by IP. |
| * Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors. |
| * Assumes that IP has pulled up everything up to and including the ICMP header. |
| * An M_CTL could potentially come here from some other module (i.e. if UDP |
| * is pushed on some module other than IP). Thus, if we find that the M_CTL |
| * does not have enough ICMP information , following STREAMS conventions, |
| * we send it upstream assuming it is an M_CTL we don't understand. |
| */ |
| static void |
| udp_icmp_error(queue_t *q, mblk_t *mp) |
| { |
| icmph_t *icmph; |
| ipha_t *ipha; |
| int iph_hdr_length; |
| udpha_t *udpha; |
| sin_t sin; |
| sin6_t sin6; |
| mblk_t *mp1; |
| int error = 0; |
| udp_t *udp = (udp_t *)q->q_ptr; |
| size_t mp_size = MBLKL(mp); |
| |
| /* |
| * Assume IP provides aligned packets - otherwise toss |
| */ |
| if (!OK_32PTR(mp->b_rptr)) { |
| freemsg(mp); |
| return; |
| } |
| |
| /* |
| * Verify that we have a complete IP header and the application has |
| * asked for errors. If not, send it upstream. |
| */ |
| if (!udp->udp_dgram_errind || mp_size < sizeof (ipha_t)) { |
| noticmpv4: |
| putnext(q, mp); |
| return; |
| } |
| |
| ipha = (ipha_t *)mp->b_rptr; |
| /* |
| * Verify IP version. Anything other than IPv4 or IPv6 packet is sent |
| * upstream. ICMPv6 is handled in udp_icmp_error_ipv6. |
| */ |
| switch (IPH_HDR_VERSION(ipha)) { |
| case IPV6_VERSION: |
| udp_icmp_error_ipv6(q, mp); |
| return; |
| case IPV4_VERSION: |
| break; |
| default: |
| goto noticmpv4; |
| } |
| |
| /* Skip past the outer IP and ICMP headers */ |
| iph_hdr_length = IPH_HDR_LENGTH(ipha); |
| icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; |
| /* |
| * If we don't have the correct outer IP header length or if the ULP |
| * is not IPPROTO_ICMP or if we don't have a complete inner IP header |
| * send the packet upstream. |
| */ |
| if (iph_hdr_length < sizeof (ipha_t) || |
| ipha->ipha_protocol != IPPROTO_ICMP || |
| (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { |
| goto noticmpv4; |
| } |
| ipha = (ipha_t *)&icmph[1]; |
| |
| /* Skip past the inner IP and find the ULP header */ |
| iph_hdr_length = IPH_HDR_LENGTH(ipha); |
| udpha = (udpha_t *)((char *)ipha + iph_hdr_length); |
| /* |
| * If we don't have the correct inner IP header length or if the ULP |
| * is not IPPROTO_UDP or if we don't have at least ICMP_MIN_UDP_HDR |
| * bytes of UDP header, send it upstream. |
| */ |
| if (iph_hdr_length < sizeof (ipha_t) || |
| ipha->ipha_protocol != IPPROTO_UDP || |
| (uchar_t *)udpha + ICMP_MIN_UDP_HDR > mp->b_wptr) { |
| goto noticmpv4; |
| } |
| |
| switch (icmph->icmph_type) { |
| case ICMP_DEST_UNREACHABLE: |
| switch (icmph->icmph_code) { |
| case ICMP_FRAGMENTATION_NEEDED: |
| /* |
| * IP has already adjusted the path MTU. |
| * XXX Somehow pass MTU indication to application? |
| */ |
| break; |
| case ICMP_PORT_UNREACHABLE: |
| case ICMP_PROTOCOL_UNREACHABLE: |
| error = ECONNREFUSED; |
| break; |
| default: |
| /* Transient errors */ |
| break; |
| } |
| break; |
| default: |
| /* Transient errors */ |
| break; |
| } |
| if (error == 0) { |
| freemsg(mp); |
| return; |
| } |
| |
| switch (udp->udp_family) { |
| case AF_INET: |
| sin = sin_null; |
| sin.sin_family = AF_INET; |
| sin.sin_addr.s_addr = ipha->ipha_dst; |
| sin.sin_port = udpha->uha_dst_port; |
| mp1 = mi_tpi_uderror_ind((char *)&sin, sizeof (sin_t), NULL, 0, |
| error); |
| break; |
| case AF_INET6: |
| sin6 = sin6_null; |
| sin6.sin6_family = AF_INET6; |
| IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &sin6.sin6_addr); |
| sin6.sin6_port = udpha->uha_dst_port; |
| |
| mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t), |
| NULL, 0, error); |
| break; |
| } |
| if (mp1) |
| putnext(q, mp1); |
| freemsg(mp); |
| } |
| |
| /* |
| * udp_icmp_error_ipv6 is called by udp_icmp_error to process ICMP for IPv6. |
| * Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors. |
| * Assumes that IP has pulled up all the extension headers as well as the |
| * ICMPv6 header. |
| * An M_CTL could potentially come here from some other module (i.e. if UDP |
| * is pushed on some module other than IP). Thus, if we find that the M_CTL |
| * does not have enough ICMP information , following STREAMS conventions, |
| * we send it upstream assuming it is an M_CTL we don't understand. The reason |
| * it might get here is if the non-ICMP M_CTL accidently has 6 in the version |
| * field (when cast to ipha_t in udp_icmp_error). |
| */ |
| static void |
| udp_icmp_error_ipv6(queue_t *q, mblk_t *mp) |
| { |
| udp_t *udp = (udp_t *)q->q_ptr; |
| icmp6_t *icmp6; |
| ip6_t *ip6h, *outer_ip6h; |
| uint16_t hdr_length; |
| uint8_t *nexthdrp; |
| udpha_t *udpha; |
| sin6_t sin6; |
| mblk_t *mp1; |
| int error = 0; |
| size_t mp_size = MBLKL(mp); |
| |
| /* |
| * Verify that we have a complete IP header. If not, send it upstream. |
| */ |
| if (mp_size < sizeof (ip6_t)) { |
| noticmpv6: |
| putnext(q, mp); |
| return; |
| } |
| |
| outer_ip6h = (ip6_t *)mp->b_rptr; |
| /* |
| * Verify this is an ICMPV6 packet, else send it upstream |
| */ |
| if (outer_ip6h->ip6_nxt == IPPROTO_ICMPV6) { |
| hdr_length = IPV6_HDR_LEN; |
| } else if (!ip_hdr_length_nexthdr_v6(mp, outer_ip6h, &hdr_length, |
| &nexthdrp) || |
| *nexthdrp != IPPROTO_ICMPV6) { |
| goto noticmpv6; |
| } |
| icmp6 = (icmp6_t *)&mp->b_rptr[hdr_length]; |
| ip6h = (ip6_t *)&icmp6[1]; |
| /* |
| * Verify we have a complete ICMP and inner IP header. |
| */ |
| if ((uchar_t *)&ip6h[1] > mp->b_wptr) |
| goto noticmpv6; |
| |
| if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &hdr_length, &nexthdrp)) |
| goto noticmpv6; |
| udpha = (udpha_t *)((char *)ip6h + hdr_length); |
| /* |
| * Validate inner header. If the ULP is not IPPROTO_UDP or if we don't |
| * have at least ICMP_MIN_UDP_HDR bytes of UDP header send the |
| * packet upstream. |
| */ |
| if ((*nexthdrp != IPPROTO_UDP) || |
| ((uchar_t *)udpha + ICMP_MIN_UDP_HDR) > mp->b_wptr) { |
| goto noticmpv6; |
| } |
| |
| switch (icmp6->icmp6_type) { |
| case ICMP6_DST_UNREACH: |
| switch (icmp6->icmp6_code) { |
| case ICMP6_DST_UNREACH_NOPORT: |
| error = ECONNREFUSED; |
| break; |
| case ICMP6_DST_UNREACH_ADMIN: |
| case ICMP6_DST_UNREACH_NOROUTE: |
| case ICMP6_DST_UNREACH_BEYONDSCOPE: |
| case ICMP6_DST_UNREACH_ADDR: |
| /* Transient errors */ |
| break; |
| default: |
| break; |
| } |
| break; |
| case ICMP6_PACKET_TOO_BIG: { |
| struct T_unitdata_ind *tudi; |
| struct T_opthdr *toh; |
| size_t udi_size; |
| mblk_t *newmp; |
| t_scalar_t opt_length = sizeof (struct T_opthdr) + |
| sizeof (struct ip6_mtuinfo); |
| sin6_t *sin6; |
| struct ip6_mtuinfo *mtuinfo; |
| |
| /* |
| * If the application has requested to receive path mtu |
| * information, send up an empty message containing an |
| * IPV6_PATHMTU ancillary data item. |
| */ |
| if (!udp->udp_ipv6_recvpathmtu) |
| break; |
| |
| udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t) + |
| opt_length; |
| if ((newmp = allocb(udi_size, BPRI_MED)) == NULL) { |
| BUMP_MIB(&udp_mib, udpInErrors); |
| break; |
| } |
| |
| /* |
| * newmp->b_cont is left to NULL on purpose. This is an |
| * empty message containing only ancillary data. |
| */ |
| newmp->b_datap->db_type = M_PROTO; |
| tudi = (struct T_unitdata_ind *)newmp->b_rptr; |
| newmp->b_wptr = (uchar_t *)tudi + udi_size; |
| tudi->PRIM_type = T_UNITDATA_IND; |
| tudi->SRC_length = sizeof (sin6_t); |
| tudi->SRC_offset = sizeof (struct T_unitdata_ind); |
| tudi->OPT_offset = tudi->SRC_offset + sizeof (sin6_t); |
| tudi->OPT_length = opt_length; |
| |
| sin6 = (sin6_t *)&tudi[1]; |
| bzero(sin6, sizeof (sin6_t)); |
| sin6->sin6_family = AF_INET6; |
| sin6->sin6_addr = udp->udp_v6dst; |
| |
| toh = (struct T_opthdr *)&sin6[1]; |
| toh->level = IPPROTO_IPV6; |
| toh->name = IPV6_PATHMTU; |
| toh->len = opt_length; |
| toh->status = 0; |
| |
| mtuinfo = (struct ip6_mtuinfo *)&toh[1]; |
| bzero(mtuinfo, sizeof (struct ip6_mtuinfo)); |
| mtuinfo->ip6m_addr.sin6_family = AF_INET6; |
| mtuinfo->ip6m_addr.sin6_addr = ip6h->ip6_dst; |
| mtuinfo->ip6m_mtu = icmp6->icmp6_mtu; |
| /* |
| * We've consumed everything we need from the original |
| * message. Free it, then send our empty message. |
| */ |
| freemsg(mp); |
| putnext(q, newmp); |
| return; |
| } |
| case ICMP6_TIME_EXCEEDED: |
| /* Transient errors */ |
| break; |
| case ICMP6_PARAM_PROB: |
| /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ |
| if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && |
| (uchar_t *)ip6h + icmp6->icmp6_pptr == |
| (uchar_t *)nexthdrp) { |
| error = ECONNREFUSED; |
| break; |
| } |
| break; |
| } |
| if (error == 0) { |
| freemsg(mp); |
| return; |
| } |
| |
| sin6 = sin6_null; |
| sin6.sin6_family = AF_INET6; |
| sin6.sin6_addr = ip6h->ip6_dst; |
| sin6.sin6_port = udpha->uha_dst_port; |
| sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; |
| |
| mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t), NULL, 0, |
| error); |
| if (mp1) |
| putnext(q, mp1); |
| freemsg(mp); |
| } |
| |
| /* |
| * This routine responds to T_ADDR_REQ messages. It is called by udp_wput. |
| * The local address is filled in if endpoint is bound. The remote address |
| * is filled in if remote address has been precified ("connected endpoint") |
| * (The concept of connected CLTS sockets is alien to published TPI |
| * but we support it anyway). |
| */ |
| static void |
| udp_addr_req(queue_t *q, mblk_t *mp) |
| { |
| udp_t *udp = (udp_t *)q->q_ptr; |
| sin_t *sin; |
| sin6_t *sin6; |
| mblk_t *ackmp; |
| struct T_addr_ack *taa; |
| |
| /* Make it large enough for worst case */ |
| ackmp = reallocb(mp, sizeof (struct T_addr_ack) + |
| 2 * sizeof (sin6_t), 1); |
| if (ackmp == NULL) { |
| udp_err_ack(q, mp, TSYSERR, ENOMEM); |
| return; |
| } |
| taa = (struct T_addr_ack *)ackmp->b_rptr; |
| |
| bzero(taa, sizeof (struct T_addr_ack)); |
| ackmp->b_wptr = (uchar_t *)&taa[1]; |
| |
| taa->PRIM_type = T_ADDR_ACK; |
| ackmp->b_datap->db_type = M_PCPROTO; |
| /* |
| * Note: Following code assumes 32 bit alignment of basic |
| * data structures like sin_t and struct T_addr_ack. |
| */ |
| if (udp->udp_state != TS_UNBND) { |
| /* |
| * Fill in local address first |
| */ |
| taa->LOCADDR_offset = sizeof (*taa); |
| if (udp->udp_family == AF_INET) { |
| taa->LOCADDR_length = sizeof (sin_t); |
| sin = (sin_t *)&taa[1]; |
| /* Fill zeroes and then initialize non-zero fields */ |
| *sin = sin_null; |
| sin->sin_family = AF_INET; |
| if (!IN6_IS_ADDR_V4MAPPED_ANY(&udp->udp_v6src) && |
| !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) { |
| IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6src, |
| sin->sin_addr.s_addr); |
| } else { |
| /* |
| * INADDR_ANY |
| * udp_v6src is not set, we might be bound to |
| * broadcast/multicast. Use udp_bound_v6src as |
| * local address instead (that could |
| * also still be INADDR_ANY) |
| */ |
| IN6_V4MAPPED_TO_IPADDR(&udp->udp_bound_v6src, |
| sin->sin_addr.s_addr); |
| } |
| sin->sin_port = udp->udp_port; |
| ackmp->b_wptr = (uchar_t *)&sin[1]; |
| if (udp->udp_state == TS_DATA_XFER) { |
| /* |
| * connected, fill remote address too |
| */ |
| taa->REMADDR_length = sizeof (sin_t); |
| /* assumed 32-bit alignment */ |
| taa->REMADDR_offset = taa->LOCADDR_offset + |
| taa->LOCADDR_length; |
| |
| sin = (sin_t *)(ackmp->b_rptr + |
| taa->REMADDR_offset); |
| /* initialize */ |
| *sin = sin_null; |
| sin->sin_family = AF_INET; |
| sin->sin_addr.s_addr = |
| V4_PART_OF_V6(udp->udp_v6dst); |
| sin->sin_port = udp->udp_dstport; |
| ackmp->b_wptr = (uchar_t *)&sin[1]; |
| } |
| } else { |
| taa->LOCADDR_length = sizeof (sin6_t); |
| sin6 = (sin6_t *)&taa[1]; |
| /* Fill zeroes and then initialize non-zero fields */ |
| *sin6 = sin6_null; |
| sin6->sin6_family = AF_INET6; |
| if (!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) { |
| sin6->sin6_addr = udp->udp_v6src; |
| } else { |
| /* |
| * UNSPECIFIED |
| * udp_v6src is not set, we might be bound to |
| * broadcast/multicast. Use udp_bound_v6src as |
| * local address instead (that could |
| * also still be UNSPECIFIED) |
| */ |
| sin6->sin6_addr = |
| udp->udp_bound_v6src; |
| } |
| sin6->sin6_port = udp->udp_port; |
| ackmp->b_wptr = (uchar_t *)&sin6[1]; |
| if (udp->udp_state == TS_DATA_XFER) { |
| /* |
| * connected, fill remote address too |
| */ |
| taa->REMADDR_length = sizeof (sin6_t); |
| /* assumed 32-bit alignment */ |
| taa->REMADDR_offset = taa->LOCADDR_offset + |
| taa->LOCADDR_length; |
| |
| sin6 = (sin6_t *)(ackmp->b_rptr + |
| taa->REMADDR_offset); |
| /* initialize */ |
| *sin6 = sin6_null; |
| sin6->sin6_family = AF_INET6; |
| sin6->sin6_addr = udp->udp_v6dst; |
| sin6->sin6_port = udp->udp_dstport; |
| ackmp->b_wptr = (uchar_t *)&sin6[1]; |
| } |
| ackmp->b_wptr = (uchar_t *)&sin6[1]; |
| } |
| } |
| ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim); |
| qreply(q, ackmp); |
| } |
| |
| static void |
| udp_copy_info(struct T_info_ack *tap, udp_t *udp) |
| { |
| if (udp->udp_family == AF_INET) { |
| *tap = udp_g_t_info_ack_ipv4; |
| } else { |
| *tap = udp_g_t_info_ack_ipv6; |
| } |
| tap->CURRENT_state = udp->udp_state; |
| tap->OPT_size = udp_max_optsize; |
| } |
| |
| /* |
| * This routine responds to T_CAPABILITY_REQ messages. It is called by |
| * udp_wput. Much of the T_CAPABILITY_ACK information is copied from |
| * udp_g_t_info_ack. The current state of the stream is copied from |
| * udp_state. |
| */ |
| static void |
| udp_capability_req(queue_t *q, mblk_t *mp) |
| { |
| udp_t *udp = (udp_t *)q->q_ptr; |
| t_uscalar_t cap_bits1; |
| struct T_capability_ack *tcap; |
| |
| cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; |
| |
| mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), |
| mp->b_datap->db_type, T_CAPABILITY_ACK); |
| if (!mp) |
| return; |
| |
| tcap = (struct T_capability_ack *)mp->b_rptr; |
| tcap->CAP_bits1 = 0; |
| |
| if (cap_bits1 & TC1_INFO) { |
| udp_copy_info(&tcap->INFO_ack, udp); |
| tcap->CAP_bits1 |= TC1_INFO; |
| } |
| |
| qreply(q, mp); |
| } |
| |
| /* |
| * This routine responds to T_INFO_REQ messages. It is called by udp_wput. |
| * Most of the T_INFO_ACK information is copied from udp_g_t_info_ack. |
| * The current state of the stream is copied from udp_state. |
| */ |
| static void |
| udp_info_req(queue_t *q, mblk_t *mp) |
| { |
| udp_t *udp = (udp_t *)q->q_ptr; |
| |
| /* Create a T_INFO_ACK message. */ |
| mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, |
| T_INFO_ACK); |
| if (!mp) |
| return; |
| udp_copy_info((struct T_info_ack *)mp->b_rptr, udp); |
| qreply(q, mp); |
| } |
| |
| /* |
| * IP recognizes seven kinds of bind requests: |
| * |
| * - A zero-length address binds only to the protocol number. |
| * |
| * - A 4-byte address is treated as a request to |
| * validate that the address is a valid local IPv4 |
| * address, appropriate for an application to bind to. |
| * IP does the verification, but does not make any note |
| * of the address at this time. |
| * |
| * - A 16-byte address contains is treated as a request |
| * to validate a local IPv6 address, as the 4-byte |
| * address case above. |
| * |
| * - A 16-byte sockaddr_in to validate the local IPv4 address and also |
| * use it for the inbound fanout of packets. |
| * |
| * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also |
| * use it for the inbound fanout of packets. |
| * |
| * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout |
| * information consisting of local and remote addresses |
| * and ports. In this case, the addresses are both |
| * validated as appropriate for this operation, and, if |
| * so, the information is retained for use in the |
| * inbound fanout. |
| * |
| * - A 36-byte address address (ipa6_conn_t) containing complete IPv6 |
| * fanout information, like the 12-byte case above. |
| * |
| * IP will also fill in the IRE request mblk with information |
| * regarding our peer. In all cases, we notify IP of our protocol |
| * type by appending a single protocol byte to the bind request. |
| */ |
| static mblk_t * |
| udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim, t_scalar_t addr_length) |
| { |
| char *cp; |
| mblk_t *mp; |
| struct T_bind_req *tbr; |
| ipa_conn_t *ac; |
| ipa6_conn_t *ac6; |
| sin_t *sin; |
| sin6_t *sin6; |
| |
| ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ); |
| |
| mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI); |
| if (!mp) |
| return (mp); |
| mp->b_datap->db_type = M_PROTO; |
| tbr = (struct T_bind_req *)mp->b_rptr; |
| tbr->PRIM_type = bind_prim; |
| tbr->ADDR_offset = sizeof (*tbr); |
| tbr->CONIND_number = 0; |
| tbr->ADDR_length = addr_length; |
| cp = (char *)&tbr[1]; |
| switch (addr_length) { |
| case sizeof (ipa_conn_t): |
| ASSERT(udp->udp_family == AF_INET); |
| /* Append a request for an IRE */ |
| mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); |
| if (!mp->b_cont) { |
| freemsg(mp); |
| return (NULL); |
| } |
| mp->b_cont->b_wptr += sizeof (ire_t); |
| mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; |
| |
| /* cp known to be 32 bit aligned */ |
| ac = (ipa_conn_t *)cp; |
| ac->ac_laddr = V4_PART_OF_V6(udp->udp_v6src); |
| ac->ac_faddr = V4_PART_OF_V6(udp->udp_v6dst); |
| ac->ac_fport = udp->udp_dstport; |
| ac->ac_lport = udp->udp_port; |
| break; |
| |
| case sizeof (ipa6_conn_t): |
| ASSERT(udp->udp_family == AF_INET6); |
| /* Append a request for an IRE */ |
| mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); |
| if (!mp->b_cont) { |
| freemsg(mp); |
| return (NULL); |
| } |
| mp->b_cont->b_wptr += sizeof (ire_t); |
| mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; |
| |
| /* cp known to be 32 bit aligned */ |
| ac6 = (ipa6_conn_t *)cp; |
| ac6->ac6_laddr = udp->udp_v6src; |
| ac6->ac6_faddr = udp->udp_v6dst; |
| ac6->ac6_fport = udp->udp_dstport; |
| ac6->ac6_lport = udp->udp_port; |
| break; |
| |
| case sizeof (sin_t): |
| ASSERT(udp->udp_family == AF_INET); |
| /* Append a request for an IRE */ |
| mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); |
| if (!mp->b_cont) { |
| freemsg(mp); |
| return (NULL); |
| } |
| mp->b_cont->b_wptr += sizeof (ire_t); |
| mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; |
| |
| sin = (sin_t *)cp; |
| *sin = sin_null; |
| sin->sin_family = AF_INET; |
| sin->sin_addr.s_addr = V4_PART_OF_V6(udp->udp_bound_v6src); |
| sin->sin_port = udp->udp_port; |
| break; |
| |
| case sizeof (sin6_t): |
| ASSERT(udp->udp_family == AF_INET6); |
| /* Append a request for an IRE */ |
| mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); |
| if (!mp->b_cont) { |
| freemsg(mp); |
| return (NULL); |
| } |
| mp->b_cont->b_wptr += sizeof (ire_t); |
| mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; |
| |
| sin6 = (sin6_t *)cp; |
| *sin6 = sin6_null; |
| sin6->sin6_family = AF_INET6; |
| sin6->sin6_addr = udp->udp_bound_v6src; |
| sin6->sin6_port = udp->udp_port; |
| break; |
| } |
| /* Add protocol number to end */ |
| cp[addr_length] = (char)IPPROTO_UDP; |
| mp->b_wptr = (uchar_t *)&cp[addr_length + 1]; |
| return (mp); |
| } |
| |
| /* |
| * This is the open routine for udp. It allocates a udp_t structure for |
| * the stream and, on the first open of the module, creates an ND table. |
| */ |
| static int |
| udp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) |
| { |
| int err; |
| udp_t *udp; |
| |
| TRACE_1(TR_FAC_UDP, TR_UDP_OPEN, "udp_open: q %p", q); |
| |
| /* |
| * Defer the qprocson until everything is initialized since |
| * we are D_MTPERQ and after qprocson the rput routine can |
| * run. |
| */ |
| |
| /* If the stream is already open, return immediately. */ |
| if (q->q_ptr != NULL) |
| return (0); |
| |
| /* If this is not a push of udp as a module, fail. */ |
| if (sflag != MODOPEN) |
| return (EINVAL); |
| |
| /* |
| * Create and initialize a udp_t structure for this stream. |
| */ |
| udp = (udp_t *)mi_open_alloc_sleep(sizeof (udp_t)); |
| |
| /* Set the initial state of the stream and the privilege status. */ |
| q->q_ptr = WR(q)->q_ptr = udp; |
| udp->udp_state = TS_UNBND; |
| if (getmajor(*devp) == (major_t)UDP6_MAJ) { |
| udp->udp_family = AF_INET6; |
| udp->udp_ipversion = IPV6_VERSION; |
| udp->udp_max_hdr_len = IPV6_HDR_LEN + UDPH_SIZE; |
| udp->udp_ttl = udp_ipv6_hoplimit; |
| } else { |
| udp->udp_family = AF_INET; |
| udp->udp_ipversion = IPV4_VERSION; |
| udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE; |
| udp->udp_ttl = udp_ipv4_ttl; |
| } |
| |
| /* |
| * The receive hiwat is only looked at on the stream head queue. |
| * Store in q_hiwat in order to return on SO_RCVBUF getsockopts. |
| */ |
| q->q_hiwat = udp_recv_hiwat; |
| |
| udp->udp_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; |
| udp->udp_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; |
| udp->udp_credp = credp; |
| crhold(credp); |
| |
| udp->udp_zoneid = getzoneid(); |
| |
| /* |
| * Acquire the lock and link it into the list of open streams. |
| */ |
| mutex_enter(&udp_g_lock); |
| err = mi_open_link(&udp_g_head, (IDP)udp, devp, flag, sflag, credp); |
| mutex_exit(&udp_g_lock); |
| if (err != 0) |
| goto error; |
| |
| qprocson(q); |
| |
| /* |
| * The transmit hiwat/lowat is only looked at on IP's queue. |
| * Store in q_hiwat in order to return on SO_SNDBUF |
| * getsockopts. |
| */ |
| WR(q)->q_hiwat = udp_xmit_hiwat; |
| WR(q)->q_next->q_hiwat = WR(q)->q_hiwat; |
| WR(q)->q_lowat = udp_xmit_lowat; |
| WR(q)->q_next->q_lowat = WR(q)->q_lowat; |
| |
| if (udp->udp_family == AF_INET6) { |
| /* Build initial header template for transmit */ |
| if ((err = udp_build_hdrs(q, udp)) != 0) { |
| qprocsoff(q); |
| /* |
| * Unlink the udp structure and release |
| * the minor device number. |
| */ |
| mutex_enter(&udp_g_lock); |
| mi_close_unlink(&udp_g_head, (IDP)udp); |
| mutex_exit(&udp_g_lock); |
| goto error; |
| } |
| } |
| |
| /* Set the Stream head write offset. */ |
| (void) mi_set_sth_wroff(q, udp->udp_max_hdr_len + udp_wroff_extra); |
| (void) mi_set_sth_hiwat(q, q->q_hiwat); |
| return (0); |
| |
| error: |
| q->q_ptr = WR(q)->q_ptr = NULL; |
| crfree(credp); |
| mi_close_free((IDP)udp); |
| return (err); |
| } |
| |
| /* |
| * Which UDP options OK to set through T_UNITDATA_REQ... |
| */ |
| /* ARGSUSED */ |
| static boolean_t |
| udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name) |
| { |
| |
| return (B_TRUE); |
| } |
| |
| /* |
| * This routine gets default values of certain options whose default |
| * values are maintained by protcol specific code |
| */ |
| /* ARGSUSED */ |
| int |
| udp_opt_default(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr) |
| { |
| int *i1 = (int *)ptr; |
| |
| switch (level) { |
| case IPPROTO_IP: |
| switch (name) { |
| case IP_MULTICAST_TTL: |
| *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; |
| return (sizeof (uchar_t)); |
| case IP_MULTICAST_LOOP: |
| *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; |
| return (sizeof (uchar_t)); |
| } |
| break; |
| case IPPROTO_IPV6: |
| switch (name) { |
| case IPV6_MULTICAST_HOPS: |
| *i1 = IP_DEFAULT_MULTICAST_TTL; |
| return (sizeof (int)); |
| case IPV6_MULTICAST_LOOP: |
| *i1 = IP_DEFAULT_MULTICAST_LOOP; |
| return (sizeof (int)); |
| case IPV6_UNICAST_HOPS: |
| *i1 = udp_ipv6_hoplimit; |
| return (sizeof (int)); |
| } |
| break; |
| } |
| return (-1); |
| } |
| |
| /* |
| * This routine retrieves the current status of socket options. |
| * It returns the size of the option retrieved. |
| */ |
| int |
| udp_opt_get(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr) |
| { |
| int *i1 = (int *)ptr; |
| udp_t *udp = (udp_t *)q->q_ptr; |
| ip6_pkt_t *ipp = &udp->udp_sticky_ipp; |
| |
| switch (level) { |
| case SOL_SOCKET: |
| switch (name) { |
| case SO_DEBUG: |
| *i1 = udp->udp_debug; |
| break; /* goto sizeof (int) option return */ |
| case SO_REUSEADDR: |
| *i1 = udp->udp_reuseaddr; |
| break; /* goto sizeof (int) option return */ |
| case SO_TYPE: |
| *i1 = SOCK_DGRAM; |
| break; /* goto sizeof (int) option return */ |
| |
| /* |
| * The following three items are available here, |
| * but are only meaningful to IP. |
| */ |
| case SO_DONTROUTE: |
| *i1 = udp->udp_dontroute; |
| break; /* goto sizeof (int) option return */ |
| case SO_USELOOPBACK: |
| *i1 = udp->udp_useloopback; |
| break; /* goto sizeof (int) option return */ |
| case SO_BROADCAST: |
| *i1 = udp->udp_broadcast; |
| break; /* goto sizeof (int) option return */ |
| |
| case SO_SNDBUF: |
| *i1 = q->q_hiwat; |
| break; /* goto sizeof (int) option return */ |
| case SO_RCVBUF: |
| *i1 = RD(q)->q_hiwat; |
| break; /* goto sizeof (int) option return */ |
| case SO_DGRAM_ERRIND: |
| *i1 = udp->udp_dgram_errind; |
| break; /* goto sizeof (int) option return */ |
| case SO_RECVUCRED: |
| *i1 = udp->udp_recvucred; |
| break; /* goto sizeof (int) option return */ |
| default: |
| return (-1); |
| } |
| break; |
| case IPPROTO_IP: |
| if (udp->udp_family != AF_INET) |
| return (-1); |
| switch (name) { |
| case IP_OPTIONS: |
| case T_IP_OPTIONS: |
| if (udp->udp_ip_rcv_options_len) |
| bcopy(udp->udp_ip_rcv_options, ptr, |
| udp->udp_ip_rcv_options_len); |
| return (udp->udp_ip_rcv_options_len); |
| case IP_TOS: |
| case T_IP_TOS: |
| *i1 = (int)udp->udp_type_of_service; |
| break; /* goto sizeof (int) option return */ |
| case IP_TTL: |
| *i1 = (int)udp->udp_ttl; |
| break; /* goto sizeof (int) option return */ |
| case IP_MULTICAST_IF: |
| /* 0 address if not set */ |
| *(ipaddr_t *)ptr = udp->udp_multicast_if_addr; |
| return (sizeof (ipaddr_t)); |
| case IP_MULTICAST_TTL: |
| *(uchar_t *)ptr = udp->udp_multicast_ttl; |
| return (sizeof (uchar_t)); |
| case IP_MULTICAST_LOOP: |
| *ptr = udp->udp_multicast_loop; |
| return (sizeof (uint8_t)); |
| case IP_RECVOPTS: |
| *i1 = udp->udp_recvopts; |
| break; /* goto sizeof (int) option return */ |
| case IP_RECVDSTADDR: |
| *i1 = udp->udp_recvdstaddr; |
| break; /* goto sizeof (int) option return */ |
| case IP_RECVIF: |
| *i1 = udp->udp_recvif; |
| break; /* goto sizeof (int) option return */ |
| case IP_RECVSLLA: |
| *i1 = udp->udp_recvslla; |
| break; /* goto sizeof (int) option return */ |
| case IP_RECVTTL: |
| *i1 = udp->udp_recvttl; |
| break; /* goto sizeof (int) option return */ |
| case IP_ADD_MEMBERSHIP: |
| case IP_DROP_MEMBERSHIP: |
| case IP_BLOCK_SOURCE: |
| case IP_UNBLOCK_SOURCE: |
| case IP_ADD_SOURCE_MEMBERSHIP: |
| case IP_DROP_SOURCE_MEMBERSHIP: |
| case MCAST_JOIN_GROUP: |
| case MCAST_LEAVE_GROUP: |
| case MCAST_BLOCK_SOURCE: |
| case MCAST_UNBLOCK_SOURCE: |
| case MCAST_JOIN_SOURCE_GROUP: |
| case MCAST_LEAVE_SOURCE_GROUP: |
| case IP_DONTFAILOVER_IF: |
| /* cannot "get" the value for these */ |
| return (-1); |
| case IP_BOUND_IF: |
| /* Zero if not set */ |
| *i1 = udp->udp_bound_if; |
| break; /* goto sizeof (int) option return */ |
| case IP_UNSPEC_SRC: |
| *i1 = udp->udp_unspec_source; |
| break; /* goto sizeof (int) option return */ |
| case IP_XMIT_IF: |
| *i1 = udp->udp_xmit_if; |
| break; /* goto sizeof (int) option return */ |
| default: |
| return (-1); |
| } |
| break; |
| case IPPROTO_IPV6: |
| if (udp->udp_family != AF_INET6) |
| return (-1); |
| switch (name) { |
| case IPV6_UNICAST_HOPS: |
| *i1 = (unsigned int)udp->udp_ttl; |
| break; /* goto sizeof (int) option return */ |
| case IPV6_MULTICAST_IF: |
| /* 0 index if not set */ |
| *i1 = udp->udp_multicast_if_index; |
| break; /* goto sizeof (int) option return */ |
| case IPV6_MULTICAST_HOPS: |
| *i1 = udp->udp_multicast_ttl; |
| break; /* goto sizeof (int) option return */ |
| case IPV6_MULTICAST_LOOP: |
| *i1 = udp->udp_multicast_loop; |
| break; /* goto sizeof (int) option return */ |
| case IPV6_JOIN_GROUP: |
| case IPV6_LEAVE_GROUP: |
| case MCAST_JOIN_GROUP: |
| case MCAST_LEAVE_GROUP: |
| case MCAST_BLOCK_SOURCE: |
| case MCAST_UNBLOCK_SOURCE: |
| case MCAST_JOIN_SOURCE_GROUP: |
| case MCAST_LEAVE_SOURCE_GROUP: |
| /* cannot "get" the value for these */ |
| return (-1); |
| case IPV6_BOUND_IF: |
| /* Zero if not set */ |
| *i1 = udp->udp_bound_if; |
| break; /* goto sizeof (int) option return */ |
| case IPV6_UNSPEC_SRC: |
| *i1 = udp->udp_unspec_source; |
| break; /* goto sizeof (int) option return */ |
| case IPV6_RECVPKTINFO: |
| *i1 = udp->udp_ipv6_recvpktinfo; |
| break; /* goto sizeof (int) option return */ |
| case IPV6_RECVTCLASS: |
| *i1 = udp->udp_ipv6_recvtclass; |
| break; /* goto sizeof (int) option return */ |
| case IPV6_RECVPATHMTU: |
| *i1 = udp->udp_ipv6_recvpathmtu; |
| break; /* goto sizeof (int) option return */ |
| case IPV6_RECVHOPLIMIT: |
| *i1 = udp->udp_ipv6_recvhoplimit; |
| break; /* goto sizeof (int) option return */ |
| case IPV6_RECVHOPOPTS: |
| *i1 = udp->udp_ipv6_recvhopopts; |
| break; /* goto sizeof (int) option return */ |
| case IPV6_RECVDSTOPTS: |
| *i1 = udp->udp_ipv6_recvdstopts; |
| break; /* goto sizeof (int) option return */ |
| case _OLD_IPV6_RECVDSTOPTS: |
| *i1 = udp->udp_old_ipv6_recvdstopts; |
| break; /* goto sizeof (int) option return */ |
| case IPV6_RECVRTHDRDSTOPTS: |
| *i1 = udp->udp_ipv6_recvrthdrdstopts; |
| break; /* goto sizeof (int) option return */ |
| case IPV6_RECVRTHDR: |
| *i1 = udp->udp_ipv6_recvrthdr; |
| break; /* goto sizeof (int) option return */ |
| case IPV6_PKTINFO: { |
| /* XXX assumes that caller has room for max size! */ |
| struct in6_pktinfo *pkti; |
| |
| pkti = (struct in6_pktinfo *)ptr; |
| if (ipp->ipp_fields & IPPF_IFINDEX) |
| pkti->ipi6_ifindex = ipp->ipp_ifindex; |
| else |
| pkti->ipi6_ifindex = 0; |
| if (ipp->ipp_fields & IPPF_ADDR) |
| pkti->ipi6_addr = ipp->ipp_addr; |
| else |
| pkti->ipi6_addr = ipv6_all_zeros; |
| return (sizeof (struct in6_pktinfo)); |
| } |
| case IPV6_TCLASS: |
| if (ipp->ipp_fields & IPPF_TCLASS) |
| *i1 = ipp->ipp_tclass; |
| else |
| *i1 = IPV6_FLOW_TCLASS( |
| IPV6_DEFAULT_VERS_AND_FLOW); |
| break; /* goto sizeof (int) option return */ |
| case IPV6_NEXTHOP: { |
| sin6_t *sin6 = (sin6_t *)ptr; |
| |
| if (!(ipp->ipp_fields & IPPF_NEXTHOP)) |
| return (0); |
| *sin6 = sin6_null; |
| sin6->sin6_family = AF_INET6; |
| sin6->sin6_addr = ipp->ipp_nexthop; |
| return (sizeof (sin6_t)); |
| } |
| case IPV6_HOPOPTS: |
| if (!(ipp->ipp_fields & IPPF_HOPOPTS)) |
| return (0); |
| bcopy(ipp->ipp_hopopts, ptr, ipp->ipp_hopoptslen); |
| return (ipp->ipp_hopoptslen); |
| case IPV6_RTHDRDSTOPTS: |
| if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) |
| return (0); |
| bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); |
| return (ipp->ipp_rtdstoptslen); |
| case IPV6_RTHDR: |
| if (!(ipp->ipp_fields & IPPF_RTHDR)) |
| return (0); |
| bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); |
| return (ipp->ipp_rthdrlen); |
| case IPV6_DSTOPTS: |
| if (!(ipp->ipp_fields & IPPF_DSTOPTS)) |
| return (0); |
| bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); |
| return (ipp->ipp_dstoptslen); |
| case IPV6_PATHMTU: |
| return (ip_fill_mtuinfo(&udp->udp_v6dst, |
| udp->udp_dstport, (struct ip6_mtuinfo *)ptr)); |
| default: |
| return (-1); |
| } |
| break; |
| case IPPROTO_UDP: |
| switch (name) { |
| case UDP_ANONPRIVBIND: |
| *i1 = udp->udp_anon_priv_bind; |
| break; |
| case UDP_EXCLBIND: |
| *i1 = udp->udp_exclbind ? UDP_EXCLBIND : 0; |
| break; |
| case UDP_RCVHDR: |
| *i1 = udp->udp_rcvhdr ? 1 : 0; |
| break; |
| default: |
| return (-1); |
| } |
| break; |
| default: |
| return (-1); |
| } |
| return (sizeof (int)); |
| } |
| |
| /* This routine sets socket options. */ |
| /* ARGSUSED */ |
| int |
| udp_opt_set(queue_t *q, uint_t optset_context, int level, |
| int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, |
| uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, mblk_t *mblk) |
| { |
| udp_t *udp = (udp_t *)q->q_ptr; |
| int *i1 = (int *)invalp; |
| boolean_t onoff = (*i1 == 0) ? 0 : 1; |
| boolean_t checkonly; |
| int error; |
| |
| switch (optset_context) { |
| case SETFN_OPTCOM_CHECKONLY: |
| checkonly = B_TRUE; |
| /* |
| * Note: Implies T_CHECK semantics for T_OPTCOM_REQ |
| * inlen != 0 implies value supplied and |
| * we have to "pretend" to set it. |
| * inlen == 0 implies that there is no |
| * value part in T_CHECK request and just validation |
| * done elsewhere should be enough, we just return here. |
| */ |
| if (inlen == 0) { |
| *outlenp = 0; |
| return (0); |
| } |
| break; |
| case SETFN_OPTCOM_NEGOTIATE: |
| checkonly = B_FALSE; |
| break; |
| case SETFN_UD_NEGOTIATE: |
| case SETFN_CONN_NEGOTIATE: |
| checkonly = B_FALSE; |
| /* |
| * Negotiating local and "association-related" options |
| * through T_UNITDATA_REQ. |
| * |
| * Following routine can filter out ones we do not |
| * want to be "set" this way. |
| */ |
| if (!udp_opt_allow_udr_set(level, name)) { |
| *outlenp = 0; |
| return (EINVAL); |
| } |
| break; |
| default: |
| /* |
| * We should never get here |
| */ |
| *outlenp = 0; |
| return (EINVAL); |
| } |
| |
| ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || |
| (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); |
| |
| /* |
| * For fixed length options, no sanity check |
| * of passed in length is done. It is assumed *_optcom_req() |
| * routines do the right thing. |
| */ |
| |
| switch (level) { |
| case SOL_SOCKET: |
| switch (name) { |
| case SO_REUSEADDR: |
| if (!checkonly) |
| udp->udp_reuseaddr = onoff; |
| break; |
| case SO_DEBUG: |
| if (!checkonly) |
| udp->udp_debug = onoff; |
| break; |
| /* |
| * The following three items are available here, |
| * but are only meaningful to IP. |
| */ |
| case SO_DONTROUTE: |
| if (!checkonly) |
| udp->udp_dontroute = onoff; |
| break; |
| case SO_USELOOPBACK: |
| if (!checkonly) |
| udp->udp_useloopback = onoff; |
| break; |
| case SO_BROADCAST: |
| if (!checkonly) |
| udp->udp_broadcast = onoff; |
| break; |
| |
| case SO_SNDBUF: |
| if (*i1 > udp_max_buf) { |
| *outlenp = 0; |
| return (ENOBUFS); |
| } |
| if (!checkonly) { |
| q->q_hiwat = *i1; |
| q->q_next->q_hiwat = *i1; |
| } |
| break; |
| case SO_RCVBUF: |
| if (*i1 > udp_max_buf) { |
| *outlenp = 0; |
| return (ENOBUFS); |
| } |
| if (!checkonly) { |
| RD(q)->q_hiwat = *i1; |
| (void) mi_set_sth_hiwat(RD(q), *i1); |
| } |
| break; |
| case SO_DGRAM_ERRIND: |
| if (!checkonly) |
| udp->udp_dgram_errind = onoff; |
| break; |
| case SO_RECVUCRED: |
| if (!checkonly) |
| udp->udp_recvucred = onoff; |
| break; |
| default: |
| *outlenp = 0; |
| return (EINVAL); |
| } |
| break; |
| case IPPROTO_IP: |
| if (udp->udp_family != AF_INET) { |
| *outlenp = 0; |
| return (ENOPROTOOPT); |
| } |
| switch (name) { |
| case IP_OPTIONS: |
| case T_IP_OPTIONS: |
| /* Save options for use by IP. */ |
| if (inlen & 0x3) { |
| *outlenp = 0; |
| return (EINVAL); |
| } |
| if (checkonly) |
| break; |
| |
| if (udp->udp_ip_snd_options) { |
| mi_free((char *)udp->udp_ip_snd_options); |
| udp->udp_ip_snd_options_len = 0; |
| udp->udp_ip_snd_options = NULL; |
| } |
| if (inlen) { |
| udp->udp_ip_snd_options = |
| (uchar_t *)mi_alloc(inlen, BPRI_HI); |
| if (udp->udp_ip_snd_options) { |
| bcopy(invalp, udp->udp_ip_snd_options, |
| inlen); |
| udp->udp_ip_snd_options_len = inlen; |
| } |
| } |
| udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + |
| UDPH_SIZE + udp->udp_ip_snd_options_len; |
| (void) mi_set_sth_wroff(RD(q), udp->udp_max_hdr_len + |
| udp_wroff_extra); |
| break; |
| case IP_TTL: |
| if (!checkonly) { |
| udp->udp_ttl = (uchar_t)*i1; |
| } |
| break; |
| case IP_TOS: |
| case T_IP_TOS: |
| if (!checkonly) { |
| udp->udp_type_of_service = (uchar_t)*i1; |
| } |
| break; |
| case IP_MULTICAST_IF: { |
| /* |
| * TODO should check OPTMGMT reply and undo this if |
| * there is an error. |
| */ |
| struct in_addr *inap = (struct in_addr *)invalp; |
| if (!checkonly) { |
| udp->udp_multicast_if_addr = |
| inap->s_addr; |
| } |
| break; |
| } |
| case IP_MULTICAST_TTL: |
| if (!checkonly) |
| udp->udp_multicast_ttl = *invalp; |
| break; |
| case IP_MULTICAST_LOOP: |
| if (!checkonly) |
| udp->udp_multicast_loop = *invalp; |
| break; |
| case IP_RECVOPTS: |
| if (!checkonly) |
| udp->udp_recvopts = onoff; |
| break; |
| case IP_RECVDSTADDR: |
| if (!checkonly) |
| udp->udp_recvdstaddr = onoff; |
| break; |
| case IP_RECVIF: |
| if (!checkonly) |
| udp->udp_recvif = onoff; |
| break; |
| case IP_RECVSLLA: |
| if (!checkonly) |
| udp->udp_recvslla = onoff; |
| break; |
| case IP_RECVTTL: |
| if (!checkonly) |
| udp->udp_recvttl = onoff; |
| break; |
| case IP_ADD_MEMBERSHIP: |
| case IP_DROP_MEMBERSHIP: |
| case IP_BLOCK_SOURCE: |
| case IP_UNBLOCK_SOURCE: |
| case IP_ADD_SOURCE_MEMBERSHIP: |
| case IP_DROP_SOURCE_MEMBERSHIP: |
| case MCAST_JOIN_GROUP: |
| case MCAST_LEAVE_GROUP: |
| case MCAST_BLOCK_SOURCE: |
| case MCAST_UNBLOCK_SOURCE: |
| case MCAST_JOIN_SOURCE_GROUP |