| /* |
| * CDDL HEADER START |
| * |
| * The contents of this file are subject to the terms of the |
| * Common Development and Distribution License (the "License"). |
| * You may not use this file except in compliance with the License. |
| * |
| * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE |
| * or http://www.opensolaris.org/os/licensing. |
| * See the License for the specific language governing permissions |
| * and limitations under the License. |
| * |
| * When distributing Covered Code, include this CDDL HEADER in each |
| * file and include the License file at usr/src/OPENSOLARIS.LICENSE. |
| * If applicable, add the following below this CDDL HEADER, with the |
| * fields enclosed by brackets "[]" replaced with your own identifying |
| * information: Portions Copyright [yyyy] [name of copyright owner] |
| * |
| * CDDL HEADER END |
| */ |
| /* |
| * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. |
| * Copyright (c) 2015 by Delphix. All rights reserved. |
| */ |
| |
| #include <sys/types.h> |
| #include <sys/stream.h> |
| #include <sys/strsun.h> |
| #include <sys/strsubr.h> |
| #include <sys/debug.h> |
| #include <sys/sdt.h> |
| #include <sys/cmn_err.h> |
| #include <sys/tihdr.h> |
| |
| #include <inet/common.h> |
| #include <inet/optcom.h> |
| #include <inet/ip.h> |
| #include <inet/ip_if.h> |
| #include <inet/ip_impl.h> |
| #include <inet/tcp.h> |
| #include <inet/tcp_impl.h> |
| #include <inet/ipsec_impl.h> |
| #include <inet/ipclassifier.h> |
| #include <inet/ipp_common.h> |
| #include <inet/ip_if.h> |
| |
| /* |
| * This file implements TCP fusion - a protocol-less data path for TCP |
| * loopback connections. The fusion of two local TCP endpoints occurs |
| * at connection establishment time. Various conditions (see details |
| * in tcp_fuse()) need to be met for fusion to be successful. If it |
| * fails, we fall back to the regular TCP data path; if it succeeds, |
| * both endpoints proceed to use tcp_fuse_output() as the transmit path. |
| * tcp_fuse_output() enqueues application data directly onto the peer's |
| * receive queue; no protocol processing is involved. |
| * |
| * Sychronization is handled by squeue and the mutex tcp_non_sq_lock. |
| * One of the requirements for fusion to succeed is that both endpoints |
| * need to be using the same squeue. This ensures that neither side |
| * can disappear while the other side is still sending data. Flow |
| * control information is manipulated outside the squeue, so the |
| * tcp_non_sq_lock must be held when touching tcp_flow_stopped. |
| */ |
| |
| /* |
| * Setting this to false means we disable fusion altogether and |
| * loopback connections would go through the protocol paths. |
| */ |
| boolean_t do_tcp_fusion = B_TRUE; |
| |
| /* |
| * This routine gets called by the eager tcp upon changing state from |
| * SYN_RCVD to ESTABLISHED. It fuses a direct path between itself |
| * and the active connect tcp such that the regular tcp processings |
| * may be bypassed under allowable circumstances. Because the fusion |
| * requires both endpoints to be in the same squeue, it does not work |
| * for simultaneous active connects because there is no easy way to |
| * switch from one squeue to another once the connection is created. |
| * This is different from the eager tcp case where we assign it the |
| * same squeue as the one given to the active connect tcp during open. |
| */ |
| void |
| tcp_fuse(tcp_t *tcp, uchar_t *iphdr, tcpha_t *tcpha) |
| { |
| conn_t *peer_connp, *connp = tcp->tcp_connp; |
| tcp_t *peer_tcp; |
| tcp_stack_t *tcps = tcp->tcp_tcps; |
| netstack_t *ns; |
| ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; |
| |
| ASSERT(!tcp->tcp_fused); |
| ASSERT(tcp->tcp_loopback); |
| ASSERT(tcp->tcp_loopback_peer == NULL); |
| /* |
| * We need to inherit conn_rcvbuf of the listener tcp, |
| * but we can't really use tcp_listener since we get here after |
| * sending up T_CONN_IND and tcp_tli_accept() may be called |
| * independently, at which point tcp_listener is cleared; |
| * this is why we use tcp_saved_listener. The listener itself |
| * is guaranteed to be around until tcp_accept_finish() is called |
| * on this eager -- this won't happen until we're done since we're |
| * inside the eager's perimeter now. |
| */ |
| ASSERT(tcp->tcp_saved_listener != NULL); |
| /* |
| * Lookup peer endpoint; search for the remote endpoint having |
| * the reversed address-port quadruplet in ESTABLISHED state, |
| * which is guaranteed to be unique in the system. Zone check |
| * is applied accordingly for loopback address, but not for |
| * local address since we want fusion to happen across Zones. |
| */ |
| if (connp->conn_ipversion == IPV4_VERSION) { |
| peer_connp = ipcl_conn_tcp_lookup_reversed_ipv4(connp, |
| (ipha_t *)iphdr, tcpha, ipst); |
| } else { |
| peer_connp = ipcl_conn_tcp_lookup_reversed_ipv6(connp, |
| (ip6_t *)iphdr, tcpha, ipst); |
| } |
| |
| /* |
| * We can only proceed if peer exists, resides in the same squeue |
| * as our conn and is not raw-socket. We also restrict fusion to |
| * endpoints of the same type (STREAMS or non-STREAMS). The squeue |
| * assignment of this eager tcp was done earlier at the time of SYN |
| * processing in ip_fanout_tcp{_v6}. Note that similar squeues by |
| * itself doesn't guarantee a safe condition to fuse, hence we perform |
| * additional tests below. |
| */ |
| ASSERT(peer_connp == NULL || peer_connp != connp); |
| if (peer_connp == NULL || peer_connp->conn_sqp != connp->conn_sqp || |
| !IPCL_IS_TCP(peer_connp) || |
| IPCL_IS_NONSTR(connp) != IPCL_IS_NONSTR(peer_connp)) { |
| if (peer_connp != NULL) { |
| TCP_STAT(tcps, tcp_fusion_unqualified); |
| CONN_DEC_REF(peer_connp); |
| } |
| return; |
| } |
| peer_tcp = peer_connp->conn_tcp; /* active connect tcp */ |
| |
| ASSERT(peer_tcp != NULL && peer_tcp != tcp && !peer_tcp->tcp_fused); |
| ASSERT(peer_tcp->tcp_loopback_peer == NULL); |
| ASSERT(peer_connp->conn_sqp == connp->conn_sqp); |
| |
| /* |
| * Due to IRE changes the peer and us might not agree on tcp_loopback. |
| * We bail in that case. |
| */ |
| if (!peer_tcp->tcp_loopback) { |
| TCP_STAT(tcps, tcp_fusion_unqualified); |
| CONN_DEC_REF(peer_connp); |
| return; |
| } |
| /* |
| * Fuse the endpoints; we perform further checks against both |
| * tcp endpoints to ensure that a fusion is allowed to happen. |
| */ |
| ns = tcps->tcps_netstack; |
| ipst = ns->netstack_ip; |
| |
| if (!tcp->tcp_unfusable && !peer_tcp->tcp_unfusable && |
| tcp->tcp_xmit_head == NULL && peer_tcp->tcp_xmit_head == NULL) { |
| mblk_t *mp = NULL; |
| queue_t *peer_rq = peer_connp->conn_rq; |
| |
| ASSERT(!TCP_IS_DETACHED(peer_tcp)); |
| ASSERT(tcp->tcp_fused_sigurg_mp == NULL); |
| ASSERT(peer_tcp->tcp_fused_sigurg_mp == NULL); |
| |
| /* |
| * We need to drain data on both endpoints during unfuse. |
| * If we need to send up SIGURG at the time of draining, |
| * we want to be sure that an mblk is readily available. |
| * This is why we pre-allocate the M_PCSIG mblks for both |
| * endpoints which will only be used during/after unfuse. |
| * The mblk might already exist if we are doing a re-fuse. |
| */ |
| if (!IPCL_IS_NONSTR(tcp->tcp_connp)) { |
| ASSERT(!IPCL_IS_NONSTR(peer_tcp->tcp_connp)); |
| |
| if (tcp->tcp_fused_sigurg_mp == NULL) { |
| if ((mp = allocb(1, BPRI_HI)) == NULL) |
| goto failed; |
| tcp->tcp_fused_sigurg_mp = mp; |
| } |
| |
| if (peer_tcp->tcp_fused_sigurg_mp == NULL) { |
| if ((mp = allocb(1, BPRI_HI)) == NULL) |
| goto failed; |
| peer_tcp->tcp_fused_sigurg_mp = mp; |
| } |
| |
| if ((mp = allocb(sizeof (struct stroptions), |
| BPRI_HI)) == NULL) |
| goto failed; |
| } |
| |
| /* Fuse both endpoints */ |
| peer_tcp->tcp_loopback_peer = tcp; |
| tcp->tcp_loopback_peer = peer_tcp; |
| peer_tcp->tcp_fused = tcp->tcp_fused = B_TRUE; |
| |
| /* |
| * We never use regular tcp paths in fusion and should |
| * therefore clear tcp_unsent on both endpoints. Having |
| * them set to non-zero values means asking for trouble |
| * especially after unfuse, where we may end up sending |
| * through regular tcp paths which expect xmit_list and |
| * friends to be correctly setup. |
| */ |
| peer_tcp->tcp_unsent = tcp->tcp_unsent = 0; |
| |
| tcp_timers_stop(tcp); |
| tcp_timers_stop(peer_tcp); |
| |
| /* |
| * Set receive buffer and max packet size for the |
| * active open tcp. |
| * eager's values will be set in tcp_accept_finish. |
| */ |
| (void) tcp_rwnd_set(peer_tcp, peer_tcp->tcp_connp->conn_rcvbuf); |
| |
| /* |
| * Set the write offset value to zero since we won't |
| * be needing any room for TCP/IP headers. |
| */ |
| if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp)) { |
| struct stroptions *stropt; |
| |
| DB_TYPE(mp) = M_SETOPTS; |
| mp->b_wptr += sizeof (*stropt); |
| |
| stropt = (struct stroptions *)mp->b_rptr; |
| stropt->so_flags = SO_WROFF | SO_MAXBLK; |
| stropt->so_wroff = 0; |
| stropt->so_maxblk = INFPSZ; |
| |
| /* Send the options up */ |
| putnext(peer_rq, mp); |
| } else { |
| struct sock_proto_props sopp; |
| |
| /* The peer is a non-STREAMS end point */ |
| ASSERT(IPCL_IS_TCP(peer_connp)); |
| |
| sopp.sopp_flags = SOCKOPT_WROFF | SOCKOPT_MAXBLK; |
| sopp.sopp_wroff = 0; |
| sopp.sopp_maxblk = INFPSZ; |
| (*peer_connp->conn_upcalls->su_set_proto_props) |
| (peer_connp->conn_upper_handle, &sopp); |
| } |
| } else { |
| TCP_STAT(tcps, tcp_fusion_unqualified); |
| } |
| CONN_DEC_REF(peer_connp); |
| return; |
| |
| failed: |
| if (tcp->tcp_fused_sigurg_mp != NULL) { |
| freeb(tcp->tcp_fused_sigurg_mp); |
| tcp->tcp_fused_sigurg_mp = NULL; |
| } |
| if (peer_tcp->tcp_fused_sigurg_mp != NULL) { |
| freeb(peer_tcp->tcp_fused_sigurg_mp); |
| peer_tcp->tcp_fused_sigurg_mp = NULL; |
| } |
| CONN_DEC_REF(peer_connp); |
| } |
| |
| /* |
| * Unfuse a previously-fused pair of tcp loopback endpoints. |
| */ |
| void |
| tcp_unfuse(tcp_t *tcp) |
| { |
| tcp_t *peer_tcp = tcp->tcp_loopback_peer; |
| tcp_stack_t *tcps = tcp->tcp_tcps; |
| |
| ASSERT(tcp->tcp_fused && peer_tcp != NULL); |
| ASSERT(peer_tcp->tcp_fused && peer_tcp->tcp_loopback_peer == tcp); |
| ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp); |
| ASSERT(tcp->tcp_unsent == 0 && peer_tcp->tcp_unsent == 0); |
| |
| /* |
| * Cancel any pending push timers. |
| */ |
| if (tcp->tcp_push_tid != 0) { |
| (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); |
| tcp->tcp_push_tid = 0; |
| } |
| if (peer_tcp->tcp_push_tid != 0) { |
| (void) TCP_TIMER_CANCEL(peer_tcp, peer_tcp->tcp_push_tid); |
| peer_tcp->tcp_push_tid = 0; |
| } |
| |
| /* |
| * Drain any pending data; Note that in case of a detached tcp, the |
| * draining will happen later after the tcp is unfused. For non- |
| * urgent data, this can be handled by the regular tcp_rcv_drain(). |
| * If we have urgent data sitting in the receive list, we will |
| * need to send up a SIGURG signal first before draining the data. |
| * All of these will be handled by the code in tcp_fuse_rcv_drain() |
| * when called from tcp_rcv_drain(). |
| */ |
| if (!TCP_IS_DETACHED(tcp)) { |
| (void) tcp_fuse_rcv_drain(tcp->tcp_connp->conn_rq, tcp, |
| &tcp->tcp_fused_sigurg_mp); |
| } |
| if (!TCP_IS_DETACHED(peer_tcp)) { |
| (void) tcp_fuse_rcv_drain(peer_tcp->tcp_connp->conn_rq, |
| peer_tcp, &peer_tcp->tcp_fused_sigurg_mp); |
| } |
| |
| /* Lift up any flow-control conditions */ |
| mutex_enter(&tcp->tcp_non_sq_lock); |
| if (tcp->tcp_flow_stopped) { |
| tcp_clrqfull(tcp); |
| TCP_STAT(tcps, tcp_fusion_backenabled); |
| } |
| mutex_exit(&tcp->tcp_non_sq_lock); |
| |
| mutex_enter(&peer_tcp->tcp_non_sq_lock); |
| if (peer_tcp->tcp_flow_stopped) { |
| tcp_clrqfull(peer_tcp); |
| TCP_STAT(tcps, tcp_fusion_backenabled); |
| } |
| mutex_exit(&peer_tcp->tcp_non_sq_lock); |
| |
| /* |
| * Update tha_seq and tha_ack in the header template |
| */ |
| tcp->tcp_tcpha->tha_seq = htonl(tcp->tcp_snxt); |
| tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt); |
| peer_tcp->tcp_tcpha->tha_seq = htonl(peer_tcp->tcp_snxt); |
| peer_tcp->tcp_tcpha->tha_ack = htonl(peer_tcp->tcp_rnxt); |
| |
| /* Unfuse the endpoints */ |
| peer_tcp->tcp_fused = tcp->tcp_fused = B_FALSE; |
| peer_tcp->tcp_loopback_peer = tcp->tcp_loopback_peer = NULL; |
| } |
| |
| /* |
| * Fusion output routine used to handle urgent data sent by STREAMS based |
| * endpoints. This routine is called by tcp_fuse_output() for handling |
| * non-M_DATA mblks. |
| */ |
| void |
| tcp_fuse_output_urg(tcp_t *tcp, mblk_t *mp) |
| { |
| mblk_t *mp1; |
| struct T_exdata_ind *tei; |
| tcp_t *peer_tcp = tcp->tcp_loopback_peer; |
| mblk_t *head, *prev_head = NULL; |
| tcp_stack_t *tcps = tcp->tcp_tcps; |
| |
| ASSERT(tcp->tcp_fused); |
| ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp); |
| ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); |
| ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); |
| ASSERT(mp->b_cont != NULL && DB_TYPE(mp->b_cont) == M_DATA); |
| ASSERT(MBLKL(mp) >= sizeof (*tei) && MBLKL(mp->b_cont) > 0); |
| |
| /* |
| * Urgent data arrives in the form of T_EXDATA_REQ from above. |
| * Each occurence denotes a new urgent pointer. For each new |
| * urgent pointer we signal (SIGURG) the receiving app to indicate |
| * that it needs to go into urgent mode. This is similar to the |
| * urgent data handling in the regular tcp. We don't need to keep |
| * track of where the urgent pointer is, because each T_EXDATA_REQ |
| * "advances" the urgent pointer for us. |
| * |
| * The actual urgent data carried by T_EXDATA_REQ is then prepended |
| * by a T_EXDATA_IND before being enqueued behind any existing data |
| * destined for the receiving app. There is only a single urgent |
| * pointer (out-of-band mark) for a given tcp. If the new urgent |
| * data arrives before the receiving app reads some existing urgent |
| * data, the previous marker is lost. This behavior is emulated |
| * accordingly below, by removing any existing T_EXDATA_IND messages |
| * and essentially converting old urgent data into non-urgent. |
| */ |
| ASSERT(tcp->tcp_valid_bits & TCP_URG_VALID); |
| /* Let sender get out of urgent mode */ |
| tcp->tcp_valid_bits &= ~TCP_URG_VALID; |
| |
| /* |
| * This flag indicates that a signal needs to be sent up. |
| * This flag will only get cleared once SIGURG is delivered and |
| * is not affected by the tcp_fused flag -- delivery will still |
| * happen even after an endpoint is unfused, to handle the case |
| * where the sending endpoint immediately closes/unfuses after |
| * sending urgent data and the accept is not yet finished. |
| */ |
| peer_tcp->tcp_fused_sigurg = B_TRUE; |
| |
| /* Reuse T_EXDATA_REQ mblk for T_EXDATA_IND */ |
| DB_TYPE(mp) = M_PROTO; |
| tei = (struct T_exdata_ind *)mp->b_rptr; |
| tei->PRIM_type = T_EXDATA_IND; |
| tei->MORE_flag = 0; |
| mp->b_wptr = (uchar_t *)&tei[1]; |
| |
| TCP_STAT(tcps, tcp_fusion_urg); |
| TCPS_BUMP_MIB(tcps, tcpOutUrg); |
| |
| head = peer_tcp->tcp_rcv_list; |
| while (head != NULL) { |
| /* |
| * Remove existing T_EXDATA_IND, keep the data which follows |
| * it and relink our list. Note that we don't modify the |
| * tcp_rcv_last_tail since it never points to T_EXDATA_IND. |
| */ |
| if (DB_TYPE(head) != M_DATA) { |
| mp1 = head; |
| |
| ASSERT(DB_TYPE(mp1->b_cont) == M_DATA); |
| head = mp1->b_cont; |
| mp1->b_cont = NULL; |
| head->b_next = mp1->b_next; |
| mp1->b_next = NULL; |
| if (prev_head != NULL) |
| prev_head->b_next = head; |
| if (peer_tcp->tcp_rcv_list == mp1) |
| peer_tcp->tcp_rcv_list = head; |
| if (peer_tcp->tcp_rcv_last_head == mp1) |
| peer_tcp->tcp_rcv_last_head = head; |
| freeb(mp1); |
| } |
| prev_head = head; |
| head = head->b_next; |
| } |
| } |
| |
| /* |
| * Fusion output routine, called by tcp_output() and tcp_wput_proto(). |
| * If we are modifying any member that can be changed outside the squeue, |
| * like tcp_flow_stopped, we need to take tcp_non_sq_lock. |
| */ |
| boolean_t |
| tcp_fuse_output(tcp_t *tcp, mblk_t *mp, uint32_t send_size) |
| { |
| conn_t *connp = tcp->tcp_connp; |
| tcp_t *peer_tcp = tcp->tcp_loopback_peer; |
| conn_t *peer_connp = peer_tcp->tcp_connp; |
| boolean_t flow_stopped, peer_data_queued = B_FALSE; |
| boolean_t urgent = (DB_TYPE(mp) != M_DATA); |
| boolean_t push = B_TRUE; |
| mblk_t *mp1 = mp; |
| uint_t ip_hdr_len; |
| uint32_t recv_size = send_size; |
| tcp_stack_t *tcps = tcp->tcp_tcps; |
| netstack_t *ns = tcps->tcps_netstack; |
| ip_stack_t *ipst = ns->netstack_ip; |
| ipsec_stack_t *ipss = ns->netstack_ipsec; |
| iaflags_t ixaflags = connp->conn_ixa->ixa_flags; |
| boolean_t do_ipsec, hooks_out, hooks_in, ipobs_enabled; |
| |
| ASSERT(tcp->tcp_fused); |
| ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp); |
| ASSERT(connp->conn_sqp == peer_connp->conn_sqp); |
| ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_PROTO || |
| DB_TYPE(mp) == M_PCPROTO); |
| |
| if (send_size == 0) { |
| freemsg(mp); |
| return (B_TRUE); |
| } |
| |
| /* |
| * Handle urgent data; we either send up SIGURG to the peer now |
| * or do it later when we drain, in case the peer is detached |
| * or if we're short of memory for M_PCSIG mblk. |
| */ |
| if (urgent) { |
| tcp_fuse_output_urg(tcp, mp); |
| |
| mp1 = mp->b_cont; |
| } |
| |
| /* |
| * Check that we are still using an IRE_LOCAL or IRE_LOOPBACK before |
| * further processes. |
| */ |
| if (!ip_output_verify_local(connp->conn_ixa)) |
| goto unfuse; |
| |
| /* |
| * Build IP and TCP header in case we have something that needs the |
| * headers. Those cases are: |
| * 1. IPsec |
| * 2. IPobs |
| * 3. FW_HOOKS |
| * |
| * If tcp_xmit_mp() fails to dupb() the message, unfuse the connection |
| * and back to regular path. |
| */ |
| if (ixaflags & IXAF_IS_IPV4) { |
| do_ipsec = (ixaflags & IXAF_IPSEC_SECURE) || |
| CONN_INBOUND_POLICY_PRESENT(peer_connp, ipss); |
| |
| hooks_out = HOOKS4_INTERESTED_LOOPBACK_OUT(ipst); |
| hooks_in = HOOKS4_INTERESTED_LOOPBACK_IN(ipst); |
| ipobs_enabled = (ipst->ips_ip4_observe.he_interested != 0); |
| } else { |
| do_ipsec = (ixaflags & IXAF_IPSEC_SECURE) || |
| CONN_INBOUND_POLICY_PRESENT_V6(peer_connp, ipss); |
| |
| hooks_out = HOOKS6_INTERESTED_LOOPBACK_OUT(ipst); |
| hooks_in = HOOKS6_INTERESTED_LOOPBACK_IN(ipst); |
| ipobs_enabled = (ipst->ips_ip6_observe.he_interested != 0); |
| } |
| |
| /* We do logical 'or' for efficiency */ |
| if (ipobs_enabled | do_ipsec | hooks_in | hooks_out) { |
| if ((mp1 = tcp_xmit_mp(tcp, mp1, tcp->tcp_mss, NULL, NULL, |
| tcp->tcp_snxt, B_TRUE, NULL, B_FALSE)) == NULL) |
| /* If tcp_xmit_mp fails, use regular path */ |
| goto unfuse; |
| |
| /* |
| * Leave all IP relevant processes to ip_output_process_local(), |
| * which handles IPsec, IPobs, and FW_HOOKS. |
| */ |
| mp1 = ip_output_process_local(mp1, connp->conn_ixa, hooks_out, |
| hooks_in, do_ipsec ? peer_connp : NULL); |
| |
| /* If the message is dropped for any reason. */ |
| if (mp1 == NULL) |
| goto unfuse; |
| |
| /* |
| * Data length might have been changed by FW_HOOKS. |
| * We assume that the first mblk contains the TCP/IP headers. |
| */ |
| if (hooks_in || hooks_out) { |
| tcpha_t *tcpha; |
| |
| ip_hdr_len = (ixaflags & IXAF_IS_IPV4) ? |
| IPH_HDR_LENGTH((ipha_t *)mp1->b_rptr) : |
| ip_hdr_length_v6(mp1, (ip6_t *)mp1->b_rptr); |
| |
| tcpha = (tcpha_t *)&mp1->b_rptr[ip_hdr_len]; |
| ASSERT((uchar_t *)tcpha + sizeof (tcpha_t) <= |
| mp1->b_wptr); |
| recv_size += htonl(tcpha->tha_seq) - tcp->tcp_snxt; |
| |
| } |
| |
| /* |
| * The message duplicated by tcp_xmit_mp is freed. |
| * Note: the original message passed in remains unchanged. |
| */ |
| freemsg(mp1); |
| } |
| |
| /* |
| * Enqueue data into the peer's receive list; we may or may not |
| * drain the contents depending on the conditions below. |
| * |
| * For non-STREAMS sockets we normally queue data directly in the |
| * socket by calling the su_recv upcall. However, if the peer is |
| * detached we use tcp_rcv_enqueue() instead. Queued data will be |
| * drained when the accept completes (in tcp_accept_finish()). |
| */ |
| if (IPCL_IS_NONSTR(peer_connp) && |
| !TCP_IS_DETACHED(peer_tcp)) { |
| int error; |
| int flags = 0; |
| |
| if ((tcp->tcp_valid_bits & TCP_URG_VALID) && |
| (tcp->tcp_urg == tcp->tcp_snxt)) { |
| flags = MSG_OOB; |
| (*peer_connp->conn_upcalls->su_signal_oob) |
| (peer_connp->conn_upper_handle, 0); |
| tcp->tcp_valid_bits &= ~TCP_URG_VALID; |
| } |
| if ((*peer_connp->conn_upcalls->su_recv)( |
| peer_connp->conn_upper_handle, mp, recv_size, |
| flags, &error, &push) < 0) { |
| ASSERT(error != EOPNOTSUPP); |
| peer_data_queued = B_TRUE; |
| } |
| } else { |
| if (IPCL_IS_NONSTR(peer_connp) && |
| (tcp->tcp_valid_bits & TCP_URG_VALID) && |
| (tcp->tcp_urg == tcp->tcp_snxt)) { |
| /* |
| * Can not deal with urgent pointers |
| * that arrive before the connection has been |
| * accept()ed. |
| */ |
| tcp->tcp_valid_bits &= ~TCP_URG_VALID; |
| freemsg(mp); |
| return (B_TRUE); |
| } |
| |
| tcp_rcv_enqueue(peer_tcp, mp, recv_size, |
| tcp->tcp_connp->conn_cred); |
| |
| /* In case it wrapped around and also to keep it constant */ |
| peer_tcp->tcp_rwnd += recv_size; |
| } |
| |
| /* |
| * Exercise flow-control when needed; we will get back-enabled |
| * in either tcp_accept_finish(), tcp_unfuse(), or when data is |
| * consumed. If peer endpoint is detached, we emulate streams flow |
| * control by checking the peer's queue size and high water mark; |
| * otherwise we simply use canputnext() to decide if we need to stop |
| * our flow. |
| * |
| * Since we are accessing our tcp_flow_stopped and might modify it, |
| * we need to take tcp->tcp_non_sq_lock. |
| */ |
| mutex_enter(&tcp->tcp_non_sq_lock); |
| flow_stopped = tcp->tcp_flow_stopped; |
| if ((TCP_IS_DETACHED(peer_tcp) && |
| (peer_tcp->tcp_rcv_cnt >= peer_connp->conn_rcvbuf)) || |
| (!TCP_IS_DETACHED(peer_tcp) && |
| !IPCL_IS_NONSTR(peer_connp) && !canputnext(peer_connp->conn_rq))) { |
| peer_data_queued = B_TRUE; |
| } |
| |
| if (!flow_stopped && (peer_data_queued || |
| (TCP_UNSENT_BYTES(tcp) >= connp->conn_sndbuf))) { |
| tcp_setqfull(tcp); |
| flow_stopped = B_TRUE; |
| TCP_STAT(tcps, tcp_fusion_flowctl); |
| DTRACE_PROBE3(tcp__fuse__output__flowctl, tcp_t *, tcp, |
| uint_t, send_size, uint_t, peer_tcp->tcp_rcv_cnt); |
| } else if (flow_stopped && !peer_data_queued && |
| (TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat)) { |
| tcp_clrqfull(tcp); |
| TCP_STAT(tcps, tcp_fusion_backenabled); |
| flow_stopped = B_FALSE; |
| } |
| mutex_exit(&tcp->tcp_non_sq_lock); |
| |
| ipst->ips_loopback_packets++; |
| tcp->tcp_last_sent_len = send_size; |
| |
| /* Need to adjust the following SNMP MIB-related variables */ |
| tcp->tcp_snxt += send_size; |
| tcp->tcp_suna = tcp->tcp_snxt; |
| peer_tcp->tcp_rnxt += recv_size; |
| peer_tcp->tcp_last_recv_len = recv_size; |
| peer_tcp->tcp_rack = peer_tcp->tcp_rnxt; |
| |
| TCPS_BUMP_MIB(tcps, tcpOutDataSegs); |
| TCPS_BUMP_MIB(tcps, tcpHCOutSegs); |
| TCPS_UPDATE_MIB(tcps, tcpOutDataBytes, send_size); |
| tcp->tcp_cs.tcp_out_data_bytes += send_size; |
| tcp->tcp_cs.tcp_out_data_segs++; |
| |
| TCPS_BUMP_MIB(tcps, tcpHCInSegs); |
| TCPS_BUMP_MIB(tcps, tcpInDataInorderSegs); |
| TCPS_UPDATE_MIB(tcps, tcpInDataInorderBytes, send_size); |
| peer_tcp->tcp_cs.tcp_in_data_inorder_bytes += send_size; |
| peer_tcp->tcp_cs.tcp_in_data_inorder_segs++; |
| |
| DTRACE_TCP5(send, void, NULL, ip_xmit_attr_t *, connp->conn_ixa, |
| __dtrace_tcp_void_ip_t *, NULL, tcp_t *, tcp, |
| __dtrace_tcp_tcph_t *, NULL); |
| DTRACE_TCP5(receive, void, NULL, ip_xmit_attr_t *, |
| peer_connp->conn_ixa, __dtrace_tcp_void_ip_t *, NULL, |
| tcp_t *, peer_tcp, __dtrace_tcp_tcph_t *, NULL); |
| |
| if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp) && |
| !TCP_IS_DETACHED(peer_tcp)) { |
| /* |
| * Drain the peer's receive queue it has urgent data or if |
| * we're not flow-controlled. |
| */ |
| if (urgent || !flow_stopped) { |
| ASSERT(peer_tcp->tcp_rcv_list != NULL); |
| /* |
| * For TLI-based streams, a thread in tcp_accept_swap() |
| * can race with us. That thread will ensure that the |
| * correct peer_connp->conn_rq is globally visible |
| * before peer_tcp->tcp_detached is visible as clear, |
| * but we must also ensure that the load of conn_rq |
| * cannot be reordered to be before the tcp_detached |
| * check. |
| */ |
| membar_consumer(); |
| (void) tcp_fuse_rcv_drain(peer_connp->conn_rq, peer_tcp, |
| NULL); |
| } |
| } |
| return (B_TRUE); |
| unfuse: |
| tcp_unfuse(tcp); |
| return (B_FALSE); |
| } |
| |
| /* |
| * This routine gets called to deliver data upstream on a fused or |
| * previously fused tcp loopback endpoint; the latter happens only |
| * when there is a pending SIGURG signal plus urgent data that can't |
| * be sent upstream in the past. |
| */ |
| boolean_t |
| tcp_fuse_rcv_drain(queue_t *q, tcp_t *tcp, mblk_t **sigurg_mpp) |
| { |
| mblk_t *mp; |
| conn_t *connp = tcp->tcp_connp; |
| |
| #ifdef DEBUG |
| uint_t cnt = 0; |
| #endif |
| tcp_stack_t *tcps = tcp->tcp_tcps; |
| tcp_t *peer_tcp = tcp->tcp_loopback_peer; |
| |
| ASSERT(tcp->tcp_loopback); |
| ASSERT(tcp->tcp_fused || tcp->tcp_fused_sigurg); |
| ASSERT(!tcp->tcp_fused || tcp->tcp_loopback_peer != NULL); |
| ASSERT(IPCL_IS_NONSTR(connp) || sigurg_mpp != NULL || tcp->tcp_fused); |
| |
| /* No need for the push timer now, in case it was scheduled */ |
| if (tcp->tcp_push_tid != 0) { |
| (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); |
| tcp->tcp_push_tid = 0; |
| } |
| /* |
| * If there's urgent data sitting in receive list and we didn't |
| * get a chance to send up a SIGURG signal, make sure we send |
| * it first before draining in order to ensure that SIOCATMARK |
| * works properly. |
| */ |
| if (tcp->tcp_fused_sigurg) { |
| ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); |
| |
| tcp->tcp_fused_sigurg = B_FALSE; |
| /* |
| * sigurg_mpp is normally NULL, i.e. when we're still |
| * fused and didn't get here because of tcp_unfuse(). |
| * In this case try hard to allocate the M_PCSIG mblk. |
| */ |
| if (sigurg_mpp == NULL && |
| (mp = allocb(1, BPRI_HI)) == NULL && |
| (mp = allocb_tryhard(1)) == NULL) { |
| /* Alloc failed; try again next time */ |
| tcp->tcp_push_tid = TCP_TIMER(tcp, |
| tcp_push_timer, tcps->tcps_push_timer_interval); |
| return (B_TRUE); |
| } else if (sigurg_mpp != NULL) { |
| /* |
| * Use the supplied M_PCSIG mblk; it means we're |
| * either unfused or in the process of unfusing, |
| * and the drain must happen now. |
| */ |
| mp = *sigurg_mpp; |
| *sigurg_mpp = NULL; |
| } |
| ASSERT(mp != NULL); |
| |
| /* Send up the signal */ |
| DB_TYPE(mp) = M_PCSIG; |
| *mp->b_wptr++ = (uchar_t)SIGURG; |
| putnext(q, mp); |
| |
| /* |
| * Let the regular tcp_rcv_drain() path handle |
| * draining the data if we're no longer fused. |
| */ |
| if (!tcp->tcp_fused) |
| return (B_FALSE); |
| } |
| |
| /* Drain the data */ |
| while ((mp = tcp->tcp_rcv_list) != NULL) { |
| tcp->tcp_rcv_list = mp->b_next; |
| mp->b_next = NULL; |
| #ifdef DEBUG |
| cnt += msgdsize(mp); |
| #endif |
| ASSERT(!IPCL_IS_NONSTR(connp)); |
| putnext(q, mp); |
| TCP_STAT(tcps, tcp_fusion_putnext); |
| } |
| |
| #ifdef DEBUG |
| ASSERT(cnt == tcp->tcp_rcv_cnt); |
| #endif |
| tcp->tcp_rcv_last_head = NULL; |
| tcp->tcp_rcv_last_tail = NULL; |
| tcp->tcp_rcv_cnt = 0; |
| tcp->tcp_rwnd = tcp->tcp_connp->conn_rcvbuf; |
| |
| mutex_enter(&peer_tcp->tcp_non_sq_lock); |
| if (peer_tcp->tcp_flow_stopped && (TCP_UNSENT_BYTES(peer_tcp) <= |
| peer_tcp->tcp_connp->conn_sndlowat)) { |
| tcp_clrqfull(peer_tcp); |
| TCP_STAT(tcps, tcp_fusion_backenabled); |
| } |
| mutex_exit(&peer_tcp->tcp_non_sq_lock); |
| |
| return (B_TRUE); |
| } |
| |
| /* |
| * Calculate the size of receive buffer for a fused tcp endpoint. |
| */ |
| size_t |
| tcp_fuse_set_rcv_hiwat(tcp_t *tcp, size_t rwnd) |
| { |
| tcp_stack_t *tcps = tcp->tcp_tcps; |
| uint32_t max_win; |
| |
| ASSERT(tcp->tcp_fused); |
| |
| /* Ensure that value is within the maximum upper bound */ |
| if (rwnd > tcps->tcps_max_buf) |
| rwnd = tcps->tcps_max_buf; |
| /* |
| * Round up to system page size in case SO_RCVBUF is modified |
| * after SO_SNDBUF; the latter is also similarly rounded up. |
| */ |
| rwnd = P2ROUNDUP_TYPED(rwnd, PAGESIZE, size_t); |
| max_win = TCP_MAXWIN << tcp->tcp_rcv_ws; |
| if (rwnd > max_win) { |
| rwnd = max_win - (max_win % tcp->tcp_mss); |
| if (rwnd < tcp->tcp_mss) |
| rwnd = max_win; |
| } |
| |
| /* |
| * Record high water mark, this is used for flow-control |
| * purposes in tcp_fuse_output(). |
| */ |
| tcp->tcp_connp->conn_rcvbuf = rwnd; |
| tcp->tcp_rwnd = rwnd; |
| return (rwnd); |
| } |
| |
| /* |
| * Calculate the maximum outstanding unread data block for a fused tcp endpoint. |
| */ |
| int |
| tcp_fuse_maxpsz(tcp_t *tcp) |
| { |
| tcp_t *peer_tcp = tcp->tcp_loopback_peer; |
| conn_t *connp = tcp->tcp_connp; |
| uint_t sndbuf = connp->conn_sndbuf; |
| uint_t maxpsz = sndbuf; |
| |
| ASSERT(tcp->tcp_fused); |
| ASSERT(peer_tcp != NULL); |
| ASSERT(peer_tcp->tcp_connp->conn_rcvbuf != 0); |
| /* |
| * In the fused loopback case, we want the stream head to split |
| * up larger writes into smaller chunks for a more accurate flow- |
| * control accounting. Our maxpsz is half of the sender's send |
| * buffer or the receiver's receive buffer, whichever is smaller. |
| * We round up the buffer to system page size due to the lack of |
| * TCP MSS concept in Fusion. |
| */ |
| if (maxpsz > peer_tcp->tcp_connp->conn_rcvbuf) |
| maxpsz = peer_tcp->tcp_connp->conn_rcvbuf; |
| maxpsz = P2ROUNDUP_TYPED(maxpsz, PAGESIZE, uint_t) >> 1; |
| |
| return (maxpsz); |
| } |
| |
| /* |
| * Called to release flow control. |
| */ |
| void |
| tcp_fuse_backenable(tcp_t *tcp) |
| { |
| tcp_t *peer_tcp = tcp->tcp_loopback_peer; |
| |
| ASSERT(tcp->tcp_fused); |
| ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused); |
| ASSERT(peer_tcp->tcp_loopback_peer == tcp); |
| ASSERT(!TCP_IS_DETACHED(tcp)); |
| ASSERT(tcp->tcp_connp->conn_sqp == |
| peer_tcp->tcp_connp->conn_sqp); |
| |
| if (tcp->tcp_rcv_list != NULL) |
| (void) tcp_fuse_rcv_drain(tcp->tcp_connp->conn_rq, tcp, NULL); |
| |
| mutex_enter(&peer_tcp->tcp_non_sq_lock); |
| if (peer_tcp->tcp_flow_stopped && |
| (TCP_UNSENT_BYTES(peer_tcp) <= |
| peer_tcp->tcp_connp->conn_sndlowat)) { |
| tcp_clrqfull(peer_tcp); |
| } |
| mutex_exit(&peer_tcp->tcp_non_sq_lock); |
| |
| TCP_STAT(tcp->tcp_tcps, tcp_fusion_backenabled); |
| } |