| /* |
| * CDDL HEADER START |
| * |
| * The contents of this file are subject to the terms of the |
| * Common Development and Distribution License (the "License"). |
| * You may not use this file except in compliance with the License. |
| * |
| * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE |
| * or http://www.opensolaris.org/os/licensing. |
| * See the License for the specific language governing permissions |
| * and limitations under the License. |
| * |
| * When distributing Covered Code, include this CDDL HEADER in each |
| * file and include the License file at usr/src/OPENSOLARIS.LICENSE. |
| * If applicable, add the following below this CDDL HEADER, with the |
| * fields enclosed by brackets "[]" replaced with your own identifying |
| * information: Portions Copyright [yyyy] [name of copyright owner] |
| * |
| * CDDL HEADER END |
| */ |
| |
| /* |
| * Copyright 2009 Sun Microsystems, Inc. All rights reserved. |
| * Use is subject to license terms. |
| */ |
| |
| /* |
| * Copyright 2018 Joyent, Inc. |
| * Copyright (c) 2013 by Delphix. All rights reserved. |
| */ |
| |
| #ifndef _SYS_DTRACE_H |
| #define _SYS_DTRACE_H |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| /* |
| * DTrace Dynamic Tracing Software: Kernel Interfaces |
| * |
| * Note: The contents of this file are private to the implementation of the |
| * Solaris system and DTrace subsystem and are subject to change at any time |
| * without notice. Applications and drivers using these interfaces will fail |
| * to run on future releases. These interfaces should not be used for any |
| * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB). |
| * Please refer to the "Solaris Dynamic Tracing Guide" for more information. |
| */ |
| |
| #ifndef _ASM |
| |
| #include <sys/types.h> |
| #include <sys/modctl.h> |
| #include <sys/processor.h> |
| #include <sys/systm.h> |
| #include <sys/ctf_api.h> |
| #include <sys/cyclic.h> |
| #include <sys/int_limits.h> |
| |
| /* |
| * DTrace Universal Constants and Typedefs |
| */ |
| #define DTRACE_CPUALL -1 /* all CPUs */ |
| #define DTRACE_IDNONE 0 /* invalid probe identifier */ |
| #define DTRACE_EPIDNONE 0 /* invalid enabled probe identifier */ |
| #define DTRACE_AGGIDNONE 0 /* invalid aggregation identifier */ |
| #define DTRACE_AGGVARIDNONE 0 /* invalid aggregation variable ID */ |
| #define DTRACE_CACHEIDNONE 0 /* invalid predicate cache */ |
| #define DTRACE_PROVNONE 0 /* invalid provider identifier */ |
| #define DTRACE_METAPROVNONE 0 /* invalid meta-provider identifier */ |
| #define DTRACE_ARGNONE -1 /* invalid argument index */ |
| |
| #define DTRACE_PROVNAMELEN 64 |
| #define DTRACE_MODNAMELEN 64 |
| #define DTRACE_FUNCNAMELEN 128 |
| #define DTRACE_NAMELEN 64 |
| #define DTRACE_FULLNAMELEN (DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \ |
| DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4) |
| #define DTRACE_ARGTYPELEN 128 |
| |
| typedef uint32_t dtrace_id_t; /* probe identifier */ |
| typedef uint32_t dtrace_epid_t; /* enabled probe identifier */ |
| typedef uint32_t dtrace_aggid_t; /* aggregation identifier */ |
| typedef int64_t dtrace_aggvarid_t; /* aggregation variable identifier */ |
| typedef uint16_t dtrace_actkind_t; /* action kind */ |
| typedef int64_t dtrace_optval_t; /* option value */ |
| typedef uint32_t dtrace_cacheid_t; /* predicate cache identifier */ |
| |
| typedef enum dtrace_probespec { |
| DTRACE_PROBESPEC_NONE = -1, |
| DTRACE_PROBESPEC_PROVIDER = 0, |
| DTRACE_PROBESPEC_MOD, |
| DTRACE_PROBESPEC_FUNC, |
| DTRACE_PROBESPEC_NAME |
| } dtrace_probespec_t; |
| |
| /* |
| * DTrace Intermediate Format (DIF) |
| * |
| * The following definitions describe the DTrace Intermediate Format (DIF), a |
| * a RISC-like instruction set and program encoding used to represent |
| * predicates and actions that can be bound to DTrace probes. The constants |
| * below defining the number of available registers are suggested minimums; the |
| * compiler should use DTRACEIOC_CONF to dynamically obtain the number of |
| * registers provided by the current DTrace implementation. |
| */ |
| #define DIF_VERSION_1 1 /* DIF version 1: Solaris 10 Beta */ |
| #define DIF_VERSION_2 2 /* DIF version 2: Solaris 10 FCS */ |
| #define DIF_VERSION DIF_VERSION_2 /* latest DIF instruction set version */ |
| #define DIF_DIR_NREGS 8 /* number of DIF integer registers */ |
| #define DIF_DTR_NREGS 8 /* number of DIF tuple registers */ |
| |
| #define DIF_OP_OR 1 /* or r1, r2, rd */ |
| #define DIF_OP_XOR 2 /* xor r1, r2, rd */ |
| #define DIF_OP_AND 3 /* and r1, r2, rd */ |
| #define DIF_OP_SLL 4 /* sll r1, r2, rd */ |
| #define DIF_OP_SRL 5 /* srl r1, r2, rd */ |
| #define DIF_OP_SUB 6 /* sub r1, r2, rd */ |
| #define DIF_OP_ADD 7 /* add r1, r2, rd */ |
| #define DIF_OP_MUL 8 /* mul r1, r2, rd */ |
| #define DIF_OP_SDIV 9 /* sdiv r1, r2, rd */ |
| #define DIF_OP_UDIV 10 /* udiv r1, r2, rd */ |
| #define DIF_OP_SREM 11 /* srem r1, r2, rd */ |
| #define DIF_OP_UREM 12 /* urem r1, r2, rd */ |
| #define DIF_OP_NOT 13 /* not r1, rd */ |
| #define DIF_OP_MOV 14 /* mov r1, rd */ |
| #define DIF_OP_CMP 15 /* cmp r1, r2 */ |
| #define DIF_OP_TST 16 /* tst r1 */ |
| #define DIF_OP_BA 17 /* ba label */ |
| #define DIF_OP_BE 18 /* be label */ |
| #define DIF_OP_BNE 19 /* bne label */ |
| #define DIF_OP_BG 20 /* bg label */ |
| #define DIF_OP_BGU 21 /* bgu label */ |
| #define DIF_OP_BGE 22 /* bge label */ |
| #define DIF_OP_BGEU 23 /* bgeu label */ |
| #define DIF_OP_BL 24 /* bl label */ |
| #define DIF_OP_BLU 25 /* blu label */ |
| #define DIF_OP_BLE 26 /* ble label */ |
| #define DIF_OP_BLEU 27 /* bleu label */ |
| #define DIF_OP_LDSB 28 /* ldsb [r1], rd */ |
| #define DIF_OP_LDSH 29 /* ldsh [r1], rd */ |
| #define DIF_OP_LDSW 30 /* ldsw [r1], rd */ |
| #define DIF_OP_LDUB 31 /* ldub [r1], rd */ |
| #define DIF_OP_LDUH 32 /* lduh [r1], rd */ |
| #define DIF_OP_LDUW 33 /* lduw [r1], rd */ |
| #define DIF_OP_LDX 34 /* ldx [r1], rd */ |
| #define DIF_OP_RET 35 /* ret rd */ |
| #define DIF_OP_NOP 36 /* nop */ |
| #define DIF_OP_SETX 37 /* setx intindex, rd */ |
| #define DIF_OP_SETS 38 /* sets strindex, rd */ |
| #define DIF_OP_SCMP 39 /* scmp r1, r2 */ |
| #define DIF_OP_LDGA 40 /* ldga var, ri, rd */ |
| #define DIF_OP_LDGS 41 /* ldgs var, rd */ |
| #define DIF_OP_STGS 42 /* stgs var, rs */ |
| #define DIF_OP_LDTA 43 /* ldta var, ri, rd */ |
| #define DIF_OP_LDTS 44 /* ldts var, rd */ |
| #define DIF_OP_STTS 45 /* stts var, rs */ |
| #define DIF_OP_SRA 46 /* sra r1, r2, rd */ |
| #define DIF_OP_CALL 47 /* call subr, rd */ |
| #define DIF_OP_PUSHTR 48 /* pushtr type, rs, rr */ |
| #define DIF_OP_PUSHTV 49 /* pushtv type, rs, rv */ |
| #define DIF_OP_POPTS 50 /* popts */ |
| #define DIF_OP_FLUSHTS 51 /* flushts */ |
| #define DIF_OP_LDGAA 52 /* ldgaa var, rd */ |
| #define DIF_OP_LDTAA 53 /* ldtaa var, rd */ |
| #define DIF_OP_STGAA 54 /* stgaa var, rs */ |
| #define DIF_OP_STTAA 55 /* sttaa var, rs */ |
| #define DIF_OP_LDLS 56 /* ldls var, rd */ |
| #define DIF_OP_STLS 57 /* stls var, rs */ |
| #define DIF_OP_ALLOCS 58 /* allocs r1, rd */ |
| #define DIF_OP_COPYS 59 /* copys r1, r2, rd */ |
| #define DIF_OP_STB 60 /* stb r1, [rd] */ |
| #define DIF_OP_STH 61 /* sth r1, [rd] */ |
| #define DIF_OP_STW 62 /* stw r1, [rd] */ |
| #define DIF_OP_STX 63 /* stx r1, [rd] */ |
| #define DIF_OP_ULDSB 64 /* uldsb [r1], rd */ |
| #define DIF_OP_ULDSH 65 /* uldsh [r1], rd */ |
| #define DIF_OP_ULDSW 66 /* uldsw [r1], rd */ |
| #define DIF_OP_ULDUB 67 /* uldub [r1], rd */ |
| #define DIF_OP_ULDUH 68 /* ulduh [r1], rd */ |
| #define DIF_OP_ULDUW 69 /* ulduw [r1], rd */ |
| #define DIF_OP_ULDX 70 /* uldx [r1], rd */ |
| #define DIF_OP_RLDSB 71 /* rldsb [r1], rd */ |
| #define DIF_OP_RLDSH 72 /* rldsh [r1], rd */ |
| #define DIF_OP_RLDSW 73 /* rldsw [r1], rd */ |
| #define DIF_OP_RLDUB 74 /* rldub [r1], rd */ |
| #define DIF_OP_RLDUH 75 /* rlduh [r1], rd */ |
| #define DIF_OP_RLDUW 76 /* rlduw [r1], rd */ |
| #define DIF_OP_RLDX 77 /* rldx [r1], rd */ |
| #define DIF_OP_XLATE 78 /* xlate xlrindex, rd */ |
| #define DIF_OP_XLARG 79 /* xlarg xlrindex, rd */ |
| #define DIF_OP_STGA 80 /* stga var, ri, rd */ |
| |
| #define DIF_INTOFF_MAX 0xffff /* highest integer table offset */ |
| #define DIF_STROFF_MAX 0xffff /* highest string table offset */ |
| #define DIF_REGISTER_MAX 0xff /* highest register number */ |
| #define DIF_VARIABLE_MAX 0xffff /* highest variable identifier */ |
| #define DIF_SUBROUTINE_MAX 0xffff /* highest subroutine code */ |
| |
| #define DIF_VAR_ARRAY_MIN 0x0000 /* lowest numbered array variable */ |
| #define DIF_VAR_ARRAY_UBASE 0x0080 /* lowest user-defined array */ |
| #define DIF_VAR_ARRAY_MAX 0x00ff /* highest numbered array variable */ |
| |
| #define DIF_VAR_OTHER_MIN 0x0100 /* lowest numbered scalar or assc */ |
| #define DIF_VAR_OTHER_UBASE 0x0500 /* lowest user-defined scalar or assc */ |
| #define DIF_VAR_OTHER_MAX 0xffff /* highest numbered scalar or assc */ |
| |
| #define DIF_VAR_ARGS 0x0000 /* arguments array */ |
| #define DIF_VAR_REGS 0x0001 /* registers array */ |
| #define DIF_VAR_UREGS 0x0002 /* user registers array */ |
| #define DIF_VAR_VMREGS 0x0003 /* virtual machine registers array */ |
| #define DIF_VAR_CURTHREAD 0x0100 /* thread pointer */ |
| #define DIF_VAR_TIMESTAMP 0x0101 /* timestamp */ |
| #define DIF_VAR_VTIMESTAMP 0x0102 /* virtual timestamp */ |
| #define DIF_VAR_IPL 0x0103 /* interrupt priority level */ |
| #define DIF_VAR_EPID 0x0104 /* enabled probe ID */ |
| #define DIF_VAR_ID 0x0105 /* probe ID */ |
| #define DIF_VAR_ARG0 0x0106 /* first argument */ |
| #define DIF_VAR_ARG1 0x0107 /* second argument */ |
| #define DIF_VAR_ARG2 0x0108 /* third argument */ |
| #define DIF_VAR_ARG3 0x0109 /* fourth argument */ |
| #define DIF_VAR_ARG4 0x010a /* fifth argument */ |
| #define DIF_VAR_ARG5 0x010b /* sixth argument */ |
| #define DIF_VAR_ARG6 0x010c /* seventh argument */ |
| #define DIF_VAR_ARG7 0x010d /* eighth argument */ |
| #define DIF_VAR_ARG8 0x010e /* ninth argument */ |
| #define DIF_VAR_ARG9 0x010f /* tenth argument */ |
| #define DIF_VAR_STACKDEPTH 0x0110 /* stack depth */ |
| #define DIF_VAR_CALLER 0x0111 /* caller */ |
| #define DIF_VAR_PROBEPROV 0x0112 /* probe provider */ |
| #define DIF_VAR_PROBEMOD 0x0113 /* probe module */ |
| #define DIF_VAR_PROBEFUNC 0x0114 /* probe function */ |
| #define DIF_VAR_PROBENAME 0x0115 /* probe name */ |
| #define DIF_VAR_PID 0x0116 /* process ID */ |
| #define DIF_VAR_TID 0x0117 /* (per-process) thread ID */ |
| #define DIF_VAR_EXECNAME 0x0118 /* name of executable */ |
| #define DIF_VAR_ZONENAME 0x0119 /* zone name associated with process */ |
| #define DIF_VAR_WALLTIMESTAMP 0x011a /* wall-clock timestamp */ |
| #define DIF_VAR_USTACKDEPTH 0x011b /* user-land stack depth */ |
| #define DIF_VAR_UCALLER 0x011c /* user-level caller */ |
| #define DIF_VAR_PPID 0x011d /* parent process ID */ |
| #define DIF_VAR_UID 0x011e /* process user ID */ |
| #define DIF_VAR_GID 0x011f /* process group ID */ |
| #define DIF_VAR_ERRNO 0x0120 /* thread errno */ |
| #define DIF_VAR_THREADNAME 0x0121 /* thread name */ |
| |
| #define DIF_SUBR_RAND 0 |
| #define DIF_SUBR_MUTEX_OWNED 1 |
| #define DIF_SUBR_MUTEX_OWNER 2 |
| #define DIF_SUBR_MUTEX_TYPE_ADAPTIVE 3 |
| #define DIF_SUBR_MUTEX_TYPE_SPIN 4 |
| #define DIF_SUBR_RW_READ_HELD 5 |
| #define DIF_SUBR_RW_WRITE_HELD 6 |
| #define DIF_SUBR_RW_ISWRITER 7 |
| #define DIF_SUBR_COPYIN 8 |
| #define DIF_SUBR_COPYINSTR 9 |
| #define DIF_SUBR_SPECULATION 10 |
| #define DIF_SUBR_PROGENYOF 11 |
| #define DIF_SUBR_STRLEN 12 |
| #define DIF_SUBR_COPYOUT 13 |
| #define DIF_SUBR_COPYOUTSTR 14 |
| #define DIF_SUBR_ALLOCA 15 |
| #define DIF_SUBR_BCOPY 16 |
| #define DIF_SUBR_COPYINTO 17 |
| #define DIF_SUBR_MSGDSIZE 18 |
| #define DIF_SUBR_MSGSIZE 19 |
| #define DIF_SUBR_GETMAJOR 20 |
| #define DIF_SUBR_GETMINOR 21 |
| #define DIF_SUBR_DDI_PATHNAME 22 |
| #define DIF_SUBR_STRJOIN 23 |
| #define DIF_SUBR_LLTOSTR 24 |
| #define DIF_SUBR_BASENAME 25 |
| #define DIF_SUBR_DIRNAME 26 |
| #define DIF_SUBR_CLEANPATH 27 |
| #define DIF_SUBR_STRCHR 28 |
| #define DIF_SUBR_STRRCHR 29 |
| #define DIF_SUBR_STRSTR 30 |
| #define DIF_SUBR_STRTOK 31 |
| #define DIF_SUBR_SUBSTR 32 |
| #define DIF_SUBR_INDEX 33 |
| #define DIF_SUBR_RINDEX 34 |
| #define DIF_SUBR_HTONS 35 |
| #define DIF_SUBR_HTONL 36 |
| #define DIF_SUBR_HTONLL 37 |
| #define DIF_SUBR_NTOHS 38 |
| #define DIF_SUBR_NTOHL 39 |
| #define DIF_SUBR_NTOHLL 40 |
| #define DIF_SUBR_INET_NTOP 41 |
| #define DIF_SUBR_INET_NTOA 42 |
| #define DIF_SUBR_INET_NTOA6 43 |
| #define DIF_SUBR_TOUPPER 44 |
| #define DIF_SUBR_TOLOWER 45 |
| #define DIF_SUBR_GETF 46 |
| #define DIF_SUBR_JSON 47 |
| #define DIF_SUBR_STRTOLL 48 |
| |
| #define DIF_SUBR_MAX 48 /* max subroutine value */ |
| |
| typedef uint32_t dif_instr_t; |
| |
| #define DIF_INSTR_OP(i) (((i) >> 24) & 0xff) |
| #define DIF_INSTR_R1(i) (((i) >> 16) & 0xff) |
| #define DIF_INSTR_R2(i) (((i) >> 8) & 0xff) |
| #define DIF_INSTR_RD(i) ((i) & 0xff) |
| #define DIF_INSTR_RS(i) ((i) & 0xff) |
| #define DIF_INSTR_LABEL(i) ((i) & 0xffffff) |
| #define DIF_INSTR_VAR(i) (((i) >> 8) & 0xffff) |
| #define DIF_INSTR_INTEGER(i) (((i) >> 8) & 0xffff) |
| #define DIF_INSTR_STRING(i) (((i) >> 8) & 0xffff) |
| #define DIF_INSTR_SUBR(i) (((i) >> 8) & 0xffff) |
| #define DIF_INSTR_TYPE(i) (((i) >> 16) & 0xff) |
| #define DIF_INSTR_XLREF(i) (((i) >> 8) & 0xffff) |
| |
| #define DIF_INSTR_FMT(op, r1, r2, d) \ |
| (((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d)) |
| |
| #define DIF_INSTR_NOT(r1, d) (DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d)) |
| #define DIF_INSTR_MOV(r1, d) (DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d)) |
| #define DIF_INSTR_CMP(op, r1, r2) (DIF_INSTR_FMT(op, r1, r2, 0)) |
| #define DIF_INSTR_TST(r1) (DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0)) |
| #define DIF_INSTR_BRANCH(op, label) (((op) << 24) | (label)) |
| #define DIF_INSTR_LOAD(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d)) |
| #define DIF_INSTR_STORE(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d)) |
| #define DIF_INSTR_SETX(i, d) ((DIF_OP_SETX << 24) | ((i) << 8) | (d)) |
| #define DIF_INSTR_SETS(s, d) ((DIF_OP_SETS << 24) | ((s) << 8) | (d)) |
| #define DIF_INSTR_RET(d) (DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d)) |
| #define DIF_INSTR_NOP (DIF_OP_NOP << 24) |
| #define DIF_INSTR_LDA(op, v, r, d) (DIF_INSTR_FMT(op, v, r, d)) |
| #define DIF_INSTR_LDV(op, v, d) (((op) << 24) | ((v) << 8) | (d)) |
| #define DIF_INSTR_STV(op, v, rs) (((op) << 24) | ((v) << 8) | (rs)) |
| #define DIF_INSTR_CALL(s, d) ((DIF_OP_CALL << 24) | ((s) << 8) | (d)) |
| #define DIF_INSTR_PUSHTS(op, t, r2, rs) (DIF_INSTR_FMT(op, t, r2, rs)) |
| #define DIF_INSTR_POPTS (DIF_OP_POPTS << 24) |
| #define DIF_INSTR_FLUSHTS (DIF_OP_FLUSHTS << 24) |
| #define DIF_INSTR_ALLOCS(r1, d) (DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d)) |
| #define DIF_INSTR_COPYS(r1, r2, d) (DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d)) |
| #define DIF_INSTR_XLATE(op, r, d) (((op) << 24) | ((r) << 8) | (d)) |
| |
| #define DIF_REG_R0 0 /* %r0 is always set to zero */ |
| |
| /* |
| * A DTrace Intermediate Format Type (DIF Type) is used to represent the types |
| * of variables, function and associative array arguments, and the return type |
| * for each DIF object (shown below). It contains a description of the type, |
| * its size in bytes, and a module identifier. |
| */ |
| typedef struct dtrace_diftype { |
| uint8_t dtdt_kind; /* type kind (see below) */ |
| uint8_t dtdt_ckind; /* type kind in CTF */ |
| uint8_t dtdt_flags; /* type flags (see below) */ |
| uint8_t dtdt_pad; /* reserved for future use */ |
| uint32_t dtdt_size; /* type size in bytes (unless string) */ |
| } dtrace_diftype_t; |
| |
| #define DIF_TYPE_CTF 0 /* type is a CTF type */ |
| #define DIF_TYPE_STRING 1 /* type is a D string */ |
| |
| #define DIF_TF_BYREF 0x1 /* type is passed by reference */ |
| #define DIF_TF_BYUREF 0x2 /* user type is passed by reference */ |
| |
| /* |
| * A DTrace Intermediate Format variable record is used to describe each of the |
| * variables referenced by a given DIF object. It contains an integer variable |
| * identifier along with variable scope and properties, as shown below. The |
| * size of this structure must be sizeof (int) aligned. |
| */ |
| typedef struct dtrace_difv { |
| uint32_t dtdv_name; /* variable name index in dtdo_strtab */ |
| uint32_t dtdv_id; /* variable reference identifier */ |
| uint8_t dtdv_kind; /* variable kind (see below) */ |
| uint8_t dtdv_scope; /* variable scope (see below) */ |
| uint16_t dtdv_flags; /* variable flags (see below) */ |
| dtrace_diftype_t dtdv_type; /* variable type (see above) */ |
| } dtrace_difv_t; |
| |
| #define DIFV_KIND_ARRAY 0 /* variable is an array of quantities */ |
| #define DIFV_KIND_SCALAR 1 /* variable is a scalar quantity */ |
| |
| #define DIFV_SCOPE_GLOBAL 0 /* variable has global scope */ |
| #define DIFV_SCOPE_THREAD 1 /* variable has thread scope */ |
| #define DIFV_SCOPE_LOCAL 2 /* variable has local scope */ |
| |
| #define DIFV_F_REF 0x1 /* variable is referenced by DIFO */ |
| #define DIFV_F_MOD 0x2 /* variable is written by DIFO */ |
| |
| /* |
| * DTrace Actions |
| * |
| * The upper byte determines the class of the action; the low bytes determines |
| * the specific action within that class. The classes of actions are as |
| * follows: |
| * |
| * [ no class ] <= May record process- or kernel-related data |
| * DTRACEACT_PROC <= Only records process-related data |
| * DTRACEACT_PROC_DESTRUCTIVE <= Potentially destructive to processes |
| * DTRACEACT_KERNEL <= Only records kernel-related data |
| * DTRACEACT_KERNEL_DESTRUCTIVE <= Potentially destructive to the kernel |
| * DTRACEACT_SPECULATIVE <= Speculation-related action |
| * DTRACEACT_AGGREGATION <= Aggregating action |
| */ |
| #define DTRACEACT_NONE 0 /* no action */ |
| #define DTRACEACT_DIFEXPR 1 /* action is DIF expression */ |
| #define DTRACEACT_EXIT 2 /* exit() action */ |
| #define DTRACEACT_PRINTF 3 /* printf() action */ |
| #define DTRACEACT_PRINTA 4 /* printa() action */ |
| #define DTRACEACT_LIBACT 5 /* library-controlled action */ |
| #define DTRACEACT_TRACEMEM 6 /* tracemem() action */ |
| #define DTRACEACT_TRACEMEM_DYNSIZE 7 /* dynamic tracemem() size */ |
| |
| #define DTRACEACT_PROC 0x0100 |
| #define DTRACEACT_USTACK (DTRACEACT_PROC + 1) |
| #define DTRACEACT_JSTACK (DTRACEACT_PROC + 2) |
| #define DTRACEACT_USYM (DTRACEACT_PROC + 3) |
| #define DTRACEACT_UMOD (DTRACEACT_PROC + 4) |
| #define DTRACEACT_UADDR (DTRACEACT_PROC + 5) |
| |
| #define DTRACEACT_PROC_DESTRUCTIVE 0x0200 |
| #define DTRACEACT_STOP (DTRACEACT_PROC_DESTRUCTIVE + 1) |
| #define DTRACEACT_RAISE (DTRACEACT_PROC_DESTRUCTIVE + 2) |
| #define DTRACEACT_SYSTEM (DTRACEACT_PROC_DESTRUCTIVE + 3) |
| #define DTRACEACT_FREOPEN (DTRACEACT_PROC_DESTRUCTIVE + 4) |
| |
| #define DTRACEACT_PROC_CONTROL 0x0300 |
| |
| #define DTRACEACT_KERNEL 0x0400 |
| #define DTRACEACT_STACK (DTRACEACT_KERNEL + 1) |
| #define DTRACEACT_SYM (DTRACEACT_KERNEL + 2) |
| #define DTRACEACT_MOD (DTRACEACT_KERNEL + 3) |
| |
| #define DTRACEACT_KERNEL_DESTRUCTIVE 0x0500 |
| #define DTRACEACT_BREAKPOINT (DTRACEACT_KERNEL_DESTRUCTIVE + 1) |
| #define DTRACEACT_PANIC (DTRACEACT_KERNEL_DESTRUCTIVE + 2) |
| #define DTRACEACT_CHILL (DTRACEACT_KERNEL_DESTRUCTIVE + 3) |
| |
| #define DTRACEACT_SPECULATIVE 0x0600 |
| #define DTRACEACT_SPECULATE (DTRACEACT_SPECULATIVE + 1) |
| #define DTRACEACT_COMMIT (DTRACEACT_SPECULATIVE + 2) |
| #define DTRACEACT_DISCARD (DTRACEACT_SPECULATIVE + 3) |
| |
| #define DTRACEACT_CLASS(x) ((x) & 0xff00) |
| |
| #define DTRACEACT_ISDESTRUCTIVE(x) \ |
| (DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \ |
| DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE) |
| |
| #define DTRACEACT_ISSPECULATIVE(x) \ |
| (DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE) |
| |
| #define DTRACEACT_ISPRINTFLIKE(x) \ |
| ((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \ |
| (x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN) |
| |
| /* |
| * DTrace Aggregating Actions |
| * |
| * These are functions f(x) for which the following is true: |
| * |
| * f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n) |
| * |
| * where x_n is a set of arbitrary data. Aggregating actions are in their own |
| * DTrace action class, DTTRACEACT_AGGREGATION. The macros provided here allow |
| * for easier processing of the aggregation argument and data payload for a few |
| * aggregating actions (notably: quantize(), lquantize(), and ustack()). |
| */ |
| #define DTRACEACT_AGGREGATION 0x0700 |
| #define DTRACEAGG_COUNT (DTRACEACT_AGGREGATION + 1) |
| #define DTRACEAGG_MIN (DTRACEACT_AGGREGATION + 2) |
| #define DTRACEAGG_MAX (DTRACEACT_AGGREGATION + 3) |
| #define DTRACEAGG_AVG (DTRACEACT_AGGREGATION + 4) |
| #define DTRACEAGG_SUM (DTRACEACT_AGGREGATION + 5) |
| #define DTRACEAGG_STDDEV (DTRACEACT_AGGREGATION + 6) |
| #define DTRACEAGG_QUANTIZE (DTRACEACT_AGGREGATION + 7) |
| #define DTRACEAGG_LQUANTIZE (DTRACEACT_AGGREGATION + 8) |
| #define DTRACEAGG_LLQUANTIZE (DTRACEACT_AGGREGATION + 9) |
| |
| #define DTRACEACT_ISAGG(x) \ |
| (DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION) |
| |
| #define DTRACE_QUANTIZE_NBUCKETS \ |
| (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) |
| |
| #define DTRACE_QUANTIZE_ZEROBUCKET ((sizeof (uint64_t) * NBBY) - 1) |
| |
| #define DTRACE_QUANTIZE_BUCKETVAL(buck) \ |
| (int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ? \ |
| -(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) : \ |
| (buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 : \ |
| 1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1)) |
| |
| #define DTRACE_LQUANTIZE_STEPSHIFT 48 |
| #define DTRACE_LQUANTIZE_STEPMASK ((uint64_t)UINT16_MAX << 48) |
| #define DTRACE_LQUANTIZE_LEVELSHIFT 32 |
| #define DTRACE_LQUANTIZE_LEVELMASK ((uint64_t)UINT16_MAX << 32) |
| #define DTRACE_LQUANTIZE_BASESHIFT 0 |
| #define DTRACE_LQUANTIZE_BASEMASK UINT32_MAX |
| |
| #define DTRACE_LQUANTIZE_STEP(x) \ |
| (uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \ |
| DTRACE_LQUANTIZE_STEPSHIFT) |
| |
| #define DTRACE_LQUANTIZE_LEVELS(x) \ |
| (uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \ |
| DTRACE_LQUANTIZE_LEVELSHIFT) |
| |
| #define DTRACE_LQUANTIZE_BASE(x) \ |
| (int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \ |
| DTRACE_LQUANTIZE_BASESHIFT) |
| |
| #define DTRACE_LLQUANTIZE_FACTORSHIFT 48 |
| #define DTRACE_LLQUANTIZE_FACTORMASK ((uint64_t)UINT16_MAX << 48) |
| #define DTRACE_LLQUANTIZE_LOWSHIFT 32 |
| #define DTRACE_LLQUANTIZE_LOWMASK ((uint64_t)UINT16_MAX << 32) |
| #define DTRACE_LLQUANTIZE_HIGHSHIFT 16 |
| #define DTRACE_LLQUANTIZE_HIGHMASK ((uint64_t)UINT16_MAX << 16) |
| #define DTRACE_LLQUANTIZE_NSTEPSHIFT 0 |
| #define DTRACE_LLQUANTIZE_NSTEPMASK UINT16_MAX |
| |
| #define DTRACE_LLQUANTIZE_FACTOR(x) \ |
| (uint16_t)(((x) & DTRACE_LLQUANTIZE_FACTORMASK) >> \ |
| DTRACE_LLQUANTIZE_FACTORSHIFT) |
| |
| #define DTRACE_LLQUANTIZE_LOW(x) \ |
| (uint16_t)(((x) & DTRACE_LLQUANTIZE_LOWMASK) >> \ |
| DTRACE_LLQUANTIZE_LOWSHIFT) |
| |
| #define DTRACE_LLQUANTIZE_HIGH(x) \ |
| (uint16_t)(((x) & DTRACE_LLQUANTIZE_HIGHMASK) >> \ |
| DTRACE_LLQUANTIZE_HIGHSHIFT) |
| |
| #define DTRACE_LLQUANTIZE_NSTEP(x) \ |
| (uint16_t)(((x) & DTRACE_LLQUANTIZE_NSTEPMASK) >> \ |
| DTRACE_LLQUANTIZE_NSTEPSHIFT) |
| |
| #define DTRACE_USTACK_NFRAMES(x) (uint32_t)((x) & UINT32_MAX) |
| #define DTRACE_USTACK_STRSIZE(x) (uint32_t)((x) >> 32) |
| #define DTRACE_USTACK_ARG(x, y) \ |
| ((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX)) |
| |
| #ifndef _LP64 |
| #ifndef _LITTLE_ENDIAN |
| #define DTRACE_PTR(type, name) uint32_t name##pad; type *name |
| #else |
| #define DTRACE_PTR(type, name) type *name; uint32_t name##pad |
| #endif |
| #else |
| #define DTRACE_PTR(type, name) type *name |
| #endif |
| |
| /* |
| * DTrace Object Format (DOF) |
| * |
| * DTrace programs can be persistently encoded in the DOF format so that they |
| * may be embedded in other programs (for example, in an ELF file) or in the |
| * dtrace driver configuration file for use in anonymous tracing. The DOF |
| * format is versioned and extensible so that it can be revised and so that |
| * internal data structures can be modified or extended compatibly. All DOF |
| * structures use fixed-size types, so the 32-bit and 64-bit representations |
| * are identical and consumers can use either data model transparently. |
| * |
| * The file layout is structured as follows: |
| * |
| * +---------------+-------------------+----- ... ----+---- ... ------+ |
| * | dof_hdr_t | dof_sec_t[ ... ] | loadable | non-loadable | |
| * | (file header) | (section headers) | section data | section data | |
| * +---------------+-------------------+----- ... ----+---- ... ------+ |
| * |<------------ dof_hdr.dofh_loadsz --------------->| | |
| * |<------------ dof_hdr.dofh_filesz ------------------------------->| |
| * |
| * The file header stores meta-data including a magic number, data model for |
| * the instrumentation, data encoding, and properties of the DIF code within. |
| * The header describes its own size and the size of the section headers. By |
| * convention, an array of section headers follows the file header, and then |
| * the data for all loadable sections and unloadable sections. This permits |
| * consumer code to easily download the headers and all loadable data into the |
| * DTrace driver in one contiguous chunk, omitting other extraneous sections. |
| * |
| * The section headers describe the size, offset, alignment, and section type |
| * for each section. Sections are described using a set of #defines that tell |
| * the consumer what kind of data is expected. Sections can contain links to |
| * other sections by storing a dof_secidx_t, an index into the section header |
| * array, inside of the section data structures. The section header includes |
| * an entry size so that sections with data arrays can grow their structures. |
| * |
| * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which |
| * are represented themselves as a collection of related DOF sections. This |
| * permits us to change the set of sections associated with a DIFO over time, |
| * and also permits us to encode DIFOs that contain different sets of sections. |
| * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a |
| * section of type DOF_SECT_DIFOHDR. This section's data is then an array of |
| * dof_secidx_t's which in turn denote the sections associated with this DIFO. |
| * |
| * This loose coupling of the file structure (header and sections) to the |
| * structure of the DTrace program itself (ECB descriptions, action |
| * descriptions, and DIFOs) permits activities such as relocation processing |
| * to occur in a single pass without having to understand D program structure. |
| * |
| * Finally, strings are always stored in ELF-style string tables along with a |
| * string table section index and string table offset. Therefore strings in |
| * DOF are always arbitrary-length and not bound to the current implementation. |
| */ |
| |
| #define DOF_ID_SIZE 16 /* total size of dofh_ident[] in bytes */ |
| |
| typedef struct dof_hdr { |
| uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */ |
| uint32_t dofh_flags; /* file attribute flags (if any) */ |
| uint32_t dofh_hdrsize; /* size of file header in bytes */ |
| uint32_t dofh_secsize; /* size of section header in bytes */ |
| uint32_t dofh_secnum; /* number of section headers */ |
| uint64_t dofh_secoff; /* file offset of section headers */ |
| uint64_t dofh_loadsz; /* file size of loadable portion */ |
| uint64_t dofh_filesz; /* file size of entire DOF file */ |
| uint64_t dofh_pad; /* reserved for future use */ |
| } dof_hdr_t; |
| |
| #define DOF_ID_MAG0 0 /* first byte of magic number */ |
| #define DOF_ID_MAG1 1 /* second byte of magic number */ |
| #define DOF_ID_MAG2 2 /* third byte of magic number */ |
| #define DOF_ID_MAG3 3 /* fourth byte of magic number */ |
| #define DOF_ID_MODEL 4 /* DOF data model (see below) */ |
| #define DOF_ID_ENCODING 5 /* DOF data encoding (see below) */ |
| #define DOF_ID_VERSION 6 /* DOF file format major version (see below) */ |
| #define DOF_ID_DIFVERS 7 /* DIF instruction set version */ |
| #define DOF_ID_DIFIREG 8 /* DIF integer registers used by compiler */ |
| #define DOF_ID_DIFTREG 9 /* DIF tuple registers used by compiler */ |
| #define DOF_ID_PAD 10 /* start of padding bytes (all zeroes) */ |
| |
| #define DOF_MAG_MAG0 0x7F /* DOF_ID_MAG[0-3] */ |
| #define DOF_MAG_MAG1 'D' |
| #define DOF_MAG_MAG2 'O' |
| #define DOF_MAG_MAG3 'F' |
| |
| #define DOF_MAG_STRING "\177DOF" |
| #define DOF_MAG_STRLEN 4 |
| |
| #define DOF_MODEL_NONE 0 /* DOF_ID_MODEL */ |
| #define DOF_MODEL_ILP32 1 |
| #define DOF_MODEL_LP64 2 |
| |
| #ifdef _LP64 |
| #define DOF_MODEL_NATIVE DOF_MODEL_LP64 |
| #else |
| #define DOF_MODEL_NATIVE DOF_MODEL_ILP32 |
| #endif |
| |
| #define DOF_ENCODE_NONE 0 /* DOF_ID_ENCODING */ |
| #define DOF_ENCODE_LSB 1 |
| #define DOF_ENCODE_MSB 2 |
| |
| #ifdef _BIG_ENDIAN |
| #define DOF_ENCODE_NATIVE DOF_ENCODE_MSB |
| #else |
| #define DOF_ENCODE_NATIVE DOF_ENCODE_LSB |
| #endif |
| |
| #define DOF_VERSION_1 1 /* DOF version 1: Solaris 10 FCS */ |
| #define DOF_VERSION_2 2 /* DOF version 2: Solaris Express 6/06 */ |
| #define DOF_VERSION DOF_VERSION_2 /* Latest DOF version */ |
| |
| #define DOF_FL_VALID 0 /* mask of all valid dofh_flags bits */ |
| |
| typedef uint32_t dof_secidx_t; /* section header table index type */ |
| typedef uint32_t dof_stridx_t; /* string table index type */ |
| |
| #define DOF_SECIDX_NONE (-1U) /* null value for section indices */ |
| #define DOF_STRIDX_NONE (-1U) /* null value for string indices */ |
| |
| typedef struct dof_sec { |
| uint32_t dofs_type; /* section type (see below) */ |
| uint32_t dofs_align; /* section data memory alignment */ |
| uint32_t dofs_flags; /* section flags (if any) */ |
| uint32_t dofs_entsize; /* size of section entry (if table) */ |
| uint64_t dofs_offset; /* offset of section data within file */ |
| uint64_t dofs_size; /* size of section data in bytes */ |
| } dof_sec_t; |
| |
| #define DOF_SECT_NONE 0 /* null section */ |
| #define DOF_SECT_COMMENTS 1 /* compiler comments */ |
| #define DOF_SECT_SOURCE 2 /* D program source code */ |
| #define DOF_SECT_ECBDESC 3 /* dof_ecbdesc_t */ |
| #define DOF_SECT_PROBEDESC 4 /* dof_probedesc_t */ |
| #define DOF_SECT_ACTDESC 5 /* dof_actdesc_t array */ |
| #define DOF_SECT_DIFOHDR 6 /* dof_difohdr_t (variable length) */ |
| #define DOF_SECT_DIF 7 /* uint32_t array of byte code */ |
| #define DOF_SECT_STRTAB 8 /* string table */ |
| #define DOF_SECT_VARTAB 9 /* dtrace_difv_t array */ |
| #define DOF_SECT_RELTAB 10 /* dof_relodesc_t array */ |
| #define DOF_SECT_TYPTAB 11 /* dtrace_diftype_t array */ |
| #define DOF_SECT_URELHDR 12 /* dof_relohdr_t (user relocations) */ |
| #define DOF_SECT_KRELHDR 13 /* dof_relohdr_t (kernel relocations) */ |
| #define DOF_SECT_OPTDESC 14 /* dof_optdesc_t array */ |
| #define DOF_SECT_PROVIDER 15 /* dof_provider_t */ |
| #define DOF_SECT_PROBES 16 /* dof_probe_t array */ |
| #define DOF_SECT_PRARGS 17 /* uint8_t array (probe arg mappings) */ |
| #define DOF_SECT_PROFFS 18 /* uint32_t array (probe arg offsets) */ |
| #define DOF_SECT_INTTAB 19 /* uint64_t array */ |
| #define DOF_SECT_UTSNAME 20 /* struct utsname */ |
| #define DOF_SECT_XLTAB 21 /* dof_xlref_t array */ |
| #define DOF_SECT_XLMEMBERS 22 /* dof_xlmember_t array */ |
| #define DOF_SECT_XLIMPORT 23 /* dof_xlator_t */ |
| #define DOF_SECT_XLEXPORT 24 /* dof_xlator_t */ |
| #define DOF_SECT_PREXPORT 25 /* dof_secidx_t array (exported objs) */ |
| #define DOF_SECT_PRENOFFS 26 /* uint32_t array (enabled offsets) */ |
| |
| #define DOF_SECF_LOAD 1 /* section should be loaded */ |
| |
| #define DOF_SEC_ISLOADABLE(x) \ |
| (((x) == DOF_SECT_ECBDESC) || ((x) == DOF_SECT_PROBEDESC) || \ |
| ((x) == DOF_SECT_ACTDESC) || ((x) == DOF_SECT_DIFOHDR) || \ |
| ((x) == DOF_SECT_DIF) || ((x) == DOF_SECT_STRTAB) || \ |
| ((x) == DOF_SECT_VARTAB) || ((x) == DOF_SECT_RELTAB) || \ |
| ((x) == DOF_SECT_TYPTAB) || ((x) == DOF_SECT_URELHDR) || \ |
| ((x) == DOF_SECT_KRELHDR) || ((x) == DOF_SECT_OPTDESC) || \ |
| ((x) == DOF_SECT_PROVIDER) || ((x) == DOF_SECT_PROBES) || \ |
| ((x) == DOF_SECT_PRARGS) || ((x) == DOF_SECT_PROFFS) || \ |
| ((x) == DOF_SECT_INTTAB) || ((x) == DOF_SECT_XLTAB) || \ |
| ((x) == DOF_SECT_XLMEMBERS) || ((x) == DOF_SECT_XLIMPORT) || \ |
| ((x) == DOF_SECT_XLIMPORT) || ((x) == DOF_SECT_XLEXPORT) || \ |
| ((x) == DOF_SECT_PREXPORT) || ((x) == DOF_SECT_PRENOFFS)) |
| |
| typedef struct dof_ecbdesc { |
| dof_secidx_t dofe_probes; /* link to DOF_SECT_PROBEDESC */ |
| dof_secidx_t dofe_pred; /* link to DOF_SECT_DIFOHDR */ |
| dof_secidx_t dofe_actions; /* link to DOF_SECT_ACTDESC */ |
| uint32_t dofe_pad; /* reserved for future use */ |
| uint64_t dofe_uarg; /* user-supplied library argument */ |
| } dof_ecbdesc_t; |
| |
| typedef struct dof_probedesc { |
| dof_secidx_t dofp_strtab; /* link to DOF_SECT_STRTAB section */ |
| dof_stridx_t dofp_provider; /* provider string */ |
| dof_stridx_t dofp_mod; /* module string */ |
| dof_stridx_t dofp_func; /* function string */ |
| dof_stridx_t dofp_name; /* name string */ |
| uint32_t dofp_id; /* probe identifier (or zero) */ |
| } dof_probedesc_t; |
| |
| typedef struct dof_actdesc { |
| dof_secidx_t dofa_difo; /* link to DOF_SECT_DIFOHDR */ |
| dof_secidx_t dofa_strtab; /* link to DOF_SECT_STRTAB section */ |
| uint32_t dofa_kind; /* action kind (DTRACEACT_* constant) */ |
| uint32_t dofa_ntuple; /* number of subsequent tuple actions */ |
| uint64_t dofa_arg; /* kind-specific argument */ |
| uint64_t dofa_uarg; /* user-supplied argument */ |
| } dof_actdesc_t; |
| |
| typedef struct dof_difohdr { |
| dtrace_diftype_t dofd_rtype; /* return type for this fragment */ |
| dof_secidx_t dofd_links[1]; /* variable length array of indices */ |
| } dof_difohdr_t; |
| |
| typedef struct dof_relohdr { |
| dof_secidx_t dofr_strtab; /* link to DOF_SECT_STRTAB for names */ |
| dof_secidx_t dofr_relsec; /* link to DOF_SECT_RELTAB for relos */ |
| dof_secidx_t dofr_tgtsec; /* link to section we are relocating */ |
| } dof_relohdr_t; |
| |
| typedef struct dof_relodesc { |
| dof_stridx_t dofr_name; /* string name of relocation symbol */ |
| uint32_t dofr_type; /* relo type (DOF_RELO_* constant) */ |
| uint64_t dofr_offset; /* byte offset for relocation */ |
| uint64_t dofr_data; /* additional type-specific data */ |
| } dof_relodesc_t; |
| |
| #define DOF_RELO_NONE 0 /* empty relocation entry */ |
| #define DOF_RELO_SETX 1 /* relocate setx value */ |
| |
| typedef struct dof_optdesc { |
| uint32_t dofo_option; /* option identifier */ |
| dof_secidx_t dofo_strtab; /* string table, if string option */ |
| uint64_t dofo_value; /* option value or string index */ |
| } dof_optdesc_t; |
| |
| typedef uint32_t dof_attr_t; /* encoded stability attributes */ |
| |
| #define DOF_ATTR(n, d, c) (((n) << 24) | ((d) << 16) | ((c) << 8)) |
| #define DOF_ATTR_NAME(a) (((a) >> 24) & 0xff) |
| #define DOF_ATTR_DATA(a) (((a) >> 16) & 0xff) |
| #define DOF_ATTR_CLASS(a) (((a) >> 8) & 0xff) |
| |
| typedef struct dof_provider { |
| dof_secidx_t dofpv_strtab; /* link to DOF_SECT_STRTAB section */ |
| dof_secidx_t dofpv_probes; /* link to DOF_SECT_PROBES section */ |
| dof_secidx_t dofpv_prargs; /* link to DOF_SECT_PRARGS section */ |
| dof_secidx_t dofpv_proffs; /* link to DOF_SECT_PROFFS section */ |
| dof_stridx_t dofpv_name; /* provider name string */ |
| dof_attr_t dofpv_provattr; /* provider attributes */ |
| dof_attr_t dofpv_modattr; /* module attributes */ |
| dof_attr_t dofpv_funcattr; /* function attributes */ |
| dof_attr_t dofpv_nameattr; /* name attributes */ |
| dof_attr_t dofpv_argsattr; /* args attributes */ |
| dof_secidx_t dofpv_prenoffs; /* link to DOF_SECT_PRENOFFS section */ |
| } dof_provider_t; |
| |
| typedef struct dof_probe { |
| uint64_t dofpr_addr; /* probe base address or offset */ |
| dof_stridx_t dofpr_func; /* probe function string */ |
| dof_stridx_t dofpr_name; /* probe name string */ |
| dof_stridx_t dofpr_nargv; /* native argument type strings */ |
| dof_stridx_t dofpr_xargv; /* translated argument type strings */ |
| uint32_t dofpr_argidx; /* index of first argument mapping */ |
| uint32_t dofpr_offidx; /* index of first offset entry */ |
| uint8_t dofpr_nargc; /* native argument count */ |
| uint8_t dofpr_xargc; /* translated argument count */ |
| uint16_t dofpr_noffs; /* number of offset entries for probe */ |
| uint32_t dofpr_enoffidx; /* index of first is-enabled offset */ |
| uint16_t dofpr_nenoffs; /* number of is-enabled offsets */ |
| uint16_t dofpr_pad1; /* reserved for future use */ |
| uint32_t dofpr_pad2; /* reserved for future use */ |
| } dof_probe_t; |
| |
| typedef struct dof_xlator { |
| dof_secidx_t dofxl_members; /* link to DOF_SECT_XLMEMBERS section */ |
| dof_secidx_t dofxl_strtab; /* link to DOF_SECT_STRTAB section */ |
| dof_stridx_t dofxl_argv; /* input parameter type strings */ |
| uint32_t dofxl_argc; /* input parameter list length */ |
| dof_stridx_t dofxl_type; /* output type string name */ |
| dof_attr_t dofxl_attr; /* output stability attributes */ |
| } dof_xlator_t; |
| |
| typedef struct dof_xlmember { |
| dof_secidx_t dofxm_difo; /* member link to DOF_SECT_DIFOHDR */ |
| dof_stridx_t dofxm_name; /* member name */ |
| dtrace_diftype_t dofxm_type; /* member type */ |
| } dof_xlmember_t; |
| |
| typedef struct dof_xlref { |
| dof_secidx_t dofxr_xlator; /* link to DOF_SECT_XLATORS section */ |
| uint32_t dofxr_member; /* index of referenced dof_xlmember */ |
| uint32_t dofxr_argn; /* index of argument for DIF_OP_XLARG */ |
| } dof_xlref_t; |
| |
| /* |
| * DTrace Intermediate Format Object (DIFO) |
| * |
| * A DIFO is used to store the compiled DIF for a D expression, its return |
| * type, and its string and variable tables. The string table is a single |
| * buffer of character data into which sets instructions and variable |
| * references can reference strings using a byte offset. The variable table |
| * is an array of dtrace_difv_t structures that describe the name and type of |
| * each variable and the id used in the DIF code. This structure is described |
| * above in the DIF section of this header file. The DIFO is used at both |
| * user-level (in the library) and in the kernel, but the structure is never |
| * passed between the two: the DOF structures form the only interface. As a |
| * result, the definition can change depending on the presence of _KERNEL. |
| */ |
| typedef struct dtrace_difo { |
| dif_instr_t *dtdo_buf; /* instruction buffer */ |
| uint64_t *dtdo_inttab; /* integer table (optional) */ |
| char *dtdo_strtab; /* string table (optional) */ |
| dtrace_difv_t *dtdo_vartab; /* variable table (optional) */ |
| uint_t dtdo_len; /* length of instruction buffer */ |
| uint_t dtdo_intlen; /* length of integer table */ |
| uint_t dtdo_strlen; /* length of string table */ |
| uint_t dtdo_varlen; /* length of variable table */ |
| dtrace_diftype_t dtdo_rtype; /* return type */ |
| uint_t dtdo_refcnt; /* owner reference count */ |
| uint_t dtdo_destructive; /* invokes destructive subroutines */ |
| #ifndef _KERNEL |
| dof_relodesc_t *dtdo_kreltab; /* kernel relocations */ |
| dof_relodesc_t *dtdo_ureltab; /* user relocations */ |
| struct dt_node **dtdo_xlmtab; /* translator references */ |
| uint_t dtdo_krelen; /* length of krelo table */ |
| uint_t dtdo_urelen; /* length of urelo table */ |
| uint_t dtdo_xlmlen; /* length of translator table */ |
| #endif |
| } dtrace_difo_t; |
| |
| /* |
| * DTrace Enabling Description Structures |
| * |
| * When DTrace is tracking the description of a DTrace enabling entity (probe, |
| * predicate, action, ECB, record, etc.), it does so in a description |
| * structure. These structures all end in "desc", and are used at both |
| * user-level and in the kernel -- but (with the exception of |
| * dtrace_probedesc_t) they are never passed between them. Typically, |
| * user-level will use the description structures when assembling an enabling. |
| * It will then distill those description structures into a DOF object (see |
| * above), and send it into the kernel. The kernel will again use the |
| * description structures to create a description of the enabling as it reads |
| * the DOF. When the description is complete, the enabling will be actually |
| * created -- turning it into the structures that represent the enabling |
| * instead of merely describing it. Not surprisingly, the description |
| * structures bear a strong resemblance to the DOF structures that act as their |
| * conduit. |
| */ |
| struct dtrace_predicate; |
| |
| typedef struct dtrace_probedesc { |
| dtrace_id_t dtpd_id; /* probe identifier */ |
| char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */ |
| char dtpd_mod[DTRACE_MODNAMELEN]; /* probe module name */ |
| char dtpd_func[DTRACE_FUNCNAMELEN]; /* probe function name */ |
| char dtpd_name[DTRACE_NAMELEN]; /* probe name */ |
| } dtrace_probedesc_t; |
| |
| typedef struct dtrace_repldesc { |
| dtrace_probedesc_t dtrpd_match; /* probe descr. to match */ |
| dtrace_probedesc_t dtrpd_create; /* probe descr. to create */ |
| } dtrace_repldesc_t; |
| |
| typedef struct dtrace_preddesc { |
| dtrace_difo_t *dtpdd_difo; /* pointer to DIF object */ |
| struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */ |
| } dtrace_preddesc_t; |
| |
| typedef struct dtrace_actdesc { |
| dtrace_difo_t *dtad_difo; /* pointer to DIF object */ |
| struct dtrace_actdesc *dtad_next; /* next action */ |
| dtrace_actkind_t dtad_kind; /* kind of action */ |
| uint32_t dtad_ntuple; /* number in tuple */ |
| uint64_t dtad_arg; /* action argument */ |
| uint64_t dtad_uarg; /* user argument */ |
| int dtad_refcnt; /* reference count */ |
| } dtrace_actdesc_t; |
| |
| typedef struct dtrace_ecbdesc { |
| dtrace_actdesc_t *dted_action; /* action description(s) */ |
| dtrace_preddesc_t dted_pred; /* predicate description */ |
| dtrace_probedesc_t dted_probe; /* probe description */ |
| uint64_t dted_uarg; /* library argument */ |
| int dted_refcnt; /* reference count */ |
| } dtrace_ecbdesc_t; |
| |
| /* |
| * DTrace Metadata Description Structures |
| * |
| * DTrace separates the trace data stream from the metadata stream. The only |
| * metadata tokens placed in the data stream are the dtrace_rechdr_t (EPID + |
| * timestamp) or (in the case of aggregations) aggregation identifiers. To |
| * determine the structure of the data, DTrace consumers pass the token to the |
| * kernel, and receive in return a corresponding description of the enabled |
| * probe (via the dtrace_eprobedesc structure) or the aggregation (via the |
| * dtrace_aggdesc structure). Both of these structures are expressed in terms |
| * of record descriptions (via the dtrace_recdesc structure) that describe the |
| * exact structure of the data. Some record descriptions may also contain a |
| * format identifier; this additional bit of metadata can be retrieved from the |
| * kernel, for which a format description is returned via the dtrace_fmtdesc |
| * structure. Note that all four of these structures must be bitness-neutral |
| * to allow for a 32-bit DTrace consumer on a 64-bit kernel. |
| */ |
| typedef struct dtrace_recdesc { |
| dtrace_actkind_t dtrd_action; /* kind of action */ |
| uint32_t dtrd_size; /* size of record */ |
| uint32_t dtrd_offset; /* offset in ECB's data */ |
| uint16_t dtrd_alignment; /* required alignment */ |
| uint16_t dtrd_format; /* format, if any */ |
| uint64_t dtrd_arg; /* action argument */ |
| uint64_t dtrd_uarg; /* user argument */ |
| } dtrace_recdesc_t; |
| |
| typedef struct dtrace_eprobedesc { |
| dtrace_epid_t dtepd_epid; /* enabled probe ID */ |
| dtrace_id_t dtepd_probeid; /* probe ID */ |
| uint64_t dtepd_uarg; /* library argument */ |
| uint32_t dtepd_size; /* total size */ |
| int dtepd_nrecs; /* number of records */ |
| dtrace_recdesc_t dtepd_rec[1]; /* records themselves */ |
| } dtrace_eprobedesc_t; |
| |
| typedef struct dtrace_aggdesc { |
| DTRACE_PTR(char, dtagd_name); /* not filled in by kernel */ |
| dtrace_aggvarid_t dtagd_varid; /* not filled in by kernel */ |
| int dtagd_flags; /* not filled in by kernel */ |
| dtrace_aggid_t dtagd_id; /* aggregation ID */ |
| dtrace_epid_t dtagd_epid; /* enabled probe ID */ |
| uint32_t dtagd_size; /* size in bytes */ |
| int dtagd_nrecs; /* number of records */ |
| uint32_t dtagd_pad; /* explicit padding */ |
| dtrace_recdesc_t dtagd_rec[1]; /* record descriptions */ |
| } dtrace_aggdesc_t; |
| |
| typedef struct dtrace_fmtdesc { |
| DTRACE_PTR(char, dtfd_string); /* format string */ |
| int dtfd_length; /* length of format string */ |
| uint16_t dtfd_format; /* format identifier */ |
| } dtrace_fmtdesc_t; |
| |
| #define DTRACE_SIZEOF_EPROBEDESC(desc) \ |
| (sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ? \ |
| (((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0)) |
| |
| #define DTRACE_SIZEOF_AGGDESC(desc) \ |
| (sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ? \ |
| (((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0)) |
| |
| /* |
| * DTrace Option Interface |
| * |
| * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections |
| * in a DOF image. The dof_optdesc structure contains an option identifier and |
| * an option value. The valid option identifiers are found below; the mapping |
| * between option identifiers and option identifying strings is maintained at |
| * user-level. Note that the value of DTRACEOPT_UNSET is such that all of the |
| * following are potentially valid option values: all positive integers, zero |
| * and negative one. Some options (notably "bufpolicy" and "bufresize") take |
| * predefined tokens as their values; these are defined with |
| * DTRACEOPT_{option}_{token}. |
| */ |
| #define DTRACEOPT_BUFSIZE 0 /* buffer size */ |
| #define DTRACEOPT_BUFPOLICY 1 /* buffer policy */ |
| #define DTRACEOPT_DYNVARSIZE 2 /* dynamic variable size */ |
| #define DTRACEOPT_AGGSIZE 3 /* aggregation size */ |
| #define DTRACEOPT_SPECSIZE 4 /* speculation size */ |
| #define DTRACEOPT_NSPEC 5 /* number of speculations */ |
| #define DTRACEOPT_STRSIZE 6 /* string size */ |
| #define DTRACEOPT_CLEANRATE 7 /* dynvar cleaning rate */ |
| #define DTRACEOPT_CPU 8 /* CPU to trace */ |
| #define DTRACEOPT_BUFRESIZE 9 /* buffer resizing policy */ |
| #define DTRACEOPT_GRABANON 10 /* grab anonymous state, if any */ |
| #define DTRACEOPT_FLOWINDENT 11 /* indent function entry/return */ |
| #define DTRACEOPT_QUIET 12 /* only output explicitly traced data */ |
| #define DTRACEOPT_STACKFRAMES 13 /* number of stack frames */ |
| #define DTRACEOPT_USTACKFRAMES 14 /* number of user stack frames */ |
| #define DTRACEOPT_AGGRATE 15 /* aggregation snapshot rate */ |
| #define DTRACEOPT_SWITCHRATE 16 /* buffer switching rate */ |
| #define DTRACEOPT_STATUSRATE 17 /* status rate */ |
| #define DTRACEOPT_DESTRUCTIVE 18 /* destructive actions allowed */ |
| #define DTRACEOPT_STACKINDENT 19 /* output indent for stack traces */ |
| #define DTRACEOPT_RAWBYTES 20 /* always print bytes in raw form */ |
| #define DTRACEOPT_JSTACKFRAMES 21 /* number of jstack() frames */ |
| #define DTRACEOPT_JSTACKSTRSIZE 22 /* size of jstack() string table */ |
| #define DTRACEOPT_AGGSORTKEY 23 /* sort aggregations by key */ |
| #define DTRACEOPT_AGGSORTREV 24 /* reverse-sort aggregations */ |
| #define DTRACEOPT_AGGSORTPOS 25 /* agg. position to sort on */ |
| #define DTRACEOPT_AGGSORTKEYPOS 26 /* agg. key position to sort on */ |
| #define DTRACEOPT_TEMPORAL 27 /* temporally ordered output */ |
| #define DTRACEOPT_AGGHIST 28 /* histogram aggregation output */ |
| #define DTRACEOPT_AGGPACK 29 /* packed aggregation output */ |
| #define DTRACEOPT_AGGZOOM 30 /* zoomed aggregation scaling */ |
| #define DTRACEOPT_ZONE 31 /* zone in which to enable probes */ |
| #define DTRACEOPT_MAX 32 /* number of options */ |
| |
| #define DTRACEOPT_UNSET (dtrace_optval_t)-2 /* unset option */ |
| |
| #define DTRACEOPT_BUFPOLICY_RING 0 /* ring buffer */ |
| #define DTRACEOPT_BUFPOLICY_FILL 1 /* fill buffer, then stop */ |
| #define DTRACEOPT_BUFPOLICY_SWITCH 2 /* switch buffers */ |
| |
| #define DTRACEOPT_BUFRESIZE_AUTO 0 /* automatic resizing */ |
| #define DTRACEOPT_BUFRESIZE_MANUAL 1 /* manual resizing */ |
| |
| /* |
| * DTrace Buffer Interface |
| * |
| * In order to get a snapshot of the principal or aggregation buffer, |
| * user-level passes a buffer description to the kernel with the dtrace_bufdesc |
| * structure. This describes which CPU user-level is interested in, and |
| * where user-level wishes the kernel to snapshot the buffer to (the |
| * dtbd_data field). The kernel uses the same structure to pass back some |
| * information regarding the buffer: the size of data actually copied out, the |
| * number of drops, the number of errors, the offset of the oldest record, |
| * and the time of the snapshot. |
| * |
| * If the buffer policy is a "switch" policy, taking a snapshot of the |
| * principal buffer has the additional effect of switching the active and |
| * inactive buffers. Taking a snapshot of the aggregation buffer _always_ has |
| * the additional effect of switching the active and inactive buffers. |
| */ |
| typedef struct dtrace_bufdesc { |
| uint64_t dtbd_size; /* size of buffer */ |
| uint32_t dtbd_cpu; /* CPU or DTRACE_CPUALL */ |
| uint32_t dtbd_errors; /* number of errors */ |
| uint64_t dtbd_drops; /* number of drops */ |
| DTRACE_PTR(char, dtbd_data); /* data */ |
| uint64_t dtbd_oldest; /* offset of oldest record */ |
| uint64_t dtbd_timestamp; /* hrtime of snapshot */ |
| } dtrace_bufdesc_t; |
| |
| /* |
| * Each record in the buffer (dtbd_data) begins with a header that includes |
| * the epid and a timestamp. The timestamp is split into two 4-byte parts |
| * so that we do not require 8-byte alignment. |
| */ |
| typedef struct dtrace_rechdr { |
| dtrace_epid_t dtrh_epid; /* enabled probe id */ |
| uint32_t dtrh_timestamp_hi; /* high bits of hrtime_t */ |
| uint32_t dtrh_timestamp_lo; /* low bits of hrtime_t */ |
| } dtrace_rechdr_t; |
| |
| #define DTRACE_RECORD_LOAD_TIMESTAMP(dtrh) \ |
| ((dtrh)->dtrh_timestamp_lo + \ |
| ((uint64_t)(dtrh)->dtrh_timestamp_hi << 32)) |
| |
| #define DTRACE_RECORD_STORE_TIMESTAMP(dtrh, hrtime) { \ |
| (dtrh)->dtrh_timestamp_lo = (uint32_t)hrtime; \ |
| (dtrh)->dtrh_timestamp_hi = hrtime >> 32; \ |
| } |
| |
| /* |
| * DTrace Status |
| * |
| * The status of DTrace is relayed via the dtrace_status structure. This |
| * structure contains members to count drops other than the capacity drops |
| * available via the buffer interface (see above). This consists of dynamic |
| * drops (including capacity dynamic drops, rinsing drops and dirty drops), and |
| * speculative drops (including capacity speculative drops, drops due to busy |
| * speculative buffers and drops due to unavailable speculative buffers). |
| * Additionally, the status structure contains a field to indicate the number |
| * of "fill"-policy buffers have been filled and a boolean field to indicate |
| * that exit() has been called. If the dtst_exiting field is non-zero, no |
| * further data will be generated until tracing is stopped (at which time any |
| * enablings of the END action will be processed); if user-level sees that |
| * this field is non-zero, tracing should be stopped as soon as possible. |
| */ |
| typedef struct dtrace_status { |
| uint64_t dtst_dyndrops; /* dynamic drops */ |
| uint64_t dtst_dyndrops_rinsing; /* dyn drops due to rinsing */ |
| uint64_t dtst_dyndrops_dirty; /* dyn drops due to dirty */ |
| uint64_t dtst_specdrops; /* speculative drops */ |
| uint64_t dtst_specdrops_busy; /* spec drops due to busy */ |
| uint64_t dtst_specdrops_unavail; /* spec drops due to unavail */ |
| uint64_t dtst_errors; /* total errors */ |
| uint64_t dtst_filled; /* number of filled bufs */ |
| uint64_t dtst_stkstroverflows; /* stack string tab overflows */ |
| uint64_t dtst_dblerrors; /* errors in ERROR probes */ |
| char dtst_killed; /* non-zero if killed */ |
| char dtst_exiting; /* non-zero if exit() called */ |
| char dtst_pad[6]; /* pad out to 64-bit align */ |
| } dtrace_status_t; |
| |
| /* |
| * DTrace Configuration |
| * |
| * User-level may need to understand some elements of the kernel DTrace |
| * configuration in order to generate correct DIF. This information is |
| * conveyed via the dtrace_conf structure. |
| */ |
| typedef struct dtrace_conf { |
| uint_t dtc_difversion; /* supported DIF version */ |
| uint_t dtc_difintregs; /* # of DIF integer registers */ |
| uint_t dtc_diftupregs; /* # of DIF tuple registers */ |
| uint_t dtc_ctfmodel; /* CTF data model */ |
| uint_t dtc_pad[8]; /* reserved for future use */ |
| } dtrace_conf_t; |
| |
| /* |
| * DTrace Faults |
| * |
| * The constants below DTRACEFLT_LIBRARY indicate probe processing faults; |
| * constants at or above DTRACEFLT_LIBRARY indicate faults in probe |
| * postprocessing at user-level. Probe processing faults induce an ERROR |
| * probe and are replicated in unistd.d to allow users' ERROR probes to decode |
| * the error condition using thse symbolic labels. |
| */ |
| #define DTRACEFLT_UNKNOWN 0 /* Unknown fault */ |
| #define DTRACEFLT_BADADDR 1 /* Bad address */ |
| #define DTRACEFLT_BADALIGN 2 /* Bad alignment */ |
| #define DTRACEFLT_ILLOP 3 /* Illegal operation */ |
| #define DTRACEFLT_DIVZERO 4 /* Divide-by-zero */ |
| #define DTRACEFLT_NOSCRATCH 5 /* Out of scratch space */ |
| #define DTRACEFLT_KPRIV 6 /* Illegal kernel access */ |
| #define DTRACEFLT_UPRIV 7 /* Illegal user access */ |
| #define DTRACEFLT_TUPOFLOW 8 /* Tuple stack overflow */ |
| #define DTRACEFLT_BADSTACK 9 /* Bad stack */ |
| |
| #define DTRACEFLT_LIBRARY 1000 /* Library-level fault */ |
| |
| /* |
| * DTrace Argument Types |
| * |
| * Because it would waste both space and time, argument types do not reside |
| * with the probe. In order to determine argument types for args[X] |
| * variables, the D compiler queries for argument types on a probe-by-probe |
| * basis. (This optimizes for the common case that arguments are either not |
| * used or used in an untyped fashion.) Typed arguments are specified with a |
| * string of the type name in the dtragd_native member of the argument |
| * description structure. Typed arguments may be further translated to types |
| * of greater stability; the provider indicates such a translated argument by |
| * filling in the dtargd_xlate member with the string of the translated type. |
| * Finally, the provider may indicate which argument value a given argument |
| * maps to by setting the dtargd_mapping member -- allowing a single argument |
| * to map to multiple args[X] variables. |
| */ |
| typedef struct dtrace_argdesc { |
| dtrace_id_t dtargd_id; /* probe identifier */ |
| int dtargd_ndx; /* arg number (-1 iff none) */ |
| int dtargd_mapping; /* value mapping */ |
| char dtargd_native[DTRACE_ARGTYPELEN]; /* native type name */ |
| char dtargd_xlate[DTRACE_ARGTYPELEN]; /* translated type name */ |
| } dtrace_argdesc_t; |
| |
| /* |
| * DTrace Stability Attributes |
| * |
| * Each DTrace provider advertises the name and data stability of each of its |
| * probe description components, as well as its architectural dependencies. |
| * The D compiler can query the provider attributes (dtrace_pattr_t below) in |
| * order to compute the properties of an input program and report them. |
| */ |
| typedef uint8_t dtrace_stability_t; /* stability code (see attributes(5)) */ |
| typedef uint8_t dtrace_class_t; /* architectural dependency class */ |
| |
| #define DTRACE_STABILITY_INTERNAL 0 /* private to DTrace itself */ |
| #define DTRACE_STABILITY_PRIVATE 1 /* private to Sun (see docs) */ |
| #define DTRACE_STABILITY_OBSOLETE 2 /* scheduled for removal */ |
| #define DTRACE_STABILITY_EXTERNAL 3 /* not controlled by Sun */ |
| #define DTRACE_STABILITY_UNSTABLE 4 /* new or rapidly changing */ |
| #define DTRACE_STABILITY_EVOLVING 5 /* less rapidly changing */ |
| #define DTRACE_STABILITY_STABLE 6 /* mature interface from Sun */ |
| #define DTRACE_STABILITY_STANDARD 7 /* industry standard */ |
| #define DTRACE_STABILITY_MAX 7 /* maximum valid stability */ |
| |
| #define DTRACE_CLASS_UNKNOWN 0 /* unknown architectural dependency */ |
| #define DTRACE_CLASS_CPU 1 /* CPU-module-specific */ |
| #define DTRACE_CLASS_PLATFORM 2 /* platform-specific (uname -i) */ |
| #define DTRACE_CLASS_GROUP 3 /* hardware-group-specific (uname -m) */ |
| #define DTRACE_CLASS_ISA 4 /* ISA-specific (uname -p) */ |
| #define DTRACE_CLASS_COMMON 5 /* common to all systems */ |
| #define DTRACE_CLASS_MAX 5 /* maximum valid class */ |
| |
| #define DTRACE_PRIV_NONE 0x0000 |
| #define DTRACE_PRIV_KERNEL 0x0001 |
| #define DTRACE_PRIV_USER 0x0002 |
| #define DTRACE_PRIV_PROC 0x0004 |
| #define DTRACE_PRIV_OWNER 0x0008 |
| #define DTRACE_PRIV_ZONEOWNER 0x0010 |
| |
| #define DTRACE_PRIV_ALL \ |
| (DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \ |
| DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER) |
| |
| typedef struct dtrace_ppriv { |
| uint32_t dtpp_flags; /* privilege flags */ |
| uid_t dtpp_uid; /* user ID */ |
| zoneid_t dtpp_zoneid; /* zone ID */ |
| } dtrace_ppriv_t; |
| |
| typedef struct dtrace_attribute { |
| dtrace_stability_t dtat_name; /* entity name stability */ |
| dtrace_stability_t dtat_data; /* entity data stability */ |
| dtrace_class_t dtat_class; /* entity data dependency */ |
| } dtrace_attribute_t; |
| |
| typedef struct dtrace_pattr { |
| dtrace_attribute_t dtpa_provider; /* provider attributes */ |
| dtrace_attribute_t dtpa_mod; /* module attributes */ |
| dtrace_attribute_t dtpa_func; /* function attributes */ |
| dtrace_attribute_t dtpa_name; /* name attributes */ |
| dtrace_attribute_t dtpa_args; /* args[] attributes */ |
| } dtrace_pattr_t; |
| |
| typedef struct dtrace_providerdesc { |
| char dtvd_name[DTRACE_PROVNAMELEN]; /* provider name */ |
| dtrace_pattr_t dtvd_attr; /* stability attributes */ |
| dtrace_ppriv_t dtvd_priv; /* privileges required */ |
| } dtrace_providerdesc_t; |
| |
| /* |
| * DTrace Pseudodevice Interface |
| * |
| * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace |
| * pseudodevice driver. These ioctls comprise the user-kernel interface to |
| * DTrace. |
| */ |
| #define DTRACEIOC (('d' << 24) | ('t' << 16) | ('r' << 8)) |
| #define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */ |
| #define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */ |
| #define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */ |
| #define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */ |
| #define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */ |
| #define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */ |
| #define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */ |
| #define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */ |
| #define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */ |
| #define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */ |
| #define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */ |
| #define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */ |
| #define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */ |
| #define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */ |
| #define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */ |
| #define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */ |
| |
| /* |
| * DTrace Helpers |
| * |
| * In general, DTrace establishes probes in processes and takes actions on |
| * processes without knowing their specific user-level structures. Instead of |
| * existing in the framework, process-specific knowledge is contained by the |
| * enabling D program -- which can apply process-specific knowledge by making |
| * appropriate use of DTrace primitives like copyin() and copyinstr() to |
| * operate on user-level data. However, there may exist some specific probes |
| * of particular semantic relevance that the application developer may wish to |
| * explicitly export. For example, an application may wish to export a probe |
| * at the point that it begins and ends certain well-defined transactions. In |
| * addition to providing probes, programs may wish to offer assistance for |
| * certain actions. For example, in highly dynamic environments (e.g., Java), |
| * it may be difficult to obtain a stack trace in terms of meaningful symbol |
| * names (the translation from instruction addresses to corresponding symbol |
| * names may only be possible in situ); these environments may wish to define |
| * a series of actions to be applied in situ to obtain a meaningful stack |
| * trace. |
| * |
| * These two mechanisms -- user-level statically defined tracing and assisting |
| * DTrace actions -- are provided via DTrace _helpers_. Helpers are specified |
| * via DOF, but unlike enabling DOF, helper DOF may contain definitions of |
| * providers, probes and their arguments. If a helper wishes to provide |
| * action assistance, probe descriptions and corresponding DIF actions may be |
| * specified in the helper DOF. For such helper actions, however, the probe |
| * description describes the specific helper: all DTrace helpers have the |
| * provider name "dtrace" and the module name "helper", and the name of the |
| * helper is contained in the function name (for example, the ustack() helper |
| * is named "ustack"). Any helper-specific name may be contained in the name |
| * (for example, if a helper were to have a constructor, it might be named |
| * "dtrace:helper:<helper>:init"). Helper actions are only called when the |
| * action that they are helping is taken. Helper actions may only return DIF |
| * expressions, and may only call the following subroutines: |
| * |
| * alloca() <= Allocates memory out of the consumer's scratch space |
| * bcopy() <= Copies memory to scratch space |
| * copyin() <= Copies memory from user-level into consumer's scratch |
| * copyinto() <= Copies memory into a specific location in scratch |
| * copyinstr() <= Copies a string into a specific location in scratch |
| * |
| * Helper actions may only access the following built-in variables: |
| * |
| * curthread <= Current kthread_t pointer |
| * tid <= Current thread identifier |
| * pid <= Current process identifier |
| * ppid <= Parent process identifier |
| * uid <= Current user ID |
| * gid <= Current group ID |
| * execname <= Current executable name |
| * zonename <= Current zone name |
| * |
| * Helper actions may not manipulate or allocate dynamic variables, but they |
| * may have clause-local and statically-allocated global variables. The |
| * helper action variable state is specific to the helper action -- variables |
| * used by the helper action may not be accessed outside of the helper |
| * action, and the helper action may not access variables that like outside |
| * of it. Helper actions may not load from kernel memory at-large; they are |
| * restricting to loading current user state (via copyin() and variants) and |
| * scratch space. As with probe enablings, helper actions are executed in |
| * program order. The result of the helper action is the result of the last |
| * executing helper expression. |
| * |
| * Helpers -- composed of either providers/probes or probes/actions (or both) |
| * -- are added by opening the "helper" minor node, and issuing an ioctl(2) |
| * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This |
| * encapsulates the name and base address of the user-level library or |
| * executable publishing the helpers and probes as well as the DOF that |
| * contains the definitions of those helpers and probes. |
| * |
| * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy |
| * helpers and should no longer be used. No other ioctls are valid on the |
| * helper minor node. |
| */ |
| #define DTRACEHIOC (('d' << 24) | ('t' << 16) | ('h' << 8)) |
| #define DTRACEHIOC_ADD (DTRACEHIOC | 1) /* add helper */ |
| #define DTRACEHIOC_REMOVE (DTRACEHIOC | 2) /* remove helper */ |
| #define DTRACEHIOC_ADDDOF (DTRACEHIOC | 3) /* add helper DOF */ |
| |
| typedef struct dof_helper { |
| char dofhp_mod[DTRACE_MODNAMELEN]; /* executable or library name */ |
| uint64_t dofhp_addr; /* base address of object */ |
| uint64_t dofhp_dof; /* address of helper DOF */ |
| } dof_helper_t; |
| |
| #define DTRACEMNR_DTRACE "dtrace" /* node for DTrace ops */ |
| #define DTRACEMNR_HELPER "helper" /* node for helpers */ |
| #define DTRACEMNRN_DTRACE 0 /* minor for DTrace ops */ |
| #define DTRACEMNRN_HELPER 1 /* minor for helpers */ |
| #define DTRACEMNRN_CLONE 2 /* first clone minor */ |
| |
| #ifdef _KERNEL |
| |
| /* |
| * DTrace Provider API |
| * |
| * The following functions are implemented by the DTrace framework and are |
| * used to implement separate in-kernel DTrace providers. Common functions |
| * are provided in uts/common/os/dtrace.c. ISA-dependent subroutines are |
| * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c. |
| * |
| * The provider API has two halves: the API that the providers consume from |
| * DTrace, and the API that providers make available to DTrace. |
| * |
| * 1 Framework-to-Provider API |
| * |
| * 1.1 Overview |
| * |
| * The Framework-to-Provider API is represented by the dtrace_pops structure |
| * that the provider passes to the framework when registering itself. This |
| * structure consists of the following members: |
| * |
| * dtps_provide() <-- Provide all probes, all modules |
| * dtps_provide_module() <-- Provide all probes in specified module |
| * dtps_enable() <-- Enable specified probe |
| * dtps_disable() <-- Disable specified probe |
| * dtps_suspend() <-- Suspend specified probe |
| * dtps_resume() <-- Resume specified probe |
| * dtps_getargdesc() <-- Get the argument description for args[X] |
| * dtps_getargval() <-- Get the value for an argX or args[X] variable |
| * dtps_mode() <-- Return the mode of the fired probe |
| * dtps_destroy() <-- Destroy all state associated with this probe |
| * |
| * 1.2 void dtps_provide(void *arg, const dtrace_probedesc_t *spec) |
| * |
| * 1.2.1 Overview |
| * |
| * Called to indicate that the provider should provide all probes. If the |
| * specified description is non-NULL, dtps_provide() is being called because |
| * no probe matched a specified probe -- if the provider has the ability to |
| * create custom probes, it may wish to create a probe that matches the |
| * specified description. |
| * |
| * 1.2.2 Arguments and notes |
| * |
| * The first argument is the cookie as passed to dtrace_register(). The |
| * second argument is a pointer to a probe description that the provider may |
| * wish to consider when creating custom probes. The provider is expected to |
| * call back into the DTrace framework via dtrace_probe_create() to create |
| * any necessary probes. dtps_provide() may be called even if the provider |
| * has made available all probes; the provider should check the return value |
| * of dtrace_probe_create() to handle this case. Note that the provider need |
| * not implement both dtps_provide() and dtps_provide_module(); see |
| * "Arguments and Notes" for dtrace_register(), below. |
| * |
| * 1.2.3 Return value |
| * |
| * None. |
| * |
| * 1.2.4 Caller's context |
| * |
| * dtps_provide() is typically called from open() or ioctl() context, but may |
| * be called from other contexts as well. The DTrace framework is locked in |
| * such a way that providers may not register or unregister. This means that |
| * the provider may not call any DTrace API that affects its registration with |
| * the framework, including dtrace_register(), dtrace_unregister(), |
| * dtrace_invalidate(), and dtrace_condense(). However, the context is such |
| * that the provider may (and indeed, is expected to) call probe-related |
| * DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(), |
| * and dtrace_probe_arg(). |
| * |
| * 1.3 void dtps_provide_module(void *arg, struct modctl *mp) |
| * |
| * 1.3.1 Overview |
| * |
| * Called to indicate that the provider should provide all probes in the |
| * specified module. |
| * |
| * 1.3.2 Arguments and notes |
| * |
| * The first argument is the cookie as passed to dtrace_register(). The |
| * second argument is a pointer to a modctl structure that indicates the |
| * module for which probes should be created. |
| * |
| * 1.3.3 Return value |
| * |
| * None. |
| * |
| * 1.3.4 Caller's context |
| * |
| * dtps_provide_module() may be called from open() or ioctl() context, but |
| * may also be called from a module loading context. mod_lock is held, and |
| * the DTrace framework is locked in such a way that providers may not |
| * register or unregister. This means that the provider may not call any |
| * DTrace API that affects its registration with the framework, including |
| * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and |
| * dtrace_condense(). However, the context is such that the provider may (and |
| * indeed, is expected to) call probe-related DTrace routines, including |
| * dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg(). Note |
| * that the provider need not implement both dtps_provide() and |
| * dtps_provide_module(); see "Arguments and Notes" for dtrace_register(), |
| * below. |
| * |
| * 1.4 int dtps_enable(void *arg, dtrace_id_t id, void *parg) |
| * |
| * 1.4.1 Overview |
| * |
| * Called to enable the specified probe. |
| * |
| * 1.4.2 Arguments and notes |
| * |
| * The first argument is the cookie as passed to dtrace_register(). The |
| * second argument is the identifier of the probe to be enabled. The third |
| * argument is the probe argument as passed to dtrace_probe_create(). |
| * dtps_enable() will be called when a probe transitions from not being |
| * enabled at all to having one or more ECB. The number of ECBs associated |
| * with the probe may change without subsequent calls into the provider. |
| * When the number of ECBs drops to zero, the provider will be explicitly |
| * told to disable the probe via dtps_disable(). dtrace_probe() should never |
| * be called for a probe identifier that hasn't been explicitly enabled via |
| * dtps_enable(). |
| * |
| * 1.4.3 Return value |
| * |
| * On success, dtps_enable() should return 0. On failure, -1 should be |
| * returned. |
| * |
| * 1.4.4 Caller's context |
| * |
| * The DTrace framework is locked in such a way that it may not be called |
| * back into at all. cpu_lock is held. mod_lock is not held and may not |
| * be acquired. |
| * |
| * 1.5 void dtps_disable(void *arg, dtrace_id_t id, void *parg) |
| * |
| * 1.5.1 Overview |
| * |
| * Called to disable the specified probe. |
| * |
| * 1.5.2 Arguments and notes |
| * |
| * The first argument is the cookie as passed to dtrace_register(). The |
| * second argument is the identifier of the probe to be disabled. The third |
| * argument is the probe argument as passed to dtrace_probe_create(). |
| * dtps_disable() will be called when a probe transitions from being enabled |
| * to having zero ECBs. dtrace_probe() should never be called for a probe |
| * identifier that has been explicitly enabled via dtps_disable(). |
| * |
| * 1.5.3 Return value |
| * |
| * None. |
| * |
| * 1.5.4 Caller's context |
| * |
| * The DTrace framework is locked in such a way that it may not be called |
| * back into at all. cpu_lock is held. mod_lock is not held and may not |
| * be acquired. |
| * |
| * 1.6 void dtps_suspend(void *arg, dtrace_id_t id, void *parg) |
| * |
| * 1.6.1 Overview |
| * |
| * Called to suspend the specified enabled probe. This entry point is for |
| * providers that may need to suspend some or all of their probes when CPUs |
| * are being powered on or when the boot monitor is being entered for a |
| * prolonged period of time. |
| * |
| * 1.6.2 Arguments and notes |
| * |
| * The first argument is the cookie as passed to dtrace_register(). The |
| * second argument is the identifier of the probe to be suspended. The |
| * third argument is the probe argument as passed to dtrace_probe_create(). |
| * dtps_suspend will only be called on an enabled probe. Providers that |
| * provide a dtps_suspend entry point will want to take roughly the action |
| * that it takes for dtps_disable. |
| * |
| * 1.6.3 Return value |
| * |
| * None. |
| * |
| * 1.6.4 Caller's context |
| * |
| * Interrupts are disabled. The DTrace framework is in a state such that the |
| * specified probe cannot be disabled or destroyed for the duration of |
| * dtps_suspend(). As interrupts are disabled, the provider is afforded |
| * little latitude; the provider is expected to do no more than a store to |
| * memory. |
| * |
| * 1.7 void dtps_resume(void *arg, dtrace_id_t id, void *parg) |
| * |
| * 1.7.1 Overview |
| * |
| * Called to resume the specified enabled probe. This entry point is for |
| * providers that may need to resume some or all of their probes after the |
| * completion of an event that induced a call to dtps_suspend(). |
| * |
| * 1.7.2 Arguments and notes |
| * |
| * The first argument is the cookie as passed to dtrace_register(). The |
| * second argument is the identifier of the probe to be resumed. The |
| * third argument is the probe argument as passed to dtrace_probe_create(). |
| * dtps_resume will only be called on an enabled probe. Providers that |
| * provide a dtps_resume entry point will want to take roughly the action |
| * that it takes for dtps_enable. |
| * |
| * 1.7.3 Return value |
| * |
| * None. |
| * |
| * 1.7.4 Caller's context |
| * |
| * Interrupts are disabled. The DTrace framework is in a state such that the |
| * specified probe cannot be disabled or destroyed for the duration of |
| * dtps_resume(). As interrupts are disabled, the provider is afforded |
| * little latitude; the provider is expected to do no more than a store to |
| * memory. |
| * |
| * 1.8 void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg, |
| * dtrace_argdesc_t *desc) |
| * |
| * 1.8.1 Overview |
| * |
| * Called to retrieve the argument description for an args[X] variable. |
| * |
| * 1.8.2 Arguments and notes |
| * |
| * The first argument is the cookie as passed to dtrace_register(). The |
| * second argument is the identifier of the current probe. The third |
| * argument is the probe argument as passed to dtrace_probe_create(). The |
| * fourth argument is a pointer to the argument description. This |
| * description is both an input and output parameter: it contains the |
| * index of the desired argument in the dtargd_ndx field, and expects |
| * the other fields to be filled in upon return. If there is no argument |
| * corresponding to the specified index, the dtargd_ndx field should be set |
| * to DTRACE_ARGNONE. |
| * |
| * 1.8.3 Return value |
| * |
| * None. The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping |
| * members of the dtrace_argdesc_t structure are all output values. |
| * |
| * 1.8.4 Caller's context |
| * |
| * dtps_getargdesc() is called from ioctl() context. mod_lock is held, and |
| * the DTrace framework is locked in such a way that providers may not |
| * register or unregister. This means that the provider may not call any |
| * DTrace API that affects its registration with the framework, including |
| * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and |
| * dtrace_condense(). |
| * |
| * 1.9 uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg, |
| * int argno, int aframes) |
| * |
| * 1.9.1 Overview |
| * |
| * Called to retrieve a value for an argX or args[X] variable. |
| * |
| * 1.9.2 Arguments and notes |
| * |
| * The first argument is the cookie as passed to dtrace_register(). The |
| * second argument is the identifier of the current probe. The third |
| * argument is the probe argument as passed to dtrace_probe_create(). The |
| * fourth argument is the number of the argument (the X in the example in |
| * 1.9.1). The fifth argument is the number of stack frames that were used |
| * to get from the actual place in the code that fired the probe to |
| * dtrace_probe() itself, the so-called artificial frames. This argument may |
| * be used to descend an appropriate number of frames to find the correct |
| * values. If this entry point is left NULL, the dtrace_getarg() built-in |
| * function is used. |
| * |
| * 1.9.3 Return value |
| * |
| * The value of the argument. |
| * |
| * 1.9.4 Caller's context |
| * |
| * This is called from within dtrace_probe() meaning that interrupts |
| * are disabled. No locks should be taken within this entry point. |
| * |
| * 1.10 int dtps_mode(void *arg, dtrace_id_t id, void *parg) |
| * |
| * 1.10.1 Overview |
| * |
| * Called to determine the mode of a fired probe. |
| * |
| * 1.10.2 Arguments and notes |
| * |
| * The first argument is the cookie as passed to dtrace_register(). The |
| * second argument is the identifier of the current probe. The third |
| * argument is the probe argument as passed to dtrace_probe_create(). This |
| * entry point must not be left NULL for providers whose probes allow for |
| * mixed mode tracing, that is to say those unanchored probes that can fire |
| * during kernel- or user-mode execution. |
| * |
| * 1.10.3 Return value |
| * |
| * A bitwise OR that encapsulates both the mode (either DTRACE_MODE_KERNEL |
| * or DTRACE_MODE_USER) and the policy when the privilege of the enabling |
| * is insufficient for that mode (a combination of DTRACE_MODE_NOPRIV_DROP, |
| * DTRACE_MODE_NOPRIV_RESTRICT, and DTRACE_MODE_LIMITEDPRIV_RESTRICT). If |
| * DTRACE_MODE_NOPRIV_DROP bit is set, insufficient privilege will result |
| * in the probe firing being silently ignored for the enabling; if the |
| * DTRACE_NODE_NOPRIV_RESTRICT bit is set, insufficient privilege will not |
| * prevent probe processing for the enabling, but restrictions will be in |
| * place that induce a UPRIV fault upon attempt to examine probe arguments |
| * or current process state. If the DTRACE_MODE_LIMITEDPRIV_RESTRICT bit |
| * is set, similar restrictions will be placed upon operation if the |
| * privilege is sufficient to process the enabling, but does not otherwise |
| * entitle the enabling to all zones. The DTRACE_MODE_NOPRIV_DROP and |
| * DTRACE_MODE_NOPRIV_RESTRICT are mutually exclusive (and one of these |
| * two policies must be specified), but either may be combined (or not) |
| * with DTRACE_MODE_LIMITEDPRIV_RESTRICT. |
| * |
| * 1.10.4 Caller's context |
| * |
| * This is called from within dtrace_probe() meaning that interrupts |
| * are disabled. No locks should be taken within this entry point. |
| * |
| * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg) |
| * |
| * 1.11.1 Overview |
| * |
| * Called to destroy the specified probe. |
| * |
| * 1.11.2 Arguments and notes |
| * |
| * The first argument is the cookie as passed to dtrace_register(). The |
| * second argument is the identifier of the probe to be destroyed. The third |
| * argument is the probe argument as passed to dtrace_probe_create(). The |
| * provider should free all state associated with the probe. The framework |
| * guarantees that dtps_destroy() is only called for probes that have either |
| * been disabled via dtps_disable() or were never enabled via dtps_enable(). |
| * Once dtps_disable() has been called for a probe, no further call will be |
| * made specifying the probe. |
| * |
| * 1.11.3 Return value |
| * |
| * None. |
| * |
| * 1.11.4 Caller's context |
| * |
| * The DTrace framework is locked in such a way that it may not be called |
| * back into at all. mod_lock is held. cpu_lock is not held, and may not be |
| * acquired. |
| * |
| * |
| * 2 Provider-to-Framework API |
| * |
| * 2.1 Overview |
| * |
| * The Provider-to-Framework API provides the mechanism for the provider to |
| * register itself with the DTrace framework, to create probes, to lookup |
| * probes and (most importantly) to fire probes. The Provider-to-Framework |
| * consists of: |
| * |
| * dtrace_register() <-- Register a provider with the DTrace framework |
| * dtrace_unregister() <-- Remove a provider's DTrace registration |
| * dtrace_invalidate() <-- Invalidate the specified provider |
| * dtrace_condense() <-- Remove a provider's unenabled probes |
| * dtrace_attached() <-- Indicates whether or not DTrace has attached |
| * dtrace_probe_create() <-- Create a DTrace probe |
| * dtrace_probe_lookup() <-- Lookup a DTrace probe based on its name |
| * dtrace_probe_arg() <-- Return the probe argument for a specific probe |
| * dtrace_probe() <-- Fire the specified probe |
| * |
| * 2.2 int dtrace_register(const char *name, const dtrace_pattr_t *pap, |
| * uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg, |
| * dtrace_provider_id_t *idp) |
| * |
| * 2.2.1 Overview |
| * |
| * dtrace_register() registers the calling provider with the DTrace |
| * framework. It should generally be called by DTrace providers in their |
| * attach(9E) entry point. |
| * |
| * 2.2.2 Arguments and Notes |
| * |
| * The first argument is the name of the provider. The second argument is a |
| * pointer to the stability attributes for the provider. The third argument |
| * is the privilege flags for the provider, and must be some combination of: |
| * |
| * DTRACE_PRIV_NONE <= All users may enable probes from this provider |
| * |
| * DTRACE_PRIV_PROC <= Any user with privilege of PRIV_DTRACE_PROC may |
| * enable probes from this provider |
| * |
| * DTRACE_PRIV_USER <= Any user with privilege of PRIV_DTRACE_USER may |
| * enable probes from this provider |
| * |
| * DTRACE_PRIV_KERNEL <= Any user with privilege of PRIV_DTRACE_KERNEL |
| * may enable probes from this provider |
| * |
| * DTRACE_PRIV_OWNER <= This flag places an additional constraint on |
| * the privilege requirements above. These probes |
| * require either (a) a user ID matching the user |
| * ID of the cred passed in the fourth argument |
| * or (b) the PRIV_PROC_OWNER privilege. |
| * |
| * DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on |
| * the privilege requirements above. These probes |
| * require either (a) a zone ID matching the zone |
| * ID of the cred passed in the fourth argument |
| * or (b) the PRIV_PROC_ZONE privilege. |
| * |
| * Note that these flags designate the _visibility_ of the probes, not |
| * the conditions under which they may or may not fire. |
| * |
| * The fourth argument is the credential that is associated with the |
| * provider. This argument should be NULL if the privilege flags don't |
| * include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER. If non-NULL, the |
| * framework stashes the uid and zoneid represented by this credential |
| * for use at probe-time, in implicit predicates. These limit visibility |
| * of the probes to users and/or zones which have sufficient privilege to |
| * access them. |
| * |
| * The fifth argument is a DTrace provider operations vector, which provides |
| * the implementation for the Framework-to-Provider API. (See Section 1, |
| * above.) This must be non-NULL, and each member must be non-NULL. The |
| * exceptions to this are (1) the dtps_provide() and dtps_provide_module() |
| * members (if the provider so desires, _one_ of these members may be left |
| * NULL -- denoting that the provider only implements the other) and (2) |
| * the dtps_suspend() and dtps_resume() members, which must either both be |
| * NULL or both be non-NULL. |
| * |
| * The sixth argument is a cookie to be specified as the first argument for |
| * each function in the Framework-to-Provider API. This argument may have |
| * any value. |
| * |
| * The final argument is a pointer to dtrace_provider_id_t. If |
| * dtrace_register() successfully completes, the provider identifier will be |
| * stored in the memory pointed to be this argument. This argument must be |
| * non-NULL. |
| * |
| * 2.2.3 Return value |
| * |
| * On success, dtrace_register() returns 0 and stores the new provider's |
| * identifier into the memory pointed to by the idp argument. On failure, |
| * dtrace_register() returns an errno: |
| * |
| * EINVAL The arguments passed to dtrace_register() were somehow invalid. |
| * This may because a parameter that must be non-NULL was NULL, |
| * because the name was invalid (either empty or an illegal |
| * provider name) or because the attributes were invalid. |
| * |
| * No other failure code is returned. |
| * |
| * 2.2.4 Caller's context |
| * |
| * dtrace_register() may induce calls to dtrace_provide(); the provider must |
| * hold no locks across dtrace_register() that may also be acquired by |
| * dtrace_provide(). cpu_lock and mod_lock must not be held. |
| * |
| * 2.3 int dtrace_unregister(dtrace_provider_t id) |
| * |
| * 2.3.1 Overview |
| * |
| * Unregisters the specified provider from the DTrace framework. It should |
| * generally be called by DTrace providers in their detach(9E) entry point. |
| * |
| * 2.3.2 Arguments and Notes |
| * |
| * The only argument is the provider identifier, as returned from a |
| * successful call to dtrace_register(). As a result of calling |
| * dtrace_unregister(), the DTrace framework will call back into the provider |
| * via the dtps_destroy() entry point. Once dtrace_unregister() successfully |
| * completes, however, the DTrace framework will no longer make calls through |
| * the Framework-to-Provider API. |
| * |
| * 2.3.3 Return value |
| * |
| * On success, dtrace_unregister returns 0. On failure, dtrace_unregister() |
| * returns an errno: |
| * |
| * EBUSY There are currently processes that have the DTrace pseudodevice |
| * open, or there exists an anonymous enabling that hasn't yet |
| * been claimed. |
| * |
| * No other failure code is returned. |
| * |
| * 2.3.4 Caller's context |
| * |
| * Because a call to dtrace_unregister() may induce calls through the |
| * Framework-to-Provider API, the caller may not hold any lock across |
| * dtrace_register() that is also acquired in any of the Framework-to- |
| * Provider API functions. Additionally, mod_lock may not be held. |
| * |
| * 2.4 void dtrace_invalidate(dtrace_provider_id_t id) |
| * |
| * 2.4.1 Overview |
| * |
| * Invalidates the specified provider. All subsequent probe lookups for the |
| * specified provider will fail, but its probes will not be removed. |
| * |
| * 2.4.2 Arguments and note |
| * |
| * The only argument is the provider identifier, as returned from a |
| * successful call to dtrace_register(). In general, a provider's probes |
| * always remain valid; dtrace_invalidate() is a mechanism for invalidating |
| * an entire provider, regardless of whether or not probes are enabled or |
| * not. Note that dtrace_invalidate() will _not_ prevent already enabled |
| * probes from firing -- it will merely prevent any new enablings of the |
| * provider's probes. |
| * |
| * 2.5 int dtrace_condense(dtrace_provider_id_t id) |
| * |
| * 2.5.1 Overview |
| * |
| * Removes all the unenabled probes for the given provider. This function is |
| * not unlike dtrace_unregister(), except that it doesn't remove the |
| * provider just as many of its associated probes as it can. |
| * |
| * 2.5.2 Arguments and Notes |
| * |
| * As with dtrace_unregister(), the sole argument is the provider identifier |
| * as returned from a successful call to dtrace_register(). As a result of |
| * calling dtrace_condense(), the DTrace framework will call back into the |
| * given provider's dtps_destroy() entry point for each of the provider's |
| * unenabled probes. |
| * |
| * 2.5.3 Return value |
| * |
| * Currently, dtrace_condense() always returns 0. However, consumers of this |
| * function should check the return value as appropriate; its behavior may |
| * change in the future. |
| * |
| * 2.5.4 Caller's context |
| * |
| * As with dtrace_unregister(), the caller may not hold any lock across |
| * dtrace_condense() that is also acquired in the provider's entry points. |
| * Also, mod_lock may not be held. |
| * |
| * 2.6 int dtrace_attached() |
| * |
| * 2.6.1 Overview |
| * |
| * Indicates whether or not DTrace has attached. |
| * |
| * 2.6.2 Arguments and Notes |
| * |
| * For most providers, DTrace makes initial contact beyond registration. |
| * That is, once a provider has registered with DTrace, it waits to hear |
| * from DTrace to create probes. However, some providers may wish to |
| * proactively create probes without first being told by DTrace to do so. |
| * If providers wish to do this, they must first call dtrace_attached() to |
| * determine if DTrace itself has attached. If dtrace_attached() returns 0, |
| * the provider must not make any other Provider-to-Framework API call. |
| * |
| * 2.6.3 Return value |
| * |
| * dtrace_attached() returns 1 if DTrace has attached, 0 otherwise. |
| * |
| * 2.7 int dtrace_probe_create(dtrace_provider_t id, const char *mod, |
| * const char *func, const char *name, int aframes, void *arg) |
| * |
| * 2.7.1 Overview |
| * |
| * Creates a probe with specified module name, function name, and name. |
| * |
| * 2.7.2 Arguments and Notes |
| * |
| * The first argument is the provider identifier, as returned from a |
| * successful call to dtrace_register(). The second, third, and fourth |
| * arguments are the module name, function name, and probe name, |
| * respectively. Of these, module name and function name may both be NULL |
| * (in which case the probe is considered to be unanchored), or they may both |
| * be non-NULL. The name must be non-NULL, and must point to a non-empty |
| * string. |
| * |
| * The fifth argument is the number of artificial stack frames that will be |
| * found on the stack when dtrace_probe() is called for the new probe. These |
| * artificial frames will be automatically be pruned should the stack() or |
| * stackdepth() functions be called as part of one of the probe's ECBs. If |
| * the parameter doesn't add an artificial frame, this parameter should be |
| * zero. |
| * |
| * The final argument is a probe argument that will be passed back to the |
| * provider when a probe-specific operation is called. (e.g., via |
| * dtps_enable(), dtps_disable(), etc.) |
| * |
| * Note that it is up to the provider to be sure that the probe that it |
| * creates does not already exist -- if the provider is unsure of the probe's |
| * existence, it should assure its absence with dtrace_probe_lookup() before |
| * calling dtrace_probe_create(). |
| * |
| * 2.7.3 Return value |
| * |
| * dtrace_probe_create() always succeeds, and always returns the identifier |
| * of the newly-created probe. |
| * |
| * 2.7.4 Caller's context |
| * |
| * While dtrace_probe_create() is generally expected to be called from |
| * dtps_provide() and/or dtps_provide_module(), it may be called from other |
| * non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. |
| * |
| * 2.8 dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod, |
| * const char *func, const char *name) |
| * |
| * 2.8.1 Overview |
| * |
| * Looks up a probe based on provdider and one or more of module name, |
| * function name and probe name. |
| * |
| * 2.8.2 Arguments and Notes |
| * |
| * The first argument is the provider identifier, as returned from a |
| * successful call to dtrace_register(). The second, third, and fourth |
| * arguments are the module name, function name, and probe name, |
| * respectively. Any of these may be NULL; dtrace_probe_lookup() will return |
| * the identifier of the first probe that is provided by the specified |
| * provider and matches all of the non-NULL matching criteria. |
| * dtrace_probe_lookup() is generally used by a provider to be check the |
| * existence of a probe before creating it with dtrace_probe_create(). |
| * |
| * 2.8.3 Return value |
| * |
| * If the probe exists, returns its identifier. If the probe does not exist, |
| * return DTRACE_IDNONE. |
| * |
| * 2.8.4 Caller's context |
| * |
| * While dtrace_probe_lookup() is generally expected to be called from |
| * dtps_provide() and/or dtps_provide_module(), it may also be called from |
| * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. |
| * |
| * 2.9 void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe) |
| * |
| * 2.9.1 Overview |
| * |
| * Returns the probe argument associated with the specified probe. |
| * |
| * 2.9.2 Arguments and Notes |
| * |
| * The first argument is the provider identifier, as returned from a |
| * successful call to dtrace_register(). The second argument is a probe |
| * identifier, as returned from dtrace_probe_lookup() or |
| * dtrace_probe_create(). This is useful if a probe has multiple |
| * provider-specific components to it: the provider can create the probe |
| * once with provider-specific state, and then add to the state by looking |
| * up the probe based on probe identifier. |
| * |
| * 2.9.3 Return value |
| * |
| * Returns the argument associated with the specified probe. If the |
| * specified probe does not exist, or if the specified probe is not provided |
| * by the specified provider, NULL is returned. |
| * |
| * 2.9.4 Caller's context |
| * |
| * While dtrace_probe_arg() is generally expected to be called from |
| * dtps_provide() and/or dtps_provide_module(), it may also be called from |
| * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. |
| * |
| * 2.10 void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1, |
| * uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) |
| * |
| * 2.10.1 Overview |
| * |
| * The epicenter of DTrace: fires the specified probes with the specified |
| * arguments. |
| * |
| * 2.10.2 Arguments and Notes |
| * |
| * The first argument is a probe identifier as returned by |
| * dtrace_probe_create() or dtrace_probe_lookup(). The second through sixth |
| * arguments are the values to which the D variables "arg0" through "arg4" |
| * will be mapped. |
| * |
| * dtrace_probe() should be called whenever the specified probe has fired -- |
| * however the provider defines it. |
| * |
| * 2.10.3 Return value |
| * |
| * None. |
| * |
| * 2.10.4 Caller's context |
| * |
| * dtrace_probe() may be called in virtually any context: kernel, user, |
| * interrupt, high-level interrupt, with arbitrary adaptive locks held, with |
| * dispatcher locks held, with interrupts disabled, etc. The only latitude |
| * that must be afforded to DTrace is the ability to make calls within |
| * itself (and to its in-kernel subroutines) and the ability to access |
| * arbitrary (but mapped) memory. On some platforms, this constrains |
| * context. For example, on UltraSPARC, dtrace_probe() cannot be called |
| * from any context in which TL is greater than zero. dtrace_probe() may |
| * also not be called from any routine which may be called by dtrace_probe() |
| * -- which includes functions in the DTrace framework and some in-kernel |
| * DTrace subroutines. All such functions "dtrace_"; providers that |
| * instrument the kernel arbitrarily should be sure to not instrument these |
| * routines. |
| */ |
| typedef struct dtrace_pops { |
| void (*dtps_provide)(void *arg, const dtrace_probedesc_t *spec); |
| void (*dtps_provide_module)(void *arg, struct modctl *mp); |
| int (*dtps_enable)(void *arg, dtrace_id_t id, void *parg); |
| void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg); |
| void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg); |
| void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg); |
| void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg, |
| dtrace_argdesc_t *desc); |
| uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg, |
| int argno, int aframes); |
| int (*dtps_mode)(void *arg, dtrace_id_t id, void *parg); |
| void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg); |
| } dtrace_pops_t; |
| |
| #define DTRACE_MODE_KERNEL 0x01 |
| #define DTRACE_MODE_USER 0x02 |
| #define DTRACE_MODE_NOPRIV_DROP 0x10 |
| #define DTRACE_MODE_NOPRIV_RESTRICT 0x20 |
| #define DTRACE_MODE_LIMITEDPRIV_RESTRICT 0x40 |
| |
| typedef uintptr_t dtrace_provider_id_t; |
| |
| extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t, |
| cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *); |
| extern int dtrace_unregister(dtrace_provider_id_t); |
| extern int dtrace_condense(dtrace_provider_id_t); |
| extern void dtrace_invalidate(dtrace_provider_id_t); |
| extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, const char *, |
| const char *, const char *); |
| extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *, |
| const char *, const char *, int, void *); |
| extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t); |
| extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1, |
| uintptr_t arg2, uintptr_t arg3, uintptr_t arg4); |
| |
| /* |
| * DTrace Meta Provider API |
| * |
| * The following functions are implemented by the DTrace framework and are |
| * used to implement meta providers. Meta providers plug into the DTrace |
| * framework and are used to instantiate new providers on the fly. At |
| * present, there is only one type of meta provider and only one meta |
| * provider may be registered with the DTrace framework at a time. The |
| * sole meta provider type provides user-land static tracing facilities |
| * by taking meta probe descriptions and adding a corresponding provider |
| * into the DTrace framework. |
| * |
| * 1 Framework-to-Provider |
| * |
| * 1.1 Overview |
| * |
| * The Framework-to-Provider API is represented by the dtrace_mops structure |
| * that the meta provider passes to the framework when registering itself as |
| * a meta provider. This structure consists of the following members: |
| * |
| * dtms_create_probe() <-- Add a new probe to a created provider |
| * dtms_provide_pid() <-- Create a new provider for a given process |
| * dtms_remove_pid() <-- Remove a previously created provider |
| * |
| * 1.2 void dtms_create_probe(void *arg, void *parg, |
| * dtrace_helper_probedesc_t *probedesc); |
| * |
| * 1.2.1 Overview |
| * |
| * Called by the DTrace framework to create a new probe in a provider |
| * created by this meta provider. |
| * |
| * 1.2.2 Arguments and notes |
| * |
| * The first argument is the cookie as passed to dtrace_meta_register(). |
| * The second argument is the provider cookie for the associated provider; |
| * this is obtained from the return value of dtms_provide_pid(). The third |
| * argument is the helper probe description. |
| * |
| * 1.2.3 Return value |
| * |
| * None |
| * |
| * 1.2.4 Caller's context |
| * |
| * dtms_create_probe() is called from either ioctl() or module load context |
| * in the context of a newly-created provider (that is, a provider that |
| * is a result of a call to dtms_provide_pid()). The DTrace framework is |
| * locked in such a way that meta providers may not register or unregister, |
| * such that no other thread can call into a meta provider operation and that |
| * atomicity is assured with respect to meta provider operations across |
| * dtms_provide_pid() and subsequent calls to dtms_create_probe(). |
| * The context is thus effectively single-threaded with respect to the meta |
| * provider, and that the meta provider cannot call dtrace_meta_register() |
| * or dtrace_meta_unregister(). However, the context is such that the |
| * provider may (and is expected to) call provider-related DTrace provider |
| * APIs including dtrace_probe_create(). |
| * |
| * 1.3 void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov, |
| * pid_t pid) |
| * |
| * 1.3.1 Overview |
| * |
| * Called by the DTrace framework to instantiate a new provider given the |
| * description of the provider and probes in the mprov argument. The |
| * meta provider should call dtrace_register() to insert the new provider |
| * into the DTrace framework. |
| * |
| * 1.3.2 Arguments and notes |
| * |
| * The first argument is the cookie as passed to dtrace_meta_register(). |
| * The second argument is a pointer to a structure describing the new |
| * helper provider. The third argument is the process identifier for |
| * process associated with this new provider. Note that the name of the |
| * provider as passed to dtrace_register() should be the contatenation of |
| * the dtmpb_provname member of the mprov argument and the processs |
| * identifier as a string. |
| * |
| * 1.3.3 Return value |
| * |
| * The cookie for the provider that the meta provider creates. This is |
| * the same value that it passed to dtrace_register(). |
| * |
| * 1.3.4 Caller's context |
| * |
| * dtms_provide_pid() is called from either ioctl() or module load context. |
| * The DTrace framework is locked in such a way that meta providers may not |
| * register or unregister. This means that the meta provider cannot call |
| * dtrace_meta_register() or dtrace_meta_unregister(). However, the context |
| * is such that the provider may -- and is expected to -- call |
| * provider-related DTrace provider APIs including dtrace_register(). |
| * |
| * 1.4 void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov, |
| * pid_t pid) |
| * |
| * 1.4.1 Overview |
| * |
| * Called by the DTrace framework to remove a provider that had previously |
| * been instantiated via the dtms_provide_pid() entry point. The meta |
| * provider need not remove the provider immediately, but this entry |
| * point indicates that the provider should be removed as soon as possible |
| * using the dtrace_unregister() API. |
| * |
| * 1.4.2 Arguments and notes |
| * |
| * The first argument is the cookie as passed to dtrace_meta_register(). |
| * The second argument is a pointer to a structure describing the helper |
| * provider. The third argument is the process identifier for process |
| * associated with this new provider. |
| * |
| * 1.4.3 Return value |
| * |
| * None |
| * |
| * 1.4.4 Caller's context |
| * |
| * dtms_remove_pid() is called from either ioctl() or exit() context. |
| * The DTrace framework is locked in such a way that meta providers may not |
| * register or unregister. This means that the meta provider cannot call |
| * dtrace_meta_register() or dtrace_meta_unregister(). However, the context |
| * is such that the provider may -- and is expected to -- call |
| * provider-related DTrace provider APIs including dtrace_unregister(). |
| */ |
| typedef struct dtrace_helper_probedesc { |
| char *dthpb_mod; /* probe module */ |
| char *dthpb_func; /* probe function */ |
| char *dthpb_name; /* probe name */ |
| uint64_t dthpb_base; /* base address */ |
| uint32_t *dthpb_offs; /* offsets array */ |
| uint32_t *dthpb_enoffs; /* is-enabled offsets array */ |
| uint32_t dthpb_noffs; /* offsets count */ |
| uint32_t dthpb_nenoffs; /* is-enabled offsets count */ |
| uint8_t *dthpb_args; /* argument mapping array */ |
| uint8_t dthpb_xargc; /* translated argument count */ |
| uint8_t dthpb_nargc; /* native argument count */ |
| char *dthpb_xtypes; /* translated types strings */ |
| char *dthpb_ntypes; /* native types strings */ |
| } dtrace_helper_probedesc_t; |
| |
| typedef struct dtrace_helper_provdesc { |
| char *dthpv_provname; /* provider name */ |
| dtrace_pattr_t dthpv_pattr; /* stability attributes */ |
| } dtrace_helper_provdesc_t; |
| |
| typedef struct dtrace_mops { |
| void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *); |
| void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t); |
| void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t); |
| } dtrace_mops_t; |
| |
| typedef uintptr_t dtrace_meta_provider_id_t; |
| |
| extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *, |
| dtrace_meta_provider_id_t *); |
| extern int dtrace_meta_unregister(dtrace_meta_provider_id_t); |
| |
| /* |
| * DTrace Kernel Hooks |
| * |
| * The following functions are implemented by the base kernel and form a set of |
| * hooks used by the DTrace framework. DTrace hooks are implemented in either |
| * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a |
| * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform. |
| */ |
| |
| typedef enum dtrace_vtime_state { |
| DTRACE_VTIME_INACTIVE = 0, /* No DTrace, no TNF */ |
| DTRACE_VTIME_ACTIVE, /* DTrace virtual time, no TNF */ |
| DTRACE_VTIME_INACTIVE_TNF, /* No DTrace, TNF active */ |
| DTRACE_VTIME_ACTIVE_TNF /* DTrace virtual time _and_ TNF */ |
| } dtrace_vtime_state_t; |
| |
| extern dtrace_vtime_state_t dtrace_vtime_active; |
| extern void dtrace_vtime_switch(kthread_t *next); |
| extern void dtrace_vtime_enable_tnf(void); |
| extern void dtrace_vtime_disable_tnf(void); |
| extern void dtrace_vtime_enable(void); |
| extern void dtrace_vtime_disable(void); |
| |
| struct regs; |
| |
| extern int (*dtrace_pid_probe_ptr)(struct regs *); |
| extern int (*dtrace_return_probe_ptr)(struct regs *); |
| extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *); |
| extern void (*dtrace_fasttrap_exec_ptr)(proc_t *); |
| extern void (*dtrace_fasttrap_exit_ptr)(proc_t *); |
| extern void dtrace_fasttrap_fork(proc_t *, proc_t *); |
| |
| typedef uintptr_t dtrace_icookie_t; |
| typedef void (*dtrace_xcall_t)(void *); |
| |
| extern dtrace_icookie_t dtrace_interrupt_disable(void); |
| extern void dtrace_interrupt_enable(dtrace_icookie_t); |
| |
| extern void dtrace_membar_producer(void); |
| extern void dtrace_membar_consumer(void); |
| |
| extern void (*dtrace_cpu_init)(processorid_t); |
| extern void (*dtrace_modload)(struct modctl *); |
| extern void (*dtrace_modunload)(struct modctl *); |
| extern void (*dtrace_helpers_cleanup)(proc_t *); |
| extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child); |
| extern void (*dtrace_cpustart_init)(); |
| extern void (*dtrace_cpustart_fini)(); |
| extern void (*dtrace_closef)(); |
| |
| extern void (*dtrace_debugger_init)(); |
| extern void (*dtrace_debugger_fini)(); |
| extern dtrace_cacheid_t dtrace_predcache_id; |
| |
| extern hrtime_t dtrace_gethrtime(void); |
| extern void dtrace_sync(void); |
| extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t)); |
| extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *); |
| extern void dtrace_vpanic(const char *, __va_list); |
| extern void dtrace_panic(const char *, ...); |
| |
| extern int dtrace_safe_defer_signal(void); |
| extern void dtrace_safe_synchronous_signal(void); |
| |
| extern int dtrace_mach_aframes(void); |
| |
| #if defined(__i386) || defined(__amd64) |
| extern int dtrace_instr_size(uchar_t *instr); |
| extern int dtrace_instr_size_isa(uchar_t *, model_t, int *); |
| extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t)); |
| extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t)); |
| extern void dtrace_invop_callsite(void); |
| #endif |
| |
| #ifdef __sparc |
| extern int dtrace_blksuword32(uintptr_t, uint32_t *, int); |
| extern void dtrace_getfsr(uint64_t *); |
| #endif |
| |
| #define DTRACE_CPUFLAG_ISSET(flag) \ |
| (cpu_core[CPU->cpu_id].cpuc_dtrace_flags & (flag)) |
| |
| #define DTRACE_CPUFLAG_SET(flag) \ |
| (cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= (flag)) |
| |
| #define DTRACE_CPUFLAG_CLEAR(flag) \ |
| (cpu_core[CPU->cpu_id].cpuc_dtrace_flags &= ~(flag)) |
| |
| #endif /* _KERNEL */ |
| |
| #endif /* _ASM */ |
| |
| #if defined(__i386) || defined(__amd64) |
| |
| #define DTRACE_INVOP_PUSHL_EBP 1 |
| #define DTRACE_INVOP_POPL_EBP 2 |
| #define DTRACE_INVOP_LEAVE 3 |
| #define DTRACE_INVOP_NOP 4 |
| #define DTRACE_INVOP_RET 5 |
| |
| #endif |
| |
| #ifdef __cplusplus |
| } |
| #endif |
| |
| #endif /* _SYS_DTRACE_H */ |