| /* |
| * CDDL HEADER START |
| * |
| * The contents of this file are subject to the terms of the |
| * Common Development and Distribution License, Version 1.0 only |
| * (the "License"). You may not use this file except in compliance |
| * with the License. |
| * |
| * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE |
| * or http://www.opensolaris.org/os/licensing. |
| * See the License for the specific language governing permissions |
| * and limitations under the License. |
| * |
| * When distributing Covered Code, include this CDDL HEADER in each |
| * file and include the License file at usr/src/OPENSOLARIS.LICENSE. |
| * If applicable, add the following below this CDDL HEADER, with the |
| * fields enclosed by brackets "[]" replaced with your own identifying |
| * information: Portions Copyright [yyyy] [name of copyright owner] |
| * |
| * CDDL HEADER END |
| */ |
| |
| /* |
| * Copyright 2006 Sun Microsystems, Inc. All rights reserved. |
| * Use is subject to license terms. |
| */ |
| /* |
| * Copyright (c) 2013, Joyent, Inc. All rights reserved. |
| */ |
| |
| #include <ctf_impl.h> |
| #include <sys/mman.h> |
| #include <sys/zmod.h> |
| |
| static const ctf_dmodel_t _libctf_models[] = { |
| { "ILP32", CTF_MODEL_ILP32, 4, 1, 2, 4, 4 }, |
| { "LP64", CTF_MODEL_LP64, 8, 1, 2, 4, 8 }, |
| { NULL, 0, 0, 0, 0, 0, 0 } |
| }; |
| |
| const char _CTF_SECTION[] = ".SUNW_ctf"; |
| const char _CTF_NULLSTR[] = ""; |
| |
| int _libctf_version = CTF_VERSION; /* library client version */ |
| int _libctf_debug = 0; /* debugging messages enabled */ |
| |
| static ushort_t |
| get_kind_v1(ushort_t info) |
| { |
| return (CTF_INFO_KIND_V1(info)); |
| } |
| |
| static ushort_t |
| get_kind_v2(ushort_t info) |
| { |
| return (CTF_INFO_KIND(info)); |
| } |
| |
| static ushort_t |
| get_root_v1(ushort_t info) |
| { |
| return (CTF_INFO_ISROOT_V1(info)); |
| } |
| |
| static ushort_t |
| get_root_v2(ushort_t info) |
| { |
| return (CTF_INFO_ISROOT(info)); |
| } |
| |
| static ushort_t |
| get_vlen_v1(ushort_t info) |
| { |
| return (CTF_INFO_VLEN_V1(info)); |
| } |
| |
| static ushort_t |
| get_vlen_v2(ushort_t info) |
| { |
| return (CTF_INFO_VLEN(info)); |
| } |
| |
| static const ctf_fileops_t ctf_fileops[] = { |
| { NULL, NULL }, |
| { get_kind_v1, get_root_v1, get_vlen_v1 }, |
| { get_kind_v2, get_root_v2, get_vlen_v2 }, |
| }; |
| |
| /* |
| * Convert a 32-bit ELF symbol into GElf (Elf64) and return a pointer to it. |
| */ |
| static Elf64_Sym * |
| sym_to_gelf(const Elf32_Sym *src, Elf64_Sym *dst) |
| { |
| dst->st_name = src->st_name; |
| dst->st_value = src->st_value; |
| dst->st_size = src->st_size; |
| dst->st_info = src->st_info; |
| dst->st_other = src->st_other; |
| dst->st_shndx = src->st_shndx; |
| |
| return (dst); |
| } |
| |
| /* |
| * Initialize the symtab translation table by filling each entry with the |
| * offset of the CTF type or function data corresponding to each STT_FUNC or |
| * STT_OBJECT entry in the symbol table. |
| */ |
| static int |
| init_symtab(ctf_file_t *fp, const ctf_header_t *hp, |
| const ctf_sect_t *sp, const ctf_sect_t *strp) |
| { |
| const uchar_t *symp = sp->cts_data; |
| uint_t *xp = fp->ctf_sxlate; |
| uint_t *xend = xp + fp->ctf_nsyms; |
| |
| uint_t objtoff = hp->cth_objtoff; |
| uint_t funcoff = hp->cth_funcoff; |
| |
| ushort_t info, vlen; |
| Elf64_Sym sym, *gsp; |
| const char *name; |
| |
| /* |
| * The CTF data object and function type sections are ordered to match |
| * the relative order of the respective symbol types in the symtab. |
| * If no type information is available for a symbol table entry, a |
| * pad is inserted in the CTF section. As a further optimization, |
| * anonymous or undefined symbols are omitted from the CTF data. |
| */ |
| for (; xp < xend; xp++, symp += sp->cts_entsize) { |
| if (sp->cts_entsize == sizeof (Elf32_Sym)) |
| gsp = sym_to_gelf((Elf32_Sym *)(uintptr_t)symp, &sym); |
| else |
| gsp = (Elf64_Sym *)(uintptr_t)symp; |
| |
| if (gsp->st_name < strp->cts_size) |
| name = (const char *)strp->cts_data + gsp->st_name; |
| else |
| name = _CTF_NULLSTR; |
| |
| if (gsp->st_name == 0 || gsp->st_shndx == SHN_UNDEF || |
| strcmp(name, "_START_") == 0 || |
| strcmp(name, "_END_") == 0) { |
| *xp = -1u; |
| continue; |
| } |
| |
| switch (ELF64_ST_TYPE(gsp->st_info)) { |
| case STT_OBJECT: |
| if (objtoff >= hp->cth_funcoff || |
| (gsp->st_shndx == SHN_ABS && gsp->st_value == 0)) { |
| *xp = -1u; |
| break; |
| } |
| |
| *xp = objtoff; |
| objtoff += sizeof (ushort_t); |
| break; |
| |
| case STT_FUNC: |
| if (funcoff >= hp->cth_typeoff) { |
| *xp = -1u; |
| break; |
| } |
| |
| *xp = funcoff; |
| |
| info = *(ushort_t *)((uintptr_t)fp->ctf_buf + funcoff); |
| vlen = LCTF_INFO_VLEN(fp, info); |
| |
| /* |
| * If we encounter a zero pad at the end, just skip it. |
| * Otherwise skip over the function and its return type |
| * (+2) and the argument list (vlen). |
| */ |
| if (LCTF_INFO_KIND(fp, info) == CTF_K_UNKNOWN && |
| vlen == 0) |
| funcoff += sizeof (ushort_t); /* skip pad */ |
| else |
| funcoff += sizeof (ushort_t) * (vlen + 2); |
| break; |
| |
| default: |
| *xp = -1u; |
| break; |
| } |
| } |
| |
| ctf_dprintf("loaded %lu symtab entries\n", fp->ctf_nsyms); |
| return (0); |
| } |
| |
| /* |
| * Initialize the type ID translation table with the byte offset of each type, |
| * and initialize the hash tables of each named type. |
| */ |
| static int |
| init_types(ctf_file_t *fp, const ctf_header_t *cth) |
| { |
| /* LINTED - pointer alignment */ |
| const ctf_type_t *tbuf = (ctf_type_t *)(fp->ctf_buf + cth->cth_typeoff); |
| /* LINTED - pointer alignment */ |
| const ctf_type_t *tend = (ctf_type_t *)(fp->ctf_buf + cth->cth_stroff); |
| |
| ulong_t pop[CTF_K_MAX + 1] = { 0 }; |
| const ctf_type_t *tp; |
| ctf_hash_t *hp; |
| ushort_t id, dst; |
| uint_t *xp; |
| |
| /* |
| * We initially determine whether the container is a child or a parent |
| * based on the value of cth_parname. To support containers that pre- |
| * date cth_parname, we also scan the types themselves for references |
| * to values in the range reserved for child types in our first pass. |
| */ |
| int child = cth->cth_parname != 0; |
| int nlstructs = 0, nlunions = 0; |
| int err; |
| |
| /* |
| * We make two passes through the entire type section. In this first |
| * pass, we count the number of each type and the total number of types. |
| */ |
| for (tp = tbuf; tp < tend; fp->ctf_typemax++) { |
| ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info); |
| ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info); |
| ssize_t size, increment; |
| |
| size_t vbytes; |
| uint_t n; |
| |
| (void) ctf_get_ctt_size(fp, tp, &size, &increment); |
| |
| switch (kind) { |
| case CTF_K_INTEGER: |
| case CTF_K_FLOAT: |
| vbytes = sizeof (uint_t); |
| break; |
| case CTF_K_ARRAY: |
| vbytes = sizeof (ctf_array_t); |
| break; |
| case CTF_K_FUNCTION: |
| vbytes = sizeof (ushort_t) * (vlen + (vlen & 1)); |
| break; |
| case CTF_K_STRUCT: |
| case CTF_K_UNION: |
| if (fp->ctf_version == CTF_VERSION_1 || |
| size < CTF_LSTRUCT_THRESH) { |
| ctf_member_t *mp = (ctf_member_t *) |
| ((uintptr_t)tp + increment); |
| |
| vbytes = sizeof (ctf_member_t) * vlen; |
| for (n = vlen; n != 0; n--, mp++) |
| child |= CTF_TYPE_ISCHILD(mp->ctm_type); |
| } else { |
| ctf_lmember_t *lmp = (ctf_lmember_t *) |
| ((uintptr_t)tp + increment); |
| |
| vbytes = sizeof (ctf_lmember_t) * vlen; |
| for (n = vlen; n != 0; n--, lmp++) |
| child |= |
| CTF_TYPE_ISCHILD(lmp->ctlm_type); |
| } |
| break; |
| case CTF_K_ENUM: |
| vbytes = sizeof (ctf_enum_t) * vlen; |
| break; |
| case CTF_K_FORWARD: |
| /* |
| * For forward declarations, ctt_type is the CTF_K_* |
| * kind for the tag, so bump that population count too. |
| * If ctt_type is unknown, treat the tag as a struct. |
| */ |
| if (tp->ctt_type == CTF_K_UNKNOWN || |
| tp->ctt_type >= CTF_K_MAX) |
| pop[CTF_K_STRUCT]++; |
| else |
| pop[tp->ctt_type]++; |
| /*FALLTHRU*/ |
| case CTF_K_UNKNOWN: |
| vbytes = 0; |
| break; |
| case CTF_K_POINTER: |
| case CTF_K_TYPEDEF: |
| case CTF_K_VOLATILE: |
| case CTF_K_CONST: |
| case CTF_K_RESTRICT: |
| child |= CTF_TYPE_ISCHILD(tp->ctt_type); |
| vbytes = 0; |
| break; |
| default: |
| ctf_dprintf("detected invalid CTF kind -- %u\n", kind); |
| return (ECTF_CORRUPT); |
| } |
| tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes); |
| pop[kind]++; |
| } |
| |
| /* |
| * If we detected a reference to a child type ID, then we know this |
| * container is a child and may have a parent's types imported later. |
| */ |
| if (child) { |
| ctf_dprintf("CTF container %p is a child\n", (void *)fp); |
| fp->ctf_flags |= LCTF_CHILD; |
| } else |
| ctf_dprintf("CTF container %p is a parent\n", (void *)fp); |
| |
| /* |
| * Now that we've counted up the number of each type, we can allocate |
| * the hash tables, type translation table, and pointer table. |
| */ |
| if ((err = ctf_hash_create(&fp->ctf_structs, pop[CTF_K_STRUCT])) != 0) |
| return (err); |
| |
| if ((err = ctf_hash_create(&fp->ctf_unions, pop[CTF_K_UNION])) != 0) |
| return (err); |
| |
| if ((err = ctf_hash_create(&fp->ctf_enums, pop[CTF_K_ENUM])) != 0) |
| return (err); |
| |
| if ((err = ctf_hash_create(&fp->ctf_names, |
| pop[CTF_K_INTEGER] + pop[CTF_K_FLOAT] + pop[CTF_K_FUNCTION] + |
| pop[CTF_K_TYPEDEF] + pop[CTF_K_POINTER] + pop[CTF_K_VOLATILE] + |
| pop[CTF_K_CONST] + pop[CTF_K_RESTRICT])) != 0) |
| return (err); |
| |
| fp->ctf_txlate = ctf_alloc(sizeof (uint_t) * (fp->ctf_typemax + 1)); |
| fp->ctf_ptrtab = ctf_alloc(sizeof (ushort_t) * (fp->ctf_typemax + 1)); |
| |
| if (fp->ctf_txlate == NULL || fp->ctf_ptrtab == NULL) |
| return (EAGAIN); /* memory allocation failed */ |
| |
| xp = fp->ctf_txlate; |
| *xp++ = 0; /* type id 0 is used as a sentinel value */ |
| |
| bzero(fp->ctf_txlate, sizeof (uint_t) * (fp->ctf_typemax + 1)); |
| bzero(fp->ctf_ptrtab, sizeof (ushort_t) * (fp->ctf_typemax + 1)); |
| |
| /* |
| * In the second pass through the types, we fill in each entry of the |
| * type and pointer tables and add names to the appropriate hashes. |
| */ |
| for (id = 1, tp = tbuf; tp < tend; xp++, id++) { |
| ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info); |
| ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info); |
| ssize_t size, increment; |
| |
| const char *name; |
| size_t vbytes; |
| ctf_helem_t *hep; |
| ctf_encoding_t cte; |
| |
| (void) ctf_get_ctt_size(fp, tp, &size, &increment); |
| name = ctf_strptr(fp, tp->ctt_name); |
| |
| switch (kind) { |
| case CTF_K_INTEGER: |
| case CTF_K_FLOAT: |
| /* |
| * Only insert a new integer base type definition if |
| * this type name has not been defined yet. We re-use |
| * the names with different encodings for bit-fields. |
| */ |
| if ((hep = ctf_hash_lookup(&fp->ctf_names, fp, |
| name, strlen(name))) == NULL) { |
| err = ctf_hash_insert(&fp->ctf_names, fp, |
| CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); |
| if (err != 0 && err != ECTF_STRTAB) |
| return (err); |
| } else if (ctf_type_encoding(fp, hep->h_type, |
| &cte) == 0 && cte.cte_bits == 0) { |
| /* |
| * Work-around SOS8 stabs bug: replace existing |
| * intrinsic w/ same name if it was zero bits. |
| */ |
| hep->h_type = CTF_INDEX_TO_TYPE(id, child); |
| } |
| vbytes = sizeof (uint_t); |
| break; |
| |
| case CTF_K_ARRAY: |
| vbytes = sizeof (ctf_array_t); |
| break; |
| |
| case CTF_K_FUNCTION: |
| err = ctf_hash_insert(&fp->ctf_names, fp, |
| CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); |
| if (err != 0 && err != ECTF_STRTAB) |
| return (err); |
| vbytes = sizeof (ushort_t) * (vlen + (vlen & 1)); |
| break; |
| |
| case CTF_K_STRUCT: |
| err = ctf_hash_define(&fp->ctf_structs, fp, |
| CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); |
| |
| if (err != 0 && err != ECTF_STRTAB) |
| return (err); |
| |
| if (fp->ctf_version == CTF_VERSION_1 || |
| size < CTF_LSTRUCT_THRESH) |
| vbytes = sizeof (ctf_member_t) * vlen; |
| else { |
| vbytes = sizeof (ctf_lmember_t) * vlen; |
| nlstructs++; |
| } |
| break; |
| |
| case CTF_K_UNION: |
| err = ctf_hash_define(&fp->ctf_unions, fp, |
| CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); |
| |
| if (err != 0 && err != ECTF_STRTAB) |
| return (err); |
| |
| if (fp->ctf_version == CTF_VERSION_1 || |
| size < CTF_LSTRUCT_THRESH) |
| vbytes = sizeof (ctf_member_t) * vlen; |
| else { |
| vbytes = sizeof (ctf_lmember_t) * vlen; |
| nlunions++; |
| } |
| break; |
| |
| case CTF_K_ENUM: |
| err = ctf_hash_define(&fp->ctf_enums, fp, |
| CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); |
| |
| if (err != 0 && err != ECTF_STRTAB) |
| return (err); |
| |
| vbytes = sizeof (ctf_enum_t) * vlen; |
| break; |
| |
| case CTF_K_TYPEDEF: |
| err = ctf_hash_insert(&fp->ctf_names, fp, |
| CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); |
| if (err != 0 && err != ECTF_STRTAB) |
| return (err); |
| vbytes = 0; |
| break; |
| |
| case CTF_K_FORWARD: |
| /* |
| * Only insert forward tags into the given hash if the |
| * type or tag name is not already present. |
| */ |
| switch (tp->ctt_type) { |
| case CTF_K_STRUCT: |
| hp = &fp->ctf_structs; |
| break; |
| case CTF_K_UNION: |
| hp = &fp->ctf_unions; |
| break; |
| case CTF_K_ENUM: |
| hp = &fp->ctf_enums; |
| break; |
| default: |
| hp = &fp->ctf_structs; |
| } |
| |
| if (ctf_hash_lookup(hp, fp, |
| name, strlen(name)) == NULL) { |
| err = ctf_hash_insert(hp, fp, |
| CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); |
| if (err != 0 && err != ECTF_STRTAB) |
| return (err); |
| } |
| vbytes = 0; |
| break; |
| |
| case CTF_K_POINTER: |
| /* |
| * If the type referenced by the pointer is in this CTF |
| * container, then store the index of the pointer type |
| * in fp->ctf_ptrtab[ index of referenced type ]. |
| */ |
| if (CTF_TYPE_ISCHILD(tp->ctt_type) == child && |
| CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax) |
| fp->ctf_ptrtab[ |
| CTF_TYPE_TO_INDEX(tp->ctt_type)] = id; |
| /*FALLTHRU*/ |
| |
| case CTF_K_VOLATILE: |
| case CTF_K_CONST: |
| case CTF_K_RESTRICT: |
| err = ctf_hash_insert(&fp->ctf_names, fp, |
| CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); |
| if (err != 0 && err != ECTF_STRTAB) |
| return (err); |
| /*FALLTHRU*/ |
| |
| default: |
| vbytes = 0; |
| break; |
| } |
| |
| *xp = (uint_t)((uintptr_t)tp - (uintptr_t)fp->ctf_buf); |
| tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes); |
| } |
| |
| ctf_dprintf("%lu total types processed\n", fp->ctf_typemax); |
| ctf_dprintf("%u enum names hashed\n", ctf_hash_size(&fp->ctf_enums)); |
| ctf_dprintf("%u struct names hashed (%d long)\n", |
| ctf_hash_size(&fp->ctf_structs), nlstructs); |
| ctf_dprintf("%u union names hashed (%d long)\n", |
| ctf_hash_size(&fp->ctf_unions), nlunions); |
| ctf_dprintf("%u base type names hashed\n", |
| ctf_hash_size(&fp->ctf_names)); |
| |
| /* |
| * Make an additional pass through the pointer table to find pointers |
| * that point to anonymous typedef nodes. If we find one, modify the |
| * pointer table so that the pointer is also known to point to the |
| * node that is referenced by the anonymous typedef node. |
| */ |
| for (id = 1; id <= fp->ctf_typemax; id++) { |
| if ((dst = fp->ctf_ptrtab[id]) != 0) { |
| tp = LCTF_INDEX_TO_TYPEPTR(fp, id); |
| |
| if (LCTF_INFO_KIND(fp, tp->ctt_info) == CTF_K_TYPEDEF && |
| strcmp(ctf_strptr(fp, tp->ctt_name), "") == 0 && |
| CTF_TYPE_ISCHILD(tp->ctt_type) == child && |
| CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax) |
| fp->ctf_ptrtab[ |
| CTF_TYPE_TO_INDEX(tp->ctt_type)] = dst; |
| } |
| } |
| |
| return (0); |
| } |
| |
| /* |
| * Decode the specified CTF buffer and optional symbol table and create a new |
| * CTF container representing the symbolic debugging information. This code |
| * can be used directly by the debugger, or it can be used as the engine for |
| * ctf_fdopen() or ctf_open(), below. |
| */ |
| ctf_file_t * |
| ctf_bufopen(const ctf_sect_t *ctfsect, const ctf_sect_t *symsect, |
| const ctf_sect_t *strsect, int *errp) |
| { |
| const ctf_preamble_t *pp; |
| ctf_header_t hp; |
| ctf_file_t *fp; |
| void *buf, *base; |
| size_t size, hdrsz; |
| int err; |
| |
| if (ctfsect == NULL || ((symsect == NULL) != (strsect == NULL))) |
| return (ctf_set_open_errno(errp, EINVAL)); |
| |
| if (symsect != NULL && symsect->cts_entsize != sizeof (Elf32_Sym) && |
| symsect->cts_entsize != sizeof (Elf64_Sym)) |
| return (ctf_set_open_errno(errp, ECTF_SYMTAB)); |
| |
| if (symsect != NULL && symsect->cts_data == NULL) |
| return (ctf_set_open_errno(errp, ECTF_SYMBAD)); |
| |
| if (strsect != NULL && strsect->cts_data == NULL) |
| return (ctf_set_open_errno(errp, ECTF_STRBAD)); |
| |
| if (ctfsect->cts_size < sizeof (ctf_preamble_t)) |
| return (ctf_set_open_errno(errp, ECTF_NOCTFBUF)); |
| |
| pp = (const ctf_preamble_t *)ctfsect->cts_data; |
| |
| ctf_dprintf("ctf_bufopen: magic=0x%x version=%u\n", |
| pp->ctp_magic, pp->ctp_version); |
| |
| /* |
| * Validate each part of the CTF header (either V1 or V2). |
| * First, we validate the preamble (common to all versions). At that |
| * point, we know specific header version, and can validate the |
| * version-specific parts including section offsets and alignments. |
| */ |
| if (pp->ctp_magic != CTF_MAGIC) |
| return (ctf_set_open_errno(errp, ECTF_NOCTFBUF)); |
| |
| if (pp->ctp_version == CTF_VERSION_2) { |
| if (ctfsect->cts_size < sizeof (ctf_header_t)) |
| return (ctf_set_open_errno(errp, ECTF_NOCTFBUF)); |
| |
| bcopy(ctfsect->cts_data, &hp, sizeof (hp)); |
| hdrsz = sizeof (ctf_header_t); |
| |
| } else if (pp->ctp_version == CTF_VERSION_1) { |
| const ctf_header_v1_t *h1p = |
| (const ctf_header_v1_t *)ctfsect->cts_data; |
| |
| if (ctfsect->cts_size < sizeof (ctf_header_v1_t)) |
| return (ctf_set_open_errno(errp, ECTF_NOCTFBUF)); |
| |
| bzero(&hp, sizeof (hp)); |
| hp.cth_preamble = h1p->cth_preamble; |
| hp.cth_objtoff = h1p->cth_objtoff; |
| hp.cth_funcoff = h1p->cth_funcoff; |
| hp.cth_typeoff = h1p->cth_typeoff; |
| hp.cth_stroff = h1p->cth_stroff; |
| hp.cth_strlen = h1p->cth_strlen; |
| |
| hdrsz = sizeof (ctf_header_v1_t); |
| } else |
| return (ctf_set_open_errno(errp, ECTF_CTFVERS)); |
| |
| size = hp.cth_stroff + hp.cth_strlen; |
| |
| ctf_dprintf("ctf_bufopen: uncompressed size=%lu\n", (ulong_t)size); |
| |
| if (hp.cth_lbloff > size || hp.cth_objtoff > size || |
| hp.cth_funcoff > size || hp.cth_typeoff > size || |
| hp.cth_stroff > size) |
| return (ctf_set_open_errno(errp, ECTF_CORRUPT)); |
| |
| if (hp.cth_lbloff > hp.cth_objtoff || |
| hp.cth_objtoff > hp.cth_funcoff || |
| hp.cth_funcoff > hp.cth_typeoff || |
| hp.cth_typeoff > hp.cth_stroff) |
| return (ctf_set_open_errno(errp, ECTF_CORRUPT)); |
| |
| if ((hp.cth_lbloff & 3) || (hp.cth_objtoff & 1) || |
| (hp.cth_funcoff & 1) || (hp.cth_typeoff & 3)) |
| return (ctf_set_open_errno(errp, ECTF_CORRUPT)); |
| |
| /* |
| * Once everything is determined to be valid, attempt to decompress |
| * the CTF data buffer if it is compressed. Otherwise we just put |
| * the data section's buffer pointer into ctf_buf, below. |
| */ |
| if (hp.cth_flags & CTF_F_COMPRESS) { |
| size_t srclen, dstlen; |
| const void *src; |
| int rc = Z_OK; |
| |
| if (ctf_zopen(errp) == NULL) |
| return (NULL); /* errp is set for us */ |
| |
| if ((base = ctf_data_alloc(size + hdrsz)) == MAP_FAILED) |
| return (ctf_set_open_errno(errp, ECTF_ZALLOC)); |
| |
| bcopy(ctfsect->cts_data, base, hdrsz); |
| ((ctf_preamble_t *)base)->ctp_flags &= ~CTF_F_COMPRESS; |
| buf = (uchar_t *)base + hdrsz; |
| |
| src = (uchar_t *)ctfsect->cts_data + hdrsz; |
| srclen = ctfsect->cts_size - hdrsz; |
| dstlen = size; |
| |
| if ((rc = z_uncompress(buf, &dstlen, src, srclen)) != Z_OK) { |
| ctf_dprintf("zlib inflate err: %s\n", z_strerror(rc)); |
| ctf_data_free(base, size + hdrsz); |
| return (ctf_set_open_errno(errp, ECTF_DECOMPRESS)); |
| } |
| |
| if (dstlen != size) { |
| ctf_dprintf("zlib inflate short -- got %lu of %lu " |
| "bytes\n", (ulong_t)dstlen, (ulong_t)size); |
| ctf_data_free(base, size + hdrsz); |
| return (ctf_set_open_errno(errp, ECTF_CORRUPT)); |
| } |
| |
| ctf_data_protect(base, size + hdrsz); |
| |
| } else { |
| base = (void *)ctfsect->cts_data; |
| buf = (uchar_t *)base + hdrsz; |
| } |
| |
| /* |
| * Once we have uncompressed and validated the CTF data buffer, we can |
| * proceed with allocating a ctf_file_t and initializing it. |
| */ |
| if ((fp = ctf_alloc(sizeof (ctf_file_t))) == NULL) |
| return (ctf_set_open_errno(errp, EAGAIN)); |
| |
| bzero(fp, sizeof (ctf_file_t)); |
| fp->ctf_version = hp.cth_version; |
| fp->ctf_fileops = &ctf_fileops[hp.cth_version]; |
| bcopy(ctfsect, &fp->ctf_data, sizeof (ctf_sect_t)); |
| |
| if (symsect != NULL) { |
| bcopy(symsect, &fp->ctf_symtab, sizeof (ctf_sect_t)); |
| bcopy(strsect, &fp->ctf_strtab, sizeof (ctf_sect_t)); |
| } |
| |
| if (fp->ctf_data.cts_name != NULL) |
| fp->ctf_data.cts_name = ctf_strdup(fp->ctf_data.cts_name); |
| if (fp->ctf_symtab.cts_name != NULL) |
| fp->ctf_symtab.cts_name = ctf_strdup(fp->ctf_symtab.cts_name); |
| if (fp->ctf_strtab.cts_name != NULL) |
| fp->ctf_strtab.cts_name = ctf_strdup(fp->ctf_strtab.cts_name); |
| |
| if (fp->ctf_data.cts_name == NULL) |
| fp->ctf_data.cts_name = _CTF_NULLSTR; |
| if (fp->ctf_symtab.cts_name == NULL) |
| fp->ctf_symtab.cts_name = _CTF_NULLSTR; |
| if (fp->ctf_strtab.cts_name == NULL) |
| fp->ctf_strtab.cts_name = _CTF_NULLSTR; |
| |
| fp->ctf_str[CTF_STRTAB_0].cts_strs = (const char *)buf + hp.cth_stroff; |
| fp->ctf_str[CTF_STRTAB_0].cts_len = hp.cth_strlen; |
| |
| if (strsect != NULL) { |
| fp->ctf_str[CTF_STRTAB_1].cts_strs = strsect->cts_data; |
| fp->ctf_str[CTF_STRTAB_1].cts_len = strsect->cts_size; |
| } |
| |
| fp->ctf_base = base; |
| fp->ctf_buf = buf; |
| fp->ctf_size = size + hdrsz; |
| |
| /* |
| * If we have a parent container name and label, store the relocated |
| * string pointers in the CTF container for easy access later. |
| */ |
| if (hp.cth_parlabel != 0) |
| fp->ctf_parlabel = ctf_strptr(fp, hp.cth_parlabel); |
| if (hp.cth_parname != 0) |
| fp->ctf_parname = ctf_strptr(fp, hp.cth_parname); |
| |
| ctf_dprintf("ctf_bufopen: parent name %s (label %s)\n", |
| fp->ctf_parname ? fp->ctf_parname : "<NULL>", |
| fp->ctf_parlabel ? fp->ctf_parlabel : "<NULL>"); |
| |
| /* |
| * If we have a symbol table section, allocate and initialize |
| * the symtab translation table, pointed to by ctf_sxlate. |
| */ |
| if (symsect != NULL) { |
| fp->ctf_nsyms = symsect->cts_size / symsect->cts_entsize; |
| fp->ctf_sxlate = ctf_alloc(fp->ctf_nsyms * sizeof (uint_t)); |
| |
| if (fp->ctf_sxlate == NULL) { |
| (void) ctf_set_open_errno(errp, EAGAIN); |
| goto bad; |
| } |
| |
| if ((err = init_symtab(fp, &hp, symsect, strsect)) != 0) { |
| (void) ctf_set_open_errno(errp, err); |
| goto bad; |
| } |
| } |
| |
| if ((err = init_types(fp, &hp)) != 0) { |
| (void) ctf_set_open_errno(errp, err); |
| goto bad; |
| } |
| |
| /* |
| * Initialize the ctf_lookup_by_name top-level dictionary. We keep an |
| * array of type name prefixes and the corresponding ctf_hash to use. |
| * NOTE: This code must be kept in sync with the code in ctf_update(). |
| */ |
| fp->ctf_lookups[0].ctl_prefix = "struct"; |
| fp->ctf_lookups[0].ctl_len = strlen(fp->ctf_lookups[0].ctl_prefix); |
| fp->ctf_lookups[0].ctl_hash = &fp->ctf_structs; |
| fp->ctf_lookups[1].ctl_prefix = "union"; |
| fp->ctf_lookups[1].ctl_len = strlen(fp->ctf_lookups[1].ctl_prefix); |
| fp->ctf_lookups[1].ctl_hash = &fp->ctf_unions; |
| fp->ctf_lookups[2].ctl_prefix = "enum"; |
| fp->ctf_lookups[2].ctl_len = strlen(fp->ctf_lookups[2].ctl_prefix); |
| fp->ctf_lookups[2].ctl_hash = &fp->ctf_enums; |
| fp->ctf_lookups[3].ctl_prefix = _CTF_NULLSTR; |
| fp->ctf_lookups[3].ctl_len = strlen(fp->ctf_lookups[3].ctl_prefix); |
| fp->ctf_lookups[3].ctl_hash = &fp->ctf_names; |
| fp->ctf_lookups[4].ctl_prefix = NULL; |
| fp->ctf_lookups[4].ctl_len = 0; |
| fp->ctf_lookups[4].ctl_hash = NULL; |
| |
| if (symsect != NULL) { |
| if (symsect->cts_entsize == sizeof (Elf64_Sym)) |
| (void) ctf_setmodel(fp, CTF_MODEL_LP64); |
| else |
| (void) ctf_setmodel(fp, CTF_MODEL_ILP32); |
| } else |
| (void) ctf_setmodel(fp, CTF_MODEL_NATIVE); |
| |
| fp->ctf_refcnt = 1; |
| return (fp); |
| |
| bad: |
| ctf_close(fp); |
| return (NULL); |
| } |
| |
| /* |
| * Dupliate a ctf_file_t and its underlying section information into a new |
| * container. This works by copying the three ctf_sect_t's of the original |
| * container if they exist and passing those into ctf_bufopen. To copy those, we |
| * mmap anonymous memory with ctf_data_alloc and bcopy the data across. It's not |
| * the cheapest thing, but it's what we've got. |
| */ |
| ctf_file_t * |
| ctf_dup(ctf_file_t *ofp) |
| { |
| ctf_file_t *fp; |
| ctf_sect_t ctfsect, symsect, strsect; |
| ctf_sect_t *ctp, *symp, *strp; |
| void *cbuf, *symbuf, *strbuf; |
| int err; |
| |
| cbuf = symbuf = strbuf = NULL; |
| /* |
| * The ctfsect isn't allowed to not exist, but the symbol and string |
| * section might not. We only need to copy the data of the section, not |
| * the name, as ctf_bufopen will take care of that. |
| */ |
| bcopy(&ofp->ctf_data, &ctfsect, sizeof (ctf_sect_t)); |
| cbuf = ctf_data_alloc(ctfsect.cts_size); |
| if (cbuf == NULL) { |
| (void) ctf_set_errno(ofp, ECTF_MMAP); |
| return (NULL); |
| } |
| |
| bcopy(ctfsect.cts_data, cbuf, ctfsect.cts_size); |
| ctf_data_protect(cbuf, ctfsect.cts_size); |
| ctfsect.cts_data = cbuf; |
| ctfsect.cts_offset = 0; |
| ctp = &ctfsect; |
| |
| if (ofp->ctf_symtab.cts_data != NULL) { |
| bcopy(&ofp->ctf_symtab, &symsect, sizeof (ctf_sect_t)); |
| symbuf = ctf_data_alloc(symsect.cts_size); |
| if (symbuf == NULL) { |
| (void) ctf_set_errno(ofp, ECTF_MMAP); |
| goto err; |
| } |
| bcopy(symsect.cts_data, symbuf, symsect.cts_size); |
| ctf_data_protect(symbuf, symsect.cts_size); |
| symsect.cts_data = symbuf; |
| symsect.cts_offset = 0; |
| symp = &symsect; |
| } else { |
| symp = NULL; |
| } |
| |
| if (ofp->ctf_strtab.cts_data != NULL) { |
| bcopy(&ofp->ctf_strtab, &strsect, sizeof (ctf_sect_t)); |
| strbuf = ctf_data_alloc(strsect.cts_size); |
| if (strbuf == NULL) { |
| (void) ctf_set_errno(ofp, ECTF_MMAP); |
| goto err; |
| } |
| bcopy(strsect.cts_data, strbuf, strsect.cts_size); |
| ctf_data_protect(strbuf, strsect.cts_size); |
| strsect.cts_data = strbuf; |
| strsect.cts_offset = 0; |
| strp = &strsect; |
| } else { |
| strp = NULL; |
| } |
| |
| fp = ctf_bufopen(ctp, symp, strp, &err); |
| if (fp == NULL) { |
| (void) ctf_set_errno(ofp, err); |
| goto err; |
| } |
| |
| fp->ctf_flags |= LCTF_MMAP; |
| |
| return (fp); |
| |
| err: |
| ctf_data_free(cbuf, ctfsect.cts_size); |
| if (symbuf != NULL) |
| ctf_data_free(symbuf, symsect.cts_size); |
| if (strbuf != NULL) |
| ctf_data_free(strbuf, strsect.cts_size); |
| return (NULL); |
| } |
| |
| /* |
| * Close the specified CTF container and free associated data structures. Note |
| * that ctf_close() is a reference counted operation: if the specified file is |
| * the parent of other active containers, its reference count will be greater |
| * than one and it will be freed later when no active children exist. |
| */ |
| void |
| ctf_close(ctf_file_t *fp) |
| { |
| ctf_dtdef_t *dtd, *ntd; |
| |
| if (fp == NULL) |
| return; /* allow ctf_close(NULL) to simplify caller code */ |
| |
| ctf_dprintf("ctf_close(%p) refcnt=%u\n", (void *)fp, fp->ctf_refcnt); |
| |
| if (fp->ctf_refcnt > 1) { |
| fp->ctf_refcnt--; |
| return; |
| } |
| |
| if (fp->ctf_parent != NULL) |
| ctf_close(fp->ctf_parent); |
| |
| /* |
| * Note, to work properly with reference counting on the dynamic |
| * section, we must delete the list in reverse. |
| */ |
| for (dtd = ctf_list_prev(&fp->ctf_dtdefs); dtd != NULL; dtd = ntd) { |
| ntd = ctf_list_prev(dtd); |
| ctf_dtd_delete(fp, dtd); |
| } |
| |
| ctf_free(fp->ctf_dthash, fp->ctf_dthashlen * sizeof (ctf_dtdef_t *)); |
| |
| if (fp->ctf_flags & LCTF_MMAP) { |
| if (fp->ctf_data.cts_data != NULL) |
| ctf_sect_munmap(&fp->ctf_data); |
| if (fp->ctf_symtab.cts_data != NULL) |
| ctf_sect_munmap(&fp->ctf_symtab); |
| if (fp->ctf_strtab.cts_data != NULL) |
| ctf_sect_munmap(&fp->ctf_strtab); |
| } |
| |
| if (fp->ctf_data.cts_name != _CTF_NULLSTR && |
| fp->ctf_data.cts_name != NULL) { |
| ctf_free((char *)fp->ctf_data.cts_name, |
| strlen(fp->ctf_data.cts_name) + 1); |
| } |
| |
| if (fp->ctf_symtab.cts_name != _CTF_NULLSTR && |
| fp->ctf_symtab.cts_name != NULL) { |
| ctf_free((char *)fp->ctf_symtab.cts_name, |
| strlen(fp->ctf_symtab.cts_name) + 1); |
| } |
| |
| if (fp->ctf_strtab.cts_name != _CTF_NULLSTR && |
| fp->ctf_strtab.cts_name != NULL) { |
| ctf_free((char *)fp->ctf_strtab.cts_name, |
| strlen(fp->ctf_strtab.cts_name) + 1); |
| } |
| |
| if (fp->ctf_base != fp->ctf_data.cts_data && fp->ctf_base != NULL) |
| ctf_data_free((void *)fp->ctf_base, fp->ctf_size); |
| |
| if (fp->ctf_sxlate != NULL) |
| ctf_free(fp->ctf_sxlate, sizeof (uint_t) * fp->ctf_nsyms); |
| |
| if (fp->ctf_txlate != NULL) { |
| ctf_free(fp->ctf_txlate, |
| sizeof (uint_t) * (fp->ctf_typemax + 1)); |
| } |
| |
| if (fp->ctf_ptrtab != NULL) { |
| ctf_free(fp->ctf_ptrtab, |
| sizeof (ushort_t) * (fp->ctf_typemax + 1)); |
| } |
| |
| ctf_hash_destroy(&fp->ctf_structs); |
| ctf_hash_destroy(&fp->ctf_unions); |
| ctf_hash_destroy(&fp->ctf_enums); |
| ctf_hash_destroy(&fp->ctf_names); |
| |
| ctf_free(fp, sizeof (ctf_file_t)); |
| } |
| |
| /* |
| * Return the CTF handle for the parent CTF container, if one exists. |
| * Otherwise return NULL to indicate this container has no imported parent. |
| */ |
| ctf_file_t * |
| ctf_parent_file(ctf_file_t *fp) |
| { |
| return (fp->ctf_parent); |
| } |
| |
| /* |
| * Return the name of the parent CTF container, if one exists. Otherwise |
| * return NULL to indicate this container is a root container. |
| */ |
| const char * |
| ctf_parent_name(ctf_file_t *fp) |
| { |
| return (fp->ctf_parname); |
| } |
| |
| /* |
| * Import the types from the specified parent container by storing a pointer |
| * to it in ctf_parent and incrementing its reference count. Only one parent |
| * is allowed: if a parent already exists, it is replaced by the new parent. |
| */ |
| int |
| ctf_import(ctf_file_t *fp, ctf_file_t *pfp) |
| { |
| if (fp == NULL || fp == pfp || (pfp != NULL && pfp->ctf_refcnt == 0)) |
| return (ctf_set_errno(fp, EINVAL)); |
| |
| if (pfp != NULL && pfp->ctf_dmodel != fp->ctf_dmodel) |
| return (ctf_set_errno(fp, ECTF_DMODEL)); |
| |
| if (fp->ctf_parent != NULL) |
| ctf_close(fp->ctf_parent); |
| |
| if (pfp != NULL) { |
| fp->ctf_flags |= LCTF_CHILD; |
| pfp->ctf_refcnt++; |
| } |
| |
| fp->ctf_parent = pfp; |
| return (0); |
| } |
| |
| /* |
| * Set the data model constant for the CTF container. |
| */ |
| int |
| ctf_setmodel(ctf_file_t *fp, int model) |
| { |
| const ctf_dmodel_t *dp; |
| |
| for (dp = _libctf_models; dp->ctd_name != NULL; dp++) { |
| if (dp->ctd_code == model) { |
| fp->ctf_dmodel = dp; |
| return (0); |
| } |
| } |
| |
| return (ctf_set_errno(fp, EINVAL)); |
| } |
| |
| /* |
| * Return the data model constant for the CTF container. |
| */ |
| int |
| ctf_getmodel(ctf_file_t *fp) |
| { |
| return (fp->ctf_dmodel->ctd_code); |
| } |
| |
| void |
| ctf_setspecific(ctf_file_t *fp, void *data) |
| { |
| fp->ctf_specific = data; |
| } |
| |
| void * |
| ctf_getspecific(ctf_file_t *fp) |
| { |
| return (fp->ctf_specific); |
| } |