| /* |
| * CDDL HEADER START |
| * |
| * The contents of this file are subject to the terms of the |
| * Common Development and Distribution License, Version 1.0 only |
| * (the "License"). You may not use this file except in compliance |
| * with the License. |
| * |
| * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE |
| * or http://www.opensolaris.org/os/licensing. |
| * See the License for the specific language governing permissions |
| * and limitations under the License. |
| * |
| * When distributing Covered Code, include this CDDL HEADER in each |
| * file and include the License file at usr/src/OPENSOLARIS.LICENSE. |
| * If applicable, add the following below this CDDL HEADER, with the |
| * fields enclosed by brackets "[]" replaced with your own identifying |
| * information: Portions Copyright [yyyy] [name of copyright owner] |
| * |
| * CDDL HEADER END |
| */ |
| |
| /* |
| * Copyright 2006 Sun Microsystems, Inc. All rights reserved. |
| * Use is subject to license terms. |
| */ |
| |
| #pragma ident "%Z%%M% %I% %E% SMI" |
| |
| #include <sys/sysmacros.h> |
| #include <ctf_impl.h> |
| |
| /* |
| * Compare the given input string and length against a table of known C storage |
| * qualifier keywords. We just ignore these in ctf_lookup_by_name, below. To |
| * do this quickly, we use a pre-computed Perfect Hash Function similar to the |
| * technique originally described in the classic paper: |
| * |
| * R.J. Cichelli, "Minimal Perfect Hash Functions Made Simple", |
| * Communications of the ACM, Volume 23, Issue 1, January 1980, pp. 17-19. |
| * |
| * For an input string S of length N, we use hash H = S[N - 1] + N - 105, which |
| * for the current set of qualifiers yields a unique H in the range [0 .. 20]. |
| * The hash can be modified when the keyword set changes as necessary. We also |
| * store the length of each keyword and check it prior to the final strcmp(). |
| */ |
| static int |
| isqualifier(const char *s, size_t len) |
| { |
| static const struct qual { |
| const char *q_name; |
| size_t q_len; |
| } qhash[] = { |
| { "static", 6 }, { "", 0 }, { "", 0 }, { "", 0 }, |
| { "volatile", 8 }, { "", 0 }, { "", 0 }, { "", 0 }, { "", 0 }, |
| { "", 0 }, { "auto", 4 }, { "extern", 6 }, { "", 0 }, { "", 0 }, |
| { "", 0 }, { "", 0 }, { "const", 5 }, { "register", 8 }, |
| { "", 0 }, { "restrict", 8 }, { "_Restrict", 9 } |
| }; |
| |
| int h = s[len - 1] + (int)len - 105; |
| const struct qual *qp = &qhash[h]; |
| |
| return (h >= 0 && h < sizeof (qhash) / sizeof (qhash[0]) && |
| len == qp->q_len && strncmp(qp->q_name, s, qp->q_len) == 0); |
| } |
| |
| /* |
| * Attempt to convert the given C type name into the corresponding CTF type ID. |
| * It is not possible to do complete and proper conversion of type names |
| * without implementing a more full-fledged parser, which is necessary to |
| * handle things like types that are function pointers to functions that |
| * have arguments that are function pointers, and fun stuff like that. |
| * Instead, this function implements a very simple conversion algorithm that |
| * finds the things that we actually care about: structs, unions, enums, |
| * integers, floats, typedefs, and pointers to any of these named types. |
| */ |
| ctf_id_t |
| ctf_lookup_by_name(ctf_file_t *fp, const char *name) |
| { |
| static const char delimiters[] = " \t\n\r\v\f*"; |
| |
| const ctf_lookup_t *lp; |
| const ctf_helem_t *hp; |
| const char *p, *q, *end; |
| ctf_id_t type = 0; |
| ctf_id_t ntype, ptype; |
| |
| if (name == NULL) |
| return (ctf_set_errno(fp, EINVAL)); |
| |
| for (p = name, end = name + strlen(name); *p != '\0'; p = q) { |
| while (isspace(*p)) |
| p++; /* skip leading ws */ |
| |
| if (p == end) |
| break; |
| |
| if ((q = strpbrk(p + 1, delimiters)) == NULL) |
| q = end; /* compare until end */ |
| |
| if (*p == '*') { |
| /* |
| * Find a pointer to type by looking in fp->ctf_ptrtab. |
| * If we can't find a pointer to the given type, see if |
| * we can compute a pointer to the type resulting from |
| * resolving the type down to its base type and use |
| * that instead. This helps with cases where the CTF |
| * data includes "struct foo *" but not "foo_t *" and |
| * the user tries to access "foo_t *" in the debugger. |
| */ |
| ntype = fp->ctf_ptrtab[CTF_TYPE_TO_INDEX(type)]; |
| if (ntype == 0) { |
| ntype = ctf_type_resolve(fp, type); |
| if (ntype == CTF_ERR || (ntype = fp->ctf_ptrtab[ |
| CTF_TYPE_TO_INDEX(ntype)]) == 0) { |
| (void) ctf_set_errno(fp, ECTF_NOTYPE); |
| goto err; |
| } |
| } |
| |
| type = CTF_INDEX_TO_TYPE(ntype, |
| (fp->ctf_flags & LCTF_CHILD)); |
| |
| q = p + 1; |
| continue; |
| } |
| |
| if (isqualifier(p, (size_t)(q - p))) |
| continue; /* skip qualifier keyword */ |
| |
| for (lp = fp->ctf_lookups; lp->ctl_prefix != NULL; lp++) { |
| if (lp->ctl_prefix[0] == '\0' || |
| strncmp(p, lp->ctl_prefix, (size_t)(q - p)) == 0) { |
| for (p += lp->ctl_len; isspace(*p); p++) |
| continue; /* skip prefix and next ws */ |
| |
| if ((q = strchr(p, '*')) == NULL) |
| q = end; /* compare until end */ |
| |
| while (isspace(q[-1])) |
| q--; /* exclude trailing ws */ |
| |
| if ((hp = ctf_hash_lookup(lp->ctl_hash, fp, p, |
| (size_t)(q - p))) == NULL) { |
| (void) ctf_set_errno(fp, ECTF_NOTYPE); |
| goto err; |
| } |
| |
| type = hp->h_type; |
| break; |
| } |
| } |
| |
| if (lp->ctl_prefix == NULL) { |
| (void) ctf_set_errno(fp, ECTF_NOTYPE); |
| goto err; |
| } |
| } |
| |
| if (*p != '\0' || type == 0) |
| return (ctf_set_errno(fp, ECTF_SYNTAX)); |
| |
| return (type); |
| |
| err: |
| if (fp->ctf_parent != NULL && |
| (ptype = ctf_lookup_by_name(fp->ctf_parent, name)) != CTF_ERR) |
| return (ptype); |
| |
| return (CTF_ERR); |
| } |
| |
| /* |
| * Given a symbol table index, return the type of the data object described |
| * by the corresponding entry in the symbol table. |
| */ |
| ctf_id_t |
| ctf_lookup_by_symbol(ctf_file_t *fp, ulong_t symidx) |
| { |
| const ctf_sect_t *sp = &fp->ctf_symtab; |
| ctf_id_t type; |
| |
| if (sp->cts_data == NULL) |
| return (ctf_set_errno(fp, ECTF_NOSYMTAB)); |
| |
| if (symidx >= fp->ctf_nsyms) |
| return (ctf_set_errno(fp, EINVAL)); |
| |
| if (sp->cts_entsize == sizeof (Elf32_Sym)) { |
| const Elf32_Sym *symp = (Elf32_Sym *)sp->cts_data + symidx; |
| if (ELF32_ST_TYPE(symp->st_info) != STT_OBJECT) |
| return (ctf_set_errno(fp, ECTF_NOTDATA)); |
| } else { |
| const Elf64_Sym *symp = (Elf64_Sym *)sp->cts_data + symidx; |
| if (ELF64_ST_TYPE(symp->st_info) != STT_OBJECT) |
| return (ctf_set_errno(fp, ECTF_NOTDATA)); |
| } |
| |
| if (fp->ctf_sxlate[symidx] == -1u) |
| return (ctf_set_errno(fp, ECTF_NOTYPEDAT)); |
| |
| type = *(ushort_t *)((uintptr_t)fp->ctf_buf + fp->ctf_sxlate[symidx]); |
| if (type == 0) |
| return (ctf_set_errno(fp, ECTF_NOTYPEDAT)); |
| |
| return (type); |
| } |
| |
| /* |
| * Return the pointer to the internal CTF type data corresponding to the |
| * given type ID. If the ID is invalid, the function returns NULL. |
| * This function is not exported outside of the library. |
| */ |
| const ctf_type_t * |
| ctf_lookup_by_id(ctf_file_t **fpp, ctf_id_t type) |
| { |
| ctf_file_t *fp = *fpp; /* caller passes in starting CTF container */ |
| |
| if ((fp->ctf_flags & LCTF_CHILD) && CTF_TYPE_ISPARENT(type) && |
| (fp = fp->ctf_parent) == NULL) { |
| (void) ctf_set_errno(*fpp, ECTF_NOPARENT); |
| return (NULL); |
| } |
| |
| type = CTF_TYPE_TO_INDEX(type); |
| if (type > 0 && type <= fp->ctf_typemax) { |
| *fpp = fp; /* function returns ending CTF container */ |
| return (LCTF_INDEX_TO_TYPEPTR(fp, type)); |
| } |
| |
| (void) ctf_set_errno(fp, ECTF_BADID); |
| return (NULL); |
| } |
| |
| /* |
| * Given a symbol table index, return the info for the function described |
| * by the corresponding entry in the symbol table. |
| */ |
| int |
| ctf_func_info(ctf_file_t *fp, ulong_t symidx, ctf_funcinfo_t *fip) |
| { |
| const ctf_sect_t *sp = &fp->ctf_symtab; |
| const ushort_t *dp; |
| ushort_t info, kind, n; |
| |
| if (sp->cts_data == NULL) |
| return (ctf_set_errno(fp, ECTF_NOSYMTAB)); |
| |
| if (symidx >= fp->ctf_nsyms) |
| return (ctf_set_errno(fp, EINVAL)); |
| |
| if (sp->cts_entsize == sizeof (Elf32_Sym)) { |
| const Elf32_Sym *symp = (Elf32_Sym *)sp->cts_data + symidx; |
| if (ELF32_ST_TYPE(symp->st_info) != STT_FUNC) |
| return (ctf_set_errno(fp, ECTF_NOTFUNC)); |
| } else { |
| const Elf64_Sym *symp = (Elf64_Sym *)sp->cts_data + symidx; |
| if (ELF64_ST_TYPE(symp->st_info) != STT_FUNC) |
| return (ctf_set_errno(fp, ECTF_NOTFUNC)); |
| } |
| |
| if (fp->ctf_sxlate[symidx] == -1u) |
| return (ctf_set_errno(fp, ECTF_NOFUNCDAT)); |
| |
| dp = (ushort_t *)((uintptr_t)fp->ctf_buf + fp->ctf_sxlate[symidx]); |
| |
| info = *dp++; |
| kind = LCTF_INFO_KIND(fp, info); |
| n = LCTF_INFO_VLEN(fp, info); |
| |
| if (kind == CTF_K_UNKNOWN && n == 0) |
| return (ctf_set_errno(fp, ECTF_NOFUNCDAT)); |
| |
| if (kind != CTF_K_FUNCTION) |
| return (ctf_set_errno(fp, ECTF_CORRUPT)); |
| |
| fip->ctc_return = *dp++; |
| fip->ctc_argc = n; |
| fip->ctc_flags = 0; |
| |
| if (n != 0 && dp[n - 1] == 0) { |
| fip->ctc_flags |= CTF_FUNC_VARARG; |
| fip->ctc_argc--; |
| } |
| |
| return (0); |
| } |
| |
| /* |
| * Given a symbol table index, return the arguments for the function described |
| * by the corresponding entry in the symbol table. |
| */ |
| int |
| ctf_func_args(ctf_file_t *fp, ulong_t symidx, uint_t argc, ctf_id_t *argv) |
| { |
| const ushort_t *dp; |
| ctf_funcinfo_t f; |
| |
| if (ctf_func_info(fp, symidx, &f) == CTF_ERR) |
| return (CTF_ERR); /* errno is set for us */ |
| |
| /* |
| * The argument data is two ushort_t's past the translation table |
| * offset: one for the function info, and one for the return type. |
| */ |
| dp = (ushort_t *)((uintptr_t)fp->ctf_buf + fp->ctf_sxlate[symidx]) + 2; |
| |
| for (argc = MIN(argc, f.ctc_argc); argc != 0; argc--) |
| *argv++ = *dp++; |
| |
| return (0); |
| } |