| /* |
| * CDDL HEADER START |
| * |
| * The contents of this file are subject to the terms of the |
| * Common Development and Distribution License, Version 1.0 only |
| * (the "License"). You may not use this file except in compliance |
| * with the License. |
| * |
| * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE |
| * or http://www.opensolaris.org/os/licensing. |
| * See the License for the specific language governing permissions |
| * and limitations under the License. |
| * |
| * When distributing Covered Code, include this CDDL HEADER in each |
| * file and include the License file at usr/src/OPENSOLARIS.LICENSE. |
| * If applicable, add the following below this CDDL HEADER, with the |
| * fields enclosed by brackets "[]" replaced with your own identifying |
| * information: Portions Copyright [yyyy] [name of copyright owner] |
| * |
| * CDDL HEADER END |
| */ |
| |
| /* |
| * Copyright 2006 Sun Microsystems, Inc. All rights reserved. |
| * Use is subject to license terms. |
| */ |
| /* |
| * Copyright (c) 2013, Joyent, Inc. All rights reserved. |
| */ |
| |
| #include <sys/sysmacros.h> |
| #include <sys/param.h> |
| #include <sys/mman.h> |
| #include <ctf_impl.h> |
| #include <sys/debug.h> |
| |
| /* |
| * This static string is used as the template for initially populating a |
| * dynamic container's string table. We always store \0 in the first byte, |
| * and we use the generic string "PARENT" to mark this container's parent |
| * if one is associated with the container using ctf_import(). |
| */ |
| static const char _CTF_STRTAB_TEMPLATE[] = "\0PARENT"; |
| |
| /* |
| * To create an empty CTF container, we just declare a zeroed header and call |
| * ctf_bufopen() on it. If ctf_bufopen succeeds, we mark the new container r/w |
| * and initialize the dynamic members. We set dtstrlen to 1 to reserve the |
| * first byte of the string table for a \0 byte, and we start assigning type |
| * IDs at 1 because type ID 0 is used as a sentinel. |
| */ |
| ctf_file_t * |
| ctf_create(int *errp) |
| { |
| static const ctf_header_t hdr = { { CTF_MAGIC, CTF_VERSION, 0 } }; |
| |
| const ulong_t hashlen = 128; |
| ctf_dtdef_t **hash = ctf_alloc(hashlen * sizeof (ctf_dtdef_t *)); |
| ctf_sect_t cts; |
| ctf_file_t *fp; |
| |
| if (hash == NULL) |
| return (ctf_set_open_errno(errp, EAGAIN)); |
| |
| cts.cts_name = _CTF_SECTION; |
| cts.cts_type = SHT_PROGBITS; |
| cts.cts_flags = 0; |
| cts.cts_data = &hdr; |
| cts.cts_size = sizeof (hdr); |
| cts.cts_entsize = 1; |
| cts.cts_offset = 0; |
| |
| if ((fp = ctf_bufopen(&cts, NULL, NULL, errp)) == NULL) { |
| ctf_free(hash, hashlen * sizeof (ctf_dtdef_t *)); |
| return (NULL); |
| } |
| |
| fp->ctf_flags |= LCTF_RDWR; |
| fp->ctf_dthashlen = hashlen; |
| bzero(hash, hashlen * sizeof (ctf_dtdef_t *)); |
| fp->ctf_dthash = hash; |
| fp->ctf_dtstrlen = sizeof (_CTF_STRTAB_TEMPLATE); |
| fp->ctf_dtnextid = 1; |
| fp->ctf_dtoldid = 0; |
| |
| return (fp); |
| } |
| |
| static uchar_t * |
| ctf_copy_smembers(ctf_dtdef_t *dtd, uint_t soff, uchar_t *t) |
| { |
| ctf_dmdef_t *dmd = ctf_list_next(&dtd->dtd_u.dtu_members); |
| ctf_member_t ctm; |
| |
| for (; dmd != NULL; dmd = ctf_list_next(dmd)) { |
| if (dmd->dmd_name) { |
| ctm.ctm_name = soff; |
| soff += strlen(dmd->dmd_name) + 1; |
| } else |
| ctm.ctm_name = 0; |
| |
| ctm.ctm_type = (ushort_t)dmd->dmd_type; |
| ctm.ctm_offset = (ushort_t)dmd->dmd_offset; |
| |
| bcopy(&ctm, t, sizeof (ctm)); |
| t += sizeof (ctm); |
| } |
| |
| return (t); |
| } |
| |
| static uchar_t * |
| ctf_copy_lmembers(ctf_dtdef_t *dtd, uint_t soff, uchar_t *t) |
| { |
| ctf_dmdef_t *dmd = ctf_list_next(&dtd->dtd_u.dtu_members); |
| ctf_lmember_t ctlm; |
| |
| for (; dmd != NULL; dmd = ctf_list_next(dmd)) { |
| if (dmd->dmd_name) { |
| ctlm.ctlm_name = soff; |
| soff += strlen(dmd->dmd_name) + 1; |
| } else |
| ctlm.ctlm_name = 0; |
| |
| ctlm.ctlm_type = (ushort_t)dmd->dmd_type; |
| ctlm.ctlm_pad = 0; |
| ctlm.ctlm_offsethi = CTF_OFFSET_TO_LMEMHI(dmd->dmd_offset); |
| ctlm.ctlm_offsetlo = CTF_OFFSET_TO_LMEMLO(dmd->dmd_offset); |
| |
| bcopy(&ctlm, t, sizeof (ctlm)); |
| t += sizeof (ctlm); |
| } |
| |
| return (t); |
| } |
| |
| static uchar_t * |
| ctf_copy_emembers(ctf_dtdef_t *dtd, uint_t soff, uchar_t *t) |
| { |
| ctf_dmdef_t *dmd = ctf_list_next(&dtd->dtd_u.dtu_members); |
| ctf_enum_t cte; |
| |
| for (; dmd != NULL; dmd = ctf_list_next(dmd)) { |
| cte.cte_name = soff; |
| cte.cte_value = dmd->dmd_value; |
| soff += strlen(dmd->dmd_name) + 1; |
| bcopy(&cte, t, sizeof (cte)); |
| t += sizeof (cte); |
| } |
| |
| return (t); |
| } |
| |
| static uchar_t * |
| ctf_copy_membnames(ctf_dtdef_t *dtd, uchar_t *s) |
| { |
| ctf_dmdef_t *dmd = ctf_list_next(&dtd->dtd_u.dtu_members); |
| size_t len; |
| |
| for (; dmd != NULL; dmd = ctf_list_next(dmd)) { |
| if (dmd->dmd_name == NULL) |
| continue; /* skip anonymous members */ |
| len = strlen(dmd->dmd_name) + 1; |
| bcopy(dmd->dmd_name, s, len); |
| s += len; |
| } |
| |
| return (s); |
| } |
| |
| /* |
| * Only types of dyanmic CTF containers contain reference counts. These |
| * containers are marked RD/WR. Because of that we basically make this a no-op |
| * for compatability with non-dynamic CTF sections. This is also a no-op for |
| * types which are not dynamic types. It is the responsibility of the caller to |
| * make sure it is a valid type. We help that caller out on debug builds. |
| * |
| * Note that the reference counts are not maintained for types that are not |
| * within this container. In other words if we have a type in a parent, that |
| * will not have its reference count increased. On the flip side, the parent |
| * will not be allowed to remove dynamic types if it has children. |
| */ |
| static void |
| ctf_ref_inc(ctf_file_t *fp, ctf_id_t tid) |
| { |
| ctf_dtdef_t *dtd = ctf_dtd_lookup(fp, tid); |
| |
| if (dtd == NULL) |
| return; |
| |
| if (!(fp->ctf_flags & LCTF_RDWR)) |
| return; |
| |
| dtd->dtd_ref++; |
| } |
| |
| /* |
| * Just as with ctf_ref_inc, this is a no-op on non-writeable containers and the |
| * caller should ensure that this is already a valid type. |
| */ |
| static void |
| ctf_ref_dec(ctf_file_t *fp, ctf_id_t tid) |
| { |
| ctf_dtdef_t *dtd = ctf_dtd_lookup(fp, tid); |
| |
| if (dtd == NULL) |
| return; |
| |
| if (!(fp->ctf_flags & LCTF_RDWR)) |
| return; |
| |
| ASSERT(dtd->dtd_ref >= 1); |
| dtd->dtd_ref--; |
| } |
| |
| /* |
| * If the specified CTF container is writable and has been modified, reload |
| * this container with the updated type definitions. In order to make this |
| * code and the rest of libctf as simple as possible, we perform updates by |
| * taking the dynamic type definitions and creating an in-memory CTF file |
| * containing the definitions, and then call ctf_bufopen() on it. This not |
| * only leverages ctf_bufopen(), but also avoids having to bifurcate the rest |
| * of the library code with different lookup paths for static and dynamic |
| * type definitions. We are therefore optimizing greatly for lookup over |
| * update, which we assume will be an uncommon operation. We perform one |
| * extra trick here for the benefit of callers and to keep our code simple: |
| * ctf_bufopen() will return a new ctf_file_t, but we want to keep the fp |
| * constant for the caller, so after ctf_bufopen() returns, we use bcopy to |
| * swap the interior of the old and new ctf_file_t's, and then free the old. |
| * |
| * Note that the lists of dynamic types stays around and the resulting container |
| * is still writeable. Furthermore, the reference counts that are on the dtd's |
| * are still valid. |
| */ |
| int |
| ctf_update(ctf_file_t *fp) |
| { |
| ctf_file_t ofp, *nfp; |
| ctf_header_t hdr; |
| ctf_dtdef_t *dtd; |
| ctf_sect_t cts; |
| |
| uchar_t *s, *s0, *t; |
| size_t size; |
| void *buf; |
| int err; |
| |
| if (!(fp->ctf_flags & LCTF_RDWR)) |
| return (ctf_set_errno(fp, ECTF_RDONLY)); |
| |
| if (!(fp->ctf_flags & LCTF_DIRTY)) |
| return (0); /* no update required */ |
| |
| /* |
| * Fill in an initial CTF header. We will leave the label, object, |
| * and function sections empty and only output a header, type section, |
| * and string table. The type section begins at a 4-byte aligned |
| * boundary past the CTF header itself (at relative offset zero). |
| */ |
| bzero(&hdr, sizeof (hdr)); |
| hdr.cth_magic = CTF_MAGIC; |
| hdr.cth_version = CTF_VERSION; |
| |
| if (fp->ctf_flags & LCTF_CHILD) |
| hdr.cth_parname = 1; /* i.e. _CTF_STRTAB_TEMPLATE[1] */ |
| |
| /* |
| * Iterate through the dynamic type definition list and compute the |
| * size of the CTF type section we will need to generate. |
| */ |
| for (size = 0, dtd = ctf_list_next(&fp->ctf_dtdefs); |
| dtd != NULL; dtd = ctf_list_next(dtd)) { |
| |
| uint_t kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info); |
| uint_t vlen = CTF_INFO_VLEN(dtd->dtd_data.ctt_info); |
| |
| if (dtd->dtd_data.ctt_size != CTF_LSIZE_SENT) |
| size += sizeof (ctf_stype_t); |
| else |
| size += sizeof (ctf_type_t); |
| |
| switch (kind) { |
| case CTF_K_INTEGER: |
| case CTF_K_FLOAT: |
| size += sizeof (uint_t); |
| break; |
| case CTF_K_ARRAY: |
| size += sizeof (ctf_array_t); |
| break; |
| case CTF_K_FUNCTION: |
| size += sizeof (ushort_t) * (vlen + (vlen & 1)); |
| break; |
| case CTF_K_STRUCT: |
| case CTF_K_UNION: |
| if (dtd->dtd_data.ctt_size < CTF_LSTRUCT_THRESH) |
| size += sizeof (ctf_member_t) * vlen; |
| else |
| size += sizeof (ctf_lmember_t) * vlen; |
| break; |
| case CTF_K_ENUM: |
| size += sizeof (ctf_enum_t) * vlen; |
| break; |
| } |
| } |
| |
| /* |
| * Fill in the string table offset and size, compute the size of the |
| * entire CTF buffer we need, and then allocate a new buffer and |
| * bcopy the finished header to the start of the buffer. |
| */ |
| hdr.cth_stroff = hdr.cth_typeoff + size; |
| hdr.cth_strlen = fp->ctf_dtstrlen; |
| size = sizeof (ctf_header_t) + hdr.cth_stroff + hdr.cth_strlen; |
| |
| if ((buf = ctf_data_alloc(size)) == MAP_FAILED) |
| return (ctf_set_errno(fp, EAGAIN)); |
| |
| bcopy(&hdr, buf, sizeof (ctf_header_t)); |
| t = (uchar_t *)buf + sizeof (ctf_header_t); |
| s = s0 = (uchar_t *)buf + sizeof (ctf_header_t) + hdr.cth_stroff; |
| |
| bcopy(_CTF_STRTAB_TEMPLATE, s, sizeof (_CTF_STRTAB_TEMPLATE)); |
| s += sizeof (_CTF_STRTAB_TEMPLATE); |
| |
| /* |
| * We now take a final lap through the dynamic type definition list and |
| * copy the appropriate type records and strings to the output buffer. |
| */ |
| for (dtd = ctf_list_next(&fp->ctf_dtdefs); |
| dtd != NULL; dtd = ctf_list_next(dtd)) { |
| |
| uint_t kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info); |
| uint_t vlen = CTF_INFO_VLEN(dtd->dtd_data.ctt_info); |
| |
| ctf_array_t cta; |
| uint_t encoding; |
| size_t len; |
| |
| if (dtd->dtd_name != NULL) { |
| dtd->dtd_data.ctt_name = (uint_t)(s - s0); |
| len = strlen(dtd->dtd_name) + 1; |
| bcopy(dtd->dtd_name, s, len); |
| s += len; |
| } else |
| dtd->dtd_data.ctt_name = 0; |
| |
| if (dtd->dtd_data.ctt_size != CTF_LSIZE_SENT) |
| len = sizeof (ctf_stype_t); |
| else |
| len = sizeof (ctf_type_t); |
| |
| bcopy(&dtd->dtd_data, t, len); |
| t += len; |
| |
| switch (kind) { |
| case CTF_K_INTEGER: |
| case CTF_K_FLOAT: |
| if (kind == CTF_K_INTEGER) { |
| encoding = CTF_INT_DATA( |
| dtd->dtd_u.dtu_enc.cte_format, |
| dtd->dtd_u.dtu_enc.cte_offset, |
| dtd->dtd_u.dtu_enc.cte_bits); |
| } else { |
| encoding = CTF_FP_DATA( |
| dtd->dtd_u.dtu_enc.cte_format, |
| dtd->dtd_u.dtu_enc.cte_offset, |
| dtd->dtd_u.dtu_enc.cte_bits); |
| } |
| bcopy(&encoding, t, sizeof (encoding)); |
| t += sizeof (encoding); |
| break; |
| |
| case CTF_K_ARRAY: |
| cta.cta_contents = (ushort_t) |
| dtd->dtd_u.dtu_arr.ctr_contents; |
| cta.cta_index = (ushort_t) |
| dtd->dtd_u.dtu_arr.ctr_index; |
| cta.cta_nelems = dtd->dtd_u.dtu_arr.ctr_nelems; |
| bcopy(&cta, t, sizeof (cta)); |
| t += sizeof (cta); |
| break; |
| |
| case CTF_K_FUNCTION: { |
| ushort_t *argv = (ushort_t *)(uintptr_t)t; |
| uint_t argc; |
| |
| for (argc = 0; argc < vlen; argc++) |
| *argv++ = (ushort_t)dtd->dtd_u.dtu_argv[argc]; |
| |
| if (vlen & 1) |
| *argv++ = 0; /* pad to 4-byte boundary */ |
| |
| t = (uchar_t *)argv; |
| break; |
| } |
| |
| case CTF_K_STRUCT: |
| case CTF_K_UNION: |
| if (dtd->dtd_data.ctt_size < CTF_LSTRUCT_THRESH) |
| t = ctf_copy_smembers(dtd, (uint_t)(s - s0), t); |
| else |
| t = ctf_copy_lmembers(dtd, (uint_t)(s - s0), t); |
| s = ctf_copy_membnames(dtd, s); |
| break; |
| |
| case CTF_K_ENUM: |
| t = ctf_copy_emembers(dtd, (uint_t)(s - s0), t); |
| s = ctf_copy_membnames(dtd, s); |
| break; |
| } |
| } |
| |
| /* |
| * Finally, we are ready to ctf_bufopen() the new container. If this |
| * is successful, we then switch nfp and fp and free the old container. |
| */ |
| ctf_data_protect(buf, size); |
| cts.cts_name = _CTF_SECTION; |
| cts.cts_type = SHT_PROGBITS; |
| cts.cts_flags = 0; |
| cts.cts_data = buf; |
| cts.cts_size = size; |
| cts.cts_entsize = 1; |
| cts.cts_offset = 0; |
| |
| if ((nfp = ctf_bufopen(&cts, NULL, NULL, &err)) == NULL) { |
| ctf_data_free(buf, size); |
| return (ctf_set_errno(fp, err)); |
| } |
| |
| (void) ctf_setmodel(nfp, ctf_getmodel(fp)); |
| (void) ctf_import(nfp, fp->ctf_parent); |
| |
| nfp->ctf_refcnt = fp->ctf_refcnt; |
| nfp->ctf_flags |= fp->ctf_flags & ~LCTF_DIRTY; |
| nfp->ctf_data.cts_data = NULL; /* force ctf_data_free() on close */ |
| nfp->ctf_dthash = fp->ctf_dthash; |
| nfp->ctf_dthashlen = fp->ctf_dthashlen; |
| nfp->ctf_dtdefs = fp->ctf_dtdefs; |
| nfp->ctf_dtstrlen = fp->ctf_dtstrlen; |
| nfp->ctf_dtnextid = fp->ctf_dtnextid; |
| nfp->ctf_dtoldid = fp->ctf_dtnextid - 1; |
| nfp->ctf_specific = fp->ctf_specific; |
| |
| fp->ctf_dthash = NULL; |
| fp->ctf_dthashlen = 0; |
| bzero(&fp->ctf_dtdefs, sizeof (ctf_list_t)); |
| |
| bcopy(fp, &ofp, sizeof (ctf_file_t)); |
| bcopy(nfp, fp, sizeof (ctf_file_t)); |
| bcopy(&ofp, nfp, sizeof (ctf_file_t)); |
| |
| /* |
| * Initialize the ctf_lookup_by_name top-level dictionary. We keep an |
| * array of type name prefixes and the corresponding ctf_hash to use. |
| * NOTE: This code must be kept in sync with the code in ctf_bufopen(). |
| */ |
| fp->ctf_lookups[0].ctl_hash = &fp->ctf_structs; |
| fp->ctf_lookups[1].ctl_hash = &fp->ctf_unions; |
| fp->ctf_lookups[2].ctl_hash = &fp->ctf_enums; |
| fp->ctf_lookups[3].ctl_hash = &fp->ctf_names; |
| |
| nfp->ctf_refcnt = 1; /* force nfp to be freed */ |
| ctf_close(nfp); |
| |
| return (0); |
| } |
| |
| void |
| ctf_dtd_insert(ctf_file_t *fp, ctf_dtdef_t *dtd) |
| { |
| ulong_t h = dtd->dtd_type & (fp->ctf_dthashlen - 1); |
| |
| dtd->dtd_hash = fp->ctf_dthash[h]; |
| fp->ctf_dthash[h] = dtd; |
| ctf_list_append(&fp->ctf_dtdefs, dtd); |
| } |
| |
| void |
| ctf_dtd_delete(ctf_file_t *fp, ctf_dtdef_t *dtd) |
| { |
| ulong_t h = dtd->dtd_type & (fp->ctf_dthashlen - 1); |
| ctf_dtdef_t *p, **q = &fp->ctf_dthash[h]; |
| ctf_dmdef_t *dmd, *nmd; |
| size_t len; |
| int kind, i; |
| |
| for (p = *q; p != NULL; p = p->dtd_hash) { |
| if (p != dtd) |
| q = &p->dtd_hash; |
| else |
| break; |
| } |
| |
| if (p != NULL) |
| *q = p->dtd_hash; |
| |
| kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info); |
| switch (kind) { |
| case CTF_K_STRUCT: |
| case CTF_K_UNION: |
| case CTF_K_ENUM: |
| for (dmd = ctf_list_next(&dtd->dtd_u.dtu_members); |
| dmd != NULL; dmd = nmd) { |
| if (dmd->dmd_name != NULL) { |
| len = strlen(dmd->dmd_name) + 1; |
| ctf_free(dmd->dmd_name, len); |
| fp->ctf_dtstrlen -= len; |
| } |
| if (kind != CTF_K_ENUM) |
| ctf_ref_dec(fp, dmd->dmd_type); |
| nmd = ctf_list_next(dmd); |
| ctf_free(dmd, sizeof (ctf_dmdef_t)); |
| } |
| break; |
| case CTF_K_FUNCTION: |
| ctf_ref_dec(fp, dtd->dtd_data.ctt_type); |
| for (i = 0; i < CTF_INFO_VLEN(dtd->dtd_data.ctt_info); i++) |
| if (dtd->dtd_u.dtu_argv[i] != 0) |
| ctf_ref_dec(fp, dtd->dtd_u.dtu_argv[i]); |
| ctf_free(dtd->dtd_u.dtu_argv, sizeof (ctf_id_t) * |
| CTF_INFO_VLEN(dtd->dtd_data.ctt_info)); |
| break; |
| case CTF_K_ARRAY: |
| ctf_ref_dec(fp, dtd->dtd_u.dtu_arr.ctr_contents); |
| ctf_ref_dec(fp, dtd->dtd_u.dtu_arr.ctr_index); |
| break; |
| case CTF_K_TYPEDEF: |
| ctf_ref_dec(fp, dtd->dtd_data.ctt_type); |
| break; |
| case CTF_K_POINTER: |
| case CTF_K_VOLATILE: |
| case CTF_K_CONST: |
| case CTF_K_RESTRICT: |
| ctf_ref_dec(fp, dtd->dtd_data.ctt_type); |
| break; |
| } |
| |
| if (dtd->dtd_name) { |
| len = strlen(dtd->dtd_name) + 1; |
| ctf_free(dtd->dtd_name, len); |
| fp->ctf_dtstrlen -= len; |
| } |
| |
| ctf_list_delete(&fp->ctf_dtdefs, dtd); |
| ctf_free(dtd, sizeof (ctf_dtdef_t)); |
| } |
| |
| ctf_dtdef_t * |
| ctf_dtd_lookup(ctf_file_t *fp, ctf_id_t type) |
| { |
| ulong_t h = type & (fp->ctf_dthashlen - 1); |
| ctf_dtdef_t *dtd; |
| |
| if (fp->ctf_dthash == NULL) |
| return (NULL); |
| |
| for (dtd = fp->ctf_dthash[h]; dtd != NULL; dtd = dtd->dtd_hash) { |
| if (dtd->dtd_type == type) |
| break; |
| } |
| |
| return (dtd); |
| } |
| |
| /* |
| * Discard all of the dynamic type definitions that have been added to the |
| * container since the last call to ctf_update(). We locate such types by |
| * scanning the list and deleting elements that have type IDs greater than |
| * ctf_dtoldid, which is set by ctf_update(), above. Note that to work properly |
| * with our reference counting schemes, we must delete the dynamic list in |
| * reverse. |
| */ |
| int |
| ctf_discard(ctf_file_t *fp) |
| { |
| ctf_dtdef_t *dtd, *ntd; |
| |
| if (!(fp->ctf_flags & LCTF_RDWR)) |
| return (ctf_set_errno(fp, ECTF_RDONLY)); |
| |
| if (!(fp->ctf_flags & LCTF_DIRTY)) |
| return (0); /* no update required */ |
| |
| for (dtd = ctf_list_prev(&fp->ctf_dtdefs); dtd != NULL; dtd = ntd) { |
| if (dtd->dtd_type <= fp->ctf_dtoldid) |
| continue; /* skip types that have been committed */ |
| |
| ntd = ctf_list_prev(dtd); |
| ctf_dtd_delete(fp, dtd); |
| } |
| |
| fp->ctf_dtnextid = fp->ctf_dtoldid + 1; |
| fp->ctf_flags &= ~LCTF_DIRTY; |
| |
| return (0); |
| } |
| |
| static ctf_id_t |
| ctf_add_generic(ctf_file_t *fp, uint_t flag, const char *name, ctf_dtdef_t **rp) |
| { |
| ctf_dtdef_t *dtd; |
| ctf_id_t type; |
| char *s = NULL; |
| |
| if (flag != CTF_ADD_NONROOT && flag != CTF_ADD_ROOT) |
| return (ctf_set_errno(fp, EINVAL)); |
| |
| if (!(fp->ctf_flags & LCTF_RDWR)) |
| return (ctf_set_errno(fp, ECTF_RDONLY)); |
| |
| if (CTF_INDEX_TO_TYPE(fp->ctf_dtnextid, 1) > CTF_MAX_TYPE) |
| return (ctf_set_errno(fp, ECTF_FULL)); |
| |
| if ((dtd = ctf_alloc(sizeof (ctf_dtdef_t))) == NULL) |
| return (ctf_set_errno(fp, EAGAIN)); |
| |
| if (name != NULL && (s = ctf_strdup(name)) == NULL) { |
| ctf_free(dtd, sizeof (ctf_dtdef_t)); |
| return (ctf_set_errno(fp, EAGAIN)); |
| } |
| |
| type = fp->ctf_dtnextid++; |
| type = CTF_INDEX_TO_TYPE(type, (fp->ctf_flags & LCTF_CHILD)); |
| |
| bzero(dtd, sizeof (ctf_dtdef_t)); |
| dtd->dtd_name = s; |
| dtd->dtd_type = type; |
| |
| if (s != NULL) |
| fp->ctf_dtstrlen += strlen(s) + 1; |
| |
| ctf_dtd_insert(fp, dtd); |
| fp->ctf_flags |= LCTF_DIRTY; |
| |
| *rp = dtd; |
| return (type); |
| } |
| |
| /* |
| * When encoding integer sizes, we want to convert a byte count in the range |
| * 1-8 to the closest power of 2 (e.g. 3->4, 5->8, etc). The clp2() function |
| * is a clever implementation from "Hacker's Delight" by Henry Warren, Jr. |
| */ |
| static size_t |
| clp2(size_t x) |
| { |
| x--; |
| |
| x |= (x >> 1); |
| x |= (x >> 2); |
| x |= (x >> 4); |
| x |= (x >> 8); |
| x |= (x >> 16); |
| |
| return (x + 1); |
| } |
| |
| static ctf_id_t |
| ctf_add_encoded(ctf_file_t *fp, uint_t flag, |
| const char *name, const ctf_encoding_t *ep, uint_t kind) |
| { |
| ctf_dtdef_t *dtd; |
| ctf_id_t type; |
| |
| if (ep == NULL) |
| return (ctf_set_errno(fp, EINVAL)); |
| |
| if ((type = ctf_add_generic(fp, flag, name, &dtd)) == CTF_ERR) |
| return (CTF_ERR); /* errno is set for us */ |
| |
| dtd->dtd_data.ctt_info = CTF_TYPE_INFO(kind, flag, 0); |
| dtd->dtd_data.ctt_size = clp2(P2ROUNDUP(ep->cte_bits, NBBY) / NBBY); |
| dtd->dtd_u.dtu_enc = *ep; |
| |
| return (type); |
| } |
| |
| static ctf_id_t |
| ctf_add_reftype(ctf_file_t *fp, uint_t flag, ctf_id_t ref, uint_t kind) |
| { |
| ctf_dtdef_t *dtd; |
| ctf_id_t type; |
| |
| if (ref == CTF_ERR || ref < 0 || ref > CTF_MAX_TYPE) |
| return (ctf_set_errno(fp, EINVAL)); |
| |
| if ((type = ctf_add_generic(fp, flag, NULL, &dtd)) == CTF_ERR) |
| return (CTF_ERR); /* errno is set for us */ |
| |
| ctf_ref_inc(fp, ref); |
| |
| dtd->dtd_data.ctt_info = CTF_TYPE_INFO(kind, flag, 0); |
| dtd->dtd_data.ctt_type = (ushort_t)ref; |
| |
| return (type); |
| } |
| |
| ctf_id_t |
| ctf_add_integer(ctf_file_t *fp, uint_t flag, |
| const char *name, const ctf_encoding_t *ep) |
| { |
| return (ctf_add_encoded(fp, flag, name, ep, CTF_K_INTEGER)); |
| } |
| |
| ctf_id_t |
| ctf_add_float(ctf_file_t *fp, uint_t flag, |
| const char *name, const ctf_encoding_t *ep) |
| { |
| return (ctf_add_encoded(fp, flag, name, ep, CTF_K_FLOAT)); |
| } |
| |
| ctf_id_t |
| ctf_add_pointer(ctf_file_t *fp, uint_t flag, ctf_id_t ref) |
| { |
| return (ctf_add_reftype(fp, flag, ref, CTF_K_POINTER)); |
| } |
| |
| ctf_id_t |
| ctf_add_array(ctf_file_t *fp, uint_t flag, const ctf_arinfo_t *arp) |
| { |
| ctf_dtdef_t *dtd; |
| ctf_id_t type; |
| ctf_file_t *fpd; |
| |
| if (arp == NULL) |
| return (ctf_set_errno(fp, EINVAL)); |
| |
| fpd = fp; |
| if (ctf_lookup_by_id(&fpd, arp->ctr_contents) == NULL && |
| ctf_dtd_lookup(fp, arp->ctr_contents) == NULL) |
| return (ctf_set_errno(fp, ECTF_BADID)); |
| |
| fpd = fp; |
| if (ctf_lookup_by_id(&fpd, arp->ctr_index) == NULL && |
| ctf_dtd_lookup(fp, arp->ctr_index) == NULL) |
| return (ctf_set_errno(fp, ECTF_BADID)); |
| |
| if ((type = ctf_add_generic(fp, flag, NULL, &dtd)) == CTF_ERR) |
| return (CTF_ERR); /* errno is set for us */ |
| |
| dtd->dtd_data.ctt_info = CTF_TYPE_INFO(CTF_K_ARRAY, flag, 0); |
| dtd->dtd_data.ctt_size = 0; |
| dtd->dtd_u.dtu_arr = *arp; |
| ctf_ref_inc(fp, arp->ctr_contents); |
| ctf_ref_inc(fp, arp->ctr_index); |
| |
| return (type); |
| } |
| |
| int |
| ctf_set_array(ctf_file_t *fp, ctf_id_t type, const ctf_arinfo_t *arp) |
| { |
| ctf_file_t *fpd; |
| ctf_dtdef_t *dtd = ctf_dtd_lookup(fp, type); |
| |
| if (!(fp->ctf_flags & LCTF_RDWR)) |
| return (ctf_set_errno(fp, ECTF_RDONLY)); |
| |
| if (dtd == NULL || CTF_INFO_KIND(dtd->dtd_data.ctt_info) != CTF_K_ARRAY) |
| return (ctf_set_errno(fp, ECTF_BADID)); |
| |
| fpd = fp; |
| if (ctf_lookup_by_id(&fpd, arp->ctr_contents) == NULL && |
| ctf_dtd_lookup(fp, arp->ctr_contents) == NULL) |
| return (ctf_set_errno(fp, ECTF_BADID)); |
| |
| fpd = fp; |
| if (ctf_lookup_by_id(&fpd, arp->ctr_index) == NULL && |
| ctf_dtd_lookup(fp, arp->ctr_index) == NULL) |
| return (ctf_set_errno(fp, ECTF_BADID)); |
| |
| ctf_ref_dec(fp, dtd->dtd_u.dtu_arr.ctr_contents); |
| ctf_ref_dec(fp, dtd->dtd_u.dtu_arr.ctr_index); |
| fp->ctf_flags |= LCTF_DIRTY; |
| dtd->dtd_u.dtu_arr = *arp; |
| ctf_ref_inc(fp, arp->ctr_contents); |
| ctf_ref_inc(fp, arp->ctr_index); |
| |
| return (0); |
| } |
| |
| ctf_id_t |
| ctf_add_function(ctf_file_t *fp, uint_t flag, |
| const ctf_funcinfo_t *ctc, const ctf_id_t *argv) |
| { |
| ctf_dtdef_t *dtd; |
| ctf_id_t type; |
| uint_t vlen; |
| int i; |
| ctf_id_t *vdat = NULL; |
| ctf_file_t *fpd; |
| |
| if (ctc == NULL || (ctc->ctc_flags & ~CTF_FUNC_VARARG) != 0 || |
| (ctc->ctc_argc != 0 && argv == NULL)) |
| return (ctf_set_errno(fp, EINVAL)); |
| |
| vlen = ctc->ctc_argc; |
| if (ctc->ctc_flags & CTF_FUNC_VARARG) |
| vlen++; /* add trailing zero to indicate varargs (see below) */ |
| |
| if (vlen > CTF_MAX_VLEN) |
| return (ctf_set_errno(fp, EOVERFLOW)); |
| |
| fpd = fp; |
| if (ctf_lookup_by_id(&fpd, ctc->ctc_return) == NULL && |
| ctf_dtd_lookup(fp, ctc->ctc_return) == NULL) |
| return (ctf_set_errno(fp, ECTF_BADID)); |
| |
| for (i = 0; i < ctc->ctc_argc; i++) { |
| fpd = fp; |
| if (ctf_lookup_by_id(&fpd, argv[i]) == NULL && |
| ctf_dtd_lookup(fp, argv[i]) == NULL) |
| return (ctf_set_errno(fp, ECTF_BADID)); |
| } |
| |
| if (vlen != 0 && (vdat = ctf_alloc(sizeof (ctf_id_t) * vlen)) == NULL) |
| return (ctf_set_errno(fp, EAGAIN)); |
| |
| if ((type = ctf_add_generic(fp, flag, NULL, &dtd)) == CTF_ERR) { |
| ctf_free(vdat, sizeof (ctf_id_t) * vlen); |
| return (CTF_ERR); /* errno is set for us */ |
| } |
| |
| dtd->dtd_data.ctt_info = CTF_TYPE_INFO(CTF_K_FUNCTION, flag, vlen); |
| dtd->dtd_data.ctt_type = (ushort_t)ctc->ctc_return; |
| |
| ctf_ref_inc(fp, ctc->ctc_return); |
| for (i = 0; i < ctc->ctc_argc; i++) |
| ctf_ref_inc(fp, argv[i]); |
| |
| bcopy(argv, vdat, sizeof (ctf_id_t) * ctc->ctc_argc); |
| if (ctc->ctc_flags & CTF_FUNC_VARARG) |
| vdat[vlen - 1] = 0; /* add trailing zero to indicate varargs */ |
| dtd->dtd_u.dtu_argv = vdat; |
| |
| return (type); |
| } |
| |
| ctf_id_t |
| ctf_add_struct(ctf_file_t *fp, uint_t flag, const char *name) |
| { |
| ctf_hash_t *hp = &fp->ctf_structs; |
| ctf_helem_t *hep = NULL; |
| ctf_dtdef_t *dtd; |
| ctf_id_t type; |
| |
| if (name != NULL) |
| hep = ctf_hash_lookup(hp, fp, name, strlen(name)); |
| |
| if (hep != NULL && ctf_type_kind(fp, hep->h_type) == CTF_K_FORWARD) |
| dtd = ctf_dtd_lookup(fp, type = hep->h_type); |
| else if ((type = ctf_add_generic(fp, flag, name, &dtd)) == CTF_ERR) |
| return (CTF_ERR); /* errno is set for us */ |
| |
| dtd->dtd_data.ctt_info = CTF_TYPE_INFO(CTF_K_STRUCT, flag, 0); |
| dtd->dtd_data.ctt_size = 0; |
| |
| return (type); |
| } |
| |
| ctf_id_t |
| ctf_add_union(ctf_file_t *fp, uint_t flag, const char *name) |
| { |
| ctf_hash_t *hp = &fp->ctf_unions; |
| ctf_helem_t *hep = NULL; |
| ctf_dtdef_t *dtd; |
| ctf_id_t type; |
| |
| if (name != NULL) |
| hep = ctf_hash_lookup(hp, fp, name, strlen(name)); |
| |
| if (hep != NULL && ctf_type_kind(fp, hep->h_type) == CTF_K_FORWARD) |
| dtd = ctf_dtd_lookup(fp, type = hep->h_type); |
| else if ((type = ctf_add_generic(fp, flag, name, &dtd)) == CTF_ERR) |
| return (CTF_ERR); /* errno is set for us */ |
| |
| dtd->dtd_data.ctt_info = CTF_TYPE_INFO(CTF_K_UNION, flag, 0); |
| dtd->dtd_data.ctt_size = 0; |
| |
| return (type); |
| } |
| |
| ctf_id_t |
| ctf_add_enum(ctf_file_t *fp, uint_t flag, const char *name) |
| { |
| ctf_hash_t *hp = &fp->ctf_enums; |
| ctf_helem_t *hep = NULL; |
| ctf_dtdef_t *dtd; |
| ctf_id_t type; |
| |
| if (name != NULL) |
| hep = ctf_hash_lookup(hp, fp, name, strlen(name)); |
| |
| if (hep != NULL && ctf_type_kind(fp, hep->h_type) == CTF_K_FORWARD) |
| dtd = ctf_dtd_lookup(fp, type = hep->h_type); |
| else if ((type = ctf_add_generic(fp, flag, name, &dtd)) == CTF_ERR) |
| return (CTF_ERR); /* errno is set for us */ |
| |
| dtd->dtd_data.ctt_info = CTF_TYPE_INFO(CTF_K_ENUM, flag, 0); |
| dtd->dtd_data.ctt_size = fp->ctf_dmodel->ctd_int; |
| |
| return (type); |
| } |
| |
| ctf_id_t |
| ctf_add_forward(ctf_file_t *fp, uint_t flag, const char *name, uint_t kind) |
| { |
| ctf_hash_t *hp; |
| ctf_helem_t *hep; |
| ctf_dtdef_t *dtd; |
| ctf_id_t type; |
| |
| switch (kind) { |
| case CTF_K_STRUCT: |
| hp = &fp->ctf_structs; |
| break; |
| case CTF_K_UNION: |
| hp = &fp->ctf_unions; |
| break; |
| case CTF_K_ENUM: |
| hp = &fp->ctf_enums; |
| break; |
| default: |
| return (ctf_set_errno(fp, ECTF_NOTSUE)); |
| } |
| |
| /* |
| * If the type is already defined or exists as a forward tag, just |
| * return the ctf_id_t of the existing definition. |
| */ |
| if (name != NULL && (hep = ctf_hash_lookup(hp, |
| fp, name, strlen(name))) != NULL) |
| return (hep->h_type); |
| |
| if ((type = ctf_add_generic(fp, flag, name, &dtd)) == CTF_ERR) |
| return (CTF_ERR); /* errno is set for us */ |
| |
| dtd->dtd_data.ctt_info = CTF_TYPE_INFO(CTF_K_FORWARD, flag, 0); |
| dtd->dtd_data.ctt_type = kind; |
| |
| return (type); |
| } |
| |
| ctf_id_t |
| ctf_add_typedef(ctf_file_t *fp, uint_t flag, const char *name, ctf_id_t ref) |
| { |
| ctf_dtdef_t *dtd; |
| ctf_id_t type; |
| ctf_file_t *fpd; |
| |
| fpd = fp; |
| if (ref == CTF_ERR || (ctf_lookup_by_id(&fpd, ref) == NULL && |
| ctf_dtd_lookup(fp, ref) == NULL)) |
| return (ctf_set_errno(fp, EINVAL)); |
| |
| if ((type = ctf_add_generic(fp, flag, name, &dtd)) == CTF_ERR) |
| return (CTF_ERR); /* errno is set for us */ |
| |
| dtd->dtd_data.ctt_info = CTF_TYPE_INFO(CTF_K_TYPEDEF, flag, 0); |
| dtd->dtd_data.ctt_type = (ushort_t)ref; |
| ctf_ref_inc(fp, ref); |
| |
| return (type); |
| } |
| |
| ctf_id_t |
| ctf_add_volatile(ctf_file_t *fp, uint_t flag, ctf_id_t ref) |
| { |
| return (ctf_add_reftype(fp, flag, ref, CTF_K_VOLATILE)); |
| } |
| |
| ctf_id_t |
| ctf_add_const(ctf_file_t *fp, uint_t flag, ctf_id_t ref) |
| { |
| return (ctf_add_reftype(fp, flag, ref, CTF_K_CONST)); |
| } |
| |
| ctf_id_t |
| ctf_add_restrict(ctf_file_t *fp, uint_t flag, ctf_id_t ref) |
| { |
| return (ctf_add_reftype(fp, flag, ref, CTF_K_RESTRICT)); |
| } |
| |
| int |
| ctf_add_enumerator(ctf_file_t *fp, ctf_id_t enid, const char *name, int value) |
| { |
| ctf_dtdef_t *dtd = ctf_dtd_lookup(fp, enid); |
| ctf_dmdef_t *dmd; |
| |
| uint_t kind, vlen, root; |
| char *s; |
| |
| if (name == NULL) |
| return (ctf_set_errno(fp, EINVAL)); |
| |
| if (!(fp->ctf_flags & LCTF_RDWR)) |
| return (ctf_set_errno(fp, ECTF_RDONLY)); |
| |
| if (dtd == NULL) |
| return (ctf_set_errno(fp, ECTF_BADID)); |
| |
| kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info); |
| root = CTF_INFO_ISROOT(dtd->dtd_data.ctt_info); |
| vlen = CTF_INFO_VLEN(dtd->dtd_data.ctt_info); |
| |
| if (kind != CTF_K_ENUM) |
| return (ctf_set_errno(fp, ECTF_NOTENUM)); |
| |
| if (vlen == CTF_MAX_VLEN) |
| return (ctf_set_errno(fp, ECTF_DTFULL)); |
| |
| for (dmd = ctf_list_next(&dtd->dtd_u.dtu_members); |
| dmd != NULL; dmd = ctf_list_next(dmd)) { |
| if (strcmp(dmd->dmd_name, name) == 0) |
| return (ctf_set_errno(fp, ECTF_DUPMEMBER)); |
| } |
| |
| if ((dmd = ctf_alloc(sizeof (ctf_dmdef_t))) == NULL) |
| return (ctf_set_errno(fp, EAGAIN)); |
| |
| if ((s = ctf_strdup(name)) == NULL) { |
| ctf_free(dmd, sizeof (ctf_dmdef_t)); |
| return (ctf_set_errno(fp, EAGAIN)); |
| } |
| |
| dmd->dmd_name = s; |
| dmd->dmd_type = CTF_ERR; |
| dmd->dmd_offset = 0; |
| dmd->dmd_value = value; |
| |
| dtd->dtd_data.ctt_info = CTF_TYPE_INFO(kind, root, vlen + 1); |
| ctf_list_append(&dtd->dtd_u.dtu_members, dmd); |
| |
| fp->ctf_dtstrlen += strlen(s) + 1; |
| fp->ctf_flags |= LCTF_DIRTY; |
| |
| return (0); |
| } |
| |
| int |
| ctf_add_member(ctf_file_t *fp, ctf_id_t souid, const char *name, ctf_id_t type) |
| { |
| ctf_dtdef_t *dtd = ctf_dtd_lookup(fp, souid); |
| ctf_dmdef_t *dmd; |
| |
| ssize_t msize, malign, ssize; |
| uint_t kind, vlen, root; |
| char *s = NULL; |
| |
| if (!(fp->ctf_flags & LCTF_RDWR)) |
| return (ctf_set_errno(fp, ECTF_RDONLY)); |
| |
| if (dtd == NULL) |
| return (ctf_set_errno(fp, ECTF_BADID)); |
| |
| kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info); |
| root = CTF_INFO_ISROOT(dtd->dtd_data.ctt_info); |
| vlen = CTF_INFO_VLEN(dtd->dtd_data.ctt_info); |
| |
| if (kind != CTF_K_STRUCT && kind != CTF_K_UNION) |
| return (ctf_set_errno(fp, ECTF_NOTSOU)); |
| |
| if (vlen == CTF_MAX_VLEN) |
| return (ctf_set_errno(fp, ECTF_DTFULL)); |
| |
| if (name != NULL) { |
| for (dmd = ctf_list_next(&dtd->dtd_u.dtu_members); |
| dmd != NULL; dmd = ctf_list_next(dmd)) { |
| if (dmd->dmd_name != NULL && |
| strcmp(dmd->dmd_name, name) == 0) |
| return (ctf_set_errno(fp, ECTF_DUPMEMBER)); |
| } |
| } |
| |
| if ((msize = ctf_type_size(fp, type)) == CTF_ERR || |
| (malign = ctf_type_align(fp, type)) == CTF_ERR) |
| return (CTF_ERR); /* errno is set for us */ |
| |
| if ((dmd = ctf_alloc(sizeof (ctf_dmdef_t))) == NULL) |
| return (ctf_set_errno(fp, EAGAIN)); |
| |
| if (name != NULL && (s = ctf_strdup(name)) == NULL) { |
| ctf_free(dmd, sizeof (ctf_dmdef_t)); |
| return (ctf_set_errno(fp, EAGAIN)); |
| } |
| |
| dmd->dmd_name = s; |
| dmd->dmd_type = type; |
| dmd->dmd_value = -1; |
| |
| if (kind == CTF_K_STRUCT && vlen != 0) { |
| ctf_dmdef_t *lmd = ctf_list_prev(&dtd->dtd_u.dtu_members); |
| ctf_id_t ltype = ctf_type_resolve(fp, lmd->dmd_type); |
| size_t off = lmd->dmd_offset; |
| |
| ctf_encoding_t linfo; |
| ssize_t lsize; |
| |
| if (ctf_type_encoding(fp, ltype, &linfo) != CTF_ERR) |
| off += linfo.cte_bits; |
| else if ((lsize = ctf_type_size(fp, ltype)) != CTF_ERR) |
| off += lsize * NBBY; |
| |
| /* |
| * Round up the offset of the end of the last member to the |
| * next byte boundary, convert 'off' to bytes, and then round |
| * it up again to the next multiple of the alignment required |
| * by the new member. Finally, convert back to bits and store |
| * the result in dmd_offset. Technically we could do more |
| * efficient packing if the new member is a bit-field, but |
| * we're the "compiler" and ANSI says we can do as we choose. |
| */ |
| off = roundup(off, NBBY) / NBBY; |
| off = roundup(off, MAX(malign, 1)); |
| dmd->dmd_offset = off * NBBY; |
| ssize = off + msize; |
| } else { |
| dmd->dmd_offset = 0; |
| ssize = ctf_get_ctt_size(fp, &dtd->dtd_data, NULL, NULL); |
| ssize = MAX(ssize, msize); |
| } |
| |
| if (ssize > CTF_MAX_SIZE) { |
| dtd->dtd_data.ctt_size = CTF_LSIZE_SENT; |
| dtd->dtd_data.ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI(ssize); |
| dtd->dtd_data.ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO(ssize); |
| } else |
| dtd->dtd_data.ctt_size = (ushort_t)ssize; |
| |
| dtd->dtd_data.ctt_info = CTF_TYPE_INFO(kind, root, vlen + 1); |
| ctf_list_append(&dtd->dtd_u.dtu_members, dmd); |
| |
| if (s != NULL) |
| fp->ctf_dtstrlen += strlen(s) + 1; |
| |
| ctf_ref_inc(fp, type); |
| fp->ctf_flags |= LCTF_DIRTY; |
| return (0); |
| } |
| |
| /* |
| * This removes a type from the dynamic section. This will fail if the type is |
| * referenced by another type. Note that the CTF ID is never reused currently by |
| * CTF. Note that if this container is a parent container then we just outright |
| * refuse to remove the type. There currently is no notion of searching for the |
| * ctf_dtdef_t in parent containers. If there is, then this constraint could |
| * become finer grained. |
| */ |
| int |
| ctf_delete_type(ctf_file_t *fp, ctf_id_t type) |
| { |
| ctf_file_t *fpd; |
| ctf_dtdef_t *dtd = ctf_dtd_lookup(fp, type); |
| |
| if (!(fp->ctf_flags & LCTF_RDWR)) |
| return (ctf_set_errno(fp, ECTF_RDONLY)); |
| |
| /* |
| * We want to give as useful an errno as possible. That means that we |
| * want to distinguish between a type which does not exist and one for |
| * which the type is not dynamic. |
| */ |
| fpd = fp; |
| if (ctf_lookup_by_id(&fpd, type) == NULL && |
| ctf_dtd_lookup(fp, type) == NULL) |
| return (CTF_ERR); /* errno is set for us */ |
| |
| if (dtd == NULL) |
| return (ctf_set_errno(fp, ECTF_NOTDYN)); |
| |
| if (dtd->dtd_ref != 0 || fp->ctf_refcnt > 1) |
| return (ctf_set_errno(fp, ECTF_REFERENCED)); |
| |
| ctf_dtd_delete(fp, dtd); |
| fp->ctf_flags |= LCTF_DIRTY; |
| return (0); |
| } |
| |
| static int |
| enumcmp(const char *name, int value, void *arg) |
| { |
| ctf_bundle_t *ctb = arg; |
| int bvalue; |
| |
| return (ctf_enum_value(ctb->ctb_file, ctb->ctb_type, |
| name, &bvalue) == CTF_ERR || value != bvalue); |
| } |
| |
| static int |
| enumadd(const char *name, int value, void *arg) |
| { |
| ctf_bundle_t *ctb = arg; |
| |
| return (ctf_add_enumerator(ctb->ctb_file, ctb->ctb_type, |
| name, value) == CTF_ERR); |
| } |
| |
| /*ARGSUSED*/ |
| static int |
| membcmp(const char *name, ctf_id_t type, ulong_t offset, void *arg) |
| { |
| ctf_bundle_t *ctb = arg; |
| ctf_membinfo_t ctm; |
| |
| return (ctf_member_info(ctb->ctb_file, ctb->ctb_type, |
| name, &ctm) == CTF_ERR || ctm.ctm_offset != offset); |
| } |
| |
| static int |
| membadd(const char *name, ctf_id_t type, ulong_t offset, void *arg) |
| { |
| ctf_bundle_t *ctb = arg; |
| ctf_dmdef_t *dmd; |
| char *s = NULL; |
| |
| if ((dmd = ctf_alloc(sizeof (ctf_dmdef_t))) == NULL) |
| return (ctf_set_errno(ctb->ctb_file, EAGAIN)); |
| |
| if (name != NULL && (s = ctf_strdup(name)) == NULL) { |
| ctf_free(dmd, sizeof (ctf_dmdef_t)); |
| return (ctf_set_errno(ctb->ctb_file, EAGAIN)); |
| } |
| |
| /* |
| * For now, dmd_type is copied as the src_fp's type; it is reset to an |
| * equivalent dst_fp type by a final loop in ctf_add_type(), below. |
| */ |
| dmd->dmd_name = s; |
| dmd->dmd_type = type; |
| dmd->dmd_offset = offset; |
| dmd->dmd_value = -1; |
| |
| ctf_list_append(&ctb->ctb_dtd->dtd_u.dtu_members, dmd); |
| |
| if (s != NULL) |
| ctb->ctb_file->ctf_dtstrlen += strlen(s) + 1; |
| |
| ctb->ctb_file->ctf_flags |= LCTF_DIRTY; |
| return (0); |
| } |
| |
| /* |
| * The ctf_add_type routine is used to copy a type from a source CTF container |
| * to a dynamic destination container. This routine operates recursively by |
| * following the source type's links and embedded member types. If the |
| * destination container already contains a named type which has the same |
| * attributes, then we succeed and return this type but no changes occur. |
| */ |
| ctf_id_t |
| ctf_add_type(ctf_file_t *dst_fp, ctf_file_t *src_fp, ctf_id_t src_type) |
| { |
| ctf_id_t dst_type = CTF_ERR; |
| uint_t dst_kind = CTF_K_UNKNOWN; |
| |
| const ctf_type_t *tp; |
| const char *name; |
| uint_t kind, flag, vlen; |
| |
| ctf_bundle_t src, dst; |
| ctf_encoding_t src_en, dst_en; |
| ctf_arinfo_t src_ar, dst_ar; |
| |
| ctf_dtdef_t *dtd; |
| ctf_funcinfo_t ctc; |
| ssize_t size; |
| |
| ctf_hash_t *hp; |
| ctf_helem_t *hep; |
| |
| if (dst_fp == src_fp) |
| return (src_type); |
| |
| if (!(dst_fp->ctf_flags & LCTF_RDWR)) |
| return (ctf_set_errno(dst_fp, ECTF_RDONLY)); |
| |
| if ((tp = ctf_lookup_by_id(&src_fp, src_type)) == NULL) |
| return (ctf_set_errno(dst_fp, ctf_errno(src_fp))); |
| |
| name = ctf_strptr(src_fp, tp->ctt_name); |
| kind = LCTF_INFO_KIND(src_fp, tp->ctt_info); |
| flag = LCTF_INFO_ROOT(src_fp, tp->ctt_info); |
| vlen = LCTF_INFO_VLEN(src_fp, tp->ctt_info); |
| |
| switch (kind) { |
| case CTF_K_STRUCT: |
| hp = &dst_fp->ctf_structs; |
| break; |
| case CTF_K_UNION: |
| hp = &dst_fp->ctf_unions; |
| break; |
| case CTF_K_ENUM: |
| hp = &dst_fp->ctf_enums; |
| break; |
| default: |
| hp = &dst_fp->ctf_names; |
| break; |
| } |
| |
| /* |
| * If the source type has a name and is a root type (visible at the |
| * top-level scope), lookup the name in the destination container and |
| * verify that it is of the same kind before we do anything else. |
| */ |
| if ((flag & CTF_ADD_ROOT) && name[0] != '\0' && |
| (hep = ctf_hash_lookup(hp, dst_fp, name, strlen(name))) != NULL) { |
| dst_type = (ctf_id_t)hep->h_type; |
| dst_kind = ctf_type_kind(dst_fp, dst_type); |
| } |
| |
| /* |
| * If an identically named dst_type exists, fail with ECTF_CONFLICT |
| * unless dst_type is a forward declaration and src_type is a struct, |
| * union, or enum (i.e. the definition of the previous forward decl). |
| */ |
| if (dst_type != CTF_ERR && dst_kind != kind && ( |
| dst_kind != CTF_K_FORWARD || (kind != CTF_K_ENUM && |
| kind != CTF_K_STRUCT && kind != CTF_K_UNION))) |
| return (ctf_set_errno(dst_fp, ECTF_CONFLICT)); |
| |
| /* |
| * If the non-empty name was not found in the appropriate hash, search |
| * the list of pending dynamic definitions that are not yet committed. |
| * If a matching name and kind are found, assume this is the type that |
| * we are looking for. This is necessary to permit ctf_add_type() to |
| * operate recursively on entities such as a struct that contains a |
| * pointer member that refers to the same struct type. |
| */ |
| if (dst_type == CTF_ERR && name[0] != '\0') { |
| for (dtd = ctf_list_prev(&dst_fp->ctf_dtdefs); dtd != NULL && |
| dtd->dtd_type > dst_fp->ctf_dtoldid; |
| dtd = ctf_list_prev(dtd)) { |
| if (CTF_INFO_KIND(dtd->dtd_data.ctt_info) == kind && |
| dtd->dtd_name != NULL && |
| strcmp(dtd->dtd_name, name) == 0) |
| return (dtd->dtd_type); |
| } |
| } |
| |
| src.ctb_file = src_fp; |
| src.ctb_type = src_type; |
| src.ctb_dtd = NULL; |
| |
| dst.ctb_file = dst_fp; |
| dst.ctb_type = dst_type; |
| dst.ctb_dtd = NULL; |
| |
| /* |
| * Now perform kind-specific processing. If dst_type is CTF_ERR, then |
| * we add a new type with the same properties as src_type to dst_fp. |
| * If dst_type is not CTF_ERR, then we verify that dst_type has the |
| * same attributes as src_type. We recurse for embedded references. |
| */ |
| switch (kind) { |
| case CTF_K_INTEGER: |
| case CTF_K_FLOAT: |
| if (ctf_type_encoding(src_fp, src_type, &src_en) != 0) |
| return (ctf_set_errno(dst_fp, ctf_errno(src_fp))); |
| |
| if (dst_type != CTF_ERR) { |
| if (ctf_type_encoding(dst_fp, dst_type, &dst_en) != 0) |
| return (CTF_ERR); /* errno is set for us */ |
| |
| if (bcmp(&src_en, &dst_en, sizeof (ctf_encoding_t))) |
| return (ctf_set_errno(dst_fp, ECTF_CONFLICT)); |
| |
| } else if (kind == CTF_K_INTEGER) { |
| dst_type = ctf_add_integer(dst_fp, flag, name, &src_en); |
| } else |
| dst_type = ctf_add_float(dst_fp, flag, name, &src_en); |
| break; |
| |
| case CTF_K_POINTER: |
| case CTF_K_VOLATILE: |
| case CTF_K_CONST: |
| case CTF_K_RESTRICT: |
| src_type = ctf_type_reference(src_fp, src_type); |
| src_type = ctf_add_type(dst_fp, src_fp, src_type); |
| |
| if (src_type == CTF_ERR) |
| return (CTF_ERR); /* errno is set for us */ |
| |
| dst_type = ctf_add_reftype(dst_fp, flag, src_type, kind); |
| break; |
| |
| case CTF_K_ARRAY: |
| if (ctf_array_info(src_fp, src_type, &src_ar) == CTF_ERR) |
| return (ctf_set_errno(dst_fp, ctf_errno(src_fp))); |
| |
| src_ar.ctr_contents = |
| ctf_add_type(dst_fp, src_fp, src_ar.ctr_contents); |
| src_ar.ctr_index = |
| ctf_add_type(dst_fp, src_fp, src_ar.ctr_index); |
| src_ar.ctr_nelems = src_ar.ctr_nelems; |
| |
| if (src_ar.ctr_contents == CTF_ERR || |
| src_ar.ctr_index == CTF_ERR) |
| return (CTF_ERR); /* errno is set for us */ |
| |
| if (dst_type != CTF_ERR) { |
| if (ctf_array_info(dst_fp, dst_type, &dst_ar) != 0) |
| return (CTF_ERR); /* errno is set for us */ |
| |
| if (bcmp(&src_ar, &dst_ar, sizeof (ctf_arinfo_t))) |
| return (ctf_set_errno(dst_fp, ECTF_CONFLICT)); |
| } else |
| dst_type = ctf_add_array(dst_fp, flag, &src_ar); |
| break; |
| |
| case CTF_K_FUNCTION: |
| ctc.ctc_return = ctf_add_type(dst_fp, src_fp, tp->ctt_type); |
| ctc.ctc_argc = 0; |
| ctc.ctc_flags = 0; |
| |
| if (ctc.ctc_return == CTF_ERR) |
| return (CTF_ERR); /* errno is set for us */ |
| |
| dst_type = ctf_add_function(dst_fp, flag, &ctc, NULL); |
| break; |
| |
| case CTF_K_STRUCT: |
| case CTF_K_UNION: { |
| ctf_dmdef_t *dmd; |
| int errs = 0; |
| |
| /* |
| * Technically to match a struct or union we need to check both |
| * ways (src members vs. dst, dst members vs. src) but we make |
| * this more optimal by only checking src vs. dst and comparing |
| * the total size of the structure (which we must do anyway) |
| * which covers the possibility of dst members not in src. |
| * This optimization can be defeated for unions, but is so |
| * pathological as to render it irrelevant for our purposes. |
| */ |
| if (dst_type != CTF_ERR && dst_kind != CTF_K_FORWARD) { |
| if (ctf_type_size(src_fp, src_type) != |
| ctf_type_size(dst_fp, dst_type)) |
| return (ctf_set_errno(dst_fp, ECTF_CONFLICT)); |
| |
| if (ctf_member_iter(src_fp, src_type, membcmp, &dst)) |
| return (ctf_set_errno(dst_fp, ECTF_CONFLICT)); |
| |
| break; |
| } |
| |
| /* |
| * Unlike the other cases, copying structs and unions is done |
| * manually so as to avoid repeated lookups in ctf_add_member |
| * and to ensure the exact same member offsets as in src_type. |
| */ |
| dst_type = ctf_add_generic(dst_fp, flag, name, &dtd); |
| if (dst_type == CTF_ERR) |
| return (CTF_ERR); /* errno is set for us */ |
| |
| dst.ctb_type = dst_type; |
| dst.ctb_dtd = dtd; |
| |
| if (ctf_member_iter(src_fp, src_type, membadd, &dst) != 0) |
| errs++; /* increment errs and fail at bottom of case */ |
| |
| if ((size = ctf_type_size(src_fp, src_type)) > CTF_MAX_SIZE) { |
| dtd->dtd_data.ctt_size = CTF_LSIZE_SENT; |
| dtd->dtd_data.ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI(size); |
| dtd->dtd_data.ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO(size); |
| } else |
| dtd->dtd_data.ctt_size = (ushort_t)size; |
| |
| dtd->dtd_data.ctt_info = CTF_TYPE_INFO(kind, flag, vlen); |
| |
| /* |
| * Make a final pass through the members changing each dmd_type |
| * (a src_fp type) to an equivalent type in dst_fp. We pass |
| * through all members, leaving any that fail set to CTF_ERR. |
| */ |
| for (dmd = ctf_list_next(&dtd->dtd_u.dtu_members); |
| dmd != NULL; dmd = ctf_list_next(dmd)) { |
| if ((dmd->dmd_type = ctf_add_type(dst_fp, src_fp, |
| dmd->dmd_type)) == CTF_ERR) |
| errs++; |
| } |
| |
| if (errs) |
| return (CTF_ERR); /* errno is set for us */ |
| |
| /* |
| * Now that we know that we can't fail, we go through and bump |
| * all the reference counts on the member types. |
| */ |
| for (dmd = ctf_list_next(&dtd->dtd_u.dtu_members); |
| dmd != NULL; dmd = ctf_list_next(dmd)) |
| ctf_ref_inc(dst_fp, dmd->dmd_type); |
| break; |
| } |
| |
| case CTF_K_ENUM: |
| if (dst_type != CTF_ERR && dst_kind != CTF_K_FORWARD) { |
| if (ctf_enum_iter(src_fp, src_type, enumcmp, &dst) || |
| ctf_enum_iter(dst_fp, dst_type, enumcmp, &src)) |
| return (ctf_set_errno(dst_fp, ECTF_CONFLICT)); |
| } else { |
| dst_type = ctf_add_enum(dst_fp, flag, name); |
| if ((dst.ctb_type = dst_type) == CTF_ERR || |
| ctf_enum_iter(src_fp, src_type, enumadd, &dst)) |
| return (CTF_ERR); /* errno is set for us */ |
| } |
| break; |
| |
| case CTF_K_FORWARD: |
| if (dst_type == CTF_ERR) { |
| dst_type = ctf_add_forward(dst_fp, |
| flag, name, CTF_K_STRUCT); /* assume STRUCT */ |
| } |
| break; |
| |
| case CTF_K_TYPEDEF: |
| src_type = ctf_type_reference(src_fp, src_type); |
| src_type = ctf_add_type(dst_fp, src_fp, src_type); |
| |
| if (src_type == CTF_ERR) |
| return (CTF_ERR); /* errno is set for us */ |
| |
| /* |
| * If dst_type is not CTF_ERR at this point, we should check if |
| * ctf_type_reference(dst_fp, dst_type) != src_type and if so |
| * fail with ECTF_CONFLICT. However, this causes problems with |
| * <sys/types.h> typedefs that vary based on things like if |
| * _ILP32x then pid_t is int otherwise long. We therefore omit |
| * this check and assume that if the identically named typedef |
| * already exists in dst_fp, it is correct or equivalent. |
| */ |
| if (dst_type == CTF_ERR) { |
| dst_type = ctf_add_typedef(dst_fp, flag, |
| name, src_type); |
| } |
| break; |
| |
| default: |
| return (ctf_set_errno(dst_fp, ECTF_CORRUPT)); |
| } |
| |
| return (dst_type); |
| } |