blob: 5f3e61b8ccf53a1a8f405a002ef7c988c0a92cb9 [file] [log] [blame]
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright 2013 Nexenta Systems, Inc. All rights reserved.
* Copyright 2014, OmniTI Computer Consulting, Inc. All rights reserved.
*/
/* Copyright (c) 1990 Mentat Inc. */
#include <sys/sysmacros.h>
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/strlog.h>
#include <sys/strsun.h>
#define _SUN_TPI_VERSION 2
#include <sys/tihdr.h>
#include <sys/timod.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/strsubr.h>
#include <sys/suntpi.h>
#include <sys/xti_inet.h>
#include <sys/kmem.h>
#include <sys/cred_impl.h>
#include <sys/policy.h>
#include <sys/priv.h>
#include <sys/ucred.h>
#include <sys/zone.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sockio.h>
#include <sys/vtrace.h>
#include <sys/sdt.h>
#include <sys/debug.h>
#include <sys/isa_defs.h>
#include <sys/random.h>
#include <netinet/in.h>
#include <netinet/ip6.h>
#include <netinet/icmp6.h>
#include <netinet/udp.h>
#include <inet/common.h>
#include <inet/ip.h>
#include <inet/ip_impl.h>
#include <inet/ipsec_impl.h>
#include <inet/ip6.h>
#include <inet/ip_ire.h>
#include <inet/ip_if.h>
#include <inet/ip_multi.h>
#include <inet/ip_ndp.h>
#include <inet/proto_set.h>
#include <inet/mib2.h>
#include <inet/optcom.h>
#include <inet/snmpcom.h>
#include <inet/kstatcom.h>
#include <inet/ipclassifier.h>
#include <sys/squeue_impl.h>
#include <inet/ipnet.h>
#include <sys/ethernet.h>
#include <sys/tsol/label.h>
#include <sys/tsol/tnet.h>
#include <rpc/pmap_prot.h>
#include <inet/udp_impl.h>
/*
* Synchronization notes:
*
* UDP is MT and uses the usual kernel synchronization primitives. There are 2
* locks, the fanout lock (uf_lock) and conn_lock. conn_lock
* protects the contents of the udp_t. uf_lock protects the address and the
* fanout information.
* The lock order is conn_lock -> uf_lock.
*
* The fanout lock uf_lock:
* When a UDP endpoint is bound to a local port, it is inserted into
* a bind hash list. The list consists of an array of udp_fanout_t buckets.
* The size of the array is controlled by the udp_bind_fanout_size variable.
* This variable can be changed in /etc/system if the default value is
* not large enough. Each bind hash bucket is protected by a per bucket
* lock. It protects the udp_bind_hash and udp_ptpbhn fields in the udp_t
* structure and a few other fields in the udp_t. A UDP endpoint is removed
* from the bind hash list only when it is being unbound or being closed.
* The per bucket lock also protects a UDP endpoint's state changes.
*
* Plumbing notes:
* UDP is always a device driver. For compatibility with mibopen() code
* it is possible to I_PUSH "udp", but that results in pushing a passthrough
* dummy module.
*
* The above implies that we don't support any intermediate module to
* reside in between /dev/ip and udp -- in fact, we never supported such
* scenario in the past as the inter-layer communication semantics have
* always been private.
*/
/* For /etc/system control */
uint_t udp_bind_fanout_size = UDP_BIND_FANOUT_SIZE;
static void udp_addr_req(queue_t *q, mblk_t *mp);
static void udp_tpi_bind(queue_t *q, mblk_t *mp);
static void udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp);
static void udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock);
static int udp_build_hdr_template(conn_t *, const in6_addr_t *,
const in6_addr_t *, in_port_t, uint32_t);
static void udp_capability_req(queue_t *q, mblk_t *mp);
static int udp_tpi_close(queue_t *q, int flags, cred_t *);
static void udp_close_free(conn_t *);
static void udp_tpi_connect(queue_t *q, mblk_t *mp);
static void udp_tpi_disconnect(queue_t *q, mblk_t *mp);
static void udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error,
int sys_error);
static void udp_err_ack_prim(queue_t *q, mblk_t *mp, t_scalar_t primitive,
t_scalar_t tlierr, int sys_error);
static int udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
cred_t *cr);
static int udp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
char *value, caddr_t cp, cred_t *cr);
static int udp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
char *value, caddr_t cp, cred_t *cr);
static void udp_icmp_input(void *, mblk_t *, void *, ip_recv_attr_t *);
static void udp_icmp_error_ipv6(conn_t *connp, mblk_t *mp,
ip_recv_attr_t *ira);
static void udp_info_req(queue_t *q, mblk_t *mp);
static void udp_input(void *, mblk_t *, void *, ip_recv_attr_t *);
static int udp_lrput(queue_t *, mblk_t *);
static int udp_lwput(queue_t *, mblk_t *);
static int udp_open(queue_t *q, dev_t *devp, int flag, int sflag,
cred_t *credp, boolean_t isv6);
static int udp_openv4(queue_t *q, dev_t *devp, int flag, int sflag,
cred_t *credp);
static int udp_openv6(queue_t *q, dev_t *devp, int flag, int sflag,
cred_t *credp);
static boolean_t udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name);
int udp_opt_set(conn_t *connp, uint_t optset_context,
int level, int name, uint_t inlen,
uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
void *thisdg_attrs, cred_t *cr);
int udp_opt_get(conn_t *connp, int level, int name,
uchar_t *ptr);
static int udp_output_connected(conn_t *connp, mblk_t *mp, cred_t *cr,
pid_t pid);
static int udp_output_lastdst(conn_t *connp, mblk_t *mp, cred_t *cr,
pid_t pid, ip_xmit_attr_t *ixa);
static int udp_output_newdst(conn_t *connp, mblk_t *data_mp, sin_t *sin,
sin6_t *sin6, ushort_t ipversion, cred_t *cr, pid_t,
ip_xmit_attr_t *ixa);
static mblk_t *udp_prepend_hdr(conn_t *, ip_xmit_attr_t *, const ip_pkt_t *,
const in6_addr_t *, const in6_addr_t *, in_port_t, uint32_t, mblk_t *,
int *);
static mblk_t *udp_prepend_header_template(conn_t *, ip_xmit_attr_t *,
mblk_t *, const in6_addr_t *, in_port_t, uint32_t, int *);
static void udp_ud_err(queue_t *q, mblk_t *mp, t_scalar_t err);
static void udp_ud_err_connected(conn_t *, t_scalar_t);
static void udp_tpi_unbind(queue_t *q, mblk_t *mp);
static in_port_t udp_update_next_port(udp_t *udp, in_port_t port,
boolean_t random);
static void udp_wput_other(queue_t *q, mblk_t *mp);
static void udp_wput_iocdata(queue_t *q, mblk_t *mp);
static int udp_wput_fallback(queue_t *q, mblk_t *mp);
static size_t udp_set_rcv_hiwat(udp_t *udp, size_t size);
static void *udp_stack_init(netstackid_t stackid, netstack_t *ns);
static void udp_stack_fini(netstackid_t stackid, void *arg);
/* Common routines for TPI and socket module */
static void udp_ulp_recv(conn_t *, mblk_t *, uint_t, ip_recv_attr_t *);
/* Common routine for TPI and socket module */
static conn_t *udp_do_open(cred_t *, boolean_t, int, int *);
static void udp_do_close(conn_t *);
static int udp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *,
boolean_t);
static int udp_do_unbind(conn_t *);
int udp_getsockname(sock_lower_handle_t,
struct sockaddr *, socklen_t *, cred_t *);
int udp_getpeername(sock_lower_handle_t,
struct sockaddr *, socklen_t *, cred_t *);
static int udp_do_connect(conn_t *, const struct sockaddr *, socklen_t,
cred_t *, pid_t);
#pragma inline(udp_output_connected, udp_output_newdst, udp_output_lastdst)
/*
* Checks if the given destination addr/port is allowed out.
* If allowed, registers the (dest_addr/port, node_ID) mapping at Cluster.
* Called for each connect() and for sendto()/sendmsg() to a different
* destination.
* For connect(), called in udp_connect().
* For sendto()/sendmsg(), called in udp_output_newdst().
*
* This macro assumes that the cl_inet_connect2 hook is not NULL.
* Please check this before calling this macro.
*
* void
* CL_INET_UDP_CONNECT(conn_t cp, udp_t *udp, boolean_t is_outgoing,
* in6_addr_t *faddrp, in_port_t (or uint16_t) fport, int err);
*/
#define CL_INET_UDP_CONNECT(cp, is_outgoing, faddrp, fport, err) { \
(err) = 0; \
/* \
* Running in cluster mode - check and register active \
* "connection" information \
*/ \
if ((cp)->conn_ipversion == IPV4_VERSION) \
(err) = (*cl_inet_connect2)( \
(cp)->conn_netstack->netstack_stackid, \
IPPROTO_UDP, is_outgoing, AF_INET, \
(uint8_t *)&((cp)->conn_laddr_v4), \
(cp)->conn_lport, \
(uint8_t *)&(V4_PART_OF_V6(*faddrp)), \
(in_port_t)(fport), NULL); \
else \
(err) = (*cl_inet_connect2)( \
(cp)->conn_netstack->netstack_stackid, \
IPPROTO_UDP, is_outgoing, AF_INET6, \
(uint8_t *)&((cp)->conn_laddr_v6), \
(cp)->conn_lport, \
(uint8_t *)(faddrp), (in_port_t)(fport), NULL); \
}
static struct module_info udp_mod_info = {
UDP_MOD_ID, UDP_MOD_NAME, 1, INFPSZ, UDP_RECV_HIWATER, UDP_RECV_LOWATER
};
/*
* Entry points for UDP as a device.
* We have separate open functions for the /dev/udp and /dev/udp6 devices.
*/
static struct qinit udp_rinitv4 = {
NULL, NULL, udp_openv4, udp_tpi_close, NULL, &udp_mod_info, NULL
};
static struct qinit udp_rinitv6 = {
NULL, NULL, udp_openv6, udp_tpi_close, NULL, &udp_mod_info, NULL
};
static struct qinit udp_winit = {
udp_wput, ip_wsrv, NULL, NULL, NULL, &udp_mod_info
};
/* UDP entry point during fallback */
struct qinit udp_fallback_sock_winit = {
udp_wput_fallback, NULL, NULL, NULL, NULL, &udp_mod_info
};
/*
* UDP needs to handle I_LINK and I_PLINK since ifconfig
* likes to use it as a place to hang the various streams.
*/
static struct qinit udp_lrinit = {
udp_lrput, NULL, udp_openv4, udp_tpi_close, NULL, &udp_mod_info
};
static struct qinit udp_lwinit = {
udp_lwput, NULL, udp_openv4, udp_tpi_close, NULL, &udp_mod_info
};
/* For AF_INET aka /dev/udp */
struct streamtab udpinfov4 = {
&udp_rinitv4, &udp_winit, &udp_lrinit, &udp_lwinit
};
/* For AF_INET6 aka /dev/udp6 */
struct streamtab udpinfov6 = {
&udp_rinitv6, &udp_winit, &udp_lrinit, &udp_lwinit
};
#define UDP_MAXPACKET_IPV4 (IP_MAXPACKET - UDPH_SIZE - IP_SIMPLE_HDR_LENGTH)
/* Default structure copied into T_INFO_ACK messages */
static struct T_info_ack udp_g_t_info_ack_ipv4 = {
T_INFO_ACK,
UDP_MAXPACKET_IPV4, /* TSDU_size. Excl. headers */
T_INVALID, /* ETSU_size. udp does not support expedited data. */
T_INVALID, /* CDATA_size. udp does not support connect data. */
T_INVALID, /* DDATA_size. udp does not support disconnect data. */
sizeof (sin_t), /* ADDR_size. */
0, /* OPT_size - not initialized here */
UDP_MAXPACKET_IPV4, /* TIDU_size. Excl. headers */
T_CLTS, /* SERV_type. udp supports connection-less. */
TS_UNBND, /* CURRENT_state. This is set from udp_state. */
(XPG4_1|SENDZERO) /* PROVIDER_flag */
};
#define UDP_MAXPACKET_IPV6 (IP_MAXPACKET - UDPH_SIZE - IPV6_HDR_LEN)
static struct T_info_ack udp_g_t_info_ack_ipv6 = {
T_INFO_ACK,
UDP_MAXPACKET_IPV6, /* TSDU_size. Excl. headers */
T_INVALID, /* ETSU_size. udp does not support expedited data. */
T_INVALID, /* CDATA_size. udp does not support connect data. */
T_INVALID, /* DDATA_size. udp does not support disconnect data. */
sizeof (sin6_t), /* ADDR_size. */
0, /* OPT_size - not initialized here */
UDP_MAXPACKET_IPV6, /* TIDU_size. Excl. headers */
T_CLTS, /* SERV_type. udp supports connection-less. */
TS_UNBND, /* CURRENT_state. This is set from udp_state. */
(XPG4_1|SENDZERO) /* PROVIDER_flag */
};
/*
* UDP tunables related declarations. Definitions are in udp_tunables.c
*/
extern mod_prop_info_t udp_propinfo_tbl[];
extern int udp_propinfo_count;
/* Setable in /etc/system */
/* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
uint32_t udp_random_anon_port = 1;
/*
* Hook functions to enable cluster networking.
* On non-clustered systems these vectors must always be NULL
*/
void (*cl_inet_bind)(netstackid_t stack_id, uchar_t protocol,
sa_family_t addr_family, uint8_t *laddrp, in_port_t lport,
void *args) = NULL;
void (*cl_inet_unbind)(netstackid_t stack_id, uint8_t protocol,
sa_family_t addr_family, uint8_t *laddrp, in_port_t lport,
void *args) = NULL;
typedef union T_primitives *t_primp_t;
/*
* Return the next anonymous port in the privileged port range for
* bind checking.
*
* Trusted Extension (TX) notes: TX allows administrator to mark or
* reserve ports as Multilevel ports (MLP). MLP has special function
* on TX systems. Once a port is made MLP, it's not available as
* ordinary port. This creates "holes" in the port name space. It
* may be necessary to skip the "holes" find a suitable anon port.
*/
static in_port_t
udp_get_next_priv_port(udp_t *udp)
{
static in_port_t next_priv_port = IPPORT_RESERVED - 1;
in_port_t nextport;
boolean_t restart = B_FALSE;
udp_stack_t *us = udp->udp_us;
retry:
if (next_priv_port < us->us_min_anonpriv_port ||
next_priv_port >= IPPORT_RESERVED) {
next_priv_port = IPPORT_RESERVED - 1;
if (restart)
return (0);
restart = B_TRUE;
}
if (is_system_labeled() &&
(nextport = tsol_next_port(crgetzone(udp->udp_connp->conn_cred),
next_priv_port, IPPROTO_UDP, B_FALSE)) != 0) {
next_priv_port = nextport;
goto retry;
}
return (next_priv_port--);
}
/*
* Hash list removal routine for udp_t structures.
*/
static void
udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock)
{
udp_t *udpnext;
kmutex_t *lockp;
udp_stack_t *us = udp->udp_us;
conn_t *connp = udp->udp_connp;
if (udp->udp_ptpbhn == NULL)
return;
/*
* Extract the lock pointer in case there are concurrent
* hash_remove's for this instance.
*/
ASSERT(connp->conn_lport != 0);
if (!caller_holds_lock) {
lockp = &us->us_bind_fanout[UDP_BIND_HASH(connp->conn_lport,
us->us_bind_fanout_size)].uf_lock;
ASSERT(lockp != NULL);
mutex_enter(lockp);
}
if (udp->udp_ptpbhn != NULL) {
udpnext = udp->udp_bind_hash;
if (udpnext != NULL) {
udpnext->udp_ptpbhn = udp->udp_ptpbhn;
udp->udp_bind_hash = NULL;
}
*udp->udp_ptpbhn = udpnext;
udp->udp_ptpbhn = NULL;
}
if (!caller_holds_lock) {
mutex_exit(lockp);
}
}
static void
udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp)
{
conn_t *connp = udp->udp_connp;
udp_t **udpp;
udp_t *udpnext;
conn_t *connext;
ASSERT(MUTEX_HELD(&uf->uf_lock));
ASSERT(udp->udp_ptpbhn == NULL);
udpp = &uf->uf_udp;
udpnext = udpp[0];
if (udpnext != NULL) {
/*
* If the new udp bound to the INADDR_ANY address
* and the first one in the list is not bound to
* INADDR_ANY we skip all entries until we find the
* first one bound to INADDR_ANY.
* This makes sure that applications binding to a
* specific address get preference over those binding to
* INADDR_ANY.
*/
connext = udpnext->udp_connp;
if (V6_OR_V4_INADDR_ANY(connp->conn_bound_addr_v6) &&
!V6_OR_V4_INADDR_ANY(connext->conn_bound_addr_v6)) {
while ((udpnext = udpp[0]) != NULL &&
!V6_OR_V4_INADDR_ANY(connext->conn_bound_addr_v6)) {
udpp = &(udpnext->udp_bind_hash);
}
if (udpnext != NULL)
udpnext->udp_ptpbhn = &udp->udp_bind_hash;
} else {
udpnext->udp_ptpbhn = &udp->udp_bind_hash;
}
}
udp->udp_bind_hash = udpnext;
udp->udp_ptpbhn = udpp;
udpp[0] = udp;
}
/*
* This routine is called to handle each O_T_BIND_REQ/T_BIND_REQ message
* passed to udp_wput.
* It associates a port number and local address with the stream.
* It calls IP to verify the local IP address, and calls IP to insert
* the conn_t in the fanout table.
* If everything is ok it then sends the T_BIND_ACK back up.
*
* Note that UDP over IPv4 and IPv6 sockets can use the same port number
* without setting SO_REUSEADDR. This is needed so that they
* can be viewed as two independent transport protocols.
* However, anonymouns ports are allocated from the same range to avoid
* duplicating the us->us_next_port_to_try.
*/
static void
udp_tpi_bind(queue_t *q, mblk_t *mp)
{
sin_t *sin;
sin6_t *sin6;
mblk_t *mp1;
struct T_bind_req *tbr;
conn_t *connp;
udp_t *udp;
int error;
struct sockaddr *sa;
cred_t *cr;
/*
* All Solaris components should pass a db_credp
* for this TPI message, hence we ASSERT.
* But in case there is some other M_PROTO that looks
* like a TPI message sent by some other kernel
* component, we check and return an error.
*/
cr = msg_getcred(mp, NULL);
ASSERT(cr != NULL);
if (cr == NULL) {
udp_err_ack(q, mp, TSYSERR, EINVAL);
return;
}
connp = Q_TO_CONN(q);
udp = connp->conn_udp;
if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
"udp_bind: bad req, len %u",
(uint_t)(mp->b_wptr - mp->b_rptr));
udp_err_ack(q, mp, TPROTO, 0);
return;
}
if (udp->udp_state != TS_UNBND) {
(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
"udp_bind: bad state, %u", udp->udp_state);
udp_err_ack(q, mp, TOUTSTATE, 0);
return;
}
/*
* Reallocate the message to make sure we have enough room for an
* address.
*/
mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t), 1);
if (mp1 == NULL) {
udp_err_ack(q, mp, TSYSERR, ENOMEM);
return;
}
mp = mp1;
/* Reset the message type in preparation for shipping it back. */
DB_TYPE(mp) = M_PCPROTO;
tbr = (struct T_bind_req *)mp->b_rptr;
switch (tbr->ADDR_length) {
case 0: /* Request for a generic port */
tbr->ADDR_offset = sizeof (struct T_bind_req);
if (connp->conn_family == AF_INET) {
tbr->ADDR_length = sizeof (sin_t);
sin = (sin_t *)&tbr[1];
*sin = sin_null;
sin->sin_family = AF_INET;
mp->b_wptr = (uchar_t *)&sin[1];
sa = (struct sockaddr *)sin;
} else {
ASSERT(connp->conn_family == AF_INET6);
tbr->ADDR_length = sizeof (sin6_t);
sin6 = (sin6_t *)&tbr[1];
*sin6 = sin6_null;
sin6->sin6_family = AF_INET6;
mp->b_wptr = (uchar_t *)&sin6[1];
sa = (struct sockaddr *)sin6;
}
break;
case sizeof (sin_t): /* Complete IPv4 address */
sa = (struct sockaddr *)mi_offset_param(mp, tbr->ADDR_offset,
sizeof (sin_t));
if (sa == NULL || !OK_32PTR((char *)sa)) {
udp_err_ack(q, mp, TSYSERR, EINVAL);
return;
}
if (connp->conn_family != AF_INET ||
sa->sa_family != AF_INET) {
udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
return;
}
break;
case sizeof (sin6_t): /* complete IPv6 address */
sa = (struct sockaddr *)mi_offset_param(mp, tbr->ADDR_offset,
sizeof (sin6_t));
if (sa == NULL || !OK_32PTR((char *)sa)) {
udp_err_ack(q, mp, TSYSERR, EINVAL);
return;
}
if (connp->conn_family != AF_INET6 ||
sa->sa_family != AF_INET6) {
udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
return;
}
break;
default: /* Invalid request */
(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
"udp_bind: bad ADDR_length length %u", tbr->ADDR_length);
udp_err_ack(q, mp, TBADADDR, 0);
return;
}
error = udp_do_bind(connp, sa, tbr->ADDR_length, cr,
tbr->PRIM_type != O_T_BIND_REQ);
if (error != 0) {
if (error > 0) {
udp_err_ack(q, mp, TSYSERR, error);
} else {
udp_err_ack(q, mp, -error, 0);
}
} else {
tbr->PRIM_type = T_BIND_ACK;
qreply(q, mp);
}
}
/*
* This routine handles each T_CONN_REQ message passed to udp. It
* associates a default destination address with the stream.
*
* After various error checks are completed, udp_connect() lays
* the target address and port into the composite header template.
* Then we ask IP for information, including a source address if we didn't
* already have one. Finally we send up the T_OK_ACK reply message.
*/
static void
udp_tpi_connect(queue_t *q, mblk_t *mp)
{
conn_t *connp = Q_TO_CONN(q);
int error;
socklen_t len;
struct sockaddr *sa;
struct T_conn_req *tcr;
cred_t *cr;
pid_t pid;
/*
* All Solaris components should pass a db_credp
* for this TPI message, hence we ASSERT.
* But in case there is some other M_PROTO that looks
* like a TPI message sent by some other kernel
* component, we check and return an error.
*/
cr = msg_getcred(mp, &pid);
ASSERT(cr != NULL);
if (cr == NULL) {
udp_err_ack(q, mp, TSYSERR, EINVAL);
return;
}
tcr = (struct T_conn_req *)mp->b_rptr;
/* A bit of sanity checking */
if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_req)) {
udp_err_ack(q, mp, TPROTO, 0);
return;
}
if (tcr->OPT_length != 0) {
udp_err_ack(q, mp, TBADOPT, 0);
return;
}
/*
* Determine packet type based on type of address passed in
* the request should contain an IPv4 or IPv6 address.
* Make sure that address family matches the type of
* family of the address passed down.
*/
len = tcr->DEST_length;
switch (tcr->DEST_length) {
default:
udp_err_ack(q, mp, TBADADDR, 0);
return;
case sizeof (sin_t):
sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset,
sizeof (sin_t));
break;
case sizeof (sin6_t):
sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset,
sizeof (sin6_t));
break;
}
error = proto_verify_ip_addr(connp->conn_family, sa, len);
if (error != 0) {
udp_err_ack(q, mp, TSYSERR, error);
return;
}
error = udp_do_connect(connp, sa, len, cr, pid);
if (error != 0) {
if (error < 0)
udp_err_ack(q, mp, -error, 0);
else
udp_err_ack(q, mp, TSYSERR, error);
} else {
mblk_t *mp1;
/*
* We have to send a connection confirmation to
* keep TLI happy.
*/
if (connp->conn_family == AF_INET) {
mp1 = mi_tpi_conn_con(NULL, (char *)sa,
sizeof (sin_t), NULL, 0);
} else {
mp1 = mi_tpi_conn_con(NULL, (char *)sa,
sizeof (sin6_t), NULL, 0);
}
if (mp1 == NULL) {
udp_err_ack(q, mp, TSYSERR, ENOMEM);
return;
}
/*
* Send ok_ack for T_CONN_REQ
*/
mp = mi_tpi_ok_ack_alloc(mp);
if (mp == NULL) {
/* Unable to reuse the T_CONN_REQ for the ack. */
udp_err_ack_prim(q, mp1, T_CONN_REQ, TSYSERR, ENOMEM);
return;
}
putnext(connp->conn_rq, mp);
putnext(connp->conn_rq, mp1);
}
}
/* ARGSUSED */
static int
udp_tpi_close(queue_t *q, int flags, cred_t *credp __unused)
{
conn_t *connp;
if (flags & SO_FALLBACK) {
/*
* stream is being closed while in fallback
* simply free the resources that were allocated
*/
inet_minor_free(WR(q)->q_ptr, (dev_t)(RD(q)->q_ptr));
qprocsoff(q);
goto done;
}
connp = Q_TO_CONN(q);
udp_do_close(connp);
done:
q->q_ptr = WR(q)->q_ptr = NULL;
return (0);
}
static void
udp_close_free(conn_t *connp)
{
udp_t *udp = connp->conn_udp;
/* If there are any options associated with the stream, free them. */
if (udp->udp_recv_ipp.ipp_fields != 0)
ip_pkt_free(&udp->udp_recv_ipp);
/*
* Clear any fields which the kmem_cache constructor clears.
* Only udp_connp needs to be preserved.
* TBD: We should make this more efficient to avoid clearing
* everything.
*/
ASSERT(udp->udp_connp == connp);
bzero(udp, sizeof (udp_t));
udp->udp_connp = connp;
}
static int
udp_do_disconnect(conn_t *connp)
{
udp_t *udp;
udp_fanout_t *udpf;
udp_stack_t *us;
int error;
udp = connp->conn_udp;
us = udp->udp_us;
mutex_enter(&connp->conn_lock);
if (udp->udp_state != TS_DATA_XFER) {
mutex_exit(&connp->conn_lock);
return (-TOUTSTATE);
}
udpf = &us->us_bind_fanout[UDP_BIND_HASH(connp->conn_lport,
us->us_bind_fanout_size)];
mutex_enter(&udpf->uf_lock);
if (connp->conn_mcbc_bind)
connp->conn_saddr_v6 = ipv6_all_zeros;
else
connp->conn_saddr_v6 = connp->conn_bound_addr_v6;
connp->conn_laddr_v6 = connp->conn_bound_addr_v6;
connp->conn_faddr_v6 = ipv6_all_zeros;
connp->conn_fport = 0;
udp->udp_state = TS_IDLE;
mutex_exit(&udpf->uf_lock);
/* Remove any remnants of mapped address binding */
if (connp->conn_family == AF_INET6)
connp->conn_ipversion = IPV6_VERSION;
connp->conn_v6lastdst = ipv6_all_zeros;
error = udp_build_hdr_template(connp, &connp->conn_saddr_v6,
&connp->conn_faddr_v6, connp->conn_fport, connp->conn_flowinfo);
mutex_exit(&connp->conn_lock);
if (error != 0)
return (error);
/*
* Tell IP to remove the full binding and revert
* to the local address binding.
*/
return (ip_laddr_fanout_insert(connp));
}
static void
udp_tpi_disconnect(queue_t *q, mblk_t *mp)
{
conn_t *connp = Q_TO_CONN(q);
int error;
/*
* Allocate the largest primitive we need to send back
* T_error_ack is > than T_ok_ack
*/
mp = reallocb(mp, sizeof (struct T_error_ack), 1);
if (mp == NULL) {
/* Unable to reuse the T_DISCON_REQ for the ack. */
udp_err_ack_prim(q, mp, T_DISCON_REQ, TSYSERR, ENOMEM);
return;
}
error = udp_do_disconnect(connp);
if (error != 0) {
if (error < 0) {
udp_err_ack(q, mp, -error, 0);
} else {
udp_err_ack(q, mp, TSYSERR, error);
}
} else {
mp = mi_tpi_ok_ack_alloc(mp);
ASSERT(mp != NULL);
qreply(q, mp);
}
}
int
udp_disconnect(conn_t *connp)
{
int error;
connp->conn_dgram_errind = B_FALSE;
error = udp_do_disconnect(connp);
if (error < 0)
error = proto_tlitosyserr(-error);
return (error);
}
/* This routine creates a T_ERROR_ACK message and passes it upstream. */
static void
udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, int sys_error)
{
if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
qreply(q, mp);
}
/* Shorthand to generate and send TPI error acks to our client */
static void
udp_err_ack_prim(queue_t *q, mblk_t *mp, t_scalar_t primitive,
t_scalar_t t_error, int sys_error)
{
struct T_error_ack *teackp;
if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
M_PCPROTO, T_ERROR_ACK)) != NULL) {
teackp = (struct T_error_ack *)mp->b_rptr;
teackp->ERROR_prim = primitive;
teackp->TLI_error = t_error;
teackp->UNIX_error = sys_error;
qreply(q, mp);
}
}
/* At minimum we need 4 bytes of UDP header */
#define ICMP_MIN_UDP_HDR 4
/*
* udp_icmp_input is called as conn_recvicmp to process ICMP messages.
* Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors.
* Assumes that IP has pulled up everything up to and including the ICMP header.
*/
/* ARGSUSED2 */
static void
udp_icmp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
{
conn_t *connp = (conn_t *)arg1;
icmph_t *icmph;
ipha_t *ipha;
int iph_hdr_length;
udpha_t *udpha;
sin_t sin;
sin6_t sin6;
mblk_t *mp1;
int error = 0;
udp_t *udp = connp->conn_udp;
ipha = (ipha_t *)mp->b_rptr;
ASSERT(OK_32PTR(mp->b_rptr));
if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) {
ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION);
udp_icmp_error_ipv6(connp, mp, ira);
return;
}
ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
/* Skip past the outer IP and ICMP headers */
ASSERT(IPH_HDR_LENGTH(ipha) == ira->ira_ip_hdr_length);
iph_hdr_length = ira->ira_ip_hdr_length;
icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
ipha = (ipha_t *)&icmph[1]; /* Inner IP header */
/* Skip past the inner IP and find the ULP header */
iph_hdr_length = IPH_HDR_LENGTH(ipha);
udpha = (udpha_t *)((char *)ipha + iph_hdr_length);
switch (icmph->icmph_type) {
case ICMP_DEST_UNREACHABLE:
switch (icmph->icmph_code) {
case ICMP_FRAGMENTATION_NEEDED: {
ipha_t *ipha;
ip_xmit_attr_t *ixa;
/*
* IP has already adjusted the path MTU.
* But we need to adjust DF for IPv4.
*/
if (connp->conn_ipversion != IPV4_VERSION)
break;
ixa = conn_get_ixa(connp, B_FALSE);
if (ixa == NULL || ixa->ixa_ire == NULL) {
/*
* Some other thread holds conn_ixa. We will
* redo this on the next ICMP too big.
*/
if (ixa != NULL)
ixa_refrele(ixa);
break;
}
(void) ip_get_pmtu(ixa);
mutex_enter(&connp->conn_lock);
ipha = (ipha_t *)connp->conn_ht_iphc;
if (ixa->ixa_flags & IXAF_PMTU_IPV4_DF) {
ipha->ipha_fragment_offset_and_flags |=
IPH_DF_HTONS;
} else {
ipha->ipha_fragment_offset_and_flags &=
~IPH_DF_HTONS;
}
mutex_exit(&connp->conn_lock);
ixa_refrele(ixa);
break;
}
case ICMP_PORT_UNREACHABLE:
case ICMP_PROTOCOL_UNREACHABLE:
error = ECONNREFUSED;
break;
default:
/* Transient errors */
break;
}
break;
default:
/* Transient errors */
break;
}
if (error == 0) {
freemsg(mp);
return;
}
/*
* Deliver T_UDERROR_IND when the application has asked for it.
* The socket layer enables this automatically when connected.
*/
if (!connp->conn_dgram_errind) {
freemsg(mp);
return;
}
switch (connp->conn_family) {
case AF_INET:
sin = sin_null;
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = ipha->ipha_dst;
sin.sin_port = udpha->uha_dst_port;
if (IPCL_IS_NONSTR(connp)) {
mutex_enter(&connp->conn_lock);
if (udp->udp_state == TS_DATA_XFER) {
if (sin.sin_port == connp->conn_fport &&
sin.sin_addr.s_addr ==
connp->conn_faddr_v4) {
mutex_exit(&connp->conn_lock);
(*connp->conn_upcalls->su_set_error)
(connp->conn_upper_handle, error);
goto done;
}
} else {
udp->udp_delayed_error = error;
*((sin_t *)&udp->udp_delayed_addr) = sin;
}
mutex_exit(&connp->conn_lock);
} else {
mp1 = mi_tpi_uderror_ind((char *)&sin, sizeof (sin_t),
NULL, 0, error);
if (mp1 != NULL)
putnext(connp->conn_rq, mp1);
}
break;
case AF_INET6:
sin6 = sin6_null;
sin6.sin6_family = AF_INET6;
IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &sin6.sin6_addr);
sin6.sin6_port = udpha->uha_dst_port;
if (IPCL_IS_NONSTR(connp)) {
mutex_enter(&connp->conn_lock);
if (udp->udp_state == TS_DATA_XFER) {
if (sin6.sin6_port == connp->conn_fport &&
IN6_ARE_ADDR_EQUAL(&sin6.sin6_addr,
&connp->conn_faddr_v6)) {
mutex_exit(&connp->conn_lock);
(*connp->conn_upcalls->su_set_error)
(connp->conn_upper_handle, error);
goto done;
}
} else {
udp->udp_delayed_error = error;
*((sin6_t *)&udp->udp_delayed_addr) = sin6;
}
mutex_exit(&connp->conn_lock);
} else {
mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t),
NULL, 0, error);
if (mp1 != NULL)
putnext(connp->conn_rq, mp1);
}
break;
}
done:
freemsg(mp);
}
/*
* udp_icmp_error_ipv6 is called by udp_icmp_error to process ICMP for IPv6.
* Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors.
* Assumes that IP has pulled up all the extension headers as well as the
* ICMPv6 header.
*/
static void
udp_icmp_error_ipv6(conn_t *connp, mblk_t *mp, ip_recv_attr_t *ira)
{
icmp6_t *icmp6;
ip6_t *ip6h, *outer_ip6h;
uint16_t iph_hdr_length;
uint8_t *nexthdrp;
udpha_t *udpha;
sin6_t sin6;
mblk_t *mp1;
int error = 0;
udp_t *udp = connp->conn_udp;
udp_stack_t *us = udp->udp_us;
outer_ip6h = (ip6_t *)mp->b_rptr;
#ifdef DEBUG
if (outer_ip6h->ip6_nxt != IPPROTO_ICMPV6)
iph_hdr_length = ip_hdr_length_v6(mp, outer_ip6h);
else
iph_hdr_length = IPV6_HDR_LEN;
ASSERT(iph_hdr_length == ira->ira_ip_hdr_length);
#endif
/* Skip past the outer IP and ICMP headers */
iph_hdr_length = ira->ira_ip_hdr_length;
icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
/* Skip past the inner IP and find the ULP header */
ip6h = (ip6_t *)&icmp6[1]; /* Inner IP header */
if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) {
freemsg(mp);
return;
}
udpha = (udpha_t *)((char *)ip6h + iph_hdr_length);
switch (icmp6->icmp6_type) {
case ICMP6_DST_UNREACH:
switch (icmp6->icmp6_code) {
case ICMP6_DST_UNREACH_NOPORT:
error = ECONNREFUSED;
break;
case ICMP6_DST_UNREACH_ADMIN:
case ICMP6_DST_UNREACH_NOROUTE:
case ICMP6_DST_UNREACH_BEYONDSCOPE:
case ICMP6_DST_UNREACH_ADDR:
/* Transient errors */
break;
default:
break;
}
break;
case ICMP6_PACKET_TOO_BIG: {
struct T_unitdata_ind *tudi;
struct T_opthdr *toh;
size_t udi_size;
mblk_t *newmp;
t_scalar_t opt_length = sizeof (struct T_opthdr) +
sizeof (struct ip6_mtuinfo);
sin6_t *sin6;
struct ip6_mtuinfo *mtuinfo;
/*
* If the application has requested to receive path mtu
* information, send up an empty message containing an
* IPV6_PATHMTU ancillary data item.
*/
if (!connp->conn_ipv6_recvpathmtu)
break;
udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t) +
opt_length;
if ((newmp = allocb(udi_size, BPRI_MED)) == NULL) {
UDPS_BUMP_MIB(us, udpInErrors);
break;
}
/*
* newmp->b_cont is left to NULL on purpose. This is an
* empty message containing only ancillary data.
*/
newmp->b_datap->db_type = M_PROTO;
tudi = (struct T_unitdata_ind *)newmp->b_rptr;
newmp->b_wptr = (uchar_t *)tudi + udi_size;
tudi->PRIM_type = T_UNITDATA_IND;
tudi->SRC_length = sizeof (sin6_t);
tudi->SRC_offset = sizeof (struct T_unitdata_ind);
tudi->OPT_offset = tudi->SRC_offset + sizeof (sin6_t);
tudi->OPT_length = opt_length;
sin6 = (sin6_t *)&tudi[1];
bzero(sin6, sizeof (sin6_t));
sin6->sin6_family = AF_INET6;
sin6->sin6_addr = connp->conn_faddr_v6;
toh = (struct T_opthdr *)&sin6[1];
toh->level = IPPROTO_IPV6;
toh->name = IPV6_PATHMTU;
toh->len = opt_length;
toh->status = 0;
mtuinfo = (struct ip6_mtuinfo *)&toh[1];
bzero(mtuinfo, sizeof (struct ip6_mtuinfo));
mtuinfo->ip6m_addr.sin6_family = AF_INET6;
mtuinfo->ip6m_addr.sin6_addr = ip6h->ip6_dst;
mtuinfo->ip6m_mtu = icmp6->icmp6_mtu;
/*
* We've consumed everything we need from the original
* message. Free it, then send our empty message.
*/
freemsg(mp);
udp_ulp_recv(connp, newmp, msgdsize(newmp), ira);
return;
}
case ICMP6_TIME_EXCEEDED:
/* Transient errors */
break;
case ICMP6_PARAM_PROB:
/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
(uchar_t *)ip6h + icmp6->icmp6_pptr ==
(uchar_t *)nexthdrp) {
error = ECONNREFUSED;
break;
}
break;
}
if (error == 0) {
freemsg(mp);
return;
}
/*
* Deliver T_UDERROR_IND when the application has asked for it.
* The socket layer enables this automatically when connected.
*/
if (!connp->conn_dgram_errind) {
freemsg(mp);
return;
}
sin6 = sin6_null;
sin6.sin6_family = AF_INET6;
sin6.sin6_addr = ip6h->ip6_dst;
sin6.sin6_port = udpha->uha_dst_port;
sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
if (IPCL_IS_NONSTR(connp)) {
mutex_enter(&connp->conn_lock);
if (udp->udp_state == TS_DATA_XFER) {
if (sin6.sin6_port == connp->conn_fport &&
IN6_ARE_ADDR_EQUAL(&sin6.sin6_addr,
&connp->conn_faddr_v6)) {
mutex_exit(&connp->conn_lock);
(*connp->conn_upcalls->su_set_error)
(connp->conn_upper_handle, error);
goto done;
}
} else {
udp->udp_delayed_error = error;
*((sin6_t *)&udp->udp_delayed_addr) = sin6;
}
mutex_exit(&connp->conn_lock);
} else {
mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t),
NULL, 0, error);
if (mp1 != NULL)
putnext(connp->conn_rq, mp1);
}
done:
freemsg(mp);
}
/*
* This routine responds to T_ADDR_REQ messages. It is called by udp_wput.
* The local address is filled in if endpoint is bound. The remote address
* is filled in if remote address has been precified ("connected endpoint")
* (The concept of connected CLTS sockets is alien to published TPI
* but we support it anyway).
*/
static void
udp_addr_req(queue_t *q, mblk_t *mp)
{
struct sockaddr *sa;
mblk_t *ackmp;
struct T_addr_ack *taa;
udp_t *udp = Q_TO_UDP(q);
conn_t *connp = udp->udp_connp;
uint_t addrlen;
/* Make it large enough for worst case */
ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
2 * sizeof (sin6_t), 1);
if (ackmp == NULL) {
udp_err_ack(q, mp, TSYSERR, ENOMEM);
return;
}
taa = (struct T_addr_ack *)ackmp->b_rptr;
bzero(taa, sizeof (struct T_addr_ack));
ackmp->b_wptr = (uchar_t *)&taa[1];
taa->PRIM_type = T_ADDR_ACK;
ackmp->b_datap->db_type = M_PCPROTO;
if (connp->conn_family == AF_INET)
addrlen = sizeof (sin_t);
else
addrlen = sizeof (sin6_t);
mutex_enter(&connp->conn_lock);
/*
* Note: Following code assumes 32 bit alignment of basic
* data structures like sin_t and struct T_addr_ack.
*/
if (udp->udp_state != TS_UNBND) {
/*
* Fill in local address first
*/
taa->LOCADDR_offset = sizeof (*taa);
taa->LOCADDR_length = addrlen;
sa = (struct sockaddr *)&taa[1];
(void) conn_getsockname(connp, sa, &addrlen);
ackmp->b_wptr += addrlen;
}
if (udp->udp_state == TS_DATA_XFER) {
/*
* connected, fill remote address too
*/
taa->REMADDR_length = addrlen;
/* assumed 32-bit alignment */
taa->REMADDR_offset = taa->LOCADDR_offset + taa->LOCADDR_length;
sa = (struct sockaddr *)(ackmp->b_rptr + taa->REMADDR_offset);
(void) conn_getpeername(connp, sa, &addrlen);
ackmp->b_wptr += addrlen;
}
mutex_exit(&connp->conn_lock);
ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim);
qreply(q, ackmp);
}
static void
udp_copy_info(struct T_info_ack *tap, udp_t *udp)
{
conn_t *connp = udp->udp_connp;
if (connp->conn_family == AF_INET) {
*tap = udp_g_t_info_ack_ipv4;
} else {
*tap = udp_g_t_info_ack_ipv6;
}
tap->CURRENT_state = udp->udp_state;
tap->OPT_size = udp_max_optsize;
}
static void
udp_do_capability_ack(udp_t *udp, struct T_capability_ack *tcap,
t_uscalar_t cap_bits1)
{
tcap->CAP_bits1 = 0;
if (cap_bits1 & TC1_INFO) {
udp_copy_info(&tcap->INFO_ack, udp);
tcap->CAP_bits1 |= TC1_INFO;
}
}
/*
* This routine responds to T_CAPABILITY_REQ messages. It is called by
* udp_wput. Much of the T_CAPABILITY_ACK information is copied from
* udp_g_t_info_ack. The current state of the stream is copied from
* udp_state.
*/
static void
udp_capability_req(queue_t *q, mblk_t *mp)
{
t_uscalar_t cap_bits1;
struct T_capability_ack *tcap;
udp_t *udp = Q_TO_UDP(q);
cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
mp->b_datap->db_type, T_CAPABILITY_ACK);
if (!mp)
return;
tcap = (struct T_capability_ack *)mp->b_rptr;
udp_do_capability_ack(udp, tcap, cap_bits1);
qreply(q, mp);
}
/*
* This routine responds to T_INFO_REQ messages. It is called by udp_wput.
* Most of the T_INFO_ACK information is copied from udp_g_t_info_ack.
* The current state of the stream is copied from udp_state.
*/
static void
udp_info_req(queue_t *q, mblk_t *mp)
{
udp_t *udp = Q_TO_UDP(q);
/* Create a T_INFO_ACK message. */
mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
T_INFO_ACK);
if (!mp)
return;
udp_copy_info((struct T_info_ack *)mp->b_rptr, udp);
qreply(q, mp);
}
/* For /dev/udp aka AF_INET open */
static int
udp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
{
return (udp_open(q, devp, flag, sflag, credp, B_FALSE));
}
/* For /dev/udp6 aka AF_INET6 open */
static int
udp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
{
return (udp_open(q, devp, flag, sflag, credp, B_TRUE));
}
/*
* This is the open routine for udp. It allocates a udp_t structure for
* the stream and, on the first open of the module, creates an ND table.
*/
static int
udp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
boolean_t isv6)
{
udp_t *udp;
conn_t *connp;
dev_t conn_dev;
vmem_t *minor_arena;
int err;
/* If the stream is already open, return immediately. */
if (q->q_ptr != NULL)
return (0);
if (sflag == MODOPEN)
return (EINVAL);
if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
minor_arena = ip_minor_arena_la;
} else {
/*
* Either minor numbers in the large arena were exhausted
* or a non socket application is doing the open.
* Try to allocate from the small arena.
*/
if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0)
return (EBUSY);
minor_arena = ip_minor_arena_sa;
}
if (flag & SO_FALLBACK) {
/*
* Non streams socket needs a stream to fallback to
*/
RD(q)->q_ptr = (void *)conn_dev;
WR(q)->q_qinfo = &udp_fallback_sock_winit;
WR(q)->q_ptr = (void *)minor_arena;
qprocson(q);
return (0);
}
connp = udp_do_open(credp, isv6, KM_SLEEP, &err);
if (connp == NULL) {
inet_minor_free(minor_arena, conn_dev);
return (err);
}
udp = connp->conn_udp;
*devp = makedevice(getemajor(*devp), (minor_t)conn_dev);
connp->conn_dev = conn_dev;
connp->conn_minor_arena = minor_arena;
/*
* Initialize the udp_t structure for this stream.
*/
q->q_ptr = connp;
WR(q)->q_ptr = connp;
connp->conn_rq = q;
connp->conn_wq = WR(q);
/*
* Since this conn_t/udp_t is not yet visible to anybody else we don't
* need to lock anything.
*/
ASSERT(connp->conn_proto == IPPROTO_UDP);
ASSERT(connp->conn_udp == udp);
ASSERT(udp->udp_connp == connp);
if (flag & SO_SOCKSTR) {
udp->udp_issocket = B_TRUE;
}
WR(q)->q_hiwat = connp->conn_sndbuf;
WR(q)->q_lowat = connp->conn_sndlowat;
qprocson(q);
/* Set the Stream head write offset and high watermark. */
(void) proto_set_tx_wroff(q, connp, connp->conn_wroff);
(void) proto_set_rx_hiwat(q, connp,
udp_set_rcv_hiwat(udp, connp->conn_rcvbuf));
mutex_enter(&connp->conn_lock);
connp->conn_state_flags &= ~CONN_INCIPIENT;
mutex_exit(&connp->conn_lock);
return (0);
}
/*
* Which UDP options OK to set through T_UNITDATA_REQ...
*/
/* ARGSUSED */
static boolean_t
udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name)
{
return (B_TRUE);
}
/*
* This routine gets default values of certain options whose default
* values are maintained by protcol specific code
*/
int
udp_opt_default(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
{
udp_t *udp = Q_TO_UDP(q);
udp_stack_t *us = udp->udp_us;
int *i1 = (int *)ptr;
switch (level) {
case IPPROTO_IP:
switch (name) {
case IP_MULTICAST_TTL:
*ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL;
return (sizeof (uchar_t));
case IP_MULTICAST_LOOP:
*ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP;
return (sizeof (uchar_t));
}
break;
case IPPROTO_IPV6:
switch (name) {
case IPV6_MULTICAST_HOPS:
*i1 = IP_DEFAULT_MULTICAST_TTL;
return (sizeof (int));
case IPV6_MULTICAST_LOOP:
*i1 = IP_DEFAULT_MULTICAST_LOOP;
return (sizeof (int));
case IPV6_UNICAST_HOPS:
*i1 = us->us_ipv6_hoplimit;
return (sizeof (int));
}
break;
}
return (-1);
}
/*
* This routine retrieves the current status of socket options.
* It returns the size of the option retrieved, or -1.
*/
int
udp_opt_get(conn_t *connp, t_scalar_t level, t_scalar_t name,
uchar_t *ptr)
{
int *i1 = (int *)ptr;
udp_t *udp = connp->conn_udp;
int len;
conn_opt_arg_t coas;
int retval;
coas.coa_connp = connp;
coas.coa_ixa = connp->conn_ixa;
coas.coa_ipp = &connp->conn_xmit_ipp;
coas.coa_ancillary = B_FALSE;
coas.coa_changed = 0;
/*
* We assume that the optcom framework has checked for the set
* of levels and names that are supported, hence we don't worry
* about rejecting based on that.
* First check for UDP specific handling, then pass to common routine.
*/
switch (level) {
case IPPROTO_IP:
/*
* Only allow IPv4 option processing on IPv4 sockets.
*/
if (connp->conn_family != AF_INET)
return (-1);
switch (name) {
case IP_OPTIONS:
case T_IP_OPTIONS:
mutex_enter(&connp->conn_lock);
if (!(udp->udp_recv_ipp.ipp_fields &
IPPF_IPV4_OPTIONS)) {
mutex_exit(&connp->conn_lock);
return (0);
}
len = udp->udp_recv_ipp.ipp_ipv4_options_len;
ASSERT(len != 0);
bcopy(udp->udp_recv_ipp.ipp_ipv4_options, ptr, len);
mutex_exit(&connp->conn_lock);
return (len);
}
break;
case IPPROTO_UDP:
switch (name) {
case UDP_NAT_T_ENDPOINT:
mutex_enter(&connp->conn_lock);
*i1 = udp->udp_nat_t_endpoint;
mutex_exit(&connp->conn_lock);
return (sizeof (int));
case UDP_RCVHDR:
mutex_enter(&connp->conn_lock);
*i1 = udp->udp_rcvhdr ? 1 : 0;
mutex_exit(&connp->conn_lock);
return (sizeof (int));
}
}
mutex_enter(&connp->conn_lock);
retval = conn_opt_get(&coas, level, name, ptr);
mutex_exit(&connp->conn_lock);
return (retval);
}
/*
* This routine retrieves the current status of socket options.
* It returns the size of the option retrieved, or -1.
*/
int
udp_tpi_opt_get(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
{
conn_t *connp = Q_TO_CONN(q);
int err;
err = udp_opt_get(connp, level, name, ptr);
return (err);
}
/*
* This routine sets socket options.
*/
int
udp_do_opt_set(conn_opt_arg_t *coa, int level, int name,
uint_t inlen, uchar_t *invalp, cred_t *cr, boolean_t checkonly)
{
conn_t *connp = coa->coa_connp;
ip_xmit_attr_t *ixa = coa->coa_ixa;
udp_t *udp = connp->conn_udp;
udp_stack_t *us = udp->udp_us;
int *i1 = (int *)invalp;
boolean_t onoff = (*i1 == 0) ? 0 : 1;
int error;
ASSERT(MUTEX_NOT_HELD(&coa->coa_connp->conn_lock));
/*
* First do UDP specific sanity checks and handle UDP specific
* options. Note that some IPPROTO_UDP options are handled
* by conn_opt_set.
*/
switch (level) {
case SOL_SOCKET:
switch (name) {
case SO_SNDBUF:
if (*i1 > us->us_max_buf) {
return (ENOBUFS);
}
break;
case SO_RCVBUF:
if (*i1 > us->us_max_buf) {
return (ENOBUFS);
}
break;
case SCM_UCRED: {
struct ucred_s *ucr;
cred_t *newcr;
ts_label_t *tsl;
/*
* Only sockets that have proper privileges and are
* bound to MLPs will have any other value here, so
* this implicitly tests for privilege to set label.
*/
if (connp->conn_mlp_type == mlptSingle)
break;
ucr = (struct ucred_s *)invalp;
if (inlen < sizeof (*ucr) + sizeof (bslabel_t) ||
ucr->uc_labeloff < sizeof (*ucr) ||
ucr->uc_labeloff + sizeof (bslabel_t) > inlen)
return (EINVAL);
if (!checkonly) {
/*
* Set ixa_tsl to the new label.
* We assume that crgetzoneid doesn't change
* as part of the SCM_UCRED.
*/
ASSERT(cr != NULL);
if ((tsl = crgetlabel(cr)) == NULL)
return (EINVAL);
newcr = copycred_from_bslabel(cr, UCLABEL(ucr),
tsl->tsl_doi, KM_NOSLEEP);
if (newcr == NULL)
return (ENOSR);
ASSERT(newcr->cr_label != NULL);
/*
* Move the hold on the cr_label to ixa_tsl by
* setting cr_label to NULL. Then release newcr.
*/
ip_xmit_attr_replace_tsl(ixa, newcr->cr_label);
ixa->ixa_flags |= IXAF_UCRED_TSL;
newcr->cr_label = NULL;
crfree(newcr);
coa->coa_changed |= COA_HEADER_CHANGED;
coa->coa_changed |= COA_WROFF_CHANGED;
}
/* Fully handled this option. */
return (0);
}
}
break;
case IPPROTO_UDP:
switch (name) {
case UDP_NAT_T_ENDPOINT:
if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) {
return (error);
}
/*
* Use conn_family instead so we can avoid ambiguitites
* with AF_INET6 sockets that may switch from IPv4
* to IPv6.
*/
if (connp->conn_family != AF_INET) {
return (EAFNOSUPPORT);
}
if (!checkonly) {
mutex_enter(&connp->conn_lock);
udp->udp_nat_t_endpoint = onoff;
mutex_exit(&connp->conn_lock);
coa->coa_changed |= COA_HEADER_CHANGED;
coa->coa_changed |= COA_WROFF_CHANGED;
}
/* Fully handled this option. */
return (0);
case UDP_RCVHDR:
mutex_enter(&connp->conn_lock);
udp->udp_rcvhdr = onoff;
mutex_exit(&connp->conn_lock);
return (0);
}
break;
}
error = conn_opt_set(coa, level, name, inlen, invalp,
checkonly, cr);
return (error);
}
/*
* This routine sets socket options.
*/
int
udp_opt_set(conn_t *connp, uint_t optset_context, int level,
int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
uchar_t *outvalp, void *thisdg_attrs, cred_t *cr)
{
udp_t *udp = connp->conn_udp;
int err;
conn_opt_arg_t coas, *coa;
boolean_t checkonly;
udp_stack_t *us = udp->udp_us;
switch (optset_context) {
case SETFN_OPTCOM_CHECKONLY:
checkonly = B_TRUE;
/*
* Note: Implies T_CHECK semantics for T_OPTCOM_REQ
* inlen != 0 implies value supplied and
* we have to "pretend" to set it.
* inlen == 0 implies that there is no
* value part in T_CHECK request and just validation
* done elsewhere should be enough, we just return here.
*/
if (inlen == 0) {
*outlenp = 0;
return (0);
}
break;
case SETFN_OPTCOM_NEGOTIATE:
checkonly = B_FALSE;
break;
case SETFN_UD_NEGOTIATE:
case SETFN_CONN_NEGOTIATE:
checkonly = B_FALSE;
/*
* Negotiating local and "association-related" options
* through T_UNITDATA_REQ.
*
* Following routine can filter out ones we do not
* want to be "set" this way.
*/
if (!udp_opt_allow_udr_set(level, name)) {
*outlenp = 0;
return (EINVAL);
}
break;
default:
/*
* We should never get here
*/
*outlenp = 0;
return (EINVAL);
}
ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
(optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
if (thisdg_attrs != NULL) {
/* Options from T_UNITDATA_REQ */
coa = (conn_opt_arg_t *)thisdg_attrs;
ASSERT(coa->coa_connp == connp);
ASSERT(coa->coa_ixa != NULL);
ASSERT(coa->coa_ipp != NULL);
ASSERT(coa->coa_ancillary);
} else {
coa = &coas;
coas.coa_connp = connp;
/* Get a reference on conn_ixa to prevent concurrent mods */
coas.coa_ixa = conn_get_ixa(connp, B_TRUE);
if (coas.coa_ixa == NULL) {
*outlenp = 0;
return (ENOMEM);
}
coas.coa_ipp = &connp->conn_xmit_ipp;
coas.coa_ancillary = B_FALSE;
coas.coa_changed = 0;
}
err = udp_do_opt_set(coa, level, name, inlen, invalp,
cr, checkonly);
if (err != 0) {
errout:
if (!coa->coa_ancillary)
ixa_refrele(coa->coa_ixa);
*outlenp = 0;
return (err);
}
/* Handle DHCPINIT here outside of lock */
if (level == IPPROTO_IP && name == IP_DHCPINIT_IF) {
uint_t ifindex;
ill_t *ill;
ifindex = *(uint_t *)invalp;
if (ifindex == 0) {
ill = NULL;
} else {
ill = ill_lookup_on_ifindex(ifindex, B_FALSE,
coa->coa_ixa->ixa_ipst);
if (ill == NULL) {
err = ENXIO;
goto errout;
}
mutex_enter(&ill->ill_lock);
if (ill->ill_state_flags & ILL_CONDEMNED) {
mutex_exit(&ill->ill_lock);
ill_refrele(ill);
err = ENXIO;
goto errout;
}
if (IS_VNI(ill)) {
mutex_exit(&ill->ill_lock);
ill_refrele(ill);
err = EINVAL;
goto errout;
}
}
mutex_enter(&connp->conn_lock);
if (connp->conn_dhcpinit_ill != NULL) {
/*
* We've locked the conn so conn_cleanup_ill()
* cannot clear conn_dhcpinit_ill -- so it's
* safe to access the ill.
*/
ill_t *oill = connp->conn_dhcpinit_ill;
ASSERT(oill->ill_dhcpinit != 0);
atomic_dec_32(&oill->ill_dhcpinit);
ill_set_inputfn(connp->conn_dhcpinit_ill);
connp->conn_dhcpinit_ill = NULL;
}
if (ill != NULL) {
connp->conn_dhcpinit_ill = ill;
atomic_inc_32(&ill->ill_dhcpinit);
ill_set_inputfn(ill);
mutex_exit(&connp->conn_lock);
mutex_exit(&ill->ill_lock);
ill_refrele(ill);
} else {
mutex_exit(&connp->conn_lock);
}
}
/*
* Common case of OK return with outval same as inval.
*/
if (invalp != outvalp) {
/* don't trust bcopy for identical src/dst */
(void) bcopy(invalp, outvalp, inlen);
}
*outlenp = inlen;
/*
* If this was not ancillary data, then we rebuild the headers,
* update the IRE/NCE, and IPsec as needed.
* Since the label depends on the destination we go through
* ip_set_destination first.
*/
if (coa->coa_ancillary) {
return (0);
}
if (coa->coa_changed & COA_ROUTE_CHANGED) {
in6_addr_t saddr, faddr, nexthop;
in_port_t fport;
/*
* We clear lastdst to make sure we pick up the change
* next time sending.
* If we are connected we re-cache the information.
* We ignore errors to preserve BSD behavior.
* Note that we don't redo IPsec policy lookup here
* since the final destination (or source) didn't change.
*/
mutex_enter(&connp->conn_lock);
connp->conn_v6lastdst = ipv6_all_zeros;
ip_attr_nexthop(coa->coa_ipp, coa->coa_ixa,
&connp->conn_faddr_v6, &nexthop);
saddr = connp->conn_saddr_v6;
faddr = connp->conn_faddr_v6;
fport = connp->conn_fport;
mutex_exit(&connp->conn_lock);
if (!IN6_IS_ADDR_UNSPECIFIED(&faddr) &&
!IN6_IS_ADDR_V4MAPPED_ANY(&faddr)) {
(void) ip_attr_connect(connp, coa->coa_ixa,
&saddr, &faddr, &nexthop, fport, NULL, NULL,
IPDF_ALLOW_MCBC | IPDF_VERIFY_DST);
}
}
ixa_refrele(coa->coa_ixa);
if (coa->coa_changed & COA_HEADER_CHANGED) {
/*
* Rebuild the header template if we are connected.
* Otherwise clear conn_v6lastdst so we rebuild the header
* in the data path.
*/
mutex_enter(&connp->conn_lock);
if (!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6) &&
!IN6_IS_ADDR_V4MAPPED_ANY(&connp->conn_faddr_v6)) {
err = udp_build_hdr_template(connp,
&connp->conn_saddr_v6, &connp->conn_faddr_v6,
connp->conn_fport, connp->conn_flowinfo);
if (err != 0) {
mutex_exit(&connp->conn_lock);
return (err);
}
} else {
connp->conn_v6lastdst = ipv6_all_zeros;
}
mutex_exit(&connp->conn_lock);
}
if (coa->coa_changed & COA_RCVBUF_CHANGED) {
(void) proto_set_rx_hiwat(connp->conn_rq, connp,
connp->conn_rcvbuf);
}
if ((coa->coa_changed & COA_SNDBUF_CHANGED) && !IPCL_IS_NONSTR(connp)) {
connp->conn_wq->q_hiwat = connp->conn_sndbuf;
}
if (coa->coa_changed & COA_WROFF_CHANGED) {
/* Increase wroff if needed */
uint_t wroff;
mutex_enter(&connp->conn_lock);
wroff = connp->conn_ht_iphc_allocated + us->us_wroff_extra;
if (udp->udp_nat_t_endpoint)
wroff += sizeof (uint32_t);
if (wroff > connp->conn_wroff) {
connp->conn_wroff = wroff;
mutex_exit(&connp->conn_lock);
(void) proto_set_tx_wroff(connp->conn_rq, connp, wroff);
} else {
mutex_exit(&connp->conn_lock);
}
}
return (err);
}
/* This routine sets socket options. */
int
udp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, int name,
uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
void *thisdg_attrs, cred_t *cr)
{
conn_t *connp = Q_TO_CONN(q);
int error;
error = udp_opt_set(connp, optset_context, level, name, inlen, invalp,
outlenp, outvalp, thisdg_attrs, cr);
return (error);
}
/*
* Setup IP and UDP headers.
* Returns NULL on allocation failure, in which case data_mp is freed.
*/
mblk_t *
udp_prepend_hdr(conn_t *connp, ip_xmit_attr_t *ixa, const ip_pkt_t *ipp,
const in6_addr_t *v6src, const in6_addr_t *v6dst, in_port_t dstport,
uint32_t flowinfo, mblk_t *data_mp, int *errorp)
{
mblk_t *mp;
udpha_t *udpha;
udp_stack_t *us = connp->conn_netstack->netstack_udp;
uint_t data_len;
uint32_t cksum;
udp_t *udp = connp->conn_udp;
boolean_t insert_spi = udp->udp_nat_t_endpoint;
uint_t ulp_hdr_len;
data_len = msgdsize(data_mp);
ulp_hdr_len = UDPH_SIZE;
if (insert_spi)
ulp_hdr_len += sizeof (uint32_t);
mp = conn_prepend_hdr(ixa, ipp, v6src, v6dst, IPPROTO_UDP, flowinfo,
ulp_hdr_len, data_mp, data_len, us->us_wroff_extra, &cksum, errorp);
if (mp == NULL) {
ASSERT(*errorp != 0);
return (NULL);
}
data_len += ulp_hdr_len;
ixa->ixa_pktlen = data_len + ixa->ixa_ip_hdr_length;
udpha = (udpha_t *)(mp->b_rptr + ixa->ixa_ip_hdr_length);
udpha->uha_src_port = connp->conn_lport;
udpha->uha_dst_port = dstport;
udpha->uha_checksum = 0;
udpha->uha_length = htons(data_len);
/*
* If there was a routing option/header then conn_prepend_hdr
* has massaged it and placed the pseudo-header checksum difference
* in the cksum argument.
*
* Setup header length and prepare for ULP checksum done in IP.
*
* We make it easy for IP to include our pseudo header
* by putting our length in uha_checksum.
* The IP source, destination, and length have already been set by
* conn_prepend_hdr.
*/
cksum += data_len;
cksum = (cksum >> 16) + (cksum & 0xFFFF);
ASSERT(cksum < 0x10000);
if (ixa->ixa_flags & IXAF_IS_IPV4) {
ipha_t *ipha = (ipha_t *)mp->b_rptr;
ASSERT(ntohs(ipha->ipha_length) == ixa->ixa_pktlen);
/* IP does the checksum if uha_checksum is non-zero */
if (us->us_do_checksum) {
if (cksum == 0)
udpha->uha_checksum = 0xffff;
else
udpha->uha_checksum = htons(cksum);
} else {
udpha->uha_checksum = 0;
}
} else {
ip6_t *ip6h = (ip6_t *)mp->b_rptr;
ASSERT(ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN == ixa->ixa_pktlen);
if (cksum == 0)
udpha->uha_checksum = 0xffff;
else
udpha->uha_checksum = htons(cksum);
}
/* Insert all-0s SPI now. */
if (insert_spi)
*((uint32_t *)(udpha + 1)) = 0;
return (mp);
}
static int
udp_build_hdr_template(conn_t *connp, const in6_addr_t *v6src,
const in6_addr_t *v6dst, in_port_t dstport, uint32_t flowinfo)
{
udpha_t *udpha;
int error;
ASSERT(MUTEX_HELD(&connp->conn_lock));
/*
* We clear lastdst to make sure we don't use the lastdst path
* next time sending since we might not have set v6dst yet.
*/
connp->conn_v6lastdst = ipv6_all_zeros;
error = conn_build_hdr_template(connp, UDPH_SIZE, 0, v6src, v6dst,
flowinfo);
if (error != 0)
return (error);
/*
* Any routing header/option has been massaged. The checksum difference
* is stored in conn_sum.
*/
udpha = (udpha_t *)connp->conn_ht_ulp;
udpha->uha_src_port = connp->conn_lport;
udpha->uha_dst_port = dstport;
udpha->uha_checksum = 0;
udpha->uha_length = htons(UDPH_SIZE); /* Filled in later */
return (0);
}
static mblk_t *
udp_queue_fallback(udp_t *udp, mblk_t *mp)
{
ASSERT(MUTEX_HELD(&udp->udp_recv_lock));
if (IPCL_IS_NONSTR(udp->udp_connp)) {
/*
* fallback has started but messages have not been moved yet
*/
if (udp->udp_fallback_queue_head == NULL) {
ASSERT(udp->udp_fallback_queue_tail == NULL);
udp->udp_fallback_queue_head = mp;
udp->udp_fallback_queue_tail = mp;
} else {
ASSERT(udp->udp_fallback_queue_tail != NULL);
udp->udp_fallback_queue_tail->b_next = mp;
udp->udp_fallback_queue_tail = mp;
}
return (NULL);
} else {
/*
* Fallback completed, let the caller putnext() the mblk.
*/
return (mp);
}
}
/*
* Deliver data to ULP. In case we have a socket, and it's falling back to
* TPI, then we'll queue the mp for later processing.
*/
static void
udp_ulp_recv(conn_t *connp, mblk_t *mp, uint_t len, ip_recv_attr_t *ira)
{
if (IPCL_IS_NONSTR(connp)) {
udp_t *udp = connp->conn_udp;
int error;
ASSERT(len == msgdsize(mp));
if ((*connp->conn_upcalls->su_recv)
(connp->conn_upper_handle, mp, len, 0, &error, NULL) < 0) {
mutex_enter(&udp->udp_recv_lock);
if (error == ENOSPC) {
/*
* let's confirm while holding the lock
*/
if ((*connp->conn_upcalls->su_recv)
(connp->conn_upper_handle, NULL, 0, 0,
&error, NULL) < 0) {
ASSERT(error == ENOSPC);
if (error == ENOSPC) {
connp->conn_flow_cntrld =
B_TRUE;
}
}
mutex_exit(&udp->udp_recv_lock);
} else {
ASSERT(error == EOPNOTSUPP);
mp = udp_queue_fallback(udp, mp);
mutex_exit(&udp->udp_recv_lock);
if (mp != NULL)
putnext(connp->conn_rq, mp);
}
}
ASSERT(MUTEX_NOT_HELD(&udp->udp_recv_lock));
} else {
if (is_system_labeled()) {
ASSERT(ira->ira_cred != NULL);
/*
* Provide for protocols above UDP such as RPC
* NOPID leaves db_cpid unchanged.
*/
mblk_setcred(mp, ira->ira_cred, NOPID);
}
putnext(connp->conn_rq, mp);
}
}
/*
* This is the inbound data path.
* IP has already pulled up the IP plus UDP headers and verified alignment
* etc.
*/
/* ARGSUSED2 */
static void
udp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
{
conn_t *connp = (conn_t *)arg1;
struct T_unitdata_ind *tudi;
uchar_t *rptr; /* Pointer to IP header */
int hdr_length; /* Length of IP+UDP headers */
int udi_size; /* Size of T_unitdata_ind */
int pkt_len;
udp_t *udp;
udpha_t *udpha;
ip_pkt_t ipps;
ip6_t *ip6h;
mblk_t *mp1;
uint32_t udp_ipv4_options_len;
crb_t recv_ancillary;
udp_stack_t *us;
ASSERT(connp->conn_flags & IPCL_UDPCONN);
udp = connp->conn_udp;
us = udp->udp_us;
rptr = mp->b_rptr;
ASSERT(DB_TYPE(mp) == M_DATA);
ASSERT(OK_32PTR(rptr));
ASSERT(ira->ira_pktlen == msgdsize(mp));
pkt_len = ira->ira_pktlen;
/*
* Get a snapshot of these and allow other threads to change
* them after that. We need the same recv_ancillary when determining
* the size as when adding the ancillary data items.
*/
mutex_enter(&connp->conn_lock);
udp_ipv4_options_len = udp->udp_recv_ipp.ipp_ipv4_options_len;
recv_ancillary = connp->conn_recv_ancillary;
mutex_exit(&connp->conn_lock);
hdr_length = ira->ira_ip_hdr_length;
/*
* IP inspected the UDP header thus all of it must be in the mblk.
* UDP length check is performed for IPv6 packets and IPv4 packets
* to check if the size of the packet as specified
* by the UDP header is the same as the length derived from the IP
* header.
*/
udpha = (udpha_t *)(rptr + hdr_length);
if (pkt_len != ntohs(udpha->uha_length) + hdr_length)
goto tossit;
hdr_length += UDPH_SIZE;
ASSERT(MBLKL(mp) >= hdr_length); /* IP did a pullup */
/* Initialize regardless of IP version */
ipps.ipp_fields = 0;
if (((ira->ira_flags & IRAF_IPV4_OPTIONS) ||
udp_ipv4_options_len > 0) &&
connp->conn_family == AF_INET) {
int err;
/*
* Record/update udp_recv_ipp with the lock
* held. Not needed for AF_INET6 sockets
* since they don't support a getsockopt of IP_OPTIONS.
*/
mutex_enter(&connp->conn_lock);
err = ip_find_hdr_v4((ipha_t *)rptr, &udp->udp_recv_ipp,
B_TRUE);
if (err != 0) {
/* Allocation failed. Drop packet */
mutex_exit(&connp->conn_lock);
freemsg(mp);
UDPS_BUMP_MIB(us, udpInErrors);
return;
}
mutex_exit(&connp->conn_lock);
}
if (recv_ancillary.crb_all != 0) {
/*
* Record packet information in the ip_pkt_t
*/
if (ira->ira_flags & IRAF_IS_IPV4) {
ASSERT(IPH_HDR_VERSION(rptr) == IPV4_VERSION);
ASSERT(MBLKL(mp) >= sizeof (ipha_t));
ASSERT(((ipha_t *)rptr)->ipha_protocol == IPPROTO_UDP);
ASSERT(ira->ira_ip_hdr_length == IPH_HDR_LENGTH(rptr));
(void) ip_find_hdr_v4((ipha_t *)rptr, &ipps, B_FALSE);
} else {
uint8_t nexthdrp;
ASSERT(IPH_HDR_VERSION(rptr) == IPV6_VERSION);
/*
* IPv6 packets can only be received by applications
* that are prepared to receive IPv6 addresses.
* The IP fanout must ensure this.
*/
ASSERT(connp->conn_family == AF_INET6);
ip6h = (ip6_t *)rptr;
/* We don't care about the length, but need the ipp */
hdr_length = ip_find_hdr_v6(mp, ip6h, B_TRUE, &ipps,
&nexthdrp);
ASSERT(hdr_length == ira->ira_ip_hdr_length);
/* Restore */
hdr_length = ira->ira_ip_hdr_length + UDPH_SIZE;
ASSERT(nexthdrp == IPPROTO_UDP);
}
}
/*
* This is the inbound data path. Packets are passed upstream as
* T_UNITDATA_IND messages.
*/
if (connp->conn_family == AF_INET) {
sin_t *sin;
ASSERT(IPH_HDR_VERSION((ipha_t *)rptr) == IPV4_VERSION);
/*
* Normally only send up the source address.
* If any ancillary data items are wanted we add those.
*/
udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin_t);
if (recv_ancillary.crb_all != 0) {
udi_size += conn_recvancillary_size(connp,
recv_ancillary, ira, mp, &ipps);
}
/* Allocate a message block for the T_UNITDATA_IND structure. */
mp1 = allocb(udi_size, BPRI_MED);
if (mp1 == NULL) {
freemsg(mp);
UDPS_BUMP_MIB(us, udpInErrors);
return;
}
mp1->b_cont = mp;
mp1->b_datap->db_type = M_PROTO;
tudi = (struct T_unitdata_ind *)mp1->b_rptr;
mp1->b_wptr = (uchar_t *)tudi + udi_size;
tudi->PRIM_type = T_UNITDATA_IND;
tudi->SRC_length = sizeof (sin_t);
tudi->SRC_offset = sizeof (struct T_unitdata_ind);
tudi->OPT_offset = sizeof (struct T_unitdata_ind) +
sizeof (sin_t);
udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin_t));
tudi->OPT_length = udi_size;
sin = (sin_t *)&tudi[1];
sin->sin_addr.s_addr = ((ipha_t *)rptr)->ipha_src;
sin->sin_port = udpha->uha_src_port;
sin->sin_family = connp->conn_family;
*(uint32_t *)&sin->sin_zero[0] = 0;
*(uint32_t *)&sin->sin_zero[4] = 0;
/*
* Add options if IP_RECVDSTADDR, IP_RECVIF, IP_RECVSLLA or
* IP_RECVTTL has been set.
*/
if (udi_size != 0) {
conn_recvancillary_add(connp, recv_ancillary, ira,
&ipps, (uchar_t *)&sin[1], udi_size);
}
} else {
sin6_t *sin6;
/*
* Handle both IPv4 and IPv6 packets for IPv6 sockets.
*
* Normally we only send up the address. If receiving of any
* optional receive side information is enabled, we also send
* that up as options.
*/
udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t);
if (recv_ancillary.crb_all != 0) {
udi_size += conn_recvancillary_size(connp,
recv_ancillary, ira, mp, &ipps);
}
mp1 = allocb(udi_size, BPRI_MED);
if (mp1 == NULL) {
freemsg(mp);
UDPS_BUMP_MIB(us, udpInErrors);
return;
}
mp1->b_cont = mp;
mp1->b_datap->db_type = M_PROTO;
tudi = (struct T_unitdata_ind *)mp1->b_rptr;
mp1->b_wptr = (uchar_t *)tudi + udi_size;
tudi->PRIM_type = T_UNITDATA_IND;
tudi->SRC_length = sizeof (sin6_t);
tudi->SRC_offset = sizeof (struct T_unitdata_ind);
tudi->OPT_offset = sizeof (struct T_unitdata_ind) +
sizeof (sin6_t);
udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin6_t));
tudi->OPT_length = udi_size;
sin6 = (sin6_t *)&tudi[1];
if (ira->ira_flags & IRAF_IS_IPV4) {
in6_addr_t v6dst;
IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_src,
&sin6->sin6_addr);
IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_dst,
&v6dst);
sin6->sin6_flowinfo = 0;
sin6->sin6_scope_id = 0;
sin6->__sin6_src_id = ip_srcid_find_addr(&v6dst,
IPCL_ZONEID(connp), us->us_netstack);
} else {
ip6h = (ip6_t *)rptr;
sin6->sin6_addr = ip6h->ip6_src;
/* No sin6_flowinfo per API */
sin6->sin6_flowinfo = 0;
/* For link-scope pass up scope id */
if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src))
sin6->sin6_scope_id = ira->ira_ruifindex;
else
sin6->sin6_scope_id = 0;
sin6->__sin6_src_id = ip_srcid_find_addr(
&ip6h->ip6_dst, IPCL_ZONEID(connp),
us->us_netstack);
}
sin6->sin6_port = udpha->uha_src_port;
sin6->sin6_family = connp->conn_family;
if (udi_size != 0) {
conn_recvancillary_add(connp, recv_ancillary, ira,
&ipps, (uchar_t *)&sin6[1], udi_size);
}
}
/*
* DTrace this UDP input as udp:::receive (this is for IPv4, IPv6 and
* loopback traffic).
*/
DTRACE_UDP5(receive, mblk_t *, NULL, ip_xmit_attr_t *, connp->conn_ixa,
void_ip_t *, rptr, udp_t *, udp, udpha_t *, udpha);
/* Walk past the headers unless IP_RECVHDR was set. */
if (!udp->udp_rcvhdr) {
mp->b_rptr = rptr + hdr_length;
pkt_len -= hdr_length;
}
UDPS_BUMP_MIB(us, udpHCInDatagrams);
udp_ulp_recv(connp, mp1, pkt_len, ira);
return;
tossit:
freemsg(mp);
UDPS_BUMP_MIB(us, udpInErrors);
}
/*
* This routine creates a T_UDERROR_IND message and passes it upstream.
* The address and options are copied from the T_UNITDATA_REQ message
* passed in mp. This message is freed.
*/
static void
udp_ud_err(queue_t *q, mblk_t *mp, t_scalar_t err)
{
struct T_unitdata_req *tudr;
mblk_t *mp1;
uchar_t *destaddr;
t_scalar_t destlen;
uchar_t *optaddr;
t_scalar_t optlen;
if ((mp->b_wptr < mp->b_rptr) ||
(MBLKL(mp)) < sizeof (struct T_unitdata_req)) {
goto done;
}
tudr = (struct T_unitdata_req *)mp->b_rptr;
destaddr = mp->b_rptr + tudr->DEST_offset;
if (destaddr < mp->b_rptr || destaddr >= mp->b_wptr ||
destaddr + tudr->DEST_length < mp->b_rptr ||
destaddr + tudr->DEST_length > mp->b_wptr) {
goto done;
}
optaddr = mp->b_rptr + tudr->OPT_offset;
if (optaddr < mp->b_rptr || optaddr >= mp->b_wptr ||
optaddr + tudr->OPT_length < mp->b_rptr ||
optaddr + tudr->OPT_length > mp->b_wptr) {
goto done;
}
destlen = tudr->DEST_length;
optlen = tudr->OPT_length;
mp1 = mi_tpi_uderror_ind((char *)destaddr, destlen,
(char *)optaddr, optlen, err);
if (mp1 != NULL)
qreply(q, mp1);
done:
freemsg(mp);
}
/*
* This routine removes a port number association from a stream. It
* is called by udp_wput to handle T_UNBIND_REQ messages.
*/
static void
udp_tpi_unbind(queue_t *q, mblk_t *mp)
{
conn_t *connp = Q_TO_CONN(q);
int error;
error = udp_do_unbind(connp);
if (error) {
if (error < 0)
udp_err_ack(q, mp, -error, 0);
else
udp_err_ack(q, mp, TSYSERR, error);
return;
}
mp = mi_tpi_ok_ack_alloc(mp);
ASSERT(mp != NULL);
ASSERT(((struct T_ok_ack *)mp->b_rptr)->PRIM_type == T_OK_ACK);
qreply(q, mp);
}
/*
* Don't let port fall into the privileged range.
* Since the extra privileged ports can be arbitrary we also
* ensure that we exclude those from consideration.
* us->us_epriv_ports is not sorted thus we loop over it until
* there are no changes.
*/
static in_port_t
udp_update_next_port(udp_t *udp, in_port_t port, boolean_t random)
{
int i, bump;
in_port_t nextport;
boolean_t restart = B_FALSE;
udp_stack_t *us = udp->udp_us;
if (random && udp_random_anon_port != 0) {
(void) random_get_pseudo_bytes((uint8_t *)&port,
sizeof (in_port_t));
/*
* Unless changed by a sys admin, the smallest anon port
* is 32768 and the largest anon port is 65535. It is
* very likely (50%) for the random port to be smaller
* than the smallest anon port. When that happens,
* add port % (anon port range) to the smallest anon
* port to get the random port. It should fall into the
* valid anon port range.
*/
if ((port < us->us_smallest_anon_port) ||
(port > us->us_largest_anon_port)) {
if (us->us_smallest_anon_port ==
us->us_largest_anon_port) {
bump = 0;
} else {
bump = port % (us->us_largest_anon_port -
us->us_smallest_anon_port);
}
port = us->us_smallest_anon_port + bump;
}
}
retry:
if (port < us->us_smallest_anon_port)
port = us->us_smallest_anon_port;
if (port > us->us_largest_anon_port) {
port = us->us_smallest_anon_port;
if (restart)
return (0);
restart = B_TRUE;
}
if (port < us->us_smallest_nonpriv_port)
port = us->us_smallest_nonpriv_port;
for (i = 0; i < us->us_num_epriv_ports; i++) {
if (port == us->us_epriv_ports[i]) {
port++;
/*
* Make sure that the port is in the
* valid range.
*/
goto retry;
}
}
if (is_system_labeled() &&
(nextport = tsol_next_port(crgetzone(udp->udp_connp->conn_cred),
port, IPPROTO_UDP, B_TRUE)) != 0) {
port = nextport;
goto retry;
}
return (port);
}
/*
* Handle T_UNITDATA_REQ with options. Both IPv4 and IPv6
* Either tudr_mp or msg is set. If tudr_mp we take ancillary data from
* the TPI options, otherwise we take them from msg_control.
* If both sin and sin6 is set it is a connected socket and we use conn_faddr.
* Always consumes mp; never consumes tudr_mp.
*/
static int
udp_output_ancillary(conn_t *connp, sin_t *sin, sin6_t *sin6, mblk_t *mp,
mblk_t *tudr_mp, struct nmsghdr *msg, cred_t *cr, pid_t pid)
{
udp_t *udp = connp->conn_udp;
udp_stack_t *us = udp->udp_us;
int error;
ip_xmit_attr_t *ixa;
ip_pkt_t *ipp;
in6_addr_t v6src;
in6_addr_t v6dst;
in6_addr_t v6nexthop;
in_port_t dstport;
uint32_t flowinfo;
uint_t srcid;
int is_absreq_failure = 0;
conn_opt_arg_t coas, *coa;
ASSERT(tudr_mp != NULL || msg != NULL);
/*
* Get ixa before checking state to handle a disconnect race.
*
* We need an exclusive copy of conn_ixa since the ancillary data
* options might modify it. That copy has no pointers hence we
* need to set them up once we've parsed the ancillary data.
*/
ixa = conn_get_ixa_exclusive(connp);
if (ixa == NULL) {
UDPS_BUMP_MIB(us, udpOutErrors);
freemsg(mp);
return (ENOMEM);
}
ASSERT(cr != NULL);
ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED));
ixa->ixa_cred = cr;
ixa->ixa_cpid = pid;
if (is_system_labeled()) {
/* We need to restart with a label based on the cred */
ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred);
}
/* In case previous destination was multicast or multirt */
ip_attr_newdst(ixa);
/* Get a copy of conn_xmit_ipp since the options might change it */
ipp = kmem_zalloc(sizeof (*ipp), KM_NOSLEEP);
if (ipp == NULL) {
ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED));
ixa->ixa_cred = connp->conn_cred; /* Restore */
ixa->ixa_cpid = connp->conn_cpid;
ixa_refrele(ixa);
UDPS_BUMP_MIB(us, udpOutErrors);
freemsg(mp);
return (ENOMEM);
}
mutex_enter(&connp->conn_lock);
error = ip_pkt_copy(&connp->conn_xmit_ipp, ipp, KM_NOSLEEP);
mutex_exit(&connp->conn_lock);
if (error != 0) {
UDPS_BUMP_MIB(us, udpOutErrors);
freemsg(mp);
goto done;
}
/*
* Parse the options and update ixa and ipp as a result.
* Note that ixa_tsl can be updated if SCM_UCRED.
* ixa_refrele/ixa_inactivate will release any reference on ixa_tsl.
*/
coa = &coas;
coa->coa_connp = connp;
coa->coa_ixa = ixa;
coa->coa_ipp = ipp;
coa->coa_ancillary = B_TRUE;
coa->coa_changed = 0;
if (msg != NULL) {
error = process_auxiliary_options(connp, msg->msg_control,
msg->msg_controllen, coa, &udp_opt_obj, udp_opt_set, cr);
} else {
struct T_unitdata_req *tudr;
tudr = (struct T_unitdata_req *)tudr_mp->b_rptr;
ASSERT(tudr->PRIM_type == T_UNITDATA_REQ);
error = tpi_optcom_buf(connp->conn_wq, tudr_mp,
&tudr->OPT_length, tudr->OPT_offset, cr, &udp_opt_obj,
coa, &is_absreq_failure);
}
if (error != 0) {
/*
* Note: No special action needed in this
* module for "is_absreq_failure"
*/
freemsg(mp);
UDPS_BUMP_MIB(us, udpOutErrors);
goto done;
}
ASSERT(is_absreq_failure == 0);
mutex_enter(&connp->conn_lock);
/*
* If laddr is unspecified then we look at sin6_src_id.
* We will give precedence to a source address set with IPV6_PKTINFO
* (aka IPPF_ADDR) but that is handled in build_hdrs. However, we don't
* want ip_attr_connect to select a source (since it can fail) when
* IPV6_PKTINFO is specified.
* If this doesn't result in a source address then we get a source
* from ip_attr_connect() below.
*/
v6src = connp->conn_saddr_v6;