blob: d340aff2a5c1103012955bf5610b9b321c222de5 [file] [log] [blame]
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2011, Joyent Inc. All rights reserved.
* Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
* Copyright (c) 2013,2014 by Delphix. All rights reserved.
* Copyright 2014, OmniTI Computer Consulting, Inc. All rights reserved.
*/
/* Copyright (c) 1990 Mentat Inc. */
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/strsun.h>
#include <sys/strsubr.h>
#include <sys/stropts.h>
#include <sys/strlog.h>
#define _SUN_TPI_VERSION 2
#include <sys/tihdr.h>
#include <sys/timod.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/suntpi.h>
#include <sys/xti_inet.h>
#include <sys/cmn_err.h>
#include <sys/debug.h>
#include <sys/sdt.h>
#include <sys/vtrace.h>
#include <sys/kmem.h>
#include <sys/ethernet.h>
#include <sys/cpuvar.h>
#include <sys/dlpi.h>
#include <sys/pattr.h>
#include <sys/policy.h>
#include <sys/priv.h>
#include <sys/zone.h>
#include <sys/sunldi.h>
#include <sys/errno.h>
#include <sys/signal.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sockio.h>
#include <sys/isa_defs.h>
#include <sys/md5.h>
#include <sys/random.h>
#include <sys/uio.h>
#include <sys/systm.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <netinet/ip6.h>
#include <netinet/icmp6.h>
#include <net/if.h>
#include <net/route.h>
#include <inet/ipsec_impl.h>
#include <inet/common.h>
#include <inet/ip.h>
#include <inet/ip_impl.h>
#include <inet/ip6.h>
#include <inet/ip_ndp.h>
#include <inet/proto_set.h>
#include <inet/mib2.h>
#include <inet/optcom.h>
#include <inet/snmpcom.h>
#include <inet/kstatcom.h>
#include <inet/tcp.h>
#include <inet/tcp_impl.h>
#include <inet/tcp_cluster.h>
#include <inet/udp_impl.h>
#include <net/pfkeyv2.h>
#include <inet/ipdrop.h>
#include <inet/ipclassifier.h>
#include <inet/ip_ire.h>
#include <inet/ip_ftable.h>
#include <inet/ip_if.h>
#include <inet/ipp_common.h>
#include <inet/ip_rts.h>
#include <inet/ip_netinfo.h>
#include <sys/squeue_impl.h>
#include <sys/squeue.h>
#include <sys/tsol/label.h>
#include <sys/tsol/tnet.h>
#include <rpc/pmap_prot.h>
#include <sys/callo.h>
/*
* TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
*
* (Read the detailed design doc in PSARC case directory)
*
* The entire tcp state is contained in tcp_t and conn_t structure
* which are allocated in tandem using ipcl_conn_create() and passing
* IPCL_TCPCONN as a flag. We use 'conn_ref' and 'conn_lock' to protect
* the references on the tcp_t. The tcp_t structure is never compressed
* and packets always land on the correct TCP perimeter from the time
* eager is created till the time tcp_t dies (as such the old mentat
* TCP global queue is not used for detached state and no IPSEC checking
* is required). The global queue is still allocated to send out resets
* for connection which have no listeners and IP directly calls
* tcp_xmit_listeners_reset() which does any policy check.
*
* Protection and Synchronisation mechanism:
*
* The tcp data structure does not use any kind of lock for protecting
* its state but instead uses 'squeues' for mutual exclusion from various
* read and write side threads. To access a tcp member, the thread should
* always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS,
* or SQ_NODRAIN). Since the squeues allow a direct function call, caller
* can pass any tcp function having prototype of edesc_t as argument
* (different from traditional STREAMs model where packets come in only
* designated entry points). The list of functions that can be directly
* called via squeue are listed before the usual function prototype.
*
* Referencing:
*
* TCP is MT-Hot and we use a reference based scheme to make sure that the
* tcp structure doesn't disappear when its needed. When the application
* creates an outgoing connection or accepts an incoming connection, we
* start out with 2 references on 'conn_ref'. One for TCP and one for IP.
* The IP reference is just a symbolic reference since ip_tcpclose()
* looks at tcp structure after tcp_close_output() returns which could
* have dropped the last TCP reference. So as long as the connection is
* in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
* conn_t. The classifier puts its own reference when the connection is
* inserted in listen or connected hash. Anytime a thread needs to enter
* the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
* on write side or by doing a classify on read side and then puts a
* reference on the conn before doing squeue_enter/tryenter/fill. For
* read side, the classifier itself puts the reference under fanout lock
* to make sure that tcp can't disappear before it gets processed. The
* squeue will drop this reference automatically so the called function
* doesn't have to do a DEC_REF.
*
* Opening a new connection:
*
* The outgoing connection open is pretty simple. tcp_open() does the
* work in creating the conn/tcp structure and initializing it. The
* squeue assignment is done based on the CPU the application
* is running on. So for outbound connections, processing is always done
* on application CPU which might be different from the incoming CPU
* being interrupted by the NIC. An optimal way would be to figure out
* the NIC <-> CPU binding at listen time, and assign the outgoing
* connection to the squeue attached to the CPU that will be interrupted
* for incoming packets (we know the NIC based on the bind IP address).
* This might seem like a problem if more data is going out but the
* fact is that in most cases the transmit is ACK driven transmit where
* the outgoing data normally sits on TCP's xmit queue waiting to be
* transmitted.
*
* Accepting a connection:
*
* This is a more interesting case because of various races involved in
* establishing a eager in its own perimeter. Read the meta comment on
* top of tcp_input_listener(). But briefly, the squeue is picked by
* ip_fanout based on the ring or the sender (if loopback).
*
* Closing a connection:
*
* The close is fairly straight forward. tcp_close() calls tcp_close_output()
* via squeue to do the close and mark the tcp as detached if the connection
* was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
* reference but tcp_close() drop IP's reference always. So if tcp was
* not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
* and 1 because it is in classifier's connected hash. This is the condition
* we use to determine that its OK to clean up the tcp outside of squeue
* when time wait expires (check the ref under fanout and conn_lock and
* if it is 2, remove it from fanout hash and kill it).
*
* Although close just drops the necessary references and marks the
* tcp_detached state, tcp_close needs to know the tcp_detached has been
* set (under squeue) before letting the STREAM go away (because a
* inbound packet might attempt to go up the STREAM while the close
* has happened and tcp_detached is not set). So a special lock and
* flag is used along with a condition variable (tcp_closelock, tcp_closed,
* and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
* tcp_detached.
*
* Special provisions and fast paths:
*
* We make special provisions for sockfs by marking tcp_issocket
* whenever we have only sockfs on top of TCP. This allows us to skip
* putting the tcp in acceptor hash since a sockfs listener can never
* become acceptor and also avoid allocating a tcp_t for acceptor STREAM
* since eager has already been allocated and the accept now happens
* on acceptor STREAM. There is a big blob of comment on top of
* tcp_input_listener explaining the new accept. When socket is POP'd,
* sockfs sends us an ioctl to mark the fact and we go back to old
* behaviour. Once tcp_issocket is unset, its never set for the
* life of that connection.
*
* IPsec notes :
*
* Since a packet is always executed on the correct TCP perimeter
* all IPsec processing is defered to IP including checking new
* connections and setting IPSEC policies for new connection. The
* only exception is tcp_xmit_listeners_reset() which is called
* directly from IP and needs to policy check to see if TH_RST
* can be sent out.
*/
/*
* Values for squeue switch:
* 1: SQ_NODRAIN
* 2: SQ_PROCESS
* 3: SQ_FILL
*/
int tcp_squeue_wput = 2; /* /etc/systems */
int tcp_squeue_flag;
/*
* To prevent memory hog, limit the number of entries in tcp_free_list
* to 1% of available memory / number of cpus
*/
uint_t tcp_free_list_max_cnt = 0;
#define TIDUSZ 4096 /* transport interface data unit size */
/*
* Size of acceptor hash list. It has to be a power of 2 for hashing.
*/
#define TCP_ACCEPTOR_FANOUT_SIZE 512
#ifdef _ILP32
#define TCP_ACCEPTOR_HASH(accid) \
(((uint_t)(accid) >> 8) & (TCP_ACCEPTOR_FANOUT_SIZE - 1))
#else
#define TCP_ACCEPTOR_HASH(accid) \
((uint_t)(accid) & (TCP_ACCEPTOR_FANOUT_SIZE - 1))
#endif /* _ILP32 */
/*
* Minimum number of connections which can be created per listener. Used
* when the listener connection count is in effect.
*/
static uint32_t tcp_min_conn_listener = 2;
uint32_t tcp_early_abort = 30;
/* TCP Timer control structure */
typedef struct tcpt_s {
pfv_t tcpt_pfv; /* The routine we are to call */
tcp_t *tcpt_tcp; /* The parameter we are to pass in */
} tcpt_t;
/*
* Functions called directly via squeue having a prototype of edesc_t.
*/
void tcp_input_listener(void *arg, mblk_t *mp, void *arg2,
ip_recv_attr_t *ira);
void tcp_input_data(void *arg, mblk_t *mp, void *arg2,
ip_recv_attr_t *ira);
static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2,
ip_recv_attr_t *dummy);
/* Prototype for TCP functions */
static void tcp_random_init(void);
int tcp_random(void);
static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp,
in_port_t dstport, uint_t srcid);
static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp,
in_port_t dstport, uint32_t flowinfo,
uint_t srcid, uint32_t scope_id);
static void tcp_iss_init(tcp_t *tcp);
static void tcp_reinit(tcp_t *tcp);
static void tcp_reinit_values(tcp_t *tcp);
static int tcp_wsrv(queue_t *q);
static void tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa);
static void tcp_update_zcopy(tcp_t *tcp);
static void tcp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t,
ixa_notify_arg_t);
static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns);
static void tcp_stack_fini(netstackid_t stackid, void *arg);
static int tcp_squeue_switch(int);
static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t);
static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *);
static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *);
static void tcp_squeue_add(squeue_t *);
struct module_info tcp_rinfo = {
TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
};
static struct module_info tcp_winfo = {
TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
};
/*
* Entry points for TCP as a device. The normal case which supports
* the TCP functionality.
* We have separate open functions for the /dev/tcp and /dev/tcp6 devices.
*/
struct qinit tcp_rinitv4 = {
NULL, tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo
};
struct qinit tcp_rinitv6 = {
NULL, tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo
};
struct qinit tcp_winit = {
tcp_wput, tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
};
/* Initial entry point for TCP in socket mode. */
struct qinit tcp_sock_winit = {
tcp_wput_sock, tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
};
/* TCP entry point during fallback */
struct qinit tcp_fallback_sock_winit = {
tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo
};
/*
* Entry points for TCP as a acceptor STREAM opened by sockfs when doing
* an accept. Avoid allocating data structures since eager has already
* been created.
*/
struct qinit tcp_acceptor_rinit = {
NULL, tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo
};
struct qinit tcp_acceptor_winit = {
tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo
};
/* For AF_INET aka /dev/tcp */
struct streamtab tcpinfov4 = {
&tcp_rinitv4, &tcp_winit
};
/* For AF_INET6 aka /dev/tcp6 */
struct streamtab tcpinfov6 = {
&tcp_rinitv6, &tcp_winit
};
/*
* Following assumes TPI alignment requirements stay along 32 bit
* boundaries
*/
#define ROUNDUP32(x) \
(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
/* Template for response to info request. */
struct T_info_ack tcp_g_t_info_ack = {
T_INFO_ACK, /* PRIM_type */
0, /* TSDU_size */
T_INFINITE, /* ETSDU_size */
T_INVALID, /* CDATA_size */
T_INVALID, /* DDATA_size */
sizeof (sin_t), /* ADDR_size */
0, /* OPT_size - not initialized here */
TIDUSZ, /* TIDU_size */
T_COTS_ORD, /* SERV_type */
TCPS_IDLE, /* CURRENT_state */
(XPG4_1|EXPINLINE) /* PROVIDER_flag */
};
struct T_info_ack tcp_g_t_info_ack_v6 = {
T_INFO_ACK, /* PRIM_type */
0, /* TSDU_size */
T_INFINITE, /* ETSDU_size */
T_INVALID, /* CDATA_size */
T_INVALID, /* DDATA_size */
sizeof (sin6_t), /* ADDR_size */
0, /* OPT_size - not initialized here */
TIDUSZ, /* TIDU_size */
T_COTS_ORD, /* SERV_type */
TCPS_IDLE, /* CURRENT_state */
(XPG4_1|EXPINLINE) /* PROVIDER_flag */
};
/*
* TCP tunables related declarations. Definitions are in tcp_tunables.c
*/
extern mod_prop_info_t tcp_propinfo_tbl[];
extern int tcp_propinfo_count;
#define IS_VMLOANED_MBLK(mp) \
(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */
/*
* Forces all connections to obey the value of the tcps_maxpsz_multiplier
* tunable settable via NDD. Otherwise, the per-connection behavior is
* determined dynamically during tcp_set_destination(), which is the default.
*/
boolean_t tcp_static_maxpsz = B_FALSE;
/*
* If the receive buffer size is changed, this function is called to update
* the upper socket layer on the new delayed receive wake up threshold.
*/
static void
tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh)
{
uint32_t default_threshold = SOCKET_RECVHIWATER >> 3;
if (IPCL_IS_NONSTR(tcp->tcp_connp)) {
conn_t *connp = tcp->tcp_connp;
struct sock_proto_props sopp;
/*
* only increase rcvthresh upto default_threshold
*/
if (new_rcvthresh > default_threshold)
new_rcvthresh = default_threshold;
sopp.sopp_flags = SOCKOPT_RCVTHRESH;
sopp.sopp_rcvthresh = new_rcvthresh;
(*connp->conn_upcalls->su_set_proto_props)
(connp->conn_upper_handle, &sopp);
}
}
/*
* Figure out the value of window scale opton. Note that the rwnd is
* ASSUMED to be rounded up to the nearest MSS before the calculation.
* We cannot find the scale value and then do a round up of tcp_rwnd
* because the scale value may not be correct after that.
*
* Set the compiler flag to make this function inline.
*/
void
tcp_set_ws_value(tcp_t *tcp)
{
int i;
uint32_t rwnd = tcp->tcp_rwnd;
for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
i++, rwnd >>= 1)
;
tcp->tcp_rcv_ws = i;
}
/*
* Remove cached/latched IPsec references.
*/
void
tcp_ipsec_cleanup(tcp_t *tcp)
{
conn_t *connp = tcp->tcp_connp;
ASSERT(connp->conn_flags & IPCL_TCPCONN);
if (connp->conn_latch != NULL) {
IPLATCH_REFRELE(connp->conn_latch);
connp->conn_latch = NULL;
}
if (connp->conn_latch_in_policy != NULL) {
IPPOL_REFRELE(connp->conn_latch_in_policy);
connp->conn_latch_in_policy = NULL;
}
if (connp->conn_latch_in_action != NULL) {
IPACT_REFRELE(connp->conn_latch_in_action);
connp->conn_latch_in_action = NULL;
}
if (connp->conn_policy != NULL) {
IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
connp->conn_policy = NULL;
}
}
/*
* Cleaup before placing on free list.
* Disassociate from the netstack/tcp_stack_t since the freelist
* is per squeue and not per netstack.
*/
void
tcp_cleanup(tcp_t *tcp)
{
mblk_t *mp;
conn_t *connp = tcp->tcp_connp;
tcp_stack_t *tcps = tcp->tcp_tcps;
netstack_t *ns = tcps->tcps_netstack;
mblk_t *tcp_rsrv_mp;
tcp_bind_hash_remove(tcp);
/* Cleanup that which needs the netstack first */
tcp_ipsec_cleanup(tcp);
ixa_cleanup(connp->conn_ixa);
if (connp->conn_ht_iphc != NULL) {
kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated);
connp->conn_ht_iphc = NULL;
connp->conn_ht_iphc_allocated = 0;
connp->conn_ht_iphc_len = 0;
connp->conn_ht_ulp = NULL;
connp->conn_ht_ulp_len = 0;
tcp->tcp_ipha = NULL;
tcp->tcp_ip6h = NULL;
tcp->tcp_tcpha = NULL;
}
/* We clear any IP_OPTIONS and extension headers */
ip_pkt_free(&connp->conn_xmit_ipp);
tcp_free(tcp);
/*
* Since we will bzero the entire structure, we need to
* remove it and reinsert it in global hash list. We
* know the walkers can't get to this conn because we
* had set CONDEMNED flag earlier and checked reference
* under conn_lock so walker won't pick it and when we
* go the ipcl_globalhash_remove() below, no walker
* can get to it.
*/
ipcl_globalhash_remove(connp);
/* Save some state */
mp = tcp->tcp_timercache;
tcp_rsrv_mp = tcp->tcp_rsrv_mp;
if (connp->conn_cred != NULL) {
crfree(connp->conn_cred);
connp->conn_cred = NULL;
}
ipcl_conn_cleanup(connp);
connp->conn_flags = IPCL_TCPCONN;
/*
* Now it is safe to decrement the reference counts.
* This might be the last reference on the netstack
* in which case it will cause the freeing of the IP Instance.
*/
connp->conn_netstack = NULL;
connp->conn_ixa->ixa_ipst = NULL;
netstack_rele(ns);
ASSERT(tcps != NULL);
tcp->tcp_tcps = NULL;
bzero(tcp, sizeof (tcp_t));
/* restore the state */
tcp->tcp_timercache = mp;
tcp->tcp_rsrv_mp = tcp_rsrv_mp;
tcp->tcp_connp = connp;
ASSERT(connp->conn_tcp == tcp);
ASSERT(connp->conn_flags & IPCL_TCPCONN);
connp->conn_state_flags = CONN_INCIPIENT;
ASSERT(connp->conn_proto == IPPROTO_TCP);
ASSERT(connp->conn_ref == 1);
}
/*
* Adapt to the information, such as rtt and rtt_sd, provided from the
* DCE and IRE maintained by IP.
*
* Checks for multicast and broadcast destination address.
* Returns zero if ok; an errno on failure.
*
* Note that the MSS calculation here is based on the info given in
* the DCE and IRE. We do not do any calculation based on TCP options. They
* will be handled in tcp_input_data() when TCP knows which options to use.
*
* Note on how TCP gets its parameters for a connection.
*
* When a tcp_t structure is allocated, it gets all the default parameters.
* In tcp_set_destination(), it gets those metric parameters, like rtt, rtt_sd,
* spipe, rpipe, ... from the route metrics. Route metric overrides the
* default.
*
* An incoming SYN with a multicast or broadcast destination address is dropped
* in ip_fanout_v4/v6.
*
* An incoming SYN with a multicast or broadcast source address is always
* dropped in tcp_set_destination, since IPDF_ALLOW_MCBC is not set in
* conn_connect.
* The same logic in tcp_set_destination also serves to
* reject an attempt to connect to a broadcast or multicast (destination)
* address.
*/
int
tcp_set_destination(tcp_t *tcp)
{
uint32_t mss_max;
uint32_t mss;
boolean_t tcp_detached = TCP_IS_DETACHED(tcp);
conn_t *connp = tcp->tcp_connp;
tcp_stack_t *tcps = tcp->tcp_tcps;
iulp_t uinfo;
int error;
uint32_t flags;
flags = IPDF_LSO | IPDF_ZCOPY;
/*
* Make sure we have a dce for the destination to avoid dce_ident
* contention for connected sockets.
*/
flags |= IPDF_UNIQUE_DCE;
if (!tcps->tcps_ignore_path_mtu)
connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY;
/* Use conn_lock to satify ASSERT; tcp is already serialized */
mutex_enter(&connp->conn_lock);
error = conn_connect(connp, &uinfo, flags);
mutex_exit(&connp->conn_lock);
if (error != 0)
return (error);
error = tcp_build_hdrs(tcp);
if (error != 0)
return (error);
tcp->tcp_localnet = uinfo.iulp_localnet;
if (uinfo.iulp_rtt != 0) {
clock_t rto;
tcp->tcp_rtt_sa = uinfo.iulp_rtt;
tcp->tcp_rtt_sd = uinfo.iulp_rtt_sd;
rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
tcps->tcps_rexmit_interval_extra +
(tcp->tcp_rtt_sa >> 5);
TCP_SET_RTO(tcp, rto);
}
if (uinfo.iulp_ssthresh != 0)
tcp->tcp_cwnd_ssthresh = uinfo.iulp_ssthresh;
else
tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
if (uinfo.iulp_spipe > 0) {
connp->conn_sndbuf = MIN(uinfo.iulp_spipe,
tcps->tcps_max_buf);
if (tcps->tcps_snd_lowat_fraction != 0) {
connp->conn_sndlowat = connp->conn_sndbuf /
tcps->tcps_snd_lowat_fraction;
}
(void) tcp_maxpsz_set(tcp, B_TRUE);
}
/*
* Note that up till now, acceptor always inherits receive
* window from the listener. But if there is a metrics
* associated with a host, we should use that instead of
* inheriting it from listener. Thus we need to pass this
* info back to the caller.
*/
if (uinfo.iulp_rpipe > 0) {
tcp->tcp_rwnd = MIN(uinfo.iulp_rpipe,
tcps->tcps_max_buf);
}
if (uinfo.iulp_rtomax > 0) {
tcp->tcp_second_timer_threshold =
uinfo.iulp_rtomax;
}
/*
* Use the metric option settings, iulp_tstamp_ok and
* iulp_wscale_ok, only for active open. What this means
* is that if the other side uses timestamp or window
* scale option, TCP will also use those options. That
* is for passive open. If the application sets a
* large window, window scale is enabled regardless of
* the value in iulp_wscale_ok. This is the behavior
* since 2.6. So we keep it.
* The only case left in passive open processing is the
* check for SACK.
* For ECN, it should probably be like SACK. But the
* current value is binary, so we treat it like the other
* cases. The metric only controls active open.For passive
* open, the ndd param, tcp_ecn_permitted, controls the
* behavior.
*/
if (!tcp_detached) {
/*
* The if check means that the following can only
* be turned on by the metrics only IRE, but not off.
*/
if (uinfo.iulp_tstamp_ok)
tcp->tcp_snd_ts_ok = B_TRUE;
if (uinfo.iulp_wscale_ok)
tcp->tcp_snd_ws_ok = B_TRUE;
if (uinfo.iulp_sack == 2)
tcp->tcp_snd_sack_ok = B_TRUE;
if (uinfo.iulp_ecn_ok)
tcp->tcp_ecn_ok = B_TRUE;
} else {
/*
* Passive open.
*
* As above, the if check means that SACK can only be
* turned on by the metric only IRE.
*/
if (uinfo.iulp_sack > 0) {
tcp->tcp_snd_sack_ok = B_TRUE;
}
}
/*
* XXX Note that currently, iulp_mtu can be as small as 68
* because of PMTUd. So tcp_mss may go to negative if combined
* length of all those options exceeds 28 bytes. But because
* of the tcp_mss_min check below, we may not have a problem if
* tcp_mss_min is of a reasonable value. The default is 1 so
* the negative problem still exists. And the check defeats PMTUd.
* In fact, if PMTUd finds that the MSS should be smaller than
* tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
* value.
*
* We do not deal with that now. All those problems related to
* PMTUd will be fixed later.
*/
ASSERT(uinfo.iulp_mtu != 0);
mss = tcp->tcp_initial_pmtu = uinfo.iulp_mtu;
/* Sanity check for MSS value. */
if (connp->conn_ipversion == IPV4_VERSION)
mss_max = tcps->tcps_mss_max_ipv4;
else
mss_max = tcps->tcps_mss_max_ipv6;
if (tcp->tcp_ipsec_overhead == 0)
tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
mss -= tcp->tcp_ipsec_overhead;
if (mss < tcps->tcps_mss_min)
mss = tcps->tcps_mss_min;
if (mss > mss_max)
mss = mss_max;
/* Note that this is the maximum MSS, excluding all options. */
tcp->tcp_mss = mss;
/*
* Update the tcp connection with LSO capability.
*/
tcp_update_lso(tcp, connp->conn_ixa);
/*
* Initialize the ISS here now that we have the full connection ID.
* The RFC 1948 method of initial sequence number generation requires
* knowledge of the full connection ID before setting the ISS.
*/
tcp_iss_init(tcp);
tcp->tcp_loopback = (uinfo.iulp_loopback | uinfo.iulp_local);
/*
* Make sure that conn is not marked incipient
* for incoming connections. A blind
* removal of incipient flag is cheaper than
* check and removal.
*/
mutex_enter(&connp->conn_lock);
connp->conn_state_flags &= ~CONN_INCIPIENT;
mutex_exit(&connp->conn_lock);
return (0);
}
/*
* tcp_clean_death / tcp_close_detached must not be called more than once
* on a tcp. Thus every function that potentially calls tcp_clean_death
* must check for the tcp state before calling tcp_clean_death.
* Eg. tcp_input_data, tcp_eager_kill, tcp_clean_death_wrapper,
* tcp_timer_handler, all check for the tcp state.
*/
/* ARGSUSED */
void
tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2,
ip_recv_attr_t *dummy)
{
tcp_t *tcp = ((conn_t *)arg)->conn_tcp;
freemsg(mp);
if (tcp->tcp_state > TCPS_BOUND)
(void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT);
}
/*
* We are dying for some reason. Try to do it gracefully. (May be called
* as writer.)
*
* Return -1 if the structure was not cleaned up (if the cleanup had to be
* done by a service procedure).
* TBD - Should the return value distinguish between the tcp_t being
* freed and it being reinitialized?
*/
int
tcp_clean_death(tcp_t *tcp, int err)
{
mblk_t *mp;
queue_t *q;
conn_t *connp = tcp->tcp_connp;
tcp_stack_t *tcps = tcp->tcp_tcps;
if (tcp->tcp_fused)
tcp_unfuse(tcp);
if (tcp->tcp_linger_tid != 0 &&
TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
tcp_stop_lingering(tcp);
}
ASSERT(tcp != NULL);
ASSERT((connp->conn_family == AF_INET &&
connp->conn_ipversion == IPV4_VERSION) ||
(connp->conn_family == AF_INET6 &&
(connp->conn_ipversion == IPV4_VERSION ||
connp->conn_ipversion == IPV6_VERSION)));
if (TCP_IS_DETACHED(tcp)) {
if (tcp->tcp_hard_binding) {
/*
* Its an eager that we are dealing with. We close the
* eager but in case a conn_ind has already gone to the
* listener, let tcp_accept_finish() send a discon_ind
* to the listener and drop the last reference. If the
* listener doesn't even know about the eager i.e. the
* conn_ind hasn't gone up, blow away the eager and drop
* the last reference as well. If the conn_ind has gone
* up, state should be BOUND. tcp_accept_finish
* will figure out that the connection has received a
* RST and will send a DISCON_IND to the application.
*/
tcp_closei_local(tcp);
if (!tcp->tcp_tconnind_started) {
CONN_DEC_REF(connp);
} else {
tcp->tcp_state = TCPS_BOUND;
DTRACE_TCP6(state__change, void, NULL,
ip_xmit_attr_t *, connp->conn_ixa,
void, NULL, tcp_t *, tcp, void, NULL,
int32_t, TCPS_CLOSED);
}
} else {
tcp_close_detached(tcp);
}
return (0);
}
TCP_STAT(tcps, tcp_clean_death_nondetached);
/*
* The connection is dead. Decrement listener connection counter if
* necessary.
*/
if (tcp->tcp_listen_cnt != NULL)
TCP_DECR_LISTEN_CNT(tcp);
/*
* When a connection is moved to TIME_WAIT state, the connection
* counter is already decremented. So no need to decrement here
* again. See SET_TIME_WAIT() macro.
*/
if (tcp->tcp_state >= TCPS_ESTABLISHED &&
tcp->tcp_state < TCPS_TIME_WAIT) {
TCPS_CONN_DEC(tcps);
}
q = connp->conn_rq;
/* Trash all inbound data */
if (!IPCL_IS_NONSTR(connp)) {
ASSERT(q != NULL);
flushq(q, FLUSHALL);
}
/*
* If we are at least part way open and there is error
* (err==0 implies no error)
* notify our client by a T_DISCON_IND.
*/
if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
if (tcp->tcp_state >= TCPS_ESTABLISHED &&
!TCP_IS_SOCKET(tcp)) {
/*
* Send M_FLUSH according to TPI. Because sockets will
* (and must) ignore FLUSHR we do that only for TPI
* endpoints and sockets in STREAMS mode.
*/
(void) putnextctl1(q, M_FLUSH, FLUSHR);
}
if (connp->conn_debug) {
(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
"tcp_clean_death: discon err %d", err);
}
if (IPCL_IS_NONSTR(connp)) {
/* Direct socket, use upcall */
(*connp->conn_upcalls->su_disconnected)(
connp->conn_upper_handle, tcp->tcp_connid, err);
} else {
mp = mi_tpi_discon_ind(NULL, err, 0);
if (mp != NULL) {
putnext(q, mp);
} else {
if (connp->conn_debug) {
(void) strlog(TCP_MOD_ID, 0, 1,
SL_ERROR|SL_TRACE,
"tcp_clean_death, sending M_ERROR");
}
(void) putnextctl1(q, M_ERROR, EPROTO);
}
}
if (tcp->tcp_state <= TCPS_SYN_RCVD) {
/* SYN_SENT or SYN_RCVD */
TCPS_BUMP_MIB(tcps, tcpAttemptFails);
} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
/* ESTABLISHED or CLOSE_WAIT */
TCPS_BUMP_MIB(tcps, tcpEstabResets);
}
}
/*
* ESTABLISHED non-STREAMS eagers are not 'detached' because
* an upper handle is obtained when the SYN-ACK comes in. So it
* should receive the 'disconnected' upcall, but tcp_reinit should
* not be called since this is an eager.
*/
if (tcp->tcp_listener != NULL && IPCL_IS_NONSTR(connp)) {
tcp_closei_local(tcp);
tcp->tcp_state = TCPS_BOUND;
DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
int32_t, TCPS_CLOSED);
return (0);
}
tcp_reinit(tcp);
if (IPCL_IS_NONSTR(connp))
(void) tcp_do_unbind(connp);
return (-1);
}
/*
* In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
* to expire, stop the wait and finish the close.
*/
void
tcp_stop_lingering(tcp_t *tcp)
{
clock_t delta = 0;
tcp_stack_t *tcps = tcp->tcp_tcps;
conn_t *connp = tcp->tcp_connp;
tcp->tcp_linger_tid = 0;
if (tcp->tcp_state > TCPS_LISTEN) {
tcp_acceptor_hash_remove(tcp);
mutex_enter(&tcp->tcp_non_sq_lock);
if (tcp->tcp_flow_stopped) {
tcp_clrqfull(tcp);
}
mutex_exit(&tcp->tcp_non_sq_lock);
if (tcp->tcp_timer_tid != 0) {
delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
tcp->tcp_timer_tid = 0;
}
/*
* Need to cancel those timers which will not be used when
* TCP is detached. This has to be done before the conn_wq
* is cleared.
*/
tcp_timers_stop(tcp);
tcp->tcp_detached = B_TRUE;
connp->conn_rq = NULL;
connp->conn_wq = NULL;
if (tcp->tcp_state == TCPS_TIME_WAIT) {
tcp_time_wait_append(tcp);
TCP_DBGSTAT(tcps, tcp_detach_time_wait);
goto finish;
}
/*
* If delta is zero the timer event wasn't executed and was
* successfully canceled. In this case we need to restart it
* with the minimal delta possible.
*/
if (delta >= 0) {
tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
delta ? delta : 1);
}
} else {
tcp_closei_local(tcp);
CONN_DEC_REF(connp);
}
finish:
tcp->tcp_detached = B_TRUE;
connp->conn_rq = NULL;
connp->conn_wq = NULL;
/* Signal closing thread that it can complete close */
mutex_enter(&tcp->tcp_closelock);
tcp->tcp_closed = 1;
cv_signal(&tcp->tcp_closecv);
mutex_exit(&tcp->tcp_closelock);
/* If we have an upper handle (socket), release it */
if (IPCL_IS_NONSTR(connp)) {
ASSERT(connp->conn_upper_handle != NULL);
(*connp->conn_upcalls->su_closed)(connp->conn_upper_handle);
connp->conn_upper_handle = NULL;
connp->conn_upcalls = NULL;
}
}
void
tcp_close_common(conn_t *connp, int flags)
{
tcp_t *tcp = connp->conn_tcp;
mblk_t *mp = &tcp->tcp_closemp;
boolean_t conn_ioctl_cleanup_reqd = B_FALSE;
mblk_t *bp;
ASSERT(connp->conn_ref >= 2);
/*
* Mark the conn as closing. ipsq_pending_mp_add will not
* add any mp to the pending mp list, after this conn has
* started closing.
*/
mutex_enter(&connp->conn_lock);
connp->conn_state_flags |= CONN_CLOSING;
if (connp->conn_oper_pending_ill != NULL)
conn_ioctl_cleanup_reqd = B_TRUE;
CONN_INC_REF_LOCKED(connp);
mutex_exit(&connp->conn_lock);
tcp->tcp_closeflags = (uint8_t)flags;
ASSERT(connp->conn_ref >= 3);
/*
* tcp_closemp_used is used below without any protection of a lock
* as we don't expect any one else to use it concurrently at this
* point otherwise it would be a major defect.
*/
if (mp->b_prev == NULL)
tcp->tcp_closemp_used = B_TRUE;
else
cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: "
"connp %p tcp %p\n", (void *)connp, (void *)tcp);
TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
/*
* Cleanup any queued ioctls here. This must be done before the wq/rq
* are re-written by tcp_close_output().
*/
if (conn_ioctl_cleanup_reqd)
conn_ioctl_cleanup(connp);
/*
* As CONN_CLOSING is set, no further ioctls should be passed down to
* IP for this conn (see the guards in tcp_ioctl, tcp_wput_ioctl and
* tcp_wput_iocdata). If the ioctl was queued on an ipsq,
* conn_ioctl_cleanup should have found it and removed it. If the ioctl
* was still in flight at the time, we wait for it here. See comments
* for CONN_INC_IOCTLREF in ip.h for details.
*/
mutex_enter(&connp->conn_lock);
while (connp->conn_ioctlref > 0)
cv_wait(&connp->conn_cv, &connp->conn_lock);
ASSERT(connp->conn_ioctlref == 0);
ASSERT(connp->conn_oper_pending_ill == NULL);
mutex_exit(&connp->conn_lock);
SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp,
NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
/*
* For non-STREAMS sockets, the normal case is that the conn makes
* an upcall when it's finally closed, so there is no need to wait
* in the protocol. But in case of SO_LINGER the thread sleeps here
* so it can properly deal with the thread being interrupted.
*/
if (IPCL_IS_NONSTR(connp) && connp->conn_linger == 0)
goto nowait;
mutex_enter(&tcp->tcp_closelock);
while (!tcp->tcp_closed) {
if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
/*
* The cv_wait_sig() was interrupted. We now do the
* following:
*
* 1) If the endpoint was lingering, we allow this
* to be interrupted by cancelling the linger timeout
* and closing normally.
*
* 2) Revert to calling cv_wait()
*
* We revert to using cv_wait() to avoid an
* infinite loop which can occur if the calling
* thread is higher priority than the squeue worker
* thread and is bound to the same cpu.
*/
if (connp->conn_linger && connp->conn_lingertime > 0) {
mutex_exit(&tcp->tcp_closelock);
/* Entering squeue, bump ref count. */
CONN_INC_REF(connp);
bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
SQUEUE_ENTER_ONE(connp->conn_sqp, bp,
tcp_linger_interrupted, connp, NULL,
tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
mutex_enter(&tcp->tcp_closelock);
}
break;
}
}
while (!tcp->tcp_closed)
cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
mutex_exit(&tcp->tcp_closelock);
/*
* In the case of listener streams that have eagers in the q or q0
* we wait for the eagers to drop their reference to us. conn_rq and
* conn_wq of the eagers point to our queues. By waiting for the
* refcnt to drop to 1, we are sure that the eagers have cleaned
* up their queue pointers and also dropped their references to us.
*
* For non-STREAMS sockets we do not have to wait here; the
* listener will instead make a su_closed upcall when the last
* reference is dropped.
*/
if (tcp->tcp_wait_for_eagers && !IPCL_IS_NONSTR(connp)) {
mutex_enter(&connp->conn_lock);
while (connp->conn_ref != 1) {
cv_wait(&connp->conn_cv, &connp->conn_lock);
}
mutex_exit(&connp->conn_lock);
}
nowait:
connp->conn_cpid = NOPID;
}
/*
* Called by tcp_close() routine via squeue when lingering is
* interrupted by a signal.
*/
/* ARGSUSED */
static void
tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
{
conn_t *connp = (conn_t *)arg;
tcp_t *tcp = connp->conn_tcp;
freeb(mp);
if (tcp->tcp_linger_tid != 0 &&
TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
tcp_stop_lingering(tcp);
tcp->tcp_client_errno = EINTR;
}
}
/*
* Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
* Some stream heads get upset if they see these later on as anything but NULL.
*/
void
tcp_close_mpp(mblk_t **mpp)
{
mblk_t *mp;
if ((mp = *mpp) != NULL) {
do {
mp->b_next = NULL;
mp->b_prev = NULL;
} while ((mp = mp->b_cont) != NULL);
mp = *mpp;
*mpp = NULL;
freemsg(mp);
}
}
/* Do detached close. */
void
tcp_close_detached(tcp_t *tcp)
{
if (tcp->tcp_fused)
tcp_unfuse(tcp);
/*
* Clustering code serializes TCP disconnect callbacks and
* cluster tcp list walks by blocking a TCP disconnect callback
* if a cluster tcp list walk is in progress. This ensures
* accurate accounting of TCPs in the cluster code even though
* the TCP list walk itself is not atomic.
*/
tcp_closei_local(tcp);
CONN_DEC_REF(tcp->tcp_connp);
}
/*
* The tcp_t is going away. Remove it from all lists and set it
* to TCPS_CLOSED. The freeing up of memory is deferred until
* tcp_inactive. This is needed since a thread in tcp_rput might have
* done a CONN_INC_REF on this structure before it was removed from the
* hashes.
*/
void
tcp_closei_local(tcp_t *tcp)
{
conn_t *connp = tcp->tcp_connp;
tcp_stack_t *tcps = tcp->tcp_tcps;
int32_t oldstate;
if (!TCP_IS_SOCKET(tcp))
tcp_acceptor_hash_remove(tcp);
TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs);
tcp->tcp_ibsegs = 0;
TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs);
tcp->tcp_obsegs = 0;
/*
* This can be called via tcp_time_wait_processing() if TCP gets a
* SYN with sequence number outside the TIME-WAIT connection's
* window. So we need to check for TIME-WAIT state here as the
* connection counter is already decremented. See SET_TIME_WAIT()
* macro
*/
if (tcp->tcp_state >= TCPS_ESTABLISHED &&
tcp->tcp_state < TCPS_TIME_WAIT) {
TCPS_CONN_DEC(tcps);
}
/*
* If we are an eager connection hanging off a listener that
* hasn't formally accepted the connection yet, get off its
* list and blow off any data that we have accumulated.
*/
if (tcp->tcp_listener != NULL) {
tcp_t *listener = tcp->tcp_listener;
mutex_enter(&listener->tcp_eager_lock);
/*
* tcp_tconnind_started == B_TRUE means that the
* conn_ind has already gone to listener. At
* this point, eager will be closed but we
* leave it in listeners eager list so that
* if listener decides to close without doing
* accept, we can clean this up. In tcp_tli_accept
* we take care of the case of accept on closed
* eager.
*/
if (!tcp->tcp_tconnind_started) {
tcp_eager_unlink(tcp);
mutex_exit(&listener->tcp_eager_lock);
/*
* We don't want to have any pointers to the
* listener queue, after we have released our
* reference on the listener
*/
ASSERT(tcp->tcp_detached);
connp->conn_rq = NULL;
connp->conn_wq = NULL;
CONN_DEC_REF(listener->tcp_connp);
} else {
mutex_exit(&listener->tcp_eager_lock);
}
}
/* Stop all the timers */
tcp_timers_stop(tcp);
if (tcp->tcp_state == TCPS_LISTEN) {
if (tcp->tcp_ip_addr_cache) {
kmem_free((void *)tcp->tcp_ip_addr_cache,
IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
tcp->tcp_ip_addr_cache = NULL;
}
}
/* Decrement listerner connection counter if necessary. */
if (tcp->tcp_listen_cnt != NULL)
TCP_DECR_LISTEN_CNT(tcp);
mutex_enter(&tcp->tcp_non_sq_lock);
if (tcp->tcp_flow_stopped)
tcp_clrqfull(tcp);
mutex_exit(&tcp->tcp_non_sq_lock);
tcp_bind_hash_remove(tcp);
/*
* If the tcp_time_wait_collector (which runs outside the squeue)
* is trying to remove this tcp from the time wait list, we will
* block in tcp_time_wait_remove while trying to acquire the
* tcp_time_wait_lock. The logic in tcp_time_wait_collector also
* requires the ipcl_hash_remove to be ordered after the
* tcp_time_wait_remove for the refcnt checks to work correctly.
*/
if (tcp->tcp_state == TCPS_TIME_WAIT)
(void) tcp_time_wait_remove(tcp, NULL);
CL_INET_DISCONNECT(connp);
ipcl_hash_remove(connp);
oldstate = tcp->tcp_state;
tcp->tcp_state = TCPS_CLOSED;
/* Need to probe before ixa_cleanup() is called */
DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
int32_t, oldstate);
ixa_cleanup(connp->conn_ixa);
/*
* Mark the conn as CONDEMNED
*/
mutex_enter(&connp->conn_lock);
connp->conn_state_flags |= CONN_CONDEMNED;
mutex_exit(&connp->conn_lock);
ASSERT(tcp->tcp_time_wait_next == NULL);
ASSERT(tcp->tcp_time_wait_prev == NULL);
ASSERT(tcp->tcp_time_wait_expire == 0);
tcp_ipsec_cleanup(tcp);
}
/*
* tcp is dying (called from ipcl_conn_destroy and error cases).
* Free the tcp_t in either case.
*/
void
tcp_free(tcp_t *tcp)
{
mblk_t *mp;
conn_t *connp = tcp->tcp_connp;
ASSERT(tcp != NULL);
ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
connp->conn_rq = NULL;
connp->conn_wq = NULL;
tcp_close_mpp(&tcp->tcp_xmit_head);
tcp_close_mpp(&tcp->tcp_reass_head);
if (tcp->tcp_rcv_list != NULL) {
/* Free b_next chain */
tcp_close_mpp(&tcp->tcp_rcv_list);
}
if ((mp = tcp->tcp_urp_mp) != NULL) {
freemsg(mp);
}
if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
freemsg(mp);
}
if (tcp->tcp_fused_sigurg_mp != NULL) {
ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
freeb(tcp->tcp_fused_sigurg_mp);
tcp->tcp_fused_sigurg_mp = NULL;
}
if (tcp->tcp_ordrel_mp != NULL) {
ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
freeb(tcp->tcp_ordrel_mp);
tcp->tcp_ordrel_mp = NULL;
}
TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp);
bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
if (tcp->tcp_hopopts != NULL) {
mi_free(tcp->tcp_hopopts);
tcp->tcp_hopopts = NULL;
tcp->tcp_hopoptslen = 0;
}
ASSERT(tcp->tcp_hopoptslen == 0);
if (tcp->tcp_dstopts != NULL) {
mi_free(tcp->tcp_dstopts);
tcp->tcp_dstopts = NULL;
tcp->tcp_dstoptslen = 0;
}
ASSERT(tcp->tcp_dstoptslen == 0);
if (tcp->tcp_rthdrdstopts != NULL) {
mi_free(tcp->tcp_rthdrdstopts);
tcp->tcp_rthdrdstopts = NULL;
tcp->tcp_rthdrdstoptslen = 0;
}
ASSERT(tcp->tcp_rthdrdstoptslen == 0);
if (tcp->tcp_rthdr != NULL) {
mi_free(tcp->tcp_rthdr);
tcp->tcp_rthdr = NULL;
tcp->tcp_rthdrlen = 0;
}
ASSERT(tcp->tcp_rthdrlen == 0);
/*
* Following is really a blowing away a union.
* It happens to have exactly two members of identical size
* the following code is enough.
*/
tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
/*
* If this is a non-STREAM socket still holding on to an upper
* handle, release it. As a result of fallback we might also see
* STREAMS based conns with upper handles, in which case there is
* nothing to do other than clearing the field.
*/
if (connp->conn_upper_handle != NULL) {
if (IPCL_IS_NONSTR(connp)) {
(*connp->conn_upcalls->su_closed)(
connp->conn_upper_handle);
tcp->tcp_detached = B_TRUE;
}
connp->conn_upper_handle = NULL;
connp->conn_upcalls = NULL;
}
}
/*
* tcp_get_conn/tcp_free_conn
*
* tcp_get_conn is used to get a clean tcp connection structure.
* It tries to reuse the connections put on the freelist by the
* time_wait_collector failing which it goes to kmem_cache. This
* way has two benefits compared to just allocating from and
* freeing to kmem_cache.
* 1) The time_wait_collector can free (which includes the cleanup)
* outside the squeue. So when the interrupt comes, we have a clean
* connection sitting in the freelist. Obviously, this buys us
* performance.
*
* 2) Defence against DOS attack. Allocating a tcp/conn in tcp_input_listener
* has multiple disadvantages - tying up the squeue during alloc.
* But allocating the conn/tcp in IP land is also not the best since
* we can't check the 'q' and 'q0' which are protected by squeue and
* blindly allocate memory which might have to be freed here if we are
* not allowed to accept the connection. By using the freelist and
* putting the conn/tcp back in freelist, we don't pay a penalty for
* allocating memory without checking 'q/q0' and freeing it if we can't
* accept the connection.
*
* Care should be taken to put the conn back in the same squeue's freelist
* from which it was allocated. Best results are obtained if conn is
* allocated from listener's squeue and freed to the same. Time wait
* collector will free up the freelist is the connection ends up sitting
* there for too long.
*/
void *
tcp_get_conn(void *arg, tcp_stack_t *tcps)
{
tcp_t *tcp = NULL;
conn_t *connp = NULL;
squeue_t *sqp = (squeue_t *)arg;
tcp_squeue_priv_t *tcp_time_wait;
netstack_t *ns;
mblk_t *tcp_rsrv_mp = NULL;
tcp_time_wait =
*((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
tcp = tcp_time_wait->tcp_free_list;
ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
if (tcp != NULL) {
tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
tcp_time_wait->tcp_free_list_cnt--;
mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
tcp->tcp_time_wait_next = NULL;
connp = tcp->tcp_connp;
connp->conn_flags |= IPCL_REUSED;
ASSERT(tcp->tcp_tcps == NULL);
ASSERT(connp->conn_netstack == NULL);
ASSERT(tcp->tcp_rsrv_mp != NULL);
ns = tcps->tcps_netstack;
netstack_hold(ns);
connp->conn_netstack = ns;
connp->conn_ixa->ixa_ipst = ns->netstack_ip;
tcp->tcp_tcps = tcps;
ipcl_globalhash_insert(connp);
connp->conn_ixa->ixa_notify_cookie = tcp;
ASSERT(connp->conn_ixa->ixa_notify == tcp_notify);
connp->conn_recv = tcp_input_data;
ASSERT(connp->conn_recvicmp == tcp_icmp_input);
ASSERT(connp->conn_verifyicmp == tcp_verifyicmp);
return ((void *)connp);
}
mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
/*
* Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until
* this conn_t/tcp_t is freed at ipcl_conn_destroy().
*/
tcp_rsrv_mp = allocb(0, BPRI_HI);
if (tcp_rsrv_mp == NULL)
return (NULL);
if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
tcps->tcps_netstack)) == NULL) {
freeb(tcp_rsrv_mp);
return (NULL);
}
tcp = connp->conn_tcp;
tcp->tcp_rsrv_mp = tcp_rsrv_mp;
mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL);
tcp->tcp_tcps = tcps;
connp->conn_recv = tcp_input_data;
connp->conn_recvicmp = tcp_icmp_input;
connp->conn_verifyicmp = tcp_verifyicmp;
/*
* Register tcp_notify to listen to capability changes detected by IP.
* This upcall is made in the context of the call to conn_ip_output
* thus it is inside the squeue.
*/
connp->conn_ixa->ixa_notify = tcp_notify;
connp->conn_ixa->ixa_notify_cookie = tcp;
return ((void *)connp);
}
/*
* Handle connect to IPv4 destinations, including connections for AF_INET6
* sockets connecting to IPv4 mapped IPv6 destinations.
* Returns zero if OK, a positive errno, or a negative TLI error.
*/
static int
tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport,
uint_t srcid)
{
ipaddr_t dstaddr = *dstaddrp;
uint16_t lport;
conn_t *connp = tcp->tcp_connp;
tcp_stack_t *tcps = tcp->tcp_tcps;
int error;
ASSERT(connp->conn_ipversion == IPV4_VERSION);
/* Check for attempt to connect to INADDR_ANY */
if (dstaddr == INADDR_ANY) {
/*
* SunOS 4.x and 4.3 BSD allow an application
* to connect a TCP socket to INADDR_ANY.
* When they do this, the kernel picks the
* address of one interface and uses it
* instead. The kernel usually ends up
* picking the address of the loopback
* interface. This is an undocumented feature.
* However, we provide the same thing here
* in order to have source and binary
* compatibility with SunOS 4.x.
* Update the T_CONN_REQ (sin/sin6) since it is used to
* generate the T_CONN_CON.
*/
dstaddr = htonl(INADDR_LOOPBACK);
*dstaddrp = dstaddr;
}
/* Handle __sin6_src_id if socket not bound to an IP address */
if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) {
if (!ip_srcid_find_id(srcid, &connp->conn_laddr_v6,
IPCL_ZONEID(connp), B_TRUE, tcps->tcps_netstack)) {
/* Mismatch - conn_laddr_v6 would be v6 address. */
return (EADDRNOTAVAIL);
}
connp->conn_saddr_v6 = connp->conn_laddr_v6;
}
IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6);
connp->conn_fport = dstport;
/*
* At this point the remote destination address and remote port fields
* in the tcp-four-tuple have been filled in the tcp structure. Now we
* have to see which state tcp was in so we can take appropriate action.
*/
if (tcp->tcp_state == TCPS_IDLE) {
/*
* We support a quick connect capability here, allowing
* clients to transition directly from IDLE to SYN_SENT
* tcp_bindi will pick an unused port, insert the connection
* in the bind hash and transition to BOUND state.
*/
lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
tcp, B_TRUE);
lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE,
B_FALSE, B_FALSE);
if (lport == 0)
return (-TNOADDR);
}
/*
* Lookup the route to determine a source address and the uinfo.
* Setup TCP parameters based on the metrics/DCE.
*/
error = tcp_set_destination(tcp);
if (error != 0)
return (error);
/*
* Don't let an endpoint connect to itself.
*/
if (connp->conn_faddr_v4 == connp->conn_laddr_v4 &&
connp->conn_fport == connp->conn_lport)
return (-TBADADDR);
tcp->tcp_state = TCPS_SYN_SENT;
return (ipcl_conn_insert_v4(connp));
}
/*
* Handle connect to IPv6 destinations.
* Returns zero if OK, a positive errno, or a negative TLI error.
*/
static int
tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport,
uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
{
uint16_t lport;
conn_t *connp = tcp->tcp_connp;
tcp_stack_t *tcps = tcp->tcp_tcps;
int error;
ASSERT(connp->conn_family == AF_INET6);
/*
* If we're here, it means that the destination address is a native
* IPv6 address. Return an error if conn_ipversion is not IPv6. A
* reason why it might not be IPv6 is if the socket was bound to an
* IPv4-mapped IPv6 address.
*/
if (connp->conn_ipversion != IPV6_VERSION)
return (-TBADADDR);
/*
* Interpret a zero destination to mean loopback.
* Update the T_CONN_REQ (sin/sin6) since it is used to
* generate the T_CONN_CON.
*/
if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp))
*dstaddrp = ipv6_loopback;
/* Handle __sin6_src_id if socket not bound to an IP address */
if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) {
if (!ip_srcid_find_id(srcid, &connp->conn_laddr_v6,
IPCL_ZONEID(connp), B_FALSE, tcps->tcps_netstack)) {
/* Mismatch - conn_laddr_v6 would be v4-mapped. */
return (EADDRNOTAVAIL);
}
connp->conn_saddr_v6 = connp->conn_laddr_v6;
}
/*
* Take care of the scope_id now.
*/
if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET;
connp->conn_ixa->ixa_scopeid = scope_id;
} else {
connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET;
}
connp->conn_flowinfo = flowinfo;
connp->conn_faddr_v6 = *dstaddrp;
connp->conn_fport = dstport;
/*
* At this point the remote destination address and remote port fields
* in the tcp-four-tuple have been filled in the tcp structure. Now we
* have to see which state tcp was in so we can take appropriate action.
*/
if (tcp->tcp_state == TCPS_IDLE) {
/*
* We support a quick connect capability here, allowing
* clients to transition directly from IDLE to SYN_SENT
* tcp_bindi will pick an unused port, insert the connection
* in the bind hash and transition to BOUND state.
*/
lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
tcp, B_TRUE);
lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE,
B_FALSE, B_FALSE);
if (lport == 0)
return (-TNOADDR);
}
/*
* Lookup the route to determine a source address and the uinfo.
* Setup TCP parameters based on the metrics/DCE.
*/
error = tcp_set_destination(tcp);
if (error != 0)
return (error);
/*
* Don't let an endpoint connect to itself.
*/
if (IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &connp->conn_laddr_v6) &&
connp->conn_fport == connp->conn_lport)
return (-TBADADDR);
tcp->tcp_state = TCPS_SYN_SENT;
return (ipcl_conn_insert_v6(connp));
}
/*
* Disconnect
* Note that unlike other functions this returns a positive tli error
* when it fails; it never returns an errno.
*/
static int
tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum)
{
conn_t *lconnp;
tcp_stack_t *tcps = tcp->tcp_tcps;
conn_t *connp = tcp->tcp_connp;
/*
* Right now, upper modules pass down a T_DISCON_REQ to TCP,
* when the stream is in BOUND state. Do not send a reset,
* since the destination IP address is not valid, and it can
* be the initialized value of all zeros (broadcast address).
*/
if (tcp->tcp_state <= TCPS_BOUND) {
if (connp->conn_debug) {
(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
"tcp_disconnect: bad state, %d", tcp->tcp_state);
}
return (TOUTSTATE);
} else if (tcp->tcp_state >= TCPS_ESTABLISHED) {
TCPS_CONN_DEC(tcps);
}
if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
/*
* According to TPI, for non-listeners, ignore seqnum
* and disconnect.
* Following interpretation of -1 seqnum is historical
* and implied TPI ? (TPI only states that for T_CONN_IND,
* a valid seqnum should not be -1).
*
* -1 means disconnect everything
* regardless even on a listener.
*/
int old_state = tcp->tcp_state;
ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
/*
* The connection can't be on the tcp_time_wait_head list
* since it is not detached.
*/
ASSERT(tcp->tcp_time_wait_next == NULL);
ASSERT(tcp->tcp_time_wait_prev == NULL);
ASSERT(tcp->tcp_time_wait_expire == 0);
/*
* If it used to be a listener, check to make sure no one else
* has taken the port before switching back to LISTEN state.
*/
if (connp->conn_ipversion == IPV4_VERSION) {
lconnp = ipcl_lookup_listener_v4(connp->conn_lport,
connp->conn_laddr_v4, IPCL_ZONEID(connp), ipst);
} else {
uint_t ifindex = 0;
if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)
ifindex = connp->conn_ixa->ixa_scopeid;
/* Allow conn_bound_if listeners? */
lconnp = ipcl_lookup_listener_v6(connp->conn_lport,
&connp->conn_laddr_v6, ifindex, IPCL_ZONEID(connp),
ipst);
}
if (tcp->tcp_conn_req_max && lconnp == NULL) {
tcp->tcp_state = TCPS_LISTEN;
DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
connp->conn_ixa, void, NULL, tcp_t *, tcp, void,
NULL, int32_t, old_state);
} else if (old_state > TCPS_BOUND) {
tcp->tcp_conn_req_max = 0;
tcp->tcp_state = TCPS_BOUND;
DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
connp->conn_ixa, void, NULL, tcp_t *, tcp, void,
NULL, int32_t, old_state);
/*
* If this end point is not going to become a listener,
* decrement the listener connection count if
* necessary. Note that we do not do this if it is
* going to be a listner (the above if case) since
* then it may remove the counter struct.
*/
if (tcp->tcp_listen_cnt != NULL)
TCP_DECR_LISTEN_CNT(tcp);
}
if (lconnp != NULL)
CONN_DEC_REF(lconnp);
switch (old_state) {
case TCPS_SYN_SENT:
case TCPS_SYN_RCVD:
TCPS_BUMP_MIB(tcps, tcpAttemptFails);
break;
case TCPS_ESTABLISHED:
case TCPS_CLOSE_WAIT:
TCPS_BUMP_MIB(tcps, tcpEstabResets);
break;
}
if (tcp->tcp_fused)
tcp_unfuse(tcp);
mutex_enter(&tcp->tcp_eager_lock);
if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
(tcp->tcp_conn_req_cnt_q != 0)) {
tcp_eager_cleanup(tcp, 0);
}
mutex_exit(&tcp->tcp_eager_lock);
tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
tcp->tcp_rnxt, TH_RST | TH_ACK);
tcp_reinit(tcp);
return (0);
} else if (!tcp_eager_blowoff(tcp, seqnum)) {
return (TBADSEQ);
}
return (0);
}
/*
* Our client hereby directs us to reject the connection request
* that tcp_input_listener() marked with 'seqnum'. Rejection consists
* of sending the appropriate RST, not an ICMP error.
*/
void
tcp_disconnect(tcp_t *tcp, mblk_t *mp)
{
t_scalar_t seqnum;
int error;
conn_t *connp = tcp->tcp_connp;
ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
tcp_err_ack(tcp, mp, TPROTO, 0);
return;
}
seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
error = tcp_disconnect_common(tcp, seqnum);
if (error != 0)
tcp_err_ack(tcp, mp, error, 0);
else {
if (tcp->tcp_state >= TCPS_ESTABLISHED) {
/* Send M_FLUSH according to TPI */
(void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW);
}
mp = mi_tpi_ok_ack_alloc(mp);
if (mp != NULL)
putnext(connp->conn_rq, mp);
}
}
/*
* Handle reinitialization of a tcp structure.
* Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
*/
static void
tcp_reinit(tcp_t *tcp)
{
mblk_t *mp;
tcp_stack_t *tcps = tcp->tcp_tcps;
conn_t *connp = tcp->tcp_connp;
int32_t oldstate;
/* tcp_reinit should never be called for detached tcp_t's */
ASSERT(tcp->tcp_listener == NULL);
ASSERT((connp->conn_family == AF_INET &&
connp->conn_ipversion == IPV4_VERSION) ||
(connp->conn_family == AF_INET6 &&
(connp->conn_ipversion == IPV4_VERSION ||
connp->conn_ipversion == IPV6_VERSION)));
/* Cancel outstanding timers */
tcp_timers_stop(tcp);
/*
* Reset everything in the state vector, after updating global
* MIB data from instance counters.
*/
TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs);
tcp->tcp_ibsegs = 0;
TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs);
tcp->tcp_obsegs = 0;
tcp_close_mpp(&tcp->tcp_xmit_head);
if (tcp->tcp_snd_zcopy_aware)
tcp_zcopy_notify(tcp);
tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
mutex_enter(&tcp->tcp_non_sq_lock);
if (tcp->tcp_flow_stopped &&
TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) {
tcp_clrqfull(tcp);
}
mutex_exit(&tcp->tcp_non_sq_lock);
tcp_close_mpp(&tcp->tcp_reass_head);
tcp->tcp_reass_tail = NULL;
if (tcp->tcp_rcv_list != NULL) {
/* Free b_next chain */
tcp_close_mpp(&tcp->tcp_rcv_list);
tcp->tcp_rcv_last_head = NULL;
tcp->tcp_rcv_last_tail = NULL;
tcp->tcp_rcv_cnt = 0;
}
tcp->tcp_rcv_last_tail = NULL;
if ((mp = tcp->tcp_urp_mp) != NULL) {
freemsg(mp);
tcp->tcp_urp_mp = NULL;
}
if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
freemsg(mp);
tcp->tcp_urp_mark_mp = NULL;
}
if (tcp->tcp_fused_sigurg_mp != NULL) {
ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
freeb(tcp->tcp_fused_sigurg_mp);
tcp->tcp_fused_sigurg_mp = NULL;
}
if (tcp->tcp_ordrel_mp != NULL) {
ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
freeb(tcp->tcp_ordrel_mp);
tcp->tcp_ordrel_mp = NULL;
}
/*
* Following is a union with two members which are
* identical types and size so the following cleanup
* is enough.
*/
tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
CL_INET_DISCONNECT(connp);
/*
* The connection can't be on the tcp_time_wait_head list
* since it is not detached.
*/
ASSERT(tcp->tcp_time_wait_next == NULL);
ASSERT(tcp->tcp_time_wait_prev == NULL);
ASSERT(tcp->tcp_time_wait_expire == 0);
/*
* Reset/preserve other values
*/
tcp_reinit_values(tcp);
ipcl_hash_remove(connp);
/* Note that ixa_cred gets cleared in ixa_cleanup */
ixa_cleanup(connp->conn_ixa);
tcp_ipsec_cleanup(tcp);
connp->conn_laddr_v6 = connp->conn_bound_addr_v6;
connp->conn_saddr_v6 = connp->conn_bound_addr_v6;
oldstate = tcp->tcp_state;
if (tcp->tcp_conn_req_max != 0) {
/*
* This is the case when a TLI program uses the same
* transport end point to accept a connection. This
* makes the TCP both a listener and acceptor. When
* this connection is closed, we need to set the state
* back to TCPS_LISTEN. Make sure that the eager list
* is reinitialized.
*
* Note that this stream is still bound to the four
* tuples of the previous connection in IP. If a new
* SYN with different foreign address comes in, IP will
* not find it and will send it to the global queue. In
* the global queue, TCP will do a tcp_lookup_listener()
* to find this stream. This works because this stream
* is only removed from connected hash.
*
*/
tcp->tcp_state = TCPS_LISTEN;
tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
tcp->tcp_eager_next_drop_q0 = tcp;
tcp->tcp_eager_prev_drop_q0 = tcp;
/*
* Initially set conn_recv to tcp_input_listener_unbound to try
* to pick a good squeue for the listener when the first SYN
* arrives. tcp_input_listener_unbound sets it to
* tcp_input_listener on that first SYN.
*/
connp->conn_recv = tcp_input_listener_unbound;
connp->conn_proto = IPPROTO_TCP;
connp->conn_faddr_v6 = ipv6_all_zeros;
connp->conn_fport = 0;
(void) ipcl_bind_insert(connp);
} else {
tcp->tcp_state = TCPS_BOUND;
}
/*
* Initialize to default values
*/
tcp_init_values(tcp, NULL);
DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
int32_t, oldstate);
ASSERT(tcp->tcp_ptpbhn != NULL);
tcp->tcp_rwnd = connp->conn_rcvbuf;
tcp->tcp_mss = connp->conn_ipversion != IPV4_VERSION ?
tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4;
}
/*
* Force values to zero that need be zero.
* Do not touch values asociated with the BOUND or LISTEN state
* since the connection will end up in that state after the reinit.
* NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
* structure!
*/
static void
tcp_reinit_values(tcp_t *tcp)
{
tcp_stack_t *tcps = tcp->tcp_tcps;
conn_t *connp = tcp->tcp_connp;
#ifndef lint
#define DONTCARE(x)
#define PRESERVE(x)
#else
#define DONTCARE(x) ((x) = (x))
#define PRESERVE(x) ((x) = (x))
#endif /* lint */
PRESERVE(tcp->tcp_bind_hash_port);
PRESERVE(tcp->tcp_bind_hash);
PRESERVE(tcp->tcp_ptpbhn);
PRESERVE(tcp->tcp_acceptor_hash);
PRESERVE(tcp->tcp_ptpahn);
/* Should be ASSERT NULL on these with new code! */
ASSERT(tcp->tcp_time_wait_next == NULL);
ASSERT(tcp->tcp_time_wait_prev == NULL);
ASSERT(tcp->tcp_time_wait_expire == 0);
PRESERVE(tcp->tcp_state);
PRESERVE(connp->conn_rq);
PRESERVE(connp->conn_wq);
ASSERT(tcp->tcp_xmit_head == NULL);
ASSERT(tcp->tcp_xmit_last == NULL);
ASSERT(tcp->tcp_unsent == 0);
ASSERT(tcp->tcp_xmit_tail == NULL);
ASSERT(tcp->tcp_xmit_tail_unsent == 0);
tcp->tcp_snxt = 0; /* Displayed in mib */
tcp->tcp_suna = 0; /* Displayed in mib */
tcp->tcp_swnd = 0;
DONTCARE(tcp->tcp_cwnd); /* Init in tcp_process_options */
ASSERT(tcp->tcp_ibsegs == 0);
ASSERT(tcp->tcp_obsegs == 0);
if (connp->conn_ht_iphc != NULL) {
kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated);
connp->conn_ht_iphc = NULL;
connp->conn_ht_iphc_allocated = 0;
connp->conn_ht_iphc_len = 0;
connp->conn_ht_ulp = NULL;
connp->conn_ht_ulp_len = 0;
tcp->tcp_ipha = NULL;
tcp->tcp_ip6h = NULL;
tcp->tcp_tcpha = NULL;
}
/* We clear any IP_OPTIONS and extension headers */
ip_pkt_free(&connp->conn_xmit_ipp);
DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */
DONTCARE(tcp->tcp_ipha);
DONTCARE(tcp->tcp_ip6h);
DONTCARE(tcp->tcp_tcpha);
tcp->tcp_valid_bits = 0;
DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */
DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */
tcp->tcp_last_rcv_lbolt = 0;
tcp->tcp_init_cwnd = 0;
tcp->tcp_urp_last_valid = 0;
tcp->tcp_hard_binding = 0;
tcp->tcp_fin_acked = 0;
tcp->tcp_fin_rcvd = 0;
tcp->tcp_fin_sent = 0;
tcp->tcp_ordrel_done = 0;
tcp->tcp_detached = 0;
tcp->tcp_snd_ws_ok = B_FALSE;
tcp->tcp_snd_ts_ok = B_FALSE;
tcp->tcp_zero_win_probe = 0;
tcp->tcp_loopback = 0;
tcp->tcp_localnet = 0;
tcp->tcp_syn_defense = 0;
tcp->tcp_set_timer = 0;
tcp->tcp_active_open = 0;
tcp->tcp_rexmit = B_FALSE;
tcp->tcp_xmit_zc_clean = B_FALSE;
tcp->tcp_snd_sack_ok = B_FALSE;
tcp->tcp_hwcksum = B_FALSE;
DONTCARE(tcp->tcp_maxpsz_multiplier); /* Init in tcp_init_values */
tcp->tcp_conn_def_q0 = 0;
tcp->tcp_ip_forward_progress = B_FALSE;
tcp->tcp_ecn_ok = B_FALSE;
tcp->tcp_cwr = B_FALSE;
tcp->tcp_ecn_echo_on = B_FALSE;
tcp->tcp_is_wnd_shrnk = B_FALSE;
TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp);
bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
tcp->tcp_rcv_ws = 0;
tcp->tcp_snd_ws = 0;
tcp->tcp_ts_recent = 0;
tcp->tcp_rnxt = 0; /* Displayed in mib */
DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */
tcp->tcp_initial_pmtu = 0;
ASSERT(tcp->tcp_reass_head == NULL);
ASSERT(tcp->tcp_reass_tail == NULL);
tcp->tcp_cwnd_cnt = 0;
ASSERT(tcp->tcp_rcv_list == NULL);
ASSERT(tcp->tcp_rcv_last_head == NULL);
ASSERT(tcp->tcp_rcv_last_tail == NULL);
ASSERT(tcp->tcp_rcv_cnt == 0);
DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_set_destination */
DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */
tcp->tcp_csuna = 0;
tcp->tcp_rto = 0; /* Displayed in MIB */
DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */
DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */
tcp->tcp_rtt_update = 0;
DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
tcp->tcp_rack = 0; /* Displayed in mib */
tcp->tcp_rack_cnt = 0;
tcp->tcp_rack_cur_max = 0;
tcp->tcp_rack_abs_max = 0;
tcp->tcp_max_swnd = 0;
ASSERT(tcp->tcp_listener == NULL);
DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */
DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */
DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */
DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */
ASSERT(tcp->tcp_conn_req_cnt_q == 0);
ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
PRESERVE(tcp->tcp_conn_req_max);
PRESERVE(tcp->tcp_conn_req_seqnum);
DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */
ASSERT(tcp->tcp_urp_mp == NULL);
ASSERT(tcp->tcp_urp_mark_mp == NULL);
ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
ASSERT(tcp->tcp_eager_next_q == NULL);
ASSERT(tcp->tcp_eager_last_q == NULL);
ASSERT((tcp->tcp_eager_next_q0 == NULL &&
tcp->tcp_eager_prev_q0 == NULL) ||
tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
tcp->tcp_eager_prev_drop_q0 == NULL) ||
tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
DONTCARE(tcp->tcp_ka_rinterval); /* Init in tcp_init_values */
DONTCARE(tcp->tcp_ka_abort_thres); /* Init in tcp_init_values */
DONTCARE(tcp->tcp_ka_cnt); /* Init in tcp_init_values */
tcp->tcp_client_errno = 0;
DONTCARE(connp->conn_sum); /* Init in tcp_init_values */
connp->conn_faddr_v6 = ipv6_all_zeros; /* Displayed in MIB */
PRESERVE(connp->conn_bound_addr_v6);
tcp->tcp_last_sent_len = 0;
tcp->tcp_dupack_cnt = 0;
connp->conn_fport = 0; /* Displayed in MIB */
PRESERVE(connp->conn_lport);
PRESERVE(tcp->tcp_acceptor_lockp);
ASSERT(tcp->tcp_ordrel_mp == NULL);
PRESERVE(tcp->tcp_acceptor_id);
DONTCARE(tcp->tcp_ipsec_overhead);
PRESERVE(connp->conn_family);
/* Remove any remnants of mapped address binding */
if (connp->conn_family == AF_INET6) {
connp->conn_ipversion = IPV6_VERSION;
tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
} else {
connp->conn_ipversion = IPV4_VERSION;
tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
}
connp->conn_bound_if = 0;
connp->conn_recv_ancillary.crb_all = 0;
tcp->tcp_recvifindex = 0;
tcp->tcp_recvhops = 0;
tcp->tcp_closed = 0;
if (tcp->tcp_hopopts != NULL) {
mi_free(tcp->tcp_hopopts);
tcp->tcp_hopopts = NULL;
tcp->tcp_hopoptslen = 0;
}
ASSERT(tcp->tcp_hopoptslen == 0);
if (tcp->tcp_dstopts != NULL) {
mi_free(tcp->tcp_dstopts);
tcp->tcp_dstopts = NULL;
tcp->tcp_dstoptslen = 0;
}
ASSERT(tcp->tcp_dstoptslen == 0);
if (tcp->tcp_rthdrdstopts != NULL) {
mi_free(tcp->tcp_rthdrdstopts);
tcp->tcp_rthdrdstopts = NULL;
tcp->tcp_rthdrdstoptslen = 0;
}
ASSERT(tcp->tcp_rthdrdstoptslen == 0);
if (tcp->tcp_rthdr != NULL) {
mi_free(tcp->tcp_rthdr);
tcp->tcp_rthdr = NULL;
tcp->tcp_rthdrlen = 0;
}
ASSERT(tcp->tcp_rthdrlen == 0);
/* Reset fusion-related fields */
tcp->tcp_fused = B_FALSE;
tcp->tcp_unfusable = B_FALSE;
tcp->tcp_fused_sigurg = B_FALSE;
tcp->tcp_loopback_peer = NULL;
tcp->tcp_lso = B_FALSE;
tcp->tcp_in_ack_unsent = 0;
tcp->tcp_cork = B_FALSE;
tcp->tcp_tconnind_started = B_FALSE;
PRESERVE(tcp->tcp_squeue_bytes);
tcp->tcp_closemp_used = B_FALSE;
PRESERVE(tcp->tcp_rsrv_mp);
PRESERVE(tcp->tcp_rsrv_mp_lock);
#ifdef DEBUG
DONTCARE(tcp->tcmp_stk[0]);
#endif
PRESERVE(tcp->tcp_connid);
ASSERT(tcp->tcp_listen_cnt == NULL);
ASSERT(tcp->tcp_reass_tid == 0);
#undef DONTCARE
#undef PRESERVE
}
/*
* Initialize the various fields in tcp_t. If parent (the listener) is non
* NULL, certain values will be inheritted from it.
*/
void
tcp_init_values(tcp_t *tcp, tcp_t *parent)
{
tcp_stack_t *tcps = tcp->tcp_tcps;
conn_t *connp = tcp->tcp_connp;
clock_t rto;
ASSERT((connp->conn_family == AF_INET &&
connp->conn_ipversion == IPV4_VERSION) ||
(connp->conn_family == AF_INET6 &&
(connp->conn_ipversion == IPV4_VERSION ||
connp->conn_ipversion == IPV6_VERSION)));
if (parent == NULL) {
tcp->tcp_naglim = tcps->tcps_naglim_def;
tcp->tcp_rto_initial = tcps->tcps_rexmit_interval_initial;
tcp->tcp_rto_min = tcps->tcps_rexmit_interval_min;
tcp->tcp_rto_max = tcps->tcps_rexmit_interval_max;
tcp->tcp_first_ctimer_threshold =
tcps->tcps_ip_notify_cinterval;
tcp->tcp_second_ctimer_threshold =
tcps->tcps_ip_abort_cinterval;
tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval;
tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval;
tcp->tcp_fin_wait_2_flush_interval =
tcps->tcps_fin_wait_2_flush_interval;
tcp->tcp_ka_interval = tcps->tcps_keepalive_interval;
tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval;
tcp->tcp_ka_cnt = 0;
tcp->tcp_ka_rinterval = 0;
/*
* Default value of tcp_init_cwnd is 0, so no need to set here
* if parent is NULL. But we need to inherit it from parent.
*/
} else {
/* Inherit various TCP parameters from the parent. */
tcp->tcp_naglim = parent->tcp_naglim;
tcp->tcp_rto_initial = parent->tcp_rto_initial;
tcp->tcp_rto_min = parent->tcp_rto_min;
tcp->tcp_rto_max = parent->tcp_rto_max;
tcp->tcp_first_ctimer_threshold =
parent->tcp_first_ctimer_threshold;
tcp->tcp_second_ctimer_threshold =
parent->tcp_second_ctimer_threshold;
tcp->tcp_first_timer_threshold =
parent->tcp_first_timer_threshold;
tcp->tcp_second_timer_threshold =
parent->tcp_second_timer_threshold;
tcp->tcp_fin_wait_2_flush_interval =
parent->tcp_fin_wait_2_flush_interval;
tcp->tcp_ka_interval = parent->tcp_ka_interval;
tcp->tcp_ka_abort_thres = parent->tcp_ka_abort_thres;
tcp->tcp_ka_cnt = parent->tcp_ka_cnt;
tcp->tcp_ka_rinterval = parent->tcp_ka_rinterval;
tcp->tcp_init_cwnd = parent->tcp_init_cwnd;
}
/*
* Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
* will be close to tcp_rexmit_interval_initial. By doing this, we
* allow the algorithm to adjust slowly to large fluctuations of RTT
* during first few transmissions of a connection as seen in slow
* links.
*/
tcp->tcp_rtt_sa = tcp->tcp_rto_initial << 2;
tcp->tcp_rtt_sd = tcp->tcp_rto_initial >> 1;
rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
tcps->tcps_conn_grace_period;
TCP_SET_RTO(tcp, rto);
tcp->tcp_timer_backoff = 0;
tcp->tcp_ms_we_have_waited = 0;
tcp->tcp_last_recv_time = ddi_get_lbolt();
tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_;
tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
tcp->tcp_maxpsz_multiplier = tcps->tcps_maxpsz_multiplier;
/* NOTE: ISS is now set in tcp_set_destination(). */
/* Reset fusion-related fields */
tcp->tcp_fused = B_FALSE;
tcp->tcp_unfusable = B_FALSE;
tcp->tcp_fused_sigurg = B_FALSE;
tcp->tcp_loopback_peer = NULL;
/* We rebuild the header template on the next connect/conn_request */
connp->conn_mlp_type = mlptSingle;
/*
* Init the window scale to the max so tcp_rwnd_set() won't pare
* down tcp_rwnd. tcp_set_destination() will set the right value later.
*/
tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
tcp->tcp_rwnd = connp->conn_rcvbuf;
tcp->tcp_cork = B_FALSE;
/*
* Init the tcp_debug option if it wasn't already set. This value
* determines whether TCP
* calls strlog() to print out debug messages. Doing this
* initialization here means that this value is not inherited thru
* tcp_reinit().
*/
if (!connp->conn_debug)
connp->conn_debug = tcps->tcps_dbg;
}
/*
* Update the TCP connection according to change of PMTU.
*
* Path MTU might have changed by either increase or decrease, so need to
* adjust the MSS based on the value of ixa_pmtu. No need to handle tiny
* or negative MSS, since tcp_mss_set() will do it.
*/
void
tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only)
{
uint32_t pmtu;
int32_t mss;
conn_t *connp = tcp->tcp_connp;
ip_xmit_attr_t *ixa = connp->conn_ixa;
iaflags_t ixaflags;
if (tcp->tcp_tcps->tcps_ignore_path_mtu)
return;
if (tcp->tcp_state < TCPS_ESTABLISHED)
return;
/*
* Always call ip_get_pmtu() to make sure that IP has updated
* ixa_flags properly.
*/
pmtu = ip_get_pmtu(ixa);
ixaflags = ixa->ixa_flags;
/*
* Calculate the MSS by decreasing the PMTU by conn_ht_iphc_len and
* IPsec overhead if applied. Make sure to use the most recent
* IPsec information.
*/
mss = pmtu - connp->conn_ht_iphc_len - conn_ipsec_length(connp);
/*
* Nothing to change, so just return.
*/
if (mss == tcp->tcp_mss)
return;
/*
* Currently, for ICMP errors, only PMTU decrease is handled.
*/
if (mss > tcp->tcp_mss && decrease_only)
return;
DTRACE_PROBE2(tcp_update_pmtu, int32_t, tcp->tcp_mss, uint32_t, mss);
/*
* Update ixa_fragsize and ixa_pmtu.
*/
ixa->ixa_fragsize = ixa->ixa_pmtu = pmtu;
/*
* Adjust MSS and all relevant variables.
*/
tcp_mss_set(tcp, mss);
/*
* If the PMTU is below the min size maintained by IP, then ip_get_pmtu
* has set IXAF_PMTU_TOO_SMALL and cleared IXAF_PMTU_IPV4_DF. Since TCP
* has a (potentially different) min size we do the same. Make sure to
* clear IXAF_DONTFRAG, which is used by IP to decide whether to
* fragment the packet.
*
* LSO over IPv6 can not be fragmented. So need to disable LSO
* when IPv6 fragmentation is needed.
*/
if (mss < tcp->tcp_tcps->tcps_mss_min)
ixaflags |= IXAF_PMTU_TOO_SMALL;
if (ixaflags & IXAF_PMTU_TOO_SMALL)
ixaflags &= ~(IXAF_DONTFRAG | IXAF_PMTU_IPV4_DF);
if ((connp->conn_ipversion == IPV4_VERSION) &&
!(ixaflags & IXAF_PMTU_IPV4_DF)) {
tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
}
ixa->ixa_flags = ixaflags;
}
int
tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
{
conn_t *connp = tcp->tcp_connp;
queue_t *q = connp->conn_rq;
int32_t mss = tcp->tcp_mss;
int maxpsz;
if (TCP_IS_DETACHED(tcp))
return (mss);
if (tcp->tcp_fused) {
maxpsz = tcp_fuse_maxpsz(tcp);
mss = INFPSZ;
} else if (tcp->tcp_maxpsz_multiplier == 0) {
/*
* Set the sd_qn_maxpsz according to the socket send buffer
* size, and sd_maxblk to INFPSZ (-1). This will essentially
* instruct the stream head to copyin user data into contiguous
* kernel-allocated buffers without breaking it up into smaller
* chunks. We round up the buffer size to the nearest SMSS.
*/
maxpsz = MSS_ROUNDUP(connp->conn_sndbuf, mss);
mss = INFPSZ;
} else {
/*
* Set sd_qn_maxpsz to approx half the (receivers) buffer
* (and a multiple of the mss). This instructs the stream
* head to break down larger than SMSS writes into SMSS-
* size mblks, up to tcp_maxpsz_multiplier mblks at a time.
*/
maxpsz = tcp->tcp_maxpsz_multiplier * mss;
if (maxpsz > connp->conn_sndbuf / 2) {
maxpsz = connp->conn_sndbuf / 2;
/* Round up to nearest mss */
maxpsz = MSS_ROUNDUP(maxpsz, mss);
}
}
(void) proto_set_maxpsz(q, connp, maxpsz);
if (!(IPCL_IS_NONSTR(connp)))
connp->conn_wq->q_maxpsz = maxpsz;
if (set_maxblk)
(void) proto_set_tx_maxblk(q, connp, mss);
return (mss);
}
/* For /dev/tcp aka AF_INET open */
static int
tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
{
return (tcp_open(q, devp, flag, sflag, credp, B_FALSE));
}
/* For /dev/tcp6 aka AF_INET6 open */
static int
tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
{
return (tcp_open(q, devp, flag, sflag, credp, B_TRUE));
}
conn_t *
tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket,
int *errorp)
{
tcp_t *tcp = NULL;
conn_t *connp;
zoneid_t zoneid;
tcp_stack_t *tcps;
squeue_t *sqp;
ASSERT(errorp != NULL);
/*
* Find the proper zoneid and netstack.
*/
/*
* Special case for install: miniroot needs to be able to
* access files via NFS as though it were always in the
* global zone.
*/
if (credp == kcred && nfs_global_client_only != 0) {
zoneid = GLOBAL_ZONEID;
tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
netstack_tcp;
ASSERT(tcps != NULL);
} else {
netstack_t *ns;
int err;
if ((err = secpolicy_basic_net_access(credp)) != 0) {
*errorp = err;
return (NULL);
}
ns = netstack_find_by_cred(credp);
ASSERT(ns != NULL);
tcps = ns->netstack_tcp;
ASSERT(tcps != NULL);
/*
* For exclusive stacks we set the zoneid to zero
* to make TCP operate as if in the global zone.
*/
if (tcps->tcps_netstack->netstack_stackid !=
GLOBAL_NETSTACKID)
zoneid = GLOBAL_ZONEID;
else
zoneid = crgetzoneid(credp);
}
sqp = IP_SQUEUE_GET((uint_t)gethrtime());
connp = (conn_t *)tcp_get_conn(sqp, tcps);
/*
* Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
* so we drop it by one.
*/
netstack_rele(tcps->tcps_netstack);
if (connp == NULL) {
*errorp = ENOSR;
return (NULL);
}
ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto);
connp->conn_sqp = sqp;
connp->conn_initial_sqp = connp->conn_sqp;
connp->conn_ixa->ixa_sqp = connp->conn_sqp;
tcp = connp->conn_tcp;
/*
* Besides asking IP to set the checksum for us, have conn_ip_output
* to do the following checks when necessary:
*
* IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid
* IXAF_VERIFY_PMTU: verify PMTU changes
* IXAF_VERIFY_LSO: verify LSO capability changes
*/
connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO;
if (!tcps->tcps_dev_flow_ctl)
connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL;
if (isv6) {
connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
connp->conn_ipversion = IPV6_VERSION;
connp->conn_family = AF_INET6;
tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit;
} else {
connp->conn_ipversion = IPV4_VERSION;
connp->conn_family = AF_INET;
tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
connp->conn_default_ttl = tcps->tcps_ipv4_ttl;
}
connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl;
crhold(credp);
connp->conn_cred = credp;
connp->conn_cpid = curproc->p_pid;
connp->conn_open_time = ddi_get_lbolt64();
/* Cache things in the ixa without any refhold */
ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
connp->conn_ixa->ixa_cred = credp;
connp->conn_ixa->ixa_cpid = connp->conn_cpid;
connp->conn_zoneid = zoneid;
/* conn_allzones can not be set this early, hence no IPCL_ZONEID */
connp->conn_ixa->ixa_zoneid = zoneid;
connp->conn_mlp_type = mlptSingle;
ASSERT(connp->conn_netstack == tcps->tcps_netstack);
ASSERT(tcp->tcp_tcps == tcps);
/*
* If the caller has the process-wide flag set, then default to MAC
* exempt mode. This allows read-down to unlabeled hosts.
*/
if (getpflags(NET_MAC_AWARE, credp) != 0)
connp->conn_mac_mode = CONN_MAC_AWARE;
connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);
if (issocket) {
tcp->tcp_issocket = 1;
}
connp->conn_rcvbuf = tcps->tcps_recv_hiwat;
connp->conn_sndbuf = tcps->tcps_xmit_hiwat;
if (tcps->tcps_snd_lowat_fraction != 0) {
connp->conn_sndlowat = connp->conn_sndbuf /
tcps->tcps_snd_lowat_fraction;
} else {
connp->conn_sndlowat = tcps->tcps_xmit_lowat;
}
connp->conn_so_type = SOCK_STREAM;
connp->conn_wroff = connp->conn_ht_iphc_allocated +
tcps->tcps_wroff_xtra;
SOCK_CONNID_INIT(tcp->tcp_connid);
/* DTrace ignores this - it isn't a tcp:::state-change */
tcp->tcp_state = TCPS_IDLE;
tcp_init_values(tcp, NULL);
return (connp);
}
static int
tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
boolean_t isv6)
{
tcp_t *tcp = NULL;
conn_t *connp = NULL;
int err;
vmem_t *minor_arena = NULL;
dev_t conn_dev;
boolean_t issocket;
if (q->q_ptr != NULL)
return (0);
if (sflag == MODOPEN)
return (EINVAL);
if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
minor_arena = ip_minor_arena_la;
} else {
/*
* Either minor numbers in the large arena were exhausted
* or a non socket application is doing the open.
* Try to allocate from the small arena.
*/
if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
return (EBUSY);
}
minor_arena = ip_minor_arena_sa;
}
ASSERT(minor_arena != NULL);
*devp = makedevice(getmajor(*devp), (minor_t)conn_dev);
if (flag & SO_FALLBACK) {
/*
* Non streams socket needs a stream to fallback to
*/
RD(q)->q_ptr = (void *)conn_dev;
WR(q)->q_qinfo = &tcp_fallback_sock_winit;
WR(q)->q_ptr = (void *)minor_arena;
qprocson(q);
return (0);
} else if (flag & SO_ACCEPTOR) {
q->q_qinfo = &tcp_acceptor_rinit;
/*
* the conn_dev and minor_arena will be subsequently used by
* tcp_tli_accept() and tcp_tpi_close_accept() to figure out
* the minor device number for this connection from the q_ptr.
*/
RD(q)->q_ptr = (void *)conn_dev;
WR(q)->q_qinfo = &tcp_acceptor_winit;
WR(q)->q_ptr = (void *)minor_arena;
qprocson(q);
return (0);
}
issocket = flag & SO_SOCKSTR;
connp = tcp_create_common(credp, isv6, issocket, &err);
if (connp == NULL) {
inet_minor_free(minor_arena, conn_dev);
q->q_ptr = WR(q)->q_ptr = NULL;
return (err);
}
connp->conn_rq = q;
connp->conn_wq = WR(q);
q->q_ptr = WR(q)->q_ptr = connp;
connp->conn_dev = conn_dev;
connp->conn_minor_arena = minor_arena;
ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6);
ASSERT(WR(q)->q_qinfo == &tcp_winit);
tcp = connp->conn_tcp;
if (issocket) {
WR(q)->q_qinfo = &tcp_sock_winit;
} else {
#ifdef _ILP32
tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
#else
tcp->tcp_acceptor_id = conn_dev;
#endif /* _ILP32 */
tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
}
/*
* Put the ref for TCP. Ref for IP was already put
* by ipcl_conn_create. Also Make the conn_t globally
* visible to walkers
*/
mutex_enter(&connp->conn_lock);
CONN_INC_REF_LOCKED(connp);
ASSERT(connp->conn_ref == 2);
connp->conn_state_flags &= ~CONN_INCIPIENT;
mutex_exit(&connp->conn_lock);
qprocson(q);
return (0);
}
/*
* Build/update the tcp header template (in conn_ht_iphc) based on
* conn_xmit_ipp. The headers include ip6_t, any extension
* headers, and the maximum size tcp header (to avoid reallocation
* on the fly for additional tcp options).
*
* Assumes the caller has already set conn_{faddr,laddr,fport,lport,flowinfo}.
* Returns failure if can't allocate memory.
*/
int
tcp_build_hdrs(tcp_t *tcp)
{
tcp_stack_t *tcps = tcp->tcp_tcps;
conn_t *connp = tcp->tcp_connp;
char buf[TCP_MAX_HDR_LENGTH];
uint_t buflen;
uint_t ulplen = TCP_MIN_HEADER_LENGTH;
uint_t extralen = TCP_MAX_TCP_OPTIONS_LENGTH;
tcpha_t *tcpha;
uint32_t cksum;
int error;
/*
* We might be called after the connection is set up, and we might
* have TS options already in the TCP header. Thus we save any
* existing tcp header.
*/
buflen = connp->conn_ht_ulp_len;
if (buflen != 0) {
bcopy(connp->conn_ht_ulp, buf, buflen);
extralen -= buflen - ulplen;
ulplen = buflen;
}
/* Grab lock to satisfy ASSERT; TCP is serialized using squeue */
mutex_enter(&connp->conn_lock);
error = conn_build_hdr_template(connp, ulplen, extralen,
&connp->conn_laddr_v6, &connp->conn_faddr_v6, connp->conn_flowinfo);