| /******************************************************************************* |
| * CDDL HEADER START |
| * |
| * The contents of this file are subject to the terms of the |
| * Common Development and Distribution License (the "License"). |
| * You may not use this file except in compliance with the License. |
| * |
| * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE |
| * or http://www.opensolaris.org/os/licensing. |
| * See the License for the specific language governing permissions |
| * and limitations under the License. |
| * |
| * When distributing Covered Code, include this CDDL HEADER in each |
| * file and include the License file at usr/src/OPENSOLARIS.LICENSE. |
| * If applicable, add the following below this CDDL HEADER, with the |
| * fields enclosed by brackets "[]" replaced with your own identifying |
| * information: Portions Copyright [yyyy] [name of copyright owner] |
| * |
| * CDDL HEADER END |
| * |
| * Copyright 2014 QLogic Corporation |
| * The contents of this file are subject to the terms of the |
| * QLogic End User License (the "License"). |
| * You may not use this file except in compliance with the License. |
| * |
| * You can obtain a copy of the License at |
| * http://www.qlogic.com/Resources/Documents/DriverDownloadHelp/ |
| * QLogic_End_User_Software_License.txt |
| * See the License for the specific language governing permissions |
| * and limitations under the License. |
| * |
| * |
| * Module Description: |
| * This file contains functions that deal with resource allocation and setup |
| * |
| ******************************************************************************/ |
| #include "lm5710.h" |
| #include "bd_chain.h" |
| #include "command.h" |
| #include "ecore_common.h" |
| #include "577xx_int_offsets.h" |
| #include "bcmtype.h" |
| |
| // should be same as ceil (math.h) doesn't support u64_t |
| #define _ceil( _x_32, _divisor_32 ) ((_x_32 / _divisor_32) + ( (_x_32%_divisor_32) ? 1 : 0)) |
| |
| lm_status_t |
| lm_clear_chain_sb_cons_idx( |
| IN struct _lm_device_t *pdev, |
| IN u8_t sb_id, |
| IN struct _lm_hc_sb_info_t *hc_sb_info, |
| IN volatile u16_t ** hw_con_idx_ptr |
| ) |
| { |
| u8_t port = 0; |
| u8_t func = 0; |
| u16_t rd_val = 0xFFFF; |
| u32_t rd_val_32 = 0xFFFFFFFF; |
| u8_t fw_sb_id = 0; |
| u8_t sb_lock_id = 0; |
| |
| if (CHK_NULL(pdev) || CHK_NULL(hc_sb_info) || CHK_NULL(hw_con_idx_ptr)) |
| { |
| return LM_STATUS_INVALID_PARAMETER; |
| } |
| |
| if (IS_VFDEV(pdev)) |
| { |
| return LM_STATUS_SUCCESS; |
| } |
| |
| sb_lock_id = lm_sb_id_from_chain(pdev, sb_id); |
| if (sb_lock_id == DEF_STATUS_BLOCK_INDEX) |
| { |
| sb_lock_id = DEF_STATUS_BLOCK_IGU_INDEX; |
| } |
| |
| /* make sure that the sb is not during processing while we |
| * clear the pointer */ |
| MM_ACQUIRE_SB_LOCK(pdev, sb_lock_id); |
| |
| *hw_con_idx_ptr = NULL; |
| |
| MM_RELEASE_SB_LOCK(pdev, sb_lock_id); |
| |
| if (lm_reset_is_inprogress(pdev)) |
| { |
| return LM_STATUS_SUCCESS; |
| } |
| |
| port = PORT_ID(pdev); |
| func = FUNC_ID(pdev); |
| fw_sb_id = LM_FW_SB_ID(pdev, sb_id); |
| |
| switch (hc_sb_info->hc_sb) { |
| case STATUS_BLOCK_SP_SL_TYPE: |
| LM_INTMEM_WRITE16(pdev, CSTORM_SP_HC_SYNC_LINE_INDEX_OFFSET(hc_sb_info->hc_index_value,func), 0, BAR_CSTRORM_INTMEM); |
| LM_INTMEM_READ16(pdev, CSTORM_SP_HC_SYNC_LINE_INDEX_OFFSET(hc_sb_info->hc_index_value,func), &rd_val, BAR_CSTRORM_INTMEM); |
| DbgBreakIfAll(rd_val != 0); |
| |
| LM_INTMEM_WRITE16(pdev, (CSTORM_SP_STATUS_BLOCK_OFFSET(func) + OFFSETOF(struct hc_sp_status_block, index_values) + (hc_sb_info->hc_index_value * sizeof(u16_t))), 0, BAR_CSTRORM_INTMEM); |
| LM_INTMEM_READ16 (pdev, (CSTORM_SP_STATUS_BLOCK_OFFSET(func) + OFFSETOF(struct hc_sp_status_block, index_values) + (hc_sb_info->hc_index_value * sizeof(u16_t))), &rd_val, BAR_CSTRORM_INTMEM); |
| DbgBreakIfAll(rd_val != 0); |
| break; |
| case STATUS_BLOCK_NORMAL_SL_TYPE: |
| if (!LM_SB_ID_VALID(pdev, sb_id)) |
| { |
| return LM_STATUS_INVALID_PARAMETER; |
| } |
| LM_INTMEM_WRITE32(PFDEV(pdev), CSTORM_HC_SYNC_LINE_DHC_OFFSET(hc_sb_info->hc_index_value, fw_sb_id), 0, BAR_CSTRORM_INTMEM); |
| LM_INTMEM_READ32(PFDEV(pdev), CSTORM_HC_SYNC_LINE_DHC_OFFSET(hc_sb_info->hc_index_value, fw_sb_id), &rd_val_32, BAR_CSTRORM_INTMEM); |
| DbgBreakIfAll(rd_val_32 != 0); |
| /* FALLTHROUGH */ |
| case STATUS_BLOCK_NORMAL_TYPE: |
| if (CHIP_IS_E1x(PFDEV(pdev))) { |
| LM_INTMEM_WRITE16(PFDEV(pdev), CSTORM_HC_SYNC_LINE_INDEX_E1X_OFFSET(hc_sb_info->hc_index_value, fw_sb_id), 0, BAR_CSTRORM_INTMEM); |
| LM_INTMEM_READ16(PFDEV(pdev), CSTORM_HC_SYNC_LINE_INDEX_E1X_OFFSET(hc_sb_info->hc_index_value, fw_sb_id), &rd_val, BAR_CSTRORM_INTMEM); |
| } else { |
| LM_INTMEM_WRITE16(PFDEV(pdev), CSTORM_HC_SYNC_LINE_INDEX_E2_OFFSET(hc_sb_info->hc_index_value, fw_sb_id), 0, BAR_CSTRORM_INTMEM); |
| LM_INTMEM_READ16(PFDEV(pdev), CSTORM_HC_SYNC_LINE_INDEX_E2_OFFSET(hc_sb_info->hc_index_value, fw_sb_id), &rd_val, BAR_CSTRORM_INTMEM); |
| } |
| DbgBreakIfAll(rd_val != 0); |
| if (CHIP_IS_E1x(pdev)) { |
| LM_INTMEM_WRITE16(PFDEV(pdev), (CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id) + OFFSETOF(struct hc_status_block_e1x, index_values) + (hc_sb_info->hc_index_value * sizeof(u16_t))), 0, BAR_CSTRORM_INTMEM); |
| LM_INTMEM_READ16 (PFDEV(pdev), (CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id) + OFFSETOF(struct hc_status_block_e1x, index_values) + (hc_sb_info->hc_index_value * sizeof(u16_t))), &rd_val, BAR_CSTRORM_INTMEM); |
| } else { |
| LM_INTMEM_WRITE16(PFDEV(pdev), (CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id) + OFFSETOF(struct hc_status_block_e2, index_values) + (hc_sb_info->hc_index_value * sizeof(u16_t))), 0, BAR_CSTRORM_INTMEM); |
| LM_INTMEM_READ16 (PFDEV(pdev), (CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id) + OFFSETOF(struct hc_status_block_e2, index_values) + (hc_sb_info->hc_index_value * sizeof(u16_t))), &rd_val, BAR_CSTRORM_INTMEM); |
| |
| } |
| break; |
| default: |
| DbgMessage(NULL, FATAL, "Invalid hc_sb value: 0x%x.\n", hc_sb_info->hc_sb); |
| DbgBreakIf(1); |
| } |
| /* We read from the same memory and verify that it's 0 to make sure that the value was written to the grc and was not delayed in the pci */ |
| DbgBreakIfAll(rd_val != 0); |
| |
| return LM_STATUS_SUCCESS; |
| } |
| |
| /* |
| * reset txq, rxq, rcq counters for L2 client connection |
| * |
| * assumption: the cid equals the chain idx |
| */ |
| /** |
| * @Description: |
| * allocate given num of coalesce buffers, and queue them in the txq chain. |
| * 1 buffer is allocated for LSO packets, and the rest are allocated with |
| * MTU size. |
| * @Return: |
| * lm_status |
| */ |
| static lm_status_t |
| lm_allocate_coalesce_buffers( |
| lm_device_t *pdev, |
| lm_tx_chain_t *txq, |
| u32_t coalesce_buf_cnt, |
| u32_t cid) |
| { |
| lm_coalesce_buffer_t *last_coalesce_buf = NULL; |
| lm_coalesce_buffer_t *coalesce_buf = NULL; |
| lm_address_t mem_phy = {{0}}; |
| u8_t * mem_virt = NULL; |
| u32_t mem_left = 0; |
| u32_t mem_size = 0; |
| u32_t buf_size = 0; |
| u32_t cnt = 0; |
| u8_t mm_cli_idx = 0; |
| |
| /* check arguments */ |
| if(CHK_NULL(pdev) || CHK_NULL(txq)) |
| { |
| return LM_STATUS_FAILURE; |
| } |
| |
| DbgMessage(pdev, VERBOSEi | VERBOSEl2sp, |
| "#lm_allocate_coalesce_buffers, coalesce_buf_cnt=%d\n", |
| coalesce_buf_cnt); |
| |
| mm_cli_idx = cid_to_resource(pdev, cid); //!!DP mm_cli_idx_to_um_idx(LM_CHAIN_IDX_CLI(pdev, idx)); |
| |
| if(coalesce_buf_cnt == 0) |
| { |
| return LM_STATUS_SUCCESS; |
| } |
| |
| buf_size = MAX_L2_CLI_BUFFER_SIZE(pdev, cid); |
| |
| mem_size = coalesce_buf_cnt * sizeof(lm_coalesce_buffer_t); |
| mem_virt = mm_alloc_mem(pdev,mem_size, mm_cli_idx); |
| if(ERR_IF(!mem_virt)) |
| { |
| DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE)); |
| return LM_STATUS_RESOURCE; |
| } |
| mm_memset(mem_virt, 0, mem_size); |
| |
| /* Create a list of frame buffer descriptors. */ |
| coalesce_buf = (lm_coalesce_buffer_t *) mem_virt; |
| for(cnt = 0; cnt < coalesce_buf_cnt; cnt++) |
| { |
| coalesce_buf->frags.cnt = 1; |
| coalesce_buf->frags.size = 0; /* not in use */ |
| coalesce_buf->buf_size = buf_size; |
| |
| s_list_push_tail( |
| &txq->coalesce_buf_list, |
| &coalesce_buf->link); |
| |
| coalesce_buf++; |
| } |
| |
| /* Have at least one coalesce buffer large enough to copy |
| * an LSO frame. */ |
| coalesce_buf = (lm_coalesce_buffer_t *) s_list_peek_head( |
| &txq->coalesce_buf_list); |
| coalesce_buf->buf_size = 0x10000; /* TBD: consider apply change here for GSO */ |
| |
| /* Determine the total memory for the coalesce buffers. */ |
| mem_left = 0; |
| |
| coalesce_buf = (lm_coalesce_buffer_t *) s_list_peek_head( |
| &txq->coalesce_buf_list); |
| while(coalesce_buf) |
| { |
| mem_left += coalesce_buf->buf_size; |
| coalesce_buf = (lm_coalesce_buffer_t *) s_list_next_entry( |
| &coalesce_buf->link); |
| } |
| |
| mem_size = 0; |
| |
| /* Initialize all the descriptors to point to a buffer. */ |
| coalesce_buf = (lm_coalesce_buffer_t *) s_list_peek_head( |
| &txq->coalesce_buf_list); |
| while(coalesce_buf) |
| { |
| #define MAX_CONTIGUOUS_BLOCK (64*1024) |
| |
| /* Allocate a small block of memory at a time. */ |
| if(mem_size == 0) |
| { |
| last_coalesce_buf = coalesce_buf; |
| |
| while(coalesce_buf) |
| { |
| mem_size += coalesce_buf->buf_size; |
| if(mem_size >= MAX_CONTIGUOUS_BLOCK) /* TBD: consider apply change here for GSO */ |
| { |
| break; |
| } |
| |
| coalesce_buf = (lm_coalesce_buffer_t *) s_list_next_entry( |
| &coalesce_buf->link); |
| } |
| |
| mem_left -= mem_size; |
| |
| mem_virt = mm_alloc_phys_mem( pdev, mem_size, &mem_phy, 0, mm_cli_idx); |
| if(ERR_IF(!mem_virt)) |
| { |
| DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE)); |
| return LM_STATUS_RESOURCE; |
| } |
| mm_memset(mem_virt, 0, mem_size); |
| |
| coalesce_buf = last_coalesce_buf; |
| } |
| |
| coalesce_buf->mem_virt = mem_virt; |
| coalesce_buf->frags.frag_arr[0].addr = mem_phy; |
| coalesce_buf->frags.frag_arr[0].size = 0; /* to be set later according to actual packet size */ |
| mem_size -= coalesce_buf->buf_size; |
| |
| /* Go to the next packet buffer. */ |
| mem_virt += coalesce_buf->buf_size; |
| LM_INC64(&mem_phy, coalesce_buf->buf_size); |
| |
| coalesce_buf = (lm_coalesce_buffer_t *) s_list_next_entry( |
| &coalesce_buf->link); |
| } |
| |
| if(mem_left || mem_size) |
| { |
| DbgBreakMsg("Memory allocation out of sync\n"); |
| |
| return LM_STATUS_FAILURE; |
| } |
| |
| return LM_STATUS_SUCCESS; |
| } /* lm_allocate_coalesce_buffers */ |
| |
| lm_status_t |
| lm_alloc_txq( |
| IN struct _lm_device_t *pdev, |
| IN u32_t const cid, /* chain id */ |
| IN u16_t const page_cnt, |
| IN u16_t const coalesce_buf_cnt) |
| { |
| lm_tx_chain_t *tx_chain = NULL ; |
| u32_t const mem_size = page_cnt * LM_PAGE_SIZE; |
| u8_t mm_cli_idx = 0 ; |
| |
| DbgMessage(pdev, INFORMi | INFORMl2sp, "#lm_alloc_txq, cid=%d, page_cnt=%d\n", cid, page_cnt); |
| |
| /* check arguments */ |
| if(CHK_NULL(pdev) || |
| ERR_IF((ARRSIZE(pdev->tx_info.chain) <= cid) || !page_cnt)) |
| { |
| return LM_STATUS_FAILURE; |
| } |
| |
| tx_chain = &LM_TXQ(pdev, cid); |
| |
| mm_cli_idx = cid_to_resource(pdev, cid); |
| |
| /* alloc the chain */ |
| |
| tx_chain->bd_chain.bd_chain_virt = |
| mm_alloc_phys_mem( pdev, mem_size, &tx_chain->bd_chain.bd_chain_phy, 0, mm_cli_idx); |
| if(ERR_IF(!tx_chain->bd_chain.bd_chain_virt)) |
| { |
| DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE)); |
| return LM_STATUS_RESOURCE; |
| } |
| mm_mem_zero(tx_chain->bd_chain.bd_chain_virt, mem_size); |
| |
| tx_chain->bd_chain.page_cnt = page_cnt; |
| |
| s_list_init(&tx_chain->active_descq, NULL, NULL, 0); |
| s_list_init(&tx_chain->coalesce_buf_list, NULL, NULL, 0); |
| tx_chain->idx = cid; |
| tx_chain->coalesce_buf_cnt = coalesce_buf_cnt; |
| |
| return lm_allocate_coalesce_buffers( |
| pdev, |
| &LM_TXQ(pdev, cid), |
| coalesce_buf_cnt, |
| cid); |
| |
| } /* lm_alloc_txq */ |
| |
| lm_status_t |
| lm_alloc_rxq( |
| IN struct _lm_device_t *pdev, |
| IN u32_t const cid, |
| IN u16_t const page_cnt, |
| IN u32_t const desc_cnt) |
| { |
| lm_rx_chain_t* rxq_chain = NULL; |
| lm_bd_chain_t * bd_chain = NULL; |
| lm_rxq_chain_idx_t rx_chain_idx_max = LM_RXQ_CHAIN_IDX_MAX; |
| lm_rxq_chain_idx_t rx_chain_idx_cur = 0; |
| u32_t const mem_size = page_cnt * LM_PAGE_SIZE; |
| u8_t mm_cli_idx = 0 ; |
| |
| /* check arguments */ |
| if(CHK_NULL(pdev) || |
| ERR_IF((ARRSIZE(pdev->rx_info.rxq_chain) <= cid) || !page_cnt)) |
| { |
| return LM_STATUS_FAILURE; |
| } |
| |
| rxq_chain = &LM_RXQ(pdev, cid); |
| |
| DbgMessage(pdev, INFORMi, "#lm_alloc_rxq, cid=%d, page_cnt=%d, desc_cnt=%d\n", |
| cid, page_cnt, desc_cnt); |
| |
| mm_cli_idx = cid_to_resource(pdev, cid);//!!DP mm_cli_idx_to_um_idx(LM_CHAIN_IDX_CLI(pdev, idx)); |
| |
| s_list_init(&rxq_chain->common.free_descq, NULL, NULL, 0); |
| s_list_init(&rxq_chain->active_descq, NULL, NULL, 0); |
| rxq_chain->idx = cid; |
| rxq_chain->common.desc_cnt = desc_cnt; |
| |
| /* alloc the chain(s) */ |
| rx_chain_idx_max = LM_RXQ_IS_CHAIN_SGE_VALID( pdev, cid ) ? LM_RXQ_CHAIN_IDX_SGE : LM_RXQ_CHAIN_IDX_BD; |
| |
| for( rx_chain_idx_cur = 0; rx_chain_idx_cur <= rx_chain_idx_max; rx_chain_idx_cur++ ) |
| { |
| bd_chain = &LM_RXQ_CHAIN( pdev, cid, rx_chain_idx_cur ); |
| |
| bd_chain->bd_chain_virt = mm_alloc_phys_mem( pdev, mem_size, &bd_chain->bd_chain_phy, 0, mm_cli_idx); |
| if(ERR_IF(!bd_chain->bd_chain_virt)) |
| { |
| DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE)); |
| return LM_STATUS_RESOURCE; |
| } |
| mm_mem_zero(bd_chain->bd_chain_virt, mem_size); |
| |
| bd_chain->page_cnt = page_cnt; |
| } |
| |
| return LM_STATUS_SUCCESS; |
| } /* lm_alloc_rxq */ |
| |
| lm_status_t |
| lm_alloc_rcq( |
| IN struct _lm_device_t *pdev, |
| IN u32_t const cid, |
| IN u16_t const page_cnt) |
| { |
| lm_rcq_chain_t *rcq_chain = NULL; |
| u32_t const mem_size = page_cnt * LM_PAGE_SIZE; |
| u8_t mm_cli_idx = 0 ; |
| |
| /* check arguments */ |
| if(CHK_NULL(pdev) || |
| ERR_IF((ARRSIZE(pdev->rx_info.rcq_chain) <= cid) || !page_cnt)) |
| { |
| return LM_STATUS_FAILURE; |
| } |
| |
| ASSERT_STATIC(sizeof(struct eth_rx_bd)*LM_RX_BD_CQ_SIZE_RATIO == sizeof(union eth_rx_cqe)); |
| ASSERT_STATIC(sizeof(struct eth_rx_bd) == sizeof(struct eth_rx_sge) ); |
| |
| rcq_chain = &pdev->rx_info.rcq_chain[cid]; |
| |
| DbgMessage(pdev, INFORMi | INFORMl2sp, |
| "#lm_alloc_rcq, idx=%d, page_cnt=%d\n", |
| cid, page_cnt); |
| |
| mm_cli_idx = cid_to_resource(pdev, cid);//!!DP mm_cli_idx_to_um_idx(LM_CHAIN_IDX_CLI(pdev, idx)); |
| |
| /* alloc the chain */ |
| rcq_chain->bd_chain.bd_chain_virt = |
| mm_alloc_phys_mem( pdev, mem_size, &rcq_chain->bd_chain.bd_chain_phy, 0, mm_cli_idx); |
| |
| if(ERR_IF(!rcq_chain->bd_chain.bd_chain_virt)) |
| { |
| DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE)); |
| return LM_STATUS_RESOURCE; |
| } |
| |
| mm_mem_zero(rcq_chain->bd_chain.bd_chain_virt, mem_size); |
| rcq_chain->bd_chain.page_cnt = page_cnt; |
| |
| return LM_STATUS_SUCCESS; |
| } /* lm_alloc_rcq */ |
| |
| /** |
| * @description |
| * Allocte TPA chain |
| * @param pdev |
| * @param cid -chain index. |
| * @param page_cnt - Number of BD pages |
| * @param desc_cnt - Number of descriptor counts |
| * @param bds_per_page - Number of BDs per page. |
| * |
| * @return lm_status_t |
| */ |
| lm_status_t |
| lm_alloc_tpa_chain( |
| IN struct _lm_device_t *pdev, |
| IN u32_t const cid, |
| IN u16_t const page_cnt, |
| IN u32_t const desc_cnt, |
| IN u32_t const bds_per_page) |
| { |
| lm_tpa_chain_t* tpa_chain = NULL; |
| lm_bd_chain_t * bd_chain = NULL; |
| lm_tpa_sge_chain_t* sge_chain = NULL; |
| u32_t mem_size = 0; |
| u8_t mm_cli_idx = 0 ; |
| |
| /* check arguments */ |
| if(CHK_NULL(pdev) || |
| ERR_IF((ARRSIZE(pdev->rx_info.rxq_chain) <= cid) || !page_cnt)) |
| { |
| return LM_STATUS_FAILURE; |
| } |
| |
| tpa_chain = &LM_TPA(pdev, cid); |
| bd_chain = &LM_TPA_CHAIN_BD( pdev, cid ); |
| sge_chain = &LM_SGE_TPA_CHAIN( pdev, cid ); |
| |
| DbgMessage(pdev, INFORMi, "#lm_alloc_tpa, cid=%d, page_cnt=%d, desc_cnt=%d\n", |
| cid, page_cnt, desc_cnt); |
| |
| mm_cli_idx = cid_to_resource(pdev, cid); |
| |
| s_list_init(&tpa_chain->common.free_descq, NULL, NULL, 0); |
| tpa_chain->common.desc_cnt = desc_cnt; |
| |
| /************ Alocate BD chain********************************/ |
| mem_size = page_cnt * LM_PAGE_SIZE; |
| bd_chain->bd_chain_virt = mm_alloc_phys_mem( pdev, mem_size, &bd_chain->bd_chain_phy, 0, mm_cli_idx); |
| if(ERR_IF(!bd_chain->bd_chain_virt)) |
| { |
| DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE)); |
| return LM_STATUS_RESOURCE; |
| } |
| mm_mem_zero(bd_chain->bd_chain_virt, mem_size); |
| bd_chain->page_cnt = page_cnt; |
| |
| // The number of SGE bd entries |
| sge_chain->size = page_cnt * bds_per_page; |
| tpa_chain->state = lm_tpa_state_disable; |
| |
| /************ Alocate active descriptor array********************************/ |
| mem_size = LM_TPA_ACTIVE_DESCQ_ARRAY_ELEM(pdev,cid); |
| mem_size *= sizeof(lm_packet_t *); |
| sge_chain->active_descq_array = mm_alloc_mem(pdev, mem_size, mm_cli_idx); |
| |
| if(CHK_NULL(sge_chain->active_descq_array)) |
| { |
| DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE)); |
| return LM_STATUS_RESOURCE; |
| } |
| mm_mem_zero(sge_chain->active_descq_array, mem_size); |
| |
| /************ Alocate mask_array descriptor array********************************/ |
| ASSERT_STATIC(0 != BIT_VEC64_ELEM_SZ); //LM_TPA_MASK_LEN - divide by BIT_VEC64_ELEM_SZ |
| mem_size = LM_TPA_MASK_LEN(pdev, cid); |
| mem_size = mem_size * sizeof(u64_t); |
| sge_chain->mask_array = mm_alloc_mem(pdev, mem_size, mm_cli_idx); |
| |
| if(CHK_NULL(sge_chain->mask_array)) |
| { |
| DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE)); |
| return LM_STATUS_RESOURCE; |
| } |
| mm_mem_zero(sge_chain->mask_array, mem_size); |
| |
| /************ Alocate TPA ramrod data********************************/ |
| mem_size = sizeof(struct tpa_update_ramrod_data); |
| tpa_chain->ramrod_data_virt = mm_alloc_phys_mem(pdev, mem_size, &tpa_chain->ramrod_data_phys, 0, mm_cli_idx); |
| |
| if(CHK_NULL(tpa_chain->ramrod_data_virt)) |
| { |
| DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE)); |
| return LM_STATUS_RESOURCE ; |
| } |
| mm_mem_zero(tpa_chain->ramrod_data_virt, mem_size); |
| |
| return LM_STATUS_SUCCESS; |
| } /* lm_alloc_tpa */ |
| |
| lm_resource_idx_t cid_to_resource(lm_device_t *pdev, u32_t cid) |
| { |
| lm_resource_idx_t resource; |
| |
| if (lm_chain_type_not_cos != lm_mp_get_chain_type(pdev, cid)) |
| { |
| resource = LM_RESOURCE_NDIS; |
| } |
| else if (cid == ISCSI_CID(pdev)) |
| { |
| resource = LM_RESOURCE_ISCSI; |
| } |
| else if (cid == FCOE_CID(pdev)) |
| { |
| resource = LM_RESOURCE_FCOE; |
| } |
| else if (cid == FWD_CID(pdev)) |
| { |
| resource = LM_RESOURCE_FWD; |
| } |
| else if (cid == OOO_CID(pdev)) |
| { |
| resource = LM_RESOURCE_OOO; |
| } |
| else |
| { |
| resource = LM_RESOURCE_COMMON; |
| } |
| |
| return resource; |
| } |
| |
| |
| lm_status_t |
| lm_setup_txq( |
| IN struct _lm_device_t *pdev, |
| IN u32_t cid) |
| { |
| lm_bd_chain_t * bd_chain = NULL; |
| volatile struct hc_sp_status_block * sp_sb = NULL; |
| u16_t volatile * sb_indexes = NULL; |
| u8_t tx_sb_index_number =0; |
| /* check arguments */ |
| if(CHK_NULL(pdev) || |
| ERR_IF((ARRSIZE(pdev->tx_info.chain) <= cid))) |
| { |
| return LM_STATUS_FAILURE; |
| } |
| DbgMessage(pdev, INFORMi|INFORMl2sp, "#lm_setup_txq, cid=%d\n",cid); |
| |
| sp_sb = lm_get_default_status_block(pdev); |
| |
| LM_TXQ(pdev, cid).prod_bseq = 0; |
| LM_TXQ(pdev, cid).pkt_idx = 0; |
| LM_TXQ(pdev, cid).coalesce_buf_used = 0; |
| LM_TXQ(pdev, cid).lso_split_used = 0; |
| |
| bd_chain = &LM_TXQ(pdev, cid).bd_chain; |
| lm_bd_chain_setup(pdev, bd_chain, bd_chain->bd_chain_virt, bd_chain->bd_chain_phy, bd_chain->page_cnt, sizeof(struct eth_tx_bd), /* is full? */0, TRUE); |
| |
| DbgMessage(pdev, INFORMi, "txq %d, bd_chain %p, bd_left %d\n", |
| cid, |
| LM_TXQ(pdev, cid).bd_chain.next_bd, |
| LM_TXQ(pdev, cid).bd_chain.bd_left); |
| |
| DbgMessage(pdev, INFORMi, " bd_chain_phy 0x%x%08x\n", |
| LM_TXQ(pdev, cid).bd_chain.bd_chain_phy.as_u32.high, |
| LM_TXQ(pdev, cid).bd_chain.bd_chain_phy.as_u32.low); |
| |
| mm_memset(&LM_TXQ(pdev, cid).eth_tx_prods.packets_prod, 0, sizeof(eth_tx_prod_t)); |
| |
| if (cid == FWD_CID(pdev)) |
| { |
| sp_sb->index_values[HC_SP_INDEX_ETH_FW_TX_CQ_CONS] = 0; |
| LM_TXQ(pdev, cid).hw_con_idx_ptr = |
| &(sp_sb->index_values[HC_SP_INDEX_ETH_FW_TX_CQ_CONS]); |
| LM_TXQ(pdev, cid).hc_sb_info.hc_sb = STATUS_BLOCK_SP_SL_TYPE; // STATUS_BLOCK_SP_TYPE; |
| LM_TXQ(pdev, cid).hc_sb_info.hc_index_value = HC_SP_INDEX_ETH_FW_TX_CQ_CONS; |
| /* iro_dhc_offste not initialized on purpose --> not expected for FWD channel */ |
| } |
| else if (cid == ISCSI_CID(pdev)) |
| { |
| sp_sb->index_values[HC_SP_INDEX_ETH_ISCSI_CQ_CONS] = 0; |
| LM_TXQ(pdev, cid).hw_con_idx_ptr = &(sp_sb->index_values[HC_SP_INDEX_ETH_ISCSI_CQ_CONS]); |
| LM_TXQ(pdev, cid).hc_sb_info.hc_sb = STATUS_BLOCK_SP_SL_TYPE; //STATUS_BLOCK_SP_TYPE; |
| LM_TXQ(pdev, cid).hc_sb_info.hc_index_value = HC_SP_INDEX_ETH_ISCSI_CQ_CONS; |
| /* iro_dhc_offste not initialized on purpose --> not expected for FWD channel */ |
| } |
| else if (cid == FCOE_CID(pdev)) |
| { |
| sp_sb->index_values[HC_SP_INDEX_ETH_FCOE_CQ_CONS] = 0; |
| LM_TXQ(pdev, cid).hw_con_idx_ptr = |
| &(sp_sb->index_values[HC_SP_INDEX_ETH_FCOE_CQ_CONS]); |
| LM_TXQ(pdev, cid).hc_sb_info.hc_sb = STATUS_BLOCK_SP_SL_TYPE; //STATUS_BLOCK_SP_TYPE; |
| LM_TXQ(pdev, cid).hc_sb_info.hc_index_value = HC_SP_INDEX_ETH_FCOE_CQ_CONS; |
| /* iro_dhc_offste not initialized on purpose --> not expected for FWD channel */ |
| } |
| else if(cid == OOO_CID(pdev)) |
| { |
| DbgBreakMsg("OOO doesn't have a txq"); |
| return LM_STATUS_FAILURE; |
| } |
| else |
| { |
| u32_t sb_id = RSS_ID_TO_SB_ID(CHAIN_TO_RSS_ID(pdev,cid)); |
| const u8_t byte_counter_id = CHIP_IS_E1x(pdev)? LM_FW_SB_ID(pdev, sb_id) : LM_FW_DHC_QZONE_ID(pdev, sb_id); |
| |
| // Assign the TX chain consumer pointer to the consumer index in the status block. TBD: rename HC_INDEX_C_ETH_TX_CQ_CONS as its inappropriate |
| if( sb_id >= ARRSIZE(pdev->vars.status_blocks_arr) ) |
| { |
| DbgBreakIf( sb_id >= ARRSIZE(pdev->vars.status_blocks_arr) ) ; |
| return LM_STATUS_FAILURE ; |
| } |
| |
| sb_indexes = lm_get_sb_indexes(pdev, (u8_t)sb_id); |
| // This isn't realy cid it is the chain index |
| tx_sb_index_number = |
| lm_eth_tx_hc_cq_cons_cosx_from_chain(pdev, cid); |
| |
| sb_indexes[tx_sb_index_number] = 0; |
| LM_TXQ(pdev, cid).hw_con_idx_ptr = sb_indexes + tx_sb_index_number; |
| LM_TXQ(pdev, cid).hc_sb_info.hc_sb = STATUS_BLOCK_NORMAL_TYPE; |
| LM_TXQ(pdev, cid).hc_sb_info.hc_index_value = tx_sb_index_number; |
| if (IS_PFDEV(pdev)) |
| { |
| LM_TXQ(pdev, cid).hc_sb_info.iro_dhc_offset = CSTORM_BYTE_COUNTER_OFFSET(byte_counter_id, tx_sb_index_number); |
| } |
| else |
| { |
| DbgMessage(pdev, FATAL, "Dhc not implemented for VF yet\n"); |
| } |
| } |
| |
| return LM_STATUS_SUCCESS; |
| } /* lm_setup_txq */ |
| |
| lm_status_t lm_setup_rxq( IN struct _lm_device_t *pdev, |
| IN u32_t const cid) |
| { |
| lm_bd_chain_t * bd_chain = NULL; |
| lm_rx_chain_t * rxq_chain = NULL; |
| lm_rxq_chain_idx_t rx_chain_idx_max = LM_RXQ_CHAIN_IDX_MAX; |
| lm_rxq_chain_idx_t rx_chain_idx_cur = 0; |
| static u8_t const eth_rx_size_arr[LM_RXQ_CHAIN_IDX_MAX] = {sizeof(struct eth_rx_bd), sizeof(struct eth_rx_sge)}; |
| u32_t sb_id = RSS_ID_TO_SB_ID(CHAIN_TO_RSS_ID(pdev,cid)); |
| const u8_t byte_counter_id = CHIP_IS_E1x(pdev)? LM_FW_SB_ID(pdev, sb_id) : LM_FW_DHC_QZONE_ID(pdev, sb_id); |
| |
| /* check arguments */ |
| if(CHK_NULL(pdev) || |
| ERR_IF((ARRSIZE(pdev->rx_info.rxq_chain) <= cid))) |
| { |
| return LM_STATUS_FAILURE; |
| } |
| |
| DbgMessage(pdev, INFORMi|INFORMl2sp, "#lm_setup_rxq, cid=%d\n",cid); |
| |
| rxq_chain = &LM_RXQ(pdev, cid); |
| |
| rxq_chain->common.prod_bseq = 0; |
| rxq_chain->ret_bytes = 0; |
| rxq_chain->ret_bytes_last_fw_update = 0; |
| rxq_chain->common.bd_prod_without_next = 0; |
| |
| rx_chain_idx_max = LM_RXQ_IS_CHAIN_SGE_VALID( pdev, cid ) ? LM_RXQ_CHAIN_IDX_SGE : LM_RXQ_CHAIN_IDX_BD; |
| |
| for( rx_chain_idx_cur = 0; rx_chain_idx_cur <= rx_chain_idx_max; rx_chain_idx_cur++ ) |
| { |
| bd_chain = &LM_RXQ_CHAIN( pdev, cid, rx_chain_idx_cur ); |
| |
| lm_bd_chain_setup(pdev, bd_chain, bd_chain->bd_chain_virt, bd_chain->bd_chain_phy,bd_chain->page_cnt, eth_rx_size_arr[rx_chain_idx_cur], /* is full? */0, TRUE); |
| |
| DbgMessage(pdev, INFORMi, "rxq[%d] bd_chain[%d] %p, bd_left %d\n", cid, |
| rx_chain_idx_cur, |
| bd_chain->next_bd, |
| bd_chain->bd_left); |
| |
| DbgMessage(pdev, INFORMi, " bd_chain_phy[%d] 0x%x%08x\n", rx_chain_idx_cur, |
| bd_chain->bd_chain_phy.as_u32.high, |
| bd_chain->bd_chain_phy.as_u32.low); |
| } |
| |
| /* We initilize the hc_sb_info here for completeness. The fw updates are actually done by rcq-chain, but the dynamic-host-coalescing based on rx-chain */ |
| rxq_chain->hc_sb_info.hc_sb = STATUS_BLOCK_NORMAL_SL_TYPE; |
| rxq_chain->hc_sb_info.hc_index_value = HC_INDEX_ETH_RX_CQ_CONS; |
| if (IS_PFDEV(pdev)) |
| { |
| rxq_chain->hc_sb_info.iro_dhc_offset = CSTORM_BYTE_COUNTER_OFFSET(byte_counter_id, HC_INDEX_ETH_RX_CQ_CONS); |
| } |
| else |
| { |
| rxq_chain->hc_sb_info.iro_dhc_offset = sizeof(struct cstorm_queue_zone_data) * LM_FW_DHC_QZONE_ID(pdev, sb_id) |
| + sizeof(u32_t) * HC_INDEX_ETH_RX_CQ_CONS; |
| DbgMessage(pdev, WARN, "Dhc offset is 0x%x for VF Q Zone %d\n",rxq_chain->hc_sb_info.iro_dhc_offset,LM_FW_DHC_QZONE_ID(pdev, sb_id)); |
| } |
| |
| return LM_STATUS_SUCCESS; |
| } /* lm_setup_rxq */ |
| |
| |
| lm_status_t |
| lm_setup_rcq( IN struct _lm_device_t *pdev, |
| IN u32_t const cid) |
| { |
| lm_bd_chain_t * bd_chain = NULL; |
| lm_rcq_chain_t * rcq_chain = NULL; |
| lm_rx_chain_t * rxq_chain = NULL; |
| volatile struct hc_sp_status_block * sp_sb = NULL; |
| u16_t volatile * sb_indexes = NULL; |
| |
| /* check arguments */ |
| if(CHK_NULL(pdev) || |
| ERR_IF((ARRSIZE(pdev->rx_info.rcq_chain) <= cid))) |
| { |
| return LM_STATUS_FAILURE; |
| } |
| |
| rcq_chain = &LM_RCQ(pdev, cid); |
| rxq_chain = &LM_RXQ(pdev, cid); |
| |
| DbgMessage(pdev, INFORMi|INFORMl2sp, "#lm_setup_rcq, cid=%d\n",cid); |
| |
| sp_sb = lm_get_default_status_block(pdev); |
| |
| rcq_chain->prod_bseq = 0; |
| if (CHIP_IS_E1x(pdev)) |
| { |
| rcq_chain->iro_prod_offset = USTORM_RX_PRODS_E1X_OFFSET(PORT_ID(pdev), LM_FW_CLI_ID(pdev, cid)); |
| } |
| else |
| { |
| if (IS_VFDEV(pdev)) |
| { |
| rcq_chain->iro_prod_offset = LM_FW_QZONE_ID(pdev, cid)*sizeof(struct ustorm_queue_zone_data); |
| DbgMessage(pdev, FATAL, "iro_prod_offset for vf = %x...\n", rcq_chain->iro_prod_offset); |
| } |
| } |
| |
| //if(pdev->params.l2_rx_desc_cnt[0]) /* if removed. was not required */ |
| bd_chain = &rcq_chain->bd_chain; |
| |
| lm_bd_chain_setup(pdev, bd_chain, bd_chain->bd_chain_virt, bd_chain->bd_chain_phy,bd_chain->page_cnt, sizeof(union eth_rx_cqe), /* is full? */0, TRUE); |
| |
| //number of Bds left in the RCQ must be at least the same with its corresponding Rx chain. |
| DbgBreakIf(lm_bd_chain_avail_bds(&rxq_chain->chain_arr[LM_RXQ_CHAIN_IDX_BD]) <= lm_bd_chain_avail_bds(&rcq_chain->bd_chain)); |
| |
| if( LM_RXQ_IS_CHAIN_SGE_VALID(pdev, cid ) ) |
| { |
| DbgBreakIf( !lm_bd_chains_are_consistent( &rxq_chain->chain_arr[LM_RXQ_CHAIN_IDX_BD], &rxq_chain->chain_arr[LM_RXQ_CHAIN_IDX_SGE]) ); |
| } |
| |
| DbgMessage(pdev, INFORMi, "rcq %d, bd_chain %p, bd_left %d\n", cid, |
| rcq_chain->bd_chain.next_bd, |
| rcq_chain->bd_chain.bd_left); |
| DbgMessage(pdev, INFORMi, " bd_chain_phy 0x%x%08x\n", rcq_chain->bd_chain.bd_chain_phy.as_u32.high, |
| rcq_chain->bd_chain.bd_chain_phy.as_u32.low); |
| |
| // Assign the RCQ chain consumer pointer to the consumer index in the status block. |
| if (cid == ISCSI_CID(pdev)) |
| { |
| if (CHIP_IS_E2E3(pdev)) { |
| u8_t rel_cid = cid - LM_MAX_RSS_CHAINS(pdev); |
| rcq_chain->iro_prod_offset = USTORM_RX_PRODS_E2_OFFSET(LM_FW_AUX_QZONE_ID(pdev, rel_cid)); |
| } |
| sp_sb->index_values[HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS] = 0; |
| rcq_chain->hw_con_idx_ptr = &(sp_sb->index_values[HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS]); |
| rcq_chain->hc_sb_info.hc_sb = STATUS_BLOCK_SP_SL_TYPE; |
| rcq_chain->hc_sb_info.hc_index_value = HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS; |
| } |
| else if (cid == FCOE_CID(pdev)) |
| { |
| if (CHIP_IS_E2E3(pdev)) { |
| u8_t rel_cid = cid - LM_MAX_RSS_CHAINS(pdev); |
| rcq_chain->iro_prod_offset = USTORM_RX_PRODS_E2_OFFSET(LM_FW_AUX_QZONE_ID(pdev, rel_cid)); |
| } |
| sp_sb->index_values[HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS] = 0; |
| rcq_chain->hw_con_idx_ptr = &(sp_sb->index_values[HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS]); |
| rcq_chain->hc_sb_info.hc_sb = STATUS_BLOCK_SP_SL_TYPE; |
| rcq_chain->hc_sb_info.hc_index_value = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS; |
| } |
| else if (cid == OOO_CID(pdev)) |
| { |
| // Any SB that isn't RSS share the same SB. |
| // basically we will want the ISCSI OOO to work on the same SB that ISCSI works.(This does happen see the line above) |
| // Even if we want to count on ISCSI and make sure we will work on the same SB: |
| // 1.There is no promise on the order the ISCSI nminiport will call |
| // ISCSI_KWQE_OPCODE_INIT1 (lm_sc_init inits pdev->iscsi_info.l5_eq_base_chain_idx) or |
| // 2.OOO is general code that doesn't depend on a protocol (ISCSI). |
| |
| //TODO_OOO Ask Michal regarding E2 if we need LM_FW_SB_ID |
| if (CHIP_IS_E2E3(pdev)) { |
| u8_t rel_cid = cid - LM_MAX_RSS_CHAINS(pdev); |
| rcq_chain->iro_prod_offset = USTORM_RX_PRODS_E2_OFFSET(LM_FW_AUX_QZONE_ID(pdev, rel_cid)); |
| } |
| sp_sb->index_values[HC_SP_INDEX_ISCSI_OOO_RX_CONS] = 0; |
| rcq_chain->hw_con_idx_ptr = &(sp_sb->index_values[HC_SP_INDEX_ISCSI_OOO_RX_CONS]); |
| rcq_chain->hc_sb_info.hc_sb = STATUS_BLOCK_SP_SL_TYPE; |
| rcq_chain->hc_sb_info.hc_index_value = HC_SP_INDEX_ISCSI_OOO_RX_CONS; |
| } |
| else /* NDIS */ |
| { |
| u32_t sb_id = RSS_ID_TO_SB_ID(CHAIN_TO_RSS_ID(pdev,cid)); |
| const u8_t byte_counter_id = CHIP_IS_E1x(pdev)? LM_FW_SB_ID(pdev, sb_id) : LM_FW_DHC_QZONE_ID(pdev, sb_id); |
| |
| if (IS_PFDEV(pdev) && CHIP_IS_E2E3(pdev)) { |
| rcq_chain->iro_prod_offset = USTORM_RX_PRODS_E2_OFFSET(LM_FW_DHC_QZONE_ID(pdev, sb_id)); |
| } |
| if( sb_id >= ARRSIZE(pdev->vars.status_blocks_arr) ) |
| { |
| DbgBreakIf( sb_id >= ARRSIZE(pdev->vars.status_blocks_arr) ) ; |
| return LM_STATUS_FAILURE ; |
| } |
| |
| sb_indexes = lm_get_sb_indexes(pdev, (u8_t)sb_id); |
| sb_indexes[HC_INDEX_ETH_RX_CQ_CONS] = 0; |
| rcq_chain->hw_con_idx_ptr = sb_indexes + HC_INDEX_ETH_RX_CQ_CONS; |
| rcq_chain->hc_sb_info.hc_sb = STATUS_BLOCK_NORMAL_SL_TYPE; |
| rcq_chain->hc_sb_info.hc_index_value = HC_INDEX_ETH_RX_CQ_CONS; |
| if (IS_PFDEV(pdev)) |
| { |
| rcq_chain->hc_sb_info.iro_dhc_offset = CSTORM_BYTE_COUNTER_OFFSET(byte_counter_id, HC_INDEX_ETH_RX_CQ_CONS); |
| } |
| else |
| { |
| DbgMessage(pdev, FATAL, "Dhc not implemented for VF yet\n"); |
| } |
| } |
| |
| return LM_STATUS_SUCCESS; |
| } /* lm_setup_rcq */ |
| |
| lm_status_t |
| lm_setup_client_con_resc( |
| IN struct _lm_device_t *pdev, |
| IN u32_t cid |
| ) |
| { |
| lm_status_t lm_status = LM_STATUS_SUCCESS; |
| |
| if CHK_NULL(pdev) |
| { |
| return LM_STATUS_INVALID_PARAMETER; |
| } |
| |
| if((GET_FLAGS(pdev->params.l2_cli_con_params[cid].attributes,LM_CLIENT_ATTRIBUTES_RX) && |
| (cid >= MAX_RX_CHAIN(pdev))) || |
| (GET_FLAGS(pdev->params.l2_cli_con_params[cid].attributes,LM_CLIENT_ATTRIBUTES_TX) && |
| (cid >= MAX_TX_CHAIN(pdev)))) |
| |
| { |
| DbgBreakMsg(" invalid chain "); |
| return LM_STATUS_INVALID_PARAMETER; |
| } |
| |
| if(GET_FLAGS(pdev->params.l2_cli_con_params[cid].attributes,LM_CLIENT_ATTRIBUTES_TX)) |
| { |
| lm_status = lm_setup_txq(pdev, cid); |
| if (lm_status != LM_STATUS_SUCCESS) |
| { |
| return lm_status; |
| } |
| } |
| |
| |
| if(GET_FLAGS(pdev->params.l2_cli_con_params[cid].attributes,LM_CLIENT_ATTRIBUTES_RX)) |
| { |
| lm_status = lm_setup_rxq(pdev, cid); |
| if (lm_status != LM_STATUS_SUCCESS) |
| { |
| return lm_status; |
| } |
| |
| lm_status = lm_setup_rcq(pdev, cid); |
| if (lm_status != LM_STATUS_SUCCESS) |
| { |
| return lm_status; |
| } |
| } |
| |
| if(GET_FLAGS(pdev->params.l2_cli_con_params[cid].attributes,LM_CLIENT_ATTRIBUTES_TPA)) |
| { |
| lm_status = lm_setup_tpa_chain(pdev, cid); |
| if (lm_status != LM_STATUS_SUCCESS) |
| { |
| return lm_status; |
| } |
| } |
| pdev->client_info[cid].last_set_rx_mask = 0; |
| |
| return LM_STATUS_SUCCESS; |
| } |
| |
| /* |
| * reset txq, rxq, rcq counters for L2 client connection |
| * |
| * assumption: the cid equals the chain idx |
| */ |
| lm_status_t lm_clear_eth_con_resc( IN struct _lm_device_t *pdev, |
| IN u8_t const cid ) |
| { |
| u8_t sb_id = lm_sb_id_from_chain(pdev, cid); |
| u8_t max_eth_cid; |
| if CHK_NULL(pdev) |
| { |
| return LM_STATUS_INVALID_PARAMETER; |
| } |
| if (MM_DCB_MP_L2_IS_ENABLE(pdev)) |
| { |
| max_eth_cid = lm_mp_max_cos_chain_used(pdev); |
| } |
| else |
| { |
| max_eth_cid = MAX_RX_CHAIN(pdev); |
| } |
| if (cid >= max_eth_cid) |
| { |
| return LM_STATUS_INVALID_PARAMETER; |
| } |
| |
| /* Set hw consumer index pointers to null, so we won't get rx/tx completion */ |
| /* for this connection, next time we'll load it */ |
| |
| // Regardless the attributes we "clean' the TX status block |
| |
| if(GET_FLAGS(pdev->params.l2_cli_con_params[cid].attributes,LM_CLIENT_ATTRIBUTES_TX)) |
| { |
| if (cid >= MAX_TX_CHAIN(pdev)) |
| { |
| DbgBreakMsg(" Invalid TX chain index "); |
| return LM_STATUS_INVALID_PARAMETER; |
| } |
| /* first set the hw consumer index pointers to null, and only then clear the pkt_idx value |
| * to avoid a race when servicing interrupt at the same time */ |
| lm_clear_chain_sb_cons_idx(pdev, sb_id, &LM_TXQ(pdev, cid).hc_sb_info, &LM_TXQ(pdev, cid).hw_con_idx_ptr); |
| LM_TXQ(pdev, cid).pkt_idx = 0; |
| } |
| |
| if(GET_FLAGS(pdev->params.l2_cli_con_params[cid].attributes,LM_CLIENT_ATTRIBUTES_RX)) |
| { |
| if (cid >= MAX_RX_CHAIN(pdev)) |
| { |
| DbgBreakMsg(" Invalid RX chain index "); |
| return LM_STATUS_INVALID_PARAMETER; |
| } |
| lm_clear_chain_sb_cons_idx(pdev, sb_id, &LM_RCQ(pdev, cid).hc_sb_info, &LM_RCQ(pdev, cid).hw_con_idx_ptr); |
| } |
| //s_list_init(&LM_RXQ(pdev, cid).active_descq, NULL, NULL, 0); |
| //s_list_init(&LM_RXQ(pdev, cid).free_descq, NULL, NULL, 0); |
| |
| return LM_STATUS_SUCCESS; |
| } |
| |
| lm_status_t |
| lm_alloc_chain_con_resc( |
| IN struct _lm_device_t *pdev, |
| IN u32_t const cid, |
| IN lm_cli_idx_t const lm_cli_idx |
| ) |
| { |
| lm_status_t lm_status = LM_STATUS_SUCCESS; |
| u16_t l2_rx_bd_page_cnt = 0; |
| u16_t l2_tpa_bd_page_cnt = 0; |
| u16_t bds_per_page = 0; |
| |
| if CHK_NULL(pdev) |
| { |
| return LM_STATUS_INVALID_PARAMETER; |
| } |
| |
| if((GET_FLAGS(pdev->params.l2_cli_con_params[cid].attributes,LM_CLIENT_ATTRIBUTES_RX) && |
| (cid >= MAX_RX_CHAIN(pdev))) || |
| (GET_FLAGS(pdev->params.l2_cli_con_params[cid].attributes,LM_CLIENT_ATTRIBUTES_TX) && |
| (cid >= MAX_TX_CHAIN(pdev)))) |
| |
| { |
| DbgBreakMsg(" invalid chain "); |
| return LM_STATUS_INVALID_PARAMETER; |
| } |
| |
| if(GET_FLAGS(pdev->params.l2_cli_con_params[cid].attributes,LM_CLIENT_ATTRIBUTES_TX)) |
| { |
| lm_status = lm_alloc_txq(pdev, |
| cid, |
| (u16_t)pdev->params.l2_tx_bd_page_cnt[lm_cli_idx], |
| (u16_t)pdev->params.l2_tx_coal_buf_cnt[lm_cli_idx]); |
| if (lm_status != LM_STATUS_SUCCESS) |
| { |
| return lm_status; |
| } |
| } |
| |
| if(GET_FLAGS(pdev->params.l2_cli_con_params[cid].attributes,LM_CLIENT_ATTRIBUTES_RX)) |
| { |
| l2_rx_bd_page_cnt =_ceil( pdev->params.l2_cli_con_params[cid].num_rx_desc, 500 ); |
| lm_status = lm_alloc_rxq(pdev, |
| cid, |
| l2_rx_bd_page_cnt, |
| pdev->params.l2_cli_con_params[cid].num_rx_desc); |
| |
| if (lm_status != LM_STATUS_SUCCESS) |
| { |
| return lm_status; |
| } |
| |
| lm_status = lm_alloc_rcq(pdev, |
| cid, |
| (u16_t)l2_rx_bd_page_cnt * LM_RX_BD_CQ_SIZE_RATIO); |
| if (lm_status != LM_STATUS_SUCCESS) |
| { |
| return lm_status; |
| } |
| } |
| |
| if(GET_FLAGS(pdev->params.l2_cli_con_params[cid].attributes,LM_CLIENT_ATTRIBUTES_TPA)) |
| { |
| bds_per_page = BD_PER_PAGE(LM_TPA_BD_ELEN_SIZE); |
| |
| if ((0 == pdev->params.tpa_desc_cnt_per_chain) || |
| (!(POWER_OF_2(bds_per_page)))) |
| { |
| DbgBreakMsg(" Illegal TPA params"); |
| return LM_STATUS_FAILURE; |
| } |
| l2_tpa_bd_page_cnt =_ceil( pdev->params.tpa_desc_cnt_per_chain, |
| USABLE_BDS_PER_PAGE(LM_TPA_BD_ELEN_SIZE, TRUE)); |
| |
| l2_tpa_bd_page_cnt = (u16_t) |
| upper_align_power_of_2(l2_tpa_bd_page_cnt, |
| sizeof(l2_tpa_bd_page_cnt) * BITS_PER_BYTE); |
| |
| lm_status = lm_alloc_tpa_chain(pdev, |
| cid, |
| l2_tpa_bd_page_cnt, |
| pdev->params.tpa_desc_cnt_per_chain, |
| bds_per_page); |
| |
| if (lm_status != LM_STATUS_SUCCESS) |
| { |
| return lm_status; |
| } |
| } |
| return LM_STATUS_SUCCESS; |
| } |
| |
| lm_status_t |
| lm_setup_client_con_params( IN struct _lm_device_t *pdev, |
| IN u8_t const chain_idx, |
| IN struct _lm_client_con_params_t *cli_params ) |
| { |
| lm_rx_chain_t* rxq_chain = NULL; |
| |
| if (CHK_NULL(pdev) || |
| CHK_NULL(cli_params) || |
| ERR_IF((ARRSIZE(pdev->params.l2_cli_con_params) <= chain_idx) || |
| (CHIP_IS_E1H(pdev) && (chain_idx >= ETH_MAX_RX_CLIENTS_E1H)) || /* TODO E2 add IS_E2*/ |
| (CHIP_IS_E1(pdev) && (chain_idx >= ETH_MAX_RX_CLIENTS_E1)) )) |
| { |
| return LM_STATUS_INVALID_PARAMETER; |
| } |
| |
| mm_memcpy(&pdev->params.l2_cli_con_params[chain_idx], cli_params, sizeof(struct _lm_client_con_params_t)); |
| |
| |
| if(GET_FLAGS(pdev->params.l2_cli_con_params[chain_idx].attributes, |
| LM_CLIENT_ATTRIBUTES_RX)) |
| { |
| // update rxq_chain strucutre |
| rxq_chain = &LM_RXQ(pdev, chain_idx); |
| rxq_chain->lah_size = pdev->params.l2_cli_con_params[chain_idx].lah_size; |
| } |
| |
| return LM_STATUS_SUCCESS; |
| } |
| |
| lm_status_t |
| lm_init_chain_con( IN struct _lm_device_t *pdev, |
| IN u8_t const chain_idx, |
| IN u8_t const b_alloc ) |
| { |
| lm_status_t lm_status = LM_STATUS_SUCCESS; |
| u8_t lm_cli_idx = LM_CHAIN_IDX_CLI(pdev, chain_idx); // FIXME!!! |
| |
| if (CHK_NULL(pdev) || |
| (LM_CLI_IDX_MAX <= lm_cli_idx)) |
| { |
| DbgBreakMsg(" lm_init_client_con lm_cli_idx has an invalid value"); |
| return LM_STATUS_INVALID_PARAMETER; |
| } |
| |
| if (b_alloc) |
| { |
| lm_status = lm_alloc_chain_con_resc(pdev, chain_idx, lm_cli_idx); |
| |
| if (lm_status != LM_STATUS_SUCCESS) |
| { |
| return lm_status; |
| } |
| |
| if(GET_FLAGS(pdev->params.l2_cli_con_params[chain_idx].attributes,LM_CLIENT_ATTRIBUTES_RX)) |
| { |
| /* On allocation, init the clients objects... do this only on allocation, on setup, we'll need |
| * the info to reconfigure... */ |
| ecore_init_mac_obj(pdev, |
| &pdev->client_info[chain_idx].mac_obj, |
| LM_FW_CLI_ID(pdev, chain_idx), |
| chain_idx, |
| FUNC_ID(pdev), |
| LM_SLOWPATH(pdev, mac_rdata)[lm_cli_idx], |
| LM_SLOWPATH_PHYS(pdev, mac_rdata)[lm_cli_idx], |
| ECORE_FILTER_MAC_PENDING, |
| (unsigned long *)&pdev->client_info[chain_idx].sp_mac_state, |
| ECORE_OBJ_TYPE_RX_TX, |
| &pdev->slowpath_info.macs_pool); |
| |
| |
| if (!CHIP_IS_E1(pdev)) |
| { |
| ecore_init_vlan_mac_obj(pdev, |
| &pdev->client_info[chain_idx].mac_vlan_obj, |
| LM_FW_CLI_ID(pdev, chain_idx), |
| chain_idx, |
| FUNC_ID(pdev), |
| LM_SLOWPATH(pdev, mac_rdata)[lm_cli_idx], |
| LM_SLOWPATH_PHYS(pdev, mac_rdata)[lm_cli_idx], |
| ECORE_FILTER_VLAN_MAC_PENDING, |
| (unsigned long *)&pdev->client_info[chain_idx].sp_mac_state, |
| ECORE_OBJ_TYPE_RX_TX, |
| &pdev->slowpath_info.macs_pool, |
| &pdev->slowpath_info.vlans_pool); |
| |
| } |
| |
| if (!CHIP_IS_E1x(pdev)) |
| { |
| ecore_init_vlan_obj(pdev, |
| &pdev->client_info[chain_idx].vlan_obj, |
| LM_FW_CLI_ID(pdev, chain_idx), |
| chain_idx, |
| FUNC_ID(pdev), |
| LM_SLOWPATH(pdev, mac_rdata)[lm_cli_idx], |
| LM_SLOWPATH_PHYS(pdev, mac_rdata)[lm_cli_idx], |
| ECORE_FILTER_VLAN_PENDING, |
| (unsigned long *)&pdev->client_info[chain_idx].sp_mac_state, |
| ECORE_OBJ_TYPE_RX_TX, |
| &pdev->slowpath_info.vlans_pool); |
| } |
| } |
| } |
| |
| |
| lm_status = lm_setup_client_con_resc(pdev, chain_idx); |
| |
| return lm_status; |
| } |
| |
| lm_status_t lm_alloc_sq(struct _lm_device_t *pdev) |
| { |
| lm_sq_info_t * sq_info = &pdev->sq_info; |
| |
| sq_info->sq_chain.sq_chain_virt = mm_alloc_phys_mem( pdev, |
| LM_PAGE_SIZE, |
| (lm_address_t*)&(sq_info->sq_chain.bd_chain_phy), |
| 0, |
| LM_CLI_IDX_MAX); |
| |
| if CHK_NULL(sq_info->sq_chain.sq_chain_virt) |
| { |
| DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE)); |
| return LM_STATUS_RESOURCE ; |
| } |
| |
| mm_mem_zero(sq_info->sq_chain.sq_chain_virt, LM_PAGE_SIZE); |
| |
| return LM_STATUS_SUCCESS; |
| } |
| |
| lm_status_t lm_alloc_eq(struct _lm_device_t *pdev) |
| { |
| lm_eq_chain_t *eq_chain = NULL; |
| u32_t mem_size = 0; |
| u8_t const page_cnt = 1; |
| |
| |
| /* check arguments */ |
| if(CHK_NULL(pdev)) |
| { |
| return LM_STATUS_FAILURE; |
| } |
| |
| DbgMessage(pdev, INFORMi | INFORMl2sp, "#lm_alloc_eq\n"); |
| |
| mem_size = page_cnt * LM_PAGE_SIZE; |
| eq_chain = &pdev->eq_info.eq_chain; |
| |
| |
| /* alloc the chain */ |
| eq_chain->bd_chain.bd_chain_virt = |
| mm_alloc_phys_mem( pdev, mem_size, &eq_chain->bd_chain.bd_chain_phy, 0, LM_CLI_IDX_MAX); |
| |
| if(ERR_IF(!eq_chain->bd_chain.bd_chain_virt)) |
| { |
| DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE)); |
| return LM_STATUS_RESOURCE; |
| } |
| |
| mm_mem_zero(eq_chain->bd_chain.bd_chain_virt, mem_size); |
| eq_chain->bd_chain.page_cnt = page_cnt; |
| |
| return LM_STATUS_SUCCESS; |
| |
| } |
| |
| lm_status_t lm_alloc_client_info(struct _lm_device_t *pdev) |
| { |
| client_init_data_t *client_init_data_virt = NULL; |
| const u32_t mem_size_init = sizeof(client_init_data_t); |
| struct client_update_ramrod_data *client_update_data_virt = NULL; |
| const u32_t mem_size_update = sizeof(struct client_update_ramrod_data); |
| u8_t i = 0; |
| |
| for (i = 0; i < ARRSIZE(pdev->client_info); i++) |
| { |
| //Init data |
| client_init_data_virt = mm_alloc_phys_mem(pdev, mem_size_init, &pdev->client_info[i].client_init_data_phys, 0, LM_RESOURCE_COMMON); |
| if CHK_NULL(client_init_data_virt) |
| { |
| DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE)); |
| return LM_STATUS_RESOURCE ; |
| } |
| |
| mm_mem_zero(client_init_data_virt, mem_size_init); |
| |
| pdev->client_info[i].client_init_data_virt = client_init_data_virt; |
| |
| //update data |
| client_update_data_virt = mm_alloc_phys_mem(pdev, mem_size_update, &pdev->client_info[i].update.data_phys, 0, LM_RESOURCE_COMMON); |
| if CHK_NULL(client_update_data_virt) |
| { |
| DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE)); |
| return LM_STATUS_RESOURCE ; |
| } |
| |
| mm_mem_zero(client_update_data_virt, mem_size_update); |
| |
| pdev->client_info[i].update.data_virt = client_update_data_virt; |
| } |
| |
| return LM_STATUS_SUCCESS; |
| } |
| |
| lm_status_t lm_setup_client_info(struct _lm_device_t *pdev) |
| { |
| client_init_data_t *client_init_data_virt = NULL; |
| const u32_t mem_size_init = sizeof(client_init_data_t); |
| struct client_update_ramrod_data *client_update_data_virt = NULL; |
| const u32_t mem_size_update = sizeof(struct client_update_ramrod_data); |
| u8_t i = 0; |
| |
| for (i = 0; i < ARRSIZE(pdev->client_info); i++) |
| { |
| //Init |
| client_init_data_virt = pdev->client_info[i].client_init_data_virt; |
| if CHK_NULL(client_init_data_virt) |
| { |
| DbgMessage(pdev, FATAL, "client-init-data at this point is not expected to be null... \n"); |
| return LM_STATUS_FAILURE ; |
| } |
| mm_mem_zero(client_init_data_virt, mem_size_init); |
| |
| //update |
| client_update_data_virt = pdev->client_info[i].update.data_virt; |
| if CHK_NULL(client_update_data_virt) |
| { |
| DbgMessage(pdev, FATAL, "client-update-data at this point is not expected to be null... \n"); |
| return LM_STATUS_FAILURE ; |
| } |
| mm_mem_zero(client_update_data_virt, mem_size_update); |
| } |
| |
| return LM_STATUS_SUCCESS; |
| } |
| |
| /** |
| * @description |
| * The next page entrys are static and wont be used by active |
| * descriptor array and mask array. |
| * @param pdev |
| * @param chain_idx |
| * |
| * @return STATIC void |
| */ |
| __inline STATIC void |
| lm_tpa_clear_next_page( IN lm_device_t* pdev, |
| IN const u32_t chain_idx) |
| { |
| lm_bd_chain_t* bd_chain = &LM_TPA_CHAIN_BD(pdev, chain_idx); |
| u16_t active_entry = 0; |
| u16_t bd_entry = 0; |
| u16_t i = 0; |
| u16_t j = 0; |
| |
| for(i = 1; i <= lm_bd_chain_page_cnt(bd_chain); i++ ) |
| { |
| bd_entry = (lm_bd_chain_bds_per_page(bd_chain) * i) - lm_bd_chain_bds_skip_eop(bd_chain); |
| /* clear page-end entries */ |
| for(j = 0; j < lm_bd_chain_bds_skip_eop(bd_chain); j++ ) |
| { |
| active_entry = LM_TPA_BD_ENTRY_TO_ACTIVE_ENTRY(pdev, chain_idx, bd_entry); |
| LM_TPA_MASK_CLEAR_ACTIVE_BIT(pdev, chain_idx, active_entry); |
| bd_entry++; |
| } |
| } |
| } |
| |
| /** |
| * @description |
| * Clear TPA parameters. TPA can be disabled between NDIS bind |
| * unbind but the RX cahin will stay used. |
| * @param pdev |
| * @param cid |
| */ |
| lm_status_t |
| lm_tpa_chain_reset(IN lm_device_t *pdev, |
| IN const u32_t cid) |
| { |
| |
| lm_tpa_chain_t * tpa_chain = NULL; |
| |
| /* check arguments */ |
| if(CHK_NULL(pdev) || |
| ERR_IF((ARRSIZE(pdev->rx_info.rxq_chain) <= cid))) |
| { |
| return LM_STATUS_FAILURE; |
| } |
| |
| DbgMessage(pdev, INFORMi|INFORMl2sp, "#lm_setup_tpa, cid=%d\n",cid); |
| |
| tpa_chain = &LM_TPA(pdev, cid); |
| /***************** SGE chain setup *************************************/ |
| mm_mem_zero(tpa_chain,sizeof(lm_tpa_chain_t)); |
| |
| return LM_STATUS_SUCCESS; |
| } |
| /** |
| * @description |
| * |
| * @param pdev |
| * @param cid |
| * |
| * @return lm_status_t |
| */ |
| lm_status_t lm_setup_tpa_chain( IN struct _lm_device_t *pdev, |
| IN u32_t const cid) |
| { |
| lm_bd_chain_t * bd_chain = NULL; |
| lm_tpa_chain_t * tpa_chain = NULL; |
| u16_t i = 0; |
| |
| /* check arguments */ |
| if(CHK_NULL(pdev) || |
| ERR_IF((ARRSIZE(pdev->rx_info.rxq_chain) <= cid))) |
| { |
| return LM_STATUS_FAILURE; |
| } |
| |
| DbgMessage(pdev, INFORMi|INFORMl2sp, "#lm_setup_tpa, cid=%d\n",cid); |
| |
| tpa_chain = &LM_TPA(pdev, cid); |
| bd_chain = &LM_TPA_CHAIN_BD( pdev, cid ); |
| |
| |
| /***************** TPA chain setup ************************************/ |
| for(i = 0; i < ARRSIZE(tpa_chain->start_coales_bd) ; i++) |
| { |
| tpa_chain->start_coales_bd[i].is_entry_used = FALSE; |
| tpa_chain->start_coales_bd[i].packet = NULL; |
| } |
| |
| /***************** SGE common setup ************************************/ |
| tpa_chain->common.prod_bseq = 0; |
| tpa_chain->common.bd_prod_without_next = 0; |
| |
| /***************** SGE chain setup *************************************/ |
| lm_bd_chain_setup(pdev, bd_chain, bd_chain->bd_chain_virt, bd_chain->bd_chain_phy,bd_chain->page_cnt, LM_TPA_BD_ELEN_SIZE, /* is full? */0, TRUE); |
| |
| DbgMessage(pdev, INFORMi, "rxq[%d] bd_chain[%d] %p, bd_left %d\n", cid, |
| bd_chain->next_bd, |
| bd_chain->bd_left); |
| |
| DbgMessage(pdev, INFORMi, " bd_chain_phy[%d] 0x%x%08x\n", bd_chain->bd_chain_phy.as_u32.high, |
| bd_chain->bd_chain_phy.as_u32.low); |
| tpa_chain->sge_chain.last_max_con = 0; |
| |
| for(i = 0; i < LM_TPA_ACTIVE_DESCQ_ARRAY_ELEM(pdev, cid) ; i++) |
| { |
| tpa_chain->sge_chain.active_descq_array[i] = NULL; |
| } |
| |
| /***************** Mask entry prepare *************************************/ |
| ASSERT_STATIC(0 != BIT_VEC64_ELEM_SZ); //LM_TPA_MASK_LEN - divide by BIT_VEC64_ELEM_SZ |
| for(i = 0; i < LM_TPA_MASK_LEN(pdev, cid) ; i++) |
| { |
| tpa_chain->sge_chain.mask_array[i] = BIT_VEC64_ELEM_ONE_MASK; |
| } |
| |
| lm_tpa_clear_next_page(pdev, |
| cid); |
| |
| return LM_STATUS_SUCCESS; |
| } /* lm_setup_tpa */ |
| |
| lm_status_t lm_setup_sq(struct _lm_device_t *pdev) |
| { |
| lm_sq_info_t * sq_info = &pdev->sq_info; |
| |
| mm_mem_zero(sq_info->sq_chain.sq_chain_virt, LM_PAGE_SIZE); |
| |
| pdev->sq_info.num_pending_normal = MAX_NORMAL_PRIORITY_SPE; |
| pdev->sq_info.num_pending_high = MAX_HIGH_PRIORITY_SPE; |
| |
| d_list_init(&pdev->sq_info.pending_normal, 0,0,0); |
| d_list_init(&pdev->sq_info.pending_high, 0,0,0); |
| d_list_init(&pdev->sq_info.pending_complete, 0,0,0); |
| |
| |
| /* The spq dont have next bd */ |
| pdev->sq_info.sq_chain.bd_left = USABLE_BDS_PER_PAGE(sizeof(struct slow_path_element), TRUE); /* prod == cons means empty chain */ |
| pdev->sq_info.sq_chain.con_idx = 0; |
| |
| pdev->sq_info.sq_chain.prod_bd = pdev->sq_info.sq_chain.sq_chain_virt; |
| pdev->sq_info.sq_chain.last_bd = pdev->sq_info.sq_chain.prod_bd + pdev->sq_info.sq_chain.bd_left ; |
| pdev->sq_info.sq_chain.prod_idx = 0; |
| |
| return LM_STATUS_SUCCESS; |
| |
| } |
| |
| lm_status_t lm_setup_eq(struct _lm_device_t *pdev) |
| { |
| lm_bd_chain_t * bd_chain = NULL; |
| lm_eq_chain_t * eq_chain = NULL; |
| volatile struct hc_sp_status_block * sp_sb = NULL; |
| |
| |
| /* check arguments */ |
| if(CHK_NULL(pdev)) |
| { |
| return LM_STATUS_FAILURE; |
| } |
| |
| DbgMessage(pdev, INFORMeq, "#lm_setup_eq\n"); |
| |
| eq_chain = &pdev->eq_info.eq_chain; |
| bd_chain = &eq_chain->bd_chain; |
| |
| lm_bd_chain_setup(pdev, bd_chain, bd_chain->bd_chain_virt, bd_chain->bd_chain_phy, bd_chain->page_cnt, sizeof(union event_ring_elem), /* is full? */TRUE, TRUE); |
| |
| sp_sb = lm_get_default_status_block(pdev); |
| |
| sp_sb->index_values[HC_SP_INDEX_EQ_CONS] = 0; |
| |
| eq_chain->hw_con_idx_ptr = &sp_sb->index_values[HC_SP_INDEX_EQ_CONS]; |
| eq_chain->hc_sb_info.hc_sb = STATUS_BLOCK_NORMAL_SL_TYPE; |
| eq_chain->hc_sb_info.hc_index_value = HC_SP_INDEX_EQ_CONS; |
| eq_chain->iro_prod_offset = CSTORM_EVENT_RING_PROD_OFFSET(FUNC_ID(pdev)); |
| |
| return LM_STATUS_SUCCESS; |
| } |
| |
| lm_status_t lm_init_sp_objs(struct _lm_device_t *pdev) |
| { |
| u32_t lm_cli_idx = LM_CLI_IDX_MAX; |
| |
| ecore_init_mac_credit_pool(pdev, &pdev->slowpath_info.macs_pool, FUNC_ID(pdev), CHIP_IS_E1x(pdev)? VNICS_PER_PORT(pdev) : VNICS_PER_PATH(pdev)); |
| ecore_init_vlan_credit_pool(pdev, &pdev->slowpath_info.vlans_pool, FUNC_ID(pdev), CHIP_IS_E1x(pdev)? VNICS_PER_PORT(pdev) : VNICS_PER_PATH(pdev)); |
| ecore_init_rx_mode_obj(pdev, &pdev->slowpath_info.rx_mode_obj); |
| |
| for (lm_cli_idx=0; lm_cli_idx < ARRSIZE(pdev->slowpath_info.mcast_obj); lm_cli_idx++) |
| { |
| ecore_init_mcast_obj(pdev, |
| &pdev->slowpath_info.mcast_obj[lm_cli_idx], |
| LM_FW_CLI_ID(pdev, pdev->params.map_client_to_cid[lm_cli_idx]), |
| pdev->params.map_client_to_cid[lm_cli_idx], |
| FUNC_ID(pdev), |
| FUNC_ID(pdev), |
| LM_SLOWPATH(pdev, mcast_rdata)[lm_cli_idx], |
| LM_SLOWPATH_PHYS(pdev, mcast_rdata)[lm_cli_idx], |
| ECORE_FILTER_MCAST_PENDING, |
| (unsigned long *)&pdev->slowpath_info.sp_mcast_state[lm_cli_idx], |
| ECORE_OBJ_TYPE_RX_TX); |
| } |
| |
| ecore_init_rss_config_obj(pdev, |
| &pdev->slowpath_info.rss_conf_obj, |
| LM_FW_CLI_ID(pdev, LM_SW_LEADING_RSS_CID(pdev)), |
| LM_SW_LEADING_RSS_CID(pdev), |
| FUNC_ID(pdev), |
| FUNC_ID(pdev), |
| LM_SLOWPATH(pdev, rss_rdata), |
| LM_SLOWPATH_PHYS(pdev, rss_rdata), |
| ECORE_FILTER_RSS_CONF_PENDING, |
| (unsigned long *)&pdev->slowpath_info.sp_rss_state, |
| ECORE_OBJ_TYPE_RX); |
| |
| return LM_STATUS_SUCCESS; |
| } |
| |
| /** |
| * Description: |
| * allocate slowpath resources |
| */ |
| static lm_status_t |
| lm_alloc_setup_slowpath_resc(struct _lm_device_t *pdev , u8_t b_alloc) |
| { |
| lm_slowpath_data_t *slowpath_data = &pdev->slowpath_info.slowpath_data; |
| u8_t i = 0; |
| |
| ASSERT_STATIC(ARRSIZE(slowpath_data->mac_rdata) == ARRSIZE(slowpath_data->rx_mode_rdata)); |
| ASSERT_STATIC(ARRSIZE(slowpath_data->mac_rdata) == ARRSIZE(slowpath_data->mcast_rdata)); |
| |
| for (i = 0; i < ARRSIZE(slowpath_data->mac_rdata); i++ ) |
| { |
| if (b_alloc) |
| { |
| slowpath_data->mac_rdata[i] = |
| mm_alloc_phys_mem(pdev, |
| sizeof(*slowpath_data->mac_rdata[i]), |
| &slowpath_data->mac_rdata_phys[i], |
| 0, |
| LM_RESOURCE_COMMON); |
| |
| slowpath_data->rx_mode_rdata[i] = |
| mm_alloc_phys_mem(pdev, |
| sizeof(*slowpath_data->rx_mode_rdata[i]), |
| &slowpath_data->rx_mode_rdata_phys[i], |
| 0, |
| LM_RESOURCE_COMMON); |
| |
| slowpath_data->mcast_rdata[i] = |
| mm_alloc_phys_mem(pdev, |
| sizeof(*slowpath_data->mcast_rdata[i]), |
| &slowpath_data->mcast_rdata_phys[i], |
| 0, |
| LM_RESOURCE_COMMON); |
| |
| |
| } |
| |
| if (CHK_NULL(slowpath_data->mac_rdata[i]) || |
| CHK_NULL(slowpath_data->rx_mode_rdata[i]) || |
| CHK_NULL(slowpath_data->mcast_rdata[i])) |
| |
| { |
| DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE)); |
| return LM_STATUS_RESOURCE ; |
| } |
| |
| mm_mem_zero(slowpath_data->mac_rdata[i], sizeof(*slowpath_data->mac_rdata[i])); |
| mm_mem_zero(slowpath_data->rx_mode_rdata[i], sizeof(*slowpath_data->rx_mode_rdata[i])); |
| mm_mem_zero(slowpath_data->mcast_rdata[i], sizeof(*slowpath_data->mcast_rdata[i])); |
| } |
| |
| if (b_alloc) |
| { |
| slowpath_data->rss_rdata = mm_alloc_phys_mem(pdev, sizeof(*slowpath_data->rss_rdata), &slowpath_data->rss_rdata_phys, 0, LM_RESOURCE_COMMON); |
| } |
| |
| if CHK_NULL(slowpath_data->rss_rdata) |
| { |
| DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE)); |
| return LM_STATUS_RESOURCE ; |
| } |
| |
| mm_mem_zero(slowpath_data->rss_rdata, sizeof(*slowpath_data->rss_rdata)); |
| |
| if (b_alloc) |
| { |
| slowpath_data->func_start_data = mm_alloc_phys_mem(pdev, sizeof(*slowpath_data->func_start_data), &slowpath_data->func_start_data_phys, 0, LM_RESOURCE_COMMON); |
| } |
| |
| if CHK_NULL(slowpath_data->func_start_data) |
| { |
| DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE)); |
| return LM_STATUS_RESOURCE ; |
| } |
| |
| mm_mem_zero(slowpath_data->func_start_data, sizeof(*slowpath_data->func_start_data)); |
| |
| if (b_alloc) |
| { |
| slowpath_data->niv_function_update_data = mm_alloc_phys_mem(pdev, sizeof(*slowpath_data->niv_function_update_data), &slowpath_data->niv_function_update_data_phys, 0, LM_RESOURCE_COMMON); |
| } |
| if CHK_NULL(slowpath_data->niv_function_update_data) |
| { |
| DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE)); |
| return LM_STATUS_RESOURCE ; |
| } |
| mm_mem_zero(slowpath_data->niv_function_update_data, sizeof(*slowpath_data->niv_function_update_data)); |
| |
| if (b_alloc) |
| { |
| slowpath_data->l2mp_func_update_data = mm_alloc_phys_mem(pdev, sizeof(*slowpath_data->l2mp_func_update_data), &slowpath_data->l2mp_func_update_data_phys, 0, LM_RESOURCE_COMMON); |
| } |
| if CHK_NULL(slowpath_data->l2mp_func_update_data) |
| { |
| DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE)); |
| return LM_STATUS_RESOURCE ; |
| } |
| mm_mem_zero(slowpath_data->l2mp_func_update_data, sizeof(*slowpath_data->l2mp_func_update_data)); |
| |
| if (b_alloc) |
| { |
| slowpath_data->encap_function_update_data = mm_alloc_phys_mem(pdev, sizeof(*slowpath_data->encap_function_update_data), &slowpath_data->encap_function_update_data_phys, 0, LM_RESOURCE_COMMON); |
| } |
| if CHK_NULL(slowpath_data->encap_function_update_data) |
| { |
| DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE)); |
| return LM_STATUS_RESOURCE ; |
| } |
| mm_mem_zero(slowpath_data->encap_function_update_data, sizeof(*slowpath_data->encap_function_update_data)); |
| |
| if (b_alloc) |
| { |
| slowpath_data->ufp_function_update_data = mm_alloc_phys_mem(pdev, sizeof(*slowpath_data->ufp_function_update_data), &slowpath_data->ufp_function_update_data_phys, 0, LM_RESOURCE_COMMON); |
| } |
| if CHK_NULL(slowpath_data->ufp_function_update_data) |
| { |
| DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE)); |
| return LM_STATUS_RESOURCE ; |
| } |
| mm_mem_zero(slowpath_data->ufp_function_update_data, sizeof(*slowpath_data->ufp_function_update_data)); |
| |
| pdev->slowpath_info.niv_ramrod_state = NIV_RAMROD_NOT_POSTED; |
| pdev->slowpath_info.l2mp_func_update_ramrod_state = L2MP_FUNC_UPDATE_RAMROD_NOT_POSTED; |
| pdev->slowpath_info.ufp_func_ramrod_state = UFP_RAMROD_NOT_POSTED; |
| |
| return LM_STATUS_SUCCESS ; |
| } |
| |
| |
| static void * lm_setup_allocate_ilt_client_page( struct _lm_device_t *pdev, |
| lm_address_t *phys_mem, |
| u8_t const cli_idx ) |
| { |
| void* ilt_client_page_virt_address = NULL; |
| |
| if (!CHIP_IS_E1(pdev)) |
| { |
| ilt_client_page_virt_address = mm_alloc_phys_mem_align( pdev, |
| pdev->params.ilt_client_page_size, |
| phys_mem, |
| LM_ILT_ALIGNMENT, |
| 0, |
| cli_idx); |
| } |
| else |
| { |
| ilt_client_page_virt_address = mm_alloc_phys_mem_align(pdev, |
| pdev->params.ilt_client_page_size, |
| phys_mem, |
| pdev->params.ilt_client_page_size, |
| 0, |
| cli_idx); |
| } |
| |
| return ilt_client_page_virt_address; |
| } |
| |
| /* Description: |
| * This routine contain common code for alloc/setup distinguish by flag |
| */ |
| lm_status_t lm_common_setup_alloc_resc(struct _lm_device_t *pdev, u8_t const b_is_alloc ) |
| { |
| lm_params_t* params = NULL ; |
| lm_variables_t* vars = NULL ; |
| // lm_sq_info_t* sq_info = NULL ; |
| lm_status_t lm_status; |
| u32_t alloc_size = 0 ; |
| u32_t alloc_num = 0 ; |
| u32_t i = 0 ; |
| u32_t mem_size = 0 ; |
| u8_t sb_id = 0 ; |
| u8_t mm_cli_idx = 0 ; |
| lm_address_t sb_phy_address; |
| |
| if CHK_NULL( pdev ) |
| { |
| return LM_STATUS_INVALID_PARAMETER ; |
| } |
| |
| DbgMessage(pdev, INFORMi , "### lm_common_setup_alloc_resc b_is_alloc=%s\n", b_is_alloc ? "TRUE" : "FALSE" ); |
| |
| params = &pdev->params ; |
| vars = &(pdev->vars) ; |
| |
| // Status blocks allocation. We allocate mem both for the default and non-default status blocks |
| // there is 1 def sb and 16 non-def sb per port. |
| // non-default sb: index 0-15, default sb: index 16. |
| if (CHIP_IS_E1x(pdev)) |
| { |
| mem_size = E1X_STATUS_BLOCK_BUFFER_SIZE; |
| } |
| else |
| { |
| mem_size = E2_STATUS_BLOCK_BUFFER_SIZE; |
| } |
| |
| mm_cli_idx = LM_RESOURCE_COMMON;//!!DP mm_cli_idx_to_um_idx(LM_CLI_IDX_MAX); |
| |
| LM_FOREACH_SB_ID(pdev, sb_id) |
| { |
| if( b_is_alloc ) |
| { |
| vars->status_blocks_arr[sb_id].host_hc_status_block.e1x_sb = mm_alloc_phys_mem(pdev, mem_size, &sb_phy_address, 0, mm_cli_idx); |
| if (CHIP_IS_E1x(pdev)) |
| { |
| vars->status_blocks_arr[sb_id].hc_status_block_data.e1x_sb_data.common.host_sb_addr.lo = sb_phy_address.as_u32.low; |
| vars->status_blocks_arr[sb_id].hc_status_block_data.e1x_sb_data.common.host_sb_addr.hi = sb_phy_address.as_u32.high; |
| } |
| else |
| { |
| vars->status_blocks_arr[sb_id].hc_status_block_data.e2_sb_data.common.host_sb_addr.lo = sb_phy_address.as_u32.low; |
| vars->status_blocks_arr[sb_id].hc_status_block_data.e2_sb_data.common.host_sb_addr.hi = sb_phy_address.as_u32.high; |
| } |
| } |
| if CHK_NULL(vars->status_blocks_arr[sb_id].host_hc_status_block.e1x_sb) |
| { |
| DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE)); |
| return LM_STATUS_RESOURCE ; |
| } |
| mm_mem_zero((void *)(vars->status_blocks_arr[sb_id].host_hc_status_block.e1x_sb), mem_size); |
| } |
| |
| mem_size = DEF_STATUS_BLOCK_BUFFER_SIZE; |
| |
| |
| if( b_is_alloc ) |
| { |
| vars->gen_sp_status_block.hc_sp_status_blk = mm_alloc_phys_mem(pdev, |
| mem_size, |
| &(vars->gen_sp_status_block.blk_phy_address), |
| 0, |
| mm_cli_idx); |
| } |
| |
| if CHK_NULL(vars->gen_sp_status_block.hc_sp_status_blk) |
| { |
| DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE)); |
| return LM_STATUS_RESOURCE ; |
| } |
| |
| mm_mem_zero((void *)(vars->gen_sp_status_block.hc_sp_status_blk), mem_size); |
| |
| /* Now reset the status-block ack values back to zero. */ |
| lm_reset_sb_ack_values(pdev); |
| |
| mm_mem_zero(pdev->debug_info.ack_dis, sizeof(pdev->debug_info.ack_dis)); |
| mm_mem_zero(pdev->debug_info.ack_en, sizeof(pdev->debug_info.ack_en)); |
| pdev->debug_info.ack_def_dis = pdev->debug_info.ack_def_en = 0; |
| mm_mem_zero(pdev->debug_info.rx_only_int, sizeof(pdev->debug_info.rx_only_int)); |
| mm_mem_zero(pdev->debug_info.tx_only_int, sizeof(pdev->debug_info.tx_only_int)); |
| mm_mem_zero(pdev->debug_info.both_int, sizeof(pdev->debug_info.both_int)); |
| mm_mem_zero(pdev->debug_info.empty_int, sizeof(pdev->debug_info.empty_int)); |
| mm_mem_zero(pdev->debug_info.false_int, sizeof(pdev->debug_info.false_int)); |
| |
| /* Register common and ethernet connection types completion callback. */ |
| lm_sq_comp_cb_register(pdev, ETH_CONNECTION_TYPE, lm_eth_comp_cb); |
| lm_sq_comp_cb_register(pdev, NONE_CONNECTION_TYPE, lm_eq_comp_cb); |
| |
| /* SlowPath Info */ |
| lm_status = lm_alloc_setup_slowpath_resc(pdev, b_is_alloc); |
| if (lm_status != LM_STATUS_SUCCESS) |
| { |
| DbgMessage(pdev, FATAL, "lm_alloc_client_info failed lm-status = %d\n", lm_status); |
| return lm_status; |
| } |
| |
| |
| /* Client Info */ |
| if( b_is_alloc ) |
| { |
| lm_status = lm_alloc_client_info(pdev); |
| if (lm_status != LM_STATUS_SUCCESS) |
| { |
| DbgMessage(pdev, FATAL, "lm_alloc_client_info failed lm-status = %d\n", lm_status); |
| return lm_status; |
| } |
| } |
| |
| lm_status = lm_setup_client_info(pdev); |
| if (lm_status != LM_STATUS_SUCCESS) |
| { |
| DbgMessage(pdev, FATAL, "lm_setup_client_info failed lm-status = %d\n", lm_status); |
| return lm_status; |
| } |
| |
| // Context (roundup ( MAX_CONN / CONN_PER_PAGE) We may configure the CDU to have more than max_func_connections, specifically, we will |
| // configure the CDU to have max_port_connections since it is a per-port register and not per-func, but it is OK to allocate |
| // less for the cdu, and allocate only what will be used in practice - which is what is configured in max_func_connectinos. |
| alloc_num = vars->context_cdu_num_pages = (params->max_func_connections / params->num_context_in_page) + |
| ((params->max_func_connections % params->num_context_in_page)? 1:0); |
| |
| //TODO: optimize the roundup |
| //TODO: assert that we did not go over the limit |
| |
| // allocate buffer pointers |
| if( b_is_alloc ) |
| { |
| mem_size = alloc_num * sizeof(void *) ; |
| vars->context_cdu_virt_addr_table = (void **) mm_alloc_mem( pdev, mem_size, mm_cli_idx ); |
| } |
| if CHK_NULL( vars->context_cdu_virt_addr_table ) |
| { |
| DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE)); |
| return LM_STATUS_RESOURCE ; |
| } |
| else if ( b_is_alloc ) |
| { |
| mm_mem_zero( vars->context_cdu_virt_addr_table, mem_size ) ; |
| } |
| |
| if( b_is_alloc ) |
| { |
| mem_size = alloc_num * sizeof(lm_address_t) ; |
| vars->context_cdu_phys_addr_table = mm_alloc_mem(pdev, mem_size, mm_cli_idx ); |
| } |
| |
| if CHK_NULL( vars->context_cdu_phys_addr_table ) |
| { |
| DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE)); |
| return LM_STATUS_RESOURCE ; |
| } |
| else if ( b_is_alloc ) |
| { |
| mm_mem_zero(vars->context_cdu_phys_addr_table, mem_size ); |
| } |
| |
| /* TBD: for starters, we'll just allocate each page seperatly, to save space in the future, we may want */ |
| for( i = 0 ;i < alloc_num; i++) |
| { |
| if( b_is_alloc ) |
| { |
| vars->context_cdu_virt_addr_table[i] = lm_setup_allocate_ilt_client_page(pdev, |
| (lm_address_t*)&vars->context_cdu_phys_addr_table[i], |
| mm_cli_idx); |
| } |
| if CHK_NULL( vars->context_cdu_virt_addr_table[i] ) |
| { |
| DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE)); |
| return LM_STATUS_RESOURCE ; |
| } |
| mm_mem_zero( vars->context_cdu_virt_addr_table[i], params->ilt_client_page_size ) ; |
| } |
| |
| |
| // Searcher T1 (roundup to log2 of 64*MAX_CONN), T2 is 1/4 of T1. The searcher has a 'per-function' register we configure |
| // with the number of max connections, therefore, we use the max_func_connections. It can be different per function and independent |
| // from what we configure for qm/timers/cdu. |
| alloc_size = (log2_align(max(params->max_func_connections,(u32_t)1000))*64); |
| alloc_num = vars->searcher_t1_num_pages = max((alloc_size / params->ilt_client_page_size),(u32_t)1); |
| mem_size = alloc_num * sizeof(void *) ; |
| |
| if( b_is_alloc ) |
| { |
| vars->searcher_t1_virt_addr_table = (void **) mm_alloc_mem(pdev, mem_size, mm_cli_idx); |
| } |
| if CHK_NULL(vars->searcher_t1_virt_addr_table) |
| { |
| DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE)); |
| return LM_STATUS_RESOURCE ; |
| } |
| else if ( b_is_alloc ) |
| { |
| mm_mem_zero( vars->searcher_t1_virt_addr_table, mem_size ) ; |
| } |
| |
| mem_size = alloc_num * sizeof(lm_address_t) ; |
| |
| if( b_is_alloc ) |
| { |
| vars->searcher_t1_phys_addr_table = mm_alloc_mem(pdev, mem_size, mm_cli_idx ); |
| } |
| if CHK_NULL(vars->searcher_t1_phys_addr_table) |
| { |
| DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE)); |
| return LM_STATUS_RESOURCE ; |
| } |
| else if ( b_is_alloc ) |
| { |
| mm_mem_zero( vars->searcher_t1_phys_addr_table, mem_size ) ; |
| } |
| |
| for( i = 0 ; i < alloc_num; i++ ) |
| { |
| if( b_is_alloc ) |
| { |
| vars->searcher_t1_virt_addr_table[i] = lm_setup_allocate_ilt_client_page(pdev, |
| (lm_address_t*)&(vars->searcher_t1_phys_addr_table[i]), |
| mm_cli_idx); |
| } |
| if CHK_NULL( vars->searcher_t1_virt_addr_table[i] ) |
| { |
| DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE)); |
| return LM_STATUS_RESOURCE ; |
| } |
| mm_mem_zero( vars->searcher_t1_virt_addr_table[i], params->ilt_client_page_size ) ; |
| } |
| |
| // allocate searcher T2 table |
| // T2 does not entered into the ILT) |
| alloc_size = (params->max_func_connections + 4)*64; |
| alloc_num = vars->searcher_t2_num_pages = alloc_size / params->ilt_client_page_size + |
| ((alloc_size % params->ilt_client_page_size)? 1:0) ; |
| mem_size = alloc_num * sizeof(void *) ; |
| |
| if ( b_is_alloc ) |
| { |
| vars->searcher_t2_virt_addr_table = (void **) mm_alloc_mem(pdev, mem_size, mm_cli_idx) ; |
| } |
| if CHK_NULL(vars->searcher_t2_virt_addr_table) |
| { |
| DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE)); |
| return LM_STATUS_RESOURCE ; |
| } |
| else if (b_is_alloc) |
| { |
| mm_mem_zero( vars->searcher_t2_virt_addr_table, mem_size ) ; |
| } |
| |
| mem_size = alloc_num * sizeof(lm_address_t) ; |
| if (b_is_alloc) |
| { |
| vars->searcher_t2_phys_addr_table = mm_alloc_mem(pdev, mem_size, mm_cli_idx ); |
| } |
| if CHK_NULL(vars->searcher_t2_phys_addr_table) |
| { |
| DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE)); |
| return LM_STATUS_RESOURCE ; |
| } |
| |
| for( i = 0 ; i < alloc_num; i++) |
| { |
| if (b_is_alloc ) |
| { |
| vars->searcher_t2_virt_addr_table[i] = lm_setup_allocate_ilt_client_page(pdev, |
| (lm_address_t*)&(vars->searcher_t2_phys_addr_table[i]), |
| mm_cli_idx); |
| } |
| if CHK_NULL(vars->searcher_t2_virt_addr_table[i]) |
| { |
| DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE)); |
| return LM_STATUS_RESOURCE ; |
| } |
| mm_mem_zero( vars->searcher_t2_virt_addr_table[i],params->ilt_client_page_size ) ; |
| } |
| |
| // Timer block array (MAX_CONN*8) phys uncached. Timer block has a per-port register that defines it's size, and the amount of |
| // memory we allocate MUST match this number, therefore we have to allocate the amount of max_port_connections. |
| alloc_size = ( 8 * pdev->hw_info.max_port_conns); |
| alloc_num = vars->timers_linear_num_pages = alloc_size / params->ilt_client_page_size + |
| ((alloc_size % params->ilt_client_page_size)? 1:0) ; |
| mem_size = alloc_num * sizeof(void *) ; |
| |
| if( b_is_alloc ) |
| { |
| vars->timers_linear_virt_addr_table = (void **) mm_alloc_mem(pdev, mem_size, mm_cli_idx ); |
| } |
| if CHK_NULL(vars->timers_linear_virt_addr_table) |
| { |
| DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE)); |
| return LM_STATUS_RESOURCE ; |
| } |
| else if ( b_is_alloc ) |
| { |
| mm_mem_zero( vars->timers_linear_virt_addr_table, mem_size ) ; |
| } |
| |
| mem_size = alloc_num * sizeof(lm_address_t) ; |
| |
| if ( b_is_alloc ) |
| { |
| vars->timers_linear_phys_addr_table = mm_alloc_mem(pdev, mem_size, mm_cli_idx ); |
| } |
| if CHK_NULL(vars->timers_linear_phys_addr_table) |
| { |
| DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE)); |
| return LM_STATUS_RESOURCE ; |
| } |
| else if ( b_is_alloc ) |
| { |
| mm_mem_zero( vars->timers_linear_phys_addr_table, mem_size ) ; |
| } |
| |
| for( i = 0 ;i < alloc_num; i++) |
| { |
| if( b_is_alloc ) |
| { |
| vars->timers_linear_virt_addr_table[i] = lm_setup_allocate_ilt_client_page(pdev, |
| (lm_address_t*)&(vars->timers_linear_phys_addr_table[i]), |
| mm_cli_idx); |
| } |
| if CHK_NULL(vars->timers_linear_virt_addr_table[i]) |
| { |
| DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE)); |
| return LM_STATUS_RESOURCE ; |
| } |
| mm_mem_zero( vars->timers_linear_virt_addr_table[i], params->ilt_client_page_size ) ; |
| } |
| |
| // QM queues (128*MAX_CONN) QM has a per-port register that defines it's size, and the amount of |
| // memory we allocate MUST match this number, therefore we have to allocate the amount of max_port_connections. |
| alloc_size = ( 128 * pdev->hw_info.max_common_conns); |
| alloc_num = vars->qm_queues_num_pages = alloc_size / params->ilt_client_page_size + |
| ((alloc_size % params->ilt_client_page_size)? 1:0) ; |
| mem_size = alloc_num * sizeof(void *) ; |
| |
| if( b_is_alloc ) |
| { |
| vars->qm_queues_virt_addr_table = (void **) mm_alloc_mem(pdev, mem_size, mm_cli_idx ); |
| } |
| if CHK_NULL(vars->qm_queues_virt_addr_table) |
| { |
| DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE)); |
| return LM_STATUS_RESOURCE ; |
| } |
| else if (b_is_alloc) |
| { |
| mm_mem_zero( vars->qm_queues_virt_addr_table, mem_size ) ; |
| } |
| |
| mem_size = alloc_num * sizeof(lm_address_t) ; |
| |
| if( b_is_alloc ) |
| { |
| vars->qm_queues_phys_addr_table = mm_alloc_mem(pdev, mem_size, mm_cli_idx ); |
| } |
| if CHK_NULL(vars->qm_queues_phys_addr_table) |
| { |
| DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE)); |
| return LM_STATUS_RESOURCE ; |
| } |
| else if (b_is_alloc) |
| { |
| mm_mem_zero( vars->qm_queues_phys_addr_table, mem_size ) ; |
| } |
| |
| for( i=0 ;i < alloc_num; i++) |
| { |
| if (b_is_alloc) |
| { |
| vars->qm_queues_virt_addr_table[i] = lm_setup_allocate_ilt_client_page(pdev, |
| (lm_address_t*)&(vars->qm_queues_phys_addr_table[i]), |
| mm_cli_idx); |
| } |
| if CHK_NULL( vars->qm_queues_virt_addr_table[i] ) |
| { |
| DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE)); |
| return LM_STATUS_RESOURCE ; |
| } |
| mm_mem_zero( vars->qm_queues_virt_addr_table[i],params->ilt_client_page_size ) ; |
| } |
| |
| // common scratchpad buffer for dmae copies of less than 4 bytes |
| if( b_is_alloc ) |
| { |
| void *virt = mm_alloc_phys_mem(pdev, |
| 8, |
| ¶ms->dmae_copy_scratchpad_phys, |
| 0, |
| mm_cli_idx); |
| if CHK_NULL(virt) |
| { |
| DbgBreakIf(DBG_BREAK_ON(MEMORY_ALLOCATION_FAILURE)); |
| return LM_STATUS_RESOURCE ; |
| } |
| } |
| |
| return LM_STATUS_SUCCESS ; |
| } |
| |
| lm_status_t ecore_resc_alloc(struct _lm_device_t * pdev) |
| { |
| pdev->ecore_info.gunzip_buf = mm_alloc_phys_mem(pdev, FW_BUF_SIZE, &pdev->ecore_info.gunzip_phys, PHYS_MEM_TYPE_NONCACHED, LM_RESOURCE_COMMON); |
| if CHK_NULL(pdev->ecore_info.gunzip_buf) |
| { |
| return LM_STATUS_RESOURCE ; |
| } |
| return LM_STATUS_SUCCESS; |
| } |
| |
| /**lm_dmae_resc_alloc |
| * Allocate and initialize the TOE and default DMAE contexts. |
| * The statistics DMAE context is set-up in lm_stats_alloc_resc. |
| * |
| * @param pdev the device to use. |
| * |
| * @return lm_status_t LM_STATUS_SUCCESS on success, some other |
| * failure code on failure. |
| */ |
| static lm_status_t lm_dmae_alloc_resc(struct _lm_device_t * pdev) |
| { |
| lm_status_t lm_status = LM_STATUS_FAILURE; |
| lm_dmae_context_info_t* default_dmae_info = lm_dmae_get(pdev, LM_DMAE_DEFAULT); |
| lm_dmae_context_info_t* toe_dmae_info = lm_dmae_get(pdev, LM_DMAE_TOE); |
| |
| //allocate and initialize the default DMAE context (used for init, WB access etc...) |
| lm_status = lm_dmae_locking_policy_create( pdev, |
| LM_PROTECTED_RESOURCE_DMAE_DEFAULT, |
| LM_DMAE_LOCKING_POLICY_TYPE_PER_PF, |
| &default_dmae_info->locking_policy); |
| if( LM_STATUS_SUCCESS != lm_status ) |
| { |
| return lm_status ; |
| } |
| |
| default_dmae_info->context = lm_dmae_context_create(pdev, |
| DMAE_WB_ACCESS_FUNCTION_CMD(FUNC_ID(pdev)), |
| &default_dmae_info->locking_policy, |
| CHANGE_ENDIANITY); |
| if( NULL == default_dmae_info->context ) |
| { |
| return LM_STATUS_FAILURE; |
| } |
| |
| //allocate and initialize the TOE DMAE context |
| lm_status = lm_dmae_locking_policy_create( pdev, |
| LM_PROTECTED_RESOURCE_DMAE_TOE, |
| LM_DMAE_LOCKING_POLICY_TYPE_INTER_PF, |
| &toe_dmae_info->locking_policy); |
| if( LM_STATUS_SUCCESS != lm_status ) |
| { |
| return lm_status ; |
| } |
| |
| toe_dmae_info->context = lm_dmae_context_create(pdev, |
| DMAE_COPY_PCI_PCI_PORT_0_CMD + PORT_ID(pdev), |
| &toe_dmae_info->locking_policy, |
| TRUE); |
| if( NULL == toe_dmae_info->context ) |
| { |
| return LM_STATUS_FAILURE; |
| } |
| |
| return lm_status; |
| } |
| |
| /* Description: |
| * This routine is called during driver initialization. It is responsible |
| * for allocating memory resources needed by the driver for common init. |
| * This routine calls the following mm routines: |
| * mm_alloc_mem, mm_alloc_phys_mem, and mm_init_packet_desc. */ |
| lm_status_t lm_alloc_resc(struct _lm_device_t *pdev) |
| { |
| lm_params_t* params = NULL ; |
| lm_variables_t* vars = NULL ; |
| lm_status_t lm_status = LM_STATUS_SUCCESS ; |
| u8_t mm_cli_idx = 0; |
| if CHK_NULL( pdev ) |
| { |
| return LM_STATUS_INVALID_PARAMETER ; |
| } |
| DbgMessage(pdev, INFORMi , "### lm_alloc_resc\n"); |
| |
| #ifdef VF_INVOLVED |
| if (IS_VFDEV(pdev)) { |
| lm_status = lm_vf_init_dev_info(pdev); |
| if (LM_STATUS_SUCCESS != lm_status) |
| return lm_status; |
| } |
| #endif |
| |
| params = &pdev->params ; |
| vars = &(pdev->vars) ; |
| |
| mm_cli_idx = LM_CLI_IDX_MAX;//!!DP mm_cli_idx_to_um_idx(LM_CLI_IDX_MAX); |
| |
| // Cleaning after driver unload |
| pdev->context_info = NULL; |
| mm_mem_zero(&pdev->cid_recycled_callbacks, sizeof(pdev->cid_recycled_callbacks)); |
| mm_mem_zero(&pdev->toe_info, sizeof(pdev->toe_info)); |
| |
| lm_status = lm_alloc_sq(pdev); |
| if(LM_STATUS_SUCCESS != lm_status) |
| { |
| return lm_status; |
| } |
| |
| /* alloc forward chain */ |
| pdev->tx_info.catchup_chain_idx = FWD_CID(pdev); |
| if (IS_PFDEV(pdev)) |
| { |
| /* Allocate Event-Queue: only the pf has an event queue */ |
| lm_status = lm_alloc_eq(pdev); |
| if(LM_STATUS_SUCCESS != lm_status) |
| { |
| return lm_status; |
| } |
| |
| pdev->tx_info.catchup_chain_idx = FWD_CID(pdev); |
| |
| lm_status = lm_alloc_txq(pdev, pdev->tx_info.catchup_chain_idx, |
| (u16_t)params->l2_tx_bd_page_cnt[LM_CLI_IDX_FWD], |
| (u16_t)params->l2_tx_coal_buf_cnt[LM_CLI_IDX_FWD]); |
| if(LM_STATUS_SUCCESS != lm_status) |
| { |
| return lm_status; |
| } |
| } |
| |
| if (IS_PFDEV(pdev)) |
| { |
| lm_status = lm_common_setup_alloc_resc(pdev, TRUE ) ; |
| } |
| #ifdef VF_INVOLVED |
| else |
| { |
| lm_status = lm_vf_setup_alloc_resc(pdev, TRUE); |
| } |
| #endif |
| |
| if(LM_STATUS_SUCCESS != lm_status) |
| { |
| return lm_status; |
| } |
| |
| if (IS_PFDEV(pdev)) { |
| lm_status = lm_stats_alloc_resc( pdev ) ; |
| if( LM_STATUS_SUCCESS != lm_status ) |
| { |
| return lm_status ; |
| } |
| |
| lm_status = lm_dmae_alloc_resc(pdev); |
| if( LM_STATUS_SUCCESS != lm_status ) |
| { |
| DbgBreakIf( LM_STATUS_SUCCESS != lm_status ) ; |
| return lm_status ; |
| } |
| |
| // Init context allocation system |
| lm_status = lm_alloc_context_pool(pdev); |
| if( LM_STATUS_SUCCESS != lm_status ) |
| { |
| DbgBreakIf( LM_STATUS_SUCCESS != lm_status ) ; |
| return lm_status ; |
| } |
| // CAM mirror? |
| |
| /* alloc for ecore */ |
| lm_status = ecore_resc_alloc(pdev); |
| if( LM_STATUS_SUCCESS != lm_status ) |
| { |
| DbgBreakIf( LM_STATUS_SUCCESS != lm_status ) ; |
| return lm_status ; |
| } |
| } |
| else if (IS_CHANNEL_VFDEV(pdev)) |
| { |
| // Init context allocation system |
| lm_status = lm_alloc_context_pool(pdev); |
| if( LM_STATUS_SUCCESS != lm_status ) |
| { |
| DbgBreakIf( LM_STATUS_SUCCESS != lm_status ) ; |
| return lm_status ; |
| } |
| |
| lm_status = lm_stats_alloc_fw_resc(pdev); |
| if( LM_STATUS_SUCCESS != lm_status ) |
| { |
| DbgBreakIf( LM_STATUS_SUCCESS != lm_status ) ; |
| return lm_status ; |
| } |
| } |
| DbgMessage(pdev, INFORMi , "### exit lm_alloc_resc\n"); |
| |
| /* FIXME: (MichalS : should be called by um, but this requires lm-um api, so should rethink...) */ |
| lm_status = lm_init_sp_objs(pdev); |
| if( LM_STATUS_SUCCESS != lm_status ) |
| { |
| DbgBreakIf( LM_STATUS_SUCCESS != lm_status ) ; |
| return lm_status ; |
| } |
| |
| return lm_setup_resc(pdev); |
| } |
| |
| /* Description: |
| * This routine is called during driver initialization. It is responsible |
| * for initilazing memory resources needed by the driver for common init. |
| * This routine calls the following mm routines: |
| * mm_alloc_mem, mm_alloc_phys_mem, and mm_init_packet_desc. */ |
| lm_status_t lm_setup_resc(struct _lm_device_t *pdev) |
| { |
| volatile struct hc_sp_status_block * sp_sb = NULL; |
| lm_params_t * params = NULL ; |
| lm_variables_t* vars = NULL ; |
| lm_tx_info_t * tx_info = NULL ; |
| lm_rx_info_t * rx_info = NULL ; |
| u32_t i = 0 ; |
| u32_t j = 0 ; |
| lm_status_t lm_status = LM_STATUS_SUCCESS ; |
| |
| if CHK_NULL( pdev ) |
| { |
| return LM_STATUS_INVALID_PARAMETER ; |
| } |
| |
| params = &pdev->params; |
| vars = &(pdev->vars); |
| tx_info = &pdev->tx_info; |
| rx_info = &pdev->rx_info; |
| sp_sb = lm_get_default_status_block(pdev); |
| |
| mm_mem_zero(&pdev->cid_recycled_callbacks, sizeof(pdev->cid_recycled_callbacks)); |
| mm_mem_zero(rx_info->appr_mc.mcast_add_hash_bit_array, sizeof(rx_info->appr_mc.mcast_add_hash_bit_array)); |
| |
| mm_mem_zero(&pdev->vars.nig_mirror, sizeof(lm_nig_mirror_t)); |
| |
| pdev->vars.b_is_dmae_ready = FALSE ; |
| |
| if (IS_PFDEV(pdev)) { |
| // adjust the FWD Tx ring consumer - default sb |
| lm_status = lm_setup_txq(pdev, pdev->tx_info.catchup_chain_idx); |
| if(LM_STATUS_SUCCESS != lm_status) |
| { |
| return lm_status; |
| } |
| } |
| |
| if (IS_PFDEV(pdev)) { |
| /* setup mac flitering to drop all for all clients */ |
| // lm_status = lm_setup_tstorm_mac_filter(pdev); FIXME - necessary?? |
| if(LM_STATUS_SUCCESS != lm_status) |
| { |
| return lm_status; |
| } |
| } |
| |
| if (IS_PFDEV(pdev)) { |
| lm_status = lm_common_setup_alloc_resc(pdev, FALSE ) ; |
| } |
| #ifdef VF_INVOLVED |
| else { |
| lm_status = lm_vf_setup_alloc_resc(pdev, FALSE); |
| } |
| #endif |
| if(LM_STATUS_SUCCESS != lm_status) |
| { |
| return lm_status; |
| } |
| |
| lm_status = lm_setup_sq(pdev); |
| if(LM_STATUS_SUCCESS != lm_status) |
| { |
| return lm_status; |
| } |
| |
| /* Only pfdev has an event-queue */ |
| if (IS_PFDEV(pdev)) |
| { |
| lm_status = lm_setup_eq(pdev); |
| if(LM_STATUS_SUCCESS != lm_status) |
| { |
| return lm_status; |
| } |
| } |
| |
| // Initialize T1 |
| if (IS_PFDEV(pdev)) { |
| for( i = 0 ; i < vars->searcher_t1_num_pages ; i ++) |
| { |
| mm_mem_zero( vars->searcher_t1_virt_addr_table[i], params->ilt_client_page_size ) ; |
| } |
| |
| // Initialize T2 first we make each next filed point to its address +1 then we fixup the edges |
| for(i=0 ; i < vars->searcher_t2_num_pages ; i ++) |
| { |
| for (j=0; j < params->ilt_client_page_size; j+=64) |
| { |
| *(u64_t*)((char*)vars->searcher_t2_virt_addr_table[i]+j+56) = vars->searcher_t2_phys_addr_table[i].as_u64+j+64; //64bit pointer |
| } |
| // now fix up the last line in the block to point to the next block |
| j = params->ilt_client_page_size - 8; |
| |
| if (i < vars->searcher_t2_num_pages -1) |
| { |
| // this is not the last block |
| *(u64_t*)((char*)vars->searcher_t2_virt_addr_table[i]+j) = vars->searcher_t2_phys_addr_table[i+1].as_u64; //64bit pointer |
| } |
| } |
| |
| for( i=0 ;i < vars->timers_linear_num_pages; i++) |
| { |
| mm_mem_zero(vars->timers_linear_virt_addr_table[i],params->ilt_client_page_size); |
| } |
| |
| #if defined(EMULATION_DOORBELL_FULL_WORKAROUND) |
| mm_atomic_set(&vars->doorbells_cnt, DOORBELL_CHECK_FREQUENCY); |
| #endif |
| |
| lm_status = lm_stats_hw_setup(pdev); |
| if(lm_status != LM_STATUS_SUCCESS) |
| { |
| DbgMessage(pdev, WARN, "lm_stats_hw_setup failed.\n"); |
| return lm_status; |
| } |
| |
| lm_stats_fw_setup(pdev); |
| |
| // init_context |
| lm_status = lm_setup_context_pool(pdev) ; |
| if(lm_status != LM_STATUS_SUCCESS) |
| { |
| DbgMessage(pdev, WARN, "lm_setup_context_pool failed.\n"); |
| return lm_status; |
| } |
| } |
| else if (IS_CHANNEL_VFDEV(pdev)) |
| { |
| lm_status = lm_setup_context_pool(pdev) ; |
| if(lm_status != LM_STATUS_SUCCESS) |
| { |
| DbgMessage(pdev, WARN, "lm_setup_context_pool failed.\n"); |
| return lm_status; |
| } |
| } |
| |
| |
| pdev->vars.mac_type = MAC_TYPE_NONE; |
| pdev->vars.is_pmf = NOT_PMF; |
| |
| lm_set_int_coal_info(pdev); |
| |
| mm_mem_zero(&pdev->vars.nig_mirror, sizeof(pdev->vars.nig_mirror)); |
| |
| return lm_status; |
| } |
| |
| /** |
| * @description |
| * Indicate packets from the free descriptor list and the given list |
| * @param pdev |
| * @param rx_common - The chain to free RSC/RX. |
| * @param packet_list - A list of packets to indicate. |
| * @param idx - Chain index. |
| * @param is_stat_handle - Is updating statistic is needed. |
| */ |
| STATIC void |
| lm_abort_indicate_free_list( IN OUT lm_device_t* pdev, |
| IN lm_rx_chain_common_t* rx_common, |
| IN s_list_t* packet_list, |
| IN const u32_t idx, |
| IN const u8_t is_stat_handle) |
| { |
| lm_packet_t* pkt = NULL; |
| for(; ;) |
| { |
| // Run on all the free list |
| pkt = (lm_packet_t *) s_list_pop_head(&rx_common->free_descq); |
| if (pkt == NULL) |
| { |
| break; |
| } |
| pkt->status = LM_STATUS_ABORTED; |
| if(is_stat_handle) |
| { |
| LM_COMMON_DRV_STATS_ATOMIC_INC_ETH(pdev, rx_aborted); |
| } |
| #if (!defined(LINUX) && !defined(__SunOS) && !defined(UEFI) && !defined(DOS)) |
| s_list_push_tail(packet_list, (s_list_entry_t *)pkt); |
| #endif |
| } |
| |
| if (!s_list_is_empty(packet_list)) |
| { |
| #if (!defined(LINUX) && !defined(__SunOS) && !defined(UEFI) && !defined(DOS)) |
| mm_indicate_rx(pdev, idx, packet_list, LM_STATUS_ABORTED); |
| #endif |
| } |
| } |
| |
| /******************************************************************************* |
| * Description: |
| * |
| * Return: |
| ******************************************************************************/ |
| void lm_abort( lm_device_t *pdev, |
| const lm_abort_op_t abort_op, |
| const u32_t idx) |
| { |
| lm_packet_t *pkt = NULL; |
| lm_rx_chain_t *rxq_chain = NULL; |
| lm_rx_chain_common_t *rx_common = NULL; |
| lm_tpa_chain_t *tpa_chain = NULL; |
| lm_bd_chain_t *rx_chain_bd = NULL; |
| lm_bd_chain_t *rx_chain_sge = NULL; |
| lm_tx_chain_t *tx_chain = NULL; |
| s_list_t packet_list = {0}; |
| u16_t i = 0; |
| u16_t active_entry = 0; |
| |
| DbgMessage(pdev, INFORM, "### lm_abort abort_op=%d idx=%d\n", abort_op, idx); |
| switch(abort_op) |
| { |
| case ABORT_OP_RX_CHAIN: |
| case ABORT_OP_INDICATE_RX_CHAIN: |
| { |
| rxq_chain = &LM_RXQ(pdev, idx); |
| rx_common = &LM_RXQ_COMMON(pdev, idx); |
| rx_chain_bd = &LM_RXQ_CHAIN_BD(pdev, idx); |
| rx_chain_sge = LM_RXQ_SGE_PTR_IF_VALID(pdev, idx); |
| // Verify BD's consistent |
| DbgBreakIfFastPath( rx_chain_sge && !lm_bd_chains_are_consistent( rx_chain_sge, rx_chain_bd ) ); |
| /* indicate packets from the active descriptor list */ |
| for(; ;) |
| { |
| pkt = (lm_packet_t *) s_list_pop_head(&rxq_chain->active_descq); |
| if(pkt == NULL) |
| { |
| break; |
| } |
| lm_bd_chain_bds_consumed(rx_chain_bd, 1); |
| if( rx_chain_sge ) |
| { |
| lm_bd_chain_bds_consumed(rx_chain_sge, 1); |
| } |
| LM_COMMON_DRV_STATS_ATOMIC_INC_ETH(pdev, rx_aborted); |
| // if in shutdown flow or not if in d3 flow ? |
| if (abort_op == ABORT_OP_INDICATE_RX_CHAIN) |
| { |
| #if (!defined(LINUX) && !defined(__SunOS) && !defined(UEFI) && !defined(DOS)) |
| s_list_push_tail(&packet_list, (s_list_entry_t *)pkt); |
| #endif |
| } |
| else |
| { |
| s_list_push_tail(&rx_common->free_descq, &pkt->link); |
| } |
| } |
| if ( ABORT_OP_INDICATE_RX_CHAIN == abort_op ) |
| { |
| /* indicate packets from the free descriptor list */ |
| lm_abort_indicate_free_list( pdev, |
| rx_common, |
| &packet_list, |
| idx, |
| TRUE); |
| } |
| } // ABORT_OP_INDICATE_RX_CHAIN |
| // Fall Through |
| case ABORT_OP_TPA_CHAIN: |
| case ABORT_OP_INDICATE_TPA_CHAIN: |
| { |
| tpa_chain = &LM_TPA(pdev, idx); |
| rx_chain_bd = &LM_TPA_CHAIN_BD(pdev, idx); |
| rx_common = &LM_TPA_COMMON(pdev, idx); |
| |
| DbgBreakIf(!(s_list_is_empty(&packet_list))); |
| |
| /* indicate packets from the active descriptor list */ |
| for(i = lm_bd_chain_cons_idx(rx_chain_bd); i != lm_bd_chain_prod_idx(rx_chain_bd); i++ ) |
| { |
| // Run on all the valid active descriptor |
| // Valid active descriptors can only be beteen the consumer to the producers |
| active_entry = LM_TPA_BD_ENTRY_TO_ACTIVE_ENTRY(pdev,idx,i); |
| |
| LM_TPA_ACTIVE_ENTRY_BOUNDARIES_VERIFY(pdev, idx, active_entry); |
| if(LM_TPA_MASK_TEST_ACTIVE_BIT(pdev, idx, active_entry)) |
| { |
| LM_TPA_MASK_CLEAR_ACTIVE_BIT(pdev, idx, active_entry); |
| pkt = tpa_chain->sge_chain.active_descq_array[active_entry]; |
| |
| if(NULL == pkt) |
| { |
| DbgBreakMsg(" Packet is null suppose to be null"); |
| continue; |
| } |
| |
| lm_bd_chain_bds_consumed(rx_chain_bd, 1); |
| // if in shutdown flow or not if in d3 flow ? |
| if ((abort_op == ABORT_OP_INDICATE_TPA_CHAIN) || |
| (abort_op == ABORT_OP_INDICATE_RX_CHAIN)) |
| { |
| #if (DBG) |
| /************start TPA debbug code******************************/ |
| tpa_chain->dbg_params.pck_ret_abort_active++; |
| /************end TPA debbug code********************************/ |
| #endif //DBG |
| #if (!defined(LINUX) && !defined(__SunOS) && !defined(UEFI) && !defined(DOS)) |
| s_list_push_tail(&packet_list, (s_list_entry_t *)pkt); |
| #endif |
| } |
| else |
| { |
| s_list_push_tail(&rx_common->free_descq, &pkt->link); |
| } |
| } |
| } |
| if ((abort_op == ABORT_OP_INDICATE_TPA_CHAIN) || |
| (abort_op == ABORT_OP_INDICATE_RX_CHAIN)) |
| { |
| #if (DBG) |
| /************start TPA debbug code******************************/ |
| // Total packet aborted |
| tpa_chain->dbg_params.pck_ret_abort += s_list_entry_cnt(&packet_list) + s_list_entry_cnt(&rx_common->free_descq); |
| |
| if((tpa_chain->dbg_params.pck_ret_abort + tpa_chain->dbg_params.pck_ret_from_chip) != |
| (tpa_chain->dbg_params.pck_received + tpa_chain->dbg_params.pck_received_ind) ) |
| { |
| DbgBreakMsg("VBD didn't return all packets this chain "); |
| } |
|