blob: 62fbbf15146ff2d89f13e17f03c7861626ce5734 [file] [log] [blame]
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2015, Syneto S.R.L. All rights reserved.
* Copyright 2016 Toomas Soome <tsoome@me.com>
* Copyright 2016 RackTop Systems.
*/
/*
* graph.c - master restarter graph engine
*
* The graph engine keeps a dependency graph of all service instances on the
* system, as recorded in the repository. It decides when services should
* be brought up or down based on service states and dependencies and sends
* commands to restarters to effect any changes. It also executes
* administrator commands sent by svcadm via the repository.
*
* The graph is stored in uu_list_t *dgraph and its vertices are
* graph_vertex_t's, each of which has a name and an integer id unique to
* its name (see dict.c). A vertex's type attribute designates the type
* of object it represents: GVT_INST for service instances, GVT_SVC for
* service objects (since service instances may depend on another service,
* rather than service instance), GVT_FILE for files (which services may
* depend on), and GVT_GROUP for dependencies on multiple objects. GVT_GROUP
* vertices are necessary because dependency lists may have particular
* grouping types (require any, require all, optional, or exclude) and
* event-propagation characteristics.
*
* The initial graph is built by libscf_populate_graph() invoking
* dgraph_add_instance() for each instance in the repository. The function
* adds a GVT_SVC vertex for the service if one does not already exist, adds
* a GVT_INST vertex named by the FMRI of the instance, and sets up the edges.
* The resulting web of vertices & edges associated with an instance's vertex
* includes
*
* - an edge from the GVT_SVC vertex for the instance's service
*
* - an edge to the GVT_INST vertex of the instance's resarter, if its
* restarter is not svc.startd
*
* - edges from other GVT_INST vertices if the instance is a restarter
*
* - for each dependency property group in the instance's "running"
* snapshot, an edge to a GVT_GROUP vertex named by the FMRI of the
* instance and the name of the property group
*
* - for each value of the "entities" property in each dependency property
* group, an edge from the corresponding GVT_GROUP vertex to a
* GVT_INST, GVT_SVC, or GVT_FILE vertex
*
* - edges from GVT_GROUP vertices for each dependent instance
*
* After the edges are set up the vertex's GV_CONFIGURED flag is set. If
* there are problems, or if a service is mentioned in a dependency but does
* not exist in the repository, the GV_CONFIGURED flag will be clear.
*
* The graph and all of its vertices are protected by the dgraph_lock mutex.
* See restarter.c for more information.
*
* The properties of an instance fall into two classes: immediate and
* snapshotted. Immediate properties should have an immediate effect when
* changed. Snapshotted properties should be read from a snapshot, so they
* only change when the snapshot changes. The immediate properties used by
* the graph engine are general/enabled, general/restarter, and the properties
* in the restarter_actions property group. Since they are immediate, they
* are not read out of a snapshot. The snapshotted properties used by the
* graph engine are those in the property groups with type "dependency" and
* are read out of the "running" snapshot. The "running" snapshot is created
* by the the graph engine as soon as possible, and it is updated, along with
* in-core copies of the data (dependency information for the graph engine) on
* receipt of the refresh command from svcadm. In addition, the graph engine
* updates the "start" snapshot from the "running" snapshot whenever a service
* comes online.
*
* When a DISABLE event is requested by the administrator, svc.startd shutdown
* the dependents first before shutting down the requested service.
* In graph_enable_by_vertex, we create a subtree that contains the dependent
* vertices by marking those vertices with the GV_TOOFFLINE flag. And we mark
* the vertex to disable with the GV_TODISABLE flag. Once the tree is created,
* we send the _ADMIN_DISABLE event to the leaves. The leaves will then
* transition from STATE_ONLINE/STATE_DEGRADED to STATE_OFFLINE/STATE_MAINT.
* In gt_enter_offline and gt_enter_maint if the vertex was in a subtree then
* we clear the GV_TOOFFLINE flag and walk the dependencies to offline the new
* exposed leaves. We do the same until we reach the last leaf (the one with
* the GV_TODISABLE flag). If the vertex to disable is also part of a larger
* subtree (eg. multiple DISABLE events on vertices in the same subtree) then
* once the first vertex is disabled (GV_TODISABLE flag is removed), we
* continue to propagate the offline event to the vertex's dependencies.
*
*
* SMF state transition notifications
*
* When an instance of a service managed by SMF changes state, svc.startd may
* publish a GPEC sysevent. All transitions to or from maintenance, a
* transition cause by a hardware error will generate an event.
* Other transitions will generate an event if there exist notification
* parameter for that transition. Notification parameters are stored in the
* SMF repository for the service/instance they refer to. System-wide
* notification parameters are stored in the global instance.
* svc.startd can be told to send events for all SMF state transitions despite
* of notification parameters by setting options/info_events_all to true in
* restarter:default
*
* The set of transitions that generate events is cached in the
* dgraph_vertex_t gv_stn_tset for service/instance and in the global
* stn_global for the system-wide set. They are re-read when instances are
* refreshed.
*
* The GPEC events published by svc.startd are consumed by fmd(1M). After
* processing these events, fmd(1M) publishes the processed events to
* notification agents. The notification agents read the notification
* parameters from the SMF repository through libscf(3LIB) interfaces and send
* the notification, or not, based on those parameters.
*
* Subscription and publishing to the GPEC channels is done with the
* libfmevent(3LIB) wrappers fmev_[r]publish_*() and
* fmev_shdl_(un)subscribe().
*
*/
#include <sys/uadmin.h>
#include <sys/wait.h>
#include <assert.h>
#include <errno.h>
#include <fcntl.h>
#include <fm/libfmevent.h>
#include <libscf.h>
#include <libscf_priv.h>
#include <librestart.h>
#include <libuutil.h>
#include <locale.h>
#include <poll.h>
#include <pthread.h>
#include <signal.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <sys/statvfs.h>
#include <sys/uadmin.h>
#include <zone.h>
#if defined(__x86)
#include <libbe.h>
#endif /* __x86 */
#include "startd.h"
#include "protocol.h"
#define MILESTONE_NONE ((graph_vertex_t *)1)
#define CONSOLE_LOGIN_FMRI "svc:/system/console-login:default"
#define FS_MINIMAL_FMRI "svc:/system/filesystem/minimal:default"
#define VERTEX_REMOVED 0 /* vertex has been freed */
#define VERTEX_INUSE 1 /* vertex is still in use */
#define IS_ENABLED(v) ((v)->gv_flags & (GV_ENABLED | GV_ENBLD_NOOVR))
/*
* stn_global holds the tset for the system wide notification parameters.
* It is updated on refresh of svc:/system/svc/global:default
*
* There are two assumptions that relax the need for a mutex:
* 1. 32-bit value assignments are atomic
* 2. Its value is consumed only in one point at
* dgraph_state_transition_notify(). There are no test and set races.
*
* If either assumption is broken, we'll need a mutex to synchronize
* access to stn_global
*/
int32_t stn_global;
/*
* info_events_all holds a flag to override notification parameters and send
* Information events for all state transitions.
* same about the need of a mutex here.
*/
int info_events_all;
/*
* Services in these states are not considered 'down' by the
* milestone/shutdown code.
*/
#define up_state(state) ((state) == RESTARTER_STATE_ONLINE || \
(state) == RESTARTER_STATE_DEGRADED || \
(state) == RESTARTER_STATE_OFFLINE)
#define is_depgrp_bypassed(v) ((v->gv_type == GVT_GROUP) && \
((v->gv_depgroup == DEPGRP_EXCLUDE_ALL) || \
(v->gv_restart < RERR_RESTART)))
#define is_inst_bypassed(v) ((v->gv_type == GVT_INST) && \
((v->gv_flags & GV_TODISABLE) || \
(v->gv_flags & GV_TOOFFLINE)))
static uu_list_pool_t *graph_edge_pool, *graph_vertex_pool;
static uu_list_t *dgraph;
static pthread_mutex_t dgraph_lock;
/*
* milestone indicates the current subgraph. When NULL, it is the entire
* graph. When MILESTONE_NONE, it is the empty graph. Otherwise, it is all
* services on which the target vertex depends.
*/
static graph_vertex_t *milestone = NULL;
static boolean_t initial_milestone_set = B_FALSE;
static pthread_cond_t initial_milestone_cv = PTHREAD_COND_INITIALIZER;
/* protected by dgraph_lock */
static boolean_t sulogin_thread_running = B_FALSE;
static boolean_t sulogin_running = B_FALSE;
static boolean_t console_login_ready = B_FALSE;
/* Number of services to come down to complete milestone transition. */
static uint_t non_subgraph_svcs;
/*
* These variables indicate what should be done when we reach the milestone
* target milestone, i.e., when non_subgraph_svcs == 0. They are acted upon in
* dgraph_set_instance_state().
*/
static int halting = -1;
static boolean_t go_single_user_mode = B_FALSE;
static boolean_t go_to_level1 = B_FALSE;
/*
* Tracks when we started halting.
*/
static time_t halting_time = 0;
/*
* This tracks the legacy runlevel to ensure we signal init and manage
* utmpx entries correctly.
*/
static char current_runlevel = '\0';
/* Number of single user threads currently running */
static pthread_mutex_t single_user_thread_lock;
static int single_user_thread_count = 0;
/* Statistics for dependency cycle-checking */
static u_longlong_t dep_inserts = 0;
static u_longlong_t dep_cycle_ns = 0;
static u_longlong_t dep_insert_ns = 0;
static const char * const emsg_invalid_restarter =
"Transitioning %s to maintenance, restarter FMRI %s is invalid "
"(see 'svcs -xv' for details).\n";
static const char * const console_login_fmri = CONSOLE_LOGIN_FMRI;
static const char * const single_user_fmri = SCF_MILESTONE_SINGLE_USER;
static const char * const multi_user_fmri = SCF_MILESTONE_MULTI_USER;
static const char * const multi_user_svr_fmri = SCF_MILESTONE_MULTI_USER_SERVER;
/*
* These services define the system being "up". If none of them can come
* online, then we will run sulogin on the console. Note that the install ones
* are for the miniroot and when installing CDs after the first. can_come_up()
* does the decision making, and an sulogin_thread() runs sulogin, which can be
* started by dgraph_set_instance_state() or single_user_thread().
*
* NOTE: can_come_up() relies on SCF_MILESTONE_SINGLE_USER being the first
* entry, which is only used when booting_to_single_user (boot -s) is set.
* This is because when doing a "boot -s", sulogin is started from specials.c
* after milestone/single-user comes online, for backwards compatibility.
* In this case, SCF_MILESTONE_SINGLE_USER needs to be part of up_svcs
* to ensure sulogin will be spawned if milestone/single-user cannot be reached.
*/
static const char * const up_svcs[] = {
SCF_MILESTONE_SINGLE_USER,
CONSOLE_LOGIN_FMRI,
"svc:/system/install-setup:default",
"svc:/system/install:default",
NULL
};
/* This array must have an element for each non-NULL element of up_svcs[]. */
static graph_vertex_t *up_svcs_p[] = { NULL, NULL, NULL, NULL };
/* These are for seed repository magic. See can_come_up(). */
static const char * const manifest_import = SCF_INSTANCE_MI;
static graph_vertex_t *manifest_import_p = NULL;
static char target_milestone_as_runlevel(void);
static void graph_runlevel_changed(char rl, int online);
static int dgraph_set_milestone(const char *, scf_handle_t *, boolean_t);
static boolean_t should_be_in_subgraph(graph_vertex_t *v);
static int mark_subtree(graph_edge_t *, void *);
static boolean_t insubtree_dependents_down(graph_vertex_t *);
/*
* graph_vertex_compare()
* This function can compare either int *id or * graph_vertex_t *gv
* values, as the vertex id is always the first element of a
* graph_vertex structure.
*/
/* ARGSUSED */
static int
graph_vertex_compare(const void *lc_arg, const void *rc_arg, void *private)
{
int lc_id = ((const graph_vertex_t *)lc_arg)->gv_id;
int rc_id = *(int *)rc_arg;
if (lc_id > rc_id)
return (1);
if (lc_id < rc_id)
return (-1);
return (0);
}
void
graph_init()
{
graph_edge_pool = startd_list_pool_create("graph_edges",
sizeof (graph_edge_t), offsetof(graph_edge_t, ge_link), NULL,
UU_LIST_POOL_DEBUG);
assert(graph_edge_pool != NULL);
graph_vertex_pool = startd_list_pool_create("graph_vertices",
sizeof (graph_vertex_t), offsetof(graph_vertex_t, gv_link),
graph_vertex_compare, UU_LIST_POOL_DEBUG);
assert(graph_vertex_pool != NULL);
(void) pthread_mutex_init(&dgraph_lock, &mutex_attrs);
(void) pthread_mutex_init(&single_user_thread_lock, &mutex_attrs);
dgraph = startd_list_create(graph_vertex_pool, NULL, UU_LIST_SORTED);
assert(dgraph != NULL);
if (!st->st_initial)
current_runlevel = utmpx_get_runlevel();
log_framework(LOG_DEBUG, "Initialized graph\n");
}
static graph_vertex_t *
vertex_get_by_name(const char *name)
{
int id;
assert(MUTEX_HELD(&dgraph_lock));
id = dict_lookup_byname(name);
if (id == -1)
return (NULL);
return (uu_list_find(dgraph, &id, NULL, NULL));
}
static graph_vertex_t *
vertex_get_by_id(int id)
{
assert(MUTEX_HELD(&dgraph_lock));
if (id == -1)
return (NULL);
return (uu_list_find(dgraph, &id, NULL, NULL));
}
/*
* Creates a new vertex with the given name, adds it to the graph, and returns
* a pointer to it. The graph lock must be held by this thread on entry.
*/
static graph_vertex_t *
graph_add_vertex(const char *name)
{
int id;
graph_vertex_t *v;
void *p;
uu_list_index_t idx;
assert(MUTEX_HELD(&dgraph_lock));
id = dict_insert(name);
v = startd_zalloc(sizeof (*v));
v->gv_id = id;
v->gv_name = startd_alloc(strlen(name) + 1);
(void) strcpy(v->gv_name, name);
v->gv_dependencies = startd_list_create(graph_edge_pool, v, 0);
v->gv_dependents = startd_list_create(graph_edge_pool, v, 0);
p = uu_list_find(dgraph, &id, NULL, &idx);
assert(p == NULL);
uu_list_node_init(v, &v->gv_link, graph_vertex_pool);
uu_list_insert(dgraph, v, idx);
return (v);
}
/*
* Removes v from the graph and frees it. The graph should be locked by this
* thread, and v should have no edges associated with it.
*/
static void
graph_remove_vertex(graph_vertex_t *v)
{
assert(MUTEX_HELD(&dgraph_lock));
assert(uu_list_numnodes(v->gv_dependencies) == 0);
assert(uu_list_numnodes(v->gv_dependents) == 0);
assert(v->gv_refs == 0);
startd_free(v->gv_name, strlen(v->gv_name) + 1);
uu_list_destroy(v->gv_dependencies);
uu_list_destroy(v->gv_dependents);
uu_list_remove(dgraph, v);
startd_free(v, sizeof (graph_vertex_t));
}
static void
graph_add_edge(graph_vertex_t *fv, graph_vertex_t *tv)
{
graph_edge_t *e, *re;
int r;
assert(MUTEX_HELD(&dgraph_lock));
e = startd_alloc(sizeof (graph_edge_t));
re = startd_alloc(sizeof (graph_edge_t));
e->ge_parent = fv;
e->ge_vertex = tv;
re->ge_parent = tv;
re->ge_vertex = fv;
uu_list_node_init(e, &e->ge_link, graph_edge_pool);
r = uu_list_insert_before(fv->gv_dependencies, NULL, e);
assert(r == 0);
uu_list_node_init(re, &re->ge_link, graph_edge_pool);
r = uu_list_insert_before(tv->gv_dependents, NULL, re);
assert(r == 0);
}
static void
graph_remove_edge(graph_vertex_t *v, graph_vertex_t *dv)
{
graph_edge_t *e;
for (e = uu_list_first(v->gv_dependencies);
e != NULL;
e = uu_list_next(v->gv_dependencies, e)) {
if (e->ge_vertex == dv) {
uu_list_remove(v->gv_dependencies, e);
startd_free(e, sizeof (graph_edge_t));
break;
}
}
for (e = uu_list_first(dv->gv_dependents);
e != NULL;
e = uu_list_next(dv->gv_dependents, e)) {
if (e->ge_vertex == v) {
uu_list_remove(dv->gv_dependents, e);
startd_free(e, sizeof (graph_edge_t));
break;
}
}
}
static void
remove_inst_vertex(graph_vertex_t *v)
{
graph_edge_t *e;
graph_vertex_t *sv;
int i;
assert(MUTEX_HELD(&dgraph_lock));
assert(uu_list_numnodes(v->gv_dependents) == 1);
assert(uu_list_numnodes(v->gv_dependencies) == 0);
assert(v->gv_refs == 0);
assert((v->gv_flags & GV_CONFIGURED) == 0);
e = uu_list_first(v->gv_dependents);
sv = e->ge_vertex;
graph_remove_edge(sv, v);
for (i = 0; up_svcs[i] != NULL; ++i) {
if (up_svcs_p[i] == v)
up_svcs_p[i] = NULL;
}
if (manifest_import_p == v)
manifest_import_p = NULL;
graph_remove_vertex(v);
if (uu_list_numnodes(sv->gv_dependencies) == 0 &&
uu_list_numnodes(sv->gv_dependents) == 0 &&
sv->gv_refs == 0)
graph_remove_vertex(sv);
}
static void
graph_walk_dependents(graph_vertex_t *v, void (*func)(graph_vertex_t *, void *),
void *arg)
{
graph_edge_t *e;
for (e = uu_list_first(v->gv_dependents);
e != NULL;
e = uu_list_next(v->gv_dependents, e))
func(e->ge_vertex, arg);
}
static void
graph_walk_dependencies(graph_vertex_t *v,
void (*func)(graph_vertex_t *, void *), void *arg)
{
graph_edge_t *e;
assert(MUTEX_HELD(&dgraph_lock));
for (e = uu_list_first(v->gv_dependencies);
e != NULL;
e = uu_list_next(v->gv_dependencies, e)) {
func(e->ge_vertex, arg);
}
}
/*
* Generic graph walking function.
*
* Given a vertex, this function will walk either dependencies
* (WALK_DEPENDENCIES) or dependents (WALK_DEPENDENTS) of a vertex recursively
* for the entire graph. It will avoid cycles and never visit the same vertex
* twice.
*
* We avoid traversing exclusion dependencies, because they are allowed to
* create cycles in the graph. When propagating satisfiability, there is no
* need to walk exclusion dependencies because exclude_all_satisfied() doesn't
* test for satisfiability.
*
* The walker takes two callbacks. The first is called before examining the
* dependents of each vertex. The second is called on each vertex after
* examining its dependents. This allows is_path_to() to construct a path only
* after the target vertex has been found.
*/
typedef enum {
WALK_DEPENDENTS,
WALK_DEPENDENCIES
} graph_walk_dir_t;
typedef int (*graph_walk_cb_t)(graph_vertex_t *, void *);
typedef struct graph_walk_info {
graph_walk_dir_t gi_dir;
uchar_t *gi_visited; /* vertex bitmap */
int (*gi_pre)(graph_vertex_t *, void *);
void (*gi_post)(graph_vertex_t *, void *);
void *gi_arg; /* callback arg */
int gi_ret; /* return value */
} graph_walk_info_t;
static int
graph_walk_recurse(graph_edge_t *e, graph_walk_info_t *gip)
{
uu_list_t *list;
int r;
graph_vertex_t *v = e->ge_vertex;
int i;
uint_t b;
i = v->gv_id / 8;
b = 1 << (v->gv_id % 8);
/*
* Check to see if we've visited this vertex already.
*/
if (gip->gi_visited[i] & b)
return (UU_WALK_NEXT);
gip->gi_visited[i] |= b;
/*
* Don't follow exclusions.
*/
if (v->gv_type == GVT_GROUP && v->gv_depgroup == DEPGRP_EXCLUDE_ALL)
return (UU_WALK_NEXT);
/*
* Call pre-visit callback. If this doesn't terminate the walk,
* continue search.
*/
if ((gip->gi_ret = gip->gi_pre(v, gip->gi_arg)) == UU_WALK_NEXT) {
/*
* Recurse using appropriate list.
*/
if (gip->gi_dir == WALK_DEPENDENTS)
list = v->gv_dependents;
else
list = v->gv_dependencies;
r = uu_list_walk(list, (uu_walk_fn_t *)graph_walk_recurse,
gip, 0);
assert(r == 0);
}
/*
* Callbacks must return either UU_WALK_NEXT or UU_WALK_DONE.
*/
assert(gip->gi_ret == UU_WALK_NEXT || gip->gi_ret == UU_WALK_DONE);
/*
* If given a post-callback, call the function for every vertex.
*/
if (gip->gi_post != NULL)
(void) gip->gi_post(v, gip->gi_arg);
/*
* Preserve the callback's return value. If the callback returns
* UU_WALK_DONE, then we propagate that to the caller in order to
* terminate the walk.
*/
return (gip->gi_ret);
}
static void
graph_walk(graph_vertex_t *v, graph_walk_dir_t dir,
int (*pre)(graph_vertex_t *, void *),
void (*post)(graph_vertex_t *, void *), void *arg)
{
graph_walk_info_t gi;
graph_edge_t fake;
size_t sz = dictionary->dict_new_id / 8 + 1;
gi.gi_visited = startd_zalloc(sz);
gi.gi_pre = pre;
gi.gi_post = post;
gi.gi_arg = arg;
gi.gi_dir = dir;
gi.gi_ret = 0;
/*
* Fake up an edge for the first iteration
*/
fake.ge_vertex = v;
(void) graph_walk_recurse(&fake, &gi);
startd_free(gi.gi_visited, sz);
}
typedef struct child_search {
int id; /* id of vertex to look for */
uint_t depth; /* recursion depth */
/*
* While the vertex is not found, path is NULL. After the search, if
* the vertex was found then path should point to a -1-terminated
* array of vertex id's which constitute the path to the vertex.
*/
int *path;
} child_search_t;
static int
child_pre(graph_vertex_t *v, void *arg)
{
child_search_t *cs = arg;
cs->depth++;
if (v->gv_id == cs->id) {
cs->path = startd_alloc((cs->depth + 1) * sizeof (int));
cs->path[cs->depth] = -1;
return (UU_WALK_DONE);
}
return (UU_WALK_NEXT);
}
static void
child_post(graph_vertex_t *v, void *arg)
{
child_search_t *cs = arg;
cs->depth--;
if (cs->path != NULL)
cs->path[cs->depth] = v->gv_id;
}
/*
* Look for a path from from to to. If one exists, returns a pointer to
* a NULL-terminated array of pointers to the vertices along the path. If
* there is no path, returns NULL.
*/
static int *
is_path_to(graph_vertex_t *from, graph_vertex_t *to)
{
child_search_t cs;
cs.id = to->gv_id;
cs.depth = 0;
cs.path = NULL;
graph_walk(from, WALK_DEPENDENCIES, child_pre, child_post, &cs);
return (cs.path);
}
/*
* Given an array of int's as returned by is_path_to, allocates a string of
* their names joined by newlines. Returns the size of the allocated buffer
* in *sz and frees path.
*/
static void
path_to_str(int *path, char **cpp, size_t *sz)
{
int i;
graph_vertex_t *v;
size_t allocd, new_allocd;
char *new, *name;
assert(MUTEX_HELD(&dgraph_lock));
assert(path[0] != -1);
allocd = 1;
*cpp = startd_alloc(1);
(*cpp)[0] = '\0';
for (i = 0; path[i] != -1; ++i) {
name = NULL;
v = vertex_get_by_id(path[i]);
if (v == NULL)
name = "<deleted>";
else if (v->gv_type == GVT_INST || v->gv_type == GVT_SVC)
name = v->gv_name;
if (name != NULL) {
new_allocd = allocd + strlen(name) + 1;
new = startd_alloc(new_allocd);
(void) strcpy(new, *cpp);
(void) strcat(new, name);
(void) strcat(new, "\n");
startd_free(*cpp, allocd);
*cpp = new;
allocd = new_allocd;
}
}
startd_free(path, sizeof (int) * (i + 1));
*sz = allocd;
}
/*
* This function along with run_sulogin() implements an exclusion relationship
* between system/console-login and sulogin. run_sulogin() will fail if
* system/console-login is online, and the graph engine should call
* graph_clogin_start() to bring system/console-login online, which defers the
* start if sulogin is running.
*/
static void
graph_clogin_start(graph_vertex_t *v)
{
assert(MUTEX_HELD(&dgraph_lock));
if (sulogin_running)
console_login_ready = B_TRUE;
else
vertex_send_event(v, RESTARTER_EVENT_TYPE_START);
}
static void
graph_su_start(graph_vertex_t *v)
{
/*
* /etc/inittab used to have the initial /sbin/rcS as a 'sysinit'
* entry with a runlevel of 'S', before jumping to the final
* target runlevel (as set in initdefault). We mimic that legacy
* behavior here.
*/
utmpx_set_runlevel('S', '0', B_FALSE);
vertex_send_event(v, RESTARTER_EVENT_TYPE_START);
}
static void
graph_post_su_online(void)
{
graph_runlevel_changed('S', 1);
}
static void
graph_post_su_disable(void)
{
graph_runlevel_changed('S', 0);
}
static void
graph_post_mu_online(void)
{
graph_runlevel_changed('2', 1);
}
static void
graph_post_mu_disable(void)
{
graph_runlevel_changed('2', 0);
}
static void
graph_post_mus_online(void)
{
graph_runlevel_changed('3', 1);
}
static void
graph_post_mus_disable(void)
{
graph_runlevel_changed('3', 0);
}
static struct special_vertex_info {
const char *name;
void (*start_f)(graph_vertex_t *);
void (*post_online_f)(void);
void (*post_disable_f)(void);
} special_vertices[] = {
{ CONSOLE_LOGIN_FMRI, graph_clogin_start, NULL, NULL },
{ SCF_MILESTONE_SINGLE_USER, graph_su_start,
graph_post_su_online, graph_post_su_disable },
{ SCF_MILESTONE_MULTI_USER, NULL,
graph_post_mu_online, graph_post_mu_disable },
{ SCF_MILESTONE_MULTI_USER_SERVER, NULL,
graph_post_mus_online, graph_post_mus_disable },
{ NULL },
};
void
vertex_send_event(graph_vertex_t *v, restarter_event_type_t e)
{
switch (e) {
case RESTARTER_EVENT_TYPE_ADD_INSTANCE:
assert(v->gv_state == RESTARTER_STATE_UNINIT);
MUTEX_LOCK(&st->st_load_lock);
st->st_load_instances++;
MUTEX_UNLOCK(&st->st_load_lock);
break;
case RESTARTER_EVENT_TYPE_ENABLE:
log_framework(LOG_DEBUG, "Enabling %s.\n", v->gv_name);
assert(v->gv_state == RESTARTER_STATE_UNINIT ||
v->gv_state == RESTARTER_STATE_DISABLED ||
v->gv_state == RESTARTER_STATE_MAINT);
break;
case RESTARTER_EVENT_TYPE_DISABLE:
case RESTARTER_EVENT_TYPE_ADMIN_DISABLE:
log_framework(LOG_DEBUG, "Disabling %s.\n", v->gv_name);
assert(v->gv_state != RESTARTER_STATE_DISABLED);
break;
case RESTARTER_EVENT_TYPE_STOP_RESET:
case RESTARTER_EVENT_TYPE_STOP:
log_framework(LOG_DEBUG, "Stopping %s.\n", v->gv_name);
assert(v->gv_state == RESTARTER_STATE_DEGRADED ||
v->gv_state == RESTARTER_STATE_ONLINE);
break;
case RESTARTER_EVENT_TYPE_START:
log_framework(LOG_DEBUG, "Starting %s.\n", v->gv_name);
assert(v->gv_state == RESTARTER_STATE_OFFLINE);
break;
case RESTARTER_EVENT_TYPE_REMOVE_INSTANCE:
case RESTARTER_EVENT_TYPE_ADMIN_DEGRADED:
case RESTARTER_EVENT_TYPE_ADMIN_REFRESH:
case RESTARTER_EVENT_TYPE_ADMIN_RESTART:
case RESTARTER_EVENT_TYPE_ADMIN_MAINT_OFF:
case RESTARTER_EVENT_TYPE_ADMIN_MAINT_ON:
case RESTARTER_EVENT_TYPE_ADMIN_MAINT_ON_IMMEDIATE:
case RESTARTER_EVENT_TYPE_DEPENDENCY_CYCLE:
case RESTARTER_EVENT_TYPE_INVALID_DEPENDENCY:
break;
default:
#ifndef NDEBUG
uu_warn("%s:%d: Bad event %d.\n", __FILE__, __LINE__, e);
#endif
abort();
}
restarter_protocol_send_event(v->gv_name, v->gv_restarter_channel, e,
v->gv_reason);
}
static void
graph_unset_restarter(graph_vertex_t *v)
{
assert(MUTEX_HELD(&dgraph_lock));
assert(v->gv_flags & GV_CONFIGURED);
vertex_send_event(v, RESTARTER_EVENT_TYPE_REMOVE_INSTANCE);
if (v->gv_restarter_id != -1) {
graph_vertex_t *rv;
rv = vertex_get_by_id(v->gv_restarter_id);
graph_remove_edge(v, rv);
}
v->gv_restarter_id = -1;
v->gv_restarter_channel = NULL;
}
/*
* Return VERTEX_REMOVED when the vertex passed in argument is deleted from the
* dgraph otherwise return VERTEX_INUSE.
*/
static int
free_if_unrefed(graph_vertex_t *v)
{
assert(MUTEX_HELD(&dgraph_lock));
if (v->gv_refs > 0)
return (VERTEX_INUSE);
if (v->gv_type == GVT_SVC &&
uu_list_numnodes(v->gv_dependents) == 0 &&
uu_list_numnodes(v->gv_dependencies) == 0) {
graph_remove_vertex(v);
return (VERTEX_REMOVED);
} else if (v->gv_type == GVT_INST &&
(v->gv_flags & GV_CONFIGURED) == 0 &&
uu_list_numnodes(v->gv_dependents) == 1 &&
uu_list_numnodes(v->gv_dependencies) == 0) {
remove_inst_vertex(v);
return (VERTEX_REMOVED);
}
return (VERTEX_INUSE);
}
static void
delete_depgroup(graph_vertex_t *v)
{
graph_edge_t *e;
graph_vertex_t *dv;
assert(MUTEX_HELD(&dgraph_lock));
assert(v->gv_type == GVT_GROUP);
assert(uu_list_numnodes(v->gv_dependents) == 0);
while ((e = uu_list_first(v->gv_dependencies)) != NULL) {
dv = e->ge_vertex;
graph_remove_edge(v, dv);
switch (dv->gv_type) {
case GVT_INST: /* instance dependency */
case GVT_SVC: /* service dependency */
(void) free_if_unrefed(dv);
break;
case GVT_FILE: /* file dependency */
assert(uu_list_numnodes(dv->gv_dependencies) == 0);
if (uu_list_numnodes(dv->gv_dependents) == 0)
graph_remove_vertex(dv);
break;
default:
#ifndef NDEBUG
uu_warn("%s:%d: Unexpected node type %d", __FILE__,
__LINE__, dv->gv_type);
#endif
abort();
}
}
graph_remove_vertex(v);
}
static int
delete_instance_deps_cb(graph_edge_t *e, void **ptrs)
{
graph_vertex_t *v = ptrs[0];
boolean_t delete_restarter_dep = (boolean_t)ptrs[1];
graph_vertex_t *dv;
dv = e->ge_vertex;
/*
* We have four possibilities here:
* - GVT_INST: restarter
* - GVT_GROUP - GVT_INST: instance dependency
* - GVT_GROUP - GVT_SVC - GV_INST: service dependency
* - GVT_GROUP - GVT_FILE: file dependency
*/
switch (dv->gv_type) {
case GVT_INST: /* restarter */
assert(dv->gv_id == v->gv_restarter_id);
if (delete_restarter_dep)
graph_remove_edge(v, dv);
break;
case GVT_GROUP: /* pg dependency */
graph_remove_edge(v, dv);
delete_depgroup(dv);
break;
case GVT_FILE:
/* These are currently not direct dependencies */
default:
#ifndef NDEBUG
uu_warn("%s:%d: Bad vertex type %d.\n", __FILE__, __LINE__,
dv->gv_type);
#endif
abort();
}
return (UU_WALK_NEXT);
}
static void
delete_instance_dependencies(graph_vertex_t *v, boolean_t delete_restarter_dep)
{
void *ptrs[2];
int r;
assert(MUTEX_HELD(&dgraph_lock));
assert(v->gv_type == GVT_INST);
ptrs[0] = v;
ptrs[1] = (void *)delete_restarter_dep;
r = uu_list_walk(v->gv_dependencies,
(uu_walk_fn_t *)delete_instance_deps_cb, &ptrs, UU_WALK_ROBUST);
assert(r == 0);
}
/*
* int graph_insert_vertex_unconfigured()
* Insert a vertex without sending any restarter events. If the vertex
* already exists or creation is successful, return a pointer to it in *vp.
*
* If type is not GVT_GROUP, dt can remain unset.
*
* Returns 0, EEXIST, or EINVAL if the arguments are invalid (i.e., fmri
* doesn't agree with type, or type doesn't agree with dt).
*/
static int
graph_insert_vertex_unconfigured(const char *fmri, gv_type_t type,
depgroup_type_t dt, restarter_error_t rt, graph_vertex_t **vp)
{
int r;
int i;
assert(MUTEX_HELD(&dgraph_lock));
switch (type) {
case GVT_SVC:
case GVT_INST:
if (strncmp(fmri, "svc:", sizeof ("svc:") - 1) != 0)
return (EINVAL);
break;
case GVT_FILE:
if (strncmp(fmri, "file:", sizeof ("file:") - 1) != 0)
return (EINVAL);
break;
case GVT_GROUP:
if (dt <= 0 || rt < 0)
return (EINVAL);
break;
default:
#ifndef NDEBUG
uu_warn("%s:%d: Unknown type %d.\n", __FILE__, __LINE__, type);
#endif
abort();
}
*vp = vertex_get_by_name(fmri);
if (*vp != NULL)
return (EEXIST);
*vp = graph_add_vertex(fmri);
(*vp)->gv_type = type;
(*vp)->gv_depgroup = dt;
(*vp)->gv_restart = rt;
(*vp)->gv_flags = 0;
(*vp)->gv_state = RESTARTER_STATE_NONE;
for (i = 0; special_vertices[i].name != NULL; ++i) {
if (strcmp(fmri, special_vertices[i].name) == 0) {
(*vp)->gv_start_f = special_vertices[i].start_f;
(*vp)->gv_post_online_f =
special_vertices[i].post_online_f;
(*vp)->gv_post_disable_f =
special_vertices[i].post_disable_f;
break;
}
}
(*vp)->gv_restarter_id = -1;
(*vp)->gv_restarter_channel = 0;
if (type == GVT_INST) {
char *sfmri;
graph_vertex_t *sv;
sfmri = inst_fmri_to_svc_fmri(fmri);
sv = vertex_get_by_name(sfmri);
if (sv == NULL) {
r = graph_insert_vertex_unconfigured(sfmri, GVT_SVC, 0,
0, &sv);
assert(r == 0);
}
startd_free(sfmri, max_scf_fmri_size);
graph_add_edge(sv, *vp);
}
/*
* If this vertex is in the subgraph, mark it as so, for both
* GVT_INST and GVT_SERVICE verteces.
* A GVT_SERVICE vertex can only be in the subgraph if another instance
* depends on it, in which case it's already been added to the graph
* and marked as in the subgraph (by refresh_vertex()). If a
* GVT_SERVICE vertex was freshly added (by the code above), it means
* that it has no dependents, and cannot be in the subgraph.
* Regardless of this, we still check that gv_flags includes
* GV_INSUBGRAPH in the event that future behavior causes the above
* code to add a GVT_SERVICE vertex which should be in the subgraph.
*/
(*vp)->gv_flags |= (should_be_in_subgraph(*vp)? GV_INSUBGRAPH : 0);
return (0);
}
/*
* Returns 0 on success or ELOOP if the dependency would create a cycle.
*/
static int
graph_insert_dependency(graph_vertex_t *fv, graph_vertex_t *tv, int **pathp)
{
hrtime_t now;
assert(MUTEX_HELD(&dgraph_lock));
/* cycle detection */
now = gethrtime();
/* Don't follow exclusions. */
if (!(fv->gv_type == GVT_GROUP &&
fv->gv_depgroup == DEPGRP_EXCLUDE_ALL)) {
*pathp = is_path_to(tv, fv);
if (*pathp)
return (ELOOP);
}
dep_cycle_ns += gethrtime() - now;
++dep_inserts;
now = gethrtime();
graph_add_edge(fv, tv);
dep_insert_ns += gethrtime() - now;
/* Check if the dependency adds the "to" vertex to the subgraph */
tv->gv_flags |= (should_be_in_subgraph(tv) ? GV_INSUBGRAPH : 0);
return (0);
}
static int
inst_running(graph_vertex_t *v)
{
assert(v->gv_type == GVT_INST);
if (v->gv_state == RESTARTER_STATE_ONLINE ||
v->gv_state == RESTARTER_STATE_DEGRADED)
return (1);
return (0);
}
/*
* The dependency evaluation functions return
* 1 - dependency satisfied
* 0 - dependency unsatisfied
* -1 - dependency unsatisfiable (without administrator intervention)
*
* The functions also take a boolean satbility argument. When true, the
* functions may recurse in order to determine satisfiability.
*/
static int require_any_satisfied(graph_vertex_t *, boolean_t);
static int dependency_satisfied(graph_vertex_t *, boolean_t);
/*
* A require_all dependency is unsatisfied if any elements are unsatisfied. It
* is unsatisfiable if any elements are unsatisfiable.
*/
static int
require_all_satisfied(graph_vertex_t *groupv, boolean_t satbility)
{
graph_edge_t *edge;
int i;
boolean_t any_unsatisfied;
if (uu_list_numnodes(groupv->gv_dependencies) == 0)
return (1);
any_unsatisfied = B_FALSE;
for (edge = uu_list_first(groupv->gv_dependencies);
edge != NULL;
edge = uu_list_next(groupv->gv_dependencies, edge)) {
i = dependency_satisfied(edge->ge_vertex, satbility);
if (i == 1)
continue;
log_framework2(LOG_DEBUG, DEBUG_DEPENDENCIES,
"require_all(%s): %s is unsatisfi%s.\n", groupv->gv_name,
edge->ge_vertex->gv_name, i == 0 ? "ed" : "able");
if (!satbility)
return (0);
if (i == -1)
return (-1);
any_unsatisfied = B_TRUE;
}
return (any_unsatisfied ? 0 : 1);
}
/*
* A require_any dependency is satisfied if any element is satisfied. It is
* satisfiable if any element is satisfiable.
*/
static int
require_any_satisfied(graph_vertex_t *groupv, boolean_t satbility)
{
graph_edge_t *edge;
int s;
boolean_t satisfiable;
if (uu_list_numnodes(groupv->gv_dependencies) == 0)
return (1);
satisfiable = B_FALSE;
for (edge = uu_list_first(groupv->gv_dependencies);
edge != NULL;
edge = uu_list_next(groupv->gv_dependencies, edge)) {
s = dependency_satisfied(edge->ge_vertex, satbility);
if (s == 1)
return (1);
log_framework2(LOG_DEBUG, DEBUG_DEPENDENCIES,
"require_any(%s): %s is unsatisfi%s.\n",
groupv->gv_name, edge->ge_vertex->gv_name,
s == 0 ? "ed" : "able");
if (satbility && s == 0)
satisfiable = B_TRUE;
}
return ((!satbility || satisfiable) ? 0 : -1);
}
/*
* An optional_all dependency only considers elements which are configured,
* enabled, and not in maintenance. If any are unsatisfied, then the dependency
* is unsatisfied.
*
* Offline dependencies which are waiting for a dependency to come online are
* unsatisfied. Offline dependences which cannot possibly come online
* (unsatisfiable) are always considered satisfied.
*/
static int
optional_all_satisfied(graph_vertex_t *groupv, boolean_t satbility)
{
graph_edge_t *edge;
graph_vertex_t *v;
boolean_t any_qualified;
boolean_t any_unsatisfied;
int i;
any_qualified = B_FALSE;
any_unsatisfied = B_FALSE;
for (edge = uu_list_first(groupv->gv_dependencies);
edge != NULL;
edge = uu_list_next(groupv->gv_dependencies, edge)) {
v = edge->ge_vertex;
switch (v->gv_type) {
case GVT_INST:
/* Skip missing instances */
if ((v->gv_flags & GV_CONFIGURED) == 0)
continue;
if (v->gv_state == RESTARTER_STATE_MAINT)
continue;
any_qualified = B_TRUE;
if (v->gv_state == RESTARTER_STATE_OFFLINE ||
v->gv_state == RESTARTER_STATE_DISABLED) {
/*
* For offline/disabled dependencies,
* treat unsatisfiable as satisfied.
*/
i = dependency_satisfied(v, B_TRUE);
if (i == -1)
i = 1;
} else {
i = dependency_satisfied(v, satbility);
}
break;
case GVT_FILE:
any_qualified = B_TRUE;
i = dependency_satisfied(v, satbility);
break;
case GVT_SVC: {
any_qualified = B_TRUE;
i = optional_all_satisfied(v, satbility);
break;
}
case GVT_GROUP:
default:
#ifndef NDEBUG
uu_warn("%s:%d: Unexpected vertex type %d.\n", __FILE__,
__LINE__, v->gv_type);
#endif
abort();
}
if (i == 1)
continue;
log_framework2(LOG_DEBUG, DEBUG_DEPENDENCIES,
"optional_all(%s): %s is unsatisfi%s.\n", groupv->gv_name,
v->gv_name, i == 0 ? "ed" : "able");
if (!satbility)
return (0);
if (i == -1)
return (-1);
any_unsatisfied = B_TRUE;
}
if (!any_qualified)
return (1);
return (any_unsatisfied ? 0 : 1);
}
/*
* An exclude_all dependency is unsatisfied if any non-service element is
* satisfied or any service instance which is configured, enabled, and not in
* maintenance is satisfied. Usually when unsatisfied, it is also
* unsatisfiable.
*/
#define LOG_EXCLUDE(u, v) \
log_framework2(LOG_DEBUG, DEBUG_DEPENDENCIES, \
"exclude_all(%s): %s is satisfied.\n", \
(u)->gv_name, (v)->gv_name)
/* ARGSUSED */
static int
exclude_all_satisfied(graph_vertex_t *groupv, boolean_t satbility)
{
graph_edge_t *edge, *e2;
graph_vertex_t *v, *v2;
for (edge = uu_list_first(groupv->gv_dependencies);
edge != NULL;
edge = uu_list_next(groupv->gv_dependencies, edge)) {
v = edge->ge_vertex;
switch (v->gv_type) {
case GVT_INST:
if ((v->gv_flags & GV_CONFIGURED) == 0)
continue;
switch (v->gv_state) {
case RESTARTER_STATE_ONLINE:
case RESTARTER_STATE_DEGRADED:
LOG_EXCLUDE(groupv, v);
return (v->gv_flags & GV_ENABLED ? -1 : 0);
case RESTARTER_STATE_OFFLINE:
case RESTARTER_STATE_UNINIT:
LOG_EXCLUDE(groupv, v);
return (0);
case RESTARTER_STATE_DISABLED:
case RESTARTER_STATE_MAINT:
continue;
default:
#ifndef NDEBUG
uu_warn("%s:%d: Unexpected vertex state %d.\n",
__FILE__, __LINE__, v->gv_state);
#endif
abort();
}
/* NOTREACHED */
case GVT_SVC:
break;
case GVT_FILE:
if (!file_ready(v))
continue;
LOG_EXCLUDE(groupv, v);
return (-1);
case GVT_GROUP:
default:
#ifndef NDEBUG
uu_warn("%s:%d: Unexpected vertex type %d.\n", __FILE__,
__LINE__, v->gv_type);
#endif
abort();
}
/* v represents a service */
if (uu_list_numnodes(v->gv_dependencies) == 0)
continue;
for (e2 = uu_list_first(v->gv_dependencies);
e2 != NULL;
e2 = uu_list_next(v->gv_dependencies, e2)) {
v2 = e2->ge_vertex;
assert(v2->gv_type == GVT_INST);
if ((v2->gv_flags & GV_CONFIGURED) == 0)
continue;
switch (v2->gv_state) {
case RESTARTER_STATE_ONLINE:
case RESTARTER_STATE_DEGRADED:
LOG_EXCLUDE(groupv, v2);
return (v2->gv_flags & GV_ENABLED ? -1 : 0);
case RESTARTER_STATE_OFFLINE:
case RESTARTER_STATE_UNINIT:
LOG_EXCLUDE(groupv, v2);
return (0);
case RESTARTER_STATE_DISABLED:
case RESTARTER_STATE_MAINT:
continue;
default:
#ifndef NDEBUG
uu_warn("%s:%d: Unexpected vertex type %d.\n",
__FILE__, __LINE__, v2->gv_type);
#endif
abort();
}
}
}
return (1);
}
/*
* int instance_satisfied()
* Determine if all the dependencies are satisfied for the supplied instance
* vertex. Return 1 if they are, 0 if they aren't, and -1 if they won't be
* without administrator intervention.
*/
static int
instance_satisfied(graph_vertex_t *v, boolean_t satbility)
{
assert(v->gv_type == GVT_INST);
assert(!inst_running(v));
return (require_all_satisfied(v, satbility));
}
/*
* Decide whether v can satisfy a dependency. v can either be a child of
* a group vertex, or of an instance vertex.
*/
static int
dependency_satisfied(graph_vertex_t *v, boolean_t satbility)
{
switch (v->gv_type) {
case GVT_INST:
if ((v->gv_flags & GV_CONFIGURED) == 0) {
if (v->gv_flags & GV_DEATHROW) {
/*
* A dependency on an instance with GV_DEATHROW
* flag is always considered as satisfied.
*/
return (1);
}
return (-1);
}
/*
* Vertices may be transitioning so we try to figure out if
* the end state is likely to satisfy the dependency instead
* of assuming the dependency is unsatisfied/unsatisfiable.
*
* Support for optional_all dependencies depends on us getting
* this right because unsatisfiable dependencies are treated
* as being satisfied.
*/
switch (v->gv_state) {
case RESTARTER_STATE_ONLINE:
case RESTARTER_STATE_DEGRADED:
if (v->gv_flags & GV_TODISABLE)
return (-1);
if (v->gv_flags & GV_TOOFFLINE)
return (0);
return (1);
case RESTARTER_STATE_OFFLINE:
if (!satbility || v->gv_flags & GV_TODISABLE)
return (satbility ? -1 : 0);
return (instance_satisfied(v, satbility) != -1 ?
0 : -1);
case RESTARTER_STATE_DISABLED:
if (!satbility || !(v->gv_flags & GV_ENABLED))
return (satbility ? -1 : 0);
return (instance_satisfied(v, satbility) != -1 ?
0 : -1);
case RESTARTER_STATE_MAINT:
return (-1);
case RESTARTER_STATE_UNINIT:
return (0);
default:
#ifndef NDEBUG
uu_warn("%s:%d: Unexpected vertex state %d.\n",
__FILE__, __LINE__, v->gv_state);
#endif
abort();
/* NOTREACHED */
}
case GVT_SVC:
if (uu_list_numnodes(v->gv_dependencies) == 0)
return (-1);
return (require_any_satisfied(v, satbility));
case GVT_FILE:
/* i.e., we assume files will not be automatically generated */
return (file_ready(v) ? 1 : -1);
case GVT_GROUP:
break;
default:
#ifndef NDEBUG
uu_warn("%s:%d: Unexpected node type %d.\n", __FILE__, __LINE__,
v->gv_type);
#endif
abort();
/* NOTREACHED */
}
switch (v->gv_depgroup) {
case DEPGRP_REQUIRE_ANY:
return (require_any_satisfied(v, satbility));
case DEPGRP_REQUIRE_ALL:
return (require_all_satisfied(v, satbility));
case DEPGRP_OPTIONAL_ALL:
return (optional_all_satisfied(v, satbility));
case DEPGRP_EXCLUDE_ALL:
return (exclude_all_satisfied(v, satbility));
default:
#ifndef NDEBUG
uu_warn("%s:%d: Unknown dependency grouping %d.\n", __FILE__,
__LINE__, v->gv_depgroup);
#endif
abort();
}
}
void
graph_start_if_satisfied(graph_vertex_t *v)
{
if (v->gv_state == RESTARTER_STATE_OFFLINE &&
instance_satisfied(v, B_FALSE) == 1) {
if (v->gv_start_f == NULL)
vertex_send_event(v, RESTARTER_EVENT_TYPE_START);
else
v->gv_start_f(v);
}
}
/*
* propagate_satbility()
*
* This function is used when the given vertex changes state in such a way that
* one of its dependents may become unsatisfiable. This happens when an
* instance transitions between offline -> online, or from !running ->
* maintenance, as well as when an instance is removed from the graph.
*
* We have to walk all the dependents, since optional_all dependencies several
* levels up could become (un)satisfied, instead of unsatisfiable. For example,
*
* +-----+ optional_all +-----+ require_all +-----+
* | A |--------------->| B |-------------->| C |
* +-----+ +-----+ +-----+
*
* offline -> maintenance
*
* If C goes into maintenance, it's not enough simply to check B. Because A has
* an optional dependency, what was previously an unsatisfiable situation is now
* satisfied (B will never come online, even though its state hasn't changed).
*
* Note that it's not necessary to continue examining dependents after reaching
* an optional_all dependency. It's not possible for an optional_all dependency
* to change satisfiability without also coming online, in which case we get a
* start event and propagation continues naturally. However, it does no harm to
* continue propagating satisfiability (as it is a relatively rare event), and
* keeps the walker code simple and generic.
*/
/*ARGSUSED*/
static int
satbility_cb(graph_vertex_t *v, void *arg)
{
if (is_inst_bypassed(v))
return (UU_WALK_NEXT);
if (v->gv_type == GVT_INST)
graph_start_if_satisfied(v);
return (UU_WALK_NEXT);
}
static void
propagate_satbility(graph_vertex_t *v)
{
graph_walk(v, WALK_DEPENDENTS, satbility_cb, NULL, NULL);
}
static void propagate_stop(graph_vertex_t *, void *);
/*
* propagate_start()
*
* This function is used to propagate a start event to the dependents of the
* given vertex. Any dependents that are offline but have their dependencies
* satisfied are started. Any dependents that are online and have restart_on
* set to "restart" or "refresh" are restarted because their dependencies have
* just changed. This only happens with optional_all dependencies.
*/
static void
propagate_start(graph_vertex_t *v, void *arg)
{
restarter_error_t err = (restarter_error_t)arg;
if (is_inst_bypassed(v))
return;
switch (v->gv_type) {
case GVT_INST:
/* Restarter */
if (inst_running(v)) {
if (err == RERR_RESTART || err == RERR_REFRESH) {
vertex_send_event(v,
RESTARTER_EVENT_TYPE_STOP_RESET);
}
} else {
graph_start_if_satisfied(v);
}
break;
case GVT_GROUP:
if (v->gv_depgroup == DEPGRP_EXCLUDE_ALL) {
graph_walk_dependents(v, propagate_stop,
(void *)RERR_RESTART);
break;
}
err = v->gv_restart;
/* FALLTHROUGH */
case GVT_SVC:
graph_walk_dependents(v, propagate_start, (void *)err);
break;
case GVT_FILE:
#ifndef NDEBUG
uu_warn("%s:%d: propagate_start() encountered GVT_FILE.\n",
__FILE__, __LINE__);
#endif
abort();
/* NOTREACHED */
default:
#ifndef NDEBUG
uu_warn("%s:%d: Unknown vertex type %d.\n", __FILE__, __LINE__,
v->gv_type);
#endif
abort();
}
}
/*
* propagate_stop()
*
* This function is used to propagate a stop event to the dependents of the
* given vertex. Any dependents that are online (or in degraded state) with
* the restart_on property set to "restart" or "refresh" will be stopped as
* their dependencies have just changed, propagate_start() will start them
* again once their dependencies have been re-satisfied.
*/
static void
propagate_stop(graph_vertex_t *v, void *arg)
{
restarter_error_t err = (restarter_error_t)arg;
if (is_inst_bypassed(v))
return;
switch (v->gv_type) {
case GVT_INST:
/* Restarter */
if (err > RERR_NONE && inst_running(v)) {
if (err == RERR_RESTART || err == RERR_REFRESH) {
vertex_send_event(v,
RESTARTER_EVENT_TYPE_STOP_RESET);
} else {
vertex_send_event(v, RESTARTER_EVENT_TYPE_STOP);
}
}
break;
case GVT_SVC:
graph_walk_dependents(v, propagate_stop, arg);
break;
case GVT_FILE:
#ifndef NDEBUG
uu_warn("%s:%d: propagate_stop() encountered GVT_FILE.\n",
__FILE__, __LINE__);
#endif
abort();
/* NOTREACHED */
case GVT_GROUP:
if (v->gv_depgroup == DEPGRP_EXCLUDE_ALL) {
graph_walk_dependents(v, propagate_start,
(void *)RERR_NONE);
break;
}
if (err == RERR_NONE || err > v->gv_restart)
break;
graph_walk_dependents(v, propagate_stop, arg);
break;
default:
#ifndef NDEBUG
uu_warn("%s:%d: Unknown vertex type %d.\n", __FILE__, __LINE__,
v->gv_type);
#endif
abort();
}
}
void
offline_vertex(graph_vertex_t *v)
{
scf_handle_t *h = libscf_handle_create_bound_loop();
scf_instance_t *scf_inst = safe_scf_instance_create(h);
scf_propertygroup_t *pg = safe_scf_pg_create(h);
restarter_instance_state_t state, next_state;
int r;
assert(v->gv_type == GVT_INST);
if (scf_inst == NULL)
bad_error("safe_scf_instance_create", scf_error());
if (pg == NULL)
bad_error("safe_scf_pg_create", scf_error());
/* if the vertex is already going offline, return */
rep_retry:
if (scf_handle_decode_fmri(h, v->gv_name, NULL, NULL, scf_inst, NULL,
NULL, SCF_DECODE_FMRI_EXACT) != 0) {
switch (scf_error()) {
case SCF_ERROR_CONNECTION_BROKEN:
libscf_handle_rebind(h);
goto rep_retry;
case SCF_ERROR_NOT_FOUND:
scf_pg_destroy(pg);
scf_instance_destroy(scf_inst);
(void) scf_handle_unbind(h);
scf_handle_destroy(h);
return;
}
uu_die("Can't decode FMRI %s: %s\n", v->gv_name,
scf_strerror(scf_error()));
}
r = scf_instance_get_pg(scf_inst, SCF_PG_RESTARTER, pg);
if (r != 0) {
switch (scf_error()) {
case SCF_ERROR_CONNECTION_BROKEN:
libscf_handle_rebind(h);
goto rep_retry;
case SCF_ERROR_NOT_SET:
case SCF_ERROR_NOT_FOUND:
scf_pg_destroy(pg);
scf_instance_destroy(scf_inst);
(void) scf_handle_unbind(h);
scf_handle_destroy(h);
return;
default:
bad_error("scf_instance_get_pg", scf_error());
}
} else {
r = libscf_read_states(pg, &state, &next_state);
if (r == 0 && (next_state == RESTARTER_STATE_OFFLINE ||
next_state == RESTARTER_STATE_DISABLED)) {
log_framework(LOG_DEBUG,
"%s: instance is already going down.\n",
v->gv_name);
scf_pg_destroy(pg);
scf_instance_destroy(scf_inst);
(void) scf_handle_unbind(h);
scf_handle_destroy(h);
return;
}
}
scf_pg_destroy(pg);
scf_instance_destroy(scf_inst);
(void) scf_handle_unbind(h);
scf_handle_destroy(h);
vertex_send_event(v, RESTARTER_EVENT_TYPE_STOP_RESET);
}
/*
* void graph_enable_by_vertex()
* If admin is non-zero, this is an administrative request for change
* of the enabled property. Thus, send the ADMIN_DISABLE rather than
* a plain DISABLE restarter event.
*/
void
graph_enable_by_vertex(graph_vertex_t *vertex, int enable, int admin)
{
graph_vertex_t *v;
int r;
assert(MUTEX_HELD(&dgraph_lock));
assert((vertex->gv_flags & GV_CONFIGURED));
vertex->gv_flags = (vertex->gv_flags & ~GV_ENABLED) |
(enable ? GV_ENABLED : 0);
if (enable) {
if (vertex->gv_state != RESTARTER_STATE_OFFLINE &&
vertex->gv_state != RESTARTER_STATE_DEGRADED &&
vertex->gv_state != RESTARTER_STATE_ONLINE) {
/*
* In case the vertex was notified to go down,
* but now can return online, clear the _TOOFFLINE
* and _TODISABLE flags.
*/
vertex->gv_flags &= ~GV_TOOFFLINE;
vertex->gv_flags &= ~GV_TODISABLE;
vertex_send_event(vertex, RESTARTER_EVENT_TYPE_ENABLE);
}
/*
* Wait for state update from restarter before sending _START or
* _STOP.
*/
return;
}
if (vertex->gv_state == RESTARTER_STATE_DISABLED)
return;
if (!admin) {
vertex_send_event(vertex, RESTARTER_EVENT_TYPE_DISABLE);
/*
* Wait for state update from restarter before sending _START or
* _STOP.
*/
return;
}
/*
* If it is a DISABLE event requested by the administrator then we are
* offlining the dependents first.
*/
/*
* Set GV_TOOFFLINE for the services we are offlining. We cannot
* clear the GV_TOOFFLINE bits from all the services because
* other DISABLE events might be handled at the same time.
*/
vertex->gv_flags |= GV_TOOFFLINE;
/* remember which vertex to disable... */
vertex->gv_flags |= GV_TODISABLE;
log_framework(LOG_DEBUG, "Marking in-subtree vertices before "
"disabling %s.\n", vertex->gv_name);
/* set GV_TOOFFLINE for its dependents */
r = uu_list_walk(vertex->gv_dependents, (uu_walk_fn_t *)mark_subtree,
NULL, 0);
assert(r == 0);
/* disable the instance now if there is nothing else to offline */
if (insubtree_dependents_down(vertex) == B_TRUE) {
vertex_send_event(vertex, RESTARTER_EVENT_TYPE_ADMIN_DISABLE);
return;
}
/*
* This loop is similar to the one used for the graph reversal shutdown
* and could be improved in term of performance for the subtree reversal
* disable case.
*/
for (v = uu_list_first(dgraph); v != NULL;
v = uu_list_next(dgraph, v)) {
/* skip the vertex we are disabling for now */
if (v == vertex)
continue;
if (v->gv_type != GVT_INST ||
(v->gv_flags & GV_CONFIGURED) == 0 ||
(v->gv_flags & GV_ENABLED) == 0 ||
(v->gv_flags & GV_TOOFFLINE) == 0)
continue;
if ((v->gv_state != RESTARTER_STATE_ONLINE) &&
(v->gv_state != RESTARTER_STATE_DEGRADED)) {
/* continue if there is nothing to offline */
continue;
}
/*
* Instances which are up need to come down before we're
* done, but we can only offline the leaves here. An
* instance is a leaf when all its dependents are down.
*/
if (insubtree_dependents_down(v) == B_TRUE) {
log_framework(LOG_DEBUG, "Offlining in-subtree "
"instance %s for %s.\n",
v->gv_name, vertex->gv_name);
offline_vertex(v);
}
}
}
static int configure_vertex(graph_vertex_t *, scf_instance_t *);
/*
* Set the restarter for v to fmri_arg. That is, make sure a vertex for
* fmri_arg exists, make v depend on it, and send _ADD_INSTANCE for v. If
* v is already configured and fmri_arg indicates the current restarter, do
* nothing. If v is configured and fmri_arg is a new restarter, delete v's
* dependency on the restarter, send _REMOVE_INSTANCE for v, and set the new
* restarter. Returns 0 on success, EINVAL if the FMRI is invalid,
* ECONNABORTED if the repository connection is broken, and ELOOP
* if the dependency would create a cycle. In the last case, *pathp will
* point to a -1-terminated array of ids which compose the path from v to
* restarter_fmri.
*/
int
graph_change_restarter(graph_vertex_t *v, const char *fmri_arg, scf_handle_t *h,
int **pathp)
{
char *restarter_fmri = NULL;
graph_vertex_t *rv;
int err;
int id;
assert(MUTEX_HELD(&dgraph_lock));
if (fmri_arg[0] != '\0') {
err = fmri_canonify(fmri_arg, &restarter_fmri, B_TRUE);
if (err != 0) {
assert(err == EINVAL);
return (err);
}
}
if (restarter_fmri == NULL ||
strcmp(restarter_fmri, SCF_SERVICE_STARTD) == 0) {
if (v->gv_flags & GV_CONFIGURED) {
if (v->gv_restarter_id == -1) {
if (restarter_fmri != NULL)
startd_free(restarter_fmri,
max_scf_fmri_size);
return (0);
}
graph_unset_restarter(v);
}
/* Master restarter, nothing to do. */
v->gv_restarter_id = -1;
v->gv_restarter_channel = NULL;
vertex_send_event(v, RESTARTER_EVENT_TYPE_ADD_INSTANCE);
return (0);
}
if (v->gv_flags & GV_CONFIGURED) {
id = dict_lookup_byname(restarter_fmri);
if (id != -1 && v->gv_restarter_id == id) {
startd_free(restarter_fmri, max_scf_fmri_size);
return (0);
}
graph_unset_restarter(v);
}
err = graph_insert_vertex_unconfigured(restarter_fmri, GVT_INST, 0,
RERR_NONE, &rv);
startd_free(restarter_fmri, max_scf_fmri_size);
assert(err == 0 || err == EEXIST);
if (rv->gv_delegate_initialized == 0) {
if ((rv->gv_delegate_channel = restarter_protocol_init_delegate(
rv->gv_name)) == NULL)
return (EINVAL);
rv->gv_delegate_initialized = 1;
}
v->gv_restarter_id = rv->gv_id;
v->gv_restarter_channel = rv->gv_delegate_channel;
err = graph_insert_dependency(v, rv, pathp);
if (err != 0) {
assert(err == ELOOP);
return (ELOOP);
}
vertex_send_event(v, RESTARTER_EVENT_TYPE_ADD_INSTANCE);
if (!(rv->gv_flags & GV_CONFIGURED)) {
scf_instance_t *inst;
err = libscf_fmri_get_instance(h, rv->gv_name, &inst);
switch (err) {
case 0:
err = configure_vertex(rv, inst);
scf_instance_destroy(inst);
switch (err) {
case 0:
case ECANCELED:
break;
case ECONNABORTED:
return (ECONNABORTED);
default:
bad_error("configure_vertex", err);
}
break;
case ECONNABORTED:
return (ECONNABORTED);
case ENOENT:
break;
case ENOTSUP:
/*
* The fmri doesn't specify an instance - translate
* to EINVAL.
*/
return (EINVAL);
case EINVAL:
default:
bad_error("libscf_fmri_get_instance", err);
}
}
return (0);
}
/*
* Add all of the instances of the service named by fmri to the graph.
* Returns
* 0 - success
* ENOENT - service indicated by fmri does not exist
*
* In both cases *reboundp will be B_TRUE if the handle was rebound, or B_FALSE
* otherwise.
*/
static int
add_service(const char *fmri, scf_handle_t *h, boolean_t *reboundp)
{
scf_service_t *svc;
scf_instance_t *inst;
scf_iter_t *iter;
char *inst_fmri;
int ret, r;
*reboundp = B_FALSE;
svc = safe_scf_service_create(h);
inst = safe_scf_instance_create(h);
iter = safe_scf_iter_create(h);
inst_fmri = startd_alloc(max_scf_fmri_size);
rebound:
if (scf_handle_decode_fmri(h, fmri, NULL, svc, NULL, NULL, NULL,
SCF_DECODE_FMRI_EXACT) != 0) {
switch (scf_error()) {
case SCF_ERROR_CONNECTION_BROKEN:
default:
libscf_handle_rebind(h);
*reboundp = B_TRUE;
goto rebound;
case SCF_ERROR_NOT_FOUND:
ret = ENOENT;
goto out;
case SCF_ERROR_INVALID_ARGUMENT:
case SCF_ERROR_CONSTRAINT_VIOLATED:
case SCF_ERROR_NOT_BOUND:
case SCF_ERROR_HANDLE_MISMATCH:
bad_error("scf_handle_decode_fmri", scf_error());
}
}
if (scf_iter_service_instances(iter, svc) != 0) {
switch (scf_error()) {
case SCF_ERROR_CONNECTION_BROKEN:
default:
libscf_handle_rebind(h);
*reboundp = B_TRUE;
goto rebound;
case SCF_ERROR_DELETED:
ret = ENOENT;
goto out;
case SCF_ERROR_HANDLE_MISMATCH:
case SCF_ERROR_NOT_BOUND:
case SCF_ERROR_NOT_SET:
bad_error("scf_iter_service_instances", scf_error());
}
}
for (;;) {
r = scf_iter_next_instance(iter, inst);
if (r == 0)
break;
if (r != 1) {
switch (scf_error()) {
case SCF_ERROR_CONNECTION_BROKEN:
default:
libscf_handle_rebind(h);
*reboundp = B_TRUE;
goto rebound;
case SCF_ERROR_DELETED:
ret = ENOENT;
goto out;
case SCF_ERROR_HANDLE_MISMATCH:
case SCF_ERROR_NOT_BOUND:
case SCF_ERROR_NOT_SET:
case SCF_ERROR_INVALID_ARGUMENT:
bad_error("scf_iter_next_instance",
scf_error());
}
}
if (scf_instance_to_fmri(inst, inst_fmri, max_scf_fmri_size) <
0) {
switch (scf_error()) {
case SCF_ERROR_CONNECTION_BROKEN:
libscf_handle_rebind(h);
*reboundp = B_TRUE;
goto rebound;
case SCF_ERROR_DELETED:
continue;
case SCF_ERROR_NOT_BOUND:
case SCF_ERROR_NOT_SET:
bad_error("scf_instance_to_fmri", scf_error());
}
}
r = dgraph_add_instance(inst_fmri, inst, B_FALSE);
switch (r) {
case 0:
case ECANCELED:
break;
case EEXIST:
continue;
case ECONNABORTED:
libscf_handle_rebind(h);
*reboundp = B_TRUE;
goto rebound;
case EINVAL:
default:
bad_error("dgraph_add_instance", r);
}
}
ret = 0;
out:
startd_free(inst_fmri, max_scf_fmri_size);
scf_iter_destroy(iter);
scf_instance_destroy(inst);
scf_service_destroy(svc);
return (ret);
}
struct depfmri_info {
graph_vertex_t *v; /* GVT_GROUP vertex */
gv_type_t type; /* type of dependency */
const char *inst_fmri; /* FMRI of parental GVT_INST vert. */
const char *pg_name; /* Name of dependency pg */
scf_handle_t *h;
int err; /* return error code */
int **pathp; /* return circular dependency path */
};
/*
* Find or create a vertex for fmri and make info->v depend on it.
* Returns
* 0 - success
* nonzero - failure
*
* On failure, sets info->err to
* EINVAL - fmri is invalid
* fmri does not match info->type
* ELOOP - Adding the dependency creates a circular dependency. *info->pathp
* will point to an array of the ids of the members of the cycle.
* ECONNABORTED - repository connection was broken
* ECONNRESET - succeeded, but repository connection was reset
*/
static int
process_dependency_fmri(const char *fmri, struct depfmri_info *info)
{
int err;
graph_vertex_t *depgroup_v, *v;
char *fmri_copy, *cfmri;
size_t fmri_copy_sz;
const char *scope, *service, *instance, *pg;
scf_instance_t *inst;
boolean_t rebound;
assert(MUTEX_HELD(&dgraph_lock));
/* Get or create vertex for FMRI */
depgroup_v = info->v;
if (strncmp(fmri, "file:", sizeof ("file:") - 1) == 0) {
if (info->type != GVT_FILE) {
log_framework(LOG_NOTICE,
"FMRI \"%s\" is not allowed for the \"%s\" "
"dependency's type of instance %s.\n", fmri,
info->pg_name, info->inst_fmri);
return (info->err = EINVAL);
}
err = graph_insert_vertex_unconfigured(fmri, info->type, 0,
RERR_NONE, &v);
switch (err) {
case 0:
break;
case EEXIST:
assert(v->gv_type == GVT_FILE);
break;
case EINVAL: /* prevented above */
default:
bad_error("graph_insert_vertex_unconfigured", err);
}
} else {
if (info->type != GVT_INST) {
log_framework(LOG_NOTICE,
"FMRI \"%s\" is not allowed for the \"%s\" "
"dependency's type of instance %s.\n", fmri,
info->pg_name, info->inst_fmri);
return (info->err = EINVAL);
}
/*
* We must canonify fmri & add a vertex for it.
*/
fmri_copy_sz = strlen(fmri) + 1;
fmri_copy = startd_alloc(fmri_copy_sz);
(void) strcpy(fmri_copy, fmri);
/* Determine if the FMRI is a property group or instance */
if (scf_parse_svc_fmri(fmri_copy, &scope, &service,
&instance, &pg, NULL) != 0) {
startd_free(fmri_copy, fmri_copy_sz);
log_framework(LOG_NOTICE,
"Dependency \"%s\" of %s has invalid FMRI "
"\"%s\".\n", info->pg_name, info->inst_fmri,
fmri);
return (info->err = EINVAL);
}
if (service == NULL || pg != NULL) {
startd_free(fmri_copy, fmri_copy_sz);
log_framework(LOG_NOTICE,
"Dependency \"%s\" of %s does not designate a "
"service or instance.\n", info->pg_name,
info->inst_fmri);
return (info->err = EINVAL);
}
if (scope == NULL || strcmp(scope, SCF_SCOPE_LOCAL) == 0) {
cfmri = uu_msprintf("svc:/%s%s%s",
service, instance ? ":" : "", instance ? instance :
"");
} else {
cfmri = uu_msprintf("svc://%s/%s%s%s",
scope, service, instance ? ":" : "", instance ?
instance : "");
}
startd_free(fmri_copy, fmri_copy_sz);
err = graph_insert_vertex_unconfigured(cfmri, instance ?
GVT_INST : GVT_SVC, instance ? 0 : DEPGRP_REQUIRE_ANY,
RERR_NONE, &v);
uu_free(cfmri);
switch (err) {
case 0:
break;
case EEXIST:
/* Verify v. */
if (instance != NULL)
assert(v->gv_type == GVT_INST);
else
assert(v->gv_type == GVT_SVC);
break;
default:
bad_error("graph_insert_vertex_unconfigured", err);
}
}
/* Add dependency from depgroup_v to new vertex */
info->err = graph_insert_dependency(depgroup_v, v, info->pathp);
switch (info->err) {
case 0:
break;
case ELOOP:
return (ELOOP);
default:
bad_error("graph_insert_dependency", info->err);
}
/* This must be after we insert the dependency, to avoid looping. */
switch (v->gv_type) {
case GVT_INST:
if ((v->gv_flags & GV_CONFIGURED) != 0)
break;
inst = safe_scf_instance_create(info->h);
rebound = B_FALSE;
rebound:
err = libscf_lookup_instance(v->gv_name, inst);
switch (err) {
case 0:
err = configure_vertex(v, inst);
switch (err) {
case 0:
case ECANCELED:
break;
case ECONNABORTED:
libscf_handle_rebind(info->h);
rebound = B_TRUE;
goto rebound;
default:
bad_error("configure_vertex", err);
}
break;
case ENOENT:
break;
case ECONNABORTED:
libscf_handle_rebind(info->h);
rebound = B_TRUE;
goto rebound;
case EINVAL:
case ENOTSUP:
default:
bad_error("libscf_fmri_get_instance", err);
}
scf_instance_destroy(inst);
if (rebound)
return (info->err = ECONNRESET);
break;
case GVT_SVC:
(void) add_service(v->gv_name, info->h, &rebound);
if (rebound)
return (info->err = ECONNRESET);
}
return (0);
}
struct deppg_info {
graph_vertex_t *v; /* GVT_INST vertex */
int err; /* return error */
int **pathp; /* return circular dependency path */
};
/*
* Make info->v depend on a new GVT_GROUP node for this property group,
* and then call process_dependency_fmri() for the values of the entity
* property. Return 0 on success, or if something goes wrong return nonzero
* and set info->err to ECONNABORTED, EINVAL, or the error code returned by
* process_dependency_fmri().
*/
static int
process_dependency_pg(scf_propertygroup_t *pg, struct deppg_info *info)
{
scf_handle_t *h;
depgroup_type_t deptype;
restarter_error_t rerr;
struct depfmri_info linfo;
char *fmri, *pg_name;
size_t fmri_sz;
graph_vertex_t *depgrp;
scf_property_t *prop;
int err;
int empty;
scf_error_t scferr;
ssize_t len;
assert(MUTEX_HELD(&dgraph_lock));
h = scf_pg_handle(pg);
pg_name = startd_alloc(max_scf_name_size);
len = scf_pg_get_name(pg, pg_name, max_scf_name_size);
if (len < 0) {
startd_free(pg_name, max_scf_name_size);
switch (scf_error()) {
case SCF_ERROR_CONNECTION_BROKEN:
default:
return (info->err = ECONNABORTED);
case SCF_ERROR_DELETED:
return (info->err = 0);
case SCF_ERROR_NOT_SET:
bad_error("scf_pg_get_name", scf_error());
}
}
/*
* Skip over empty dependency groups. Since dependency property
* groups are updated atomically, they are either empty or
* fully populated.
*/
empty = depgroup_empty(h, pg);
if (empty < 0) {
log_error(LOG_INFO,
"Error reading dependency group \"%s\" of %s: %s\n",
pg_name, info->v->gv_name, scf_strerror(scf_error()));
startd_free(pg_name, max_scf_name_size);
return (info->err = EINVAL);
} else if (empty == 1) {
log_framework(LOG_DEBUG,
"Ignoring empty dependency group \"%s\" of %s\n",
pg_name, info->v->gv_name);
startd_free(pg_name, max_scf_name_size);
return (info->err = 0);
}
fmri_sz = strlen(info->v->gv_name) + 1 + len + 1;
fmri = startd_alloc(fmri_sz);
(void) snprintf(fmri, fmri_sz, "%s>%s", info->v->gv_name,
pg_name);
/* Validate the pg before modifying the graph */
deptype = depgroup_read_grouping(h, pg);
if (deptype == DEPGRP_UNSUPPORTED) {
log_error(LOG_INFO,
"Dependency \"%s\" of %s has an unknown grouping value.\n",
pg_name, info->v->gv_name);
startd_free(fmri, fmri_sz);
startd_free(pg_name, max_scf_name_size);
return (info->err = EINVAL);
}
rerr = depgroup_read_restart(h, pg);
if (rerr == RERR_UNSUPPORTED) {
log_error(LOG_INFO,
"Dependency \"%s\" of %s has an unknown restart_on value."
"\n", pg_name, info->v->gv_name);
startd_free(fmri, fmri_sz);
startd_free(pg_name, max_scf_name_size);
return (info->err = EINVAL);
}
prop = safe_scf_property_create(h);
if (scf_pg_get_property(pg, SCF_PROPERTY_ENTITIES, prop) != 0) {
scferr = scf_error();
scf_property_destroy(prop);
if (scferr == SCF_ERROR_DELETED) {
startd_free(fmri, fmri_sz);
startd_free(pg_name, max_scf_name_size);
return (info->err = 0);
} else if (scferr != SCF_ERROR_NOT_FOUND) {
startd_free(fmri, fmri_sz);
startd_free(pg_name, max_scf_name_size);
return (info->err = ECONNABORTED);
}
log_error(LOG_INFO,
"Dependency \"%s\" of %s is missing a \"%s\" property.\n",
pg_name, info->v->gv_name, SCF_PROPERTY_ENTITIES);
startd_free(fmri, fmri_sz);
startd_free(pg_name, max_scf_name_size);
return (info->err = EINVAL);
}
/* Create depgroup vertex for pg */
err = graph_insert_vertex_unconfigured(fmri, GVT_GROUP, deptype,
rerr, &depgrp);
assert(err == 0);
startd_free(fmri, fmri_sz);
/* Add dependency from inst vertex to new vertex */
err = graph_insert_dependency(info->v, depgrp, info->pathp);
/* ELOOP can't happen because this should be a new vertex */
assert(err == 0);
linfo.v = depgrp;
linfo.type = depgroup_read_scheme(h, pg);
linfo.inst_fmri = info->v->gv_name;
linfo.pg_name = pg_name;
linfo.h = h;
linfo.err = 0;
linfo.pathp = info->pathp;
err = walk_property_astrings(prop, (callback_t)process_dependency_fmri,
&linfo);
scf_property_destroy(prop);
startd_free(pg_name, max_scf_name_size);
switch (err) {
case 0:
case EINTR:
return (info->err = linfo.err);
case ECONNABORTED:
case EINVAL:
return (info->err = err);
case ECANCELED:
return (info->err = 0);
case ECONNRESET:
return (info->err = ECONNABORTED);
default:
bad_error("walk_property_astrings", err);
/* NOTREACHED */
}
}
/*
* Build the dependency info for v from the repository. Returns 0 on success,
* ECONNABORTED on repository disconnection, EINVAL if the repository
* configuration is invalid, and ELOOP if a dependency would cause a cycle.
* In the last case, *pathp will point to a -1-terminated array of ids which
* constitute the rest of the dependency cycle.
*/
static int
set_dependencies(graph_vertex_t *v, scf_instance_t *inst, int **pathp)
{
struct deppg_info info;
int err;
uint_t old_configured;
assert(MUTEX_HELD(&dgraph_lock));
/*
* Mark the vertex as configured during dependency insertion to avoid
* dependency cycles (which can appear in the graph if one of the
* vertices is an exclusion-group).
*/
old_configured = v->gv_flags & GV_CONFIGURED;
v->gv_flags |= GV_CONFIGURED;
info.err = 0;
info.v = v;
info.pathp = pathp;
err = walk_dependency_pgs(inst, (callback_t)process_dependency_pg,
&info);
if (!old_configured)
v->gv_flags &= ~GV_CONFIGURED;
switch (err) {
case 0:
case EINTR:
return (info.err);
case ECONNABORTED:
return (ECONNABORTED);
case ECANCELED:
/* Should get delete event, so return 0. */
return (0);
default:
bad_error("walk_dependency_pgs", err);
/* NOTREACHED */
}
}
static void
handle_cycle(const char *fmri, int *path)
{
const char *cp;
size_t sz;
assert(MUTEX_HELD(&dgraph_lock));
path_to_str(path, (char **)&cp, &sz);
log_error(LOG_ERR, "Transitioning %s to maintenance "
"because it completes a dependency cycle (see svcs -xv for "
"details):\n%s", fmri ? fmri : "?", cp);
startd_free((void *)cp, sz);
}
/*
* Increment the vertex's reference count to prevent the vertex removal
* from the dgraph.
*/
static void
vertex_ref(graph_vertex_t *v)
{
assert(MUTEX_HELD(&dgraph_lock));
v->gv_refs++;
}
/*
* Decrement the vertex's reference count and remove the vertex from
* the dgraph when possible.
*
* Return VERTEX_REMOVED when the vertex has been removed otherwise
* return VERTEX_INUSE.
*/
static int
vertex_unref(graph_vertex_t *v)
{
assert(MUTEX_HELD(&dgraph_lock));
assert(v->gv_refs > 0);
v->gv_refs--;
return (free_if_unrefed(v));
}
/*
* When run on the dependencies of a vertex, populates list with
* graph_edge_t's which point to the service vertices or the instance
* vertices (no GVT_GROUP nodes) on which the vertex depends.
*
* Increment the vertex's reference count once the vertex is inserted
* in the list. The vertex won't be able to be deleted from the dgraph
* while it is referenced.
*/
static int
append_svcs_or_insts(graph_edge_t *e, uu_list_t *list)
{
graph_vertex_t *v = e->ge_vertex;
graph_edge_t *new;
int r;
switch (v->gv_type) {
case GVT_INST:
case GVT_SVC:
break;
case GVT_GROUP:
r = uu_list_walk(v->gv_dependencies,
(uu_walk_fn_t *)append_svcs_or_insts, list, 0);
assert(r == 0);
return (UU_WALK_NEXT);
case GVT_FILE:
return (UU_WALK_NEXT);
default:
#ifndef NDEBUG
uu_warn("%s:%d: Unexpected vertex type %d.\n", __FILE__,
__LINE__, v->gv_type);
#endif
abort();
}
new = startd_alloc(sizeof (*new));
new->ge_vertex = v;
uu_list_node_init(new, &new->ge_link, graph_edge_pool);
r = uu_list_insert_before(list, NULL, new);
assert(r == 0);
/*
* Because we are inserting the vertex in a list, we don't want
* the vertex to be freed while the list is in use. In order to
* achieve that, increment the vertex's reference count.
*/
vertex_ref(v);
return (UU_WALK_NEXT);
}
static boolean_t
should_be_in_subgraph(graph_vertex_t *v)
{
graph_edge_t *e;
if (v == milestone)
return (B_TRUE);
/*
* v is in the subgraph if any of its dependents are in the subgraph.
* Except for EXCLUDE_ALL dependents. And OPTIONAL dependents only
* count if we're enabled.
*/
for (e = uu_list_first(v->gv_dependents);
e != NULL;
e = uu_list_next(v->gv_dependents, e)) {
graph_vertex_t *dv = e->ge_vertex;
if (!(dv->gv_flags & GV_INSUBGRAPH))
continue;
/*
* Don't include instances that are optional and disabled.
*/
if (v->gv_type == GVT_INST && dv->gv_type == GVT_SVC) {
int in = 0;
graph_edge_t *ee;
for (ee = uu_list_first(dv->gv_dependents);
ee != NULL;
ee = uu_list_next(dv->gv_dependents, ee)) {
graph_vertex_t *ddv = e->ge_vertex;
if (ddv->gv_type == GVT_GROUP &&
ddv->gv_depgroup == DEPGRP_EXCLUDE_ALL)
continue;
if (ddv->gv_type == GVT_GROUP &&
ddv->gv_depgroup == DEPGRP_OPTIONAL_ALL &&
!(v->gv_flags & GV_ENBLD_NOOVR))
continue;
in = 1;
}
if (!in)
continue;
}
if (v->gv_type == GVT_INST &&
dv->gv_type == GVT_GROUP &&
dv->gv_depgroup == DEPGRP_OPTIONAL_ALL &&
!(v->gv_flags & GV_ENBLD_NOOVR))
continue;
/* Don't include excluded services and instances */
if (dv->gv_type == GVT_GROUP &&
dv->gv_depgroup == DEPGRP_EXCLUDE_ALL)
continue;
return (B_TRUE);
}
return (B_FALSE);
}
/*
* Ensures that GV_INSUBGRAPH is set properly for v and its descendents. If
* any bits change, manipulate the repository appropriately. Returns 0 or
* ECONNABORTED.
*/
static int
eval_subgraph(graph_vertex_t *v, scf_handle_t *h)
{
boolean_t old = (v->gv_flags & GV_INSUBGRAPH) != 0;
boolean_t new;
graph_edge_t *e;
scf_instance_t *inst;
int ret = 0, r;
assert(milestone != NULL && milestone != MILESTONE_NONE);
new = should_be_in_subgraph(v);
if (new == old)
return (0);
log_framework(LOG_DEBUG, new ? "Adding %s to the subgraph.\n" :
"Removing %s from the subgraph.\n", v->gv_name);
v->gv_flags = (v->gv_flags & ~GV_INSUBGRAPH) |
(new ? GV_INSUBGRAPH : 0);
if (v->gv_type == GVT_INST && (v->gv_flags & GV_CONFIGURED)) {
int err;
get_inst:
err = libscf_fmri_get_instance(h, v->gv_name, &inst);
if (err != 0) {
switch (err) {
case ECONNABORTED:
libscf_handle_rebind(h);
ret = ECONNABORTED;
goto get_inst;
case ENOENT:
break;
case EINVAL:
case ENOTSUP:
default:
bad_error("libscf_fmri_get_instance", err);
}
} else {
const char *