blob: ca018c89afdf555ec1e3dc16eee53d1a09e6fcb9 [file] [log] [blame]
/*
* This file and its contents are supplied under the terms of the
* Common Development and Distribution License ("CDDL"), version 1.0.
* You may only use this file in accordance with the terms of version
* 1.0 of the CDDL.
*
* A full copy of the text of the CDDL should have accompanied this
* source. A copy of the CDDL is also available via the Internet at
* http://www.illumos.org/license/CDDL.
*/
/*
* Copyright 2022 Oxide Computer Company
*/
#ifndef _SYS_UMC_H
#define _SYS_UMC_H
#include <sys/bitext.h>
#include <sys/amdzen/smn.h>
/*
* Various register definitions for accessing the AMD Unified Memory Controller
* (UMC) over SMN (the system management network). Note, that the SMN exists
* independently in each die and must be accessed through the appropriate
* IOHC.
*
* There are effectively four different revisions of the UMC that we know about
* and support querying:
*
* o DDR4 capable APUs
* o DDR4 capable CPUs
* o DDR5 capable APUs
* o DDR5 capable CPUs
*
* In general for a given revision and generation of a controller (DDR4 vs.
* DDR5), all of the address layouts are the same whether it is for an APU or a
* CPU. The main difference is generally in the number of features. For example,
* most APUs may not support the same rank multiplication bits and related in a
* device. However, unlike the DF where everything changes, the main difference
* within a generation is just which bits are implemented. This makes it much
* easier to define UMC information.
*
* Between DDR4 and DDR5 based devices, the register locations have shifted;
* however, generally speaking, the registers themselves are actually the same.
* Registers here, similar to the DF, have a common form:
*
* UMC_<reg name>_<vers>
*
* Here, <reg name> would be something like 'BASE', for the UMC
* UMC::CH::BaseAddr register. <vers> is one of DDR4 or DDR5. When the same
* register is supported at the same address between versions, then <vers> is
* elided.
*
* For fields inside of these registers, everything follows the same pattern in
* <sys/amdzen/df.h> which is:
*
* UMC_<reg name>_<vers>_GET_<field>
*
* Note, <vers> will be elided if the register is the same between the DDR4 and
* DDR5 versions.
*
* Finally, a cautionary note. While the DF provided a way for us to determine
* what version something is, we have not determined a way to programmatically
* determine what something supports outside of making notes based on the
* family, model, and stepping CPUID information. Unfortunately, you must look
* towards the documentation and find what you need in the PPR (processor
* programming reference).
*/
#ifdef __cplusplus
extern "C" {
#endif
/*
* UMC Channel registers. These are in SMN Space. DDR4 and DDR5 based UMCs share
* the same base address, somewhat surprisingly. This constructs the appropriate
* offset and ensures that a caller doesn't exceed the number of known instances
* of the register. See smn.h for additional details on SMN addressing. All
* UMC registers are 32 bits wide; we check for violations.
*/
static inline smn_reg_t
amdzen_umc_smn_reg(const uint8_t umcno, const smn_reg_def_t def,
const uint16_t reginst)
{
const uint32_t APERTURE_BASE = 0x50000;
const uint32_t APERTURE_MASK = 0xffffe000;
const uint32_t umc32 = (const uint32_t)umcno;
const uint32_t reginst32 = (const uint32_t)reginst;
const uint32_t stride = (def.srd_stride == 0) ? 4 : def.srd_stride;
const uint32_t nents = (def.srd_nents == 0) ? 1 :
(const uint32_t)def.srd_nents;
ASSERT0(def.srd_size);
ASSERT3S(def.srd_unit, ==, SMN_UNIT_UMC);
ASSERT0(def.srd_reg & APERTURE_MASK);
ASSERT3U(umc32, <, 12);
ASSERT3U(nents, >, reginst32);
const uint32_t aperture_off = umc32 << 20;
ASSERT3U(aperture_off, <=, UINT32_MAX - APERTURE_BASE);
const uint32_t aperture = APERTURE_BASE + aperture_off;
ASSERT0(aperture & ~APERTURE_MASK);
const uint32_t reg = def.srd_reg + reginst32 * stride;
ASSERT0(reg & APERTURE_MASK);
return (SMN_MAKE_REG(aperture + reg));
}
/*
* UMC::CH::BaseAddr, UMC::CH::BaseAddrSec -- determines the base address used
* to match a chip select. Instances 0/1 always refer to DIMM 0, while
* instances 2/3 always refer to DIMM 1.
*/
/*CSTYLED*/
#define D_UMC_BASE (const smn_reg_def_t){ \
.srd_unit = SMN_UNIT_UMC, \
.srd_reg = 0x00, \
.srd_nents = 4 \
}
/*CSTYLED*/
#define D_UMC_BASE_SEC (const smn_reg_def_t){ \
.srd_unit = SMN_UNIT_UMC, \
.srd_reg = 0x10, \
.srd_nents = 4 \
}
#define UMC_BASE(u, i) amdzen_umc_smn_reg(u, D_UMC_BASE, i)
#define UMC_BASE_SEC(u, i) amdzen_umc_smn_reg(u, D_UMC_BASE_SEC, i)
#define UMC_BASE_GET_ADDR(r) bitx32(r, 31, 1)
#define UMC_BASE_ADDR_SHIFT 9
#define UMC_BASE_GET_EN(r) bitx32(r, 0, 0)
/*
* UMC::BaseAddrExt, UMC::BaseAddrSecExt -- The first of several extensions to
* registers that allow more address bits. Note, only present in some DDR5
* capable SoCs.
*/
/*CSTYLED*/
#define D_UMC_BASE_EXT_DDR5 (const smn_reg_def_t){ \
.srd_unit = SMN_UNIT_UMC, \
.srd_reg = 0xb00, \
.srd_nents = 4 \
}
/*CSTYLED*/
#define D_UMC_BASE_EXT_SEC_DDR5 (const smn_reg_def_t){ \
.srd_unit = SMN_UNIT_UMC, \
.srd_reg = 0xb10, \
.srd_nents = 4 \
}
#define UMC_BASE_EXT_DDR5(u, i) amdzen_umc_smn_reg(u, D_UMC_BASE_EXT_DDR5, i)
#define UMC_BASE_EXT_SEC_DDR5(u, i) \
amdzen_umc_smn_reg(u, D_UMC_BASE_EXT_SEC_DDR5, i)
#define UMC_BASE_EXT_GET_ADDR(r) bitx32(r, 7, 0)
#define UMC_BASE_EXT_ADDR_SHIFT 40
/*
* UMC::CH::AddrMask, UMC::CH::AddrMaskSec -- This register is used to compare
* the incoming address to see it matches the base. Tweaking what is used for
* match is often part of the interleaving strategy.
*/
/*CSTYLED*/
#define D_UMC_MASK_DDR4 (const smn_reg_def_t){ \
.srd_unit = SMN_UNIT_UMC, \
.srd_reg = 0x20, \
.srd_nents = 2 \
}
/*CSTYLED*/
#define D_UMC_MASK_SEC_DDR4 (const smn_reg_def_t){ \
.srd_unit = SMN_UNIT_UMC, \
.srd_reg = 0x28, \
.srd_nents = 2 \
}
/*CSTYLED*/
#define D_UMC_MASK_DDR5 (const smn_reg_def_t){ \
.srd_unit = SMN_UNIT_UMC, \
.srd_reg = 0x20, \
.srd_nents = 4 \
}
/*CSTYLED*/
#define D_UMC_MASK_SEC_DDR5 (const smn_reg_def_t){ \
.srd_unit = SMN_UNIT_UMC, \
.srd_reg = 0x30, \
.srd_nents = 4 \
}
#define UMC_MASK_DDR4(u, i) amdzen_umc_smn_reg(u, D_UMC_MASK_DDR4, i)
#define UMC_MASK_SEC_DDR4(u, i) amdzen_umc_smn_reg(u, D_UMC_MASK_SEC_DDR4, i)
#define UMC_MASK_DDR5(u, i) amdzen_umc_smn_reg(u, D_UMC_MASK_DDR5, i)
#define UMC_MASK_SEC_DDR5(u, i) amdzen_umc_smn_reg(u, D_UMC_MASK_SEC_DDR5, i)
#define UMC_MASK_GET_ADDR(r) bitx32(r, 31, 1)
#define UMC_MASK_ADDR_SHIFT 9
/*
* UMC::AddrMaskExt, UMC::AddrMaskSecExt -- Extended mask addresses.
*/
/*CSTYLED*/
#define D_UMC_MASK_EXT_DDR5 (const smn_reg_def_t){ \
.srd_unit = SMN_UNIT_UMC, \
.srd_reg = 0xb20, \
.srd_nents = 4 \
}
/*CSTYLED*/
#define D_UMC_MASK_EXT_SEC_DDR5 (const smn_reg_def_t){ \
.srd_unit = SMN_UNIT_UMC, \
.srd_reg = 0xb30, \
.srd_nents = 4 \
}
#define UMC_MASK_EXT_DDR5(u, i) amdzen_umc_smn_reg(u, D_UMC_MASK_EXT_DDR5, i)
#define UMC_MASK_EXT_SEC_DDR5(u, i) \
amdzen_umc_smn_reg(u, D_UMC_MASK_EXT_SEC_DDR5, i)
#define UMC_MASK_EXT_GET_ADDR(r) bitx32(r, 7, 0)
#define UMC_MASK_EXT_ADDR_SHIFT 40
/*
* UMC::CH::AddrCfg -- This register contains a number of bits that describe how
* the address is actually used, one per DIMM. Note, not all members are valid
* for all classes of DIMMs. It's worth calling out that the total number of
* banks value here describes the total number of banks on the entire chip, e.g.
* it is bank groups * banks/groups. Therefore to determine the number of
* banks/group you must subtract the number of bank group bits from the total
* number of bank bits.
*/
/*CSTYLED*/
#define D_UMC_ADDRCFG_DDR4 (const smn_reg_def_t){ \
.srd_unit = SMN_UNIT_UMC, \
.srd_reg = 0x30, \
.srd_nents = 2 \
}
/*CSTYLED*/
#define D_UMC_ADDRCFG_DDR5 (const smn_reg_def_t){ \
.srd_unit = SMN_UNIT_UMC, \
.srd_reg = 0x40, \
.srd_nents = 4 \
}
#define UMC_ADDRCFG_DDR4(u, i) amdzen_umc_smn_reg(u, D_UMC_ADDRCFG_DDR4, i)
#define UMC_ADDRCFG_DDR5(u, i) amdzen_umc_smn_reg(u, D_UMC_ADDRCFG_DDR5, i)
#define UMC_ADDRCFG_GET_NBANK_BITS(r) bitx32(r, 21, 20)
#define UMC_ADDRCFG_NBANK_BITS_BASE 3
#define UMC_ADDRCFG_GET_NCOL_BITS(r) bitx32(r, 19, 16)
#define UMC_ADDRCFG_NCOL_BITS_BASE 5
#define UMC_ADDRCFG_GET_NROW_BITS_LO(r) bitx32(r, 11, 8)
#define UMC_ADDRCFG_NROW_BITS_LO_BASE 10
#define UMC_ADDRCFG_GET_NBANKGRP_BITS(r) bitx32(r, 3, 2)
#define UMC_ADDRCFG_DDR4_GET_NROW_BITS_HI(r) bitx32(r, 15, 12)
#define UMC_ADDRCFG_DDR4_GET_NRM_BITS(r) bitx32(r, 5, 4)
#define UMC_ADDRCFG_DDR5_GET_CSXOR(r) bitx32(r, 31, 30)
#define UMC_ADDRCFG_DDR5_GET_NRM_BITS(r) bitx32(r, 6, 4)
/*
* UMC::CH::AddrSel -- This register is used to program how the actual bits in
* the normalized address map to the row and bank. While the bank can select
* which bits in the normalized address are used to construct the bank number,
* row bits are contiguous from the starting number.
*/
/*CSTYLED*/
#define D_UMC_ADDRSEL_DDR4 (const smn_reg_def_t){ \
.srd_unit = SMN_UNIT_UMC, \
.srd_reg = 0x40, \
.srd_nents = 2 \
}
/*CSTYLED*/
#define D_UMC_ADDRSEL_DDR5 (const smn_reg_def_t){ \
.srd_unit = SMN_UNIT_UMC, \
.srd_reg = 0x50, \
.srd_nents = 4 \
}
#define UMC_ADDRSEL_DDR4(u, i) amdzen_umc_smn_reg(u, D_UMC_ADDRSEL_DDR4, i)
#define UMC_ADDRSEL_DDR5(u, i) amdzen_umc_smn_reg(u, D_UMC_ADDRSEL_DDR5, i)
#define UMC_ADDRSEL_GET_ROW_LO(r) bitx32(r, 27, 24)
#define UMC_ADDRSEL_ROW_LO_BASE 12
#define UMC_ADDRSEL_GET_BANK4(r) bitx32(r, 19, 16)
#define UMC_ADDRSEL_GET_BANK3(r) bitx32(r, 15, 12)
#define UMC_ADDRSEL_GET_BANK2(r) bitx32(r, 11, 8)
#define UMC_ADDRSEL_GET_BANK1(r) bitx32(r, 7, 4)
#define UMC_ADDRSEL_GET_BANK0(r) bitx32(r, 3, 0)
#define UMC_ADDRSEL_BANK_BASE 5
#define UMC_ADDRSEL_DDR4_GET_ROW_HI(r) bitx32(r, 31, 28)
#define UMC_ADDRSEL_DDR4_ROW_HI_BASE 24
/*
* UMC::CH::ColSelLo, UMC::CH::ColSelHi -- This register selects which address
* bits map to the various column select bits. These registers interleave so in
* the case of DDR4, it's 0x50, 0x54 for DIMM 0 lo, hi. Then 0x58, 0x5c for
* DIMM1. DDR5 based entries do something similar; however, instead of being
* per-DIMM, there is one of these for each CS.
*/
/*CSTYLED*/
#define D_UMC_COLSEL_LO_DDR4 (const smn_reg_def_t){ \
.srd_unit = SMN_UNIT_UMC, \
.srd_reg = 0x50, \
.srd_nents = 2, \
.srd_stride = 8 \
}
/*CSTYLED*/
#define D_UMC_COLSEL_HI_DDR4 (const smn_reg_def_t){ \
.srd_unit = SMN_UNIT_UMC, \
.srd_reg = 0x54, \
.srd_nents = 2, \
.srd_stride = 8 \
}
/*CSTYLED*/
#define D_UMC_COLSEL_LO_DDR5 (const smn_reg_def_t){ \
.srd_unit = SMN_UNIT_UMC, \
.srd_reg = 0x60, \
.srd_nents = 4, \
.srd_stride = 8 \
}
/*CSTYLED*/
#define D_UMC_COLSEL_HI_DDR5 (const smn_reg_def_t){ \
.srd_unit = SMN_UNIT_UMC, \
.srd_reg = 0x64, \
.srd_nents = 4, \
.srd_stride = 8 \
}
#define UMC_COLSEL_LO_DDR4(u, i) \
amdzen_umc_smn_reg(u, D_UMC_COLSEL_LO_DDR4, i)
#define UMC_COLSEL_HI_DDR4(u, i) \
amdzen_umc_smn_reg(u, D_UMC_COLSEL_HI_DDR4, i)
#define UMC_COLSEL_LO_DDR5(u, i) \
amdzen_umc_smn_reg(u, D_UMC_COLSEL_LO_DDR5, i)
#define UMC_COLSEL_HI_DDR5(u, i) \
amdzen_umc_smn_reg(u, D_UMC_COLSEL_HI_DDR5, i)
#define UMC_COLSEL_REMAP_GET_COL(r, x) bitx32(r, (3 + (4 * (x))), (4 * ((x))))
#define UMC_COLSEL_LO_BASE 2
#define UMC_COLSEL_HI_BASE 8
/*
* UMC::CH::RmSel -- This register contains the bits that determine how the rank
* is determined. Which fields of this are valid vary a lot in the different
* parts. The DDR4 and DDR5 versions are different enough that we use totally
* disjoint definitions. It's also worth noting that DDR5 doesn't have a
* secondary version of this as it is included in the main register.
*
* In general, APUs have some of the MSBS (most significant bit swap) related
* fields; however, they do not have rank multiplication bits.
*/
/*CSTYLED*/
#define D_UMC_RMSEL_DDR4 (const smn_reg_def_t){ \
.srd_unit = SMN_UNIT_UMC, \
.srd_reg = 0x70, \
.srd_nents = 2 \
}
/*CSTYLED*/
#define D_UMC_RMSEL_SEC_DDR4 (const smn_reg_def_t){ \
.srd_unit = SMN_UNIT_UMC, \
.srd_reg = 0x78, \
.srd_nents = 2 \
}
#define UMC_RMSEL_DDR4(u, i) amdzen_umc_smn_reg(u, D_UMC_RMSEL_DDR4, i)
#define UMC_RMSEL_SEC_DDR4(u, i) \
amdzen_umc_smn_reg(u, D_UMC_RMSEL_SEC_DDR4, i)
#define UMC_RMSEL_DDR4_GET_INV_MSBO(r) bitx32(r, 19, 18)
#define UMC_RMSEL_DDR4_GET_INV_MSBE(r) bitx32(r, 17, 16)
#define UMC_RMSEL_DDR4_GET_RM2(r) bitx32(r, 11, 8)
#define UMC_RMSEL_DDR4_GET_RM1(r) bitx32(r, 7, 4)
#define UMC_RMSEL_DDR4_GET_RM0(r) bitx32(r, 3, 0)
#define UMC_RMSEL_BASE 12
/*CSTYLED*/
#define D_UMC_RMSEL_DDR5 (const smn_reg_def_t){ \
.srd_unit = SMN_UNIT_UMC, \
.srd_reg = 0x80, \
.srd_nents = 4 \
}
#define UMC_RMSEL_DDR5(u, i) amdzen_umc_smn_reg(u, D_UMC_RMSEL_DDR5, i)
#define UMC_RMSEL_DDR5_GET_INV_MSBS_SEC(r) bitx32(r, 31, 30)
#define UMC_RMSEL_DDR5_GET_INV_MSBS(r) bitx32(r, 29, 28)
#define UMC_RMSEL_DDR5_GET_SUBCHAN(r) bitx32(r, 19, 16)
#define UMC_RMSEL_DDR5_SUBCHAN_BASE 5
#define UMC_RMSEL_DDR5_GET_RM3(r) bitx32(r, 15, 12)
#define UMC_RMSEL_DDR5_GET_RM2(r) bitx32(r, 11, 8)
#define UMC_RMSEL_DDR5_GET_RM1(r) bitx32(r, 7, 4)
#define UMC_RMSEL_DDR5_GET_RM0(r) bitx32(r, 3, 0)
/*
* UMC::CH::DimmCfg -- This describes several properties of the DIMM that is
* installed, such as its overall width or type.
*/
/*CSTYLED*/
#define D_UMC_DIMMCFG_DDR4 (const smn_reg_def_t){ \
.srd_unit = SMN_UNIT_UMC, \
.srd_reg = 0x80, \
.srd_nents = 2 \
}
/*CSTYLED*/
#define D_UMC_DIMMCFG_DDR5 (const smn_reg_def_t){ \
.srd_unit = SMN_UNIT_UMC, \
.srd_reg = 0x90, \
.srd_nents = 2 \
}
#define UMC_DIMMCFG_DDR4(u, i) amdzen_umc_smn_reg(u, D_UMC_DIMMCFG_DDR4, i)
#define UMC_DIMMCFG_DDR5(u, i) amdzen_umc_smn_reg(u, D_UMC_DIMMCFG_DDR5, i)
#define UMC_DIMMCFG_GET_PKG_RALIGN(r) bitx32(r, 10, 10)
#define UMC_DIMMCFG_GET_REFRESH_DIS(r) bitx32(r, 9, 9)
#define UMC_DIMMCFG_GET_DQ_SWAP_DIS(r) bitx32(r, 8, 8)
#define UMC_DIMMCFG_GET_X16(r) bitx32(r, 7, 7)
#define UMC_DIMMCFG_GET_X4(r) bitx32(r, 6, 6)
#define UMC_DIMMCFG_GET_LRDIMM(r) bitx32(r, 5, 5)
#define UMC_DIMMCFG_GET_RDIMM(r) bitx32(r, 4, 4)
#define UMC_DIMMCFG_GET_CISCS(r) bitx32(r, 3, 3)
#define UMC_DIMMCFG_GET_3DS(r) bitx32(r, 2, 2)
#define UMC_DIMMCFG_DDR4_GET_NVDIMMP(r) bitx32(r, 12, 12)
#define UMC_DIMMCFG_DDR4_GET_DDR4e(r) bitx32(r, 11, 11)
#define UMC_DIMMCFG_DDR5_GET_RALIGN(r) bitx32(r, 13, 12)
#define UMC_DIMMCFG_DDR5_GET_ASYM(r) bitx32(r, 11, 11)
#define UMC_DIMMCFG_DDR4_GET_OUTPUT_INV(r) bitx32(r, 1, 1)
#define UMC_DIMMCFG_DDR4_GET_MRS_MIRROR(r) bitx32(r, 0, 0)
/*
* UMC::CH::AddrHashBank -- These registers contain various instructions about
* how to hash an address across a bank to influence which bank is used.
*/
/*CSTYLED*/
#define D_UMC_BANK_HASH_DDR4 (const smn_reg_def_t){ \
.srd_unit = SMN_UNIT_UMC, \
.srd_reg = 0xc8, \
.srd_nents = 5 \
}
/*CSTYLED*/
#define D_UMC_BANK_HASH_DDR5 (const smn_reg_def_t){ \
.srd_unit = SMN_UNIT_UMC, \
.srd_reg = 0x98, \
.srd_nents = 5 \
}
#define UMC_BANK_HASH_DDR4(u, i) \
amdzen_umc_smn_reg(u, D_UMC_BANK_HASH_DDR4, i)
#define UMC_BANK_HASH_DDR5(u, i) \
amdzen_umc_smn_reg(u, D_UMC_BANK_HASH_DDR5, i)
#define UMC_BANK_HASH_GET_ROW(r) bitx32(r, 31, 14)
#define UMC_BANK_HASH_GET_COL(r) bitx32(r, 13, 1)
#define UMC_BANK_HASH_GET_EN(r) bitx32(r, 0, 0)
/*
* UMC::CH::AddrHashRM -- This hash register describes how to transform a UMC
* address when trying to do rank hashing. Note, instance 3 is is reserved in
* DDR5 modes.
*/
/*CSTYLED*/
#define D_UMC_RANK_HASH_DDR4 (const smn_reg_def_t){ \
.srd_unit = SMN_UNIT_UMC, \
.srd_reg = 0xdc, \
.srd_nents = 3 \
}
/*CSTYLED*/
#define D_UMC_RANK_HASH_DDR5 (const smn_reg_def_t){ \
.srd_unit = SMN_UNIT_UMC, \
.srd_reg = 0xb0, \
.srd_nents = 4 \
}
#define UMC_RANK_HASH_DDR4(u, i) \
amdzen_umc_smn_reg(u, D_UMC_RANK_HASH_DDR4, i)
#define UMC_RANK_HASH_DDR5(u, i) \
amdzen_umc_smn_reg(u, D_UMC_RANK_HASH_DDR5, i)
#define UMC_RANK_HASH_GET_ADDR(r) bitx32(r, 31, 1)
#define UMC_RANK_HASH_SHIFT 9
#define UMC_RANK_HASH_GET_EN(r) bitx32(r, 0, 0)
/*
* UMC::AddrHashRMExt -- Extended rank hash addresses.
*/
/*CSTYLED*/
#define D_UMC_RANK_HASH_EXT_DDR5 (const smn_reg_def_t){ \
.srd_unit = SMN_UNIT_UMC, \
.srd_reg = 0xbb0, \
.srd_nents = 4 \
}
#define UMC_RANK_HASH_EXT_DDR5(u, i) \
amdzen_umc_smn_reg(u, D_UMC_RANK_HASH_EXT_DDR5, i)
#define UMC_RANK_HASH_EXT_GET_ADDR(r) bitx32(r, 7, 0)
#define UMC_RANK_HASH_EXT_ADDR_SHIFT 40
/*
* UMC::CH::AddrHashPC, UMC::CH::AddrHashPC2 -- These registers describe a hash
* to use for the DDR5 sub-channel. Note, in the DDR4 case this is actually the
* upper two rank hash registers defined above because on the systems where this
* occurs for DDR4, they only have up to one rank hash.
*/
/*CSTYLED*/
#define D_UMC_PC_HASH_DDR5 (const smn_reg_def_t){ \
.srd_unit = SMN_UNIT_UMC, \
.srd_reg = 0xc0 \
}
/*CSTYLED*/
#define D_UMC_PC_HASH2_DDR5 (const smn_reg_def_t){ \
.srd_unit = SMN_UNIT_UMC, \
.srd_reg = 0xc4 \
}
#define UMC_PC_HASH_DDR4(u) UMC_RANK_HASH_DDR4(u, 1)
#define UMC_PC_HASH2_DDR4(u) UMC_RANK_HASH_DDR4(u, 2)
#define UMC_PC_HASH_DDR5(u) amdzen_umc_smn_reg(u, D_UMC_PC_HASH_DDR5, 0)
#define UMC_PC_HASH2_DDR5(u) amdzen_umc_smn_reg(u, D_UMC_PC_HASH2_DDR5, 0)
#define UMC_PC_HASH_GET_ROW(r) bitx32(r, 31, 14)
#define UMC_PC_HASH_GET_COL(r) bitx32(r, 13, 1)
#define UMC_PC_HASH_GET_EN(r) bitx32(r, 0, 0)
#define UMC_PC_HASH2_GET_BANK(r) bitx32(r, 4, 0)
/*
* UMC::CH::AddrHashCS -- Hashing: chip-select edition. Note, these can
* ultimately cause you to change which DIMM is being actually accessed.
*/
/*CSTYLED*/
#define D_UMC_CS_HASH_DDR4 (const smn_reg_def_t){ \
.srd_unit = SMN_UNIT_UMC, \
.srd_reg = 0xe8, \
.srd_nents = 2 \
}
/*CSTYLED*/
#define D_UMC_CS_HASH_DDR5 (const smn_reg_def_t){ \
.srd_unit = SMN_UNIT_UMC, \
.srd_reg = 0xc8, \
.srd_nents = 2 \
}
#define UMC_CS_HASH_DDR4(u, i) amdzen_umc_smn_reg(u, D_UMC_CS_HASH_DDR4, i)
#define UMC_CS_HASH_DDR5(u, i) amdzen_umc_smn_reg(u, D_UMC_CS_HASH_DDR5, i)
#define UMC_CS_HASH_GET_ADDR(r) bitx32(r, 31, 1)
#define UMC_CS_HASH_SHIFT 9
#define UMC_CS_HASH_GET_EN(r) bitx32(r, 0, 0)
/*
* UMC::AddrHashExtCS -- Extended chip-select hash addresses.
*/
/*CSTYLED*/
#define D_UMC_CS_HASH_EXT_DDR5 (const smn_reg_def_t){ \
.srd_unit = SMN_UNIT_UMC, \
.srd_reg = 0xbc8, \
.srd_nents = 2 \
}
#define UMC_CS_HASH_EXT_DDR5(u, i) \
amdzen_umc_smn_reg(u, D_UMC_CS_HASH_EXT_DDR5, i)
#define UMC_CS_HASH_EXT_GET_ADDR(r) bitx32(r, 7, 0)
#define UMC_CS_HASH_EXT_ADDR_SHIFT 40
/*
* UMC::CH::UmcConfig -- This register controls various features of the device.
* For our purposes we mostly care about seeing if ECC is enabled and a DIMM
* type.
*/
/*CSTYLED*/
#define D_UMC_UMCCFG (const smn_reg_def_t){ \
.srd_unit = SMN_UNIT_UMC, \
.srd_reg = 0x100 \
}
#define UMC_UMCCFG(u) amdzen_umc_smn_reg(u, D_UMC_UMCCFG, 0)
#define UMC_UMCCFG_GET_READY(r) bitx32(r, 31, 31)
#define UMC_UMCCFG_GET_ECC_EN(r) bitx32(r, 12, 12)
#define UMC_UMCCFG_GET_BURST_CTL(r) bitx32(r, 11, 10)
#define UMC_UMCCFG_GET_BURST_LEN(r) bitx32(r, 9, 8)
#define UMC_UMCCFG_GET_DDR_TYPE(r) bitx32(r, 2, 0)
#define UMC_UMCCFG_DDR4_T_DDR4 0
#define UMC_UMCCFG_DDR4_T_LPDDR4 5
#define UMC_UMCCFG_DDR5_T_DDR4 0
#define UMC_UMCCFG_DDR5_T_DDR5 1
#define UMC_UMCCFG_DDR5_T_LPDDR4 5
#define UMC_UMCCFG_DDR5_T_LPDDR5 6
/*
* UMC::CH::DataCtrl -- Various settings around whether data encryption or
* scrambling is enabled. Note, this register really changes a bunch from family
* to family.
*/
/*CSTYLED*/
#define D_UMC_DATACTL (const smn_reg_def_t){ \
.srd_unit = SMN_UNIT_UMC, \
.srd_reg = 0x144 \
}
#define UMC_DATACTL(u) amdzen_umc_smn_reg(u, D_UMC_DATACTL, 0)
#define UMC_DATACTL_GET_ENCR_EN(r) bitx32(r, 8, 8)
#define UMC_DATACTL_GET_SCRAM_EN(r) bitx32(r, 0, 0)
#define UMC_DATACTL_DDR4_GET_TWEAK(r) bitx32(r, 19, 16)
#define UMC_DATACTL_DDR4_GET_VMG2M(r) bitx32(r, 12, 12)
#define UMC_DATACTL_DDR4_GET_FORCE_ENCR(r) bitx32(r, 11, 11)
#define UMC_DATACTL_DDR5_GET_TWEAK(r) bitx32(r, 16, 16)
#define UMC_DATACTL_DDR5_GET_XTS(r) bitx32(r, 14, 14)
#define UMC_DATACTL_DDR5_GET_AES256(r) bitx32(r, 13, 13)
/*
* UMC::CH:EccCtrl -- Various settings around how ECC operates.
*/
/*CSTYLED*/
#define D_UMC_ECCCTL (const smn_reg_def_t){ \
.srd_unit = SMN_UNIT_UMC, \
.srd_reg = 0x14c \
}
#define UMC_ECCCTL(u) amdzen_umc_smn_reg(u, D_UMC_ECCCTL, 0)
#define UMC_ECCCTL_GET_RD_EN(r) bitx32(x, 10, 10)
#define UMC_ECCCTL_GET_X16(r) bitx32(x, 9, 9)
#define UMC_ECCCTL_GET_UC_FATAL(r) bitx32(x, 8, 8)
#define UMC_ECCCTL_GET_SYM_SIZE(r) bitx32(x, 7, 7)
#define UMC_ECCCTL_GET_BIT_IL(r) bitx32(x, 6, 6)
#define UMC_ECCCTL_GET_HIST_EN(r) bitx32(x, 5, 5)
#define UMC_ECCCTL_GET_SW_SYM_EN(r) bitx32(x, 4, 4)
#define UMC_ECCCTL_GET_WR_EN(r) bitx32(x, 0, 0)
/*
* Note, while this group appears generic and is the same in both DDR4/DDR5
* systems, this is not always present on every SoC and seems to depend on
* something else inside the chip.
*/
#define UMC_ECCCTL_DDR_GET_PI(r) bitx32(r, 13, 13)
#define UMC_ECCCTL_DDR_GET_PF_DIS(r) bitx32(r, 12, 12)
#define UMC_ECCCTL_DDR_GET_SDP_OVR(r) bitx32(x, 11, 11)
#define UMC_ECCCTL_DDR_GET_REPLAY_EN(r) bitx32(x, 1, 1)
#define UMC_ECCCTL_DDR5_GET_PIN_RED(r) bitx32(r, 14, 14)
/*
* UMC::Ch::UmcCap, UMC::CH::UmcCapHi -- Various capability registers and
* feature disables. We mostly just record these for future us for debugging
* purposes. They aren't used as part of memory decoding.
*/
/*CSTYLED*/
#define D_UMC_UMCCAP (const smn_reg_def_t){ \
.srd_unit = SMN_UNIT_UMC, \
.srd_reg = 0xdf0 \
}
/*CSTYLED*/
#define D_UMC_UMCCAP_HI (const smn_reg_def_t){ \
.srd_unit = SMN_UNIT_UMC, \
.srd_reg = 0xdf4 \
}
#define UMC_UMCCAP(u) amdzen_umc_smn_reg(u, D_UMC_UMCCAP, 0)
#define UMC_UMCCAP_HI(u) amdzen_umc_smn_reg(u, D_UMC_UMCCAP_HI, 0)
#ifdef __cplusplus
}
#endif
#endif /* _SYS_UMC_H */