| /* |
| * This file and its contents are supplied under the terms of the |
| * Common Development and Distribution License ("CDDL"), version 1.0. |
| * You may only use this file in accordance with the terms of version |
| * 1.0 of the CDDL. |
| * |
| * A full copy of the text of the CDDL should have accompanied this |
| * source. A copy of the CDDL is also available via the Internet at |
| * http://www.illumos.org/license/CDDL. |
| */ |
| |
| /* |
| * Copyright 2019, Joyent, Inc. |
| * Copyright 2022 Oxide Computer Company |
| */ |
| |
| /* |
| * Nexus Driver for AMD Zen family systems. The purpose of this driver is to |
| * provide access to the following resources in a single, centralized fashion: |
| * |
| * - The per-chip Data Fabric |
| * - The North Bridge |
| * - The System Management Network (SMN) |
| * |
| * This is a nexus driver as once we have attached to all the requisite |
| * components, we will enumerate child devices which consume this functionality. |
| * |
| * ------------------------ |
| * Mapping Devices Together |
| * ------------------------ |
| * |
| * The operating system needs to expose things like temperature sensors and DRAM |
| * configuration registers in terms that are meaningful to the system such as |
| * logical CPUs, cores, etc. This driver attaches to the PCI IDs that represent |
| * the northbridge and data fabric; however, there are multiple PCI devices (one |
| * per die) that exist. This driver does manage to map all of these three things |
| * together; however, it requires some acrobatics. Unfortunately, there's no |
| * direct way to map a northbridge to its corresponding die. However, we can map |
| * a CPU die to a data fabric PCI device and a data fabric PCI device to a |
| * corresponding northbridge PCI device. |
| * |
| * In current Zen based products, there is a direct mapping between processor |
| * nodes and a data fabric PCI device. All of the devices are on PCI Bus 0 and |
| * start from Device 0x18. Device 0x18 maps to processor node 0, 0x19 to |
| * processor node 1, etc. This means that to map a logical CPU to a data fabric |
| * device, we take its processor node id, add it to 0x18 and find the PCI device |
| * that is on bus 0, device 0x18. As each data fabric device is attached based |
| * on its PCI ID, we add it to the global list, amd_nbdf_dfs that is in the |
| * amd_f17nbdf_t structure. |
| * |
| * The northbridge PCI device has a defined device and function, but the PCI bus |
| * that it's on can vary. Each die has its own series of PCI buses that are |
| * assigned to it and the northbridge PCI device is on the first of die-specific |
| * PCI bus for each die. This also means that the northbridge will not show up |
| * on PCI bus 0, which is the PCI bus that all of the data fabric devices are |
| * on. While conventionally the northbridge with the lowest PCI bus value |
| * would correspond to processor node zero, hardware does not guarantee that at |
| * all. Because we don't want to be at the mercy of firmware, we don't rely on |
| * this ordering, even though we have yet to find a system that deviates from |
| * this scheme. |
| * |
| * One of the registers in the data fabric device's function 0 |
| * (AMDZEN_DF_F0_CFG_ADDR_CTL) happens to have the first PCI bus that is |
| * associated with the processor node. This means that we can map a data fabric |
| * device to a northbridge by finding the northbridge whose PCI bus matches the |
| * value in the corresponding data fabric's AMDZEN_DF_F0_CFG_ADDR_CTL. |
| * |
| * We can map a northbridge to a data fabric device and a data fabric device to |
| * a die. Because these are generally 1:1 mappings, there is a transitive |
| * relationship and therefore we know which northbridge is associated with which |
| * processor die. This is summarized in the following image: |
| * |
| * +-------+ +-----------------------------------+ +--------------+ |
| * | Die 0 |--->| Data Fabric PCI BDF 0/18/0 |------->| Northbridge | |
| * +-------+ | AMDZEN_DF_F0_CFG_ADDR_CTL: bus 10 | | PCI 10/0/0 | |
| * ... +-----------------------------------+ +--------------+ |
| * +-------+ +------------------------------------+ +--------------+ |
| * | Die n |---->| Data Fabric PCI BDF 0/18+n/0 |------->| Northbridge | |
| * +-------+ | AMDZEN_DF_F0_CFG_ADDR_CTL: bus 133 | | PCI 133/0/0 | |
| * +------------------------------------+ +--------------+ |
| * |
| * Note, the PCI buses used by the northbridges here are arbitrary. They do not |
| * reflect the actual values by hardware; however, the bus/device/function (BDF) |
| * of the data fabric accurately models hardware. All of the BDF values are in |
| * hex. |
| * |
| * Starting with the Rome generation of processors (Family 17h Model 30-3Fh), |
| * AMD has multiple northbridges that exist on a given die. All of these |
| * northbridges share the same data fabric and system management network port. |
| * From our perspective this means that some of the northbridge devices will be |
| * redundant and that we will no longer have a 1:1 mapping between the |
| * northbridge and the data fabric devices. Every data fabric will have a |
| * northbridge, but not every northbridge will have a data fabric device mapped. |
| * Because we're always trying to map from a die to a northbridge and not the |
| * reverse, the fact that there are extra northbridge devices hanging around |
| * that we don't know about shouldn't be a problem. |
| * |
| * ------------------------------- |
| * Attach and Detach Complications |
| * ------------------------------- |
| * |
| * Because we need to map different PCI devices together, this means that we |
| * have multiple dev_info_t structures that we need to manage. Each of these is |
| * independently attached and detached. While this is easily managed for attach, |
| * it is not for detach. Each of these devices is a 'stub'. |
| * |
| * Once a device has been detached it will only come back if we have an active |
| * minor node that will be accessed. This means that if they are detached, |
| * nothing would ever cause them to be reattached. The system also doesn't |
| * provide us a way or any guarantees around making sure that we're attached to |
| * all such devices before we detach. As a result, unfortunately, it's easier to |
| * basically have detach always fail. |
| * |
| * --------------- |
| * Exposed Devices |
| * --------------- |
| * |
| * Rather than try and have all of the different functions that could be |
| * provided by one driver, we instead have created a nexus driver that will |
| * itself try and load children. Children are all pseudo-device drivers that |
| * provide different pieces of functionality that use this. |
| * |
| * ------- |
| * Locking |
| * ------- |
| * |
| * The amdzen_data structure contains a single lock, azn_mutex. The various |
| * client functions are intended for direct children of our nexus, but have been |
| * designed in case someone else depends on this driver despite not being a |
| * child. Once a DF has been discovered, the set of entities inside of it |
| * (adf_nents, adf_ents[]) is considered static, constant data. This means that |
| * iterating over it in and of itself does not require locking; however, the |
| * discovery of the amd_df_t does. In addition, whenever performing register |
| * accesses to the DF or SMN, those require locking. This means that one must |
| * hold the lock in the following circumstances: |
| * |
| * o Looking up DF structures |
| * o Reading or writing to DF registers |
| * o Reading or writing to SMN registers |
| * |
| * In general, it is preferred that the lock be held across an entire client |
| * operation if possible. The only time this becomes an issue are when we have |
| * callbacks into our callers (ala amdzen_c_df_iter()) as they will likely |
| * recursively call into us. |
| */ |
| |
| #include <sys/modctl.h> |
| #include <sys/conf.h> |
| #include <sys/devops.h> |
| #include <sys/ddi.h> |
| #include <sys/sunddi.h> |
| #include <sys/pci.h> |
| #include <sys/sysmacros.h> |
| #include <sys/sunndi.h> |
| #include <sys/x86_archext.h> |
| #include <sys/cpuvar.h> |
| |
| #include <sys/amdzen/df.h> |
| #include "amdzen_client.h" |
| #include "amdzen.h" |
| |
| amdzen_t *amdzen_data; |
| |
| /* |
| * Array of northbridge IDs that we care about. |
| */ |
| static const uint16_t amdzen_nb_ids[] = { |
| /* Family 17h Ryzen, Epyc Models 00h-0fh (Zen uarch) */ |
| 0x1450, |
| /* Family 17h Raven Ridge, Kestrel, Dali Models 10h-2fh (Zen uarch) */ |
| 0x15d0, |
| /* Family 17h/19h Rome, Milan, Matisse, Vermeer Zen 2/Zen 3 uarch */ |
| 0x1480, |
| /* Family 17h/19h Renoir, Cezanne, Van Gogh Zen 2/3 uarch */ |
| 0x1630, |
| /* Family 19h Genoa */ |
| 0x14a4, |
| /* Family 17h Mendocino, Family 19h Rembrandt */ |
| 0x14b5, |
| /* Family 19h Raphael */ |
| 0x14d8 |
| }; |
| |
| typedef struct { |
| char *acd_name; |
| amdzen_child_t acd_addr; |
| } amdzen_child_data_t; |
| |
| static const amdzen_child_data_t amdzen_children[] = { |
| { "smntemp", AMDZEN_C_SMNTEMP }, |
| { "usmn", AMDZEN_C_USMN }, |
| { "zen_udf", AMDZEN_C_ZEN_UDF }, |
| { "zen_umc", AMDZEN_C_ZEN_UMC } |
| }; |
| |
| static uint8_t |
| amdzen_stub_get8(amdzen_stub_t *stub, off_t reg) |
| { |
| return (pci_config_get8(stub->azns_cfgspace, reg)); |
| } |
| |
| static uint16_t |
| amdzen_stub_get16(amdzen_stub_t *stub, off_t reg) |
| { |
| return (pci_config_get16(stub->azns_cfgspace, reg)); |
| } |
| |
| static uint32_t |
| amdzen_stub_get32(amdzen_stub_t *stub, off_t reg) |
| { |
| return (pci_config_get32(stub->azns_cfgspace, reg)); |
| } |
| |
| static uint64_t |
| amdzen_stub_get64(amdzen_stub_t *stub, off_t reg) |
| { |
| return (pci_config_get64(stub->azns_cfgspace, reg)); |
| } |
| |
| static void |
| amdzen_stub_put8(amdzen_stub_t *stub, off_t reg, uint8_t val) |
| { |
| pci_config_put8(stub->azns_cfgspace, reg, val); |
| } |
| |
| static void |
| amdzen_stub_put16(amdzen_stub_t *stub, off_t reg, uint16_t val) |
| { |
| pci_config_put16(stub->azns_cfgspace, reg, val); |
| } |
| |
| static void |
| amdzen_stub_put32(amdzen_stub_t *stub, off_t reg, uint32_t val) |
| { |
| pci_config_put32(stub->azns_cfgspace, reg, val); |
| } |
| |
| static uint64_t |
| amdzen_df_read_regdef(amdzen_t *azn, amdzen_df_t *df, const df_reg_def_t def, |
| uint8_t inst, boolean_t do_64) |
| { |
| df_reg_def_t ficaa; |
| df_reg_def_t ficad; |
| uint32_t val = 0; |
| df_rev_t df_rev = azn->azn_dfs[0].adf_rev; |
| |
| VERIFY(MUTEX_HELD(&azn->azn_mutex)); |
| ASSERT3U(def.drd_gens & df_rev, ==, df_rev); |
| val = DF_FICAA_V2_SET_TARG_INST(val, 1); |
| val = DF_FICAA_V2_SET_FUNC(val, def.drd_func); |
| val = DF_FICAA_V2_SET_INST(val, inst); |
| val = DF_FICAA_V2_SET_64B(val, do_64 ? 1 : 0); |
| |
| switch (df_rev) { |
| case DF_REV_2: |
| case DF_REV_3: |
| case DF_REV_3P5: |
| ficaa = DF_FICAA_V2; |
| ficad = DF_FICAD_LO_V2; |
| /* |
| * Both here and in the DFv4 case, the register ignores the |
| * lower 2 bits. That is we can only address and encode things |
| * in units of 4 bytes. |
| */ |
| val = DF_FICAA_V2_SET_REG(val, def.drd_reg >> 2); |
| break; |
| case DF_REV_4: |
| ficaa = DF_FICAA_V4; |
| ficad = DF_FICAD_LO_V4; |
| val = DF_FICAA_V4_SET_REG(val, def.drd_reg >> 2); |
| break; |
| default: |
| panic("encountered unexpected DF rev: %u", df_rev); |
| } |
| |
| amdzen_stub_put32(df->adf_funcs[ficaa.drd_func], ficaa.drd_reg, val); |
| if (do_64) { |
| return (amdzen_stub_get64(df->adf_funcs[ficad.drd_func], |
| ficad.drd_reg)); |
| } else { |
| return (amdzen_stub_get32(df->adf_funcs[ficad.drd_func], |
| ficad.drd_reg)); |
| } |
| } |
| |
| /* |
| * Perform a targeted 32-bit indirect read to a specific instance and function. |
| */ |
| static uint32_t |
| amdzen_df_read32(amdzen_t *azn, amdzen_df_t *df, uint8_t inst, |
| const df_reg_def_t def) |
| { |
| return (amdzen_df_read_regdef(azn, df, def, inst, B_FALSE)); |
| } |
| |
| /* |
| * For a broadcast read, just go to the underlying PCI function and perform a |
| * read. At this point in time, we don't believe we need to use the FICAA/FICAD |
| * to access it (though it does have a broadcast mode). |
| */ |
| static uint32_t |
| amdzen_df_read32_bcast(amdzen_t *azn, amdzen_df_t *df, const df_reg_def_t def) |
| { |
| VERIFY(MUTEX_HELD(&azn->azn_mutex)); |
| return (amdzen_stub_get32(df->adf_funcs[def.drd_func], def.drd_reg)); |
| } |
| |
| static uint32_t |
| amdzen_smn_read(amdzen_t *azn, amdzen_df_t *df, const smn_reg_t reg) |
| { |
| const uint32_t base_addr = SMN_REG_ADDR_BASE(reg); |
| const uint32_t addr_off = SMN_REG_ADDR_OFF(reg); |
| |
| VERIFY(SMN_REG_IS_NATURALLY_ALIGNED(reg)); |
| VERIFY(MUTEX_HELD(&azn->azn_mutex)); |
| amdzen_stub_put32(df->adf_nb, AMDZEN_NB_SMN_ADDR, base_addr); |
| |
| switch (SMN_REG_SIZE(reg)) { |
| case 1: |
| return ((uint32_t)amdzen_stub_get8(df->adf_nb, |
| AMDZEN_NB_SMN_DATA + addr_off)); |
| case 2: |
| return ((uint32_t)amdzen_stub_get16(df->adf_nb, |
| AMDZEN_NB_SMN_DATA + addr_off)); |
| case 4: |
| return (amdzen_stub_get32(df->adf_nb, AMDZEN_NB_SMN_DATA)); |
| default: |
| panic("unreachable invalid SMN register size %u", |
| SMN_REG_SIZE(reg)); |
| } |
| } |
| |
| static void |
| amdzen_smn_write(amdzen_t *azn, amdzen_df_t *df, const smn_reg_t reg, |
| const uint32_t val) |
| { |
| const uint32_t base_addr = SMN_REG_ADDR_BASE(reg); |
| const uint32_t addr_off = SMN_REG_ADDR_OFF(reg); |
| |
| VERIFY(SMN_REG_IS_NATURALLY_ALIGNED(reg)); |
| VERIFY(SMN_REG_VALUE_FITS(reg, val)); |
| VERIFY(MUTEX_HELD(&azn->azn_mutex)); |
| amdzen_stub_put32(df->adf_nb, AMDZEN_NB_SMN_ADDR, base_addr); |
| |
| switch (SMN_REG_SIZE(reg)) { |
| case 1: |
| amdzen_stub_put8(df->adf_nb, AMDZEN_NB_SMN_DATA + addr_off, |
| (uint8_t)val); |
| break; |
| case 2: |
| amdzen_stub_put16(df->adf_nb, AMDZEN_NB_SMN_DATA + addr_off, |
| (uint16_t)val); |
| break; |
| case 4: |
| amdzen_stub_put32(df->adf_nb, AMDZEN_NB_SMN_DATA, val); |
| break; |
| default: |
| panic("unreachable invalid SMN register size %u", |
| SMN_REG_SIZE(reg)); |
| } |
| } |
| |
| static amdzen_df_t * |
| amdzen_df_find(amdzen_t *azn, uint_t dfno) |
| { |
| uint_t i; |
| |
| ASSERT(MUTEX_HELD(&azn->azn_mutex)); |
| if (dfno >= azn->azn_ndfs) { |
| return (NULL); |
| } |
| |
| for (i = 0; i < azn->azn_ndfs; i++) { |
| amdzen_df_t *df = &azn->azn_dfs[i]; |
| if ((df->adf_flags & AMDZEN_DF_F_VALID) == 0) { |
| continue; |
| } |
| |
| if (dfno == 0) { |
| return (df); |
| } |
| dfno--; |
| } |
| |
| return (NULL); |
| } |
| |
| /* |
| * Client functions that are used by nexus children. |
| */ |
| int |
| amdzen_c_smn_read(uint_t dfno, const smn_reg_t reg, uint32_t *valp) |
| { |
| amdzen_df_t *df; |
| amdzen_t *azn = amdzen_data; |
| |
| if (!SMN_REG_SIZE_IS_VALID(reg)) |
| return (EINVAL); |
| if (!SMN_REG_IS_NATURALLY_ALIGNED(reg)) |
| return (EINVAL); |
| |
| mutex_enter(&azn->azn_mutex); |
| df = amdzen_df_find(azn, dfno); |
| if (df == NULL) { |
| mutex_exit(&azn->azn_mutex); |
| return (ENOENT); |
| } |
| |
| if ((df->adf_flags & AMDZEN_DF_F_FOUND_NB) == 0) { |
| mutex_exit(&azn->azn_mutex); |
| return (ENXIO); |
| } |
| |
| *valp = amdzen_smn_read(azn, df, reg); |
| mutex_exit(&azn->azn_mutex); |
| return (0); |
| } |
| |
| int |
| amdzen_c_smn_write(uint_t dfno, const smn_reg_t reg, const uint32_t val) |
| { |
| amdzen_df_t *df; |
| amdzen_t *azn = amdzen_data; |
| |
| if (!SMN_REG_SIZE_IS_VALID(reg)) |
| return (EINVAL); |
| if (!SMN_REG_IS_NATURALLY_ALIGNED(reg)) |
| return (EINVAL); |
| if (!SMN_REG_VALUE_FITS(reg, val)) |
| return (EOVERFLOW); |
| |
| mutex_enter(&azn->azn_mutex); |
| df = amdzen_df_find(azn, dfno); |
| if (df == NULL) { |
| mutex_exit(&azn->azn_mutex); |
| return (ENOENT); |
| } |
| |
| if ((df->adf_flags & AMDZEN_DF_F_FOUND_NB) == 0) { |
| mutex_exit(&azn->azn_mutex); |
| return (ENXIO); |
| } |
| |
| amdzen_smn_write(azn, df, reg, val); |
| mutex_exit(&azn->azn_mutex); |
| return (0); |
| } |
| |
| uint_t |
| amdzen_c_df_count(void) |
| { |
| uint_t ret; |
| amdzen_t *azn = amdzen_data; |
| |
| mutex_enter(&azn->azn_mutex); |
| ret = azn->azn_ndfs; |
| mutex_exit(&azn->azn_mutex); |
| return (ret); |
| } |
| |
| df_rev_t |
| amdzen_c_df_rev(void) |
| { |
| amdzen_df_t *df; |
| amdzen_t *azn = amdzen_data; |
| df_rev_t rev; |
| |
| /* |
| * Always use the first DF instance to determine what we're using. Our |
| * current assumption, which seems to generally be true, is that the |
| * given DF revisions are the same in a given system when the DFs are |
| * directly connected. |
| */ |
| mutex_enter(&azn->azn_mutex); |
| df = amdzen_df_find(azn, 0); |
| if (df == NULL) { |
| rev = DF_REV_UNKNOWN; |
| } else { |
| rev = df->adf_rev; |
| } |
| mutex_exit(&azn->azn_mutex); |
| |
| return (rev); |
| } |
| |
| int |
| amdzen_c_df_read32(uint_t dfno, uint8_t inst, const df_reg_def_t def, |
| uint32_t *valp) |
| { |
| amdzen_df_t *df; |
| amdzen_t *azn = amdzen_data; |
| |
| mutex_enter(&azn->azn_mutex); |
| df = amdzen_df_find(azn, dfno); |
| if (df == NULL) { |
| mutex_exit(&azn->azn_mutex); |
| return (ENOENT); |
| } |
| |
| *valp = amdzen_df_read_regdef(azn, df, def, inst, B_FALSE); |
| mutex_exit(&azn->azn_mutex); |
| |
| return (0); |
| } |
| |
| int |
| amdzen_c_df_read64(uint_t dfno, uint8_t inst, const df_reg_def_t def, |
| uint64_t *valp) |
| { |
| amdzen_df_t *df; |
| amdzen_t *azn = amdzen_data; |
| |
| mutex_enter(&azn->azn_mutex); |
| df = amdzen_df_find(azn, dfno); |
| if (df == NULL) { |
| mutex_exit(&azn->azn_mutex); |
| return (ENOENT); |
| } |
| |
| *valp = amdzen_df_read_regdef(azn, df, def, inst, B_TRUE); |
| mutex_exit(&azn->azn_mutex); |
| |
| return (0); |
| } |
| |
| int |
| amdzen_c_df_iter(uint_t dfno, zen_df_type_t type, amdzen_c_iter_f func, |
| void *arg) |
| { |
| amdzen_df_t *df; |
| amdzen_t *azn = amdzen_data; |
| df_type_t df_type; |
| uint8_t df_subtype; |
| |
| /* |
| * Unlike other calls here, we hold our lock only to find the DF here. |
| * The main reason for this is the nature of the callback function. |
| * Folks are iterating over instances so they can call back into us. If |
| * you look at the locking statement, the thing that is most volatile |
| * right here and what we need to protect is the DF itself and |
| * subsequent register accesses to it. The actual data about which |
| * entities exist is static and so once we have found a DF we should |
| * hopefully be in good shape as they only come, but don't go. |
| */ |
| mutex_enter(&azn->azn_mutex); |
| df = amdzen_df_find(azn, dfno); |
| if (df == NULL) { |
| mutex_exit(&azn->azn_mutex); |
| return (ENOENT); |
| } |
| mutex_exit(&azn->azn_mutex); |
| |
| switch (type) { |
| case ZEN_DF_TYPE_CS_UMC: |
| df_type = DF_TYPE_CS; |
| /* |
| * In the original Zeppelin DFv2 die there was no subtype field |
| * used for the CS. The UMC is the only type and has a subtype |
| * of zero. |
| */ |
| if (df->adf_rev != DF_REV_2) { |
| df_subtype = DF_CS_SUBTYPE_UMC; |
| } else { |
| df_subtype = 0; |
| } |
| break; |
| case ZEN_DF_TYPE_CCM_CPU: |
| /* |
| * While the wording of the PPR is a little weird, the CCM still |
| * has subtype 0 in DFv4 systems; however, what's said to be for |
| * the CPU appears to apply to the ACM. |
| */ |
| df_type = DF_TYPE_CCM; |
| df_subtype = 0; |
| break; |
| default: |
| return (EINVAL); |
| } |
| |
| for (uint_t i = 0; i < df->adf_nents; i++) { |
| amdzen_df_ent_t *ent = &df->adf_ents[i]; |
| |
| /* |
| * Some DF components are not considered enabled and therefore |
| * will end up having bogus values in their ID fields. If we do |
| * not have an enable flag set, we must skip this node. |
| */ |
| if ((ent->adfe_flags & AMDZEN_DFE_F_ENABLED) == 0) |
| continue; |
| |
| if (ent->adfe_type == df_type && |
| ent->adfe_subtype == df_subtype) { |
| int ret = func(dfno, ent->adfe_fabric_id, |
| ent->adfe_inst_id, arg); |
| if (ret != 0) { |
| return (ret); |
| } |
| } |
| } |
| |
| return (0); |
| } |
| |
| int |
| amdzen_c_df_fabric_decomp(df_fabric_decomp_t *decomp) |
| { |
| const amdzen_df_t *df; |
| amdzen_t *azn = amdzen_data; |
| |
| mutex_enter(&azn->azn_mutex); |
| df = amdzen_df_find(azn, 0); |
| if (df == NULL) { |
| mutex_exit(&azn->azn_mutex); |
| return (ENOENT); |
| } |
| |
| *decomp = df->adf_decomp; |
| mutex_exit(&azn->azn_mutex); |
| return (0); |
| } |
| |
| static boolean_t |
| amdzen_create_child(amdzen_t *azn, const amdzen_child_data_t *acd) |
| { |
| int ret; |
| dev_info_t *child; |
| |
| if (ndi_devi_alloc(azn->azn_dip, acd->acd_name, |
| (pnode_t)DEVI_SID_NODEID, &child) != NDI_SUCCESS) { |
| dev_err(azn->azn_dip, CE_WARN, "!failed to allocate child " |
| "dip for %s", acd->acd_name); |
| return (B_FALSE); |
| } |
| |
| ddi_set_parent_data(child, (void *)acd); |
| if ((ret = ndi_devi_online(child, 0)) != NDI_SUCCESS) { |
| dev_err(azn->azn_dip, CE_WARN, "!failed to online child " |
| "dip %s: %d", acd->acd_name, ret); |
| return (B_FALSE); |
| } |
| |
| return (B_TRUE); |
| } |
| |
| static boolean_t |
| amdzen_map_dfs(amdzen_t *azn) |
| { |
| amdzen_stub_t *stub; |
| |
| ASSERT(MUTEX_HELD(&azn->azn_mutex)); |
| |
| for (stub = list_head(&azn->azn_df_stubs); stub != NULL; |
| stub = list_next(&azn->azn_df_stubs, stub)) { |
| amdzen_df_t *df; |
| uint_t dfno; |
| |
| dfno = stub->azns_dev - AMDZEN_DF_FIRST_DEVICE; |
| if (dfno > AMDZEN_MAX_DFS) { |
| dev_err(stub->azns_dip, CE_WARN, "encountered df " |
| "device with illegal DF PCI b/d/f: 0x%x/%x/%x", |
| stub->azns_bus, stub->azns_dev, stub->azns_func); |
| goto err; |
| } |
| |
| df = &azn->azn_dfs[dfno]; |
| |
| if (stub->azns_func >= AMDZEN_MAX_DF_FUNCS) { |
| dev_err(stub->azns_dip, CE_WARN, "encountered df " |
| "device with illegal DF PCI b/d/f: 0x%x/%x/%x", |
| stub->azns_bus, stub->azns_dev, stub->azns_func); |
| goto err; |
| } |
| |
| if (df->adf_funcs[stub->azns_func] != NULL) { |
| dev_err(stub->azns_dip, CE_WARN, "encountered " |
| "duplicate df device with DF PCI b/d/f: 0x%x/%x/%x", |
| stub->azns_bus, stub->azns_dev, stub->azns_func); |
| goto err; |
| } |
| df->adf_funcs[stub->azns_func] = stub; |
| } |
| |
| return (B_TRUE); |
| |
| err: |
| azn->azn_flags |= AMDZEN_F_DEVICE_ERROR; |
| return (B_FALSE); |
| } |
| |
| static boolean_t |
| amdzen_check_dfs(amdzen_t *azn) |
| { |
| uint_t i; |
| boolean_t ret = B_TRUE; |
| |
| for (i = 0; i < AMDZEN_MAX_DFS; i++) { |
| amdzen_df_t *df = &azn->azn_dfs[i]; |
| uint_t count = 0; |
| |
| /* |
| * We require all platforms to have DFs functions 0-6. Not all |
| * platforms have DF function 7. |
| */ |
| for (uint_t func = 0; func < AMDZEN_MAX_DF_FUNCS - 1; func++) { |
| if (df->adf_funcs[func] != NULL) { |
| count++; |
| } |
| } |
| |
| if (count == 0) |
| continue; |
| |
| if (count != 7) { |
| ret = B_FALSE; |
| dev_err(azn->azn_dip, CE_WARN, "df %u devices " |
| "incomplete", i); |
| } else { |
| df->adf_flags |= AMDZEN_DF_F_VALID; |
| azn->azn_ndfs++; |
| } |
| } |
| |
| return (ret); |
| } |
| |
| static const uint8_t amdzen_df_rome_ids[0x2b] = { |
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 17, 18, 19, 20, 21, 22, 23, |
| 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, |
| 44, 45, 46, 47, 48 |
| }; |
| |
| /* |
| * Check the first df entry to see if it belongs to Rome or Milan. If so, then |
| * it uses the disjoint ID space. |
| */ |
| static boolean_t |
| amdzen_is_rome_style(uint_t id) |
| { |
| return (id == 0x1490 || id == 0x1650); |
| } |
| |
| /* |
| * To be able to do most other things we want to do, we must first determine |
| * what revision of the DF (data fabric) that we're using. |
| * |
| * Snapshot the df version. This was added explicitly in DFv4.0, around the Zen |
| * 4 timeframe and allows us to tell apart different version of the DF register |
| * set, most usefully when various subtypes were added. |
| * |
| * Older versions can theoretically be told apart based on usage of reserved |
| * registers. We walk these in the following order, starting with the newest rev |
| * and walking backwards to tell things apart: |
| * |
| * o v3.5 -> Check function 1, register 0x150. This was reserved prior |
| * to this point. This is actually DF_FIDMASK0_V3P5. We are supposed |
| * to check bits [7:0]. |
| * |
| * o v3.0 -> Check function 1, register 0x208. The low byte (7:0) was |
| * changed to indicate a component mask. This is non-zero |
| * in the 3.0 generation. This is actually DF_FIDMASK_V2. |
| * |
| * o v2.0 -> This is just the not that case. Presumably v1 wasn't part |
| * of the Zen generation. |
| * |
| * Because we don't know what version we are yet, we do not use the normal |
| * versioned register accesses which would check what DF version we are and |
| * would want to use the normal indirect register accesses (which also require |
| * us to know the version). We instead do direct broadcast reads. |
| */ |
| static void |
| amdzen_determine_df_vers(amdzen_t *azn, amdzen_df_t *df) |
| { |
| uint32_t val; |
| df_reg_def_t rd = DF_FBICNT; |
| |
| val = amdzen_stub_get32(df->adf_funcs[rd.drd_func], rd.drd_reg); |
| df->adf_major = DF_FBICNT_V4_GET_MAJOR(val); |
| df->adf_minor = DF_FBICNT_V4_GET_MINOR(val); |
| if (df->adf_major == 0 && df->adf_minor == 0) { |
| rd = DF_FIDMASK0_V3P5; |
| val = amdzen_stub_get32(df->adf_funcs[rd.drd_func], rd.drd_reg); |
| if (bitx32(val, 7, 0) != 0) { |
| df->adf_major = 3; |
| df->adf_minor = 5; |
| df->adf_rev = DF_REV_3P5; |
| } else { |
| rd = DF_FIDMASK_V2; |
| val = amdzen_stub_get32(df->adf_funcs[rd.drd_func], |
| rd.drd_reg); |
| if (bitx32(val, 7, 0) != 0) { |
| df->adf_major = 3; |
| df->adf_minor = 0; |
| df->adf_rev = DF_REV_3; |
| } else { |
| df->adf_major = 2; |
| df->adf_minor = 0; |
| df->adf_rev = DF_REV_2; |
| } |
| } |
| } else if (df->adf_major == 4 && df->adf_minor == 0) { |
| df->adf_rev = DF_REV_4; |
| } else { |
| df->adf_rev = DF_REV_UNKNOWN; |
| } |
| } |
| |
| /* |
| * All of the different versions of the DF have different ways of getting at and |
| * answering the question of how do I break a fabric ID into a corresponding |
| * socket, die, and component. Importantly the goal here is to obtain, cache, |
| * and normalize: |
| * |
| * o The DF System Configuration |
| * o The various Mask registers |
| * o The Node ID |
| */ |
| static void |
| amdzen_determine_fabric_decomp(amdzen_t *azn, amdzen_df_t *df) |
| { |
| uint32_t mask; |
| df_fabric_decomp_t *decomp = &df->adf_decomp; |
| |
| switch (df->adf_rev) { |
| case DF_REV_2: |
| df->adf_syscfg = amdzen_df_read32_bcast(azn, df, DF_SYSCFG_V2); |
| switch (DF_SYSCFG_V2_GET_MY_TYPE(df->adf_syscfg)) { |
| case DF_DIE_TYPE_CPU: |
| mask = amdzen_df_read32_bcast(azn, df, |
| DF_DIEMASK_CPU_V2); |
| break; |
| case DF_DIE_TYPE_APU: |
| mask = amdzen_df_read32_bcast(azn, df, |
| DF_DIEMASK_APU_V2); |
| break; |
| default: |
| panic("DF thinks we're not on a CPU!"); |
| } |
| df->adf_mask0 = mask; |
| |
| /* |
| * DFv2 is a bit different in how the fabric mask register is |
| * phrased. Logically a fabric ID is broken into something that |
| * uniquely identifies a "node" (a particular die on a socket) |
| * and something that identifies a "component", e.g. a memory |
| * controller. |
| * |
| * Starting with DFv3, these registers logically called out how |
| * to separate the fabric ID first into a node and a component. |
| * Then the node was then broken down into a socket and die. In |
| * DFv2, there is no separate mask and shift of a node. Instead |
| * the socket and die are absolute offsets into the fabric ID |
| * rather than relative offsets into the node ID. As such, when |
| * we encounter DFv2, we fake up a node mask and shift and make |
| * it look like DFv3+. |
| */ |
| decomp->dfd_node_mask = DF_DIEMASK_V2_GET_SOCK_MASK(mask) | |
| DF_DIEMASK_V2_GET_DIE_MASK(mask); |
| decomp->dfd_node_shift = DF_DIEMASK_V2_GET_DIE_SHIFT(mask); |
| decomp->dfd_comp_mask = DF_DIEMASK_V2_GET_COMP_MASK(mask); |
| decomp->dfd_comp_shift = 0; |
| |
| decomp->dfd_sock_mask = DF_DIEMASK_V2_GET_SOCK_MASK(mask) >> |
| decomp->dfd_node_shift; |
| decomp->dfd_die_mask = DF_DIEMASK_V2_GET_DIE_MASK(mask) >> |
| decomp->dfd_node_shift; |
| decomp->dfd_sock_shift = DF_DIEMASK_V2_GET_SOCK_SHIFT(mask) - |
| decomp->dfd_node_shift; |
| decomp->dfd_die_shift = DF_DIEMASK_V2_GET_DIE_SHIFT(mask) - |
| decomp->dfd_node_shift; |
| ASSERT3U(decomp->dfd_die_shift, ==, 0); |
| break; |
| case DF_REV_3: |
| df->adf_syscfg = amdzen_df_read32_bcast(azn, df, DF_SYSCFG_V3); |
| df->adf_mask0 = amdzen_df_read32_bcast(azn, df, |
| DF_FIDMASK0_V3); |
| df->adf_mask1 = amdzen_df_read32_bcast(azn, df, |
| DF_FIDMASK1_V3); |
| |
| decomp->dfd_sock_mask = |
| DF_FIDMASK1_V3_GET_SOCK_MASK(df->adf_mask1); |
| decomp->dfd_sock_shift = |
| DF_FIDMASK1_V3_GET_SOCK_SHIFT(df->adf_mask1); |
| decomp->dfd_die_mask = |
| DF_FIDMASK1_V3_GET_DIE_MASK(df->adf_mask1); |
| decomp->dfd_die_shift = 0; |
| decomp->dfd_node_mask = |
| DF_FIDMASK0_V3_GET_NODE_MASK(df->adf_mask0); |
| decomp->dfd_node_shift = |
| DF_FIDMASK1_V3_GET_NODE_SHIFT(df->adf_mask1); |
| decomp->dfd_comp_mask = |
| DF_FIDMASK0_V3_GET_COMP_MASK(df->adf_mask0); |
| decomp->dfd_comp_shift = 0; |
| break; |
| case DF_REV_3P5: |
| df->adf_syscfg = amdzen_df_read32_bcast(azn, df, |
| DF_SYSCFG_V3P5); |
| df->adf_mask0 = amdzen_df_read32_bcast(azn, df, |
| DF_FIDMASK0_V3P5); |
| df->adf_mask1 = amdzen_df_read32_bcast(azn, df, |
| DF_FIDMASK1_V3P5); |
| df->adf_mask2 = amdzen_df_read32_bcast(azn, df, |
| DF_FIDMASK2_V3P5); |
| |
| decomp->dfd_sock_mask = |
| DF_FIDMASK2_V3P5_GET_SOCK_MASK(df->adf_mask2); |
| decomp->dfd_sock_shift = |
| DF_FIDMASK1_V3P5_GET_SOCK_SHIFT(df->adf_mask1); |
| decomp->dfd_die_mask = |
| DF_FIDMASK2_V3P5_GET_DIE_MASK(df->adf_mask2); |
| decomp->dfd_die_shift = 0; |
| decomp->dfd_node_mask = |
| DF_FIDMASK0_V3P5_GET_NODE_MASK(df->adf_mask0); |
| decomp->dfd_node_shift = |
| DF_FIDMASK1_V3P5_GET_NODE_SHIFT(df->adf_mask1); |
| decomp->dfd_comp_mask = |
| DF_FIDMASK0_V3P5_GET_COMP_MASK(df->adf_mask0); |
| decomp->dfd_comp_shift = 0; |
| break; |
| case DF_REV_4: |
| df->adf_syscfg = amdzen_df_read32_bcast(azn, df, DF_SYSCFG_V4); |
| df->adf_mask0 = amdzen_df_read32_bcast(azn, df, |
| DF_FIDMASK0_V4); |
| df->adf_mask1 = amdzen_df_read32_bcast(azn, df, |
| DF_FIDMASK1_V4); |
| df->adf_mask2 = amdzen_df_read32_bcast(azn, df, |
| DF_FIDMASK2_V4); |
| |
| /* |
| * The DFv4 registers are at a different location in the DF; |
| * however, the actual layout of fields is the same as DFv3.5. |
| * This is why you see V3P5 below. |
| */ |
| decomp->dfd_sock_mask = |
| DF_FIDMASK2_V3P5_GET_SOCK_MASK(df->adf_mask2); |
| decomp->dfd_sock_shift = |
| DF_FIDMASK1_V3P5_GET_SOCK_SHIFT(df->adf_mask1); |
| decomp->dfd_die_mask = |
| DF_FIDMASK2_V3P5_GET_DIE_MASK(df->adf_mask2); |
| decomp->dfd_die_shift = 0; |
| decomp->dfd_node_mask = |
| DF_FIDMASK0_V3P5_GET_NODE_MASK(df->adf_mask0); |
| decomp->dfd_node_shift = |
| DF_FIDMASK1_V3P5_GET_NODE_SHIFT(df->adf_mask1); |
| decomp->dfd_comp_mask = |
| DF_FIDMASK0_V3P5_GET_COMP_MASK(df->adf_mask0); |
| decomp->dfd_comp_shift = 0; |
| break; |
| default: |
| panic("encountered suspicious, previously rejected DF " |
| "rev: 0x%x", df->adf_rev); |
| } |
| } |
| |
| /* |
| * Initialize our knowledge about a given series of nodes on the data fabric. |
| */ |
| static void |
| amdzen_setup_df(amdzen_t *azn, amdzen_df_t *df) |
| { |
| uint_t i; |
| uint32_t val; |
| |
| amdzen_determine_df_vers(azn, df); |
| |
| switch (df->adf_rev) { |
| case DF_REV_2: |
| case DF_REV_3: |
| case DF_REV_3P5: |
| val = amdzen_df_read32_bcast(azn, df, DF_CFG_ADDR_CTL_V2); |
| break; |
| case DF_REV_4: |
| val = amdzen_df_read32_bcast(azn, df, DF_CFG_ADDR_CTL_V4); |
| break; |
| default: |
| dev_err(azn->azn_dip, CE_WARN, "encountered unsupported DF " |
| "revision: 0x%x", df->adf_rev); |
| return; |
| } |
| df->adf_nb_busno = DF_CFG_ADDR_CTL_GET_BUS_NUM(val); |
| val = amdzen_df_read32_bcast(azn, df, DF_FBICNT); |
| df->adf_nents = DF_FBICNT_GET_COUNT(val); |
| if (df->adf_nents == 0) |
| return; |
| df->adf_ents = kmem_zalloc(sizeof (amdzen_df_ent_t) * df->adf_nents, |
| KM_SLEEP); |
| |
| for (i = 0; i < df->adf_nents; i++) { |
| amdzen_df_ent_t *dfe = &df->adf_ents[i]; |
| uint8_t inst = i; |
| |
| /* |
| * Unfortunately, Rome uses a discontinuous instance ID pattern |
| * while everything else we can find uses a contiguous instance |
| * ID pattern. This means that for Rome, we need to adjust the |
| * indexes that we iterate over, though the total number of |
| * entries is right. This was carried over into Milan, but not |
| * Genoa. |
| */ |
| if (amdzen_is_rome_style(df->adf_funcs[0]->azns_did)) { |
| if (inst > ARRAY_SIZE(amdzen_df_rome_ids)) { |
| dev_err(azn->azn_dip, CE_WARN, "Rome family " |
| "processor reported more ids than the PPR, " |
| "resetting %u to instance zero", inst); |
| inst = 0; |
| } else { |
| inst = amdzen_df_rome_ids[inst]; |
| } |
| } |
| |
| dfe->adfe_drvid = inst; |
| dfe->adfe_info0 = amdzen_df_read32(azn, df, inst, DF_FBIINFO0); |
| dfe->adfe_info1 = amdzen_df_read32(azn, df, inst, DF_FBIINFO1); |
| dfe->adfe_info2 = amdzen_df_read32(azn, df, inst, DF_FBIINFO2); |
| dfe->adfe_info3 = amdzen_df_read32(azn, df, inst, DF_FBIINFO3); |
| |
| dfe->adfe_type = DF_FBIINFO0_GET_TYPE(dfe->adfe_info0); |
| dfe->adfe_subtype = DF_FBIINFO0_GET_SUBTYPE(dfe->adfe_info0); |
| |
| /* |
| * The enabled flag was not present in Zen 1. Simulate it by |
| * checking for a non-zero register instead. |
| */ |
| if (DF_FBIINFO0_V3_GET_ENABLED(dfe->adfe_info0) || |
| (df->adf_rev == DF_REV_2 && dfe->adfe_info0 != 0)) { |
| dfe->adfe_flags |= AMDZEN_DFE_F_ENABLED; |
| } |
| if (DF_FBIINFO0_GET_HAS_MCA(dfe->adfe_info0)) { |
| dfe->adfe_flags |= AMDZEN_DFE_F_MCA; |
| } |
| dfe->adfe_inst_id = DF_FBIINFO3_GET_INSTID(dfe->adfe_info3); |
| switch (df->adf_rev) { |
| case DF_REV_2: |
| dfe->adfe_fabric_id = |
| DF_FBIINFO3_V2_GET_BLOCKID(dfe->adfe_info3); |
| break; |
| case DF_REV_3: |
| dfe->adfe_fabric_id = |
| DF_FBIINFO3_V3_GET_BLOCKID(dfe->adfe_info3); |
| break; |
| case DF_REV_3P5: |
| dfe->adfe_fabric_id = |
| DF_FBIINFO3_V3P5_GET_BLOCKID(dfe->adfe_info3); |
| break; |
| case DF_REV_4: |
| dfe->adfe_fabric_id = |
| DF_FBIINFO3_V4_GET_BLOCKID(dfe->adfe_info3); |
| break; |
| default: |
| panic("encountered suspicious, previously rejected DF " |
| "rev: 0x%x", df->adf_rev); |
| } |
| } |
| |
| amdzen_determine_fabric_decomp(azn, df); |
| } |
| |
| static void |
| amdzen_find_nb(amdzen_t *azn, amdzen_df_t *df) |
| { |
| amdzen_stub_t *stub; |
| |
| for (stub = list_head(&azn->azn_nb_stubs); stub != NULL; |
| stub = list_next(&azn->azn_nb_stubs, stub)) { |
| if (stub->azns_bus == df->adf_nb_busno) { |
| df->adf_flags |= AMDZEN_DF_F_FOUND_NB; |
| df->adf_nb = stub; |
| return; |
| } |
| } |
| } |
| |
| static void |
| amdzen_nexus_init(void *arg) |
| { |
| uint_t i; |
| amdzen_t *azn = arg; |
| |
| /* |
| * First go through all of the stubs and assign the DF entries. |
| */ |
| mutex_enter(&azn->azn_mutex); |
| if (!amdzen_map_dfs(azn) || !amdzen_check_dfs(azn)) { |
| azn->azn_flags |= AMDZEN_F_MAP_ERROR; |
| goto done; |
| } |
| |
| for (i = 0; i < AMDZEN_MAX_DFS; i++) { |
| amdzen_df_t *df = &azn->azn_dfs[i]; |
| |
| if ((df->adf_flags & AMDZEN_DF_F_VALID) == 0) |
| continue; |
| amdzen_setup_df(azn, df); |
| amdzen_find_nb(azn, df); |
| } |
| |
| /* |
| * Not all children may be installed. As such, we do not treat the |
| * failure of a child as fatal to the driver. |
| */ |
| mutex_exit(&azn->azn_mutex); |
| for (i = 0; i < ARRAY_SIZE(amdzen_children); i++) { |
| (void) amdzen_create_child(azn, &amdzen_children[i]); |
| } |
| mutex_enter(&azn->azn_mutex); |
| |
| done: |
| azn->azn_flags &= ~AMDZEN_F_ATTACH_DISPATCHED; |
| azn->azn_flags |= AMDZEN_F_ATTACH_COMPLETE; |
| azn->azn_taskqid = TASKQID_INVALID; |
| cv_broadcast(&azn->azn_cv); |
| mutex_exit(&azn->azn_mutex); |
| } |
| |
| static int |
| amdzen_stub_scan_cb(dev_info_t *dip, void *arg) |
| { |
| amdzen_t *azn = arg; |
| uint16_t vid, did; |
| int *regs; |
| uint_t nregs, i; |
| boolean_t match = B_FALSE; |
| |
| if (dip == ddi_root_node()) { |
| return (DDI_WALK_CONTINUE); |
| } |
| |
| /* |
| * If a node in question is not a pci node, then we have no interest in |
| * it as all the stubs that we care about are related to pci devices. |
| */ |
| if (strncmp("pci", ddi_get_name(dip), 3) != 0) { |
| return (DDI_WALK_PRUNECHILD); |
| } |
| |
| /* |
| * If we can't get a device or vendor ID and prove that this is an AMD |
| * part, then we don't care about it. |
| */ |
| vid = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, |
| "vendor-id", PCI_EINVAL16); |
| did = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, |
| "device-id", PCI_EINVAL16); |
| if (vid == PCI_EINVAL16 || did == PCI_EINVAL16) { |
| return (DDI_WALK_CONTINUE); |
| } |
| |
| if (vid != AMDZEN_PCI_VID_AMD && vid != AMDZEN_PCI_VID_HYGON) { |
| return (DDI_WALK_CONTINUE); |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(amdzen_nb_ids); i++) { |
| if (amdzen_nb_ids[i] == did) { |
| match = B_TRUE; |
| } |
| } |
| |
| if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, |
| "reg", ®s, &nregs) != DDI_PROP_SUCCESS) { |
| return (DDI_WALK_CONTINUE); |
| } |
| |
| if (nregs == 0) { |
| ddi_prop_free(regs); |
| return (DDI_WALK_CONTINUE); |
| } |
| |
| if (PCI_REG_BUS_G(regs[0]) == AMDZEN_DF_BUSNO && |
| PCI_REG_DEV_G(regs[0]) >= AMDZEN_DF_FIRST_DEVICE) { |
| match = B_TRUE; |
| } |
| |
| ddi_prop_free(regs); |
| if (match) { |
| mutex_enter(&azn->azn_mutex); |
| azn->azn_nscanned++; |
| mutex_exit(&azn->azn_mutex); |
| } |
| |
| return (DDI_WALK_CONTINUE); |
| } |
| |
| static void |
| amdzen_stub_scan(void *arg) |
| { |
| amdzen_t *azn = arg; |
| |
| mutex_enter(&azn->azn_mutex); |
| azn->azn_nscanned = 0; |
| mutex_exit(&azn->azn_mutex); |
| |
| ddi_walk_devs(ddi_root_node(), amdzen_stub_scan_cb, azn); |
| |
| mutex_enter(&azn->azn_mutex); |
| azn->azn_flags &= ~AMDZEN_F_SCAN_DISPATCHED; |
| azn->azn_flags |= AMDZEN_F_SCAN_COMPLETE; |
| |
| if (azn->azn_nscanned == 0) { |
| azn->azn_flags |= AMDZEN_F_UNSUPPORTED; |
| azn->azn_taskqid = TASKQID_INVALID; |
| cv_broadcast(&azn->azn_cv); |
| } else if (azn->azn_npresent == azn->azn_nscanned) { |
| azn->azn_flags |= AMDZEN_F_ATTACH_DISPATCHED; |
| azn->azn_taskqid = taskq_dispatch(system_taskq, |
| amdzen_nexus_init, azn, TQ_SLEEP); |
| } |
| mutex_exit(&azn->azn_mutex); |
| } |
| |
| /* |
| * Unfortunately we can't really let the stubs detach as we may need them to be |
| * available for client operations. We may be able to improve this if we know |
| * that the actual nexus is going away. However, as long as it's active, we need |
| * all the stubs. |
| */ |
| int |
| amdzen_detach_stub(dev_info_t *dip, ddi_detach_cmd_t cmd) |
| { |
| if (cmd == DDI_SUSPEND) { |
| return (DDI_SUCCESS); |
| } |
| |
| return (DDI_FAILURE); |
| } |
| |
| int |
| amdzen_attach_stub(dev_info_t *dip, ddi_attach_cmd_t cmd) |
| { |
| int *regs, reg; |
| uint_t nregs, i; |
| uint16_t vid, did; |
| amdzen_stub_t *stub; |
| amdzen_t *azn = amdzen_data; |
| boolean_t valid = B_FALSE; |
| boolean_t nb = B_FALSE; |
| |
| if (cmd == DDI_RESUME) { |
| return (DDI_SUCCESS); |
| } else if (cmd != DDI_ATTACH) { |
| return (DDI_FAILURE); |
| } |
| |
| /* |
| * Make sure that the stub that we've been asked to attach is a pci type |
| * device. If not, then there is no reason for us to proceed. |
| */ |
| if (strncmp("pci", ddi_get_name(dip), 3) != 0) { |
| dev_err(dip, CE_WARN, "asked to attach a bad AMD Zen nexus " |
| "stub: %s", ddi_get_name(dip)); |
| return (DDI_FAILURE); |
| } |
| vid = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, |
| "vendor-id", PCI_EINVAL16); |
| did = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, |
| "device-id", PCI_EINVAL16); |
| if (vid == PCI_EINVAL16 || did == PCI_EINVAL16) { |
| dev_err(dip, CE_WARN, "failed to get PCI ID properties"); |
| return (DDI_FAILURE); |
| } |
| |
| if (vid != AMDZEN_PCI_VID_AMD && vid != AMDZEN_PCI_VID_HYGON) { |
| dev_err(dip, CE_WARN, "expected vendor ID (0x%x), found 0x%x", |
| cpuid_getvendor(CPU) == X86_VENDOR_HYGON ? |
| AMDZEN_PCI_VID_HYGON : AMDZEN_PCI_VID_AMD, vid); |
| return (DDI_FAILURE); |
| } |
| |
| if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, |
| "reg", ®s, &nregs) != DDI_PROP_SUCCESS) { |
| dev_err(dip, CE_WARN, "failed to get 'reg' property"); |
| return (DDI_FAILURE); |
| } |
| |
| if (nregs == 0) { |
| ddi_prop_free(regs); |
| dev_err(dip, CE_WARN, "missing 'reg' property values"); |
| return (DDI_FAILURE); |
| } |
| reg = *regs; |
| ddi_prop_free(regs); |
| |
| for (i = 0; i < ARRAY_SIZE(amdzen_nb_ids); i++) { |
| if (amdzen_nb_ids[i] == did) { |
| valid = B_TRUE; |
| nb = B_TRUE; |
| } |
| } |
| |
| if (!valid && PCI_REG_BUS_G(reg) == AMDZEN_DF_BUSNO && |
| PCI_REG_DEV_G(reg) >= AMDZEN_DF_FIRST_DEVICE) { |
| valid = B_TRUE; |
| nb = B_FALSE; |
| } |
| |
| if (!valid) { |
| dev_err(dip, CE_WARN, "device %s didn't match the nexus list", |
| ddi_get_name(dip)); |
| return (DDI_FAILURE); |
| } |
| |
| stub = kmem_alloc(sizeof (amdzen_stub_t), KM_SLEEP); |
| if (pci_config_setup(dip, &stub->azns_cfgspace) != DDI_SUCCESS) { |
| dev_err(dip, CE_WARN, "failed to set up config space"); |
| kmem_free(stub, sizeof (amdzen_stub_t)); |
| return (DDI_FAILURE); |
| } |
| |
| stub->azns_dip = dip; |
| stub->azns_vid = vid; |
| stub->azns_did = did; |
| stub->azns_bus = PCI_REG_BUS_G(reg); |
| stub->azns_dev = PCI_REG_DEV_G(reg); |
| stub->azns_func = PCI_REG_FUNC_G(reg); |
| ddi_set_driver_private(dip, stub); |
| |
| mutex_enter(&azn->azn_mutex); |
| azn->azn_npresent++; |
| if (nb) { |
| list_insert_tail(&azn->azn_nb_stubs, stub); |
| } else { |
| list_insert_tail(&azn->azn_df_stubs, stub); |
| } |
| |
| if ((azn->azn_flags & AMDZEN_F_TASKQ_MASK) == AMDZEN_F_SCAN_COMPLETE && |
| azn->azn_nscanned == azn->azn_npresent) { |
| azn->azn_flags |= AMDZEN_F_ATTACH_DISPATCHED; |
| azn->azn_taskqid = taskq_dispatch(system_taskq, |
| amdzen_nexus_init, azn, TQ_SLEEP); |
| } |
| mutex_exit(&azn->azn_mutex); |
| |
| return (DDI_SUCCESS); |
| } |
| |
| static int |
| amdzen_bus_ctl(dev_info_t *dip, dev_info_t *rdip, ddi_ctl_enum_t ctlop, |
| void *arg, void *result) |
| { |
| char buf[32]; |
| dev_info_t *child; |
| const amdzen_child_data_t *acd; |
| |
| switch (ctlop) { |
| case DDI_CTLOPS_REPORTDEV: |
| if (rdip == NULL) { |
| return (DDI_FAILURE); |
| } |
| cmn_err(CE_CONT, "amdzen nexus: %s@%s, %s%d\n", |
| ddi_node_name(rdip), ddi_get_name_addr(rdip), |
| ddi_driver_name(rdip), ddi_get_instance(rdip)); |
| break; |
| case DDI_CTLOPS_INITCHILD: |
| child = arg; |
| if (child == NULL) { |
| dev_err(dip, CE_WARN, "!no child passed for " |
| "DDI_CTLOPS_INITCHILD"); |
| } |
| |
| acd = ddi_get_parent_data(child); |
| if (acd == NULL) { |
| dev_err(dip, CE_WARN, "!missing child parent data"); |
| return (DDI_FAILURE); |
| } |
| |
| if (snprintf(buf, sizeof (buf), "%d", acd->acd_addr) >= |
| sizeof (buf)) { |
| dev_err(dip, CE_WARN, "!failed to construct device " |
| "addr due to overflow"); |
| return (DDI_FAILURE); |
| } |
| |
| ddi_set_name_addr(child, buf); |
| break; |
| case DDI_CTLOPS_UNINITCHILD: |
| child = arg; |
| if (child == NULL) { |
| dev_err(dip, CE_WARN, "!no child passed for " |
| "DDI_CTLOPS_UNINITCHILD"); |
| } |
| |
| ddi_set_name_addr(child, NULL); |
| break; |
| default: |
| return (ddi_ctlops(dip, rdip, ctlop, arg, result)); |
| } |
| return (DDI_SUCCESS); |
| } |
| |
| static int |
| amdzen_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) |
| { |
| amdzen_t *azn = amdzen_data; |
| |
| if (cmd == DDI_RESUME) { |
| return (DDI_SUCCESS); |
| } else if (cmd != DDI_ATTACH) { |
| return (DDI_FAILURE); |
| } |
| |
| mutex_enter(&azn->azn_mutex); |
| if (azn->azn_dip != NULL) { |
| dev_err(dip, CE_WARN, "driver is already attached!"); |
| mutex_exit(&azn->azn_mutex); |
| return (DDI_FAILURE); |
| } |
| |
| azn->azn_dip = dip; |
| azn->azn_taskqid = taskq_dispatch(system_taskq, amdzen_stub_scan, |
| azn, TQ_SLEEP); |
| azn->azn_flags |= AMDZEN_F_SCAN_DISPATCHED; |
| mutex_exit(&azn->azn_mutex); |
| |
| return (DDI_SUCCESS); |
| } |
| |
| static int |
| amdzen_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) |
| { |
| amdzen_t *azn = amdzen_data; |
| |
| if (cmd == DDI_SUSPEND) { |
| return (DDI_SUCCESS); |
| } else if (cmd != DDI_DETACH) { |
| return (DDI_FAILURE); |
| } |
| |
| mutex_enter(&azn->azn_mutex); |
| while (azn->azn_taskqid != TASKQID_INVALID) { |
| cv_wait(&azn->azn_cv, &azn->azn_mutex); |
| } |
| |
| /* |
| * If we've attached any stub drivers, e.g. this platform is important |
| * for us, then we fail detach. |
| */ |
| if (!list_is_empty(&azn->azn_df_stubs) || |
| !list_is_empty(&azn->azn_nb_stubs)) { |
| mutex_exit(&azn->azn_mutex); |
| return (DDI_FAILURE); |
| } |
| |
| azn->azn_dip = NULL; |
| mutex_exit(&azn->azn_mutex); |
| |
| return (DDI_SUCCESS); |
| } |
| |
| static void |
| amdzen_free(void) |
| { |
| if (amdzen_data == NULL) { |
| return; |
| } |
| |
| VERIFY(list_is_empty(&amdzen_data->azn_df_stubs)); |
| list_destroy(&amdzen_data->azn_df_stubs); |
| VERIFY(list_is_empty(&amdzen_data->azn_nb_stubs)); |
| list_destroy(&amdzen_data->azn_nb_stubs); |
| cv_destroy(&amdzen_data->azn_cv); |
| mutex_destroy(&amdzen_data->azn_mutex); |
| kmem_free(amdzen_data, sizeof (amdzen_t)); |
| amdzen_data = NULL; |
| } |
| |
| static void |
| amdzen_alloc(void) |
| { |
| amdzen_data = kmem_zalloc(sizeof (amdzen_t), KM_SLEEP); |
| mutex_init(&amdzen_data->azn_mutex, NULL, MUTEX_DRIVER, NULL); |
| list_create(&amdzen_data->azn_df_stubs, sizeof (amdzen_stub_t), |
| offsetof(amdzen_stub_t, azns_link)); |
| list_create(&amdzen_data->azn_nb_stubs, sizeof (amdzen_stub_t), |
| offsetof(amdzen_stub_t, azns_link)); |
| cv_init(&amdzen_data->azn_cv, NULL, CV_DRIVER, NULL); |
| } |
| |
| struct bus_ops amdzen_bus_ops = { |
| .busops_rev = BUSO_REV, |
| .bus_map = nullbusmap, |
| .bus_dma_map = ddi_no_dma_map, |
| .bus_dma_allochdl = ddi_no_dma_allochdl, |
| .bus_dma_freehdl = ddi_no_dma_freehdl, |
| .bus_dma_bindhdl = ddi_no_dma_bindhdl, |
| .bus_dma_unbindhdl = ddi_no_dma_unbindhdl, |
| .bus_dma_flush = ddi_no_dma_flush, |
| .bus_dma_win = ddi_no_dma_win, |
| .bus_dma_ctl = ddi_no_dma_mctl, |
| .bus_prop_op = ddi_bus_prop_op, |
| .bus_ctl = amdzen_bus_ctl |
| }; |
| |
| static struct dev_ops amdzen_dev_ops = { |
| .devo_rev = DEVO_REV, |
| .devo_refcnt = 0, |
| .devo_getinfo = nodev, |
| .devo_identify = nulldev, |
| .devo_probe = nulldev, |
| .devo_attach = amdzen_attach, |
| .devo_detach = amdzen_detach, |
| .devo_reset = nodev, |
| .devo_quiesce = ddi_quiesce_not_needed, |
| .devo_bus_ops = &amdzen_bus_ops |
| }; |
| |
| static struct modldrv amdzen_modldrv = { |
| .drv_modops = &mod_driverops, |
| .drv_linkinfo = "AMD Zen Nexus Driver", |
| .drv_dev_ops = &amdzen_dev_ops |
| }; |
| |
| static struct modlinkage amdzen_modlinkage = { |
| .ml_rev = MODREV_1, |
| .ml_linkage = { &amdzen_modldrv, NULL } |
| }; |
| |
| int |
| _init(void) |
| { |
| int ret; |
| |
| if (cpuid_getvendor(CPU) != X86_VENDOR_AMD && |
| cpuid_getvendor(CPU) != X86_VENDOR_HYGON) { |
| return (ENOTSUP); |
| } |
| |
| if ((ret = mod_install(&amdzen_modlinkage)) == 0) { |
| amdzen_alloc(); |
| } |
| |
| return (ret); |
| } |
| |
| int |
| _info(struct modinfo *modinfop) |
| { |
| return (mod_info(&amdzen_modlinkage, modinfop)); |
| } |
| |
| int |
| _fini(void) |
| { |
| int ret; |
| |
| if ((ret = mod_remove(&amdzen_modlinkage)) == 0) { |
| amdzen_free(); |
| } |
| |
| return (ret); |
| } |