| /* |
| * CDDL HEADER START |
| * |
| * The contents of this file are subject to the terms of the |
| * Common Development and Distribution License (the "License"). |
| * You may not use this file except in compliance with the License. |
| * |
| * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE |
| * or http://www.opensolaris.org/os/licensing. |
| * See the License for the specific language governing permissions |
| * and limitations under the License. |
| * |
| * When distributing Covered Code, include this CDDL HEADER in each |
| * file and include the License file at usr/src/OPENSOLARIS.LICENSE. |
| * If applicable, add the following below this CDDL HEADER, with the |
| * fields enclosed by brackets "[]" replaced with your own identifying |
| * information: Portions Copyright [yyyy] [name of copyright owner] |
| * |
| * CDDL HEADER END |
| */ |
| |
| /* |
| * Copyright 2006 Sun Microsystems, Inc. All rights reserved. |
| * Use is subject to license terms. |
| */ |
| |
| #pragma ident "%Z%%M% %I% %E% SMI" |
| |
| #include <sys/machsystm.h> |
| #include <sys/archsystm.h> |
| #include <sys/vm.h> |
| #include <sys/cpu.h> |
| #include <sys/atomic.h> |
| #include <sys/reboot.h> |
| #include <sys/kdi.h> |
| #include <sys/bootconf.h> |
| #include <sys/memlist_plat.h> |
| #include <sys/memlist_impl.h> |
| #include <sys/prom_plat.h> |
| #include <sys/prom_isa.h> |
| #include <sys/autoconf.h> |
| #include <sys/intreg.h> |
| #include <sys/ivintr.h> |
| #include <sys/fpu/fpusystm.h> |
| #include <sys/iommutsb.h> |
| #include <vm/vm_dep.h> |
| #include <vm/seg_dev.h> |
| #include <vm/seg_kmem.h> |
| #include <vm/seg_kpm.h> |
| #include <vm/seg_map.h> |
| #include <vm/seg_kp.h> |
| #include <sys/sysconf.h> |
| #include <vm/hat_sfmmu.h> |
| #include <sys/kobj.h> |
| #include <sys/sun4asi.h> |
| #include <sys/clconf.h> |
| #include <sys/platform_module.h> |
| #include <sys/panic.h> |
| #include <sys/cpu_sgnblk_defs.h> |
| #include <sys/clock.h> |
| #include <sys/cmn_err.h> |
| #include <sys/promif.h> |
| #include <sys/prom_debug.h> |
| #include <sys/traptrace.h> |
| #include <sys/memnode.h> |
| #include <sys/mem_cage.h> |
| |
| extern void setup_trap_table(void); |
| extern void cpu_intrq_setup(struct cpu *); |
| extern void cpu_intrq_register(struct cpu *); |
| extern void contig_mem_init(void); |
| extern void mach_dump_buffer_init(void); |
| extern void mach_descrip_init(void); |
| extern void mach_memscrub(void); |
| extern void mach_fpras(void); |
| extern void mach_cpu_halt_idle(void); |
| extern void mach_hw_copy_limit(void); |
| extern void load_tod_module(void); |
| #pragma weak load_tod_module |
| |
| extern int ndata_alloc_mmfsa(struct memlist *ndata); |
| #pragma weak ndata_alloc_mmfsa |
| |
| extern void parse_idprom(void); |
| extern void add_vx_handler(char *, int, void (*)(cell_t *)); |
| extern void mem_config_init(void); |
| extern void memseg_remap_init(void); |
| |
| /* |
| * External Data: |
| */ |
| extern int vac_size; /* cache size in bytes */ |
| extern uint_t vac_mask; /* VAC alignment consistency mask */ |
| extern uint_t vac_colors; |
| |
| /* |
| * Global Data Definitions: |
| */ |
| |
| /* |
| * XXX - Don't port this to new architectures |
| * A 3rd party volume manager driver (vxdm) depends on the symbol romp. |
| * 'romp' has no use with a prom with an IEEE 1275 client interface. |
| * The driver doesn't use the value, but it depends on the symbol. |
| */ |
| void *romp; /* veritas driver won't load without romp 4154976 */ |
| /* |
| * Declare these as initialized data so we can patch them. |
| */ |
| pgcnt_t physmem = 0; /* memory size in pages, patch if you want less */ |
| pgcnt_t segkpsize = |
| btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ |
| uint_t segmap_percent = 12; /* Size of segmap segment */ |
| |
| int use_cache = 1; /* cache not reliable (605 bugs) with MP */ |
| int vac_copyback = 1; |
| char *cache_mode = NULL; |
| int use_mix = 1; |
| int prom_debug = 0; |
| |
| struct bootops *bootops = 0; /* passed in from boot in %o2 */ |
| caddr_t boot_tba; /* %tba at boot - used by kmdb */ |
| uint_t tba_taken_over = 0; |
| |
| caddr_t s_text; /* start of kernel text segment */ |
| caddr_t e_text; /* end of kernel text segment */ |
| caddr_t s_data; /* start of kernel data segment */ |
| caddr_t e_data; /* end of kernel data segment */ |
| |
| caddr_t modtext; /* beginning of module text */ |
| size_t modtext_sz; /* size of module text */ |
| caddr_t moddata; /* beginning of module data reserve */ |
| caddr_t e_moddata; /* end of module data reserve */ |
| |
| /* |
| * End of first block of contiguous kernel in 32-bit virtual address space |
| */ |
| caddr_t econtig32; /* end of first blk of contiguous kernel */ |
| |
| caddr_t ncbase; /* beginning of non-cached segment */ |
| caddr_t ncend; /* end of non-cached segment */ |
| caddr_t sdata; /* beginning of data segment */ |
| |
| caddr_t extra_etva; /* beginning of unused nucleus text */ |
| pgcnt_t extra_etpg; /* number of pages of unused nucleus text */ |
| |
| size_t ndata_remain_sz; /* bytes from end of data to 4MB boundary */ |
| caddr_t nalloc_base; /* beginning of nucleus allocation */ |
| caddr_t nalloc_end; /* end of nucleus allocatable memory */ |
| caddr_t valloc_base; /* beginning of kvalloc segment */ |
| |
| caddr_t kmem64_base; /* base of kernel mem segment in 64-bit space */ |
| caddr_t kmem64_end; /* end of kernel mem segment in 64-bit space */ |
| |
| uintptr_t shm_alignment = 0; /* VAC address consistency modulus */ |
| struct memlist *phys_install; /* Total installed physical memory */ |
| struct memlist *phys_avail; /* Available (unreserved) physical memory */ |
| struct memlist *virt_avail; /* Available (unmapped?) virtual memory */ |
| struct memlist ndata; /* memlist of nucleus allocatable memory */ |
| int memexp_flag; /* memory expansion card flag */ |
| uint64_t ecache_flushaddr; /* physical address used for flushing E$ */ |
| pgcnt_t obp_pages; /* Physical pages used by OBP */ |
| |
| /* |
| * VM data structures |
| */ |
| long page_hashsz; /* Size of page hash table (power of two) */ |
| struct page *pp_base; /* Base of system page struct array */ |
| size_t pp_sz; /* Size in bytes of page struct array */ |
| struct page **page_hash; /* Page hash table */ |
| struct seg ktextseg; /* Segment used for kernel executable image */ |
| struct seg kvalloc; /* Segment used for "valloc" mapping */ |
| struct seg kpseg; /* Segment used for pageable kernel virt mem */ |
| struct seg ktexthole; /* Segment used for nucleus text hole */ |
| struct seg kmapseg; /* Segment used for generic kernel mappings */ |
| struct seg kpmseg; /* Segment used for physical mapping */ |
| struct seg kdebugseg; /* Segment used for the kernel debugger */ |
| |
| uintptr_t kpm_pp_base; /* Base of system kpm_page array */ |
| size_t kpm_pp_sz; /* Size of system kpm_page array */ |
| pgcnt_t kpm_npages; /* How many kpm pages are managed */ |
| |
| struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ |
| struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ |
| struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ |
| |
| /* |
| * debugger pages (if allocated) |
| */ |
| struct vnode kdebugvp; |
| |
| /* |
| * Segment for relocated kernel structures in 64-bit large RAM kernels |
| */ |
| struct seg kmem64; |
| |
| struct memseg *memseg_base; |
| size_t memseg_sz; /* Used to translate a va to page */ |
| struct vnode unused_pages_vp; |
| |
| /* |
| * VM data structures allocated early during boot. |
| */ |
| size_t pagehash_sz; |
| uint64_t memlist_sz; |
| |
| char tbr_wr_addr_inited = 0; |
| |
| |
| /* |
| * Static Routines: |
| */ |
| static void memlist_add(uint64_t, uint64_t, struct memlist **, |
| struct memlist **); |
| static void kphysm_init(page_t *, struct memseg *, pgcnt_t, uintptr_t, |
| pgcnt_t); |
| static void kvm_init(void); |
| |
| static void startup_init(void); |
| static void startup_memlist(void); |
| static void startup_modules(void); |
| static void startup_bop_gone(void); |
| static void startup_vm(void); |
| static void startup_end(void); |
| static void setup_cage_params(void); |
| static void startup_create_io_node(void); |
| |
| static pgcnt_t npages; |
| static struct memlist *memlist; |
| void *memlist_end; |
| |
| static pgcnt_t bop_alloc_pages; |
| static caddr_t hblk_base; |
| uint_t hblk_alloc_dynamic = 0; |
| uint_t hblk1_min = H1MIN; |
| uint_t hblk8_min; |
| |
| |
| /* |
| * Hooks for unsupported platforms and down-rev firmware |
| */ |
| int iam_positron(void); |
| #pragma weak iam_positron |
| static void do_prom_version_check(void); |
| static void kpm_init(void); |
| static void kpm_npages_setup(int); |
| static void kpm_memseg_init(void); |
| |
| /* |
| * After receiving a thermal interrupt, this is the number of seconds |
| * to delay before shutting off the system, assuming |
| * shutdown fails. Use /etc/system to change the delay if this isn't |
| * large enough. |
| */ |
| int thermal_powerdown_delay = 1200; |
| |
| /* |
| * Used to hold off page relocations into the cage until OBP has completed |
| * its boot-time handoff of its resources to the kernel. |
| */ |
| int page_relocate_ready = 0; |
| |
| /* |
| * Enable some debugging messages concerning memory usage... |
| */ |
| #ifdef DEBUGGING_MEM |
| static int debugging_mem; |
| static void |
| printmemlist(char *title, struct memlist *list) |
| { |
| if (!debugging_mem) |
| return; |
| |
| printf("%s\n", title); |
| |
| while (list) { |
| prom_printf("\taddr = 0x%x %8x, size = 0x%x %8x\n", |
| (uint32_t)(list->address >> 32), (uint32_t)list->address, |
| (uint32_t)(list->size >> 32), (uint32_t)(list->size)); |
| list = list->next; |
| } |
| } |
| |
| void |
| printmemseg(struct memseg *memseg) |
| { |
| if (!debugging_mem) |
| return; |
| |
| printf("memseg\n"); |
| |
| while (memseg) { |
| prom_printf("\tpage = 0x%p, epage = 0x%p, " |
| "pfn = 0x%x, epfn = 0x%x\n", |
| memseg->pages, memseg->epages, |
| memseg->pages_base, memseg->pages_end); |
| memseg = memseg->next; |
| } |
| } |
| |
| #define debug_pause(str) halt((str)) |
| #define MPRINTF(str) if (debugging_mem) prom_printf((str)) |
| #define MPRINTF1(str, a) if (debugging_mem) prom_printf((str), (a)) |
| #define MPRINTF2(str, a, b) if (debugging_mem) prom_printf((str), (a), (b)) |
| #define MPRINTF3(str, a, b, c) \ |
| if (debugging_mem) prom_printf((str), (a), (b), (c)) |
| #else /* DEBUGGING_MEM */ |
| #define MPRINTF(str) |
| #define MPRINTF1(str, a) |
| #define MPRINTF2(str, a, b) |
| #define MPRINTF3(str, a, b, c) |
| #endif /* DEBUGGING_MEM */ |
| |
| /* Simple message to indicate that the bootops pointer has been zeroed */ |
| #ifdef DEBUG |
| static int bootops_gone_on = 0; |
| #define BOOTOPS_GONE() \ |
| if (bootops_gone_on) \ |
| prom_printf("The bootops vec is zeroed now!\n"); |
| #else |
| #define BOOTOPS_GONE() |
| #endif /* DEBUG */ |
| |
| /* |
| * Monitor pages may not be where this says they are. |
| * and the debugger may not be there either. |
| * |
| * Note that 'pages' here are *physical* pages, which are 8k on sun4u. |
| * |
| * Physical memory layout |
| * (not necessarily contiguous) |
| * (THIS IS SOMEWHAT WRONG) |
| * /-----------------------\ |
| * | monitor pages | |
| * availmem -|-----------------------| |
| * | | |
| * | page pool | |
| * | | |
| * |-----------------------| |
| * | configured tables | |
| * | buffers | |
| * firstaddr -|-----------------------| |
| * | hat data structures | |
| * |-----------------------| |
| * | kernel data, bss | |
| * |-----------------------| |
| * | interrupt stack | |
| * |-----------------------| |
| * | kernel text (RO) | |
| * |-----------------------| |
| * | trap table (4k) | |
| * |-----------------------| |
| * page 1 | panicbuf | |
| * |-----------------------| |
| * page 0 | reclaimed | |
| * |_______________________| |
| * |
| * |
| * |
| * Kernel's Virtual Memory Layout. |
| * /-----------------------\ |
| * 0xFFFFFFFF.FFFFFFFF -| |- |
| * | OBP's virtual page | |
| * | tables | |
| * 0xFFFFFFFC.00000000 -|-----------------------|- |
| * : : |
| * : : |
| * 0xFFFFFE00.00000000 -|-----------------------|- |
| * | | Ultrasparc I/II support |
| * | segkpm segment | up to 2TB of physical |
| * | (64-bit kernel ONLY) | memory, VAC has 2 colors |
| * | | |
| * 0xFFFFFA00.00000000 -|-----------------------|- 2TB segkpm alignment |
| * : : |
| * : : |
| * 0xFFFFF810.00000000 -|-----------------------|- hole_end |
| * | | ^ |
| * | UltraSPARC I/II call | | |
| * | bug requires an extra | | |
| * | 4 GB of space between | | |
| * | hole and used RAM | | |
| * | | | |
| * 0xFFFFF800.00000000 -|-----------------------|- | |
| * | | | |
| * | Virtual Address Hole | UltraSPARC |
| * | on UltraSPARC I/II | I/II * ONLY * |
| * | | | |
| * 0x00000800.00000000 -|-----------------------|- | |
| * | | | |
| * | UltraSPARC I/II call | | |
| * | bug requires an extra | | |
| * | 4 GB of space between | | |
| * | hole and used RAM | | |
| * | | v |
| * 0x000007FF.00000000 -|-----------------------|- hole_start ----- |
| * : : ^ |
| * : : | |
| * 0x00000XXX.XXXXXXXX -|-----------------------|- kmem64_end | |
| * | | | |
| * | 64-bit kernel ONLY | | |
| * | | | |
| * | kmem64 segment | | |
| * | | | |
| * | (Relocated extra HME | Approximately |
| * | block allocations, | 1 TB of virtual |
| * | memnode freelists, | address space |
| * | HME hash buckets, | | |
| * | mml_table, kpmp_table,| | |
| * | page_t array and | | |
| * | hashblock pool to | | |
| * | avoid hard-coded | | |
| * | 32-bit vaddr | | |
| * | limitations) | | |
| * | | v |
| * 0x00000700.00000000 -|-----------------------|- SYSLIMIT (kmem64_base) |
| * | | |
| * | segkmem segment | (SYSLIMIT - SYSBASE = 4TB) |
| * | | |
| * 0x00000300.00000000 -|-----------------------|- SYSBASE |
| * : : |
| * : : |
| * -|-----------------------|- |
| * | | |
| * | segmap segment | SEGMAPSIZE (1/8th physmem, |
| * | | 256G MAX) |
| * 0x000002a7.50000000 -|-----------------------|- SEGMAPBASE |
| * : : |
| * : : |
| * -|-----------------------|- |
| * | | |
| * | segkp | SEGKPSIZE (2GB) |
| * | | |
| * | | |
| * 0x000002a1.00000000 -|-----------------------|- SEGKPBASE |
| * | | |
| * 0x000002a0.00000000 -|-----------------------|- MEMSCRUBBASE |
| * | | (SEGKPBASE - 0x400000) |
| * 0x0000029F.FFE00000 -|-----------------------|- ARGSBASE |
| * | | (MEMSCRUBBASE - NCARGS) |
| * 0x0000029F.FFD80000 -|-----------------------|- PPMAPBASE |
| * | | (ARGSBASE - PPMAPSIZE) |
| * 0x0000029F.FFD00000 -|-----------------------|- PPMAP_FAST_BASE |
| * | | |
| * 0x0000029F.FF980000 -|-----------------------|- PIOMAPBASE |
| * | | |
| * 0x0000029F.FF580000 -|-----------------------|- NARG_BASE |
| * : : |
| * : : |
| * 0x00000000.FFFFFFFF -|-----------------------|- OFW_END_ADDR |
| * | | |
| * | OBP | |
| * | | |
| * 0x00000000.F0000000 -|-----------------------|- OFW_START_ADDR |
| * | kmdb | |
| * 0x00000000.EDD00000 -|-----------------------|- SEGDEBUGBASE |
| * : : |
| * : : |
| * 0x00000000.7c000000 -|-----------------------|- SYSLIMIT32 |
| * | | |
| * | segkmem32 segment | (SYSLIMIT32 - SYSBASE32 = |
| * | | ~64MB) |
| * 0x00000000.78002000 -|-----------------------| |
| * | panicbuf | |
| * 0x00000000.78000000 -|-----------------------|- SYSBASE32 |
| * : : |
| * : : |
| * | | |
| * |-----------------------|- econtig32 |
| * | vm structures | |
| * 0x00000000.01C00000 |-----------------------|- nalloc_end |
| * | TSBs | |
| * |-----------------------|- end/nalloc_base |
| * | kernel data & bss | |
| * 0x00000000.01800000 -|-----------------------| |
| * : nucleus text hole : |
| * 0x00000000.01400000 -|-----------------------| |
| * : : |
| * |-----------------------| |
| * | module text | |
| * |-----------------------|- e_text/modtext |
| * | kernel text | |
| * |-----------------------| |
| * | trap table (48k) | |
| * 0x00000000.01000000 -|-----------------------|- KERNELBASE |
| * | reserved for trapstat |} TSTAT_TOTAL_SIZE |
| * |-----------------------| |
| * | | |
| * | invalid | |
| * | | |
| * 0x00000000.00000000 _|_______________________| |
| * |
| * |
| * |
| * 32-bit User Virtual Memory Layout. |
| * /-----------------------\ |
| * | | |
| * | invalid | |
| * | | |
| * 0xFFC00000 -|-----------------------|- USERLIMIT |
| * | user stack | |
| * : : |
| * : : |
| * : : |
| * | user data | |
| * -|-----------------------|- |
| * | user text | |
| * 0x00002000 -|-----------------------|- |
| * | invalid | |
| * 0x00000000 _|_______________________| |
| * |
| * |
| * |
| * 64-bit User Virtual Memory Layout. |
| * /-----------------------\ |
| * | | |
| * | invalid | |
| * | | |
| * 0xFFFFFFFF.80000000 -|-----------------------|- USERLIMIT |
| * | user stack | |
| * : : |
| * : : |
| * : : |
| * | user data | |
| * -|-----------------------|- |
| * | user text | |
| * 0x00000000.00100000 -|-----------------------|- |
| * | invalid | |
| * 0x00000000.00000000 _|_______________________| |
| */ |
| |
| extern caddr_t ecache_init_scrub_flush_area(caddr_t alloc_base); |
| extern uint64_t ecache_flush_address(void); |
| |
| #pragma weak load_platform_modules |
| #pragma weak starcat_startup_memlist |
| #pragma weak ecache_init_scrub_flush_area |
| #pragma weak ecache_flush_address |
| |
| |
| /* |
| * By default the DR Cage is enabled for maximum OS |
| * MPSS performance. Users needing to disable the cage mechanism |
| * can set this variable to zero via /etc/system. |
| * Disabling the cage on systems supporting Dynamic Reconfiguration (DR) |
| * will result in loss of DR functionality. |
| * Platforms wishing to disable kernel Cage by default |
| * should do so in their set_platform_defaults() routine. |
| */ |
| int kernel_cage_enable = 1; |
| |
| static void |
| setup_cage_params(void) |
| { |
| void (*func)(void); |
| |
| func = (void (*)(void))kobj_getsymvalue("set_platform_cage_params", 0); |
| if (func != NULL) { |
| (*func)(); |
| return; |
| } |
| |
| if (kernel_cage_enable == 0) { |
| return; |
| } |
| kcage_range_lock(); |
| if (kcage_range_init(phys_avail, 1) == 0) { |
| kcage_init(total_pages / 256); |
| } |
| kcage_range_unlock(); |
| |
| if (kcage_on) { |
| cmn_err(CE_NOTE, "!Kernel Cage is ENABLED"); |
| } else { |
| cmn_err(CE_NOTE, "!Kernel Cage is DISABLED"); |
| } |
| |
| } |
| |
| /* |
| * Machine-dependent startup code |
| */ |
| void |
| startup(void) |
| { |
| startup_init(); |
| if (&startup_platform) |
| startup_platform(); |
| startup_memlist(); |
| startup_modules(); |
| setup_cage_params(); |
| startup_bop_gone(); |
| startup_vm(); |
| startup_end(); |
| } |
| |
| struct regs sync_reg_buf; |
| uint64_t sync_tt; |
| |
| void |
| sync_handler(void) |
| { |
| struct trap_info ti; |
| int i; |
| |
| /* |
| * Prevent trying to talk to the other CPUs since they are |
| * sitting in the prom and won't reply. |
| */ |
| for (i = 0; i < NCPU; i++) { |
| if ((i != CPU->cpu_id) && CPU_XCALL_READY(i)) { |
| cpu[i]->cpu_flags &= ~CPU_READY; |
| cpu[i]->cpu_flags |= CPU_QUIESCED; |
| CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id); |
| } |
| } |
| |
| /* |
| * We've managed to get here without going through the |
| * normal panic code path. Try and save some useful |
| * information. |
| */ |
| if (!panicstr && (curthread->t_panic_trap == NULL)) { |
| ti.trap_type = sync_tt; |
| ti.trap_regs = &sync_reg_buf; |
| ti.trap_addr = NULL; |
| ti.trap_mmu_fsr = 0x0; |
| |
| curthread->t_panic_trap = &ti; |
| } |
| |
| /* |
| * If we're re-entering the panic path, update the signature |
| * block so that the SC knows we're in the second part of panic. |
| */ |
| if (panicstr) |
| CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1); |
| |
| nopanicdebug = 1; /* do not perform debug_enter() prior to dump */ |
| panic("sync initiated"); |
| } |
| |
| |
| static void |
| startup_init(void) |
| { |
| /* |
| * We want to save the registers while we're still in OBP |
| * so that we know they haven't been fiddled with since. |
| * (In principle, OBP can't change them just because it |
| * makes a callback, but we'd rather not depend on that |
| * behavior.) |
| */ |
| char sync_str[] = |
| "warning @ warning off : sync " |
| "%%tl-c %%tstate h# %p x! " |
| "%%g1 h# %p x! %%g2 h# %p x! %%g3 h# %p x! " |
| "%%g4 h# %p x! %%g5 h# %p x! %%g6 h# %p x! " |
| "%%g7 h# %p x! %%o0 h# %p x! %%o1 h# %p x! " |
| "%%o2 h# %p x! %%o3 h# %p x! %%o4 h# %p x! " |
| "%%o5 h# %p x! %%o6 h# %p x! %%o7 h# %p x! " |
| "%%tl-c %%tpc h# %p x! %%tl-c %%tnpc h# %p x! " |
| "%%y h# %p l! %%tl-c %%tt h# %p x! " |
| "sync ; warning !"; |
| |
| /* |
| * 20 == num of %p substrings |
| * 16 == max num of chars %p will expand to. |
| */ |
| char bp[sizeof (sync_str) + 16 * 20]; |
| |
| (void) check_boot_version(BOP_GETVERSION(bootops)); |
| |
| /* |
| * Initialize ptl1 stack for the 1st CPU. |
| */ |
| ptl1_init_cpu(&cpu0); |
| |
| /* |
| * Initialize the address map for cache consistent mappings |
| * to random pages; must be done after vac_size is set. |
| */ |
| ppmapinit(); |
| |
| /* |
| * Initialize the PROM callback handler. |
| */ |
| init_vx_handler(); |
| |
| /* |
| * have prom call sync_callback() to handle the sync and |
| * save some useful information which will be stored in the |
| * core file later. |
| */ |
| (void) sprintf((char *)bp, sync_str, |
| (void *)&sync_reg_buf.r_tstate, (void *)&sync_reg_buf.r_g1, |
| (void *)&sync_reg_buf.r_g2, (void *)&sync_reg_buf.r_g3, |
| (void *)&sync_reg_buf.r_g4, (void *)&sync_reg_buf.r_g5, |
| (void *)&sync_reg_buf.r_g6, (void *)&sync_reg_buf.r_g7, |
| (void *)&sync_reg_buf.r_o0, (void *)&sync_reg_buf.r_o1, |
| (void *)&sync_reg_buf.r_o2, (void *)&sync_reg_buf.r_o3, |
| (void *)&sync_reg_buf.r_o4, (void *)&sync_reg_buf.r_o5, |
| (void *)&sync_reg_buf.r_o6, (void *)&sync_reg_buf.r_o7, |
| (void *)&sync_reg_buf.r_pc, (void *)&sync_reg_buf.r_npc, |
| (void *)&sync_reg_buf.r_y, (void *)&sync_tt); |
| prom_interpret(bp, 0, 0, 0, 0, 0); |
| add_vx_handler("sync", 1, (void (*)(cell_t *))sync_handler); |
| } |
| |
| static u_longlong_t *boot_physinstalled, *boot_physavail, *boot_virtavail; |
| static size_t boot_physinstalled_len, boot_physavail_len, boot_virtavail_len; |
| |
| #define IVSIZE ((MAXIVNUM + 1) * sizeof (struct intr_vector)) |
| |
| /* |
| * As OBP takes up some RAM when the system boots, pages will already be "lost" |
| * to the system and reflected in npages by the time we see it. |
| * |
| * We only want to allocate kernel structures in the 64-bit virtual address |
| * space on systems with enough RAM to make the overhead of keeping track of |
| * an extra kernel memory segment worthwhile. |
| * |
| * Since OBP has already performed its memory allocations by this point, if we |
| * have more than MINMOVE_RAM_MB MB of RAM left free, go ahead and map |
| * memory in the 64-bit virtual address space; otherwise keep allocations |
| * contiguous with we've mapped so far in the 32-bit virtual address space. |
| */ |
| #define MINMOVE_RAM_MB ((size_t)1900) |
| #define MB_TO_BYTES(mb) ((mb) * 1048576ul) |
| |
| pgcnt_t tune_npages = (pgcnt_t) |
| (MB_TO_BYTES(MINMOVE_RAM_MB)/ (size_t)MMU_PAGESIZE); |
| |
| static void |
| startup_memlist(void) |
| { |
| size_t alloc_sz; |
| size_t ctrs_sz; |
| caddr_t alloc_base; |
| caddr_t ctrs_base, ctrs_end; |
| caddr_t memspace; |
| caddr_t va; |
| int memblocks = 0; |
| struct memlist *cur; |
| size_t syslimit = (size_t)SYSLIMIT; |
| size_t sysbase = (size_t)SYSBASE; |
| int alloc_alignsize = MMU_PAGESIZE; |
| extern void page_coloring_init(void); |
| |
| /* |
| * Initialize enough of the system to allow kmem_alloc to work by |
| * calling boot to allocate its memory until the time that |
| * kvm_init is completed. The page structs are allocated after |
| * rounding up end to the nearest page boundary; the memsegs are |
| * initialized and the space they use comes from the kernel heap. |
| * With appropriate initialization, they can be reallocated later |
| * to a size appropriate for the machine's configuration. |
| * |
| * At this point, memory is allocated for things that will never |
| * need to be freed, this used to be "valloced". This allows a |
| * savings as the pages don't need page structures to describe |
| * them because them will not be managed by the vm system. |
| */ |
| |
| /* |
| * We're loaded by boot with the following configuration (as |
| * specified in the sun4u/conf/Mapfile): |
| * |
| * text: 4 MB chunk aligned on a 4MB boundary |
| * data & bss: 4 MB chunk aligned on a 4MB boundary |
| * |
| * These two chunks will eventually be mapped by 2 locked 4MB |
| * ttes and will represent the nucleus of the kernel. This gives |
| * us some free space that is already allocated, some or all of |
| * which is made available to kernel module text. |
| * |
| * The free space in the data-bss chunk is used for nucleus |
| * allocatable data structures and we reserve it using the |
| * nalloc_base and nalloc_end variables. This space is currently |
| * being used for hat data structures required for tlb miss |
| * handling operations. We align nalloc_base to a l2 cache |
| * linesize because this is the line size the hardware uses to |
| * maintain cache coherency. |
| * 256K is carved out for module data. |
| */ |
| |
| nalloc_base = (caddr_t)roundup((uintptr_t)e_data, MMU_PAGESIZE); |
| moddata = nalloc_base; |
| e_moddata = nalloc_base + MODDATA; |
| nalloc_base = e_moddata; |
| |
| nalloc_end = (caddr_t)roundup((uintptr_t)nalloc_base, MMU_PAGESIZE4M); |
| valloc_base = nalloc_base; |
| |
| /* |
| * Calculate the start of the data segment. |
| */ |
| sdata = (caddr_t)((uintptr_t)e_data & MMU_PAGEMASK4M); |
| |
| PRM_DEBUG(moddata); |
| PRM_DEBUG(nalloc_base); |
| PRM_DEBUG(nalloc_end); |
| PRM_DEBUG(sdata); |
| |
| /* |
| * Remember any slop after e_text so we can give it to the modules. |
| */ |
| PRM_DEBUG(e_text); |
| modtext = (caddr_t)roundup((uintptr_t)e_text, MMU_PAGESIZE); |
| if (((uintptr_t)modtext & MMU_PAGEMASK4M) != (uintptr_t)s_text) |
| panic("nucleus text overflow"); |
| modtext_sz = (caddr_t)roundup((uintptr_t)modtext, MMU_PAGESIZE4M) - |
| modtext; |
| PRM_DEBUG(modtext); |
| PRM_DEBUG(modtext_sz); |
| |
| copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, |
| &boot_physavail, &boot_physavail_len, |
| &boot_virtavail, &boot_virtavail_len); |
| /* |
| * Remember what the physically available highest page is |
| * so that dumpsys works properly, and find out how much |
| * memory is installed. |
| */ |
| installed_top_size_memlist_array(boot_physinstalled, |
| boot_physinstalled_len, &physmax, &physinstalled); |
| PRM_DEBUG(physinstalled); |
| PRM_DEBUG(physmax); |
| |
| /* Fill out memory nodes config structure */ |
| startup_build_mem_nodes(boot_physinstalled, boot_physinstalled_len); |
| |
| /* |
| * Get the list of physically available memory to size |
| * the number of page structures needed. |
| */ |
| size_physavail(boot_physavail, boot_physavail_len, &npages, &memblocks); |
| /* |
| * This first snap shot of npages can represent the pages used |
| * by OBP's text and data approximately. This is used in the |
| * the calculation of the kernel size |
| */ |
| obp_pages = physinstalled - npages; |
| |
| |
| /* |
| * On small-memory systems (<MODTEXT_SM_SIZE MB, currently 256MB), the |
| * in-nucleus module text is capped to MODTEXT_SM_CAP bytes (currently |
| * 2MB) and any excess pages are put on physavail. The assumption is |
| * that small-memory systems will need more pages more than they'll |
| * need efficiently-mapped module texts. |
| */ |
| if ((physinstalled < mmu_btop(MODTEXT_SM_SIZE << 20)) && |
| modtext_sz > MODTEXT_SM_CAP) { |
| extra_etpg = mmu_btop(modtext_sz - MODTEXT_SM_CAP); |
| modtext_sz = MODTEXT_SM_CAP; |
| } else |
| extra_etpg = 0; |
| PRM_DEBUG(extra_etpg); |
| PRM_DEBUG(modtext_sz); |
| extra_etva = modtext + modtext_sz; |
| PRM_DEBUG(extra_etva); |
| |
| /* |
| * Account for any pages after e_text and e_data. |
| */ |
| npages += extra_etpg; |
| npages += mmu_btopr(nalloc_end - nalloc_base); |
| PRM_DEBUG(npages); |
| |
| /* |
| * npages is the maximum of available physical memory possible. |
| * (ie. it will never be more than this) |
| */ |
| |
| /* |
| * initialize the nucleus memory allocator. |
| */ |
| ndata_alloc_init(&ndata, (uintptr_t)nalloc_base, (uintptr_t)nalloc_end); |
| |
| /* |
| * Allocate mmu fault status area from the nucleus data area. |
| */ |
| if ((&ndata_alloc_mmfsa != NULL) && (ndata_alloc_mmfsa(&ndata) != 0)) |
| cmn_err(CE_PANIC, "no more nucleus memory after mfsa alloc"); |
| |
| /* |
| * Allocate kernel TSBs from the nucleus data area. |
| */ |
| if (ndata_alloc_tsbs(&ndata, npages) != 0) |
| cmn_err(CE_PANIC, "no more nucleus memory after tsbs alloc"); |
| |
| /* |
| * Allocate cpus structs from the nucleus data area. |
| */ |
| if (ndata_alloc_cpus(&ndata) != 0) |
| cmn_err(CE_PANIC, "no more nucleus memory after cpu alloc"); |
| |
| /* |
| * Allocate dmv dispatch table from the nucleus data area. |
| */ |
| if (ndata_alloc_dmv(&ndata) != 0) |
| cmn_err(CE_PANIC, "no more nucleus memory after dmv alloc"); |
| |
| |
| page_coloring_init(); |
| |
| /* |
| * Allocate page_freelists bin headers for memnode 0 from the |
| * nucleus data area. |
| */ |
| if (ndata_alloc_page_freelists(&ndata, 0) != 0) |
| cmn_err(CE_PANIC, |
| "no more nucleus memory after page free lists alloc"); |
| |
| if (kpm_enable) { |
| kpm_init(); |
| /* |
| * kpm page space -- Update kpm_npages and make the |
| * same assumption about fragmenting as it is done |
| * for memseg_sz. |
| */ |
| kpm_npages_setup(memblocks + 4); |
| } |
| |
| /* |
| * Allocate hat related structs from the nucleus data area. |
| */ |
| if (ndata_alloc_hat(&ndata, npages, kpm_npages) != 0) |
| cmn_err(CE_PANIC, "no more nucleus memory after hat alloc"); |
| |
| /* |
| * We want to do the BOP_ALLOCs before the real allocation of page |
| * structs in order to not have to allocate page structs for this |
| * memory. We need to calculate a virtual address because we want |
| * the page structs to come before other allocations in virtual address |
| * space. This is so some (if not all) of page structs can actually |
| * live in the nucleus. |
| */ |
| |
| /* |
| * WARNING WARNING WARNING WARNING WARNING WARNING WARNING |
| * |
| * There are comments all over the SFMMU code warning of dire |
| * consequences if the TSBs are moved out of 32-bit space. This |
| * is largely because the asm code uses "sethi %hi(addr)"-type |
| * instructions which will not provide the expected result if the |
| * address is a 64-bit one. |
| * |
| * WARNING WARNING WARNING WARNING WARNING WARNING WARNING |
| */ |
| alloc_base = (caddr_t)roundup((uintptr_t)nalloc_end, MMU_PAGESIZE); |
| alloc_base = sfmmu_ktsb_alloc(alloc_base); |
| alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); |
| PRM_DEBUG(alloc_base); |
| |
| /* |
| * Allocate IOMMU TSB array. We do this here so that the physical |
| * memory gets deducted from the PROM's physical memory list. |
| */ |
| alloc_base = iommu_tsb_init(alloc_base); |
| alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, |
| ecache_alignsize); |
| PRM_DEBUG(alloc_base); |
| |
| /* |
| * Starcat needs its special structures assigned in 32-bit virtual |
| * address space because its probing routines execute FCode, and FCode |
| * can't handle 64-bit virtual addresses... |
| */ |
| if (&starcat_startup_memlist) { |
| alloc_base = starcat_startup_memlist(alloc_base); |
| alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, |
| ecache_alignsize); |
| PRM_DEBUG(alloc_base); |
| } |
| |
| /* |
| * If we have enough memory, use 4M pages for alignment because it |
| * greatly reduces the number of TLB misses we take albeit at the cost |
| * of possible RAM wastage (degenerate case of 4 MB - MMU_PAGESIZE per |
| * allocation.) Still, the speedup on large memory systems (e.g. > 64 |
| * GB) is quite noticeable, so it is worth the effort to do if we can. |
| * |
| * Note, however, that this speedup will only occur if the boot PROM |
| * uses the largest possible MMU page size possible to map memory |
| * requests that are properly aligned and sized (for example, a request |
| * for a multiple of 4MB of memory aligned to a 4MB boundary will |
| * result in a mapping using a 4MB MMU page.) |
| * |
| * Even then, the large page mappings will only speed things up until |
| * the startup process proceeds a bit further, as when |
| * sfmmu_map_prom_mappings() copies page mappings from the PROM to the |
| * kernel it remaps everything but the TSBs using 8K pages anyway... |
| * |
| * At some point in the future, sfmmu_map_prom_mappings() will be |
| * rewritten to copy memory mappings to the kernel using the same MMU |
| * page sizes the PROM used. When that occurs, if the PROM did use |
| * large MMU pages to map memory, the alignment/sizing work we're |
| * doing now should give us a nice extra performance boost, albeit at |
| * the cost of greater RAM usage... |
| */ |
| alloc_alignsize = ((npages >= tune_npages) ? MMU_PAGESIZE4M : |
| MMU_PAGESIZE); |
| |
| PRM_DEBUG(tune_npages); |
| PRM_DEBUG(alloc_alignsize); |
| |
| /* |
| * Save off where the contiguous allocations to date have ended |
| * in econtig32. |
| */ |
| econtig32 = alloc_base; |
| PRM_DEBUG(econtig32); |
| |
| if (econtig32 > (caddr_t)KERNEL_LIMIT32) |
| cmn_err(CE_PANIC, "econtig32 too big"); |
| |
| /* |
| * To avoid memory allocation collisions in the 32-bit virtual address |
| * space, make allocations from this point forward in 64-bit virtual |
| * address space starting at syslimit and working up. Also use the |
| * alignment specified by alloc_alignsize, as we may be able to save |
| * ourselves TLB misses by using larger page sizes if they're |
| * available. |
| * |
| * All this is needed because on large memory systems, the default |
| * Solaris allocations will collide with SYSBASE32, which is hard |
| * coded to be at the virtual address 0x78000000. Therefore, on 64-bit |
| * kernels, move the allocations to a location in the 64-bit virtual |
| * address space space, allowing those structures to grow without |
| * worry. |
| * |
| * On current CPUs we'll run out of physical memory address bits before |
| * we need to worry about the allocations running into anything else in |
| * VM or the virtual address holes on US-I and II, as there's currently |
| * about 1 TB of addressable space before the US-I/II VA hole. |
| */ |
| kmem64_base = (caddr_t)syslimit; |
| PRM_DEBUG(kmem64_base); |
| |
| alloc_base = (caddr_t)roundup((uintptr_t)kmem64_base, alloc_alignsize); |
| |
| /* |
| * If KHME and/or UHME hash buckets won't fit in the nucleus, allocate |
| * them here. |
| */ |
| if (khme_hash == NULL || uhme_hash == NULL) { |
| /* |
| * alloc_hme_buckets() will align alloc_base properly before |
| * assigning the hash buckets, so we don't need to do it |
| * before the call... |
| */ |
| alloc_base = alloc_hme_buckets(alloc_base, alloc_alignsize); |
| |
| PRM_DEBUG(alloc_base); |
| PRM_DEBUG(khme_hash); |
| PRM_DEBUG(uhme_hash); |
| } |
| |
| /* |
| * Allocate the remaining page freelists. NUMA systems can |
| * have lots of page freelists, one per node, which quickly |
| * outgrow the amount of nucleus memory available. |
| */ |
| if (max_mem_nodes > 1) { |
| int mnode; |
| caddr_t alloc_start = alloc_base; |
| |
| for (mnode = 1; mnode < max_mem_nodes; mnode++) { |
| alloc_base = alloc_page_freelists(mnode, alloc_base, |
| ecache_alignsize); |
| } |
| |
| if (alloc_base > alloc_start) { |
| alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, |
| alloc_alignsize); |
| if ((caddr_t)BOP_ALLOC(bootops, alloc_start, |
| alloc_base - alloc_start, |
| alloc_alignsize) != alloc_start) |
| cmn_err(CE_PANIC, |
| "Unable to alloc page freelists\n"); |
| } |
| |
| PRM_DEBUG(alloc_base); |
| } |
| |
| if (!mml_table) { |
| size_t mmltable_sz; |
| |
| /* |
| * We need to allocate the mml_table here because there |
| * was not enough space within the nucleus. |
| */ |
| mmltable_sz = sizeof (kmutex_t) * mml_table_sz; |
| alloc_sz = roundup(mmltable_sz, alloc_alignsize); |
| alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, |
| alloc_alignsize); |
| |
| if ((mml_table = (kmutex_t *)BOP_ALLOC(bootops, alloc_base, |
| alloc_sz, alloc_alignsize)) != (kmutex_t *)alloc_base) |
| panic("mml_table alloc failure"); |
| |
| alloc_base += alloc_sz; |
| PRM_DEBUG(mml_table); |
| PRM_DEBUG(alloc_base); |
| } |
| |
| if (kpm_enable && !(kpmp_table || kpmp_stable)) { |
| size_t kpmptable_sz; |
| caddr_t table; |
| |
| /* |
| * We need to allocate either kpmp_table or kpmp_stable here |
| * because there was not enough space within the nucleus. |
| */ |
| kpmptable_sz = (kpm_smallpages == 0) ? |
| sizeof (kpm_hlk_t) * kpmp_table_sz : |
| sizeof (kpm_shlk_t) * kpmp_stable_sz; |
| |
| alloc_sz = roundup(kpmptable_sz, alloc_alignsize); |
| alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, |
| alloc_alignsize); |
| |
| table = BOP_ALLOC(bootops, alloc_base, alloc_sz, |
| alloc_alignsize); |
| |
| if (table != alloc_base) |
| panic("kpmp_table or kpmp_stable alloc failure"); |
| |
| if (kpm_smallpages == 0) { |
| kpmp_table = (kpm_hlk_t *)table; |
| PRM_DEBUG(kpmp_table); |
| } else { |
| kpmp_stable = (kpm_shlk_t *)table; |
| PRM_DEBUG(kpmp_stable); |
| } |
| |
| alloc_base += alloc_sz; |
| PRM_DEBUG(alloc_base); |
| } |
| |
| if (&ecache_init_scrub_flush_area) { |
| /* |
| * Pass alloc_base directly, as the routine itself is |
| * responsible for any special alignment requirements... |
| */ |
| alloc_base = ecache_init_scrub_flush_area(alloc_base); |
| PRM_DEBUG(alloc_base); |
| } |
| |
| /* |
| * Take the most current snapshot we can by calling mem-update. |
| */ |
| copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, |
| &boot_physavail, &boot_physavail_len, |
| &boot_virtavail, &boot_virtavail_len); |
| |
| /* |
| * Reset npages and memblocks based on boot_physavail list. |
| */ |
| size_physavail(boot_physavail, boot_physavail_len, &npages, &memblocks); |
| PRM_DEBUG(npages); |
| |
| /* |
| * Account for extra memory after e_text. |
| */ |
| npages += extra_etpg; |
| |
| /* |
| * Calculate the largest free memory chunk in the nucleus data area. |
| * We need to figure out if page structs can fit in there or not. |
| * We also make sure enough page structs get created for any physical |
| * memory we might be returning to the system. |
| */ |
| ndata_remain_sz = ndata_maxsize(&ndata); |
| PRM_DEBUG(ndata_remain_sz); |
| |
| pp_sz = sizeof (struct page) * npages; |
| |
| /* |
| * Here's a nice bit of code based on somewhat recursive logic: |
| * |
| * If the page array would fit within the nucleus, we want to |
| * add npages to cover any extra memory we may be returning back |
| * to the system. |
| * |
| * HOWEVER, the page array is sized by calculating the size of |
| * (struct page * npages), as are the pagehash table, ctrs and |
| * memseg_list, so the very act of performing the calculation below may |
| * in fact make the array large enough that it no longer fits in the |
| * nucleus, meaning there would now be a much larger area of the |
| * nucleus free that should really be added to npages, which would |
| * make the page array that much larger, and so on. |
| * |
| * This also ignores the memory possibly used in the nucleus for the |
| * the page hash, ctrs and memseg list and the fact that whether they |
| * fit there or not varies with the npages calculation below, but we |
| * don't even factor them into the equation at this point; perhaps we |
| * should or perhaps we should just take the approach that the few |
| * extra pages we could add via this calculation REALLY aren't worth |
| * the hassle... |
| */ |
| if (ndata_remain_sz > pp_sz) { |
| size_t spare = ndata_spare(&ndata, pp_sz, ecache_alignsize); |
| |
| npages += mmu_btop(spare); |
| |
| pp_sz = npages * sizeof (struct page); |
| |
| pp_base = ndata_alloc(&ndata, pp_sz, ecache_alignsize); |
| } |
| |
| /* |
| * If physmem is patched to be non-zero, use it instead of |
| * the monitor value unless physmem is larger than the total |
| * amount of memory on hand. |
| */ |
| if (physmem == 0 || physmem > npages) |
| physmem = npages; |
| |
| /* |
| * If pp_base is NULL that means the routines above have determined |
| * the page array will not fit in the nucleus; we'll have to |
| * BOP_ALLOC() ourselves some space for them. |
| */ |
| if (pp_base == NULL) { |
| alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, |
| alloc_alignsize); |
| |
| alloc_sz = roundup(pp_sz, alloc_alignsize); |
| |
| if ((pp_base = (struct page *)BOP_ALLOC(bootops, |
| alloc_base, alloc_sz, alloc_alignsize)) != |
| (struct page *)alloc_base) |
| panic("page alloc failure"); |
| |
| alloc_base += alloc_sz; |
| } |
| |
| /* |
| * The page structure hash table size is a power of 2 |
| * such that the average hash chain length is PAGE_HASHAVELEN. |
| */ |
| page_hashsz = npages / PAGE_HASHAVELEN; |
| page_hashsz = 1 << highbit((ulong_t)page_hashsz); |
| pagehash_sz = sizeof (struct page *) * page_hashsz; |
| |
| /* |
| * We want to TRY to fit the page structure hash table, |
| * the page size free list counters, the memseg list and |
| * and the kpm page space in the nucleus if possible. |
| * |
| * alloc_sz counts how much memory needs to be allocated by |
| * BOP_ALLOC(). |
| */ |
| page_hash = ndata_alloc(&ndata, pagehash_sz, ecache_alignsize); |
| |
| alloc_sz = (page_hash == NULL ? pagehash_sz : 0); |
| |
| /* |
| * Size up per page size free list counters. |
| */ |
| ctrs_sz = page_ctrs_sz(); |
| ctrs_base = ndata_alloc(&ndata, ctrs_sz, ecache_alignsize); |
| |
| if (ctrs_base == NULL) |
| alloc_sz = roundup(alloc_sz, ecache_alignsize) + ctrs_sz; |
| |
| /* |
| * The memseg list is for the chunks of physical memory that |
| * will be managed by the vm system. The number calculated is |
| * a guess as boot may fragment it more when memory allocations |
| * are made before kphysm_init(). Currently, there are two |
| * allocations before then, so we assume each causes fragmen- |
| * tation, and add a couple more for good measure. |
| */ |
| memseg_sz = sizeof (struct memseg) * (memblocks + 4); |
| memseg_base = ndata_alloc(&ndata, memseg_sz, ecache_alignsize); |
| |
| if (memseg_base == NULL) |
| alloc_sz = roundup(alloc_sz, ecache_alignsize) + memseg_sz; |
| |
| |
| if (kpm_enable) { |
| /* |
| * kpm page space -- Update kpm_npages and make the |
| * same assumption about fragmenting as it is done |
| * for memseg_sz above. |
| */ |
| kpm_npages_setup(memblocks + 4); |
| kpm_pp_sz = (kpm_smallpages == 0) ? |
| kpm_npages * sizeof (kpm_page_t): |
| kpm_npages * sizeof (kpm_spage_t); |
| |
| kpm_pp_base = (uintptr_t)ndata_alloc(&ndata, kpm_pp_sz, |
| ecache_alignsize); |
| |
| if (kpm_pp_base == NULL) |
| alloc_sz = roundup(alloc_sz, ecache_alignsize) + |
| kpm_pp_sz; |
| } |
| |
| if (alloc_sz > 0) { |
| uintptr_t bop_base; |
| |
| /* |
| * We need extra memory allocated through BOP_ALLOC. |
| */ |
| alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, |
| alloc_alignsize); |
| |
| alloc_sz = roundup(alloc_sz, alloc_alignsize); |
| |
| if ((bop_base = (uintptr_t)BOP_ALLOC(bootops, alloc_base, |
| alloc_sz, alloc_alignsize)) != (uintptr_t)alloc_base) |
| panic("system page struct alloc failure"); |
| |
| alloc_base += alloc_sz; |
| |
| if (page_hash == NULL) { |
| page_hash = (struct page **)bop_base; |
| bop_base = roundup(bop_base + pagehash_sz, |
| ecache_alignsize); |
| } |
| |
| if (ctrs_base == NULL) { |
| ctrs_base = (caddr_t)bop_base; |
| bop_base = roundup(bop_base + ctrs_sz, |
| ecache_alignsize); |
| } |
| |
| if (memseg_base == NULL) { |
| memseg_base = (struct memseg *)bop_base; |
| bop_base = roundup(bop_base + memseg_sz, |
| ecache_alignsize); |
| } |
| |
| if (kpm_enable && kpm_pp_base == NULL) { |
| kpm_pp_base = (uintptr_t)bop_base; |
| bop_base = roundup(bop_base + kpm_pp_sz, |
| ecache_alignsize); |
| } |
| |
| ASSERT(bop_base <= (uintptr_t)alloc_base); |
| } |
| |
| /* |
| * Initialize per page size free list counters. |
| */ |
| ctrs_end = page_ctrs_alloc(ctrs_base); |
| ASSERT(ctrs_base + ctrs_sz >= ctrs_end); |
| |
| PRM_DEBUG(page_hash); |
| PRM_DEBUG(memseg_base); |
| PRM_DEBUG(kpm_pp_base); |
| PRM_DEBUG(kpm_pp_sz); |
| PRM_DEBUG(pp_base); |
| PRM_DEBUG(pp_sz); |
| PRM_DEBUG(alloc_base); |
| |
| #ifdef TRAPTRACE |
| /* |
| * Allocate trap trace buffer last so as not to affect |
| * the 4M alignments of the allocations above on V9 SPARCs... |
| */ |
| alloc_base = trap_trace_alloc(alloc_base); |
| PRM_DEBUG(alloc_base); |
| #endif /* TRAPTRACE */ |
| |
| if (kmem64_base) { |
| /* |
| * Set the end of the kmem64 segment for V9 SPARCs, if |
| * appropriate... |
| */ |
| kmem64_end = (caddr_t)roundup((uintptr_t)alloc_base, |
| alloc_alignsize); |
| |
| PRM_DEBUG(kmem64_base); |
| PRM_DEBUG(kmem64_end); |
| } |
| |
| /* |
| * Allocate space for the interrupt vector table. |
| */ |
| memspace = (caddr_t)BOP_ALLOC(bootops, (caddr_t)intr_vector, |
| IVSIZE, MMU_PAGESIZE); |
| if (memspace != (caddr_t)intr_vector) |
| panic("interrupt table allocation failure"); |
| |
| /* |
| * The memory lists from boot are allocated from the heap arena |
| * so that later they can be freed and/or reallocated. |
| */ |
| if (BOP_GETPROP(bootops, "extent", &memlist_sz) == -1) |
| panic("could not retrieve property \"extent\""); |
| |
| /* |
| * Between now and when we finish copying in the memory lists, |
| * allocations happen so the space gets fragmented and the |
| * lists longer. Leave enough space for lists twice as long |
| * as what boot says it has now; roundup to a pagesize. |
| * Also add space for the final phys-avail copy in the fixup |
| * routine. |
| */ |
| va = (caddr_t)(sysbase + PAGESIZE + PANICBUFSIZE + |
| roundup(IVSIZE, MMU_PAGESIZE)); |
| memlist_sz *= 4; |
| memlist_sz = roundup(memlist_sz, MMU_PAGESIZE); |
| memspace = (caddr_t)BOP_ALLOC(bootops, va, memlist_sz, BO_NO_ALIGN); |
| if (memspace == NULL) |
| halt("Boot allocation failed."); |
| |
| memlist = (struct memlist *)memspace; |
| memlist_end = (char *)memspace + memlist_sz; |
| |
| PRM_DEBUG(memlist); |
| PRM_DEBUG(memlist_end); |
| PRM_DEBUG(sysbase); |
| PRM_DEBUG(syslimit); |
| |
| kernelheap_init((void *)sysbase, (void *)syslimit, |
| (caddr_t)sysbase + PAGESIZE, NULL, NULL); |
| |
| /* |
| * Take the most current snapshot we can by calling mem-update. |
| */ |
| copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, |
| &boot_physavail, &boot_physavail_len, |
| &boot_virtavail, &boot_virtavail_len); |
| |
| /* |
| * Remove the space used by BOP_ALLOC from the kernel heap |
| * plus the area actually used by the OBP (if any) |
| * ignoring virtual addresses in virt_avail, above syslimit. |
| */ |
| virt_avail = memlist; |
| copy_memlist(boot_virtavail, boot_virtavail_len, &memlist); |
| |
| for (cur = virt_avail; cur->next; cur = cur->next) { |
| uint64_t range_base, range_size; |
| |
| if ((range_base = cur->address + cur->size) < (uint64_t)sysbase) |
| continue; |
| if (range_base >= (uint64_t)syslimit) |
| break; |
| /* |
| * Limit the range to end at syslimit. |
| */ |
| range_size = MIN(cur->next->address, |
| (uint64_t)syslimit) - range_base; |
| (void) vmem_xalloc(heap_arena, (size_t)range_size, PAGESIZE, |
| 0, 0, (void *)range_base, (void *)(range_base + range_size), |
| VM_NOSLEEP | VM_BESTFIT | VM_PANIC); |
| } |
| |
| phys_avail = memlist; |
| (void) copy_physavail(boot_physavail, boot_physavail_len, |
| &memlist, 0, 0); |
| |
| /* |
| * Add any extra memory after e_text to the phys_avail list, as long |
| * as there's at least a page to add. |
| */ |
| if (extra_etpg) |
| memlist_add(va_to_pa(extra_etva), mmu_ptob(extra_etpg), |
| &memlist, &phys_avail); |
| |
| /* |
| * Add any extra memory after e_data to the phys_avail list as long |
| * as there's at least a page to add. Usually, there isn't any, |
| * since extra HME blocks typically get allocated there first before |
| * using RAM elsewhere. |
| */ |
| if ((nalloc_base = ndata_extra_base(&ndata, MMU_PAGESIZE)) == NULL) |
| nalloc_base = nalloc_end; |
| ndata_remain_sz = nalloc_end - nalloc_base; |
| |
| if (ndata_remain_sz >= MMU_PAGESIZE) |
| memlist_add(va_to_pa(nalloc_base), |
| (uint64_t)ndata_remain_sz, &memlist, &phys_avail); |
| |
| PRM_DEBUG(memlist); |
| PRM_DEBUG(memlist_sz); |
| PRM_DEBUG(memspace); |
| |
| if ((caddr_t)memlist > (memspace + memlist_sz)) |
| panic("memlist overflow"); |
| |
| PRM_DEBUG(pp_base); |
| PRM_DEBUG(memseg_base); |
| PRM_DEBUG(npages); |
| |
| /* |
| * Initialize the page structures from the memory lists. |
| */ |
| kphysm_init(pp_base, memseg_base, npages, kpm_pp_base, kpm_npages); |
| |
| availrmem_initial = availrmem = freemem; |
| PRM_DEBUG(availrmem); |
| |
| /* |
| * Some of the locks depend on page_hashsz being set! |
| * kmem_init() depends on this; so, keep it here. |
| */ |
| page_lock_init(); |
| |
| /* |
| * Initialize kernel memory allocator. |
| */ |
| kmem_init(); |
| |
| /* |
| * Initialize bp_mapin(). |
| */ |
| bp_init(shm_alignment, HAT_STRICTORDER); |
| |
| /* |
| * Reserve space for panicbuf and intr_vector from the 32-bit heap |
| */ |
| (void) vmem_xalloc(heap32_arena, PANICBUFSIZE, PAGESIZE, 0, 0, |
| panicbuf, panicbuf + PANICBUFSIZE, |
| VM_NOSLEEP | VM_BESTFIT | VM_PANIC); |
| |
| (void) vmem_xalloc(heap32_arena, IVSIZE, PAGESIZE, 0, 0, |
| intr_vector, (caddr_t)intr_vector + IVSIZE, |
| VM_NOSLEEP | VM_BESTFIT | VM_PANIC); |
| |
| mem_config_init(); |
| } |
| |
| static void |
| startup_modules(void) |
| { |
| int proplen, nhblk1, nhblk8; |
| size_t nhblksz; |
| pgcnt_t hblk_pages, pages_per_hblk; |
| size_t hme8blk_sz, hme1blk_sz; |
| |
| /* |
| * Log any optional messages from the boot program |
| */ |
| proplen = (size_t)BOP_GETPROPLEN(bootops, "boot-message"); |
| if (proplen > 0) { |
| char *msg; |
| size_t len = (size_t)proplen; |
| |
| msg = kmem_zalloc(len, KM_SLEEP); |
| (void) BOP_GETPROP(bootops, "boot-message", msg); |
| cmn_err(CE_CONT, "?%s\n", msg); |
| kmem_free(msg, len); |
| } |
| |
| /* |
| * Let the platforms have a chance to change default |
| * values before reading system file. |
| */ |
| if (&set_platform_defaults) |
| set_platform_defaults(); |
| |
| /* |
| * Calculate default settings of system parameters based upon |
| * maxusers, yet allow to be overridden via the /etc/system file. |
| */ |
| param_calc(0); |
| |
| mod_setup(); |
| |
| /* |
| * If this is a positron, complain and halt. |
| */ |
| if (&iam_positron && iam_positron()) { |
| cmn_err(CE_WARN, "This hardware platform is not supported" |
| " by this release of Solaris.\n"); |
| #ifdef DEBUG |
| prom_enter_mon(); /* Type 'go' to resume */ |
| cmn_err(CE_WARN, "Booting an unsupported platform.\n"); |
| cmn_err(CE_WARN, "Booting with down-rev firmware.\n"); |
| |
| #else /* DEBUG */ |
| halt(0); |
| #endif /* DEBUG */ |
| } |
| |
| /* |
| * If we are running firmware that isn't 64-bit ready |
| * then complain and halt. |
| */ |
| do_prom_version_check(); |
| |
| /* |
| * Initialize system parameters |
| */ |
| param_init(); |
| |
| /* |
| * maxmem is the amount of physical memory we're playing with. |
| */ |
| maxmem = physmem; |
| |
| /* Set segkp limits. */ |
| ncbase = (caddr_t)SEGDEBUGBASE; |
| ncend = (caddr_t)SEGDEBUGBASE; |
| |
| /* |
| * Initialize the hat layer. |
| */ |
| hat_init(); |
| |
| /* |
| * Initialize segment management stuff. |
| */ |
| seg_init(); |
| |
| /* |
| * Create the va>tte handler, so the prom can understand |
| * kernel translations. The handler is installed later, just |
| * as we are about to take over the trap table from the prom. |
| */ |
| create_va_to_tte(); |
| |
| /* |
| * Load the forthdebugger (optional) |
| */ |
| forthdebug_init(); |
| |
| /* |
| * Create OBP node for console input callbacks |
| * if it is needed. |
| */ |
| startup_create_io_node(); |
| |
| if (modloadonly("fs", "specfs") == -1) |
| halt("Can't load specfs"); |
| |
| if (modloadonly("fs", "devfs") == -1) |
| halt("Can't load devfs"); |
| |
| if (modloadonly("misc", "swapgeneric") == -1) |
| halt("Can't load swapgeneric"); |
| |
| (void) modloadonly("sys", "lbl_edition"); |
| |
| dispinit(); |
| |
| /* |
| * Infer meanings to the members of the idprom buffer. |
| */ |
| parse_idprom(); |
| |
| /* Read cluster configuration data. */ |
| clconf_init(); |
| |
| setup_ddi(); |
| |
| /* |
| * Lets take this opportunity to load the root device. |
| */ |
| if (loadrootmodules() != 0) |
| debug_enter("Can't load the root filesystem"); |
| |
| /* |
| * Load tod driver module for the tod part found on this system. |
| * Recompute the cpu frequency/delays based on tod as tod part |
| * tends to keep time more accurately. |
| */ |
| if (&load_tod_module) |
| load_tod_module(); |
| |
| /* |
| * Allow platforms to load modules which might |
| * be needed after bootops are gone. |
| */ |
| if (&load_platform_modules) |
| load_platform_modules(); |
| |
| setcpudelay(); |
| |
| copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, |
| &boot_physavail, &boot_physavail_len, |
| &boot_virtavail, &boot_virtavail_len); |
| |
| bop_alloc_pages = size_virtalloc(boot_virtavail, boot_virtavail_len); |
| |
| /* |
| * Calculation and allocation of hmeblks needed to remap |
| * the memory allocated by PROM till now: |
| * |
| * (1) calculate how much virtual memory has been bop_alloc'ed. |
| * (2) roundup this memory to span of hme8blk, i.e. 64KB |
| * (3) calculate number of hme8blk's needed to remap this memory |
| * (4) calculate amount of memory that's consumed by these hme8blk's |
| * (5) add memory calculated in steps (2) and (4) above. |
| * (6) roundup this memory to span of hme8blk, i.e. 64KB |
| * (7) calculate number of hme8blk's needed to remap this memory |
| * (8) calculate amount of memory that's consumed by these hme8blk's |
| * (9) allocate additional hme1blk's to hold large mappings. |
| * H8TOH1 determines this. The current SWAG gives enough hblk1's |
| * to remap everything with 4M mappings. |
| * (10) account for partially used hblk8's due to non-64K aligned |
| * PROM mapping entries. |
| * (11) add memory calculated in steps (8), (9), and (10) above. |
| * (12) kmem_zalloc the memory calculated in (11); since segkmem |
| * is not ready yet, this gets bop_alloc'ed. |
| * (13) there will be very few bop_alloc's after this point before |
| * trap table takes over |
| */ |
| |
| /* sfmmu_init_nucleus_hblks expects properly aligned data structures. */ |
| hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t)); |
| hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t)); |
| |
| pages_per_hblk = btop(HMEBLK_SPAN(TTE8K)); |
| bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk); |
| nhblk8 = bop_alloc_pages / pages_per_hblk; |
| nhblk1 = roundup(nhblk8, H8TOH1) / H8TOH1; |
| hblk_pages = btopr(nhblk8 * hme8blk_sz + nhblk1 * hme1blk_sz); |
| bop_alloc_pages += hblk_pages; |
| bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk); |
| nhblk8 = bop_alloc_pages / pages_per_hblk; |
| nhblk1 = roundup(nhblk8, H8TOH1) / H8TOH1; |
| if (nhblk1 < hblk1_min) |
| nhblk1 = hblk1_min; |
| if (nhblk8 < hblk8_min) |
| nhblk8 = hblk8_min; |
| |
| /* |
| * Since hblk8's can hold up to 64k of mappings aligned on a 64k |
| * boundary, the number of hblk8's needed to map the entries in the |
| * boot_virtavail list needs to be adjusted to take this into |
| * consideration. Thus, we need to add additional hblk8's since it |
| * is possible that an hblk8 will not have all 8 slots used due to |
| * alignment constraints. Since there were boot_virtavail_len entries |
| * in that list, we need to add that many hblk8's to the number |
| * already calculated to make sure we don't underestimate. |
| */ |
| nhblk8 += boot_virtavail_len; |
| nhblksz = nhblk8 * hme8blk_sz + nhblk1 * hme1blk_sz; |
| |
| /* Allocate in pagesize chunks */ |
| nhblksz = roundup(nhblksz, MMU_PAGESIZE); |
| hblk_base = kmem_zalloc(nhblksz, KM_SLEEP); |
| sfmmu_init_nucleus_hblks(hblk_base, nhblksz, nhblk8, nhblk1); |
| } |
| |
| static void |
| startup_bop_gone(void) |
| { |
| extern int bop_io_quiesced; |
| |
| /* |
| * Call back into boot and release boots resources. |
| */ |
| BOP_QUIESCE_IO(bootops); |
| bop_io_quiesced = 1; |
| |
| copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, |
| &boot_physavail, &boot_physavail_len, |
| &boot_virtavail, &boot_virtavail_len); |
| /* |
| * Copy physinstalled list into kernel space. |
| */ |
| phys_install = memlist; |
| copy_memlist(boot_physinstalled, boot_physinstalled_len, &memlist); |
| |
| /* |
| * setup physically contiguous area twice as large as the ecache. |
| * this is used while doing displacement flush of ecaches |
| */ |
| if (&ecache_flush_address) { |
| ecache_flushaddr = ecache_flush_address(); |
| if (ecache_flushaddr == (uint64_t)-1) { |
| cmn_err(CE_PANIC, |
| "startup: no memory to set ecache_flushaddr"); |
| } |
| } |
| |
| /* |
| * Virtual available next. |
| */ |
| ASSERT(virt_avail != NULL); |
| memlist_free_list(virt_avail); |
| virt_avail = memlist; |
| copy_memlist(boot_virtavail, boot_virtavail_len, &memlist); |
| |
| /* |
| * Last chance to ask our booter questions .. |
| */ |
| } |
| |
| |
| /* |
| * startup_fixup_physavail - called from mach_sfmmu.c after the final |
| * allocations have been performed. We can't call it in startup_bop_gone |
| * since later operations can cause obp to allocate more memory. |
| */ |
| void |
| startup_fixup_physavail(void) |
| { |
| struct memlist *cur; |
| |
| /* |
| * take the most current snapshot we can by calling mem-update |
| */ |
| copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, |
| &boot_physavail, &boot_physavail_len, |
| &boot_virtavail, &boot_virtavail_len); |
| |
| /* |
| * Copy phys_avail list, again. |
| * Both the kernel/boot and the prom have been allocating |
| * from the original list we copied earlier. |
| */ |
| cur = memlist; |
| (void) copy_physavail(boot_physavail, boot_physavail_len, |
| &memlist, 0, 0); |
| |
| /* |
| * Add any extra memory after e_text we added to the phys_avail list |
| * back to the old list. |
| */ |
| if (extra_etpg) |
| memlist_add(va_to_pa(extra_etva), mmu_ptob(extra_etpg), |
| &memlist, &cur); |
| if (ndata_remain_sz >= MMU_PAGESIZE) |
| memlist_add(va_to_pa(nalloc_base), |
| (uint64_t)ndata_remain_sz, &memlist, &cur); |
| |
| /* |
| * There isn't any bounds checking on the memlist area |
| * so ensure it hasn't overgrown. |
| */ |
| if ((caddr_t)memlist > (caddr_t)memlist_end) |
| cmn_err(CE_PANIC, "startup: memlist size exceeded"); |
| |
| /* |
| * The kernel removes the pages that were allocated for it from |
| * the freelist, but we now have to find any -extra- pages that |
| * the prom has allocated for it's own book-keeping, and remove |
| * them from the freelist too. sigh. |
| */ |
| fix_prom_pages(phys_avail, cur); |
| |
| ASSERT(phys_avail != NULL); |
| memlist_free_list(phys_avail); |
| phys_avail = cur; |
| |
| /* |
| * We're done with boot. Just after this point in time, boot |
| * gets unmapped, so we can no longer rely on its services. |
| * Zero the bootops to indicate this fact. |
| */ |
| bootops = (struct bootops *)NULL; |
| BOOTOPS_GONE(); |
| } |
| |
| static void |
| startup_vm(void) |
| { |
| size_t i; |
| struct segmap_crargs a; |
| struct segkpm_crargs b; |
| |
| uint64_t avmem; |
| caddr_t va; |
| pgcnt_t max_phys_segkp; |
| int mnode; |
| |
| extern int exec_lpg_disable, use_brk_lpg, use_stk_lpg, use_zmap_lpg; |
| |
| /* |
| * get prom's mappings, create hments for them and switch |
| * to the kernel context. |
| */ |
| hat_kern_setup(); |
| |
| /* |
| * Take over trap table |
| */ |
| setup_trap_table(); |
| |
| /* |
| * Install the va>tte handler, so that the prom can handle |
| * misses and understand the kernel table layout in case |
| * we need call into the prom. |
| */ |
| install_va_to_tte(); |
| |
| /* |
| * Set a flag to indicate that the tba has been taken over. |
| */ |
| tba_taken_over = 1; |
| |
| /* initialize MMU primary context register */ |
| mmu_init_kcontext(); |
| |
| /* |
| * The boot cpu can now take interrupts, x-calls, x-traps |
| */ |
| CPUSET_ADD(cpu_ready_set, CPU->cpu_id); |
| CPU->cpu_flags |= (CPU_READY | CPU_ENABLE | CPU_EXISTS); |
| |
| /* |
| * Set a flag to tell write_scb_int() that it can access V_TBR_WR_ADDR. |
| */ |
| tbr_wr_addr_inited = 1; |
| |
| /* |
| * Initialize VM system, and map kernel address space. |
| */ |
| kvm_init(); |
| |
| /* |
| * XXX4U: previously, we initialized and turned on |
| * the caches at this point. But of course we have |
| * nothing to do, as the prom has already done this |
| * for us -- main memory must be E$able at all times. |
| */ |
| |
| /* |
| * If the following is true, someone has patched |
| * phsymem to be less than the number of pages that |
| * the system actually has. Remove pages until system |
| * memory is limited to the requested amount. Since we |
| * have allocated page structures for all pages, we |
| * correct the amount of memory we want to remove |
| * by the size of the memory used to hold page structures |
| * for the non-used pages. |
| */ |
| if (physmem < npages) { |
| pgcnt_t diff, off; |
| struct page *pp; |
| struct seg kseg; |
| |
| cmn_err(CE_WARN, "limiting physmem to %ld pages", physmem); |
| |
| off = 0; |
| diff = npages - physmem; |
| diff -= mmu_btopr(diff * sizeof (struct page)); |
| kseg.s_as = &kas; |
| while (diff--) { |
| pp = page_create_va(&unused_pages_vp, (offset_t)off, |
| MMU_PAGESIZE, PG_WAIT | PG_EXCL, |
| &kseg, (caddr_t)off); |
| if (pp == NULL) |
| cmn_err(CE_PANIC, "limited physmem too much!"); |
| page_io_unlock(pp); |
| page_downgrade(pp); |
| availrmem--; |
| off += MMU_PAGESIZE; |
| } |
| } |
| |
| /* |
| * When printing memory, show the total as physmem less |
| * that stolen by a debugger. |
| */ |
| cmn_err(CE_CONT, "?mem = %ldK (0x%lx000)\n", |
| (ulong_t)(physinstalled) << (PAGESHIFT - 10), |
| (ulong_t)(physinstalled) << (PAGESHIFT - 12)); |
| |
| avmem = (uint64_t)freemem << PAGESHIFT; |
| cmn_err(CE_CONT, "?avail mem = %lld\n", (unsigned long long)avmem); |
| |
| /* For small memory systems disable automatic large pages. */ |
| if (physmem < auto_lpg_min_physmem) { |
| exec_lpg_disable = 1; |
| use_brk_lpg = 0; |
| use_stk_lpg = 0; |
| use_zmap_lpg = 0; |
| } |
| |
| /* |
| * Perform platform specific freelist processing |
| */ |
| if (&plat_freelist_process) { |
| for (mnode = 0; mnode < max_mem_nodes; mnode++) |
| if (mem_node_config[mnode].exists) |
| plat_freelist_process(mnode); |
| } |
| |
| /* |
| * Initialize the segkp segment type. We position it |
| * after the configured tables and buffers (whose end |
| * is given by econtig) and before V_WKBASE_ADDR. |
| * Also in this area is segkmap (size SEGMAPSIZE). |
| */ |
| |
| /* XXX - cache alignment? */ |
| va = (caddr_t)SEGKPBASE; |
| ASSERT(((uintptr_t)va & PAGEOFFSET) == 0); |
| |
| max_phys_segkp = (physmem * 2); |
| |
| if (segkpsize < btop(SEGKPMINSIZE) || segkpsize > btop(SEGKPMAXSIZE)) { |
| segkpsize = btop(SEGKPDEFSIZE); |
| cmn_err(CE_WARN, "Illegal value for segkpsize. " |
| "segkpsize has been reset to %ld pages", segkpsize); |
| } |
| |
| i = ptob(MIN(segkpsize, max_phys_segkp)); |
| |
| rw_enter(&kas.a_lock, RW_WRITER); |
| if (seg_attach(&kas, va, i, segkp) < 0) |
| cmn_err(CE_PANIC, "startup: cannot attach segkp"); |
| if (segkp_create(segkp) != 0) |
| cmn_err(CE_PANIC, "startup: segkp_create failed"); |
| rw_exit(&kas.a_lock); |
| |
| /* |
| * kpm segment |
| */ |
| segmap_kpm = kpm_enable && |
| segmap_kpm && PAGESIZE == MAXBSIZE; |
| |
| if (kpm_enable) { |
| rw_enter(&kas.a_lock, RW_WRITER); |
| |
| /* |
| * The segkpm virtual range range is larger than the |
| * actual physical memory size and also covers gaps in |
| * the physical address range for the following reasons: |
| * . keep conversion between segkpm and physical addresses |
| * simple, cheap and unambiguous. |
| * . avoid extension/shrink of the the segkpm in case of DR. |
| * . avoid complexity for handling of virtual addressed |
| * caches, segkpm and the regular mapping scheme must be |
| * kept in sync wrt. the virtual color of mapped pages. |
| * Any accesses to virtual segkpm ranges not backed by |
| * physical memory will fall through the memseg pfn hash |
| * and will be handled in segkpm_fault. |
| * Additional kpm_size spaces needed for vac alias prevention. |
| */ |
| if (seg_attach(&kas, kpm_vbase, kpm_size * vac_colors, |
| segkpm) < 0) |
| cmn_err(CE_PANIC, "cannot attach segkpm"); |
| |
| b.prot = PROT_READ | PROT_WRITE; |
| b.nvcolors = shm_alignment >> MMU_PAGESHIFT; |
| |
| if (segkpm_create(segkpm, (caddr_t)&b) != 0) |
| panic("segkpm_create segkpm"); |
| |
| rw_exit(&kas.a_lock); |
| } |
| |
| /* |
| * Now create generic mapping segment. This mapping |
| * goes SEGMAPSIZE beyond SEGMAPBASE. But if the total |
| * virtual address is greater than the amount of free |
| * memory that is available, then we trim back the |
| * segment size to that amount |
| */ |
| va = (caddr_t)SEGMAPBASE; |
| |
| /* |
| * 1201049: segkmap base address must be MAXBSIZE aligned |
| */ |
| ASSERT(((uintptr_t)va & MAXBOFFSET) == 0); |
| |
| /* |
| * Set size of segmap to percentage of freemem at boot, |
| * but stay within the allowable range |
| * Note we take percentage before converting from pages |
| * to bytes to avoid an overflow on 32-bit kernels. |
| */ |
| i = mmu_ptob((freemem * segmap_percent) / 100); |
| |
| if (i < MINMAPSIZE) |
| i = MINMAPSIZE; |
| |
| if (i > MIN(SEGMAPSIZE, mmu_ptob(freemem))) |
| i = MIN(SEGMAPSIZE, mmu_ptob(freemem)); |
| |
| i &= MAXBMASK; /* 1201049: segkmap size must be MAXBSIZE aligned */ |
| |
| rw_enter(&kas.a_lock, RW_WRITER); |
| if (seg_attach(&kas, va, i, segkmap) < 0) |
| cmn_err(CE_PANIC, "cannot attach segkmap"); |
| |
| a.prot = PROT_READ | PROT_WRITE; |
| a.shmsize = shm_alignment; |
| a.nfreelist = 0; /* use segmap driver defaults */ |
| |
| if (segmap_create(segkmap, (caddr_t)&a) != 0) |
| panic("segmap_create segkmap"); |
| rw_exit(&kas.a_lock); |
| |
| segdev_init(); |
| } |
| |
| static void |
| startup_end(void) |
| { |
| if ((caddr_t)memlist > (caddr_t)memlist_end) |
| panic("memlist overflow 2"); |
| memlist_free_block((caddr_t)memlist, |
| ((caddr_t)memlist_end - (caddr_t)memlist)); |
| memlist = NULL; |
| |
| /* enable page_relocation since OBP is now done */ |
| page_relocate_ready = 1; |
| |
| /* |
| * Perform tasks that get done after most of the VM |
| * initialization has been done but before the clock |
| * and other devices get started. |
| */ |
| kern_setup1(); |
| |
| /* |
| * Intialize the VM arenas for allocating physically |
| * contiguus memory chunk for interrupt queues snd |
| * allocate/register boot cpu's queues, if any and |
| * allocate dump buffer for sun4v systems to store |
| * extra crash information during crash dump |
| */ |
| contig_mem_init(); |
| mach_descrip_init(); |
| cpu_intrq_setup(CPU); |
| cpu_intrq_register(CPU); |
| mach_htraptrace_init(); |
| mach_htraptrace_setup(CPU->cpu_id); |
| mach_htraptrace_configure(CPU->cpu_id); |
| mach_dump_buffer_init(); |
| |
| /* |
| * Initialize interrupt related stuff |
| */ |
| cpu_intr_alloc(CPU, NINTR_THREADS); |
| |
| (void) splzs(); /* allow hi clock ints but not zs */ |
| |
| /* |
| * Initialize errors. |
| */ |
| error_init(); |
| |
| /* |
| * Note that we may have already used kernel bcopy before this |
| * point - but if you really care about this, adb the use_hw_* |
| * variables to 0 before rebooting. |
| */ |
| mach_hw_copy_limit(); |
| |
| /* |
| * Install the "real" preemption guards before DDI services |
| * are available. |
| */ |
| (void) prom_set_preprom(kern_preprom); |
| (void) prom_set_postprom(kern_postprom); |
| CPU->cpu_m.mutex_ready = 1; |
| |
| /* |
| * Initialize segnf (kernel support for non-faulting loads). |
| */ |
| segnf_init(); |
| |
| /* |
| * Configure the root devinfo node. |
| */ |
| configure(); /* set up devices */ |
| mach_cpu_halt_idle(); |
| } |
| |
| |
| void |
| post_startup(void) |
| { |
| #ifdef PTL1_PANIC_DEBUG |
| extern void init_ptl1_thread(void); |
| #endif /* PTL1_PANIC_DEBUG */ |
| extern void abort_sequence_init(void); |
| |
| /* |
| * Set the system wide, processor-specific flags to be passed |
| * to userland via the aux vector for performance hints and |
| * instruction set extensions. |
| */ |
| bind_hwcap(); |
| |
| /* |
| * Startup memory scrubber (if any) |
| */ |
| mach_memscrub(); |
| |
| /* |
| * Allocate soft interrupt to handle abort sequence. |
| */ |
| abort_sequence_init(); |
| |
| /* |
| * Configure the rest of the system. |
| * Perform forceloading tasks for /etc/system. |
| */ |
| (void) mod_sysctl(SYS_FORCELOAD, NULL); |
| /* |
| * ON4.0: Force /proc module in until clock interrupt handle fixed |
| * ON4.0: This must be fixed or restated in /etc/systems. |
| */ |
| (void) modload("fs", "procfs"); |
| |
| if (&load_platform_drivers) |
| load_platform_drivers(); |
| |
| /* load vis simulation module, if we are running w/fpu off */ |
| if (!fpu_exists) { |
| if (modload("misc", "vis") == -1) |
| halt("Can't load vis"); |
| } |
| |
| mach_fpras(); |
| |
| maxmem = freemem; |
| |
| #ifdef PTL1_PANIC_DEBUG |
| init_ptl1_thread(); |
| #endif /* PTL1_PANIC_DEBUG */ |
| } |
| |
| #ifdef PTL1_PANIC_DEBUG |
| int ptl1_panic_test = 0; |
| int ptl1_panic_xc_one_test = 0; |
| int ptl1_panic_xc_all_test = 0; |
| int ptl1_panic_xt_one_test = 0; |
| int ptl1_panic_xt_all_test = 0; |
| kthread_id_t ptl1_thread_p = NULL; |
| kcondvar_t ptl1_cv; |
| kmutex_t ptl1_mutex; |
| int ptl1_recurse_count_threshold = 0x40; |
| int ptl1_recurse_trap_threshold = 0x3d; |
| extern void ptl1_recurse(int, int); |
| extern void ptl1_panic_xt(int, int); |
| |
| /* |
| * Called once per second by timeout() to wake up |
| * the ptl1_panic thread to see if it should cause |
| * a trap to the ptl1_panic() code. |
| */ |
| /* ARGSUSED */ |
| static void |
| ptl1_wakeup(void *arg) |
| { |
| mutex_enter(&ptl1_mutex); |
| cv_signal(&ptl1_cv); |
| mutex_exit(&ptl1_mutex); |
| } |
| |
| /* |
| * ptl1_panic cross call function: |
| * Needed because xc_one() and xc_some() can pass |
| * 64 bit args but ptl1_recurse() expects ints. |
| */ |
| static void |
| ptl1_panic_xc(void) |
| { |
| ptl1_recurse(ptl1_recurse_count_threshold, |
| ptl1_recurse_trap_threshold); |
| } |
| |
| /* |
| * The ptl1 thread waits for a global flag to be set |
| * and uses the recurse thresholds to set the stack depth |
| * to cause a ptl1_panic() directly via a call to ptl1_recurse |
| * or indirectly via the cross call and cross trap functions. |
| * |
| * This is useful testing stack overflows and normal |
| * ptl1_panic() states with a know stack frame. |
| * |
| * ptl1_recurse() is an asm function in ptl1_panic.s that |
| * sets the {In, Local, Out, and Global} registers to a |
| * know state on the stack and just prior to causing a |
| * test ptl1_panic trap. |
| */ |
| static void |
| ptl1_thread(void) |
| { |
| mutex_enter(&ptl1_mutex); |
| while (ptl1_thread_p) { |
| cpuset_t other_cpus; |
| int cpu_id; |
| int my_cpu_id; |
| int target_cpu_id; |
| int target_found; |
| |
| if (ptl1_panic_test) { |
| ptl1_recurse(ptl1_recurse_count_threshold, |
| ptl1_recurse_trap_threshold); |
| } |
| |
| /* |
| * Find potential targets for x-call and x-trap, |
| * if any exist while preempt is disabled we |
| * start a ptl1_panic if requested via a |
| * globals. |
| */ |
| kpreempt_disable(); |
| my_cpu_id = CPU->cpu_id; |
| other_cpus = cpu_ready_set; |
| CPUSET_DEL(other_cpus, CPU->cpu_id); |
| target_found = 0; |
| if (!CPUSET_ISNULL(other_cpus)) { |
| /* |
| * Pick the first one |
| */ |
| for (cpu_id = 0; cpu_id < NCPU; cpu_id++) { |
| if (cpu_id == my_cpu_id) |
| continue; |
| |
| if (CPU_XCALL_READY(cpu_id)) { |
| target_cpu_id = cpu_id; |
| target_found = 1; |
| break; |
| } |
| } |
| ASSERT(target_found); |
| |
| if (ptl1_panic_xc_one_test) { |
| xc_one(target_cpu_id, |
| (xcfunc_t *)ptl1_panic_xc, 0, 0); |
| } |
| if (ptl1_panic_xc_all_test) { |
| xc_some(other_cpus, |
| (xcfunc_t *)ptl1_panic_xc, 0, 0); |
| } |
| if (ptl1_panic_xt_one_test) { |
| xt_one(target_cpu_id, |
| (xcfunc_t *)ptl1_panic_xt, 0, 0); |
| } |
| if (ptl1_panic_xt_all_test) { |
| xt_some(other_cpus, |
| (xcfunc_t *)ptl1_panic_xt, 0, 0); |
| } |
| } |
| kpreempt_enable(); |
| (void) timeout(ptl1_wakeup, NULL, hz); |
| (void) cv_wait(&ptl1_cv, &ptl1_mutex); |
| } |
| mutex_exit(&ptl1_mutex); |
| } |
| |
| /* |
| * Called during early startup to create the ptl1_thread |
| */ |
| void |
| init_ptl1_thread(void) |
| { |
| ptl1_thread_p = thread_create(NULL, 0, ptl1_thread, NULL, 0, |
| &p0, TS_RUN, 0); |
| } |
| #endif /* PTL1_PANIC_DEBUG */ |
| |
| |
| /* |
| * Add to a memory list. |
| * start = start of new memory segment |
| * len = length of new memory segment in bytes |
| * memlistp = pointer to array of available memory segment structures |
| * curmemlistp = memory list to which to add segment. |
| */ |
| static void |
| memlist_add(uint64_t start, uint64_t len, struct memlist **memlistp, |
| struct memlist **curmemlistp) |
| { |
| struct memlist *new; |
| |
| new = *memlistp; |
| new->address = start; |
| new->size = len; |
| *memlistp = new + 1; |
| |
| memlist_insert(new, curmemlistp); |
| } |
| |
| /* |
| * In the case of architectures that support dynamic addition of |
| * memory at run-time there are two cases where memsegs need to |
| * be initialized and added to the memseg list. |
| * 1) memsegs that are constructed at startup. |
| * 2) memsegs that are constructed at run-time on |
| * hot-plug capable architectures. |
| * This code was originally part of the function kphysm_init(). |
| */ |
| |
| static void |
| memseg_list_add(struct memseg *memsegp) |
| { |
| struct memseg **prev_memsegp; |
| pgcnt_t num; |
| |
| /* insert in memseg list, decreasing number of pages order */ |
| |
| num = MSEG_NPAGES(memsegp); |
| |
| for (prev_memsegp = &memsegs; *prev_memsegp; |
| prev_memsegp = &((*prev_memsegp)->next)) { |
| if (num > MSEG_NPAGES(*prev_memsegp)) |
| break; |
| } |
| |
| memsegp->next = *prev_memsegp; |
| *prev_memsegp = memsegp; |
| |
| if (kpm_enable) { |
| memsegp->nextpa = (memsegp->next) ? |
| va_to_pa(memsegp->next) : MSEG_NULLPTR_PA; |
| |
| if (prev_memsegp != &memsegs) { |
| struct memseg *msp; |
| msp = (struct memseg *)((caddr_t)prev_memsegp - |
| offsetof(struct memseg, next)); |
| msp->nextpa = va_to_pa(memsegp); |
| } else { |
| memsegspa = va_to_pa(memsegs); |
| } |
| } |
| } |
| |
| /* |
| * PSM add_physmem_cb(). US-II and newer processors have some |
| * flavor of the prefetch capability implemented. We exploit |
| * this capability for optimum performance. |
| */ |
| #define PREFETCH_BYTES 64 |
| |
| void |
| add_physmem_cb(page_t *pp, pfn_t pnum) |
| { |
| extern void prefetch_page_w(void *); |
| |
| pp->p_pagenum = pnum; |
| |
| /* |
| * Prefetch one more page_t into E$. To prevent future |
| * mishaps with the sizeof(page_t) changing on us, we |
| * catch this on debug kernels if we can't bring in the |
| * entire hpage with 2 PREFETCH_BYTES reads. See |
| * also, sun4u/cpu/cpu_module.c |
| */ |
| /*LINTED*/ |
| ASSERT(sizeof (page_t) <= 2*PREFETCH_BYTES); |
| prefetch_page_w((char *)pp); |
| } |
| |
| /* |
| * kphysm_init() tackles the problem of initializing physical memory. |
| * The old startup made some assumptions about the kernel living in |
| * physically contiguous space which is no longer valid. |
| */ |
| static void |
| kphysm_init(page_t *pp, struct memseg *memsegp, pgcnt_t npages, |
| uintptr_t kpm_pp, pgcnt_t kpm_npages) |
| { |
| struct memlist *pmem; |
| struct memseg *msp; |
| pfn_t base; |
| pgcnt_t num; |
| pfn_t lastseg_pages_end = 0; |
| pgcnt_t nelem_used = 0; |
| |
| ASSERT(page_hash != NULL && page_hashsz != 0); |
| |
| msp = memsegp; |
| for (pmem = phys_avail; pmem && npages; pmem = pmem->next) { |
| |
| /* |
| * Build the memsegs entry |
| */ |
| num = btop(pmem->size); |
| if (num > npages) |
| num = npages; |
| npages -= num; |
| base = btop(pmem->address); |
| |
| msp->pages = pp; |
| msp->epages = pp + num; |
| msp->pages_base = base; |
| msp->pages_end = base + num; |
| |
| if (kpm_enable) { |
| pfn_t pbase_a; |
| pfn_t pend_a; |
| pfn_t prev_pend_a; |
| pgcnt_t nelem; |
| |
| msp->pagespa = va_to_pa(pp); |
| msp->epagespa = va_to_pa(pp + num); |
| pbase_a = kpmptop(ptokpmp(base)); |
| pend_a = kpmptop(ptokpmp(base + num - 1)) + kpmpnpgs; |
| nelem = ptokpmp(pend_a - pbase_a); |
| msp->kpm_nkpmpgs = nelem; |
| msp->kpm_pbase = pbase_a; |
| if (lastseg_pages_end) { |
| /* |
| * Assume phys_avail is in ascending order |
| * of physical addresses. |
| */ |
| ASSERT(base + num > lastseg_pages_end); |
| prev_pend_a = kpmptop( |
| ptokpmp(lastseg_pages_end - 1)) + kpmpnpgs; |
| |
| if (prev_pend_a > pbase_a) { |
| /* |
| * Overlap, more than one memseg may |
| * point to the same kpm_page range. |
| */ |
| if (kpm_smallpages == 0) { |
| msp->kpm_pages = |
| (kpm_page_t *)kpm_pp - 1; |
| kpm_pp = (uintptr_t) |
| ((kpm_page_t *)kpm_pp |
| + nelem - 1); |
| } else { |
| msp->kpm_spages = |
| (kpm_spage_t *)kpm_pp - 1; |
| kpm_pp = (uintptr_t) |
| ((kpm_spage_t *)kpm_pp |
| + nelem - 1); |
| } |
| nelem_used += nelem - 1; |
| |
| } else { |
| if (kpm_smallpages == 0) { |
| msp->kpm_pages = |
| (kpm_page_t *)kpm_pp; |
| kpm_pp = (uintptr_t) |
| ((kpm_page_t *)kpm_pp |
| + nelem); |
| } else { |
| msp->kpm_spages = |
| (kpm_spage_t *)kpm_pp; |
| kpm_pp = (uintptr_t) |
| ((kpm_spage_t *) |
| kpm_pp + nelem); |
| } |
| nelem_used += nelem; |
| } |
| |
| } else { |
| if (kpm_smallpages == 0) { |
| msp->kpm_pages = (kpm_page_t *)kpm_pp; |
| kpm_pp = (uintptr_t) |
| ((kpm_page_t *)kpm_pp + nelem); |
| } else { |
| msp->kpm_spages = (kpm_spage_t *)kpm_pp; |
| kpm_pp = (uintptr_t) |
| ((kpm_spage_t *)kpm_pp + nelem); |
| } |
| nelem_used = nelem; |
| } |
| |
| if (nelem_used > kpm_npages) |
| panic("kphysm_init: kpm_pp overflow\n"); |
| |
| msp->kpm_pagespa = va_to_pa(msp->kpm_pages); |
| lastseg_pages_end = msp->pages_end; |
| } |
| |
| memseg_list_add(msp); |
| |
| /* |
| * add_physmem() initializes the PSM part of the page |
| * struct by calling the PSM back with add_physmem_cb(). |
| * In addition it coalesces pages into larger pages as |
| * it initializes them. |
| */ |
| add_physmem(pp, num, base); |
| pp += num; |
| msp++; |
| } |
| |
| build_pfn_hash(); |
| } |
| |
| /* |
| * Kernel VM initialization. |
| * Assumptions about kernel address space ordering: |
| * (1) gap (user space) |
| * (2) kernel text |
| * (3) kernel data/bss |
| * (4) gap |
| * (5) kernel data structures |
| * (6) gap |
| * (7) debugger (optional) |
| * (8) monitor |
| * (9) gap (possibly null) |
| * (10) dvma |
| * (11) devices |
| */ |
| static void |
| kvm_init(void) |
| { |
| /* |
| * Put the kernel segments in kernel address space. |
| */ |
| rw_enter(&kas.a_lock, RW_WRITER); |
| as_avlinit(&kas); |
| |
| (void) seg_attach(&kas, (caddr_t)KERNELBASE, |
| (size_t)(e_moddata - KERNELBASE), &ktextseg); |
| (void) segkmem_create(&ktextseg); |
| |
| (void) seg_attach(&kas, (caddr_t)(KERNELBASE + MMU_PAGESIZE4M), |
| (size_t)(MMU_PAGESIZE4M), &ktexthole); |
| (void) segkmem_create(&ktexthole); |
| |
| (void) seg_attach(&kas, (caddr_t)valloc_base, |
| (size_t)(econtig32 - valloc_base), &kvalloc); |
| (void) segkmem_create(&kvalloc); |
| |
| if (kmem64_base) { |
| (void) seg_attach(&kas, (caddr_t)kmem64_base, |
| (size_t)(kmem64_end - kmem64_base), &kmem64); |
| (void) segkmem_create(&kmem64); |
| } |
| |
| /* |
| * We're about to map out /boot. This is the beginning of the |
| * system resource management transition. We can no longer |
| * call into /boot for I/O or memory allocations. |
| */ |
| (void) seg_attach(&kas, kernelheap, ekernelheap - kernelheap, &kvseg); |
| (void) segkmem_create(&kvseg); |
| hblk_alloc_dynamic = 1; |
| |
| /* |
| * we need to preallocate pages for DR operations before enabling large |
| * page kernel heap because of memseg_remap_init() hat_unload() hack. |
| */ |
| memseg_remap_init(); |
| |
| /* at this point we are ready to use large page heap */ |
| segkmem_heap_lp_init(); |
| |
| (void) seg_attach(&kas, (caddr_t)SYSBASE32, SYSLIMIT32 - SYSBASE32, |
| &kvseg32); |
| (void) segkmem_create(&kvseg32); |
| |
| /* |
| * Create a segment for the debugger. |
| */ |
| (void) seg_attach(&kas, (caddr_t)SEGDEBUGBASE, (size_t)SEGDEBUGSIZE, |
| &kdebugseg); |
| (void) segkmem_create(&kdebugseg); |
| |
| rw_exit(&kas.a_lock); |
| } |
| |
| char obp_tte_str[] = |
| "h# %x constant MMU_PAGESHIFT " |
| "h# %x constant TTE8K " |
| "h# %x constant SFHME_SIZE " |
| "h# %x constant SFHME_TTE " |
| "h# %x constant HMEBLK_TAG " |
| "h# %x constant HMEBLK_NEXT " |
| "h# %x constant HMEBLK_MISC " |
| "h# %x constant HMEBLK_HME1 " |
| "h# %x constant NHMENTS " |
| "h# %x constant HBLK_SZMASK " |
| "h# %x constant HBLK_RANGE_SHIFT " |
| "h# %x constant HMEBP_HBLK " |
| "h# %x constant HMEBUCKET_SIZE " |
| "h# %x constant HTAG_SFMMUPSZ " |
| "h# %x constant HTAG_REHASHSZ " |
| "h# %x constant mmu_hashcnt " |
| "h# %p constant uhme_hash " |
| "h# %p constant khme_hash " |
| "h# %x constant UHMEHASH_SZ " |
| "h# %x constant KHMEHASH_SZ " |
| "h# %p constant KHATID " |
| "h# %x constant CTX_SIZE " |
| "h# %x constant CTX_SFMMU " |
| "h# %p constant ctxs " |
| "h# %x constant ASI_MEM " |
| |
| ": PHYS-X@ ( phys -- data ) " |
| " ASI_MEM spacex@ " |
| "; " |
| |
| ": PHYS-W@ ( phys -- data ) " |
| " ASI_MEM spacew@ " |
| "; " |
| |
| ": PHYS-L@ ( phys -- data ) " |
| " ASI_MEM spaceL@ " |
| "; " |
| |
| ": TTE_PAGE_SHIFT ( ttesz -- hmeshift ) " |
| " 3 * MMU_PAGESHIFT + " |
| "; " |
| |
| ": TTE_IS_VALID ( ttep -- flag ) " |
| " PHYS-X@ 0< " |
| "; " |
| |
| ": HME_HASH_SHIFT ( ttesz -- hmeshift ) " |
| " dup TTE8K = if " |
| " drop HBLK_RANGE_SHIFT " |
| " else " |
| " TTE_PAGE_SHIFT " |
| " then " |
| "; " |
| |
| ": HME_HASH_BSPAGE ( addr hmeshift -- bspage ) " |
| " tuck >> swap MMU_PAGESHIFT - << " |
| "; " |
| |
| ": HME_HASH_FUNCTION ( sfmmup addr hmeshift -- hmebp ) " |
| " >> over xor swap ( hash sfmmup ) " |
| " KHATID <> if ( hash ) " |
| " UHMEHASH_SZ and ( bucket ) " |
| " HMEBUCKET_SIZE * uhme_hash + ( hmebp ) " |
| " else ( hash ) " |
| " KHMEHASH_SZ and ( bucket ) " |
| " HMEBUCKET_SIZE * khme_hash + ( hmebp ) " |
| " then ( hmebp ) " |
| "; " |
| |
| ": HME_HASH_TABLE_SEARCH " |
| " ( sfmmup hmebp hblktag -- sfmmup null | sfmmup hmeblkp ) " |
| " >r hmebp_hblk + phys-x@ begin ( sfmmup hmeblkp ) ( r: hblktag ) " |
| " dup if ( sfmmup hmeblkp ) ( r: hblktag ) " |
| " dup hmeblk_tag + phys-x@ r@ = if ( sfmmup hmeblkp ) " |
| " dup hmeblk_tag + 8 + phys-x@ 2 pick = if " |
| " true ( sfmmup hmeblkp true ) ( r: hblktag ) " |
| " else " |
| " hmeblk_next + phys-x@ false " |
| " ( sfmmup hmeblkp false ) ( r: hblktag ) " |
| " then " |
| " else " |
| " hmeblk_next + phys-x@ false " |
| " ( sfmmup hmeblkp false ) ( r: hblktag ) " |
| " then " |
| " else " |
| " true " |
| " then " |
| " until r> drop " |
| "; " |
| |
| ": CNUM_TO_SFMMUP ( cnum -- sfmmup ) " |
| " CTX_SIZE * ctxs + CTX_SFMMU + " |
| "x@ " |
| "; " |
| |
| ": HME_HASH_TAG ( sfmmup rehash addr -- hblktag ) " |
| " over HME_HASH_SHIFT HME_HASH_BSPAGE ( sfmmup rehash bspage ) " |
| " HTAG_REHASHSZ << or nip ( hblktag ) " |
| "; " |
| |
| ": HBLK_TO_TTEP ( hmeblkp addr -- ttep ) " |
| " over HMEBLK_MISC + PHYS-L@ HBLK_SZMASK and ( hmeblkp addr ttesz ) " |
| " TTE8K = if ( hmeblkp addr ) " |
| " MMU_PAGESHIFT >> NHMENTS 1- and ( hmeblkp hme-index ) " |
| " else ( hmeblkp addr ) " |
| " drop 0 ( hmeblkp 0 ) " |
| " then ( hmeblkp hme-index ) " |
| " SFHME_SIZE * + HMEBLK_HME1 + ( hmep ) " |
| " SFHME_TTE + ( ttep ) " |
| "; " |
| |
| ": unix-tte ( addr cnum -- false | tte-data true ) " |
| " CNUM_TO_SFMMUP ( addr sfmmup ) " |
| " mmu_hashcnt 1+ 1 do ( addr sfmmup ) " |
| " 2dup swap i HME_HASH_SHIFT " |
| "( addr sfmmup sfmmup addr hmeshift ) " |
| " HME_HASH_FUNCTION ( addr sfmmup hmebp ) " |
| " over i 4 pick " |
| "( addr sfmmup hmebp sfmmup rehash addr ) " |
| " HME_HASH_TAG ( addr sfmmup hmebp hblktag ) " |
| " HME_HASH_TABLE_SEARCH " |
| "( addr sfmmup { null | hmeblkp } ) " |
| " ?dup if ( addr sfmmup hmeblkp ) " |
| " nip swap HBLK_TO_TTEP ( ttep ) " |
| " dup TTE_IS_VALID if ( valid-ttep ) " |
| " PHYS-X@ true ( tte-data true ) " |
| " else ( invalid-tte ) " |
| " drop false ( false ) " |
| " then ( false | tte-data true ) " |
| " unloop exit ( false | tte-data true ) " |
| " then ( addr sfmmup ) " |
| " loop ( addr sfmmup ) " |
| " 2drop false ( false ) " |
| "; " |
| ; |
| |
| void |
| create_va_to_tte(void) |
| { |
| char *bp; |
| extern int khmehash_num, uhmehash_num; |
| extern struct hmehash_bucket *khme_hash, *uhme_hash; |
| |
| #define OFFSET(type, field) ((uintptr_t)(&((type *)0)->field)) |
| |
| bp = (char *)kobj_zalloc(MMU_PAGESIZE, KM_SLEEP); |
| |
| /* |
| * Teach obp how to parse our sw ttes. |
| */ |
| (void) sprintf(bp, obp_tte_str, |
| MMU_PAGESHIFT, |
| TTE8K, |
| sizeof (struct sf_hment), |
| OFFSET(struct sf_hment, hme_tte), |
| OFFSET(struct hme_blk, hblk_tag), |
| OFFSET(struct hme_blk, hblk_nextpa), |
| OFFSET(struct hme_blk, hblk_misc), |
| OFFSET(struct hme_blk, hblk_hme), |
| NHMENTS, |
| HBLK_SZMASK, |
| HBLK_RANGE_SHIFT, |
| OFFSET(struct hmehash_bucket, hmeh_nextpa), |
| sizeof (struct hmehash_bucket), |
| HTAG_SFMMUPSZ, |
| HTAG_REHASHSZ, |
| mmu_hashcnt, |
| (caddr_t)va_to_pa((caddr_t)uhme_hash), |
| (caddr_t)va_to_pa((caddr_t)khme_hash), |
| UHMEHASH_SZ, |
| KHMEHASH_SZ, |
| KHATID, |
| sizeof (struct ctx), |
| OFFSET(struct ctx, ctx_sfmmu), |
| ctxs, |
| ASI_MEM); |
| prom_interpret(bp, 0, 0, 0, 0, 0); |
| |
| kobj_free(bp, MMU_PAGESIZE); |
| } |
| |
| void |
| install_va_to_tte(void) |
| { |
| /* |
| * advise prom that he can use unix-tte |
| */ |
| prom_interpret("' unix-tte is va>tte-data", 0, 0, 0, 0, 0); |
| } |
| |
| |
| /* |
| * Because kmdb links prom_stdout_is_framebuffer into its own |
| * module, we add "device-type=display" here for /os-io node, so that |
| * prom_stdout_is_framebuffer still works corrrectly after /os-io node |
| * is registered into OBP. |
| */ |
| static char *create_node = |
| "\" /\" find-device " |
| "new-device " |
| "\" os-io\" device-name " |
| "\" display\" device-type " |
| ": cb-r/w ( adr,len method$ -- #read/#written ) " |
| " 2>r swap 2 2r> ['] $callback catch if " |
| " 2drop 3drop 0 " |
| " then " |
| "; " |
| ": read ( adr,len -- #read ) " |
| " \" read\" ['] cb-r/w catch if 2drop 2drop -2 exit then " |
| " ( retN ... ret1 N ) " |
| " ?dup if " |
| " swap >r 1- 0 ?do drop loop r> " |
| " else " |
| " -2 " |
| " then " |
| "; " |
| ": write ( adr,len -- #written ) " |
| " \" write\" ['] cb-r/w catch if 2drop 2drop 0 exit then " |
| " ( retN ... ret1 N ) " |
| " ?dup if " |
| " swap >r 1- 0 ?do drop loop r> " |
| " else " |
| " 0 " |
| " then " |
| "; " |
| ": poll-tty ( -- ) ; " |
| ": install-abort ( -- ) ['] poll-tty d# 10 alarm ; " |
| ": remove-abort ( -- ) ['] poll-tty 0 alarm ; " |
| ": cb-give/take ( $method -- ) " |
| " 0 -rot ['] $callback catch ?dup if " |
| " >r 2drop 2drop r> throw " |
| " else " |
| " 0 ?do drop loop " |
| " then " |
| "; " |
| ": give ( -- ) \" exit-input\" cb-give/take ; " |
| ": take ( -- ) \" enter-input\" cb-give/take ; " |
| ": open ( -- ok? ) true ; " |
| ": close ( -- ) ; " |
| "finish-device " |
| "device-end "; |
| |
| /* |
| * Create the OBP input/output node (FCode serial driver). |
| * It is needed for both USB console keyboard and for |
| * the kernel terminal emulator. It is too early to check for a |
| * kernel console compatible framebuffer now, so we create this |
| * so that we're ready if we need to enable kernel terminal emulation. |
| * |
| * When the USB software takes over the input device at the time |
| * consconfig runs, OBP's stdin is redirected to this node. |
| * Whenever the FORTH user interface is used after this switch, |
| * the node will call back into the kernel for console input. |
| * If a serial device such as ttya or a UART with a Type 5 keyboard |
| * attached is used, OBP takes over the serial device when the system |
| * goes to the debugger after the system is booted. This sharing |
| * of the relatively simple serial device is difficult but possible. |
| * Sharing the USB host controller is impossible due its complexity. |
| * |
| * Similarly to USB keyboard input redirection, after consconfig_dacf |
| * configures a kernel console framebuffer as the standard output |
| * device, OBP's stdout is switched to to vector through the |
| * /os-io node into the kernel terminal emulator. |
| */ |
| static void |
| startup_create_io_node(void) |
| { |
| prom_interpret(create_node, 0, 0, 0, 0, 0); |
| } |
| |
| |
| static void |
| do_prom_version_check(void) |
| { |
| int i; |
| pnode_t node; |
| char buf[64]; |
| static char drev[] = "Down-rev firmware detected%s\n" |
| "\tPlease upgrade to the following minimum version:\n" |
| "\t\t%s\n"; |
| |
| i = prom_version_check(buf, sizeof (buf), &node); |
| |
| if (i == PROM_VER64_OK) |
| return; |
| |
| if (i == PROM_VER64_UPGRADE) { |
| cmn_err(CE_WARN, drev, "", buf); |
| |
| #ifdef DEBUG |
| prom_enter_mon(); /* Type 'go' to continue */ |
| cmn_err(CE_WARN, "Booting with down-rev firmware\n"); |
| return; |
| #else |
| halt(0); |
| #endif |
| } |
| |
| /* |
| * The other possibility is that this is a server running |
| * good firmware, but down-rev firmware was detected on at |
| * least one other cpu board. We just complain if we see |
| * that. |
| */ |
| cmn_err(CE_WARN, drev, " on one or more CPU boards", buf); |
| } |
| |
| static void |
| kpm_init() |
| { |
| kpm_pgshft = (kpm_smallpages == 0) ? MMU_PAGESHIFT4M : MMU_PAGESHIFT; |
| kpm_pgsz = 1ull << kpm_pgshft; |
| kpm_pgoff = kpm_pgsz - 1; |
| kpmp2pshft = kpm_pgshft - PAGESHIFT; |
| kpmpnpgs = 1 << kpmp2pshft; |
| ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); |
| } |
| |
| void |
| kpm_npages_setup(int memblocks) |
| { |
| /* |
| * npages can be scattered in a maximum of 'memblocks' |
| */ |
| kpm_npages = ptokpmpr(npages) + memblocks; |
| } |
| |
| /* |
| * Must be defined in platform dependent code. |
| */ |
| extern caddr_t modtext; |
| extern size_t modtext_sz; |
| extern caddr_t moddata; |
| |
| #define HEAPTEXT_ARENA(addr) \ |
| ((uintptr_t)(addr) < KERNELBASE + 2 * MMU_PAGESIZE4M ? 0 : \ |
| (((uintptr_t)(addr) - HEAPTEXT_BASE) / \ |
| (HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) + 1)) |
| |
| #define HEAPTEXT_OVERSIZED(addr) \ |
| ((uintptr_t)(addr) >= HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE) |
| |
| vmem_t *texthole_source[HEAPTEXT_NARENAS]; |
| vmem_t *texthole_arena[HEAPTEXT_NARENAS]; |
| kmutex_t texthole_lock; |
| |
| char kern_bootargs[OBP_MAXPATHLEN]; |
| |
| void |
| kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) |
| { |
| uintptr_t addr, limit; |
| |
| addr = HEAPTEXT_BASE; |
| limit = addr + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE; |
| |
| /* |
| * Before we initialize the text_arena, we want to punch holes in the |
| * underlying heaptext_arena. This guarantees that for any text |
| * address we can find a text hole less than HEAPTEXT_MAPPED away. |
| */ |
| for (; addr + HEAPTEXT_UNMAPPED <= limit; |
| addr += HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) { |
| (void) vmem_xalloc(heaptext_arena, HEAPTEXT_UNMAPPED, PAGESIZE, |
| 0, 0, (void *)addr, (void *)(addr + HEAPTEXT_UNMAPPED), |
| VM_NOSLEEP | VM_BESTFIT | VM_PANIC); |
| } |
| |
| /* |
| * Allocate one page at the oversize to break up the text region |
| * from the oversized region. |
| */ |
| (void) vmem_xalloc(heaptext_arena, PAGESIZE, PAGESIZE, 0, 0, |
| (void *)limit, (void *)(limit + PAGESIZE), |
| VM_NOSLEEP | VM_BESTFIT | VM_PANIC); |
| |
| *text_arena = vmem_create("module_text", modtext, modtext_sz, |
| sizeof (uintptr_t), segkmem_alloc, segkmem_free, |
| heaptext_arena, 0, VM_SLEEP); |
| *data_arena = vmem_create("module_data", moddata, MODDATA, 1, |
| segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); |
| } |
| |
| caddr_t |
| kobj_text_alloc(vmem_t *arena, size_t size) |
| { |
| caddr_t rval, better; |
| |
| /* |
| * First, try a sleeping allocation. |
| */ |
| rval = vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT); |
| |
| if (size >= HEAPTEXT_MAPPED || !HEAPTEXT_OVERSIZED(rval)) |
| return (rval); |
| |
| /* |
| * We didn't get the area that we wanted. We're going to try to do an |
| * allocation with explicit constraints. |
| */ |
| better = vmem_xalloc(arena, size, sizeof (uintptr_t), 0, 0, NULL, |
| (void *)(HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE), |
| VM_NOSLEEP | VM_BESTFIT); |
| |
| if (better != NULL) { |
| /* |
| * That worked. Free our first attempt and return. |
| */ |
| vmem_free(arena, rval, size); |
| return (better); |
| } |
| |
| |