| /* |
| * CDDL HEADER START |
| * |
| * The contents of this file are subject to the terms of the |
| * Common Development and Distribution License (the "License"). |
| * You may not use this file except in compliance with the License. |
| * |
| * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE |
| * or http://www.opensolaris.org/os/licensing. |
| * See the License for the specific language governing permissions |
| * and limitations under the License. |
| * |
| * When distributing Covered Code, include this CDDL HEADER in each |
| * file and include the License file at usr/src/OPENSOLARIS.LICENSE. |
| * If applicable, add the following below this CDDL HEADER, with the |
| * fields enclosed by brackets "[]" replaced with your own identifying |
| * information: Portions Copyright [yyyy] [name of copyright owner] |
| * |
| * CDDL HEADER END |
| */ |
| |
| /* |
| * Copyright 2006 Sun Microsystems, Inc. All rights reserved. |
| * Use is subject to license terms. |
| */ |
| |
| #pragma ident "%Z%%M% %I% %E% SMI" |
| |
| /* |
| * Zones |
| * |
| * A zone is a named collection of processes, namespace constraints, |
| * and other system resources which comprise a secure and manageable |
| * application containment facility. |
| * |
| * Zones (represented by the reference counted zone_t) are tracked in |
| * the kernel in the zonehash. Elsewhere in the kernel, Zone IDs |
| * (zoneid_t) are used to track zone association. Zone IDs are |
| * dynamically generated when the zone is created; if a persistent |
| * identifier is needed (core files, accounting logs, audit trail, |
| * etc.), the zone name should be used. |
| * |
| * |
| * Global Zone: |
| * |
| * The global zone (zoneid 0) is automatically associated with all |
| * system resources that have not been bound to a user-created zone. |
| * This means that even systems where zones are not in active use |
| * have a global zone, and all processes, mounts, etc. are |
| * associated with that zone. The global zone is generally |
| * unconstrained in terms of privileges and access, though the usual |
| * credential and privilege based restrictions apply. |
| * |
| * |
| * Zone States: |
| * |
| * The states in which a zone may be in and the transitions are as |
| * follows: |
| * |
| * ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially |
| * initialized zone is added to the list of active zones on the system but |
| * isn't accessible. |
| * |
| * ZONE_IS_READY: zsched (the kernel dummy process for a zone) is |
| * ready. The zone is made visible after the ZSD constructor callbacks are |
| * executed. A zone remains in this state until it transitions into |
| * the ZONE_IS_BOOTING state as a result of a call to zone_boot(). |
| * |
| * ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start |
| * init. Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN |
| * state. |
| * |
| * ZONE_IS_RUNNING: The zone is open for business: zsched has |
| * successfully started init. A zone remains in this state until |
| * zone_shutdown() is called. |
| * |
| * ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is |
| * killing all processes running in the zone. The zone remains |
| * in this state until there are no more user processes running in the zone. |
| * zone_create(), zone_enter(), and zone_destroy() on this zone will fail. |
| * Since zone_shutdown() is restartable, it may be called successfully |
| * multiple times for the same zone_t. Setting of the zone's state to |
| * ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check |
| * the zone's status without worrying about it being a moving target. |
| * |
| * ZONE_IS_EMPTY: zone_shutdown() has been called, and there |
| * are no more user processes in the zone. The zone remains in this |
| * state until there are no more kernel threads associated with the |
| * zone. zone_create(), zone_enter(), and zone_destroy() on this zone will |
| * fail. |
| * |
| * ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone |
| * have exited. zone_shutdown() returns. Henceforth it is not possible to |
| * join the zone or create kernel threads therein. |
| * |
| * ZONE_IS_DYING: zone_destroy() has been called on the zone; zone |
| * remains in this state until zsched exits. Calls to zone_find_by_*() |
| * return NULL from now on. |
| * |
| * ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0). There are no |
| * processes or threads doing work on behalf of the zone. The zone is |
| * removed from the list of active zones. zone_destroy() returns, and |
| * the zone can be recreated. |
| * |
| * ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor |
| * callbacks are executed, and all memory associated with the zone is |
| * freed. |
| * |
| * Threads can wait for the zone to enter a requested state by using |
| * zone_status_wait() or zone_status_timedwait() with the desired |
| * state passed in as an argument. Zone state transitions are |
| * uni-directional; it is not possible to move back to an earlier state. |
| * |
| * |
| * Zone-Specific Data: |
| * |
| * Subsystems needing to maintain zone-specific data can store that |
| * data using the ZSD mechanism. This provides a zone-specific data |
| * store, similar to thread-specific data (see pthread_getspecific(3C) |
| * or the TSD code in uts/common/disp/thread.c. Also, ZSD can be used |
| * to register callbacks to be invoked when a zone is created, shut |
| * down, or destroyed. This can be used to initialize zone-specific |
| * data for new zones and to clean up when zones go away. |
| * |
| * |
| * Data Structures: |
| * |
| * The per-zone structure (zone_t) is reference counted, and freed |
| * when all references are released. zone_hold and zone_rele can be |
| * used to adjust the reference count. In addition, reference counts |
| * associated with the cred_t structure are tracked separately using |
| * zone_cred_hold and zone_cred_rele. |
| * |
| * Pointers to active zone_t's are stored in two hash tables; one |
| * for searching by id, the other for searching by name. Lookups |
| * can be performed on either basis, using zone_find_by_id and |
| * zone_find_by_name. Both return zone_t pointers with the zone |
| * held, so zone_rele should be called when the pointer is no longer |
| * needed. Zones can also be searched by path; zone_find_by_path |
| * returns the zone with which a path name is associated (global |
| * zone if the path is not within some other zone's file system |
| * hierarchy). This currently requires iterating through each zone, |
| * so it is slower than an id or name search via a hash table. |
| * |
| * |
| * Locking: |
| * |
| * zonehash_lock: This is a top-level global lock used to protect the |
| * zone hash tables and lists. Zones cannot be created or destroyed |
| * while this lock is held. |
| * zone_status_lock: This is a global lock protecting zone state. |
| * Zones cannot change state while this lock is held. It also |
| * protects the list of kernel threads associated with a zone. |
| * zone_lock: This is a per-zone lock used to protect several fields of |
| * the zone_t (see <sys/zone.h> for details). In addition, holding |
| * this lock means that the zone cannot go away. |
| * zsd_key_lock: This is a global lock protecting the key state for ZSD. |
| * zone_deathrow_lock: This is a global lock protecting the "deathrow" |
| * list (a list of zones in the ZONE_IS_DEAD state). |
| * |
| * Ordering requirements: |
| * pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock --> |
| * zone_lock --> zsd_key_lock --> pidlock --> p_lock |
| * |
| * Blocking memory allocations are permitted while holding any of the |
| * zone locks. |
| * |
| * |
| * System Call Interface: |
| * |
| * The zone subsystem can be managed and queried from user level with |
| * the following system calls (all subcodes of the primary "zone" |
| * system call): |
| * - zone_create: creates a zone with selected attributes (name, |
| * root path, privileges, resource controls, ZFS datasets) |
| * - zone_enter: allows the current process to enter a zone |
| * - zone_getattr: reports attributes of a zone |
| * - zone_list: lists all zones active in the system |
| * - zone_lookup: looks up zone id based on name |
| * - zone_shutdown: initiates shutdown process (see states above) |
| * - zone_destroy: completes shutdown process (see states above) |
| * |
| */ |
| |
| #include <sys/priv_impl.h> |
| #include <sys/cred.h> |
| #include <c2/audit.h> |
| #include <sys/debug.h> |
| #include <sys/file.h> |
| #include <sys/kmem.h> |
| #include <sys/mutex.h> |
| #include <sys/note.h> |
| #include <sys/pathname.h> |
| #include <sys/proc.h> |
| #include <sys/project.h> |
| #include <sys/sysevent.h> |
| #include <sys/task.h> |
| #include <sys/systm.h> |
| #include <sys/types.h> |
| #include <sys/utsname.h> |
| #include <sys/vnode.h> |
| #include <sys/vfs.h> |
| #include <sys/systeminfo.h> |
| #include <sys/policy.h> |
| #include <sys/cred_impl.h> |
| #include <sys/contract_impl.h> |
| #include <sys/contract/process_impl.h> |
| #include <sys/class.h> |
| #include <sys/pool.h> |
| #include <sys/pool_pset.h> |
| #include <sys/pset.h> |
| #include <sys/sysmacros.h> |
| #include <sys/callb.h> |
| #include <sys/vmparam.h> |
| #include <sys/corectl.h> |
| |
| #include <sys/door.h> |
| #include <sys/cpuvar.h> |
| |
| #include <sys/uadmin.h> |
| #include <sys/session.h> |
| #include <sys/cmn_err.h> |
| #include <sys/modhash.h> |
| #include <sys/nvpair.h> |
| #include <sys/rctl.h> |
| #include <sys/fss.h> |
| #include <sys/zone.h> |
| #include <sys/tsol/label.h> |
| |
| /* |
| * cv used to signal that all references to the zone have been released. This |
| * needs to be global since there may be multiple waiters, and the first to |
| * wake up will free the zone_t, hence we cannot use zone->zone_cv. |
| */ |
| static kcondvar_t zone_destroy_cv; |
| /* |
| * Lock used to serialize access to zone_cv. This could have been per-zone, |
| * but then we'd need another lock for zone_destroy_cv, and why bother? |
| */ |
| static kmutex_t zone_status_lock; |
| |
| /* |
| * ZSD-related global variables. |
| */ |
| static kmutex_t zsd_key_lock; /* protects the following two */ |
| /* |
| * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval. |
| */ |
| static zone_key_t zsd_keyval = 0; |
| /* |
| * Global list of registered keys. We use this when a new zone is created. |
| */ |
| static list_t zsd_registered_keys; |
| |
| int zone_hash_size = 256; |
| static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel; |
| static kmutex_t zonehash_lock; |
| static uint_t zonecount; |
| static id_space_t *zoneid_space; |
| |
| /* |
| * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the |
| * kernel proper runs, and which manages all other zones. |
| * |
| * Although not declared as static, the variable "zone0" should not be used |
| * except for by code that needs to reference the global zone early on in boot, |
| * before it is fully initialized. All other consumers should use |
| * 'global_zone'. |
| */ |
| zone_t zone0; |
| zone_t *global_zone = NULL; /* Set when the global zone is initialized */ |
| |
| /* |
| * List of active zones, protected by zonehash_lock. |
| */ |
| static list_t zone_active; |
| |
| /* |
| * List of destroyed zones that still have outstanding cred references. |
| * Used for debugging. Uses a separate lock to avoid lock ordering |
| * problems in zone_free. |
| */ |
| static list_t zone_deathrow; |
| static kmutex_t zone_deathrow_lock; |
| |
| /* number of zones is limited by virtual interface limit in IP */ |
| uint_t maxzones = 8192; |
| |
| /* Event channel to sent zone state change notifications */ |
| evchan_t *zone_event_chan; |
| |
| /* |
| * This table holds the mapping from kernel zone states to |
| * states visible in the state notification API. |
| * The idea is that we only expose "obvious" states and |
| * do not expose states which are just implementation details. |
| */ |
| const char *zone_status_table[] = { |
| ZONE_EVENT_UNINITIALIZED, /* uninitialized */ |
| ZONE_EVENT_READY, /* ready */ |
| ZONE_EVENT_READY, /* booting */ |
| ZONE_EVENT_RUNNING, /* running */ |
| ZONE_EVENT_SHUTTING_DOWN, /* shutting_down */ |
| ZONE_EVENT_SHUTTING_DOWN, /* empty */ |
| ZONE_EVENT_SHUTTING_DOWN, /* down */ |
| ZONE_EVENT_SHUTTING_DOWN, /* dying */ |
| ZONE_EVENT_UNINITIALIZED, /* dead */ |
| }; |
| |
| /* |
| * This isn't static so lint doesn't complain. |
| */ |
| rctl_hndl_t rc_zone_cpu_shares; |
| rctl_hndl_t rc_zone_nlwps; |
| /* |
| * Synchronization primitives used to synchronize between mounts and zone |
| * creation/destruction. |
| */ |
| static int mounts_in_progress; |
| static kcondvar_t mount_cv; |
| static kmutex_t mount_lock; |
| |
| const char * const zone_initname = "/sbin/init"; |
| static char * const zone_prefix = "/zone/"; |
| |
| static int zone_shutdown(zoneid_t zoneid); |
| |
| /* |
| * Bump this number when you alter the zone syscall interfaces; this is |
| * because we need to have support for previous API versions in libc |
| * to support patching; libc calls into the kernel to determine this number. |
| * |
| * Version 1 of the API is the version originally shipped with Solaris 10 |
| * Version 2 alters the zone_create system call in order to support more |
| * arguments by moving the args into a structure; and to do better |
| * error reporting when zone_create() fails. |
| * Version 3 alters the zone_create system call in order to support the |
| * import of ZFS datasets to zones. |
| * Version 4 alters the zone_create system call in order to support |
| * Trusted Extensions. |
| */ |
| static const int ZONE_SYSCALL_API_VERSION = 4; |
| |
| /* |
| * Certain filesystems (such as NFS and autofs) need to know which zone |
| * the mount is being placed in. Because of this, we need to be able to |
| * ensure that a zone isn't in the process of being created such that |
| * nfs_mount() thinks it is in the global zone, while by the time it |
| * gets added the list of mounted zones, it ends up on zoneA's mount |
| * list. |
| * |
| * The following functions: block_mounts()/resume_mounts() and |
| * mount_in_progress()/mount_completed() are used by zones and the VFS |
| * layer (respectively) to synchronize zone creation and new mounts. |
| * |
| * The semantics are like a reader-reader lock such that there may |
| * either be multiple mounts (or zone creations, if that weren't |
| * serialized by zonehash_lock) in progress at the same time, but not |
| * both. |
| * |
| * We use cv's so the user can ctrl-C out of the operation if it's |
| * taking too long. |
| * |
| * The semantics are such that there is unfair bias towards the |
| * "current" operation. This means that zone creations may starve if |
| * there is a rapid succession of new mounts coming in to the system, or |
| * there is a remote possibility that zones will be created at such a |
| * rate that new mounts will not be able to proceed. |
| */ |
| /* |
| * Prevent new mounts from progressing to the point of calling |
| * VFS_MOUNT(). If there are already mounts in this "region", wait for |
| * them to complete. |
| */ |
| static int |
| block_mounts(void) |
| { |
| int retval = 0; |
| |
| /* |
| * Since it may block for a long time, block_mounts() shouldn't be |
| * called with zonehash_lock held. |
| */ |
| ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); |
| mutex_enter(&mount_lock); |
| while (mounts_in_progress > 0) { |
| if (cv_wait_sig(&mount_cv, &mount_lock) == 0) |
| goto signaled; |
| } |
| /* |
| * A negative value of mounts_in_progress indicates that mounts |
| * have been blocked by (-mounts_in_progress) different callers. |
| */ |
| mounts_in_progress--; |
| retval = 1; |
| signaled: |
| mutex_exit(&mount_lock); |
| return (retval); |
| } |
| |
| /* |
| * The VFS layer may progress with new mounts as far as we're concerned. |
| * Allow them to progress if we were the last obstacle. |
| */ |
| static void |
| resume_mounts(void) |
| { |
| mutex_enter(&mount_lock); |
| if (++mounts_in_progress == 0) |
| cv_broadcast(&mount_cv); |
| mutex_exit(&mount_lock); |
| } |
| |
| /* |
| * The VFS layer is busy with a mount; zones should wait until all |
| * mounts are completed to progress. |
| */ |
| void |
| mount_in_progress(void) |
| { |
| mutex_enter(&mount_lock); |
| while (mounts_in_progress < 0) |
| cv_wait(&mount_cv, &mount_lock); |
| mounts_in_progress++; |
| mutex_exit(&mount_lock); |
| } |
| |
| /* |
| * VFS is done with one mount; wake up any waiting block_mounts() |
| * callers if this is the last mount. |
| */ |
| void |
| mount_completed(void) |
| { |
| mutex_enter(&mount_lock); |
| if (--mounts_in_progress == 0) |
| cv_broadcast(&mount_cv); |
| mutex_exit(&mount_lock); |
| } |
| |
| /* |
| * ZSD routines. |
| * |
| * Zone Specific Data (ZSD) is modeled after Thread Specific Data as |
| * defined by the pthread_key_create() and related interfaces. |
| * |
| * Kernel subsystems may register one or more data items and/or |
| * callbacks to be executed when a zone is created, shutdown, or |
| * destroyed. |
| * |
| * Unlike the thread counterpart, destructor callbacks will be executed |
| * even if the data pointer is NULL and/or there are no constructor |
| * callbacks, so it is the responsibility of such callbacks to check for |
| * NULL data values if necessary. |
| * |
| * The locking strategy and overall picture is as follows: |
| * |
| * When someone calls zone_key_create(), a template ZSD entry is added to the |
| * global list "zsd_registered_keys", protected by zsd_key_lock. The |
| * constructor callback is called immediately on all existing zones, and a |
| * copy of the ZSD entry added to the per-zone zone_zsd list (protected by |
| * zone_lock). As this operation requires the list of zones, the list of |
| * registered keys, and the per-zone list of ZSD entries to remain constant |
| * throughout the entire operation, it must grab zonehash_lock, zone_lock for |
| * all existing zones, and zsd_key_lock, in that order. Similar locking is |
| * needed when zone_key_delete() is called. It is thus sufficient to hold |
| * zsd_key_lock *or* zone_lock to prevent additions to or removals from the |
| * per-zone zone_zsd list. |
| * |
| * Note that this implementation does not make a copy of the ZSD entry if a |
| * constructor callback is not provided. A zone_getspecific() on such an |
| * uninitialized ZSD entry will return NULL. |
| * |
| * When new zones are created constructor callbacks for all registered ZSD |
| * entries will be called. |
| * |
| * The framework does not provide any locking around zone_getspecific() and |
| * zone_setspecific() apart from that needed for internal consistency, so |
| * callers interested in atomic "test-and-set" semantics will need to provide |
| * their own locking. |
| */ |
| void |
| zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t), |
| void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *)) |
| { |
| struct zsd_entry *zsdp; |
| struct zsd_entry *t; |
| struct zone *zone; |
| |
| zsdp = kmem_alloc(sizeof (*zsdp), KM_SLEEP); |
| zsdp->zsd_data = NULL; |
| zsdp->zsd_create = create; |
| zsdp->zsd_shutdown = shutdown; |
| zsdp->zsd_destroy = destroy; |
| |
| mutex_enter(&zonehash_lock); /* stop the world */ |
| for (zone = list_head(&zone_active); zone != NULL; |
| zone = list_next(&zone_active, zone)) |
| mutex_enter(&zone->zone_lock); /* lock all zones */ |
| |
| mutex_enter(&zsd_key_lock); |
| *keyp = zsdp->zsd_key = ++zsd_keyval; |
| ASSERT(zsd_keyval != 0); |
| list_insert_tail(&zsd_registered_keys, zsdp); |
| mutex_exit(&zsd_key_lock); |
| |
| if (create != NULL) { |
| for (zone = list_head(&zone_active); zone != NULL; |
| zone = list_next(&zone_active, zone)) { |
| t = kmem_alloc(sizeof (*t), KM_SLEEP); |
| t->zsd_key = *keyp; |
| t->zsd_data = (*create)(zone->zone_id); |
| t->zsd_create = create; |
| t->zsd_shutdown = shutdown; |
| t->zsd_destroy = destroy; |
| list_insert_tail(&zone->zone_zsd, t); |
| } |
| } |
| for (zone = list_head(&zone_active); zone != NULL; |
| zone = list_next(&zone_active, zone)) |
| mutex_exit(&zone->zone_lock); |
| mutex_exit(&zonehash_lock); |
| } |
| |
| /* |
| * Helper function to find the zsd_entry associated with the key in the |
| * given list. |
| */ |
| static struct zsd_entry * |
| zsd_find(list_t *l, zone_key_t key) |
| { |
| struct zsd_entry *zsd; |
| |
| for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { |
| if (zsd->zsd_key == key) { |
| /* |
| * Move to head of list to keep list in MRU order. |
| */ |
| if (zsd != list_head(l)) { |
| list_remove(l, zsd); |
| list_insert_head(l, zsd); |
| } |
| return (zsd); |
| } |
| } |
| return (NULL); |
| } |
| |
| /* |
| * Function called when a module is being unloaded, or otherwise wishes |
| * to unregister its ZSD key and callbacks. |
| */ |
| int |
| zone_key_delete(zone_key_t key) |
| { |
| struct zsd_entry *zsdp = NULL; |
| zone_t *zone; |
| |
| mutex_enter(&zonehash_lock); /* Zone create/delete waits for us */ |
| for (zone = list_head(&zone_active); zone != NULL; |
| zone = list_next(&zone_active, zone)) |
| mutex_enter(&zone->zone_lock); /* lock all zones */ |
| |
| mutex_enter(&zsd_key_lock); |
| zsdp = zsd_find(&zsd_registered_keys, key); |
| if (zsdp == NULL) |
| goto notfound; |
| list_remove(&zsd_registered_keys, zsdp); |
| mutex_exit(&zsd_key_lock); |
| |
| for (zone = list_head(&zone_active); zone != NULL; |
| zone = list_next(&zone_active, zone)) { |
| struct zsd_entry *del; |
| void *data; |
| |
| if (!(zone->zone_flags & ZF_DESTROYED)) { |
| del = zsd_find(&zone->zone_zsd, key); |
| if (del != NULL) { |
| data = del->zsd_data; |
| ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown); |
| ASSERT(del->zsd_destroy == zsdp->zsd_destroy); |
| list_remove(&zone->zone_zsd, del); |
| kmem_free(del, sizeof (*del)); |
| } else { |
| data = NULL; |
| } |
| if (zsdp->zsd_shutdown) |
| zsdp->zsd_shutdown(zone->zone_id, data); |
| if (zsdp->zsd_destroy) |
| zsdp->zsd_destroy(zone->zone_id, data); |
| } |
| mutex_exit(&zone->zone_lock); |
| } |
| mutex_exit(&zonehash_lock); |
| kmem_free(zsdp, sizeof (*zsdp)); |
| return (0); |
| |
| notfound: |
| mutex_exit(&zsd_key_lock); |
| for (zone = list_head(&zone_active); zone != NULL; |
| zone = list_next(&zone_active, zone)) |
| mutex_exit(&zone->zone_lock); |
| mutex_exit(&zonehash_lock); |
| return (-1); |
| } |
| |
| /* |
| * ZSD counterpart of pthread_setspecific(). |
| */ |
| int |
| zone_setspecific(zone_key_t key, zone_t *zone, const void *data) |
| { |
| struct zsd_entry *t; |
| struct zsd_entry *zsdp = NULL; |
| |
| mutex_enter(&zone->zone_lock); |
| t = zsd_find(&zone->zone_zsd, key); |
| if (t != NULL) { |
| /* |
| * Replace old value with new |
| */ |
| t->zsd_data = (void *)data; |
| mutex_exit(&zone->zone_lock); |
| return (0); |
| } |
| /* |
| * If there was no previous value, go through the list of registered |
| * keys. |
| * |
| * We avoid grabbing zsd_key_lock until we are sure we need it; this is |
| * necessary for shutdown callbacks to be able to execute without fear |
| * of deadlock. |
| */ |
| mutex_enter(&zsd_key_lock); |
| zsdp = zsd_find(&zsd_registered_keys, key); |
| if (zsdp == NULL) { /* Key was not registered */ |
| mutex_exit(&zsd_key_lock); |
| mutex_exit(&zone->zone_lock); |
| return (-1); |
| } |
| |
| /* |
| * Add a zsd_entry to this zone, using the template we just retrieved |
| * to initialize the constructor and destructor(s). |
| */ |
| t = kmem_alloc(sizeof (*t), KM_SLEEP); |
| t->zsd_key = key; |
| t->zsd_data = (void *)data; |
| t->zsd_create = zsdp->zsd_create; |
| t->zsd_shutdown = zsdp->zsd_shutdown; |
| t->zsd_destroy = zsdp->zsd_destroy; |
| list_insert_tail(&zone->zone_zsd, t); |
| mutex_exit(&zsd_key_lock); |
| mutex_exit(&zone->zone_lock); |
| return (0); |
| } |
| |
| /* |
| * ZSD counterpart of pthread_getspecific(). |
| */ |
| void * |
| zone_getspecific(zone_key_t key, zone_t *zone) |
| { |
| struct zsd_entry *t; |
| void *data; |
| |
| mutex_enter(&zone->zone_lock); |
| t = zsd_find(&zone->zone_zsd, key); |
| data = (t == NULL ? NULL : t->zsd_data); |
| mutex_exit(&zone->zone_lock); |
| return (data); |
| } |
| |
| /* |
| * Function used to initialize a zone's list of ZSD callbacks and data |
| * when the zone is being created. The callbacks are initialized from |
| * the template list (zsd_registered_keys), and the constructor |
| * callback executed (if one exists). |
| * |
| * This is called before the zone is made publicly available, hence no |
| * need to grab zone_lock. |
| * |
| * Although we grab and release zsd_key_lock, new entries cannot be |
| * added to or removed from the zsd_registered_keys list until we |
| * release zonehash_lock, so there isn't a window for a |
| * zone_key_create() to come in after we've dropped zsd_key_lock but |
| * before the zone is added to the zone list, such that the constructor |
| * callbacks aren't executed for the new zone. |
| */ |
| static void |
| zone_zsd_configure(zone_t *zone) |
| { |
| struct zsd_entry *zsdp; |
| struct zsd_entry *t; |
| zoneid_t zoneid = zone->zone_id; |
| |
| ASSERT(MUTEX_HELD(&zonehash_lock)); |
| ASSERT(list_head(&zone->zone_zsd) == NULL); |
| mutex_enter(&zsd_key_lock); |
| for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL; |
| zsdp = list_next(&zsd_registered_keys, zsdp)) { |
| if (zsdp->zsd_create != NULL) { |
| t = kmem_alloc(sizeof (*t), KM_SLEEP); |
| t->zsd_key = zsdp->zsd_key; |
| t->zsd_create = zsdp->zsd_create; |
| t->zsd_data = (*t->zsd_create)(zoneid); |
| t->zsd_shutdown = zsdp->zsd_shutdown; |
| t->zsd_destroy = zsdp->zsd_destroy; |
| list_insert_tail(&zone->zone_zsd, t); |
| } |
| } |
| mutex_exit(&zsd_key_lock); |
| } |
| |
| enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY }; |
| |
| /* |
| * Helper function to execute shutdown or destructor callbacks. |
| */ |
| static void |
| zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct) |
| { |
| struct zsd_entry *zsdp; |
| struct zsd_entry *t; |
| zoneid_t zoneid = zone->zone_id; |
| |
| ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY); |
| ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY); |
| ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN); |
| |
| mutex_enter(&zone->zone_lock); |
| if (ct == ZSD_DESTROY) { |
| if (zone->zone_flags & ZF_DESTROYED) { |
| /* |
| * Make sure destructors are only called once. |
| */ |
| mutex_exit(&zone->zone_lock); |
| return; |
| } |
| zone->zone_flags |= ZF_DESTROYED; |
| } |
| mutex_exit(&zone->zone_lock); |
| |
| /* |
| * Both zsd_key_lock and zone_lock need to be held in order to add or |
| * remove a ZSD key, (either globally as part of |
| * zone_key_create()/zone_key_delete(), or on a per-zone basis, as is |
| * possible through zone_setspecific()), so it's sufficient to hold |
| * zsd_key_lock here. |
| * |
| * This is a good thing, since we don't want to recursively try to grab |
| * zone_lock if a callback attempts to do something like a crfree() or |
| * zone_rele(). |
| */ |
| mutex_enter(&zsd_key_lock); |
| for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL; |
| zsdp = list_next(&zsd_registered_keys, zsdp)) { |
| zone_key_t key = zsdp->zsd_key; |
| |
| /* Skip if no callbacks registered */ |
| if (ct == ZSD_SHUTDOWN && zsdp->zsd_shutdown == NULL) |
| continue; |
| if (ct == ZSD_DESTROY && zsdp->zsd_destroy == NULL) |
| continue; |
| /* |
| * Call the callback with the zone-specific data if we can find |
| * any, otherwise with NULL. |
| */ |
| t = zsd_find(&zone->zone_zsd, key); |
| if (t != NULL) { |
| if (ct == ZSD_SHUTDOWN) { |
| t->zsd_shutdown(zoneid, t->zsd_data); |
| } else { |
| ASSERT(ct == ZSD_DESTROY); |
| t->zsd_destroy(zoneid, t->zsd_data); |
| } |
| } else { |
| if (ct == ZSD_SHUTDOWN) { |
| zsdp->zsd_shutdown(zoneid, NULL); |
| } else { |
| ASSERT(ct == ZSD_DESTROY); |
| zsdp->zsd_destroy(zoneid, NULL); |
| } |
| } |
| } |
| mutex_exit(&zsd_key_lock); |
| } |
| |
| /* |
| * Called when the zone is going away; free ZSD-related memory, and |
| * destroy the zone_zsd list. |
| */ |
| static void |
| zone_free_zsd(zone_t *zone) |
| { |
| struct zsd_entry *t, *next; |
| |
| /* |
| * Free all the zsd_entry's we had on this zone. |
| */ |
| for (t = list_head(&zone->zone_zsd); t != NULL; t = next) { |
| next = list_next(&zone->zone_zsd, t); |
| list_remove(&zone->zone_zsd, t); |
| kmem_free(t, sizeof (*t)); |
| } |
| list_destroy(&zone->zone_zsd); |
| } |
| |
| /* |
| * Frees memory associated with the zone dataset list. |
| */ |
| static void |
| zone_free_datasets(zone_t *zone) |
| { |
| zone_dataset_t *t, *next; |
| |
| for (t = list_head(&zone->zone_datasets); t != NULL; t = next) { |
| next = list_next(&zone->zone_datasets, t); |
| list_remove(&zone->zone_datasets, t); |
| kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1); |
| kmem_free(t, sizeof (*t)); |
| } |
| list_destroy(&zone->zone_datasets); |
| } |
| |
| /* |
| * zone.cpu-shares resource control support. |
| */ |
| /*ARGSUSED*/ |
| static rctl_qty_t |
| zone_cpu_shares_usage(rctl_t *rctl, struct proc *p) |
| { |
| ASSERT(MUTEX_HELD(&p->p_lock)); |
| return (p->p_zone->zone_shares); |
| } |
| |
| /*ARGSUSED*/ |
| static int |
| zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, |
| rctl_qty_t nv) |
| { |
| ASSERT(MUTEX_HELD(&p->p_lock)); |
| ASSERT(e->rcep_t == RCENTITY_ZONE); |
| if (e->rcep_p.zone == NULL) |
| return (0); |
| |
| e->rcep_p.zone->zone_shares = nv; |
| return (0); |
| } |
| |
| static rctl_ops_t zone_cpu_shares_ops = { |
| rcop_no_action, |
| zone_cpu_shares_usage, |
| zone_cpu_shares_set, |
| rcop_no_test |
| }; |
| |
| /*ARGSUSED*/ |
| static rctl_qty_t |
| zone_lwps_usage(rctl_t *r, proc_t *p) |
| { |
| rctl_qty_t nlwps; |
| zone_t *zone = p->p_zone; |
| |
| ASSERT(MUTEX_HELD(&p->p_lock)); |
| |
| mutex_enter(&zone->zone_nlwps_lock); |
| nlwps = zone->zone_nlwps; |
| mutex_exit(&zone->zone_nlwps_lock); |
| |
| return (nlwps); |
| } |
| |
| /*ARGSUSED*/ |
| static int |
| zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, |
| rctl_qty_t incr, uint_t flags) |
| { |
| rctl_qty_t nlwps; |
| |
| ASSERT(MUTEX_HELD(&p->p_lock)); |
| ASSERT(e->rcep_t == RCENTITY_ZONE); |
| if (e->rcep_p.zone == NULL) |
| return (0); |
| ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); |
| nlwps = e->rcep_p.zone->zone_nlwps; |
| |
| if (nlwps + incr > rcntl->rcv_value) |
| return (1); |
| |
| return (0); |
| } |
| |
| /*ARGSUSED*/ |
| static int |
| zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) { |
| |
| ASSERT(MUTEX_HELD(&p->p_lock)); |
| ASSERT(e->rcep_t == RCENTITY_ZONE); |
| if (e->rcep_p.zone == NULL) |
| return (0); |
| e->rcep_p.zone->zone_nlwps_ctl = nv; |
| return (0); |
| } |
| |
| static rctl_ops_t zone_lwps_ops = { |
| rcop_no_action, |
| zone_lwps_usage, |
| zone_lwps_set, |
| zone_lwps_test, |
| }; |
| |
| /* |
| * Helper function to brand the zone with a unique ID. |
| */ |
| static void |
| zone_uniqid(zone_t *zone) |
| { |
| static uint64_t uniqid = 0; |
| |
| ASSERT(MUTEX_HELD(&zonehash_lock)); |
| zone->zone_uniqid = uniqid++; |
| } |
| |
| /* |
| * Returns a held pointer to the "kcred" for the specified zone. |
| */ |
| struct cred * |
| zone_get_kcred(zoneid_t zoneid) |
| { |
| zone_t *zone; |
| cred_t *cr; |
| |
| if ((zone = zone_find_by_id(zoneid)) == NULL) |
| return (NULL); |
| cr = zone->zone_kcred; |
| crhold(cr); |
| zone_rele(zone); |
| return (cr); |
| } |
| |
| /* |
| * Called very early on in boot to initialize the ZSD list so that |
| * zone_key_create() can be called before zone_init(). It also initializes |
| * portions of zone0 which may be used before zone_init() is called. The |
| * variable "global_zone" will be set when zone0 is fully initialized by |
| * zone_init(). |
| */ |
| void |
| zone_zsd_init(void) |
| { |
| mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL); |
| mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL); |
| list_create(&zsd_registered_keys, sizeof (struct zsd_entry), |
| offsetof(struct zsd_entry, zsd_linkage)); |
| list_create(&zone_active, sizeof (zone_t), |
| offsetof(zone_t, zone_linkage)); |
| list_create(&zone_deathrow, sizeof (zone_t), |
| offsetof(zone_t, zone_linkage)); |
| |
| mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL); |
| mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); |
| zone0.zone_shares = 1; |
| zone0.zone_nlwps_ctl = INT_MAX; |
| zone0.zone_name = GLOBAL_ZONENAME; |
| zone0.zone_nodename = utsname.nodename; |
| zone0.zone_domain = srpc_domain; |
| zone0.zone_ref = 1; |
| zone0.zone_id = GLOBAL_ZONEID; |
| zone0.zone_status = ZONE_IS_RUNNING; |
| zone0.zone_rootpath = "/"; |
| zone0.zone_rootpathlen = 2; |
| zone0.zone_psetid = ZONE_PS_INVAL; |
| zone0.zone_ncpus = 0; |
| zone0.zone_ncpus_online = 0; |
| zone0.zone_proc_initpid = 1; |
| list_create(&zone0.zone_zsd, sizeof (struct zsd_entry), |
| offsetof(struct zsd_entry, zsd_linkage)); |
| list_insert_head(&zone_active, &zone0); |
| |
| /* |
| * The root filesystem is not mounted yet, so zone_rootvp cannot be set |
| * to anything meaningful. It is assigned to be 'rootdir' in |
| * vfs_mountroot(). |
| */ |
| zone0.zone_rootvp = NULL; |
| zone0.zone_vfslist = NULL; |
| zone0.zone_bootargs = NULL; |
| zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); |
| /* |
| * The global zone has all privileges |
| */ |
| priv_fillset(zone0.zone_privset); |
| /* |
| * Add p0 to the global zone |
| */ |
| zone0.zone_zsched = &p0; |
| p0.p_zone = &zone0; |
| } |
| |
| /* |
| * Compute a hash value based on the contents of the label and the DOI. The |
| * hash algorithm is somewhat arbitrary, but is based on the observation that |
| * humans will likely pick labels that differ by amounts that work out to be |
| * multiples of the number of hash chains, and thus stirring in some primes |
| * should help. |
| */ |
| static uint_t |
| hash_bylabel(void *hdata, mod_hash_key_t key) |
| { |
| const ts_label_t *lab = (ts_label_t *)key; |
| const uint32_t *up, *ue; |
| uint_t hash; |
| int i; |
| |
| _NOTE(ARGUNUSED(hdata)); |
| |
| hash = lab->tsl_doi + (lab->tsl_doi << 1); |
| /* we depend on alignment of label, but not representation */ |
| up = (const uint32_t *)&lab->tsl_label; |
| ue = up + sizeof (lab->tsl_label) / sizeof (*up); |
| i = 1; |
| while (up < ue) { |
| /* using 2^n + 1, 1 <= n <= 16 as source of many primes */ |
| hash += *up + (*up << ((i % 16) + 1)); |
| up++; |
| i++; |
| } |
| return (hash); |
| } |
| |
| /* |
| * All that mod_hash cares about here is zero (equal) versus non-zero (not |
| * equal). This may need to be changed if less than / greater than is ever |
| * needed. |
| */ |
| static int |
| hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2) |
| { |
| ts_label_t *lab1 = (ts_label_t *)key1; |
| ts_label_t *lab2 = (ts_label_t *)key2; |
| |
| return (label_equal(lab1, lab2) ? 0 : 1); |
| } |
| |
| /* |
| * Called by main() to initialize the zones framework. |
| */ |
| void |
| zone_init(void) |
| { |
| rctl_dict_entry_t *rde; |
| rctl_val_t *dval; |
| rctl_set_t *set; |
| rctl_alloc_gp_t *gp; |
| rctl_entity_p_t e; |
| int res; |
| |
| ASSERT(curproc == &p0); |
| |
| /* |
| * Create ID space for zone IDs. ID 0 is reserved for the |
| * global zone. |
| */ |
| zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID); |
| |
| /* |
| * Initialize generic zone resource controls, if any. |
| */ |
| rc_zone_cpu_shares = rctl_register("zone.cpu-shares", |
| RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER | |
| RCTL_GLOBAL_NOBASIC | |
| RCTL_GLOBAL_COUNT, FSS_MAXSHARES, FSS_MAXSHARES, |
| &zone_cpu_shares_ops); |
| |
| rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE, |
| RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, |
| INT_MAX, INT_MAX, &zone_lwps_ops); |
| /* |
| * Create a rctl_val with PRIVILEGED, NOACTION, value = 1. Then attach |
| * this at the head of the rctl_dict_entry for ``zone.cpu-shares''. |
| */ |
| dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); |
| bzero(dval, sizeof (rctl_val_t)); |
| dval->rcv_value = 1; |
| dval->rcv_privilege = RCPRIV_PRIVILEGED; |
| dval->rcv_flagaction = RCTL_LOCAL_NOACTION; |
| dval->rcv_action_recip_pid = -1; |
| |
| rde = rctl_dict_lookup("zone.cpu-shares"); |
| (void) rctl_val_list_insert(&rde->rcd_default_value, dval); |
| |
| /* |
| * Initialize the ``global zone''. |
| */ |
| set = rctl_set_create(); |
| gp = rctl_set_init_prealloc(RCENTITY_ZONE); |
| mutex_enter(&p0.p_lock); |
| e.rcep_p.zone = &zone0; |
| e.rcep_t = RCENTITY_ZONE; |
| zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set, |
| gp); |
| |
| zone0.zone_nlwps = p0.p_lwpcnt; |
| zone0.zone_ntasks = 1; |
| mutex_exit(&p0.p_lock); |
| rctl_prealloc_destroy(gp); |
| /* |
| * pool_default hasn't been initialized yet, so we let pool_init() take |
| * care of making the global zone is in the default pool. |
| */ |
| |
| /* |
| * Initialize zone label. |
| * mlp are initialized when tnzonecfg is loaded. |
| */ |
| zone0.zone_slabel = l_admin_low; |
| rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); |
| label_hold(l_admin_low); |
| |
| mutex_enter(&zonehash_lock); |
| zone_uniqid(&zone0); |
| ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID); |
| |
| zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size, |
| mod_hash_null_valdtor); |
| zonehashbyname = mod_hash_create_strhash("zone_by_name", |
| zone_hash_size, mod_hash_null_valdtor); |
| /* |
| * maintain zonehashbylabel only for labeled systems |
| */ |
| if (is_system_labeled()) |
| zonehashbylabel = mod_hash_create_extended("zone_by_label", |
| zone_hash_size, mod_hash_null_keydtor, |
| mod_hash_null_valdtor, hash_bylabel, NULL, |
| hash_labelkey_cmp, KM_SLEEP); |
| zonecount = 1; |
| |
| (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID, |
| (mod_hash_val_t)&zone0); |
| (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name, |
| (mod_hash_val_t)&zone0); |
| if (is_system_labeled()) |
| (void) mod_hash_insert(zonehashbylabel, |
| (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0); |
| mutex_exit(&zonehash_lock); |
| |
| /* |
| * We avoid setting zone_kcred until now, since kcred is initialized |
| * sometime after zone_zsd_init() and before zone_init(). |
| */ |
| zone0.zone_kcred = kcred; |
| /* |
| * The global zone is fully initialized (except for zone_rootvp which |
| * will be set when the root filesystem is mounted). |
| */ |
| global_zone = &zone0; |
| |
| /* |
| * Setup an event channel to send zone status change notifications on |
| */ |
| res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan, |
| EVCH_CREAT); |
| |
| if (res) |
| panic("Sysevent_evc_bind failed during zone setup.\n"); |
| } |
| |
| static void |
| zone_free(zone_t *zone) |
| { |
| ASSERT(zone != global_zone); |
| ASSERT(zone->zone_ntasks == 0); |
| ASSERT(zone->zone_nlwps == 0); |
| ASSERT(zone->zone_cred_ref == 0); |
| ASSERT(zone->zone_kcred == NULL); |
| ASSERT(zone_status_get(zone) == ZONE_IS_DEAD || |
| zone_status_get(zone) == ZONE_IS_UNINITIALIZED); |
| |
| /* remove from deathrow list */ |
| if (zone_status_get(zone) == ZONE_IS_DEAD) { |
| ASSERT(zone->zone_ref == 0); |
| mutex_enter(&zone_deathrow_lock); |
| list_remove(&zone_deathrow, zone); |
| mutex_exit(&zone_deathrow_lock); |
| } |
| |
| zone_free_zsd(zone); |
| zone_free_datasets(zone); |
| |
| if (zone->zone_rootvp != NULL) |
| VN_RELE(zone->zone_rootvp); |
| if (zone->zone_rootpath) |
| kmem_free(zone->zone_rootpath, zone->zone_rootpathlen); |
| if (zone->zone_name != NULL) |
| kmem_free(zone->zone_name, ZONENAME_MAX); |
| if (zone->zone_slabel != NULL) |
| label_rele(zone->zone_slabel); |
| if (zone->zone_nodename != NULL) |
| kmem_free(zone->zone_nodename, _SYS_NMLN); |
| if (zone->zone_domain != NULL) |
| kmem_free(zone->zone_domain, _SYS_NMLN); |
| if (zone->zone_privset != NULL) |
| kmem_free(zone->zone_privset, sizeof (priv_set_t)); |
| if (zone->zone_rctls != NULL) |
| rctl_set_free(zone->zone_rctls); |
| if (zone->zone_bootargs != NULL) |
| kmem_free(zone->zone_bootargs, ZONEBOOTARGS_MAX); |
| id_free(zoneid_space, zone->zone_id); |
| mutex_destroy(&zone->zone_lock); |
| cv_destroy(&zone->zone_cv); |
| rw_destroy(&zone->zone_mlps.mlpl_rwlock); |
| kmem_free(zone, sizeof (zone_t)); |
| } |
| |
| /* |
| * See block comment at the top of this file for information about zone |
| * status values. |
| */ |
| /* |
| * Convenience function for setting zone status. |
| */ |
| static void |
| zone_status_set(zone_t *zone, zone_status_t status) |
| { |
| |
| nvlist_t *nvl = NULL; |
| ASSERT(MUTEX_HELD(&zone_status_lock)); |
| ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE && |
| status >= zone_status_get(zone)); |
| |
| if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) || |
| nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) || |
| nvlist_add_string(nvl, ZONE_CB_NEWSTATE, |
| zone_status_table[status]) || |
| nvlist_add_string(nvl, ZONE_CB_OLDSTATE, |
| zone_status_table[zone->zone_status]) || |
| nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) || |
| nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) || |
| sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS, |
| ZONE_EVENT_STATUS_SUBCLASS, |
| "sun.com", "kernel", nvl, EVCH_SLEEP)) { |
| #ifdef DEBUG |
| (void) printf( |
| "Failed to allocate and send zone state change event.\n"); |
| #endif |
| } |
| nvlist_free(nvl); |
| |
| zone->zone_status = status; |
| |
| cv_broadcast(&zone->zone_cv); |
| } |
| |
| /* |
| * Public function to retrieve the zone status. The zone status may |
| * change after it is retrieved. |
| */ |
| zone_status_t |
| zone_status_get(zone_t *zone) |
| { |
| return (zone->zone_status); |
| } |
| |
| static int |
| zone_set_bootargs(zone_t *zone, const char *zone_bootargs) |
| { |
| char *bootargs = kmem_zalloc(ZONEBOOTARGS_MAX, KM_SLEEP); |
| size_t len; |
| int err; |
| |
| err = copyinstr(zone_bootargs, bootargs, ZONEBOOTARGS_MAX - 1, &len); |
| if (err != 0) { |
| kmem_free(bootargs, ZONEBOOTARGS_MAX); |
| return (err); /* EFAULT or ENAMETOOLONG */ |
| } |
| bootargs[len] = '\0'; |
| |
| ASSERT(zone->zone_bootargs == NULL); |
| zone->zone_bootargs = bootargs; |
| return (0); |
| } |
| |
| /* |
| * Block indefinitely waiting for (zone_status >= status) |
| */ |
| void |
| zone_status_wait(zone_t *zone, zone_status_t status) |
| { |
| ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); |
| |
| mutex_enter(&zone_status_lock); |
| while (zone->zone_status < status) { |
| cv_wait(&zone->zone_cv, &zone_status_lock); |
| } |
| mutex_exit(&zone_status_lock); |
| } |
| |
| /* |
| * Private CPR-safe version of zone_status_wait(). |
| */ |
| static void |
| zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str) |
| { |
| callb_cpr_t cprinfo; |
| |
| ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); |
| |
| CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr, |
| str); |
| mutex_enter(&zone_status_lock); |
| while (zone->zone_status < status) { |
| CALLB_CPR_SAFE_BEGIN(&cprinfo); |
| cv_wait(&zone->zone_cv, &zone_status_lock); |
| CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock); |
| } |
| /* |
| * zone_status_lock is implicitly released by the following. |
| */ |
| CALLB_CPR_EXIT(&cprinfo); |
| } |
| |
| /* |
| * Block until zone enters requested state or signal is received. Return (0) |
| * if signaled, non-zero otherwise. |
| */ |
| int |
| zone_status_wait_sig(zone_t *zone, zone_status_t status) |
| { |
| ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); |
| |
| mutex_enter(&zone_status_lock); |
| while (zone->zone_status < status) { |
| if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) { |
| mutex_exit(&zone_status_lock); |
| return (0); |
| } |
| } |
| mutex_exit(&zone_status_lock); |
| return (1); |
| } |
| |
| /* |
| * Block until the zone enters the requested state or the timeout expires, |
| * whichever happens first. Return (-1) if operation timed out, time remaining |
| * otherwise. |
| */ |
| clock_t |
| zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status) |
| { |
| clock_t timeleft = 0; |
| |
| ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); |
| |
| mutex_enter(&zone_status_lock); |
| while (zone->zone_status < status && timeleft != -1) { |
| timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim); |
| } |
| mutex_exit(&zone_status_lock); |
| return (timeleft); |
| } |
| |
| /* |
| * Block until the zone enters the requested state, the current process is |
| * signaled, or the timeout expires, whichever happens first. Return (-1) if |
| * operation timed out, 0 if signaled, time remaining otherwise. |
| */ |
| clock_t |
| zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status) |
| { |
| clock_t timeleft = tim - lbolt; |
| |
| ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); |
| |
| mutex_enter(&zone_status_lock); |
| while (zone->zone_status < status) { |
| timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock, |
| tim); |
| if (timeleft <= 0) |
| break; |
| } |
| mutex_exit(&zone_status_lock); |
| return (timeleft); |
| } |
| |
| /* |
| * Zones have two reference counts: one for references from credential |
| * structures (zone_cred_ref), and one (zone_ref) for everything else. |
| * This is so we can allow a zone to be rebooted while there are still |
| * outstanding cred references, since certain drivers cache dblks (which |
| * implicitly results in cached creds). We wait for zone_ref to drop to |
| * 0 (actually 1), but not zone_cred_ref. The zone structure itself is |
| * later freed when the zone_cred_ref drops to 0, though nothing other |
| * than the zone id and privilege set should be accessed once the zone |
| * is "dead". |
| * |
| * A debugging flag, zone_wait_for_cred, can be set to a non-zero value |
| * to force halt/reboot to block waiting for the zone_cred_ref to drop |
| * to 0. This can be useful to flush out other sources of cached creds |
| * that may be less innocuous than the driver case. |
| */ |
| |
| int zone_wait_for_cred = 0; |
| |
| static void |
| zone_hold_locked(zone_t *z) |
| { |
| ASSERT(MUTEX_HELD(&z->zone_lock)); |
| z->zone_ref++; |
| ASSERT(z->zone_ref != 0); |
| } |
| |
| void |
| zone_hold(zone_t *z) |
| { |
| mutex_enter(&z->zone_lock); |
| zone_hold_locked(z); |
| mutex_exit(&z->zone_lock); |
| } |
| |
| /* |
| * If the non-cred ref count drops to 1 and either the cred ref count |
| * is 0 or we aren't waiting for cred references, the zone is ready to |
| * be destroyed. |
| */ |
| #define ZONE_IS_UNREF(zone) ((zone)->zone_ref == 1 && \ |
| (!zone_wait_for_cred || (zone)->zone_cred_ref == 0)) |
| |
| void |
| zone_rele(zone_t *z) |
| { |
| boolean_t wakeup; |
| |
| mutex_enter(&z->zone_lock); |
| ASSERT(z->zone_ref != 0); |
| z->zone_ref--; |
| if (z->zone_ref == 0 && z->zone_cred_ref == 0) { |
| /* no more refs, free the structure */ |
| mutex_exit(&z->zone_lock); |
| zone_free(z); |
| return; |
| } |
| /* signal zone_destroy so the zone can finish halting */ |
| wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD); |
| mutex_exit(&z->zone_lock); |
| |
| if (wakeup) { |
| /* |
| * Grabbing zonehash_lock here effectively synchronizes with |
| * zone_destroy() to avoid missed signals. |
| */ |
| mutex_enter(&zonehash_lock); |
| cv_broadcast(&zone_destroy_cv); |
| mutex_exit(&zonehash_lock); |
| } |
| } |
| |
| void |
| zone_cred_hold(zone_t *z) |
| { |
| mutex_enter(&z->zone_lock); |
| z->zone_cred_ref++; |
| ASSERT(z->zone_cred_ref != 0); |
| mutex_exit(&z->zone_lock); |
| } |
| |
| void |
| zone_cred_rele(zone_t *z) |
| { |
| boolean_t wakeup; |
| |
| mutex_enter(&z->zone_lock); |
| ASSERT(z->zone_cred_ref != 0); |
| z->zone_cred_ref--; |
| if (z->zone_ref == 0 && z->zone_cred_ref == 0) { |
| /* no more refs, free the structure */ |
| mutex_exit(&z->zone_lock); |
| zone_free(z); |
| return; |
| } |
| /* |
| * If zone_destroy is waiting for the cred references to drain |
| * out, and they have, signal it. |
| */ |
| wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) && |
| zone_status_get(z) >= ZONE_IS_DEAD); |
| mutex_exit(&z->zone_lock); |
| |
| if (wakeup) { |
| /* |
| * Grabbing zonehash_lock here effectively synchronizes with |
| * zone_destroy() to avoid missed signals. |
| */ |
| mutex_enter(&zonehash_lock); |
| cv_broadcast(&zone_destroy_cv); |
| mutex_exit(&zonehash_lock); |
| } |
| } |
| |
| void |
| zone_task_hold(zone_t *z) |
| { |
| mutex_enter(&z->zone_lock); |
| z->zone_ntasks++; |
| ASSERT(z->zone_ntasks != 0); |
| mutex_exit(&z->zone_lock); |
| } |
| |
| void |
| zone_task_rele(zone_t *zone) |
| { |
| uint_t refcnt; |
| |
| mutex_enter(&zone->zone_lock); |
| ASSERT(zone->zone_ntasks != 0); |
| refcnt = --zone->zone_ntasks; |
| if (refcnt > 1) { /* Common case */ |
| mutex_exit(&zone->zone_lock); |
| return; |
| } |
| zone_hold_locked(zone); /* so we can use the zone_t later */ |
| mutex_exit(&zone->zone_lock); |
| if (refcnt == 1) { |
| /* |
| * See if the zone is shutting down. |
| */ |
| mutex_enter(&zone_status_lock); |
| if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) { |
| goto out; |
| } |
| |
| /* |
| * Make sure the ntasks didn't change since we |
| * dropped zone_lock. |
| */ |
| mutex_enter(&zone->zone_lock); |
| if (refcnt != zone->zone_ntasks) { |
| mutex_exit(&zone->zone_lock); |
| goto out; |
| } |
| mutex_exit(&zone->zone_lock); |
| |
| /* |
| * No more user processes in the zone. The zone is empty. |
| */ |
| zone_status_set(zone, ZONE_IS_EMPTY); |
| goto out; |
| } |
| |
| ASSERT(refcnt == 0); |
| /* |
| * zsched has exited; the zone is dead. |
| */ |
| zone->zone_zsched = NULL; /* paranoia */ |
| mutex_enter(&zone_status_lock); |
| zone_status_set(zone, ZONE_IS_DEAD); |
| out: |
| mutex_exit(&zone_status_lock); |
| zone_rele(zone); |
| } |
| |
| zoneid_t |
| getzoneid(void) |
| { |
| return (curproc->p_zone->zone_id); |
| } |
| |
| /* |
| * Internal versions of zone_find_by_*(). These don't zone_hold() or |
| * check the validity of a zone's state. |
| */ |
| static zone_t * |
| zone_find_all_by_id(zoneid_t zoneid) |
| { |
| mod_hash_val_t hv; |
| zone_t *zone = NULL; |
| |
| ASSERT(MUTEX_HELD(&zonehash_lock)); |
| |
| if (mod_hash_find(zonehashbyid, |
| (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0) |
| zone = (zone_t *)hv; |
| return (zone); |
| } |
| |
| static zone_t * |
| zone_find_all_by_label(const ts_label_t *label) |
| { |
| mod_hash_val_t hv; |
| zone_t *zone = NULL; |
| |
| ASSERT(MUTEX_HELD(&zonehash_lock)); |
| |
| /* |
| * zonehashbylabel is not maintained for unlabeled systems |
| */ |
| if (!is_system_labeled()) |
| return (NULL); |
| if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0) |
| zone = (zone_t *)hv; |
| return (zone); |
| } |
| |
| static zone_t * |
| zone_find_all_by_name(char *name) |
| { |
| mod_hash_val_t hv; |
| zone_t *zone = NULL; |
| |
| ASSERT(MUTEX_HELD(&zonehash_lock)); |
| |
| if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0) |
| zone = (zone_t *)hv; |
| return (zone); |
| } |
| |
| /* |
| * Public interface for looking up a zone by zoneid. Only returns the zone if |
| * it is fully initialized, and has not yet begun the zone_destroy() sequence. |
| * Caller must call zone_rele() once it is done with the zone. |
| * |
| * The zone may begin the zone_destroy() sequence immediately after this |
| * function returns, but may be safely used until zone_rele() is called. |
| */ |
| zone_t * |
| zone_find_by_id(zoneid_t zoneid) |
| { |
| zone_t *zone; |
| zone_status_t status; |
| |
| mutex_enter(&zonehash_lock); |
| if ((zone = zone_find_all_by_id(zoneid)) == NULL) { |
| mutex_exit(&zonehash_lock); |
| return (NULL); |
| } |
| status = zone_status_get(zone); |
| if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { |
| /* |
| * For all practical purposes the zone doesn't exist. |
| */ |
| mutex_exit(&zonehash_lock); |
| return (NULL); |
| } |
| zone_hold(zone); |
| mutex_exit(&zonehash_lock); |
| return (zone); |
| } |
| |
| /* |
| * Similar to zone_find_by_id, but using zone label as the key. |
| */ |
| zone_t * |
| zone_find_by_label(const ts_label_t *label) |
| { |
| zone_t *zone; |
| |
| mutex_enter(&zonehash_lock); |
| if ((zone = zone_find_all_by_label(label)) == NULL) { |
| mutex_exit(&zonehash_lock); |
| return (NULL); |
| } |
| mutex_enter(&zone_status_lock); |
| if (zone_status_get(zone) > ZONE_IS_DOWN) { |
| /* |
| * For all practical purposes the zone doesn't exist. |
| */ |
| mutex_exit(&zone_status_lock); |
| zone = NULL; |
| } else { |
| mutex_exit(&zone_status_lock); |
| zone_hold(zone); |
| } |
| mutex_exit(&zonehash_lock); |
| return (zone); |
| } |
| |
| /* |
| * Similar to zone_find_by_id, but using zone name as the key. |
| */ |
| zone_t * |
| zone_find_by_name(char *name) |
| { |
| zone_t *zone; |
| zone_status_t status; |
| |
| mutex_enter(&zonehash_lock); |
| if ((zone = zone_find_all_by_name(name)) == NULL) { |
| mutex_exit(&zonehash_lock); |
| return (NULL); |
| } |
| status = zone_status_get(zone); |
| if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { |
| /* |
| * For all practical purposes the zone doesn't exist. |
| */ |
| mutex_exit(&zonehash_lock); |
| return (NULL); |
| } |
| zone_hold(zone); |
| mutex_exit(&zonehash_lock); |
| return (zone); |
| } |
| |
| /* |
| * Similar to zone_find_by_id(), using the path as a key. For instance, |
| * if there is a zone "foo" rooted at /foo/root, and the path argument |
| * is "/foo/root/proc", it will return the held zone_t corresponding to |
| * zone "foo". |
| * |
| * zone_find_by_path() always returns a non-NULL value, since at the |
| * very least every path will be contained in the global zone. |
| * |
| * As with the other zone_find_by_*() functions, the caller is |
| * responsible for zone_rele()ing the return value of this function. |
| */ |
| zone_t * |
| zone_find_by_path(const char *path) |
| { |
| zone_t *zone; |
| zone_t *zret = NULL; |
| zone_status_t status; |
| |
| if (path == NULL) { |
| /* |
| * Call from rootconf(). |
| */ |
| zone_hold(global_zone); |
| return (global_zone); |
| } |
| ASSERT(*path == '/'); |
| mutex_enter(&zonehash_lock); |
| for (zone = list_head(&zone_active); zone != NULL; |
| zone = list_next(&zone_active, zone)) { |
| if (ZONE_PATH_VISIBLE(path, zone)) |
| zret = zone; |
| } |
| ASSERT(zret != NULL); |
| status = zone_status_get(zret); |
| if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { |
| /* |
| * Zone practically doesn't exist. |
| */ |
| zret = global_zone; |
| } |
| zone_hold(zret); |
| mutex_exit(&zonehash_lock); |
| return (zret); |
| } |
| |
| /* |
| * Get the number of cpus visible to this zone. The system-wide global |
| * 'ncpus' is returned if pools are disabled, the caller is in the |
| * global zone, or a NULL zone argument is passed in. |
| */ |
| int |
| zone_ncpus_get(zone_t *zone) |
| { |
| int myncpus = zone == NULL ? 0 : zone->zone_ncpus; |
| |
| return (myncpus != 0 ? myncpus : ncpus); |
| } |
| |
| /* |
| * Get the number of online cpus visible to this zone. The system-wide |
| * global 'ncpus_online' is returned if pools are disabled, the caller |
| * is in the global zone, or a NULL zone argument is passed in. |
| */ |
| int |
| zone_ncpus_online_get(zone_t *zone) |
| { |
| int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online; |
| |
| return (myncpus_online != 0 ? myncpus_online : ncpus_online); |
| } |
| |
| /* |
| * Return the pool to which the zone is currently bound. |
| */ |
| pool_t * |
| zone_pool_get(zone_t *zone) |
| { |
| ASSERT(pool_lock_held()); |
| |
| return (zone->zone_pool); |
| } |
| |
| /* |
| * Set the zone's pool pointer and update the zone's visibility to match |
| * the resources in the new pool. |
| */ |
| void |
| zone_pool_set(zone_t *zone, pool_t *pool) |
| { |
| ASSERT(pool_lock_held()); |
| ASSERT(MUTEX_HELD(&cpu_lock)); |
| |
| zone->zone_pool = pool; |
| zone_pset_set(zone, pool->pool_pset->pset_id); |
| } |
| |
| /* |
| * Return the cached value of the id of the processor set to which the |
| * zone is currently bound. The value will be ZONE_PS_INVAL if the pools |
| * facility is disabled. |
| */ |
| psetid_t |
| zone_pset_get(zone_t *zone) |
| { |
| ASSERT(MUTEX_HELD(&cpu_lock)); |
| |
| return (zone->zone_psetid); |
| } |
| |
| /* |
| * Set the cached value of the id of the processor set to which the zone |
| * is currently bound. Also update the zone's visibility to match the |
| * resources in the new processor set. |
| */ |
| void |
| zone_pset_set(zone_t *zone, psetid_t newpsetid) |
| { |
| psetid_t oldpsetid; |
| |
| ASSERT(MUTEX_HELD(&cpu_lock)); |
| oldpsetid = zone_pset_get(zone); |
| |
| if (oldpsetid == newpsetid) |
| return; |
| /* |
| * Global zone sees all. |
| */ |
| if (zone != global_zone) { |
| zone->zone_psetid = newpsetid; |
| if (newpsetid != ZONE_PS_INVAL) |
| pool_pset_visibility_add(newpsetid, zone); |
| if (oldpsetid != ZONE_PS_INVAL) |
| pool_pset_visibility_remove(oldpsetid, zone); |
| } |
| /* |
| * Disabling pools, so we should start using the global values |
| * for ncpus and ncpus_online. |
| */ |
| if (newpsetid == ZONE_PS_INVAL) { |
| zone->zone_ncpus = 0; |
| zone->zone_ncpus_online = 0; |
| } |
| } |
| |
| /* |
| * Walk the list of active zones and issue the provided callback for |
| * each of them. |
| * |
| * Caller must not be holding any locks that may be acquired under |
| * zonehash_lock. See comment at the beginning of the file for a list of |
| * common locks and their interactions with zones. |
| */ |
| int |
| zone_walk(int (*cb)(zone_t *, void *), void *data) |
| { |
| zone_t *zone; |
| int ret = 0; |
| zone_status_t status; |
| |
| mutex_enter(&zonehash_lock); |
| for (zone = list_head(&zone_active); zone != NULL; |
| zone = list_next(&zone_active, zone)) { |
| /* |
| * Skip zones that shouldn't be externally visible. |
| */ |
| status = zone_status_get(zone); |
| if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) |
| continue; |
| /* |
| * Bail immediately if any callback invocation returns a |
| * non-zero value. |
| */ |
| ret = (*cb)(zone, data); |
| if (ret != 0) |
| break; |
| } |
| mutex_exit(&zonehash_lock); |
| return (ret); |
| } |
| |
| static int |
| zone_set_root(zone_t *zone, const char *upath) |
| { |
| vnode_t *vp; |
| int trycount; |
| int error = 0; |
| char *path; |
| struct pathname upn, pn; |
| size_t pathlen; |
| |
| if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0) |
| return (error); |
| |
| pn_alloc(&pn); |
| |
| /* prevent infinite loop */ |
| trycount = 10; |
| for (;;) { |
| if (--trycount <= 0) { |
| error = ESTALE; |
| goto out; |
| } |
| |
| if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) { |
| /* |
| * VOP_ACCESS() may cover 'vp' with a new |
| * filesystem, if 'vp' is an autoFS vnode. |
| * Get the new 'vp' if so. |
| */ |
| if ((error = VOP_ACCESS(vp, VEXEC, 0, CRED())) == 0 && |
| (vp->v_vfsmountedhere == NULL || |
| (error = traverse(&vp)) == 0)) { |
| pathlen = pn.pn_pathlen + 2; |
| path = kmem_alloc(pathlen, KM_SLEEP); |
| (void) strncpy(path, pn.pn_path, |
| pn.pn_pathlen + 1); |
| path[pathlen - 2] = '/'; |
| path[pathlen - 1] = '\0'; |
| pn_free(&pn); |
| pn_free(&upn); |
| |
| /* Success! */ |
| break; |
| } |
| VN_RELE(vp); |
| } |
| if (error != ESTALE) |
| goto out; |
| } |
| |
| ASSERT(error == 0); |
| zone->zone_rootvp = vp; /* we hold a reference to vp */ |
| zone->zone_rootpath = path; |
| zone->zone_rootpathlen = pathlen; |
| return (0); |
| |
| out: |
| pn_free(&pn); |
| pn_free(&upn); |
| return (error); |
| } |
| |
| #define isalnum(c) (((c) >= '0' && (c) <= '9') || \ |
| ((c) >= 'a' && (c) <= 'z') || \ |
| ((c) >= 'A' && (c) <= 'Z')) |
| |
| static int |
| zone_set_name(zone_t *zone, const char *uname) |
| { |
| char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); |
| size_t len; |
| int i, err; |
| |
| if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) { |
| kmem_free(kname, ZONENAME_MAX); |
| return (err); /* EFAULT or ENAMETOOLONG */ |
| } |
| |
| /* must be less than ZONENAME_MAX */ |
| if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') { |
| kmem_free(kname, ZONENAME_MAX); |
| return (EINVAL); |
| } |
| |
| /* |
| * Name must start with an alphanumeric and must contain only |
| * alphanumerics, '-', '_' and '.'. |
| */ |
| if (!isalnum(kname[0])) { |
| kmem_free(kname, ZONENAME_MAX); |
| return (EINVAL); |
| } |
| for (i = 1; i < len - 1; i++) { |
| if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' && |
| kname[i] != '.') { |
| kmem_free(kname, ZONENAME_MAX); |
| return (EINVAL); |
| } |
| } |
| |
| zone->zone_name = kname; |
| return (0); |
| } |
| |
| /* |
| * Similar to thread_create(), but makes sure the thread is in the appropriate |
| * zone's zsched process (curproc->p_zone->zone_zsched) before returning. |
| */ |
| /*ARGSUSED*/ |
| kthread_t * |
| zthread_create( |
| caddr_t stk, |
| size_t stksize, |
| void (*proc)(), |
| void *arg, |
| size_t len, |
| pri_t pri) |
| { |
| kthread_t *t; |
| zone_t *zone = curproc->p_zone; |
| proc_t *pp = zone->zone_zsched; |
| |
| zone_hold(zone); /* Reference to be dropped when thread exits */ |
| |
| /* |
| * No-one should be trying to create threads if the zone is shutting |
| * down and there aren't any kernel threads around. See comment |
| * in zthread_exit(). |
| */ |
| ASSERT(!(zone->zone_kthreads == NULL && |
| zone_status_get(zone) >= ZONE_IS_EMPTY)); |
| /* |
| * Create a thread, but don't let it run until we've finished setting |
| * things up. |
| */ |
| t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri); |
| ASSERT(t->t_forw == NULL); |
| mutex_enter(&zone_status_lock); |
| if (zone->zone_kthreads == NULL) { |
| t->t_forw = t->t_back = t; |
| } else { |
| kthread_t *tx = zone->zone_kthreads; |
| |
| t->t_forw = tx; |
| t->t_back = tx->t_back; |
| tx->t_back->t_forw = t; |
| tx->t_back = t; |
| } |
| zone->zone_kthreads = t; |
| mutex_exit(&zone_status_lock); |
| |
| mutex_enter(&pp->p_lock); |
| t->t_proc_flag |= TP_ZTHREAD; |
| project_rele(t->t_proj); |
| t->t_proj = project_hold(pp->p_task->tk_proj); |
| |
| /* |
| * Setup complete, let it run. |
| */ |
| thread_lock(t); |
| t->t_schedflag |= TS_ALLSTART; |
| setrun_locked(t); |
| thread_unlock(t); |
| |
| mutex_exit(&pp->p_lock); |
| |
| return (t); |
| } |
| |
| /* |
| * Similar to thread_exit(). Must be called by threads created via |
| * zthread_exit(). |
| */ |
| void |
| zthread_exit(void) |
| { |
| kthread_t *t = curthread; |
| proc_t *pp = curproc; |
| zone_t *zone = pp->p_zone; |
| |
| mutex_enter(&zone_status_lock); |
| |
| /* |
| * Reparent to p0 |
| */ |
| kpreempt_disable(); |
| mutex_enter(&pp->p_lock); |
| t->t_proc_flag &= ~TP_ZTHREAD; |
| t->t_procp = &p0; |
| hat_thread_exit(t); |
| mutex_exit(&pp->p_lock); |
| kpreempt_enable(); |
| |
| if (t->t_back == t) { |
| ASSERT(t->t_forw == t); |
| /* |
| * If the zone is empty, once the thread count |
| * goes to zero no further kernel threads can be |
| * created. This is because if the creator is a process |
| * in the zone, then it must have exited before the zone |
| * state could be set to ZONE_IS_EMPTY. |
| * Otherwise, if the creator is a kernel thread in the |
| * zone, the thread count is non-zero. |
| * |
| * This really means that non-zone kernel threads should |
| * not create zone kernel threads. |
| */ |
| zone->zone_kthreads = NULL; |
| if (zone_status_get(zone) == ZONE_IS_EMPTY) { |
| zone_status_set(zone, ZONE_IS_DOWN); |
| } |
| } else { |
| t->t_forw->t_back = t->t_back; |
| t->t_back->t_forw = t->t_forw; |
| if (zone->zone_kthreads == t) |
| zone->zone_kthreads = t->t_forw; |
| } |
| mutex_exit(&zone_status_lock); |
| zone_rele(zone); |
| thread_exit(); |
| /* NOTREACHED */ |
| } |
| |
| static void |
| zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp) |
| { |
| vnode_t *oldvp; |
| |
| /* we're going to hold a reference here to the directory */ |
| VN_HOLD(vp); |
| |
| #ifdef C2_AUDIT |
| if (audit_active) /* update abs cwd/root path see c2audit.c */ |
| audit_chdirec(vp, vpp); |
| #endif |
| |
| mutex_enter(&pp->p_lock); |
| oldvp = *vpp; |
| *vpp = vp; |
| mutex_exit(&pp->p_lock); |
| if (oldvp != NULL) |
| VN_RELE(oldvp); |
| } |
| |
| /* |
| * Convert an rctl value represented by an nvlist_t into an rctl_val_t. |
| */ |
| static int |
| nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv) |
| { |
| nvpair_t *nvp = NULL; |
| boolean_t priv_set = B_FALSE; |
| boolean_t limit_set = B_FALSE; |
| boolean_t action_set = B_FALSE; |
| |
| while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { |
| const char *name; |
| uint64_t ui64; |
| |
| name = nvpair_name(nvp); |
| if (nvpair_type(nvp) != DATA_TYPE_UINT64) |
| return (EINVAL); |
| (void) nvpair_value_uint64(nvp, &ui64); |
| if (strcmp(name, "privilege") == 0) { |
| /* |
| * Currently only privileged values are allowed, but |
| * this may change in the future. |
| */ |
| if (ui64 != RCPRIV_PRIVILEGED) |
| return (EINVAL); |
| rv->rcv_privilege = ui64; |
| priv_set = B_TRUE; |
| } else if (strcmp(name, "limit") == 0) { |
| rv->rcv_value = ui64; |
| limit_set = B_TRUE; |
| } else if (strcmp(name, "action") == 0) { |
| if (ui64 != RCTL_LOCAL_NOACTION && |
| ui64 != RCTL_LOCAL_DENY) |
| return (EINVAL); |
| rv->rcv_flagaction = ui64; |
| action_set = B_TRUE; |
| } else { |
| return (EINVAL); |
| } |
| } |
| |
| if (!(priv_set && limit_set && action_set)) |
| return (EINVAL); |
| rv->rcv_action_signal = 0; |
| rv->rcv_action_recipient = NULL; |
| rv->rcv_action_recip_pid = -1; |
| rv->rcv_firing_time = 0; |
| |
| return (0); |
| } |
| |
| void |
| zone_icode(void) |
| { |
| proc_t *p = ttoproc(curthread); |
| struct core_globals *cg; |
| |
| /* |
| * For all purposes (ZONE_ATTR_INITPID and restart_init), |
| * storing just the pid of init is sufficient. |
| */ |
| p->p_zone->zone_proc_initpid = p->p_pid; |
| |
| /* |
| * Allocate user address space and stack segment |
| */ |
| |
| p->p_cstime = p->p_stime = p->p_cutime = p->p_utime = 0; |
| p->p_usrstack = (caddr_t)USRSTACK32; |
| p->p_model = DATAMODEL_ILP32; |
| p->p_stkprot = PROT_ZFOD & ~PROT_EXEC; |
| p->p_datprot = PROT_ZFOD & ~PROT_EXEC; |
| p->p_stk_ctl = INT32_MAX; |
| |
| p->p_as = as_alloc(); |
| p->p_as->a_userlimit = (caddr_t)USERLIMIT32; |
| (void) hat_setup(p->p_as->a_hat, HAT_INIT); |
| |
| cg = zone_getspecific(core_zone_key, p->p_zone); |
| ASSERT(cg != NULL); |
| corectl_path_hold(cg->core_default_path); |
| corectl_content_hold(cg->core_default_content); |
| p->p_corefile = cg->core_default_path; |
| p->p_content = cg->core_default_content; |
| |
| init_mstate(curthread, LMS_SYSTEM); |
| |
| p->p_zone->zone_boot_err = exec_init(zone_initname, 0, |
| p->p_zone->zone_bootargs); |
| |
| mutex_enter(&zone_status_lock); |
| if (p->p_zone->zone_boot_err != 0) { |
| /* |
| * Make sure we are still in the booting state-- we could have |
| * raced and already be shutting down, or even further along. |
| */ |
| if (zone_status_get(p->p_zone) == ZONE_IS_BOOTING) |
| zone_status_set(p->p_zone, ZONE_IS_SHUTTING_DOWN); |
| mutex_exit(&zone_status_lock); |
| /* It's gone bad, dispose of the process */ |
| if (proc_exit(CLD_EXITED, p->p_zone->zone_boot_err) != 0) { |
| mutex_enter(&p->p_lock); |
| ASSERT(p->p_flag & SEXITLWPS); |
| lwp_exit(); |
| } |
| } else { |
| if (zone_status_get(p->p_zone) == ZONE_IS_BOOTING) |
| zone_status_set(p->p_zone, ZONE_IS_RUNNING); |
| mutex_exit(&zone_status_lock); |
| /* cause the process to return to userland. */ |
| lwp_rtt(); |
| } |
| } |
| |
| struct zsched_arg { |
| zone_t *zone; |
| nvlist_t *nvlist; |
| }; |
| |
| /* |
| * Per-zone "sched" workalike. The similarity to "sched" doesn't have |
| * anything to do with scheduling, but rather with the fact that |
| * per-zone kernel threads are parented to zsched, just like regular |
| * kernel threads are parented to sched (p0). |
| * |
| * zsched is also responsible for launching init for the zone. |
| */ |
| static void |
| zsched(void *arg) |
| { |
| struct zsched_arg *za = arg; |
| proc_t *pp = curproc; |
| proc_t *initp = proc_init; |
| zone_t *zone = za->zone; |
| cred_t *cr, *oldcred; |
| rctl_set_t *set; |
| rctl_alloc_gp_t *gp; |
| contract_t *ct = NULL; |
| task_t *tk, *oldtk; |
| rctl_entity_p_t e; |
| kproject_t *pj; |
| |
| nvlist_t *nvl = za->nvlist; |
| nvpair_t *nvp = NULL; |
| |
| bcopy("zsched", u.u_psargs, sizeof ("zsched")); |
| bcopy("zsched", u.u_comm, sizeof ("zsched")); |
| u.u_argc = 0; |
| u.u_argv = NULL; |
| u.u_envp = NULL; |
| closeall(P_FINFO(pp)); |
| |
| /* |
| * We are this zone's "zsched" process. As the zone isn't generally |
| * visible yet we don't need to grab any locks before initializing its |
| * zone_proc pointer. |
| */ |
| zone_hold(zone); /* this hold is released by zone_destroy() */ |
| zone->zone_zsched = pp; |
| mutex_enter(&pp->p_lock); |
| pp->p_zone = zone; |
| mutex_exit(&pp->p_lock); |
| |
| /* |
| * Disassociate process from its 'parent'; parent ourselves to init |
| * (pid 1) and change other values as needed. |
| */ |
| sess_create(); |
| |
| mutex_enter(&pidlock); |
| proc_detach(pp); |
| pp->p_ppid = 1; |
| pp->p_flag |= SZONETOP; |
| pp->p_ancpid = 1; |
| pp->p_parent = initp; |
| pp->p_psibling = NULL; |
| if (initp->p_child) |
| initp->p_child->p_psibling = pp; |
| pp->p_sibling = initp->p_child; |
| initp->p_child = pp; |
| |
| /* Decrement what newproc() incremented. */ |
| upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID); |
| /* |
| * Our credentials are about to become kcred-like, so we don't care |
| * about the caller's ruid. |
| */ |
| upcount_inc(crgetruid(kcred), zone->zone_id); |
| mutex_exit(&pidlock); |
| |
| /* |
| * getting out of global zone, so decrement lwp counts |
| */ |
| pj = pp->p_task->tk_proj; |
| mutex_enter(&global_zone->zone_nlwps_lock); |
| pj->kpj_nlwps -= pp->p_lwpcnt; |
| global_zone->zone_nlwps -= pp->p_lwpcnt; |
| mutex_exit(&global_zone->zone_nlwps_lock); |
| |
| /* |
| * Create and join a new task in project '0' of this zone. |
| * |
| * We don't need to call holdlwps() since we know we're the only lwp in |
| * this process. |
| * |
| * task_join() returns with p_lock held. |
| */ |
| tk = task_create(0, zone); |
| mutex_enter(&cpu_lock); |
| oldtk = task_join(tk, 0); |
| mutex_exit(&curproc->p_lock); |
| mutex_exit(&cpu_lock); |
| task_rele(oldtk); |
| |
| /* |
| * add lwp counts to zsched's zone, and increment project's task count |
| * due to the task created in the above tasksys_settaskid |
| */ |
| pj = pp->p_task->tk_proj; |
| mutex_enter(&zone->zone_nlwps_lock); |
| pj->kpj_nlwps += pp->p_lwpcnt; |
| pj->kpj_ntasks += 1; |
| zone->zone_nlwps += pp->p_lwpcnt; |
| mutex_exit(&zone->zone_nlwps_lock); |
| |
| /* |
| * The process was created by a process in the global zone, hence the |
| * credentials are wrong. We might as well have kcred-ish credentials. |
| */ |
| cr = zone->zone_kcred; |
| crhold(cr); |
| mutex_enter(&pp->p_crlock); |
| oldcred = pp->p_cred; |
| pp->p_cred = cr; |
| mutex_exit(&pp->p_crlock); |
| crfree(oldcred); |
| |
| /* |
| * Hold credentials again (for thread) |
| */ |
| crhold(cr); |
| |
| /* |
| * p_lwpcnt can't change since this is a kernel process. |
| */ |
| crset(pp, cr); |
| |
| /* |
| * Chroot |
| */ |
| zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp); |
| zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp); |
| |
| /* |
| * Initialize zone's rctl set. |
| */ |
| set = rctl_set_create(); |
| gp = rctl_set_init_prealloc(RCENTITY_ZONE); |
| mutex_enter(&pp->p_lock); |
| e.rcep_p.zone = zone; |
| e.rcep_t = RCENTITY_ZONE; |
| zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp); |
| mutex_exit(&pp->p_lock); |
| rctl_prealloc_destroy(gp); |
| |
| /* |
| * Apply the rctls passed in to zone_create(). This is basically a list |
| * assignment: all of the old values are removed and the new ones |
| * inserted. That is, if an empty list is passed in, all values are |
| * removed. |
| */ |
| while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { |
| rctl_dict_entry_t *rde; |
| rctl_hndl_t hndl; |
| char *name; |
| nvlist_t **nvlarray; |
| uint_t i, nelem; |
| int error; /* For ASSERT()s */ |
| |
| name = nvpair_name(nvp); |
| hndl = rctl_hndl_lookup(name); |
| ASSERT(hndl != -1); |
| rde = rctl_dict_lookup_hndl(hndl); |
| ASSERT(rde != NULL); |
| |
| for (; /* ever */; ) { |
| rctl_val_t oval; |
| |
| mutex_enter(&pp->p_lock); |
| error = rctl_local_get(hndl, NULL, &oval, pp); |
| mutex_exit(&pp->p_lock); |
| ASSERT(error == 0); /* Can't fail for RCTL_FIRST */ |
| ASSERT(oval.rcv_privilege != RCPRIV_BASIC); |
| if (oval.rcv_privilege == RCPRIV_SYSTEM) |
| break; |
| mutex_enter(&pp->p_lock); |
| error = rctl_local_delete(hndl, &oval, pp); |
| mutex_exit(&pp->p_lock); |
| ASSERT(error == 0); |
| } |
| error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); |
| ASSERT(error == 0); |
| for (i = 0; i < nelem; i++) { |
| rctl_val_t *nvalp; |
| |
| nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); |
| error = nvlist2rctlval(nvlarray[i], nvalp); |
| ASSERT(error == 0); |
| /* |
| * rctl_local_insert can fail if the value being |
| * inserted is a duplicate; this is OK. |
| */ |
| mutex_enter(&pp->p_lock); |
| if (rctl_local_insert(hndl, nvalp, pp) != 0) |
| kmem_cache_free(rctl_val_cache, nvalp); |
| mutex_exit(&pp->p_lock); |
| } |
| } |
| /* |
| * Tell the world that we're done setting up. |
| * |
| * At this point we want to set the zone status to ZONE_IS_READY |
| * and atomically set the zone's processor set visibility. Once |
| * we drop pool_lock() this zone will automatically get updated |
| * to reflect any future changes to the pools configuration. |
| */ |
| pool_lock(); |
| mutex_enter(&cpu_lock); |
| mutex_enter(&zonehash_lock); |
| zone_uniqid(zone); |
| zone_zsd_configure(zone); |
| if (pool_state == POOL_ENABLED) |
| zone_pset_set(zone, pool_default->pool_pset->pset_id); |
| mutex_enter(&zone_status_lock); |
| ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED); |
| zone_status_set(zone, ZONE_IS_READY); |
| mutex_exit(&zone_status_lock); |
| mutex_exit(&zonehash_lock); |
| mutex_exit(&cpu_lock); |
| pool_unlock(); |
| |
| /* |
| * Once we see the zone transition to the ZONE_IS_BOOTING state, |
| * we launch init, and set the state to running. |
| */ |
| zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched"); |
| |
| if (zone_status_get(zone) == ZONE_IS_BOOTING) { |
| id_t cid; |
| |
| /* |
| * Ok, this is a little complicated. We need to grab the |
| * zone's pool's scheduling class ID; note that by now, we |
| * are already bound to a pool if we need to be (zoneadmd |
| * will have done that to us while we're in the READY |
| * state). *But* the scheduling class for the zone's 'init' |
| * must be explicitly passed to newproc, which doesn't |
| * respect pool bindings. |
| * |
| * We hold the pool_lock across the call to newproc() to |
| * close the obvious race: the pool's scheduling class |
| * could change before we manage to create the LWP with |
| * classid 'cid'. |
| */ |
| pool_lock(); |
| cid = pool_get_class(zone->zone_pool); |
| if (cid == -1) |
| cid = defaultcid; |
| |
| /* |
| * If this fails, zone_boot will ultimately fail. The |
| * state of the zone will be set to SHUTTING_DOWN-- userland |
| * will have to tear down the zone, and fail, or try again. |
| */ |
| if ((zone->zone_boot_err = newproc(zone_icode, NULL, cid, |
| minclsyspri - 1, &ct)) != 0) { |
| mutex_enter(&zone_status_lock); |
| zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); |
| mutex_exit(&zone_status_lock); |
| } |
| pool_unlock(); |
| } |
| |
| /* |
| * Wait for zone_destroy() to be called. This is what we spend |
| * most of our life doing. |
| */ |
| zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched"); |
| |
| if (ct) |
| /* |
| * At this point the process contract should be empty. |
| * (Though if it isn't, it's not the end of the world.) |
| */ |
| VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0); |
| |
| /* |
| * Allow kcred to be freed when all referring processes |
| * (including this one) go away. We can't just do this in |
| * zone_free because we need to wait for the zone_cred_ref to |
| * drop to 0 before calling zone_free, and the existence of |
| * zone_kcred will prevent that. Thus, we call crfree here to |
| * balance the crdup in zone_create. The crhold calls earlier |
| * in zsched will be dropped when the thread and process exit. |
| */ |
| crfree(zone->zone_kcred); |
| zone->zone_kcred = NULL; |
| |
| exit(CLD_EXITED, 0); |
| } |
| |
| /* |
| * Helper function to determine if there are any submounts of the |
| * provided path. Used to make sure the zone doesn't "inherit" any |
| * mounts from before it is created. |
| */ |
| static uint_t |
| zone_mount_count(const char *rootpath) |
| { |
| vfs_t *vfsp; |
| uint_t count = 0; |
| size_t rootpathlen = strlen(rootpath); |
| |
| /* |
| * Holding zonehash_lock prevents race conditions with |
| * vfs_list_add()/vfs_list_remove() since we serialize with |
| * zone_find_by_path(). |
| */ |
| ASSERT(MUTEX_HELD(&zonehash_lock)); |
| /* |
| * The rootpath must end with a '/' |
| */ |
| ASSERT(rootpath[rootpathlen - 1] == '/'); |
| |
| /* |
| * This intentionally does not count the rootpath itself if that |
| * happens to be a mount point. |
| */ |
| vfs_list_read_lock(); |
| vfsp = rootvfs; |
| do { |
| if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt), |
| rootpathlen) == 0) |
| count++; |
| vfsp = vfsp->vfs_next; |
| } while (vfsp != rootvfs); |
| vfs_list_unlock(); |
| return (count); |
| } |
| |
| /* |
| * Helper function to make sure that a zone created on 'rootpath' |
| * wouldn't end up containing other zones' rootpaths. |
| */ |
| static boolean_t |
| zone_is_nested(const char *rootpath) |
| { |
| zone_t *zone; |
| size_t rootpathlen = strlen(rootpath); |
| size_t len; |
| |
| ASSERT(MUTEX_HELD(&zonehash_lock)); |
| |
| for (zone = list_head(&zone_active); zone != NULL; |
| zone = list_next(&zone_active, zone)) { |
| if (zone == global_zone) |
| continue; |
| len = strlen(zone->zone_rootpath); |
| if (strncmp(rootpath, zone->zone_rootpath, |
| MIN(rootpathlen, len)) == 0) |
| return (B_TRUE); |
| } |
| return (B_FALSE); |
| } |
| |
| static int |
| zone_set_privset(zone_t *zone, const priv_set_t *zone_privs, |
| size_t zone_privssz) |
| { |
| priv_set_t *privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); |
| |
| if (zone_privssz < sizeof (priv_set_t)) |
| return (set_errno(ENOMEM)); |
| |
| if (copyin(zone_privs, privs, sizeof (priv_set_t))) { |
| kmem_free(privs, sizeof (priv_set_t)); |
| return (EFAULT); |
| } |
| |
| zone->zone_privset = privs; |
| return (0); |
| } |
| |
| /* |
| * We make creative use of nvlists to pass in rctls from userland. The list is |
| * a list of the following structures: |
| * |
| * (name = rctl_name, value = nvpair_list_array) |
| * |
| * Where each element of the nvpair_list_array is of the form: |
| * |
| * [(name = "privilege", value = RCPRIV_PRIVILEGED), |
| * (name = "limit", value = uint64_t), |
| * (name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))] |
| */ |
| static int |
| parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp) |
| { |
| nvpair_t *nvp = NULL; |
| nvlist_t *nvl = NULL; |
| char *kbuf; |
| int error; |
| rctl_val_t rv; |
| |
| *nvlp = NULL; |
| |
| if (buflen == 0) |
| return (0); |
| |
| if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) |
| return (ENOMEM); |
| if (copyin(ubuf, kbuf, buflen)) { |
| error = EFAULT; |
| goto out; |
| } |
| if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) { |
| /* |
| * nvl may have been allocated/free'd, but the value set to |
| * non-NULL, so we reset it here. |
| */ |
| nvl = NULL; |
| error = EINVAL; |
| goto out; |
| } |
| while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { |
| rctl_dict_entry_t *rde; |
| rctl_hndl_t hndl; |
| nvlist_t **nvlarray; |
| uint_t i, nelem; |
| char *name; |
| |
| error = EINVAL; |
| name = nvpair_name(nvp); |
| if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1) |
| != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) { |
| goto out; |
| } |
| if ((hndl = rctl_hndl_lookup(name)) == -1) { |
| goto out; |
| } |
| rde = rctl_dict_lookup_hndl(hndl); |
| error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); |
| ASSERT(error == 0); |
| for (i = 0; i < nelem; i++) { |
| if (error = nvlist2rctlval(nvlarray[i], &rv)) |
| goto out; |
| } |
| if (rctl_invalid_value(rde, &rv)) { |
| error = EINVAL; |
| goto out; |
| } |
| } |
| error = 0; |
| *nvlp = nvl; |
| out: |
| kmem_free(kbuf, buflen); |
| if (error && nvl != NULL) |
| nvlist_free(nvl); |
| return (error); |
| } |
| |
| int |
| zone_create_error(int er_error, int er_ext, int *er_out) { |
| if (er_out != NULL) { |
| if (copyout(&er_ext, er_out, sizeof (int))) { |
| return (set_errno(EFAULT)); |
| } |
| } |
| return (set_errno(er_error)); |
| } |
| |
| static int |
| zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi) |
| { |
| ts_label_t *tsl; |
| bslabel_t blab; |
| |
| /* Get label from user */ |
| if (copyin(lab, &blab, sizeof (blab)) != 0) |
| return (EFAULT); |
| tsl = labelalloc(&blab, doi, KM_NOSLEEP); |
| if (tsl == NULL) |
| return (ENOMEM); |
| |
| zone->zone_slabel = tsl; |
| return (0); |
| } |
| |
| /* |
| * Parses a comma-separated list of ZFS datasets into a per-zone dictionary. |
| */ |
| static int |
| parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen) |
| { |
| char *kbuf; |
| char *dataset, *next; |
| zone_dataset_t *zd; |
| size_t len; |
| |
| if (ubuf == NULL || buflen == 0) |
| return (0); |
| |
| if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) |
| return (ENOMEM); |
| |
| if (copyin(ubuf, kbuf, buflen) != 0) { |
| kmem_free(kbuf, buflen); |
| return (EFAULT); |
| } |
| |
| dataset = next = kbuf; |
| for (;;) { |
| zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP); |
| |
| next = strchr(dataset, ','); |
| |
| if (next == NULL) |
| len = strlen(dataset); |
| else |
| len = next - dataset; |
| |
| zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP); |
| bcopy(dataset, zd->zd_dataset, len); |
| zd->zd_dataset[len] = '\0'; |
| |
| list_insert_head(&zone->zone_datasets, zd); |
| |
| if (next == NULL) |
| break; |
| |
| dataset = next + 1; |
| } |
| |
| kmem_free(kbuf, buflen); |
| return (0); |
| } |
| |
| /* |
| * System call to create/initialize a new zone named 'zone_name', rooted |
| * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs', |
| * and initialized with the zone-wide rctls described in 'rctlbuf', and |
| * with labeling set by 'match', 'doi', and 'label'. |
| * |
| * If extended error is non-null, we may use it to return more detailed |
| * error information. |
| */ |
| static zoneid_t |
| zone_create(const char *zone_name, const char *zone_root, |
| const priv_set_t *zone_privs, size_t zone_privssz, |
| caddr_t rctlbuf, size_t rctlbufsz, |
| caddr_t zfsbuf, size_t zfsbufsz, int *extended_error, |
| int match, uint32_t doi, const bslabel_t *label) |
| { |
| struct zsched_arg zarg; |
| nvlist_t *rctls = NULL; |
| proc_t *pp = curproc; |
| zone_t *zone, *ztmp; |
| zoneid_t zoneid; |
| int error; |
| int error2 = 0; |
| char *str; |
| cred_t *zkcr; |
| |
| if (secpolicy_zone_config(CRED()) != 0) |
| return (set_errno(EPERM)); |
| |
| /* can't boot zone from within chroot environment */ |
| if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir) |
| return (zone_create_error(ENOTSUP, ZE_CHROOTED, |
| extended_error)); |
| |
| zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP); |
| zoneid = zone->zone_id = id_alloc(zoneid_space); |
| zone->zone_status = ZONE_IS_UNINITIALIZED; |
| zone->zone_pool = pool_default; |
| zone->zone_pool_mod = gethrtime(); |
| zone->zone_psetid = ZONE_PS_INVAL; |
| zone->zone_ncpus = 0; |
| zone->zone_ncpus_online = 0; |
| mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL); |
| mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); |
| cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL); |
| list_create(&zone->zone_zsd, sizeof (struct zsd_entry), |
| offsetof(struct zsd_entry, zsd_linkage)); |
| list_create(&zone->zone_datasets, sizeof (zone_dataset_t), |
| offsetof(zone_dataset_t, zd_linkage)); |
| rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); |
| |
| if ((error = zone_set_name(zone, zone_name)) != 0) { |
| zone_free(zone); |
| return (zone_create_error(error, 0, extended_error)); |
| } |
| |
| if ((error = zone_set_root(zone, zone_root)) != 0) { |
| zone_free(zone); |
| return (zone_create_error(error, 0, extended_error)); |
| } |
| if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) { |
| zone_free(zone); |
| return (zone_create_error(error, 0, extended_error)); |
| } |
| |
| /* initialize node name to be the same as zone name */ |
| zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP); |
| (void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN); |
| zone->zone_nodename[_SYS_NMLN - 1] = '\0'; |
| |
| zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP); |
| zone->zone_domain[0] = '\0'; |
| zone->zone_shares = 1; |
| zone->zone_bootargs = NULL; |
| |
| /* |
| * Zsched initializes the rctls. |
| */ |
| zone->zone_rctls = NULL; |
| |
| if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) { |
| zone_free(zone); |
| return (zone_create_error(error, 0, extended_error)); |
| } |
| |
| if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) { |
| zone_free(zone); |
| return (set_errno(error)); |
| } |
| |
| /* |
| * Read in the trusted system parameters: |
| * match flag and sensitivity label. |
| */ |
| zone->zone_match = match; |
| if (is_system_labeled()) { |
| error = zone_set_label(zone, label, doi); |
| if (error != 0) { |
| zone_free(zone); |
| return (set_errno(error)); |
| } |
| } else { |
| /* all zones get an admin_low label if system is not labeled */ |
| zone->zone_slabel = l_admin_low; |
| label_hold(l_admin_low); |
| } |
| |
| /* |
| * Stop all lwps since that's what normally happens as part of fork(). |
| * This needs to happen before we grab any locks to avoid deadlock |
| * (another lwp in the process could be waiting for the held lock). |
| */ |
| if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) { |
| zone_free(zone); |
| if (rctls) |
| nvlist_free(rctls); |
| return (zone_create_error(error, 0, extended_error)); |
| } |
| |
| if (block_mounts() == 0) { |
| mutex_enter(&pp->p_lock); |
| if (curthread != pp->p_agenttp) |
| continuelwps(pp); |
| mutex_exit(&pp->p_lock); |
| zone_free(zone); |
| if (rctls) |
| nvlist_free(rctls); |
| return (zone_create_error(error, 0, extended_error)); |
| } |
| |
| /* |
| * Set up credential for kernel access. After this, any errors |
| * should go through the dance in errout rather than calling |
| * zone_free directly. |
| */ |
| zone->zone_kcred = crdup(kcred); |
| crsetzone(
|