| /* |
| * CDDL HEADER START |
| * |
| * The contents of this file are subject to the terms of the |
| * Common Development and Distribution License (the "License"). |
| * You may not use this file except in compliance with the License. |
| * |
| * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE |
| * or http://www.opensolaris.org/os/licensing. |
| * See the License for the specific language governing permissions |
| * and limitations under the License. |
| * |
| * When distributing Covered Code, include this CDDL HEADER in each |
| * file and include the License file at usr/src/OPENSOLARIS.LICENSE. |
| * If applicable, add the following below this CDDL HEADER, with the |
| * fields enclosed by brackets "[]" replaced with your own identifying |
| * information: Portions Copyright [yyyy] [name of copyright owner] |
| * |
| * CDDL HEADER END |
| */ |
| /* |
| * Copyright 2006 Sun Microsystems, Inc. All rights reserved. |
| * Use is subject to license terms. |
| */ |
| /* Copyright (c) 1990 Mentat Inc. */ |
| |
| #pragma ident "%Z%%M% %I% %E% SMI" |
| |
| |
| /* |
| * This file contains routines that manipulate Internet Routing Entries (IREs). |
| */ |
| |
| #include <sys/types.h> |
| #include <sys/stream.h> |
| #include <sys/stropts.h> |
| #include <sys/strsun.h> |
| #include <sys/ddi.h> |
| #include <sys/cmn_err.h> |
| #include <sys/policy.h> |
| |
| #include <sys/systm.h> |
| #include <sys/kmem.h> |
| #include <sys/param.h> |
| #include <sys/socket.h> |
| #include <net/if.h> |
| #include <net/route.h> |
| #include <netinet/in.h> |
| #include <net/if_dl.h> |
| #include <netinet/ip6.h> |
| #include <netinet/icmp6.h> |
| |
| #include <inet/common.h> |
| #include <inet/mi.h> |
| #include <inet/ip.h> |
| #include <inet/ip6.h> |
| #include <inet/ip_ndp.h> |
| #include <inet/ip_if.h> |
| #include <inet/ip_ire.h> |
| #include <inet/ip_rts.h> |
| #include <inet/nd.h> |
| |
| #include <net/pfkeyv2.h> |
| #include <inet/ipsec_info.h> |
| #include <inet/sadb.h> |
| #include <sys/kmem.h> |
| #include <inet/tcp.h> |
| #include <inet/ipclassifier.h> |
| #include <sys/zone.h> |
| |
| #include <sys/tsol/label.h> |
| #include <sys/tsol/tnet.h> |
| |
| /* |
| * Synchronization notes: |
| * |
| * The fields of the ire_t struct are protected in the following way : |
| * |
| * ire_next/ire_ptpn |
| * |
| * - bucket lock of the respective tables (cache or forwarding tables). |
| * |
| * ire_fp_mp |
| * ire_dlureq_mp |
| * |
| * - ire_lock protects multiple threads updating ire_fp_mp |
| * simultaneously. Otherwise no locks are used while accessing |
| * (both read/write) both the fields. |
| * |
| * ire_mp, ire_rfq, ire_stq, ire_u *except* ire_gateway_addr[v6], ire_mask, |
| * ire_type, ire_create_time, ire_masklen, ire_ipversion, ire_flags, ire_ipif, |
| * ire_ihandle, ire_phandle, ire_nce, ire_bucket, ire_in_ill, ire_in_src_addr |
| * |
| * - Set in ire_create_v4/v6 and never changes after that. Thus, |
| * we don't need a lock whenever these fields are accessed. |
| * |
| * - ire_bucket and ire_masklen (also set in ire_create) is set in |
| * ire_add_v4/ire_add_v6 before inserting in the bucket and never |
| * changes after that. Thus we don't need a lock whenever these |
| * fields are accessed. |
| * |
| * ire_gateway_addr_v4[v6] |
| * |
| * - ire_gateway_addr_v4[v6] is set during ire_create and later modified |
| * by rts_setgwr[v6]. As ire_gateway_addr is a uint32_t, updates to |
| * it assumed to be atomic and hence the other parts of the code |
| * does not use any locks. ire_gateway_addr_v6 updates are not atomic |
| * and hence any access to it uses ire_lock to get/set the right value. |
| * |
| * ire_ident, ire_refcnt |
| * |
| * - Updated atomically using atomic_add_32 |
| * |
| * ire_ssthresh, ire_rtt_sd, ire_rtt, ire_ib_pkt_count, ire_ob_pkt_count |
| * |
| * - Assumes that 32 bit writes are atomic. No locks. ire_lock is |
| * used to serialize updates to ire_ssthresh, ire_rtt_sd, ire_rtt. |
| * |
| * ire_max_frag, ire_frag_flag |
| * |
| * - ire_lock is used to set/read both of them together. |
| * |
| * ire_tire_mark |
| * |
| * - Set in ire_create and updated in ire_expire, which is called |
| * by only one function namely ip_trash_timer_expire. Thus only |
| * one function updates and examines the value. |
| * |
| * ire_marks |
| * - bucket lock protects this. |
| * |
| * ire_ipsec_overhead/ire_ll_hdr_length |
| * |
| * - Place holder for returning the information to the upper layers |
| * when IRE_DB_REQ comes down. |
| * |
| * ip_ire_default_count protected by the bucket lock of |
| * ip_forwarding_table[0][0]. |
| * |
| * ipv6_ire_default_count is protected by the bucket lock of |
| * ip_forwarding_table_v6[0][0]. |
| * |
| * ip_ire_default_index/ipv6_ire_default_index is not protected as it |
| * is just a hint at which default gateway to use. There is nothing |
| * wrong in using the same gateway for two different connections. |
| * |
| * As we always hold the bucket locks in all the places while accessing |
| * the above values, it is natural to use them for protecting them. |
| * |
| * We have a separate cache table and forwarding table for IPv4 and IPv6. |
| * Cache table (ip_cache_table/ip_cache_table_v6) is a pointer to an |
| * array of irb_t structure and forwarding table (ip_forwarding_table/ |
| * ip_forwarding_table_v6) is an array of pointers to array of irb_t |
| * structure. ip_forwarding_table[_v6] is allocated dynamically in |
| * ire_add_v4/v6. ire_ft_init_lock is used to serialize multiple threads |
| * initializing the same bucket. Once a bucket is initialized, it is never |
| * de-alloacted. This assumption enables us to access ip_forwarding_table[i] |
| * or ip_forwarding_table_v6[i] without any locks. |
| * |
| * Each irb_t - ire bucket structure has a lock to protect |
| * a bucket and the ires residing in the bucket have a back pointer to |
| * the bucket structure. It also has a reference count for the number |
| * of threads walking the bucket - irb_refcnt which is bumped up |
| * using the macro IRB_REFHOLD macro. The flags irb_flags can be |
| * set to IRE_MARK_CONDEMNED indicating that there are some ires |
| * in this bucket that are marked with IRE_MARK_CONDEMNED and the |
| * last thread to leave the bucket should delete the ires. Usually |
| * this is done by the IRB_REFRELE macro which is used to decrement |
| * the reference count on a bucket. |
| * |
| * IRE_REFHOLD/IRE_REFRELE macros operate on the ire which increments/ |
| * decrements the reference count, ire_refcnt, atomically on the ire. |
| * ire_refcnt is modified only using this macro. Operations on the IRE |
| * could be described as follows : |
| * |
| * CREATE an ire with reference count initialized to 1. |
| * |
| * ADDITION of an ire holds the bucket lock, checks for duplicates |
| * and then adds the ire. ire_add_v4/ire_add_v6 returns the ire after |
| * bumping up once more i.e the reference count is 2. This is to avoid |
| * an extra lookup in the functions calling ire_add which wants to |
| * work with the ire after adding. |
| * |
| * LOOKUP of an ire bumps up the reference count using IRE_REFHOLD |
| * macro. It is valid to bump up the referece count of the IRE, |
| * after the lookup has returned an ire. Following are the lookup |
| * functions that return an HELD ire : |
| * |
| * ire_lookup_local[_v6], ire_ctable_lookup[_v6], ire_ftable_lookup[_v6], |
| * ire_cache_lookup[_v6], ire_lookup_multi[_v6], ire_route_lookup[_v6], |
| * ipif_to_ire[_v6], ire_mrtun_lookup, ire_srcif_table_lookup. |
| * |
| * DELETION of an ire holds the bucket lock, removes it from the list |
| * and then decrements the reference count for having removed from the list |
| * by using the IRE_REFRELE macro. If some other thread has looked up |
| * the ire, the reference count would have been bumped up and hence |
| * this ire will not be freed once deleted. It will be freed once the |
| * reference count drops to zero. |
| * |
| * Add and Delete acquires the bucket lock as RW_WRITER, while all the |
| * lookups acquire the bucket lock as RW_READER. |
| * |
| * NOTE : The only functions that does the IRE_REFRELE when an ire is |
| * passed as an argument are : |
| * |
| * 1) ip_wput_ire : This is because it IRE_REFHOLD/RELEs the |
| * broadcast ires it looks up internally within |
| * the function. Currently, for simplicity it does |
| * not differentiate the one that is passed in and |
| * the ones it looks up internally. It always |
| * IRE_REFRELEs. |
| * 2) ire_send |
| * ire_send_v6 : As ire_send calls ip_wput_ire and other functions |
| * that take ire as an argument, it has to selectively |
| * IRE_REFRELE the ire. To maintain symmetry, |
| * ire_send_v6 does the same. |
| * |
| * Otherwise, the general rule is to do the IRE_REFRELE in the function |
| * that is passing the ire as an argument. |
| * |
| * In trying to locate ires the following points are to be noted. |
| * |
| * IRE_MARK_CONDEMNED signifies that the ire has been logically deleted and is |
| * to be ignored when walking the ires using ire_next. |
| * |
| * IRE_MARK_HIDDEN signifies that the ire is a special ire typically for the |
| * benefit of in.mpathd which needs to probe interfaces for failures. Normal |
| * applications should not be seeing this ire and hence this ire is ignored |
| * in most cases in the search using ire_next. |
| * |
| * Zones note: |
| * Walking IREs within a given zone also walks certain ires in other |
| * zones. This is done intentionally. IRE walks with a specified |
| * zoneid are used only when doing informational reports, and |
| * zone users want to see things that they can access. See block |
| * comment in ire_walk_ill_match(). |
| */ |
| |
| static irb_t *ip_forwarding_table[IP_MASK_TABLE_SIZE]; |
| /* This is dynamically allocated in ip_ire_init */ |
| static irb_t *ip_cache_table; |
| /* This is dynamically allocated in ire_add_mrtun */ |
| irb_t *ip_mrtun_table; |
| |
| uint32_t ire_handle = 1; |
| /* |
| * ire_ft_init_lock is used while initializing ip_forwarding_table |
| * dynamically in ire_add. |
| */ |
| kmutex_t ire_ft_init_lock; |
| kmutex_t ire_mrtun_lock; /* Protects creation of table and it's count */ |
| kmutex_t ire_srcif_table_lock; /* Same as above */ |
| /* |
| * The following counts are used to determine whether a walk is |
| * needed through the reverse tunnel table or through ills |
| */ |
| kmutex_t ire_handle_lock; /* Protects ire_handle */ |
| uint_t ire_mrtun_count; /* Number of ires in reverse tun table */ |
| |
| /* |
| * A per-interface routing table is created ( if not present) |
| * when the first entry is added to this special routing table. |
| * This special routing table is accessed through the ill data structure. |
| * The routing table looks like cache table. For example, currently it |
| * is used by mobile-ip foreign agent to forward data that only comes from |
| * the home agent tunnel for a mobile node. Thus if the outgoing interface |
| * is a RESOLVER interface, IP may need to resolve the hardware address for |
| * the outgoing interface. The routing entries in this table are not updated |
| * in IRE_CACHE. When MCTL msg comes back from ARP, the incoming ill informa- |
| * tion is lost as the write queue is passed to ip_wput. |
| * But, before sending the packet out, the hardware information must be updated |
| * in the special forwarding table. ire_srcif_table_count keeps track of total |
| * number of ires that are in interface based tables. Each interface based |
| * table hangs off of the incoming ill and each ill_t also keeps a refcnt |
| * of ires in that table. |
| */ |
| |
| uint_t ire_srcif_table_count; /* Number of ires in all srcif tables */ |
| |
| /* |
| * The minimum size of IRE cache table. It will be recalcuated in |
| * ip_ire_init(). |
| */ |
| uint32_t ip_cache_table_size = IP_CACHE_TABLE_SIZE; |
| uint32_t ip6_cache_table_size = IP6_CACHE_TABLE_SIZE; |
| |
| /* |
| * The size of the forwarding table. We will make sure that it is a |
| * power of 2 in ip_ire_init(). |
| */ |
| uint32_t ip_ftable_hash_size = IP_FTABLE_HASH_SIZE; |
| uint32_t ip6_ftable_hash_size = IP6_FTABLE_HASH_SIZE; |
| |
| struct kmem_cache *ire_cache; |
| static ire_t ire_null; |
| |
| ire_stats_t ire_stats_v4; /* IPv4 ire statistics */ |
| ire_stats_t ire_stats_v6; /* IPv6 ire statistics */ |
| |
| /* |
| * The threshold number of IRE in a bucket when the IREs are |
| * cleaned up. This threshold is calculated later in ip_open() |
| * based on the speed of CPU and available memory. This default |
| * value is the maximum. |
| * |
| * We have two kinds of cached IRE, temporary and |
| * non-temporary. Temporary IREs are marked with |
| * IRE_MARK_TEMPORARY. They are IREs created for non |
| * TCP traffic and for forwarding purposes. All others |
| * are non-temporary IREs. We don't mark IRE created for |
| * TCP as temporary because TCP is stateful and there are |
| * info stored in the IRE which can be shared by other TCP |
| * connections to the same destination. For connected |
| * endpoint, we also don't want to mark the IRE used as |
| * temporary because the same IRE will be used frequently, |
| * otherwise, the app should not do a connect(). We change |
| * the marking at ip_bind_connected_*() if necessary. |
| * |
| * We want to keep the cache IRE hash bucket length reasonably |
| * short, otherwise IRE lookup functions will take "forever." |
| * We use the "crude" function that the IRE bucket |
| * length should be based on the CPU speed, which is 1 entry |
| * per x MHz, depending on the shift factor ip_ire_cpu_ratio |
| * (n). This means that with a 750MHz CPU, the max bucket |
| * length can be (750 >> n) entries. |
| * |
| * Note that this threshold is separate for temp and non-temp |
| * IREs. This means that the actual bucket length can be |
| * twice as that. And while we try to keep temporary IRE |
| * length at most at the threshold value, we do not attempt to |
| * make the length for non-temporary IREs fixed, for the |
| * reason stated above. Instead, we start trying to find |
| * "unused" non-temporary IREs when the bucket length reaches |
| * this threshold and clean them up. |
| * |
| * We also want to limit the amount of memory used by |
| * IREs. So if we are allowed to use ~3% of memory (M) |
| * for those IREs, each bucket should not have more than |
| * |
| * M / num of cache bucket / sizeof (ire_t) |
| * |
| * Again the above memory uses are separate for temp and |
| * non-temp cached IREs. |
| * |
| * We may also want the limit to be a function of the number |
| * of interfaces and number of CPUs. Doing the initialization |
| * in ip_open() means that every time an interface is plumbed, |
| * the max is re-calculated. Right now, we don't do anything |
| * different. In future, when we have more experience, we |
| * may want to change this behavior. |
| */ |
| uint32_t ip_ire_max_bucket_cnt = 10; |
| uint32_t ip6_ire_max_bucket_cnt = 10; |
| |
| /* |
| * The minimum of the temporary IRE bucket count. We do not want |
| * the length of each bucket to be too short. This may hurt |
| * performance of some apps as the temporary IREs are removed too |
| * often. |
| */ |
| uint32_t ip_ire_min_bucket_cnt = 3; |
| uint32_t ip6_ire_min_bucket_cnt = 3; |
| |
| /* |
| * The ratio of memory consumed by IRE used for temporary to available |
| * memory. This is a shift factor, so 6 means the ratio 1 to 64. This |
| * value can be changed in /etc/system. 6 is a reasonable number. |
| */ |
| uint32_t ip_ire_mem_ratio = 6; |
| /* The shift factor for CPU speed to calculate the max IRE bucket length. */ |
| uint32_t ip_ire_cpu_ratio = 7; |
| |
| /* |
| * The maximum number of buckets in IRE cache table. In future, we may |
| * want to make it a dynamic hash table. For the moment, we fix the |
| * size and allocate the table in ip_ire_init() when IP is first loaded. |
| * We take into account the amount of memory a system has. |
| */ |
| #define IP_MAX_CACHE_TABLE_SIZE 4096 |
| |
| static uint32_t ip_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE; |
| static uint32_t ip6_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE; |
| |
| #define NUM_ILLS 3 /* To build the ILL list to unlock */ |
| |
| /* Zero iulp_t for initialization. */ |
| const iulp_t ire_uinfo_null = { 0 }; |
| |
| static int ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, |
| ipsq_func_t func); |
| static int ire_add_srcif_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, |
| ipsq_func_t func); |
| static ire_t *ire_update_srcif_v4(ire_t *ire); |
| static void ire_delete_v4(ire_t *ire); |
| static void ire_report_ftable(ire_t *ire, char *mp); |
| static void ire_report_ctable(ire_t *ire, char *mp); |
| static void ire_report_mrtun_table(ire_t *ire, char *mp); |
| static void ire_report_srcif_table(ire_t *ire, char *mp); |
| static void ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, |
| zoneid_t zoneid); |
| static void ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, |
| pfv_t func, void *arg, uchar_t vers, ill_t *ill); |
| static void ire_walk_ill_tables(uint_t match_flags, uint_t ire_type, |
| pfv_t func, void *arg, size_t ftbl_sz, size_t htbl_sz, irb_t **ipftbl, |
| size_t ctbl_sz, irb_t *ipctbl, ill_t *ill, zoneid_t zoneid); |
| static void ire_delete_host_redirects(ipaddr_t gateway); |
| static boolean_t ire_match_args(ire_t *ire, ipaddr_t addr, ipaddr_t mask, |
| ipaddr_t gateway, int type, const ipif_t *ipif, zoneid_t zoneid, |
| uint32_t ihandle, const ts_label_t *tsl, int match_flags); |
| static void ire_cache_cleanup(irb_t *irb, uint32_t threshold, int cnt); |
| extern void ill_unlock_ills(ill_t **list, int cnt); |
| static void ire_fastpath_list_add(ill_t *ill, ire_t *ire); |
| extern void th_trace_rrecord(th_trace_t *); |
| #ifdef IRE_DEBUG |
| static void ire_trace_inactive(ire_t *); |
| #endif |
| |
| /* |
| * To avoid bloating the code, we call this function instead of |
| * using the macro IRE_REFRELE. Use macro only in performance |
| * critical paths. |
| * |
| * Must not be called while holding any locks. Otherwise if this is |
| * the last reference to be released there is a chance of recursive mutex |
| * panic due to ire_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying |
| * to restart an ioctl. The one exception is when the caller is sure that |
| * this is not the last reference to be released. Eg. if the caller is |
| * sure that the ire has not been deleted and won't be deleted. |
| */ |
| void |
| ire_refrele(ire_t *ire) |
| { |
| IRE_REFRELE(ire); |
| } |
| |
| void |
| ire_refrele_notr(ire_t *ire) |
| { |
| IRE_REFRELE_NOTR(ire); |
| } |
| |
| /* |
| * kmem_cache_alloc constructor for IRE in kma space. |
| * Note that when ire_mp is set the IRE is stored in that mblk and |
| * not in this cache. |
| */ |
| /* ARGSUSED */ |
| static int |
| ip_ire_constructor(void *buf, void *cdrarg, int kmflags) |
| { |
| ire_t *ire = buf; |
| |
| ire->ire_fp_mp = NULL; |
| ire->ire_dlureq_mp = NULL; |
| |
| return (0); |
| } |
| |
| /* ARGSUSED1 */ |
| static void |
| ip_ire_destructor(void *buf, void *cdrarg) |
| { |
| ire_t *ire = buf; |
| |
| ASSERT(ire->ire_fp_mp == NULL); |
| ASSERT(ire->ire_dlureq_mp == NULL); |
| } |
| |
| /* |
| * This function is associated with the IP_IOC_IRE_ADVISE_NO_REPLY |
| * IOCTL. It is used by TCP (or other ULPs) to supply revised information |
| * for an existing CACHED IRE. |
| */ |
| /* ARGSUSED */ |
| int |
| ip_ire_advise(queue_t *q, mblk_t *mp, cred_t *ioc_cr) |
| { |
| uchar_t *addr_ucp; |
| ipic_t *ipic; |
| ire_t *ire; |
| ipaddr_t addr; |
| in6_addr_t v6addr; |
| irb_t *irb; |
| zoneid_t zoneid; |
| |
| ASSERT(q->q_next == NULL); |
| zoneid = Q_TO_CONN(q)->conn_zoneid; |
| |
| /* |
| * Check privilege using the ioctl credential; if it is NULL |
| * then this is a kernel message and therefor privileged. |
| */ |
| if (ioc_cr != NULL && secpolicy_net_config(ioc_cr, B_FALSE) != 0) |
| return (EPERM); |
| |
| ipic = (ipic_t *)mp->b_rptr; |
| if (!(addr_ucp = mi_offset_param(mp, ipic->ipic_addr_offset, |
| ipic->ipic_addr_length))) { |
| return (EINVAL); |
| } |
| if (!OK_32PTR(addr_ucp)) |
| return (EINVAL); |
| switch (ipic->ipic_addr_length) { |
| case IP_ADDR_LEN: { |
| /* Extract the destination address. */ |
| addr = *(ipaddr_t *)addr_ucp; |
| /* Find the corresponding IRE. */ |
| ire = ire_cache_lookup(addr, zoneid, NULL); |
| break; |
| } |
| case IPV6_ADDR_LEN: { |
| /* Extract the destination address. */ |
| v6addr = *(in6_addr_t *)addr_ucp; |
| /* Find the corresponding IRE. */ |
| ire = ire_cache_lookup_v6(&v6addr, zoneid, NULL); |
| break; |
| } |
| default: |
| return (EINVAL); |
| } |
| |
| if (ire == NULL) |
| return (ENOENT); |
| /* |
| * Update the round trip time estimate and/or the max frag size |
| * and/or the slow start threshold. |
| * |
| * We serialize multiple advises using ire_lock. |
| */ |
| mutex_enter(&ire->ire_lock); |
| if (ipic->ipic_rtt) { |
| /* |
| * If there is no old cached values, initialize them |
| * conservatively. Set them to be (1.5 * new value). |
| */ |
| if (ire->ire_uinfo.iulp_rtt != 0) { |
| ire->ire_uinfo.iulp_rtt = (ire->ire_uinfo.iulp_rtt + |
| ipic->ipic_rtt) >> 1; |
| } else { |
| ire->ire_uinfo.iulp_rtt = ipic->ipic_rtt + |
| (ipic->ipic_rtt >> 1); |
| } |
| if (ire->ire_uinfo.iulp_rtt_sd != 0) { |
| ire->ire_uinfo.iulp_rtt_sd = |
| (ire->ire_uinfo.iulp_rtt_sd + |
| ipic->ipic_rtt_sd) >> 1; |
| } else { |
| ire->ire_uinfo.iulp_rtt_sd = ipic->ipic_rtt_sd + |
| (ipic->ipic_rtt_sd >> 1); |
| } |
| } |
| if (ipic->ipic_max_frag) |
| ire->ire_max_frag = MIN(ipic->ipic_max_frag, IP_MAXPACKET); |
| if (ipic->ipic_ssthresh != 0) { |
| if (ire->ire_uinfo.iulp_ssthresh != 0) |
| ire->ire_uinfo.iulp_ssthresh = |
| (ipic->ipic_ssthresh + |
| ire->ire_uinfo.iulp_ssthresh) >> 1; |
| else |
| ire->ire_uinfo.iulp_ssthresh = ipic->ipic_ssthresh; |
| } |
| /* |
| * Don't need the ire_lock below this. ire_type does not change |
| * after initialization. ire_marks is protected by irb_lock. |
| */ |
| mutex_exit(&ire->ire_lock); |
| |
| if (ipic->ipic_ire_marks != 0 && ire->ire_type == IRE_CACHE) { |
| /* |
| * Only increment the temporary IRE count if the original |
| * IRE is not already marked temporary. |
| */ |
| irb = ire->ire_bucket; |
| rw_enter(&irb->irb_lock, RW_WRITER); |
| if ((ipic->ipic_ire_marks & IRE_MARK_TEMPORARY) && |
| !(ire->ire_marks & IRE_MARK_TEMPORARY)) { |
| irb->irb_tmp_ire_cnt++; |
| } |
| ire->ire_marks |= ipic->ipic_ire_marks; |
| rw_exit(&irb->irb_lock); |
| } |
| |
| ire_refrele(ire); |
| return (0); |
| } |
| |
| /* |
| * This function is associated with the IP_IOC_IRE_DELETE[_NO_REPLY] |
| * IOCTL[s]. The NO_REPLY form is used by TCP to delete a route IRE |
| * for a host that is not responding. This will force an attempt to |
| * establish a new route, if available. Management processes may want |
| * to use the version that generates a reply. |
| * |
| * This function does not support IPv6 since Neighbor Unreachability Detection |
| * means that negative advise like this is useless. |
| */ |
| /* ARGSUSED */ |
| int |
| ip_ire_delete(queue_t *q, mblk_t *mp, cred_t *ioc_cr) |
| { |
| uchar_t *addr_ucp; |
| ipaddr_t addr; |
| ire_t *ire; |
| ipid_t *ipid; |
| boolean_t routing_sock_info = B_FALSE; /* Sent info? */ |
| zoneid_t zoneid; |
| |
| ASSERT(q->q_next == NULL); |
| zoneid = Q_TO_CONN(q)->conn_zoneid; |
| |
| /* |
| * Check privilege using the ioctl credential; if it is NULL |
| * then this is a kernel message and therefor privileged. |
| */ |
| if (ioc_cr != NULL && secpolicy_net_config(ioc_cr, B_FALSE) != 0) |
| return (EPERM); |
| |
| ipid = (ipid_t *)mp->b_rptr; |
| |
| /* Only actions on IRE_CACHEs are acceptable at present. */ |
| if (ipid->ipid_ire_type != IRE_CACHE) |
| return (EINVAL); |
| |
| addr_ucp = mi_offset_param(mp, ipid->ipid_addr_offset, |
| ipid->ipid_addr_length); |
| if (addr_ucp == NULL || !OK_32PTR(addr_ucp)) |
| return (EINVAL); |
| switch (ipid->ipid_addr_length) { |
| case IP_ADDR_LEN: |
| /* addr_ucp points at IP addr */ |
| break; |
| case sizeof (sin_t): { |
| sin_t *sin; |
| /* |
| * got complete (sockaddr) address - increment addr_ucp to point |
| * at the ip_addr field. |
| */ |
| sin = (sin_t *)addr_ucp; |
| addr_ucp = (uchar_t *)&sin->sin_addr.s_addr; |
| break; |
| } |
| default: |
| return (EINVAL); |
| } |
| /* Extract the destination address. */ |
| bcopy(addr_ucp, &addr, IP_ADDR_LEN); |
| |
| /* Try to find the CACHED IRE. */ |
| ire = ire_cache_lookup(addr, zoneid, NULL); |
| |
| /* Nail it. */ |
| if (ire) { |
| /* Allow delete only on CACHE entries */ |
| if (ire->ire_type != IRE_CACHE) { |
| ire_refrele(ire); |
| return (EINVAL); |
| } |
| |
| /* |
| * Verify that the IRE has been around for a while. |
| * This is to protect against transport protocols |
| * that are too eager in sending delete messages. |
| */ |
| if (gethrestime_sec() < |
| ire->ire_create_time + ip_ignore_delete_time) { |
| ire_refrele(ire); |
| return (EINVAL); |
| } |
| /* |
| * Now we have a potentially dead cache entry. We need |
| * to remove it. |
| * If this cache entry is generated from a default route, |
| * search the default list and mark it dead and some |
| * background process will try to activate it. |
| */ |
| if ((ire->ire_gateway_addr != 0) && (ire->ire_cmask == 0)) { |
| /* |
| * Make sure that we pick a different |
| * IRE_DEFAULT next time. |
| * The ip_ire_default_count tracks the number of |
| * IRE_DEFAULT entries. However, the |
| * ip_forwarding_table[0] also contains |
| * interface routes thus the count can be zero. |
| */ |
| ire_t *gw_ire; |
| irb_t *irb_ptr; |
| irb_t *irb; |
| |
| if (((irb_ptr = ip_forwarding_table[0]) != NULL) && |
| (irb = &irb_ptr[0])->irb_ire != NULL && |
| ip_ire_default_count != 0) { |
| uint_t index; |
| |
| /* |
| * We grab it as writer just to serialize |
| * multiple threads trying to bump up |
| * ip_ire_default_index. |
| */ |
| rw_enter(&irb->irb_lock, RW_WRITER); |
| if ((gw_ire = irb->irb_ire) == NULL) { |
| rw_exit(&irb->irb_lock); |
| goto done; |
| } |
| index = ip_ire_default_index % |
| ip_ire_default_count; |
| while (index-- && gw_ire->ire_next != NULL) |
| gw_ire = gw_ire->ire_next; |
| |
| /* Skip past the potentially bad gateway */ |
| if (ire->ire_gateway_addr == |
| gw_ire->ire_gateway_addr) |
| ip_ire_default_index++; |
| |
| rw_exit(&irb->irb_lock); |
| } |
| } |
| done: |
| /* report the bad route to routing sockets */ |
| ip_rts_change(RTM_LOSING, ire->ire_addr, ire->ire_gateway_addr, |
| ire->ire_mask, ire->ire_src_addr, 0, 0, 0, |
| (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA)); |
| routing_sock_info = B_TRUE; |
| ire_delete(ire); |
| ire_refrele(ire); |
| } |
| /* Also look for an IRE_HOST_REDIRECT and remove it if present */ |
| ire = ire_route_lookup(addr, 0, 0, IRE_HOST_REDIRECT, NULL, NULL, |
| ALL_ZONES, NULL, MATCH_IRE_TYPE); |
| |
| /* Nail it. */ |
| if (ire) { |
| if (!routing_sock_info) { |
| ip_rts_change(RTM_LOSING, ire->ire_addr, |
| ire->ire_gateway_addr, ire->ire_mask, |
| ire->ire_src_addr, 0, 0, 0, |
| (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA)); |
| } |
| ire_delete(ire); |
| ire_refrele(ire); |
| } |
| return (0); |
| } |
| |
| /* |
| * Named Dispatch routine to produce a formatted report on all IREs. |
| * This report is accessed by using the ndd utility to "get" ND variable |
| * "ipv4_ire_status". |
| */ |
| /* ARGSUSED */ |
| int |
| ip_ire_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) |
| { |
| zoneid_t zoneid; |
| |
| (void) mi_mpprintf(mp, |
| "IRE " MI_COL_HDRPAD_STR |
| /* 01234567[89ABCDEF] */ |
| "rfq " MI_COL_HDRPAD_STR |
| /* 01234567[89ABCDEF] */ |
| "stq " MI_COL_HDRPAD_STR |
| /* 01234567[89ABCDEF] */ |
| " zone " |
| /* 12345 */ |
| "addr mask " |
| /* 123.123.123.123 123.123.123.123 */ |
| "src gateway mxfrg rtt rtt_sd ssthresh ref " |
| /* 123.123.123.123 123.123.123.123 12345 12345 123456 12345678 123 */ |
| "rtomax tstamp_ok wscale_ok ecn_ok pmtud_ok sack sendpipe " |
| /* 123456 123456789 123456789 123456 12345678 1234 12345678 */ |
| "recvpipe in/out/forward type"); |
| /* 12345678 in/out/forward xxxxxxxxxx */ |
| |
| /* |
| * Because of the ndd constraint, at most we can have 64K buffer |
| * to put in all IRE info. So to be more efficient, just |
| * allocate a 64K buffer here, assuming we need that large buffer. |
| * This should be OK as only root can do ndd /dev/ip. |
| */ |
| if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { |
| /* The following may work even if we cannot get a large buf. */ |
| (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); |
| return (0); |
| } |
| |
| zoneid = Q_TO_CONN(q)->conn_zoneid; |
| if (zoneid == GLOBAL_ZONEID) |
| zoneid = ALL_ZONES; |
| |
| ire_walk_v4(ire_report_ftable, mp->b_cont, zoneid); |
| ire_walk_v4(ire_report_ctable, mp->b_cont, zoneid); |
| |
| return (0); |
| } |
| |
| /* ire_walk routine invoked for ip_ire_report for each IRE. */ |
| static void |
| ire_report_ftable(ire_t *ire, char *mp) |
| { |
| char buf1[16]; |
| char buf2[16]; |
| char buf3[16]; |
| char buf4[16]; |
| uint_t fo_pkt_count; |
| uint_t ib_pkt_count; |
| int ref; |
| uint_t print_len, buf_len; |
| |
| if (ire->ire_type & IRE_CACHETABLE) |
| return; |
| buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; |
| if (buf_len <= 0) |
| return; |
| |
| /* Number of active references of this ire */ |
| ref = ire->ire_refcnt; |
| /* "inbound" to a non local address is a forward */ |
| ib_pkt_count = ire->ire_ib_pkt_count; |
| fo_pkt_count = 0; |
| if (!(ire->ire_type & (IRE_LOCAL|IRE_BROADCAST))) { |
| fo_pkt_count = ib_pkt_count; |
| ib_pkt_count = 0; |
| } |
| print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, |
| MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR "%5d " |
| "%s %s %s %s %05d %05ld %06ld %08d %03d %06d %09d %09d %06d %08d " |
| "%04d %08d %08d %d/%d/%d %s\n", |
| (void *)ire, (void *)ire->ire_rfq, (void *)ire->ire_stq, |
| (int)ire->ire_zoneid, |
| ip_dot_addr(ire->ire_addr, buf1), ip_dot_addr(ire->ire_mask, buf2), |
| ip_dot_addr(ire->ire_src_addr, buf3), |
| ip_dot_addr(ire->ire_gateway_addr, buf4), |
| ire->ire_max_frag, ire->ire_uinfo.iulp_rtt, |
| ire->ire_uinfo.iulp_rtt_sd, |
| ire->ire_uinfo.iulp_ssthresh, ref, |
| ire->ire_uinfo.iulp_rtomax, |
| (ire->ire_uinfo.iulp_tstamp_ok ? 1: 0), |
| (ire->ire_uinfo.iulp_wscale_ok ? 1: 0), |
| (ire->ire_uinfo.iulp_ecn_ok ? 1: 0), |
| (ire->ire_uinfo.iulp_pmtud_ok ? 1: 0), |
| ire->ire_uinfo.iulp_sack, |
| ire->ire_uinfo.iulp_spipe, ire->ire_uinfo.iulp_rpipe, |
| ib_pkt_count, ire->ire_ob_pkt_count, fo_pkt_count, |
| ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type)); |
| if (print_len < buf_len) { |
| ((mblk_t *)mp)->b_wptr += print_len; |
| } else { |
| ((mblk_t *)mp)->b_wptr += buf_len; |
| } |
| } |
| |
| /* ire_walk routine invoked for ip_ire_report for each cached IRE. */ |
| static void |
| ire_report_ctable(ire_t *ire, char *mp) |
| { |
| char buf1[16]; |
| char buf2[16]; |
| char buf3[16]; |
| char buf4[16]; |
| uint_t fo_pkt_count; |
| uint_t ib_pkt_count; |
| int ref; |
| uint_t print_len, buf_len; |
| |
| if ((ire->ire_type & IRE_CACHETABLE) == 0) |
| return; |
| buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; |
| if (buf_len <= 0) |
| return; |
| |
| /* Number of active references of this ire */ |
| ref = ire->ire_refcnt; |
| /* "inbound" to a non local address is a forward */ |
| ib_pkt_count = ire->ire_ib_pkt_count; |
| fo_pkt_count = 0; |
| if (!(ire->ire_type & (IRE_LOCAL|IRE_BROADCAST))) { |
| fo_pkt_count = ib_pkt_count; |
| ib_pkt_count = 0; |
| } |
| print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, |
| MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR "%5d " |
| "%s %s %s %s %05d %05ld %06ld %08d %03d %06d %09d %09d %06d %08d " |
| "%04d %08d %08d %d/%d/%d %s\n", |
| (void *)ire, (void *)ire->ire_rfq, (void *)ire->ire_stq, |
| (int)ire->ire_zoneid, |
| ip_dot_addr(ire->ire_addr, buf1), ip_dot_addr(ire->ire_mask, buf2), |
| ip_dot_addr(ire->ire_src_addr, buf3), |
| ip_dot_addr(ire->ire_gateway_addr, buf4), |
| ire->ire_max_frag, ire->ire_uinfo.iulp_rtt, |
| ire->ire_uinfo.iulp_rtt_sd, ire->ire_uinfo.iulp_ssthresh, ref, |
| ire->ire_uinfo.iulp_rtomax, |
| (ire->ire_uinfo.iulp_tstamp_ok ? 1: 0), |
| (ire->ire_uinfo.iulp_wscale_ok ? 1: 0), |
| (ire->ire_uinfo.iulp_ecn_ok ? 1: 0), |
| (ire->ire_uinfo.iulp_pmtud_ok ? 1: 0), |
| ire->ire_uinfo.iulp_sack, |
| ire->ire_uinfo.iulp_spipe, ire->ire_uinfo.iulp_rpipe, |
| ib_pkt_count, ire->ire_ob_pkt_count, fo_pkt_count, |
| ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type)); |
| if (print_len < buf_len) { |
| ((mblk_t *)mp)->b_wptr += print_len; |
| } else { |
| ((mblk_t *)mp)->b_wptr += buf_len; |
| } |
| } |
| |
| /* ARGSUSED */ |
| int |
| ip_ire_report_mrtun(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) |
| { |
| (void) mi_mpprintf(mp, |
| "IRE " MI_COL_HDRPAD_STR |
| /* 01234567[89ABCDEF] */ |
| "stq " MI_COL_HDRPAD_STR |
| /* 01234567[89ABCDEF] */ |
| "in_ill " MI_COL_HDRPAD_STR |
| /* 01234567[89ABCDEF] */ |
| "in_src_addr " |
| /* 123.123.123.123 */ |
| "max_frag " |
| /* 12345 */ |
| "ref "); |
| /* 123 */ |
| |
| ire_walk_ill_mrtun(0, 0, ire_report_mrtun_table, mp, NULL); |
| return (0); |
| } |
| |
| /* mrtun report table - supports ipv4_mrtun_ire_status ndd variable */ |
| |
| static void |
| ire_report_mrtun_table(ire_t *ire, char *mp) |
| { |
| char buf1[INET_ADDRSTRLEN]; |
| int ref; |
| |
| /* Number of active references of this ire */ |
| ref = ire->ire_refcnt; |
| ASSERT(ire->ire_type == IRE_MIPRTUN); |
| (void) mi_mpprintf((mblk_t *)mp, |
| MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR |
| "%s %05d %03d", |
| (void *)ire, (void *)ire->ire_stq, |
| (void *)ire->ire_in_ill, |
| ip_dot_addr(ire->ire_in_src_addr, buf1), |
| ire->ire_max_frag, ref); |
| } |
| |
| /* |
| * Dispatch routine to format ires in interface based routine |
| */ |
| /* ARGSUSED */ |
| int |
| ip_ire_report_srcif(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) |
| { |
| |
| /* Report all interface based ires */ |
| |
| (void) mi_mpprintf(mp, |
| "IRE " MI_COL_HDRPAD_STR |
| /* 01234567[89ABCDEF] */ |
| "stq " MI_COL_HDRPAD_STR |
| /* 01234567[89ABCDEF] */ |
| "in_ill " MI_COL_HDRPAD_STR |
| /* 01234567[89ABCDEF] */ |
| "addr " |
| /* 123.123.123.123 */ |
| "gateway " |
| /* 123.123.123.123 */ |
| "max_frag " |
| /* 12345 */ |
| "ref " |
| /* 123 */ |
| "type " |
| /* ABCDEFGH */ |
| "in/out/forward"); |
| ire_walk_srcif_table_v4(ire_report_srcif_table, mp); |
| return (0); |
| } |
| |
| /* Reports the interface table ires */ |
| static void |
| ire_report_srcif_table(ire_t *ire, char *mp) |
| { |
| char buf1[INET_ADDRSTRLEN]; |
| char buf2[INET_ADDRSTRLEN]; |
| int ref; |
| |
| ref = ire->ire_refcnt; |
| (void) mi_mpprintf((mblk_t *)mp, |
| MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR |
| "%s %s %05d %03d %s %d", |
| (void *)ire, (void *)ire->ire_stq, |
| (void *)ire->ire_in_ill, |
| ip_dot_addr(ire->ire_addr, buf1), |
| ip_dot_addr(ire->ire_gateway_addr, buf2), |
| ire->ire_max_frag, ref, |
| ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type), |
| ire->ire_ib_pkt_count); |
| |
| } |
| /* |
| * ip_ire_req is called by ip_wput when an IRE_DB_REQ_TYPE message is handed |
| * down from the Upper Level Protocol to request a copy of the IRE (to check |
| * its type or to extract information like round-trip time estimates or the |
| * MTU.) |
| * The address is assumed to be in the ire_addr field. If no IRE is found |
| * an IRE is returned with ire_type being zero. |
| * Note that the upper lavel protocol has to check for broadcast |
| * (IRE_BROADCAST) and multicast (CLASSD(addr)). |
| * If there is a b_cont the resulting IRE_DB_TYPE mblk is placed at the |
| * end of the returned message. |
| * |
| * TCP sends down a message of this type with a connection request packet |
| * chained on. UDP and ICMP send it down to verify that a route exists for |
| * the destination address when they get connected. |
| */ |
| void |
| ip_ire_req(queue_t *q, mblk_t *mp) |
| { |
| ire_t *inire; |
| ire_t *ire; |
| mblk_t *mp1; |
| ire_t *sire = NULL; |
| zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid; |
| |
| if ((mp->b_wptr - mp->b_rptr) < sizeof (ire_t) || |
| !OK_32PTR(mp->b_rptr)) { |
| freemsg(mp); |
| return; |
| } |
| inire = (ire_t *)mp->b_rptr; |
| /* |
| * Got it, now take our best shot at an IRE. |
| */ |
| if (inire->ire_ipversion == IPV6_VERSION) { |
| ire = ire_route_lookup_v6(&inire->ire_addr_v6, 0, 0, 0, |
| NULL, &sire, zoneid, NULL, |
| (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT)); |
| } else { |
| ASSERT(inire->ire_ipversion == IPV4_VERSION); |
| ire = ire_route_lookup(inire->ire_addr, 0, 0, 0, |
| NULL, &sire, zoneid, NULL, |
| (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT)); |
| } |
| |
| /* |
| * We prevent returning IRES with source address INADDR_ANY |
| * as these were temporarily created for sending packets |
| * from endpoints that have conn_unspec_src set. |
| */ |
| if (ire == NULL || |
| (ire->ire_ipversion == IPV4_VERSION && |
| ire->ire_src_addr == INADDR_ANY) || |
| (ire->ire_ipversion == IPV6_VERSION && |
| IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6))) { |
| inire->ire_type = 0; |
| } else { |
| bcopy(ire, inire, sizeof (ire_t)); |
| /* Copy the route metrics from the parent. */ |
| if (sire != NULL) { |
| bcopy(&(sire->ire_uinfo), &(inire->ire_uinfo), |
| sizeof (iulp_t)); |
| } |
| |
| /* |
| * As we don't lookup global policy here, we may not |
| * pass the right size if per-socket policy is not |
| * present. For these cases, path mtu discovery will |
| * do the right thing. |
| */ |
| inire->ire_ipsec_overhead = conn_ipsec_length(Q_TO_CONN(q)); |
| |
| /* Pass the latest setting of the ip_path_mtu_discovery */ |
| inire->ire_frag_flag |= (ip_path_mtu_discovery) ? IPH_DF : 0; |
| } |
| if (ire != NULL) |
| ire_refrele(ire); |
| if (sire != NULL) |
| ire_refrele(sire); |
| mp->b_wptr = &mp->b_rptr[sizeof (ire_t)]; |
| mp->b_datap->db_type = IRE_DB_TYPE; |
| |
| /* Put the IRE_DB_TYPE mblk last in the chain */ |
| mp1 = mp->b_cont; |
| if (mp1 != NULL) { |
| mp->b_cont = NULL; |
| linkb(mp1, mp); |
| mp = mp1; |
| } |
| qreply(q, mp); |
| } |
| |
| /* |
| * Send a packet using the specified IRE. |
| * If ire_src_addr_v6 is all zero then discard the IRE after |
| * the packet has been sent. |
| */ |
| static void |
| ire_send(queue_t *q, mblk_t *pkt, ire_t *ire) |
| { |
| mblk_t *mp; |
| mblk_t *ipsec_mp; |
| boolean_t is_secure; |
| uint_t ifindex; |
| ill_t *ill; |
| |
| ASSERT(ire->ire_ipversion == IPV4_VERSION); |
| ipsec_mp = pkt; |
| is_secure = (pkt->b_datap->db_type == M_CTL); |
| if (is_secure) |
| pkt = pkt->b_cont; |
| |
| /* If the packet originated externally then */ |
| if (pkt->b_prev) { |
| ire_refrele(ire); |
| /* |
| * Extract the ifindex from b_prev (set in ip_rput_noire). |
| * Look up interface to see if it still exists (it could have |
| * been unplumbed by the time the reply came back from ARP) |
| */ |
| ifindex = (uint_t)(uintptr_t)pkt->b_prev; |
| ill = ill_lookup_on_ifindex(ifindex, B_FALSE, |
| NULL, NULL, NULL, NULL); |
| if (ill == NULL) { |
| pkt->b_prev = NULL; |
| pkt->b_next = NULL; |
| freemsg(ipsec_mp); |
| return; |
| } |
| q = ill->ill_rq; |
| pkt->b_prev = NULL; |
| mp = allocb(0, BPRI_HI); |
| if (mp == NULL) { |
| ill_refrele(ill); |
| pkt->b_next = NULL; |
| freemsg(ipsec_mp); |
| return; |
| } |
| mp->b_datap->db_type = M_BREAK; |
| /* |
| * This packet has not gone through IPSEC processing |
| * and hence we should not have any IPSEC message |
| * prepended. |
| */ |
| ASSERT(ipsec_mp == pkt); |
| mp->b_cont = ipsec_mp; |
| put(q, mp); |
| ill_refrele(ill); |
| } else if (pkt->b_next) { |
| /* Packets from multicast router */ |
| pkt->b_next = NULL; |
| /* |
| * We never get the IPSEC_OUT while forwarding the |
| * packet for multicast router. |
| */ |
| ASSERT(ipsec_mp == pkt); |
| ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, ipsec_mp, NULL); |
| ire_refrele(ire); |
| } else { |
| /* Locally originated packets */ |
| boolean_t is_inaddr_any; |
| ipha_t *ipha = (ipha_t *)pkt->b_rptr; |
| |
| /* |
| * We need to do an ire_delete below for which |
| * we need to make sure that the IRE will be |
| * around even after calling ip_wput_ire - |
| * which does ire_refrele. Otherwise somebody |
| * could potentially delete this ire and hence |
| * free this ire and we will be calling ire_delete |
| * on a freed ire below. |
| */ |
| is_inaddr_any = (ire->ire_src_addr == INADDR_ANY); |
| if (is_inaddr_any) { |
| IRE_REFHOLD(ire); |
| } |
| /* |
| * If we were resolving a router we can not use the |
| * routers IRE for sending the packet (since it would |
| * violate the uniqness of the IP idents) thus we |
| * make another pass through ip_wput to create the IRE_CACHE |
| * for the destination. |
| * When IRE_MARK_NOADD is set, ire_add() is not called. |
| * Thus ip_wput() will never find a ire and result in an |
| * infinite loop. Thus we check whether IRE_MARK_NOADD is |
| * is set. This also implies that IRE_MARK_NOADD can only be |
| * used to send packets to directly connected hosts. |
| */ |
| if (ipha->ipha_dst != ire->ire_addr && |
| !(ire->ire_marks & IRE_MARK_NOADD)) { |
| ire_refrele(ire); /* Held in ire_add */ |
| (void) ip_output(Q_TO_CONN(q), ipsec_mp, q, IRE_SEND); |
| } else { |
| if (is_secure) { |
| ipsec_out_t *oi; |
| ipha_t *ipha; |
| |
| oi = (ipsec_out_t *)ipsec_mp->b_rptr; |
| ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; |
| if (oi->ipsec_out_proc_begin) { |
| /* |
| * This is the case where |
| * ip_wput_ipsec_out could not find |
| * the IRE and recreated a new one. |
| * As ip_wput_ipsec_out does ire |
| * lookups, ire_refrele for the extra |
| * bump in ire_add. |
| */ |
| ire_refrele(ire); |
| ip_wput_ipsec_out(q, ipsec_mp, ipha, |
| NULL, NULL); |
| } else { |
| /* |
| * IRE_REFRELE will be done in |
| * ip_wput_ire. |
| */ |
| ip_wput_ire(q, ipsec_mp, ire, NULL, |
| IRE_SEND); |
| } |
| } else { |
| /* |
| * IRE_REFRELE will be done in ip_wput_ire. |
| */ |
| ip_wput_ire(q, ipsec_mp, ire, NULL, |
| IRE_SEND); |
| } |
| } |
| /* |
| * Special code to support sending a single packet with |
| * conn_unspec_src using an IRE which has no source address. |
| * The IRE is deleted here after sending the packet to avoid |
| * having other code trip on it. But before we delete the |
| * ire, somebody could have looked up this ire. |
| * We prevent returning/using this IRE by the upper layers |
| * by making checks to NULL source address in other places |
| * like e.g ip_ire_append, ip_ire_req and ip_bind_connected. |
| * Though, this does not completely prevent other threads |
| * from using this ire, this should not cause any problems. |
| * |
| * NOTE : We use is_inaddr_any instead of using ire_src_addr |
| * because for the normal case i.e !is_inaddr_any, ire_refrele |
| * above could have potentially freed the ire. |
| */ |
| if (is_inaddr_any) { |
| /* |
| * If this IRE has been deleted by another thread, then |
| * ire_bucket won't be NULL, but ire_ptpn will be NULL. |
| * Thus, ire_delete will do nothing. This check |
| * guards against calling ire_delete when the IRE was |
| * never inserted in the table, which is handled by |
| * ire_delete as dropping another reference. |
| */ |
| if (ire->ire_bucket != NULL) { |
| ip1dbg(("ire_send: delete IRE\n")); |
| ire_delete(ire); |
| } |
| ire_refrele(ire); /* Held above */ |
| } |
| } |
| } |
| |
| /* |
| * Send a packet using the specified IRE. |
| * If ire_src_addr_v6 is all zero then discard the IRE after |
| * the packet has been sent. |
| */ |
| static void |
| ire_send_v6(queue_t *q, mblk_t *pkt, ire_t *ire) |
| { |
| mblk_t *ipsec_mp; |
| boolean_t secure; |
| uint_t ifindex; |
| |
| ASSERT(ire->ire_ipversion == IPV6_VERSION); |
| if (pkt->b_datap->db_type == M_CTL) { |
| ipsec_mp = pkt; |
| pkt = pkt->b_cont; |
| secure = B_TRUE; |
| } else { |
| ipsec_mp = pkt; |
| secure = B_FALSE; |
| } |
| |
| /* If the packet originated externally then */ |
| if (pkt->b_prev) { |
| ill_t *ill; |
| /* |
| * Extract the ifindex from b_prev (set in ip_rput_data_v6). |
| * Look up interface to see if it still exists (it could have |
| * been unplumbed by the time the reply came back from the |
| * resolver). Unlike IPv4 there is no need for a prepended |
| * M_BREAK since ip_rput_data_v6 does not process options |
| * before finding an IRE. |
| */ |
| ifindex = (uint_t)(uintptr_t)pkt->b_prev; |
| ill = ill_lookup_on_ifindex(ifindex, B_TRUE, |
| NULL, NULL, NULL, NULL); |
| if (ill == NULL) { |
| pkt->b_prev = NULL; |
| pkt->b_next = NULL; |
| freemsg(ipsec_mp); |
| ire_refrele(ire); /* Held in ire_add */ |
| return; |
| } |
| q = ill->ill_rq; |
| pkt->b_prev = NULL; |
| /* |
| * This packet has not gone through IPSEC processing |
| * and hence we should not have any IPSEC message |
| * prepended. |
| */ |
| ASSERT(ipsec_mp == pkt); |
| put(q, pkt); |
| ill_refrele(ill); |
| } else if (pkt->b_next) { |
| /* Packets from multicast router */ |
| pkt->b_next = NULL; |
| /* |
| * We never get the IPSEC_OUT while forwarding the |
| * packet for multicast router. |
| */ |
| ASSERT(ipsec_mp == pkt); |
| /* |
| * XXX TODO IPv6. |
| */ |
| freemsg(pkt); |
| #ifdef XXX |
| ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, pkt, NULL); |
| #endif |
| } else { |
| if (secure) { |
| ipsec_out_t *oi; |
| ip6_t *ip6h; |
| |
| oi = (ipsec_out_t *)ipsec_mp->b_rptr; |
| ip6h = (ip6_t *)ipsec_mp->b_cont->b_rptr; |
| if (oi->ipsec_out_proc_begin) { |
| /* |
| * This is the case where |
| * ip_wput_ipsec_out could not find |
| * the IRE and recreated a new one. |
| */ |
| ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, |
| NULL, NULL); |
| } else { |
| (void) ip_output_v6(Q_TO_CONN(q), ipsec_mp, |
| q, IRE_SEND); |
| } |
| } else { |
| /* |
| * Send packets through ip_output_v6 so that any |
| * ip6_info header can be processed again. |
| */ |
| (void) ip_output_v6(Q_TO_CONN(q), ipsec_mp, q, |
| IRE_SEND); |
| } |
| /* |
| * Special code to support sending a single packet with |
| * conn_unspec_src using an IRE which has no source address. |
| * The IRE is deleted here after sending the packet to avoid |
| * having other code trip on it. But before we delete the |
| * ire, somebody could have looked up this ire. |
| * We prevent returning/using this IRE by the upper layers |
| * by making checks to NULL source address in other places |
| * like e.g ip_ire_append_v6, ip_ire_req and |
| * ip_bind_connected_v6. Though, this does not completely |
| * prevent other threads from using this ire, this should |
| * not cause any problems. |
| */ |
| if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6)) { |
| ip1dbg(("ire_send_v6: delete IRE\n")); |
| ire_delete(ire); |
| } |
| } |
| ire_refrele(ire); /* Held in ire_add */ |
| } |
| |
| /* |
| * Make sure that IRE bucket does not get too long. |
| * This can cause lock up because ire_cache_lookup() |
| * may take "forever" to finish. |
| * |
| * We just remove cnt IREs each time. This means that |
| * the bucket length will stay approximately constant, |
| * depending on cnt. This should be enough to defend |
| * against DoS attack based on creating temporary IREs |
| * (for forwarding and non-TCP traffic). |
| * |
| * Note that new IRE is normally added at the tail of the |
| * bucket. This means that we are removing the "oldest" |
| * temporary IRE added. Only if there are IREs with |
| * the same ire_addr, do we not add it at the tail. Refer |
| * to ire_add_v*(). It should be OK for our purpose. |
| * |
| * For non-temporary cached IREs, we make sure that they |
| * have not been used for some time (defined below), they |
| * are non-local destinations, and there is no one using |
| * them at the moment (refcnt == 1). |
| * |
| * The above means that the IRE bucket length may become |
| * very long, consisting of mostly non-temporary IREs. |
| * This can happen when the hash function does a bad job |
| * so that most TCP connections cluster to a specific bucket. |
| * This "hopefully" should never happen. It can also |
| * happen if most TCP connections have very long lives. |
| * Even with the minimal hash table size of 256, there |
| * has to be a lot of such connections to make the bucket |
| * length unreasonably long. This should probably not |
| * happen either. The third can when this can happen is |
| * when the machine is under attack, such as SYN flooding. |
| * TCP should already have the proper mechanism to protect |
| * that. So we should be safe. |
| * |
| * This function is called by ire_add_then_send() after |
| * a new IRE is added and the packet is sent. |
| * |
| * The idle cutoff interval is set to 60s. It can be |
| * changed using /etc/system. |
| */ |
| uint32_t ire_idle_cutoff_interval = 60000; |
| |
| static void |
| ire_cache_cleanup(irb_t *irb, uint32_t threshold, int cnt) |
| { |
| ire_t *ire; |
| int tmp_cnt = cnt; |
| clock_t cut_off = drv_usectohz(ire_idle_cutoff_interval * 1000); |
| |
| /* |
| * irb is NULL if the IRE is not added to the hash. This |
| * happens when IRE_MARK_NOADD is set in ire_add_then_send() |
| * and when ires are returned from ire_update_srcif_v4() routine. |
| */ |
| if (irb == NULL) |
| return; |
| |
| IRB_REFHOLD(irb); |
| if (irb->irb_tmp_ire_cnt > threshold) { |
| for (ire = irb->irb_ire; ire != NULL && tmp_cnt > 0; |
| ire = ire->ire_next) { |
| if (ire->ire_marks & IRE_MARK_CONDEMNED) |
| continue; |
| if (ire->ire_marks & IRE_MARK_TEMPORARY) { |
| ASSERT(ire->ire_type == IRE_CACHE); |
| ire_delete(ire); |
| tmp_cnt--; |
| } |
| } |
| } |
| if (irb->irb_ire_cnt - irb->irb_tmp_ire_cnt > threshold) { |
| for (ire = irb->irb_ire; ire != NULL && cnt > 0; |
| ire = ire->ire_next) { |
| if (ire->ire_marks & IRE_MARK_CONDEMNED || |
| ire->ire_gateway_addr == 0) { |
| continue; |
| } |
| if ((ire->ire_type == IRE_CACHE) && |
| (lbolt - ire->ire_last_used_time > cut_off) && |
| (ire->ire_refcnt == 1)) { |
| ire_delete(ire); |
| cnt--; |
| } |
| } |
| } |
| IRB_REFRELE(irb); |
| } |
| |
| /* |
| * ire_add_then_send is called when a new IRE has been created in order to |
| * route an outgoing packet. Typically, it is called from ip_wput when |
| * a response comes back down from a resolver. We add the IRE, and then |
| * possibly run the packet through ip_wput or ip_rput, as appropriate. |
| * However, we do not add the newly created IRE in the cache when |
| * IRE_MARK_NOADD is set in the IRE. IRE_MARK_NOADD is set at |
| * ip_newroute_ipif(). The ires with IRE_MARK_NOADD and ires returned |
| * by ire_update_srcif_v4() are ire_refrele'd by ip_wput_ire() and get |
| * deleted. |
| * Multirouting support: the packet is silently discarded when the new IRE |
| * holds the RTF_MULTIRT flag, but is not the first IRE to be added with the |
| * RTF_MULTIRT flag for the same destination address. |
| * In this case, we just want to register this additional ire without |
| * sending the packet, as it has already been replicated through |
| * existing multirt routes in ip_wput(). |
| */ |
| void |
| ire_add_then_send(queue_t *q, ire_t *ire, mblk_t *mp) |
| { |
| irb_t *irb; |
| boolean_t drop = B_FALSE; |
| /* LINTED : set but not used in function */ |
| boolean_t mctl_present; |
| mblk_t *first_mp = NULL; |
| mblk_t *save_mp = NULL; |
| ire_t *dst_ire; |
| ipha_t *ipha; |
| ip6_t *ip6h; |
| |
| if (mp != NULL) { |
| /* |
| * We first have to retrieve the destination address carried |
| * by the packet. |
| * We can't rely on ire as it can be related to a gateway. |
| * The destination address will help in determining if |
| * other RTF_MULTIRT ires are already registered. |
| * |
| * We first need to know where we are going : v4 or V6. |
| * the ire version is enough, as there is no risk that |
| * we resolve an IPv6 address with an IPv4 ire |
| * or vice versa. |
| */ |
| if (ire->ire_ipversion == IPV4_VERSION) { |
| EXTRACT_PKT_MP(mp, first_mp, mctl_present); |
| ipha = (ipha_t *)mp->b_rptr; |
| save_mp = mp; |
| mp = first_mp; |
| |
| dst_ire = ire_cache_lookup(ipha->ipha_dst, |
| ire->ire_zoneid, MBLK_GETLABEL(mp)); |
| } else { |
| /* |
| * Get a pointer to the beginning of the IPv6 header. |
| * Ignore leading IPsec control mblks. |
| */ |
| first_mp = mp; |
| if (mp->b_datap->db_type == M_CTL) { |
| mp = mp->b_cont; |
| } |
| ip6h = (ip6_t *)mp->b_rptr; |
| save_mp = mp; |
| mp = first_mp; |
| dst_ire = ire_cache_lookup_v6(&ip6h->ip6_dst, |
| ire->ire_zoneid, MBLK_GETLABEL(mp)); |
| } |
| if (dst_ire != NULL) { |
| if (dst_ire->ire_flags & RTF_MULTIRT) { |
| /* |
| * At least one resolved multirt route |
| * already exists for the destination, |
| * don't sent this packet: either drop it |
| * or complete the pending resolution, |
| * depending on the ire. |
| */ |
| drop = B_TRUE; |
| } |
| ip1dbg(("ire_add_then_send: dst_ire %p " |
| "[dst %08x, gw %08x], drop %d\n", |
| (void *)dst_ire, |
| (dst_ire->ire_ipversion == IPV4_VERSION) ? \ |
| ntohl(dst_ire->ire_addr) : \ |
| ntohl(V4_PART_OF_V6(dst_ire->ire_addr_v6)), |
| (dst_ire->ire_ipversion == IPV4_VERSION) ? \ |
| ntohl(dst_ire->ire_gateway_addr) : \ |
| ntohl(V4_PART_OF_V6( |
| dst_ire->ire_gateway_addr_v6)), |
| drop)); |
| ire_refrele(dst_ire); |
| } |
| } |
| |
| if (!(ire->ire_marks & IRE_MARK_NOADD)) { |
| /* |
| * Regular packets with cache bound ires and |
| * the packets from ARP response for ires which |
| * belong to the ire_srcif_v4 table, are here. |
| */ |
| if (ire->ire_in_ill == NULL) { |
| /* Add the ire */ |
| (void) ire_add(&ire, NULL, NULL, NULL); |
| } else { |
| /* |
| * This must be ARP response for ire in interface based |
| * table. Note that we don't add them in cache table, |
| * instead we update the existing table with dlureq_mp |
| * information. The reverse tunnel ires do not come |
| * here, as reverse tunnel is non-resolver interface. |
| * XXX- another design alternative was to mark the |
| * ires in interface based table with a special mark to |
| * make absolutely sure that we operate in right ires. |
| * This idea was not implemented as part of code review |
| * suggestion, as ire_in_ill suffice to distinguish |
| * between the regular ires and interface based |
| * ires now and thus we save a bit in the ire_marks. |
| */ |
| ire = ire_update_srcif_v4(ire); |
| } |
| |
| if (ire == NULL) { |
| mp->b_prev = NULL; |
| mp->b_next = NULL; |
| MULTIRT_DEBUG_UNTAG(mp); |
| freemsg(mp); |
| return; |
| } |
| if (mp == NULL) { |
| ire_refrele(ire); /* Held in ire_add_v4/v6 */ |
| return; |
| } |
| } |
| if (drop) { |
| /* |
| * If we're adding an RTF_MULTIRT ire, the resolution |
| * is over: we just drop the packet. |
| */ |
| if (ire->ire_flags & RTF_MULTIRT) { |
| if (save_mp) { |
| save_mp->b_prev = NULL; |
| save_mp->b_next = NULL; |
| } |
| MULTIRT_DEBUG_UNTAG(mp); |
| freemsg(mp); |
| } else { |
| /* |
| * Otherwise, we're adding the ire to a gateway |
| * for a multirt route. |
| * Invoke ip_newroute() to complete the resolution |
| * of the route. We will then come back here and |
| * finally drop this packet in the above code. |
| */ |
| if (ire->ire_ipversion == IPV4_VERSION) { |
| /* |
| * TODO: in order for CGTP to work in non-global |
| * zones, ip_newroute() must create the IRE |
| * cache in the zone indicated by |
| * ire->ire_zoneid. |
| */ |
| ip_newroute(q, mp, ipha->ipha_dst, 0, |
| (CONN_Q(q) ? Q_TO_CONN(q) : NULL)); |
| } else { |
| ip_newroute_v6(q, mp, &ip6h->ip6_dst, NULL, |
| NULL, ire->ire_zoneid); |
| } |
| } |
| |
| ire_refrele(ire); /* As done by ire_send(). */ |
| return; |
| } |
| /* |
| * Need to remember ire_bucket here as ire_send*() may delete |
| * the ire so we cannot reference it after that. |
| */ |
| irb = ire->ire_bucket; |
| if (ire->ire_ipversion == IPV6_VERSION) { |
| ire_send_v6(q, mp, ire); |
| /* |
| * Clean up more than 1 IRE so that the clean up does not |
| * need to be done every time when a new IRE is added and |
| * the threshold is reached. |
| */ |
| ire_cache_cleanup(irb, ip6_ire_max_bucket_cnt, 2); |
| } else { |
| ire_send(q, mp, ire); |
| ire_cache_cleanup(irb, ip_ire_max_bucket_cnt, 2); |
| } |
| } |
| |
| /* |
| * Initialize the ire that is specific to IPv4 part and call |
| * ire_init_common to finish it. |
| */ |
| ire_t * |
| ire_init(ire_t *ire, uchar_t *addr, uchar_t *mask, uchar_t *src_addr, |
| uchar_t *gateway, uchar_t *in_src_addr, uint_t *max_fragp, mblk_t *fp_mp, |
| queue_t *rfq, queue_t *stq, ushort_t type, mblk_t *dlureq_mp, ipif_t *ipif, |
| ill_t *in_ill, ipaddr_t cmask, uint32_t phandle, uint32_t ihandle, |
| uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp) |
| { |
| /* |
| * Reject IRE security attribute creation/initialization |
| * if system is not running in Trusted mode. |
| */ |
| if ((gc != NULL || gcgrp != NULL) && !is_system_labeled()) |
| return (NULL); |
| |
| if (fp_mp != NULL) { |
| /* |
| * We can't dupb() here as multiple threads could be |
| * calling dupb on the same mp which is incorrect. |
| * First dupb() should be called only by one thread. |
| */ |
| fp_mp = copyb(fp_mp); |
| if (fp_mp == NULL) |
| return (NULL); |
| } |
| |
| if (dlureq_mp != NULL) { |
| /* |
| * We can't dupb() here as multiple threads could be |
| * calling dupb on the same mp which is incorrect. |
| * First dupb() should be called only by one thread. |
| */ |
| dlureq_mp = copyb(dlureq_mp); |
| if (dlureq_mp == NULL) { |
| if (fp_mp != NULL) |
| freeb(fp_mp); |
| return (NULL); |
| } |
| } |
| |
| /* |
| * Check that IRE_IF_RESOLVER and IRE_IF_NORESOLVER have a |
| * dlureq_mp which is the ill_resolver_mp for IRE_IF_RESOLVER |
| * and DL_UNITDATA_REQ for IRE_IF_NORESOLVER. |
| */ |
| if ((type & IRE_INTERFACE) && |
| dlureq_mp == NULL) { |
| ASSERT(fp_mp == NULL); |
| ip0dbg(("ire_init: no dlureq_mp\n")); |
| return (NULL); |
| } |
| |
| BUMP_IRE_STATS(ire_stats_v4, ire_stats_alloced); |
| |
| if (addr != NULL) |
| bcopy(addr, &ire->ire_addr, IP_ADDR_LEN); |
| if (src_addr != NULL) |
| bcopy(src_addr, &ire->ire_src_addr, IP_ADDR_LEN); |
| if (mask != NULL) { |
| bcopy(mask, &ire->ire_mask, IP_ADDR_LEN); |
| ire->ire_masklen = ip_mask_to_plen(ire->ire_mask); |
| } |
| if (gateway != NULL) { |
| bcopy(gateway, &ire->ire_gateway_addr, IP_ADDR_LEN); |
| } |
| if (in_src_addr != NULL) { |
| bcopy(in_src_addr, &ire->ire_in_src_addr, IP_ADDR_LEN); |
| } |
| |
| if (type == IRE_CACHE) |
| ire->ire_cmask = cmask; |
| |
| /* ire_init_common will free the mblks upon encountering any failure */ |
| if (!ire_init_common(ire, max_fragp, fp_mp, rfq, stq, type, dlureq_mp, |
| ipif, in_ill, phandle, ihandle, flags, IPV4_VERSION, ulp_info, |
| gc, gcgrp)) |
| return (NULL); |
| |
| return (ire); |
| } |
| |
| /* |
| * Similar to ire_create except that it is called only when |
| * we want to allocate ire as an mblk e.g. we have an external |
| * resolver ARP. |
| */ |
| ire_t * |
| ire_create_mp(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway, |
| uchar_t *in_src_addr, uint_t max_frag, mblk_t *fp_mp, queue_t *rfq, |
| queue_t *stq, ushort_t type, mblk_t *dlureq_mp, ipif_t *ipif, ill_t *in_ill, |
| ipaddr_t cmask, uint32_t phandle, uint32_t ihandle, uint32_t flags, |
| const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp) |
| { |
| ire_t *ire; |
| ire_t *ret_ire; |
| mblk_t *mp; |
| |
| /* Allocate the new IRE. */ |
| mp = allocb(sizeof (ire_t), BPRI_MED); |
| if (mp == NULL) { |
| ip1dbg(("ire_create_mp: alloc failed\n")); |
| return (NULL); |
| } |
| |
| ire = (ire_t *)mp->b_rptr; |
| mp->b_wptr = (uchar_t *)&ire[1]; |
| |
| /* Start clean. */ |
| *ire = ire_null; |
| ire->ire_mp = mp; |
| mp->b_datap->db_type = IRE_DB_TYPE; |
| |
| ret_ire = ire_init(ire, addr, mask, src_addr, gateway, in_src_addr, |
| NULL, fp_mp, rfq, stq, type, dlureq_mp, ipif, in_ill, cmask, |
| phandle, ihandle, flags, ulp_info, gc, gcgrp); |
| |
| if (ret_ire == NULL) { |
| freeb(ire->ire_mp); |
| return (NULL); |
| } |
| ASSERT(ret_ire == ire); |
| /* |
| * ire_max_frag is normally zero here and is atomically set |
| * under the irebucket lock in ire_add_v[46] except for the |
| * case of IRE_MARK_NOADD. In that event the the ire_max_frag |
| * is non-zero here. |
| */ |
| ire->ire_max_frag = max_frag; |
| return (ire); |
| } |
| |
| /* |
| * ire_create is called to allocate and initialize a new IRE. |
| * |
| * NOTE : This is called as writer sometimes though not required |
| * by this function. |
| */ |
| ire_t * |
| ire_create(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway, |
| uchar_t *in_src_addr, uint_t *max_fragp, mblk_t *fp_mp, queue_t *rfq, |
| queue_t *stq, ushort_t type, mblk_t *dlureq_mp, ipif_t *ipif, ill_t *in_ill, |
| ipaddr_t cmask, uint32_t phandle, uint32_t ihandle, uint32_t flags, |
| const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp) |
| { |
| ire_t *ire; |
| ire_t *ret_ire; |
| |
| ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); |
| if (ire == NULL) { |
| ip1dbg(("ire_create: alloc failed\n")); |
| return (NULL); |
| } |
| *ire = ire_null; |
| |
| ret_ire = ire_init(ire, addr, mask, src_addr, gateway, in_src_addr, |
| max_fragp, fp_mp, rfq, stq, type, dlureq_mp, ipif, in_ill, cmask, |
| phandle, ihandle, flags, ulp_info, gc, gcgrp); |
| |
| if (ret_ire == NULL) { |
| kmem_cache_free(ire_cache, ire); |
| return (NULL); |
| } |
| ASSERT(ret_ire == ire); |
| return (ire); |
| } |
| |
| |
| /* |
| * Common to IPv4 and IPv6 |
| */ |
| boolean_t |
| ire_init_common(ire_t *ire, uint_t *max_fragp, mblk_t *fp_mp, |
| queue_t *rfq, queue_t *stq, ushort_t type, |
| mblk_t *dlureq_mp, ipif_t *ipif, ill_t *in_ill, uint32_t phandle, |
| uint32_t ihandle, uint32_t flags, uchar_t ipversion, |
| const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp) |
| { |
| ire->ire_max_fragp = max_fragp; |
| ire->ire_frag_flag |= (ip_path_mtu_discovery) ? IPH_DF : 0; |
| |
| ASSERT(fp_mp == NULL || fp_mp->b_datap->db_type == M_DATA); |
| #ifdef DEBUG |
| if (ipif != NULL) { |
| if (ipif->ipif_isv6) |
| ASSERT(ipversion == IPV6_VERSION); |
| else |
| ASSERT(ipversion == IPV4_VERSION); |
| } |
| #endif /* DEBUG */ |
| |
| /* |
| * Create/initialize IRE security attribute only in Trusted mode; |
| * if the passed in gc/gcgrp is non-NULL, we expect that the caller |
| * has held a reference to it and will release it when this routine |
| * returns a failure, otherwise we own the reference. We do this |
| * prior to initializing the rest IRE fields. |
| */ |
| if (is_system_labeled()) { |
| if ((type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST | |
| IRE_INTERFACE)) != 0) { |
| /* release references on behalf of caller */ |
| if (gc != NULL) |
| GC_REFRELE(gc); |
| if (gcgrp != NULL) |
| GCGRP_REFRELE(gcgrp); |
| } else if (tsol_ire_init_gwattr(ire, ipversion, |
| gc, gcgrp) != 0) { |
| /* free any caller-allocated mblks upon failure */ |
| if (fp_mp != NULL) |
| freeb(fp_mp); |
| if (dlureq_mp != NULL) |
| freeb(dlureq_mp); |
| return (B_FALSE); |
| } |
| } |
| |
| ire->ire_fp_mp = fp_mp; |
| ire->ire_dlureq_mp = dlureq_mp; |
| ire->ire_stq = stq; |
| ire->ire_rfq = rfq; |
| ire->ire_type = type; |
| ire->ire_flags = RTF_UP | flags; |
| ire->ire_ident = TICK_TO_MSEC(lbolt); |
| bcopy(ulp_info, &ire->ire_uinfo, sizeof (iulp_t)); |
| |
| ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count; |
| ire->ire_last_used_time = lbolt; |
| ire->ire_create_time = (uint32_t)gethrestime_sec(); |
| |
| /* |
| * If this IRE is an IRE_CACHE, inherit the handles from the |
| * parent IREs. For others in the forwarding table, assign appropriate |
| * new ones. |
| * |
| * The mutex protecting ire_handle is because ire_create is not always |
| * called as a writer. |
| */ |
| if (ire->ire_type & IRE_OFFSUBNET) { |
| mutex_enter(&ire_handle_lock); |
| ire->ire_phandle = (uint32_t)ire_handle++; |
| mutex_exit(&ire_handle_lock); |
| } else if (ire->ire_type & IRE_INTERFACE) { |
| mutex_enter(&ire_handle_lock); |
| ire->ire_ihandle = (uint32_t)ire_handle++; |
| mutex_exit(&ire_handle_lock); |
| } else if (ire->ire_type == IRE_CACHE) { |
| ire->ire_phandle = phandle; |
| ire->ire_ihandle = ihandle; |
| } |
| ire->ire_in_ill = in_ill; |
| ire->ire_ipif = ipif; |
| if (ipif != NULL) { |
| ire->ire_ipif_seqid = ipif->ipif_seqid; |
| ire->ire_zoneid = ipif->ipif_zoneid; |
| } else { |
| ire->ire_zoneid = GLOBAL_ZONEID; |
| } |
| ire->ire_ipversion = ipversion; |
| ire->ire_refcnt = 1; |
| mutex_init(&ire->ire_lock, NULL, MUTEX_DEFAULT, NULL); |
| |
| #ifdef IRE_DEBUG |
| bzero(ire->ire_trace, sizeof (th_trace_t *) * IP_TR_HASH_MAX); |
| #endif |
| |
| return (B_TRUE); |
| } |
| |
| /* |
| * This routine is called repeatedly by ipif_up to create broadcast IREs. |
| * It is passed a pointer to a slot in an IRE pointer array into which to |
| * place the pointer to the new IRE, if indeed we create one. If the |
| * IRE corresponding to the address passed in would be a duplicate of an |
| * existing one, we don't create the new one. irep is incremented before |
| * return only if we do create a new IRE. (Always called as writer.) |
| * |
| * Note that with the "match_flags" parameter, we can match on either |
| * a particular logical interface (MATCH_IRE_IPIF) or for all logical |
| * interfaces for a given physical interface (MATCH_IRE_ILL). Currently, |
| * we only create broadcast ire's on a per physical interface basis. If |
| * someone is going to be mucking with logical interfaces, it is important |
| * to call "ipif_check_bcast_ires()" to make sure that any change to a |
| * logical interface will not cause critical broadcast IRE's to be deleted. |
| */ |
| ire_t ** |
| ire_check_and_create_bcast(ipif_t *ipif, ipaddr_t addr, ire_t **irep, |
| int match_flags) |
| { |
| ire_t *ire; |
| uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST; |
| |
| /* |
| * No broadcast IREs for the LOOPBACK interface |
| * or others such as point to point and IPIF_NOXMIT. |
| */ |
| if (!(ipif->ipif_flags & IPIF_BROADCAST) || |
| (ipif->ipif_flags & IPIF_NOXMIT)) |
| return (irep); |
| |
| /* If this would be a duplicate, don't bother. */ |
| if ((ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ipif, |
| ipif->ipif_zoneid, NULL, match_flags)) != NULL) { |
| /* |
| * We look for non-deprecated (and non-anycast, non-nolocal) |
| * ipifs as the best choice. ipifs with check_flags matching |
| * (deprecated, etc) are used only if non-deprecated ipifs |
| * are not available. if the existing ire's ipif is deprecated |
| * and the new ipif is non-deprecated, switch to the new ipif |
| */ |
| if ((!(ire->ire_ipif->ipif_flags & check_flags)) || |
| (ipif->ipif_flags & check_flags)) { |
| ire_refrele(ire); |
| return (irep); |
| } |
| /* |
| * Bcast ires exist in pairs. Both have to be deleted, |
| * Since we are exclusive we can make the above assertion. |
| * The 1st has to be refrele'd since it was ctable_lookup'd. |
| */ |
| ASSERT(IAM_WRITER_IPIF(ipif)); |
| ASSERT(ire->ire_next->ire_addr == ire->ire_addr); |
| ire_delete(ire->ire_next); |
| ire_delete(ire); |
| ire_refrele(ire); |
| } |
| |
| irep = ire_create_bcast(ipif, addr, irep); |
| |
| return (irep); |
| } |
| |
| uint_t ip_loopback_mtu = IP_LOOPBACK_MTU; |
| |
| /* |
| * This routine is called from ipif_check_bcast_ires and ire_check_bcast. |
| * It leaves all the verifying and deleting to those routines. So it always |
| * creates 2 bcast ires and chains them into the ire array passed in. |
| */ |
| ire_t ** |
| ire_create_bcast(ipif_t *ipif, ipaddr_t addr, ire_t **irep) |
| { |
| *irep++ = ire_create( |
| (uchar_t *)&addr, /* dest addr */ |
| (uchar_t *)&ip_g_all_ones, /* mask */ |
| (uchar_t *)&ipif->ipif_src_addr, /* source addr */ |
| NULL, /* no gateway */ |
| NULL, /* no in_src_addr */ |
| &ipif->ipif_mtu, /* max frag */ |
| NULL, /* fast path header */ |
| ipif->ipif_rq, /* recv-from queue */ |
| ipif->ipif_wq, /* send-to queue */ |
| IRE_BROADCAST, |
| ipif->ipif_bcast_mp, /* xmit header */ |
| ipif, |
| NULL, |
| 0, |
| 0, |
| 0, |
| 0, |
| &ire_uinfo_null, |
| NULL, |
| NULL); |
| |
| *irep++ = ire_create( |
| (uchar_t *)&addr, /* dest address */ |
| (uchar_t *)&ip_g_all_ones, /* mask */ |
| (uchar_t *)&ipif->ipif_src_addr, /* source address */ |
| NULL, /* no gateway */ |
| NULL, /* no in_src_addr */ |
| &ip_loopback_mtu, /* max frag size */ |
| NULL, /* Fast Path header */ |
| ipif->ipif_rq, /* recv-from queue */ |
| NULL, /* no send-to queue */ |
| IRE_BROADCAST, /* Needed for fanout in wput */ |
| NULL, |
| ipif, |
| NULL, |
| 0, |
| 0, |
| 0, |
| 0, |
| &ire_uinfo_null, |
| NULL, |
| NULL); |
| |
| return (irep); |
| } |
| |
| /* |
| * ire_walk routine to delete or update any IRE_CACHE that might contain |
| * stale information. |
| * The flags state which entries to delete or update. |
| * Garbage collection is done separately using kmem alloc callbacks to |
| * ip_trash_ire_reclaim. |
| * Used for both IPv4 and IPv6. However, IPv6 only uses FLUSH_MTU_TIME |
| * since other stale information is cleaned up using NUD. |
| */ |
| void |
| ire_expire(ire_t *ire, char *arg) |
| { |
| int flush_flags = (int)(uintptr_t)arg; |
| ill_t *stq_ill; |
| |
| if ((flush_flags & FLUSH_REDIRECT_TIME) && |
| ire->ire_type == IRE_HOST_REDIRECT) { |
| /* Make sure we delete the corresponding IRE_CACHE */ |
| ip1dbg(("ire_expire: all redirects\n")); |
| ip_rts_rtmsg(RTM_DELETE, ire, 0); |
| ire_delete(ire); |
| return; |
| } |
| if (ire->ire_type != IRE_CACHE) |
| return; |
| |
| if (flush_flags & FLUSH_ARP_TIME) { |
| /* |
| * Remove all IRE_CACHE. |
| * Verify that create time is more than |
| * ip_ire_arp_interval milliseconds ago. |
| */ |
| if (((uint32_t)gethrestime_sec() - ire->ire_create_time) * |
| MILLISEC > ip_ire_arp_interval) { |
| ip1dbg(("ire_expire: all IRE_CACHE\n")); |
| ire_delete(ire); |
| return; |
| } |
| } |
| |
| if (ip_path_mtu_discovery && (flush_flags & FLUSH_MTU_TIME) && |
| (ire->ire_ipif != NULL)) { |
| /* Increase pmtu if it is less than the interface mtu */ |
| mutex_enter(&ire->ire_lock); |
| /* |
| * If the ipif is a vni (whose mtu is 0, since it's virtual) |
| * get the mtu from the sending interfaces' ipif |
| */ |
| if (IS_VNI(ire->ire_ipif->ipif_ill)) { |
| stq_ill = ire->ire_stq->q_ptr; |
| ire->ire_max_frag = MIN(stq_ill->ill_ipif->ipif_mtu, |
| IP_MAXPACKET); |
| } else { |
| ire->ire_max_frag = MIN(ire->ire_ipif->ipif_mtu, |
| IP_MAXPACKET); |
| } |
| ire->ire_frag_flag |= IPH_DF; |
| mutex_exit(&ire->ire_lock); |
| } |
| } |
| |
| /* |
| * Do fast path probing if necessary. |
| */ |
| static void |
| ire_fastpath(ire_t *ire) |
| { |
| ill_t *ill; |
| int res; |
| |
| if (ire->ire_fp_mp != NULL || ire->ire_dlureq_mp == NULL || |
| (ire->ire_stq == NULL)) { |
| /* |
| * Already contains fastpath info or |
| * doesn't have DL_UNITDATA_REQ header |
| * or is a loopback broadcast ire i.e. no stq. |
| */ |
| return; |
| } |
| ill = ire_to_ill(ire); |
| if (ill == NULL) |
| return; |
| ire_fastpath_list_add(ill, ire); |
| res = ill_fastpath_probe(ill, ire->ire_dlureq_mp); |
| /* |
| * EAGAIN is an indication of a transient error |
| * i.e. allocation failure etc. leave the ire in the list it will |
| * be updated when another probe happens for another ire if not |
| * it will be taken out of the list when the ire is deleted. |
| */ |
| if (res != 0 && res != EAGAIN) |
| ire_fastpath_list_delete(ill, ire); |
| } |
| |
| /* |
| * Update all IRE's that are not in fastpath mode and |
| * have an dlureq_mp that matches mp. mp->b_cont contains |
| * the fastpath header. |
| * |
| * Returns TRUE if entry should be dequeued, or FALSE otherwise. |
| */ |
| boolean_t |
| ire_fastpath_update(ire_t *ire, void *arg) |
| { |
| mblk_t *mp, *fp_mp; |
| uchar_t *up, *up2; |
| ptrdiff_t cmplen; |
| |
| ASSERT((ire->ire_type & (IRE_CACHE | IRE_BROADCAST | |
| IRE_MIPRTUN)) != 0); |
| |
| /* |
| * Already contains fastpath info or doesn't have |
| * DL_UNITDATA_REQ header. |
| */ |
| if (ire->ire_fp_mp != NULL || ire->ire_dlureq_mp == NULL) |
| return (B_TRUE); |
| |
| ip2dbg(("ire_fastpath_update: trying\n")); |
| mp = (mblk_t *)arg; |
| up = mp->b_rptr; |
| cmplen = mp->b_wptr - up; |
| /* Serialize multiple fast path updates */ |
| mutex_enter(&ire->ire_lock); |
| up2 = ire->ire_dlureq_mp->b_rptr; |
| ASSERT(cmplen >= 0); |
| if (ire->ire_dlureq_mp->b_wptr - up2 != cmplen || |
| bcmp(up, up2, cmplen) != 0) { |
| mutex_exit(&ire->ire_lock); |
| /* |
| * Don't take the ire off the fastpath list yet, |
| * since the response may come later. |
| */ |
| return (B_FALSE); |
| } |
| /* Matched - install mp as the ire_fp_mp */ |
| ip1dbg(("ire_fastpath_update: match\n")); |
| fp_mp = dupb(mp->b_cont); |
| if (fp_mp) { |
| /* |
| * We checked ire_fp_mp above. Check it again with the |
| * lock. Update fp_mp only if it has not been done |
| * already. |
| */ |
| if (ire->ire_fp_mp == NULL) { |
| /* |
| * ire_ll_hdr_length is just an optimization to |
| * store the length. It is used to return the |
| * fast path header length to the upper layers. |
| */ |
| ire->ire_fp_mp = fp_mp; |
| ire->ire_ll_hdr_length = |
| (uint_t)(fp_mp->b_wptr - fp_mp->b_rptr); |
| } else { |
| freeb(fp_mp); |
| } |
| } |
| mutex_exit(&ire->ire_lock); |
| return (B_TRUE); |
| } |
| |
| /* |
| * This function handles the DL_NOTE_FASTPATH_FLUSH notification from the |
| * driver. |
| */ |
| /* ARGSUSED */ |
| void |
| ire_fastpath_flush(ire_t *ire, void *arg) |
| { |
| ill_t *ill; |
| int res; |
| |
| /* No fastpath info? */ |
| if (ire->ire_fp_mp == NULL || ire->ire_dlureq_mp == NULL) |
| return; |
| |
| /* |
| * Just remove the IRE if it is for non-broadcast dest. Then |
| * we will create another one which will have the correct |
| * fastpath info. |
| */ |
| switch (ire->ire_type) { |
| case IRE_CACHE: |
| ire_delete(ire); |
| break; |
| case IRE_MIPRTUN: |
| case IRE_BROADCAST: |
| /* |
| * We can't delete the ire since it is difficult to |
| * recreate these ire's without going through the |
| * ipif down/up dance. The ire_fp_mp is protected by the |
| * ire_lock in the case of IRE_MIPRTUN and IRE_BROADCAST. |
| * All access to ire_fp_mp in the case of these 2 ire types |
| * is protected by ire_lock. |
| */ |
| mutex_enter(&ire->ire_lock); |
| if (ire->ire_fp_mp != NULL) { |
| freeb(ire->ire_fp_mp); |
| ire->ire_fp_mp = NULL; |
| mutex_exit(&ire->ire_lock); |
| /* |
| * No fastpath probe if there is no stq i.e. |
| * i.e. the case of loopback broadcast ire. |
| */ |
| if (ire->ire_stq == NULL) |
| break; |
| ill = (ill_t *)((ire->ire_stq)->q_ptr); |
| ire_fastpath_list_add(ill, ire); |
| res = ill_fastpath_probe(ill, ire->ire_dlureq_mp); |
| /* |
| * EAGAIN is an indication of a transient error |
| * i.e. allocation failure etc. leave the ire in the |
| * list it will be updated when another probe happens |
| * for another ire if not it will be taken out of the |
| * list when the ire is deleted. |
| */ |
| if (res != 0 && res != EAGAIN) |
| ire_fastpath_list_delete(ill, ire); |
| } else { |
| mutex_exit(&ire->ire_lock); |
| } |
| break; |
| default: |
| /* This should not happen! */ |
| ip0dbg(("ire_fastpath_flush: Wrong ire type %s\n", |
| ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type))); |
| break; |
| } |
| } |
| |
| /* |
| * Drain the list of ire's waiting for fastpath response. |
| */ |
| void |
| ire_fastpath_list_dispatch(ill_t *ill, boolean_t (*func)(ire_t *, void *), |
| void *arg) |
| { |
| ire_t *next_ire; |
| ire_t *current_ire; |
| ire_t *first_ire; |
| ire_t *prev_ire = NULL; |
| |
| ASSERT(ill != NULL); |
| |
| mutex_enter(&ill->ill_lock); |
| first_ire = current_ire = (ire_t *)ill->ill_fastpath_list; |
| while (current_ire != (ire_t *)&ill->ill_fastpath_list) { |
| next_ire = current_ire->ire_fastpath; |
| /* |
| * Take it off the list if we're flushing, or if the callback |
| * routine tells us to do so. Otherwise, leave the ire in the |
| * fastpath list to handle any pending response from the lower |
| * layer. We can't drain the list when the callback routine |
| * comparison failed, because the response is asynchronous in |
| * nature, and may not arrive in the same order as the list |
| * insertion. |
| */ |
| if (func == NULL || func(current_ire, arg)) { |
| current_ire->ire_fastpath = NULL; |
| if (current_ire == first_ire) |
| ill->ill_fastpath_list = first_ire = next_ire; |
| else |
| prev_ire->ire_fastpath = next_ire; |
| } else { |
| /* previous element that is still in the list */ |
| prev_ire = current_ire; |
| } |
| current_ire = next_ire; |
| } |
| mutex_exit(&ill->ill_lock); |
| } |
| |
| /* |
| * Add ire to the ire fastpath list. |
| */ |
| static void |
| ire_fastpath_list_add(ill_t *ill, ire_t *ire) |
| { |
| ASSERT(ill != NULL); |
| ASSERT(ire->ire_stq != NULL); |
| |
| rw_enter(&ire->ire_bucket->irb_lock, RW_READER); |
| mutex_enter(&ill->ill_lock); |
| |
| /* |
| * if ire has not been deleted and |
| * is not already in the list add it. |
| */ |
| if (((ire->ire_marks & IRE_MARK_CONDEMNED) == 0) && |
| (ire->ire_fastpath == NULL)) { |
| ire->ire_fastpath = (ire_t *)ill->ill_fastpath_list; |
| ill->ill_fastpath_list = ire; |
| } |
| |
| mutex_exit(&ill->ill_lock); |
| rw_exit(&ire->ire_bucket->irb_lock); |
| } |
| |
| /* |
| * remove ire from the ire fastpath list. |
| */ |
| void |
| ire_fastpath_list_delete(ill_t *ill, ire_t *ire) |
| { |
| ire_t *ire_ptr; |
| |
| ASSERT(ire->ire_stq != NULL && ill != NULL); |
| |
| mutex_enter(&ill->ill_lock); |
| if (ire->ire_fastpath == NULL) |
| goto done; |
| |
| ASSERT(ill->ill_fastpath_list != &ill->ill_fastpath_list); |
| |
| if (ill->ill_fastpath_list == ire) { |
| ill->ill_fastpath_list = ire->ire_fastpath; |
| } else { |
| ire_ptr = ill->ill_fastpath_list; |
| while (ire_ptr != (ire_t *)&ill->ill_fastpath_list) { |
| if (ire_ptr->ire_fastpath == ire) { |
| ire_ptr->ire_fastpath = ire->ire_fastpath; |
| break; |
| } |
| ire_ptr = ire_ptr->ire_fastpath; |
| } |
| } |
| ire->ire_fastpath = NULL; |
| done: |
| mutex_exit(&ill->ill_lock); |
| } |
| |
| |
| /* |
| * Find an IRE_INTERFACE for the multicast group. |
| * Allows different routes for multicast addresses |
| * in the unicast routing table (akin to 224.0.0.0 but could be more specific) |
| * which point at different interfaces. This is used when IP_MULTICAST_IF |
| * isn't specified (when sending) and when IP_ADD_MEMBERSHIP doesn't |
| * specify the interface to join on. |
| * |
| * Supports IP_BOUND_IF by following the ipif/ill when recursing. |
| */ |
| ire_t * |
| ire_lookup_multi(ipaddr_t group, zoneid_t zoneid) |
| { |
| ire_t *ire; |
| ipif_t *ipif = NULL; |
| int match_flags = MATCH_IRE_TYPE; |
| ipaddr_t gw_addr; |
| |
| ire = ire_ftable_lookup(group, 0, 0, 0, NULL, NULL, zoneid, |
| 0, NULL, MATCH_IRE_DEFAULT); |
| |
| /* We search a resolvable ire in case of multirouting. */ |
| if ((ire != NULL) && (ire->ire_flags & RTF_MULTIRT)) { |
| ire_t *cire = NULL; |
| /* |
| * If the route is not resolvable, the looked up ire |
| * may be changed here. In that case, ire_multirt_lookup() |
| * IRE_REFRELE the original ire and change it. |
| */ |
| (void) ire_multirt_lookup(&cire, &ire, MULTIRT_CACHEGW, NULL); |
| if (cire != NULL) |
| ire_refrele(cire); |
| } |
| if (ire == NULL) |
| return (NULL); |
| /* |
| * Make sure we follow ire_ipif. |
| * |
| * We need to determine the interface route through |
| * which the gateway will be reached. We don't really |
| * care which interface is picked if the interface is |
| * part of a group. |
| */ |
| if (ire->ire_ipif != NULL) { |
| ipif = ire->ire_ipif; |
| match_flags |= MATCH_IRE_ILL_GROUP; |
| } |
| |
| switch (ire->ire_type) { |
| case IRE_DEFAULT: |
| case IRE_PREFIX: |
| case IRE_HOST: |
| gw_addr = ire->ire_gateway_addr; |
| ire_refrele(ire); |
| ire = ire_ftable_lookup(gw_addr, 0, 0, |
| IRE_INTERFACE, ipif, NULL, zoneid, 0, |
| NULL, match_flags); |
| return (ire); |
| case IRE_IF_NORESOLVER: |
| case IRE_IF_RESOLVER: |
| return (ire); |
| default: |
| ire_refrele(ire); |
| return (NULL); |
| } |
| } |
| |
| /* |
| * Return any local address. We use this to target ourselves |
| * when the src address was specified as 'default'. |
| * Preference for IRE_LOCAL entries. |
| */ |
| ire_t * |
| ire_lookup_local(zoneid_t zoneid) |
| { |
| ire_t *ire; |
| irb_t *irb; |
| ire_t *maybe = NULL; |
| int i; |
| |
| for (i = 0; i < ip_cache_table_size; i++) { |
| irb = &ip_cache_table[i]; |
| if (irb->irb_ire == NULL) |
| continue; |
| rw_enter(&irb->irb_lock, RW_READER); |
| for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { |
| if ((ire->ire_marks & IRE_MARK_CONDEMNED) || |
| (ire->ire_zoneid != zoneid && |
| ire->ire_zoneid != ALL_ZONES)) |
| continue; |
| switch (ire->ire_type) { |
| case IRE_LOOPBACK: |
| if (maybe == NULL) { |
| IRE_REFHOLD(ire); |
| maybe = ire; |
| } |
| break; |
| case IRE_LOCAL: |
| if (maybe != NULL) { |
| ire_refrele(maybe); |
| } |
| IRE_REFHOLD(ire); |
| rw_exit(&irb->irb_lock); |
| return (ire); |
| } |
| } |
| rw_exit(&irb->irb_lock); |
| } |
| return (maybe); |
| } |
| |
| /* |
| * If the specified IRE is associated with a particular ILL, return |
| * that ILL pointer (May be called as writer.). |
| * |
| * NOTE : This is not a generic function that can be used always. |
| * This function always returns the ill of the outgoing packets |
| * if this ire is used. |
| */ |
| ill_t * |
| ire_to_ill(const ire_t *ire) |
| { |
| ill_t *ill = NULL; |
| |
| /* |
| * 1) For an IRE_CACHE, ire_ipif is the one where it obtained |
| * the source address from. ire_stq is the one where the |
| * packets will be sent out on. We return that here. |
| * |
| * 2) IRE_BROADCAST normally has a loopback and a non-loopback |
| * copy and they always exist next to each other with loopback |
| * copy being the first one. If we are called on the non-loopback |
| * copy, return the one pointed by ire_stq. If it was called on |
| * a loopback copy, we still return the one pointed by the next |
| * ire's ire_stq pointer i.e the one pointed by the non-loopback |
| * copy. We don't want use ire_ipif as it might represent the |
| * source address (if we borrow source addresses for |
| * IRE_BROADCASTS in the future). |
| * However if an interface is currently coming up, the above |
| * condition may not hold during that period since the ires |
| * are added one at a time. Thus one of the pair could have been |
| * added and the other not yet added. |
| * 3) For all others return the ones pointed by ire_ipif->ipif_ill. |
| */ |
| |
| if (ire->ire_type == IRE_CACHE) { |
| ill = (ill_t *)ire->ire_stq->q_ptr; |
| } else if (ire->ire_type == IRE_BROADCAST) { |
| if (ire->ire_stq != NULL) { |
| ill = (ill_t *)ire->ire_stq->q_ptr; |
| } else { |
| ire_t *ire_next; |
| |
| ire_next = ire->ire_next; |
| if (ire_next != NULL && |
| ire_next->ire_type == IRE_BROADCAST && |
| ire_next->ire_addr == ire->ire_addr && |
| ire_next->ire_ipif == ire->ire_ipif) { |
| ill = (ill_t *)ire_next->ire_stq->q_ptr; |
| } |
| } |
| } else if (ire->ire_ipif != NULL) { |
| ill = ire->ire_ipif->ipif_ill; |
| } |
| return (ill); |
| } |
| |
| /* Arrange to call the specified function for every IRE in the world. */ |
| void |
| ire_walk(pfv_t func, void *arg) |
| { |
| ire_walk_ipvers(func, arg, 0, ALL_ZONES); |
| } |
| |
| void |
| ire_walk_v4(pfv_t func, void *arg, zoneid_t zoneid) |
| { |
| ire_walk_ipvers(func, arg, IPV4_VERSION, zoneid); |
| } |
| |
| void |
| ire_walk_v6(pfv_t func, void *arg, zoneid_t zoneid) |
| { |
| ire_walk_ipvers(func, arg, IPV6_VERSION, zoneid); |
| } |
| |
| /* |
| * Walk a particular version. version == 0 means both v4 and v6. |
| */ |
| static void |
| ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, zoneid_t zoneid) |
| { |
| if (vers != IPV6_VERSION) { |
| ire_walk_ill_tables(0, 0, func, arg, IP_MASK_TABLE_SIZE, |
| ip_ftable_hash_size, ip_forwarding_table, |
| ip_cache_table_size, ip_cache_table, NULL, zoneid); |
| } |
| if (vers != IPV4_VERSION) { |
| ire_walk_ill_tables(0, 0, func, arg, IP6_MASK_TABLE_SIZE, |
| ip6_ftable_hash_size, ip_forwarding_table_v6, |
| ip6_cache_table_size, ip_cache_table_v6, NULL, zoneid); |
| } |
| } |
| |
| /* |
| * Arrange to call the specified |
| * function for every IRE that matches the ill. |
| */ |
| void |
| ire_walk_ill(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, |
| ill_t *ill) |
| { |
| ire_walk_ill_ipvers(match_flags, ire_type, func, arg, 0, ill); |
| } |
| |
| void |
| ire_walk_ill_v4(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, |
| ill_t *ill) |
| { |
| ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV4_VERSION, |
| ill); |
| } |
| |
| void |
| ire_walk_ill_v6(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, |
| ill_t *ill) |
| { |
| ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV6_VERSION, |
| ill); |
| } |
| |
| /* |
| * Walk a particular ill and version. version == 0 means both v4 and v6. |
| */ |
| static void |
| ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, pfv_t func, |
| void *arg, uchar_t vers, ill_t *ill) |
| { |
| if (vers != IPV6_VERSION) { |
| ire_walk_ill_tables(match_flags, ire_type, func, arg, |
| IP_MASK_TABLE_SIZE, ip_ftable_hash_size, |
| ip_forwarding_table, ip_cache_table_size, |
| ip_cache_table, ill, ALL_ZONES); |
| } |
| if (vers != IPV4_VERSION) { |
| ire_walk_ill_tables(match_flags, ire_type, func, arg, |
| IP6_MASK_TABLE_SIZE, ip6_ftable_hash_size, |
| ip_forwarding_table_v6, ip6_cache_table_size, |
| ip_cache_table_v6, ill, ALL_ZONES); |
| } |
| } |
| |
| static boolean_t |
| ire_walk_ill_match(uint_t match_flags, uint_t ire_type, ire_t *ire, |
| ill_t *ill, zoneid_t zoneid) |
| { |
| ill_t *ire_stq_ill = NULL; |
| ill_t *ire_ipif_ill = NULL; |
| ill_group_t *ire_ill_group = NULL; |
| |
| ASSERT(match_flags != 0 || zoneid != ALL_ZONES); |
| /* |
| * 1) MATCH_IRE_WQ : Used specifically to match on ire_stq. |
| * The fast path update uses this to make sure it does not |
| * update the fast path header of interface X with the fast |
| * path updates it recieved on interface Y. It is similar |
| * in handling DL_NOTE_FASTPATH_FLUSH. |
| * |
| * 2) MATCH_IRE_ILL/MATCH_IRE_ILL_GROUP : We match both on ill |
| * pointed by ire_stq and ire_ipif. Only in the case of |
| * IRE_CACHEs can ire_stq and ire_ipif be pointing to |
| * different ills. But we want to keep this function generic |
| * enough for future use. So, we always try to match on both. |
| * The only caller of this function ire_walk_ill_tables, will |
| * call "func" after we return from this function. We expect |
| * "func" to do the right filtering of ires in this case. |
| * |
| * NOTE : In the case of MATCH_IRE_ILL_GROUP, groups |
| * pointed by ire_stq and ire_ipif should always be the same. |
| * So, we just match on only one of them. |
| */ |
| if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) { |
| if (ire->ire_stq != NULL) |
| ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr; |
| if (ire->ire_ipif != NULL) |
| ire_ipif_ill = ire->ire_ipif->ipif_ill; |
| if (ire_stq_ill != NULL) |
| ire_ill_group = ire_stq_ill->ill_group; |
| if ((ire_ill_group == NULL) && (ire_ipif_ill != NULL)) |
| ire_ill_group = ire_ipif_ill->ill_group; |
| } |
| |
| if (zoneid != ALL_ZONES) { |
| /* |
| * We're walking the IREs for a specific zone. The only relevant |
| * IREs are: |
| * - all IREs with a matching ire_zoneid |
| * - all IRE_OFFSUBNETs as they're shared across all zones |
| * - IRE_INTERFACE IREs for interfaces with a usable source addr |
| * with a matching zone |
| * - IRE_DEFAULTs with a gateway reachable from the zone |
| * We should really match on IRE_OFFSUBNETs and IRE_DEFAULTs |
| * using the same rule; but the above rules are consistent with |
| * the behavior of ire_ftable_lookup[_v6]() so that all the |
| * routes that can be matched during lookup are also matched |
| * here. |
| */ |
| if (zoneid != ire->ire_zoneid && ire->ire_zoneid != ALL_ZONES) { |
| /* |
| * Note, IRE_INTERFACE can have the stq as NULL. For |
| * example, if the default multicast route is tied to |
| * the loopback address. |
| */ |
| if ((ire->ire_type & IRE_INTERFACE) && |
| (ire->ire_stq != NULL)) { |
| ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr; |
| if (ire->ire_ipversion == IPV4_VERSION) { |
| if (!ipif_usesrc_avail(ire_stq_ill, |
| zoneid)) |
| /* No usable src addr in zone */ |
| return (B_FALSE); |
| } else if (ire_stq_ill->ill_usesrc_ifindex |
| != 0) { |
| /* |
| * For IPv6 use ipif_select_source_v6() |
| * so the right scope selection is done |
| */ |
| ipif_t *src_ipif; |
| src_ipif = |
| ipif_select_source_v6(ire_stq_ill, |
| &ire->ire_addr_v6, B_FALSE, |
| IPV6_PREFER_SRC_DEFAULT, |
| zoneid); |
| if (src_ipif != NULL) { |
| ipif_refrele(src_ipif); |
| } else { |
| return (B_FALSE); |
| } |
| } else { |
| return (B_FALSE); |
| } |
| |
| } else if (!(ire->ire_type & IRE_OFFSUBNET)) { |
| return (B_FALSE); |
| } |
| } |
| |
| /* |
| * Match all default routes from the global zone, irrespective |
| * of reachability. |
| */ |
| if (ire->ire_type == IRE_DEFAULT && zoneid != GLOBAL_ZONEID) { |
| int ire_match_flags = 0; |
| in6_addr_t gw_addr_v6; |
| ire_t *rire; |
| |
| if (ire->ire_ipif != NULL) { |
| ire_match_flags |= MATCH_IRE_ILL_GROUP; |
| } |
| if (ire->ire_ipversion == IPV4_VERSION) { |
| rire = ire_route_lookup(ire->ire_gateway_addr, |
| 0, 0, 0, ire->ire_ipif, NULL, zoneid, NULL, |
| ire_match_flags); |
| } else { |
| ASSERT(ire->ire_ipversion == IPV6_VERSION); |
| mutex_enter(&ire->ire_lock); |
| gw_addr_v6 = ire->ire_gateway_addr_v6; |
| mutex_exit(&ire->ire_lock); |
| rire = ire_route_lookup_v6(&gw_addr_v6, |
| NULL, NULL, 0, ire->ire_ipif, NULL, zoneid, |
| NULL, ire_match_flags); |
| } |
| if (rire == NULL) { |
| return (B_FALSE); |
| } |
| ire_refrele(rire); |
| } |
| } |
| |
| if (((!(match_flags & MATCH_IRE_TYPE)) || |
| (ire->ire_type & ire_type)) && |
| ((!(match_flags & MATCH_IRE_WQ)) || |
| (ire->ire_stq == ill->ill_wq)) && |
| ((!(match_flags & MATCH_IRE_ILL)) || |
| (ire_stq_ill == ill || ire_ipif_ill == ill)) && |
| ((!(match_flags & MATCH_IRE_ILL_GROUP)) || |
| (ire_stq_ill == ill) || (ire_ipif_ill == ill) || |
| (ire_ill_group != NULL && |
| ire_ill_group == ill->ill_group))) { |
| return (B_TRUE); |
| } |
| return (B_FALSE); |
| } |
| |
| /* |
| * Walk the ftable and the ctable entries that match the ill. |
| */ |
| static void |
| ire_walk_ill_tables(uint_t match_flags, uint_t ire_type, pfv_t func, |
| void *arg, size_t ftbl_sz, size_t htbl_sz, irb_t **ipftbl, |
| size_t ctbl_sz, irb_t *ipctbl, ill_t *ill, zoneid_t zoneid) |
| { |
| irb_t *irb_ptr; |
| irb_t *irb; |
| ire_t *ire; |
| int i, j; |
| boolean_t ret; |
| |
| ASSERT((!(match_flags & (MATCH_IRE_WQ | MATCH_IRE_ILL | |
| MATCH_IRE_ILL_GROUP))) || (ill != NULL)); |
| ASSERT(!(match_flags & MATCH_IRE_TYPE) || (ire_type != 0)); |
| /* |
| * Optimize by not looking at the forwarding table if there |
| * is a MATCH_IRE_TYPE specified with no IRE_FORWARDTABLE |
| * specified in ire_type. |
| */ |
| if (!(match_flags & MATCH_IRE_TYPE) || |
| ((ire_type & IRE_FORWARDTABLE) != 0)) { |
| for (i = (ftbl_sz - 1); i >= 0; i--) { |
| if ((irb_ptr = ipftbl[i]) == NULL) |
| continue; |
| for (j = 0; j < htbl_sz; j++) { |
| irb = &irb_ptr[j]; |
| if (irb->irb_ire == NULL) |
| continue; |
| IRB_REFHOLD(irb); |
| for (ire = irb->irb_ire; ire != NULL; |
| ire = ire->ire_next) { |
| if (match_flags == 0 && |
| zoneid == ALL_ZONES) { |
| ret = B_TRUE; |
| } else { |
| ret = ire_walk_ill_match( |
| match_flags, ire_type, |
| ire, ill, zoneid); |
| } |
| if (ret) |
| (*func)(ire, arg); |
| } |
| IRB_REFRELE(irb); |
| } |
| } |
| } |
| |
| /* |
| * Optimize by not looking at the cache table if there |
| * is a MATCH_IRE_TYPE specified with no IRE_CACHETABLE |
| * specified in ire_type. |
| */ |
| if (!(match_flags & MATCH_IRE_TYPE) || |
| ((ire_type & IRE_CACHETABLE) != 0)) { |
| for (i = 0; i < ctbl_sz; i++) { |
| irb = &ipctbl[i]; |
| if (irb->irb_ire == NULL) |
| continue; |
| IRB_REFHOLD(irb); |
| for (ire = irb->irb_ire; ire != NULL; |
| ire = ire->ire_next) { |
| if (match_flags == 0 && zoneid == ALL_ZONES) { |
| ret = B_TRUE; |
| } else { |
| ret = ire_walk_ill_match( |
| match_flags, ire_type, |
| ire, ill, zoneid); |
| } |
| if (ret) |
| (*func)(ire, arg); |
| } |
| IRB_REFRELE(irb); |
| } |
| } |
| } |
| |
| /* |
| * This routine walks through the ill chain to find if there is any |
| * ire linked to the ill's interface based forwarding table |
| * The arg could be ill or mp. This routine is called when a ill goes |
| * down/deleted or the 'ipv4_ire_srcif_status' report is printed. |
| */ |
| void |
| ire_walk_srcif_table_v4(pfv_t func, void *arg) |
| { |
| irb_t *irb; |
| ire_t *ire; |
| ill_t *ill, *next_ill; |
| int i; |
| int total_count; |
| ill_walk_context_t ctx; |
| |
| /* |
| * Take care of ire's in other ill's per-interface forwarding |
| * table. Check if any ire in any of the ill's ill_srcif_table |
| * is pointing to this ill. |
| */ |
| mutex_enter(&ire_
|