blob: 61973d25aa527c9258ddad6f7aa7032eac085903 [file] [log] [blame]
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/* Copyright (c) 1990 Mentat Inc. */
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* This file contains routines that manipulate Internet Routing Entries (IREs).
*/
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/strsun.h>
#include <sys/ddi.h>
#include <sys/cmn_err.h>
#include <sys/policy.h>
#include <sys/systm.h>
#include <sys/kmem.h>
#include <sys/param.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/route.h>
#include <netinet/in.h>
#include <net/if_dl.h>
#include <netinet/ip6.h>
#include <netinet/icmp6.h>
#include <inet/common.h>
#include <inet/mi.h>
#include <inet/ip.h>
#include <inet/ip6.h>
#include <inet/ip_ndp.h>
#include <inet/ip_if.h>
#include <inet/ip_ire.h>
#include <inet/ip_rts.h>
#include <inet/nd.h>
#include <net/pfkeyv2.h>
#include <inet/ipsec_info.h>
#include <inet/sadb.h>
#include <sys/kmem.h>
#include <inet/tcp.h>
#include <inet/ipclassifier.h>
#include <sys/zone.h>
#include <sys/tsol/label.h>
#include <sys/tsol/tnet.h>
/*
* Synchronization notes:
*
* The fields of the ire_t struct are protected in the following way :
*
* ire_next/ire_ptpn
*
* - bucket lock of the respective tables (cache or forwarding tables).
*
* ire_fp_mp
* ire_dlureq_mp
*
* - ire_lock protects multiple threads updating ire_fp_mp
* simultaneously. Otherwise no locks are used while accessing
* (both read/write) both the fields.
*
* ire_mp, ire_rfq, ire_stq, ire_u *except* ire_gateway_addr[v6], ire_mask,
* ire_type, ire_create_time, ire_masklen, ire_ipversion, ire_flags, ire_ipif,
* ire_ihandle, ire_phandle, ire_nce, ire_bucket, ire_in_ill, ire_in_src_addr
*
* - Set in ire_create_v4/v6 and never changes after that. Thus,
* we don't need a lock whenever these fields are accessed.
*
* - ire_bucket and ire_masklen (also set in ire_create) is set in
* ire_add_v4/ire_add_v6 before inserting in the bucket and never
* changes after that. Thus we don't need a lock whenever these
* fields are accessed.
*
* ire_gateway_addr_v4[v6]
*
* - ire_gateway_addr_v4[v6] is set during ire_create and later modified
* by rts_setgwr[v6]. As ire_gateway_addr is a uint32_t, updates to
* it assumed to be atomic and hence the other parts of the code
* does not use any locks. ire_gateway_addr_v6 updates are not atomic
* and hence any access to it uses ire_lock to get/set the right value.
*
* ire_ident, ire_refcnt
*
* - Updated atomically using atomic_add_32
*
* ire_ssthresh, ire_rtt_sd, ire_rtt, ire_ib_pkt_count, ire_ob_pkt_count
*
* - Assumes that 32 bit writes are atomic. No locks. ire_lock is
* used to serialize updates to ire_ssthresh, ire_rtt_sd, ire_rtt.
*
* ire_max_frag, ire_frag_flag
*
* - ire_lock is used to set/read both of them together.
*
* ire_tire_mark
*
* - Set in ire_create and updated in ire_expire, which is called
* by only one function namely ip_trash_timer_expire. Thus only
* one function updates and examines the value.
*
* ire_marks
* - bucket lock protects this.
*
* ire_ipsec_overhead/ire_ll_hdr_length
*
* - Place holder for returning the information to the upper layers
* when IRE_DB_REQ comes down.
*
* ip_ire_default_count protected by the bucket lock of
* ip_forwarding_table[0][0].
*
* ipv6_ire_default_count is protected by the bucket lock of
* ip_forwarding_table_v6[0][0].
*
* ip_ire_default_index/ipv6_ire_default_index is not protected as it
* is just a hint at which default gateway to use. There is nothing
* wrong in using the same gateway for two different connections.
*
* As we always hold the bucket locks in all the places while accessing
* the above values, it is natural to use them for protecting them.
*
* We have a separate cache table and forwarding table for IPv4 and IPv6.
* Cache table (ip_cache_table/ip_cache_table_v6) is a pointer to an
* array of irb_t structure and forwarding table (ip_forwarding_table/
* ip_forwarding_table_v6) is an array of pointers to array of irb_t
* structure. ip_forwarding_table[_v6] is allocated dynamically in
* ire_add_v4/v6. ire_ft_init_lock is used to serialize multiple threads
* initializing the same bucket. Once a bucket is initialized, it is never
* de-alloacted. This assumption enables us to access ip_forwarding_table[i]
* or ip_forwarding_table_v6[i] without any locks.
*
* Each irb_t - ire bucket structure has a lock to protect
* a bucket and the ires residing in the bucket have a back pointer to
* the bucket structure. It also has a reference count for the number
* of threads walking the bucket - irb_refcnt which is bumped up
* using the macro IRB_REFHOLD macro. The flags irb_flags can be
* set to IRE_MARK_CONDEMNED indicating that there are some ires
* in this bucket that are marked with IRE_MARK_CONDEMNED and the
* last thread to leave the bucket should delete the ires. Usually
* this is done by the IRB_REFRELE macro which is used to decrement
* the reference count on a bucket.
*
* IRE_REFHOLD/IRE_REFRELE macros operate on the ire which increments/
* decrements the reference count, ire_refcnt, atomically on the ire.
* ire_refcnt is modified only using this macro. Operations on the IRE
* could be described as follows :
*
* CREATE an ire with reference count initialized to 1.
*
* ADDITION of an ire holds the bucket lock, checks for duplicates
* and then adds the ire. ire_add_v4/ire_add_v6 returns the ire after
* bumping up once more i.e the reference count is 2. This is to avoid
* an extra lookup in the functions calling ire_add which wants to
* work with the ire after adding.
*
* LOOKUP of an ire bumps up the reference count using IRE_REFHOLD
* macro. It is valid to bump up the referece count of the IRE,
* after the lookup has returned an ire. Following are the lookup
* functions that return an HELD ire :
*
* ire_lookup_local[_v6], ire_ctable_lookup[_v6], ire_ftable_lookup[_v6],
* ire_cache_lookup[_v6], ire_lookup_multi[_v6], ire_route_lookup[_v6],
* ipif_to_ire[_v6], ire_mrtun_lookup, ire_srcif_table_lookup.
*
* DELETION of an ire holds the bucket lock, removes it from the list
* and then decrements the reference count for having removed from the list
* by using the IRE_REFRELE macro. If some other thread has looked up
* the ire, the reference count would have been bumped up and hence
* this ire will not be freed once deleted. It will be freed once the
* reference count drops to zero.
*
* Add and Delete acquires the bucket lock as RW_WRITER, while all the
* lookups acquire the bucket lock as RW_READER.
*
* NOTE : The only functions that does the IRE_REFRELE when an ire is
* passed as an argument are :
*
* 1) ip_wput_ire : This is because it IRE_REFHOLD/RELEs the
* broadcast ires it looks up internally within
* the function. Currently, for simplicity it does
* not differentiate the one that is passed in and
* the ones it looks up internally. It always
* IRE_REFRELEs.
* 2) ire_send
* ire_send_v6 : As ire_send calls ip_wput_ire and other functions
* that take ire as an argument, it has to selectively
* IRE_REFRELE the ire. To maintain symmetry,
* ire_send_v6 does the same.
*
* Otherwise, the general rule is to do the IRE_REFRELE in the function
* that is passing the ire as an argument.
*
* In trying to locate ires the following points are to be noted.
*
* IRE_MARK_CONDEMNED signifies that the ire has been logically deleted and is
* to be ignored when walking the ires using ire_next.
*
* IRE_MARK_HIDDEN signifies that the ire is a special ire typically for the
* benefit of in.mpathd which needs to probe interfaces for failures. Normal
* applications should not be seeing this ire and hence this ire is ignored
* in most cases in the search using ire_next.
*
* Zones note:
* Walking IREs within a given zone also walks certain ires in other
* zones. This is done intentionally. IRE walks with a specified
* zoneid are used only when doing informational reports, and
* zone users want to see things that they can access. See block
* comment in ire_walk_ill_match().
*/
static irb_t *ip_forwarding_table[IP_MASK_TABLE_SIZE];
/* This is dynamically allocated in ip_ire_init */
static irb_t *ip_cache_table;
/* This is dynamically allocated in ire_add_mrtun */
irb_t *ip_mrtun_table;
uint32_t ire_handle = 1;
/*
* ire_ft_init_lock is used while initializing ip_forwarding_table
* dynamically in ire_add.
*/
kmutex_t ire_ft_init_lock;
kmutex_t ire_mrtun_lock; /* Protects creation of table and it's count */
kmutex_t ire_srcif_table_lock; /* Same as above */
/*
* The following counts are used to determine whether a walk is
* needed through the reverse tunnel table or through ills
*/
kmutex_t ire_handle_lock; /* Protects ire_handle */
uint_t ire_mrtun_count; /* Number of ires in reverse tun table */
/*
* A per-interface routing table is created ( if not present)
* when the first entry is added to this special routing table.
* This special routing table is accessed through the ill data structure.
* The routing table looks like cache table. For example, currently it
* is used by mobile-ip foreign agent to forward data that only comes from
* the home agent tunnel for a mobile node. Thus if the outgoing interface
* is a RESOLVER interface, IP may need to resolve the hardware address for
* the outgoing interface. The routing entries in this table are not updated
* in IRE_CACHE. When MCTL msg comes back from ARP, the incoming ill informa-
* tion is lost as the write queue is passed to ip_wput.
* But, before sending the packet out, the hardware information must be updated
* in the special forwarding table. ire_srcif_table_count keeps track of total
* number of ires that are in interface based tables. Each interface based
* table hangs off of the incoming ill and each ill_t also keeps a refcnt
* of ires in that table.
*/
uint_t ire_srcif_table_count; /* Number of ires in all srcif tables */
/*
* The minimum size of IRE cache table. It will be recalcuated in
* ip_ire_init().
*/
uint32_t ip_cache_table_size = IP_CACHE_TABLE_SIZE;
uint32_t ip6_cache_table_size = IP6_CACHE_TABLE_SIZE;
/*
* The size of the forwarding table. We will make sure that it is a
* power of 2 in ip_ire_init().
*/
uint32_t ip_ftable_hash_size = IP_FTABLE_HASH_SIZE;
uint32_t ip6_ftable_hash_size = IP6_FTABLE_HASH_SIZE;
struct kmem_cache *ire_cache;
static ire_t ire_null;
ire_stats_t ire_stats_v4; /* IPv4 ire statistics */
ire_stats_t ire_stats_v6; /* IPv6 ire statistics */
/*
* The threshold number of IRE in a bucket when the IREs are
* cleaned up. This threshold is calculated later in ip_open()
* based on the speed of CPU and available memory. This default
* value is the maximum.
*
* We have two kinds of cached IRE, temporary and
* non-temporary. Temporary IREs are marked with
* IRE_MARK_TEMPORARY. They are IREs created for non
* TCP traffic and for forwarding purposes. All others
* are non-temporary IREs. We don't mark IRE created for
* TCP as temporary because TCP is stateful and there are
* info stored in the IRE which can be shared by other TCP
* connections to the same destination. For connected
* endpoint, we also don't want to mark the IRE used as
* temporary because the same IRE will be used frequently,
* otherwise, the app should not do a connect(). We change
* the marking at ip_bind_connected_*() if necessary.
*
* We want to keep the cache IRE hash bucket length reasonably
* short, otherwise IRE lookup functions will take "forever."
* We use the "crude" function that the IRE bucket
* length should be based on the CPU speed, which is 1 entry
* per x MHz, depending on the shift factor ip_ire_cpu_ratio
* (n). This means that with a 750MHz CPU, the max bucket
* length can be (750 >> n) entries.
*
* Note that this threshold is separate for temp and non-temp
* IREs. This means that the actual bucket length can be
* twice as that. And while we try to keep temporary IRE
* length at most at the threshold value, we do not attempt to
* make the length for non-temporary IREs fixed, for the
* reason stated above. Instead, we start trying to find
* "unused" non-temporary IREs when the bucket length reaches
* this threshold and clean them up.
*
* We also want to limit the amount of memory used by
* IREs. So if we are allowed to use ~3% of memory (M)
* for those IREs, each bucket should not have more than
*
* M / num of cache bucket / sizeof (ire_t)
*
* Again the above memory uses are separate for temp and
* non-temp cached IREs.
*
* We may also want the limit to be a function of the number
* of interfaces and number of CPUs. Doing the initialization
* in ip_open() means that every time an interface is plumbed,
* the max is re-calculated. Right now, we don't do anything
* different. In future, when we have more experience, we
* may want to change this behavior.
*/
uint32_t ip_ire_max_bucket_cnt = 10;
uint32_t ip6_ire_max_bucket_cnt = 10;
/*
* The minimum of the temporary IRE bucket count. We do not want
* the length of each bucket to be too short. This may hurt
* performance of some apps as the temporary IREs are removed too
* often.
*/
uint32_t ip_ire_min_bucket_cnt = 3;
uint32_t ip6_ire_min_bucket_cnt = 3;
/*
* The ratio of memory consumed by IRE used for temporary to available
* memory. This is a shift factor, so 6 means the ratio 1 to 64. This
* value can be changed in /etc/system. 6 is a reasonable number.
*/
uint32_t ip_ire_mem_ratio = 6;
/* The shift factor for CPU speed to calculate the max IRE bucket length. */
uint32_t ip_ire_cpu_ratio = 7;
/*
* The maximum number of buckets in IRE cache table. In future, we may
* want to make it a dynamic hash table. For the moment, we fix the
* size and allocate the table in ip_ire_init() when IP is first loaded.
* We take into account the amount of memory a system has.
*/
#define IP_MAX_CACHE_TABLE_SIZE 4096
static uint32_t ip_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE;
static uint32_t ip6_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE;
#define NUM_ILLS 3 /* To build the ILL list to unlock */
/* Zero iulp_t for initialization. */
const iulp_t ire_uinfo_null = { 0 };
static int ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp,
ipsq_func_t func);
static int ire_add_srcif_v4(ire_t **ire_p, queue_t *q, mblk_t *mp,
ipsq_func_t func);
static ire_t *ire_update_srcif_v4(ire_t *ire);
static void ire_delete_v4(ire_t *ire);
static void ire_report_ftable(ire_t *ire, char *mp);
static void ire_report_ctable(ire_t *ire, char *mp);
static void ire_report_mrtun_table(ire_t *ire, char *mp);
static void ire_report_srcif_table(ire_t *ire, char *mp);
static void ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers,
zoneid_t zoneid);
static void ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type,
pfv_t func, void *arg, uchar_t vers, ill_t *ill);
static void ire_walk_ill_tables(uint_t match_flags, uint_t ire_type,
pfv_t func, void *arg, size_t ftbl_sz, size_t htbl_sz, irb_t **ipftbl,
size_t ctbl_sz, irb_t *ipctbl, ill_t *ill, zoneid_t zoneid);
static void ire_delete_host_redirects(ipaddr_t gateway);
static boolean_t ire_match_args(ire_t *ire, ipaddr_t addr, ipaddr_t mask,
ipaddr_t gateway, int type, const ipif_t *ipif, zoneid_t zoneid,
uint32_t ihandle, const ts_label_t *tsl, int match_flags);
static void ire_cache_cleanup(irb_t *irb, uint32_t threshold, int cnt);
extern void ill_unlock_ills(ill_t **list, int cnt);
static void ire_fastpath_list_add(ill_t *ill, ire_t *ire);
extern void th_trace_rrecord(th_trace_t *);
#ifdef IRE_DEBUG
static void ire_trace_inactive(ire_t *);
#endif
/*
* To avoid bloating the code, we call this function instead of
* using the macro IRE_REFRELE. Use macro only in performance
* critical paths.
*
* Must not be called while holding any locks. Otherwise if this is
* the last reference to be released there is a chance of recursive mutex
* panic due to ire_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
* to restart an ioctl. The one exception is when the caller is sure that
* this is not the last reference to be released. Eg. if the caller is
* sure that the ire has not been deleted and won't be deleted.
*/
void
ire_refrele(ire_t *ire)
{
IRE_REFRELE(ire);
}
void
ire_refrele_notr(ire_t *ire)
{
IRE_REFRELE_NOTR(ire);
}
/*
* kmem_cache_alloc constructor for IRE in kma space.
* Note that when ire_mp is set the IRE is stored in that mblk and
* not in this cache.
*/
/* ARGSUSED */
static int
ip_ire_constructor(void *buf, void *cdrarg, int kmflags)
{
ire_t *ire = buf;
ire->ire_fp_mp = NULL;
ire->ire_dlureq_mp = NULL;
return (0);
}
/* ARGSUSED1 */
static void
ip_ire_destructor(void *buf, void *cdrarg)
{
ire_t *ire = buf;
ASSERT(ire->ire_fp_mp == NULL);
ASSERT(ire->ire_dlureq_mp == NULL);
}
/*
* This function is associated with the IP_IOC_IRE_ADVISE_NO_REPLY
* IOCTL. It is used by TCP (or other ULPs) to supply revised information
* for an existing CACHED IRE.
*/
/* ARGSUSED */
int
ip_ire_advise(queue_t *q, mblk_t *mp, cred_t *ioc_cr)
{
uchar_t *addr_ucp;
ipic_t *ipic;
ire_t *ire;
ipaddr_t addr;
in6_addr_t v6addr;
irb_t *irb;
zoneid_t zoneid;
ASSERT(q->q_next == NULL);
zoneid = Q_TO_CONN(q)->conn_zoneid;
/*
* Check privilege using the ioctl credential; if it is NULL
* then this is a kernel message and therefor privileged.
*/
if (ioc_cr != NULL && secpolicy_net_config(ioc_cr, B_FALSE) != 0)
return (EPERM);
ipic = (ipic_t *)mp->b_rptr;
if (!(addr_ucp = mi_offset_param(mp, ipic->ipic_addr_offset,
ipic->ipic_addr_length))) {
return (EINVAL);
}
if (!OK_32PTR(addr_ucp))
return (EINVAL);
switch (ipic->ipic_addr_length) {
case IP_ADDR_LEN: {
/* Extract the destination address. */
addr = *(ipaddr_t *)addr_ucp;
/* Find the corresponding IRE. */
ire = ire_cache_lookup(addr, zoneid, NULL);
break;
}
case IPV6_ADDR_LEN: {
/* Extract the destination address. */
v6addr = *(in6_addr_t *)addr_ucp;
/* Find the corresponding IRE. */
ire = ire_cache_lookup_v6(&v6addr, zoneid, NULL);
break;
}
default:
return (EINVAL);
}
if (ire == NULL)
return (ENOENT);
/*
* Update the round trip time estimate and/or the max frag size
* and/or the slow start threshold.
*
* We serialize multiple advises using ire_lock.
*/
mutex_enter(&ire->ire_lock);
if (ipic->ipic_rtt) {
/*
* If there is no old cached values, initialize them
* conservatively. Set them to be (1.5 * new value).
*/
if (ire->ire_uinfo.iulp_rtt != 0) {
ire->ire_uinfo.iulp_rtt = (ire->ire_uinfo.iulp_rtt +
ipic->ipic_rtt) >> 1;
} else {
ire->ire_uinfo.iulp_rtt = ipic->ipic_rtt +
(ipic->ipic_rtt >> 1);
}
if (ire->ire_uinfo.iulp_rtt_sd != 0) {
ire->ire_uinfo.iulp_rtt_sd =
(ire->ire_uinfo.iulp_rtt_sd +
ipic->ipic_rtt_sd) >> 1;
} else {
ire->ire_uinfo.iulp_rtt_sd = ipic->ipic_rtt_sd +
(ipic->ipic_rtt_sd >> 1);
}
}
if (ipic->ipic_max_frag)
ire->ire_max_frag = MIN(ipic->ipic_max_frag, IP_MAXPACKET);
if (ipic->ipic_ssthresh != 0) {
if (ire->ire_uinfo.iulp_ssthresh != 0)
ire->ire_uinfo.iulp_ssthresh =
(ipic->ipic_ssthresh +
ire->ire_uinfo.iulp_ssthresh) >> 1;
else
ire->ire_uinfo.iulp_ssthresh = ipic->ipic_ssthresh;
}
/*
* Don't need the ire_lock below this. ire_type does not change
* after initialization. ire_marks is protected by irb_lock.
*/
mutex_exit(&ire->ire_lock);
if (ipic->ipic_ire_marks != 0 && ire->ire_type == IRE_CACHE) {
/*
* Only increment the temporary IRE count if the original
* IRE is not already marked temporary.
*/
irb = ire->ire_bucket;
rw_enter(&irb->irb_lock, RW_WRITER);
if ((ipic->ipic_ire_marks & IRE_MARK_TEMPORARY) &&
!(ire->ire_marks & IRE_MARK_TEMPORARY)) {
irb->irb_tmp_ire_cnt++;
}
ire->ire_marks |= ipic->ipic_ire_marks;
rw_exit(&irb->irb_lock);
}
ire_refrele(ire);
return (0);
}
/*
* This function is associated with the IP_IOC_IRE_DELETE[_NO_REPLY]
* IOCTL[s]. The NO_REPLY form is used by TCP to delete a route IRE
* for a host that is not responding. This will force an attempt to
* establish a new route, if available. Management processes may want
* to use the version that generates a reply.
*
* This function does not support IPv6 since Neighbor Unreachability Detection
* means that negative advise like this is useless.
*/
/* ARGSUSED */
int
ip_ire_delete(queue_t *q, mblk_t *mp, cred_t *ioc_cr)
{
uchar_t *addr_ucp;
ipaddr_t addr;
ire_t *ire;
ipid_t *ipid;
boolean_t routing_sock_info = B_FALSE; /* Sent info? */
zoneid_t zoneid;
ASSERT(q->q_next == NULL);
zoneid = Q_TO_CONN(q)->conn_zoneid;
/*
* Check privilege using the ioctl credential; if it is NULL
* then this is a kernel message and therefor privileged.
*/
if (ioc_cr != NULL && secpolicy_net_config(ioc_cr, B_FALSE) != 0)
return (EPERM);
ipid = (ipid_t *)mp->b_rptr;
/* Only actions on IRE_CACHEs are acceptable at present. */
if (ipid->ipid_ire_type != IRE_CACHE)
return (EINVAL);
addr_ucp = mi_offset_param(mp, ipid->ipid_addr_offset,
ipid->ipid_addr_length);
if (addr_ucp == NULL || !OK_32PTR(addr_ucp))
return (EINVAL);
switch (ipid->ipid_addr_length) {
case IP_ADDR_LEN:
/* addr_ucp points at IP addr */
break;
case sizeof (sin_t): {
sin_t *sin;
/*
* got complete (sockaddr) address - increment addr_ucp to point
* at the ip_addr field.
*/
sin = (sin_t *)addr_ucp;
addr_ucp = (uchar_t *)&sin->sin_addr.s_addr;
break;
}
default:
return (EINVAL);
}
/* Extract the destination address. */
bcopy(addr_ucp, &addr, IP_ADDR_LEN);
/* Try to find the CACHED IRE. */
ire = ire_cache_lookup(addr, zoneid, NULL);
/* Nail it. */
if (ire) {
/* Allow delete only on CACHE entries */
if (ire->ire_type != IRE_CACHE) {
ire_refrele(ire);
return (EINVAL);
}
/*
* Verify that the IRE has been around for a while.
* This is to protect against transport protocols
* that are too eager in sending delete messages.
*/
if (gethrestime_sec() <
ire->ire_create_time + ip_ignore_delete_time) {
ire_refrele(ire);
return (EINVAL);
}
/*
* Now we have a potentially dead cache entry. We need
* to remove it.
* If this cache entry is generated from a default route,
* search the default list and mark it dead and some
* background process will try to activate it.
*/
if ((ire->ire_gateway_addr != 0) && (ire->ire_cmask == 0)) {
/*
* Make sure that we pick a different
* IRE_DEFAULT next time.
* The ip_ire_default_count tracks the number of
* IRE_DEFAULT entries. However, the
* ip_forwarding_table[0] also contains
* interface routes thus the count can be zero.
*/
ire_t *gw_ire;
irb_t *irb_ptr;
irb_t *irb;
if (((irb_ptr = ip_forwarding_table[0]) != NULL) &&
(irb = &irb_ptr[0])->irb_ire != NULL &&
ip_ire_default_count != 0) {
uint_t index;
/*
* We grab it as writer just to serialize
* multiple threads trying to bump up
* ip_ire_default_index.
*/
rw_enter(&irb->irb_lock, RW_WRITER);
if ((gw_ire = irb->irb_ire) == NULL) {
rw_exit(&irb->irb_lock);
goto done;
}
index = ip_ire_default_index %
ip_ire_default_count;
while (index-- && gw_ire->ire_next != NULL)
gw_ire = gw_ire->ire_next;
/* Skip past the potentially bad gateway */
if (ire->ire_gateway_addr ==
gw_ire->ire_gateway_addr)
ip_ire_default_index++;
rw_exit(&irb->irb_lock);
}
}
done:
/* report the bad route to routing sockets */
ip_rts_change(RTM_LOSING, ire->ire_addr, ire->ire_gateway_addr,
ire->ire_mask, ire->ire_src_addr, 0, 0, 0,
(RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA));
routing_sock_info = B_TRUE;
ire_delete(ire);
ire_refrele(ire);
}
/* Also look for an IRE_HOST_REDIRECT and remove it if present */
ire = ire_route_lookup(addr, 0, 0, IRE_HOST_REDIRECT, NULL, NULL,
ALL_ZONES, NULL, MATCH_IRE_TYPE);
/* Nail it. */
if (ire) {
if (!routing_sock_info) {
ip_rts_change(RTM_LOSING, ire->ire_addr,
ire->ire_gateway_addr, ire->ire_mask,
ire->ire_src_addr, 0, 0, 0,
(RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA));
}
ire_delete(ire);
ire_refrele(ire);
}
return (0);
}
/*
* Named Dispatch routine to produce a formatted report on all IREs.
* This report is accessed by using the ndd utility to "get" ND variable
* "ipv4_ire_status".
*/
/* ARGSUSED */
int
ip_ire_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr)
{
zoneid_t zoneid;
(void) mi_mpprintf(mp,
"IRE " MI_COL_HDRPAD_STR
/* 01234567[89ABCDEF] */
"rfq " MI_COL_HDRPAD_STR
/* 01234567[89ABCDEF] */
"stq " MI_COL_HDRPAD_STR
/* 01234567[89ABCDEF] */
" zone "
/* 12345 */
"addr mask "
/* 123.123.123.123 123.123.123.123 */
"src gateway mxfrg rtt rtt_sd ssthresh ref "
/* 123.123.123.123 123.123.123.123 12345 12345 123456 12345678 123 */
"rtomax tstamp_ok wscale_ok ecn_ok pmtud_ok sack sendpipe "
/* 123456 123456789 123456789 123456 12345678 1234 12345678 */
"recvpipe in/out/forward type");
/* 12345678 in/out/forward xxxxxxxxxx */
/*
* Because of the ndd constraint, at most we can have 64K buffer
* to put in all IRE info. So to be more efficient, just
* allocate a 64K buffer here, assuming we need that large buffer.
* This should be OK as only root can do ndd /dev/ip.
*/
if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
/* The following may work even if we cannot get a large buf. */
(void) mi_mpprintf(mp, "<< Out of buffer >>\n");
return (0);
}
zoneid = Q_TO_CONN(q)->conn_zoneid;
if (zoneid == GLOBAL_ZONEID)
zoneid = ALL_ZONES;
ire_walk_v4(ire_report_ftable, mp->b_cont, zoneid);
ire_walk_v4(ire_report_ctable, mp->b_cont, zoneid);
return (0);
}
/* ire_walk routine invoked for ip_ire_report for each IRE. */
static void
ire_report_ftable(ire_t *ire, char *mp)
{
char buf1[16];
char buf2[16];
char buf3[16];
char buf4[16];
uint_t fo_pkt_count;
uint_t ib_pkt_count;
int ref;
uint_t print_len, buf_len;
if (ire->ire_type & IRE_CACHETABLE)
return;
buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr;
if (buf_len <= 0)
return;
/* Number of active references of this ire */
ref = ire->ire_refcnt;
/* "inbound" to a non local address is a forward */
ib_pkt_count = ire->ire_ib_pkt_count;
fo_pkt_count = 0;
if (!(ire->ire_type & (IRE_LOCAL|IRE_BROADCAST))) {
fo_pkt_count = ib_pkt_count;
ib_pkt_count = 0;
}
print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len,
MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR "%5d "
"%s %s %s %s %05d %05ld %06ld %08d %03d %06d %09d %09d %06d %08d "
"%04d %08d %08d %d/%d/%d %s\n",
(void *)ire, (void *)ire->ire_rfq, (void *)ire->ire_stq,
(int)ire->ire_zoneid,
ip_dot_addr(ire->ire_addr, buf1), ip_dot_addr(ire->ire_mask, buf2),
ip_dot_addr(ire->ire_src_addr, buf3),
ip_dot_addr(ire->ire_gateway_addr, buf4),
ire->ire_max_frag, ire->ire_uinfo.iulp_rtt,
ire->ire_uinfo.iulp_rtt_sd,
ire->ire_uinfo.iulp_ssthresh, ref,
ire->ire_uinfo.iulp_rtomax,
(ire->ire_uinfo.iulp_tstamp_ok ? 1: 0),
(ire->ire_uinfo.iulp_wscale_ok ? 1: 0),
(ire->ire_uinfo.iulp_ecn_ok ? 1: 0),
(ire->ire_uinfo.iulp_pmtud_ok ? 1: 0),
ire->ire_uinfo.iulp_sack,
ire->ire_uinfo.iulp_spipe, ire->ire_uinfo.iulp_rpipe,
ib_pkt_count, ire->ire_ob_pkt_count, fo_pkt_count,
ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type));
if (print_len < buf_len) {
((mblk_t *)mp)->b_wptr += print_len;
} else {
((mblk_t *)mp)->b_wptr += buf_len;
}
}
/* ire_walk routine invoked for ip_ire_report for each cached IRE. */
static void
ire_report_ctable(ire_t *ire, char *mp)
{
char buf1[16];
char buf2[16];
char buf3[16];
char buf4[16];
uint_t fo_pkt_count;
uint_t ib_pkt_count;
int ref;
uint_t print_len, buf_len;
if ((ire->ire_type & IRE_CACHETABLE) == 0)
return;
buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr;
if (buf_len <= 0)
return;
/* Number of active references of this ire */
ref = ire->ire_refcnt;
/* "inbound" to a non local address is a forward */
ib_pkt_count = ire->ire_ib_pkt_count;
fo_pkt_count = 0;
if (!(ire->ire_type & (IRE_LOCAL|IRE_BROADCAST))) {
fo_pkt_count = ib_pkt_count;
ib_pkt_count = 0;
}
print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len,
MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR "%5d "
"%s %s %s %s %05d %05ld %06ld %08d %03d %06d %09d %09d %06d %08d "
"%04d %08d %08d %d/%d/%d %s\n",
(void *)ire, (void *)ire->ire_rfq, (void *)ire->ire_stq,
(int)ire->ire_zoneid,
ip_dot_addr(ire->ire_addr, buf1), ip_dot_addr(ire->ire_mask, buf2),
ip_dot_addr(ire->ire_src_addr, buf3),
ip_dot_addr(ire->ire_gateway_addr, buf4),
ire->ire_max_frag, ire->ire_uinfo.iulp_rtt,
ire->ire_uinfo.iulp_rtt_sd, ire->ire_uinfo.iulp_ssthresh, ref,
ire->ire_uinfo.iulp_rtomax,
(ire->ire_uinfo.iulp_tstamp_ok ? 1: 0),
(ire->ire_uinfo.iulp_wscale_ok ? 1: 0),
(ire->ire_uinfo.iulp_ecn_ok ? 1: 0),
(ire->ire_uinfo.iulp_pmtud_ok ? 1: 0),
ire->ire_uinfo.iulp_sack,
ire->ire_uinfo.iulp_spipe, ire->ire_uinfo.iulp_rpipe,
ib_pkt_count, ire->ire_ob_pkt_count, fo_pkt_count,
ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type));
if (print_len < buf_len) {
((mblk_t *)mp)->b_wptr += print_len;
} else {
((mblk_t *)mp)->b_wptr += buf_len;
}
}
/* ARGSUSED */
int
ip_ire_report_mrtun(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr)
{
(void) mi_mpprintf(mp,
"IRE " MI_COL_HDRPAD_STR
/* 01234567[89ABCDEF] */
"stq " MI_COL_HDRPAD_STR
/* 01234567[89ABCDEF] */
"in_ill " MI_COL_HDRPAD_STR
/* 01234567[89ABCDEF] */
"in_src_addr "
/* 123.123.123.123 */
"max_frag "
/* 12345 */
"ref ");
/* 123 */
ire_walk_ill_mrtun(0, 0, ire_report_mrtun_table, mp, NULL);
return (0);
}
/* mrtun report table - supports ipv4_mrtun_ire_status ndd variable */
static void
ire_report_mrtun_table(ire_t *ire, char *mp)
{
char buf1[INET_ADDRSTRLEN];
int ref;
/* Number of active references of this ire */
ref = ire->ire_refcnt;
ASSERT(ire->ire_type == IRE_MIPRTUN);
(void) mi_mpprintf((mblk_t *)mp,
MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR
"%s %05d %03d",
(void *)ire, (void *)ire->ire_stq,
(void *)ire->ire_in_ill,
ip_dot_addr(ire->ire_in_src_addr, buf1),
ire->ire_max_frag, ref);
}
/*
* Dispatch routine to format ires in interface based routine
*/
/* ARGSUSED */
int
ip_ire_report_srcif(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr)
{
/* Report all interface based ires */
(void) mi_mpprintf(mp,
"IRE " MI_COL_HDRPAD_STR
/* 01234567[89ABCDEF] */
"stq " MI_COL_HDRPAD_STR
/* 01234567[89ABCDEF] */
"in_ill " MI_COL_HDRPAD_STR
/* 01234567[89ABCDEF] */
"addr "
/* 123.123.123.123 */
"gateway "
/* 123.123.123.123 */
"max_frag "
/* 12345 */
"ref "
/* 123 */
"type "
/* ABCDEFGH */
"in/out/forward");
ire_walk_srcif_table_v4(ire_report_srcif_table, mp);
return (0);
}
/* Reports the interface table ires */
static void
ire_report_srcif_table(ire_t *ire, char *mp)
{
char buf1[INET_ADDRSTRLEN];
char buf2[INET_ADDRSTRLEN];
int ref;
ref = ire->ire_refcnt;
(void) mi_mpprintf((mblk_t *)mp,
MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR
"%s %s %05d %03d %s %d",
(void *)ire, (void *)ire->ire_stq,
(void *)ire->ire_in_ill,
ip_dot_addr(ire->ire_addr, buf1),
ip_dot_addr(ire->ire_gateway_addr, buf2),
ire->ire_max_frag, ref,
ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type),
ire->ire_ib_pkt_count);
}
/*
* ip_ire_req is called by ip_wput when an IRE_DB_REQ_TYPE message is handed
* down from the Upper Level Protocol to request a copy of the IRE (to check
* its type or to extract information like round-trip time estimates or the
* MTU.)
* The address is assumed to be in the ire_addr field. If no IRE is found
* an IRE is returned with ire_type being zero.
* Note that the upper lavel protocol has to check for broadcast
* (IRE_BROADCAST) and multicast (CLASSD(addr)).
* If there is a b_cont the resulting IRE_DB_TYPE mblk is placed at the
* end of the returned message.
*
* TCP sends down a message of this type with a connection request packet
* chained on. UDP and ICMP send it down to verify that a route exists for
* the destination address when they get connected.
*/
void
ip_ire_req(queue_t *q, mblk_t *mp)
{
ire_t *inire;
ire_t *ire;
mblk_t *mp1;
ire_t *sire = NULL;
zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid;
if ((mp->b_wptr - mp->b_rptr) < sizeof (ire_t) ||
!OK_32PTR(mp->b_rptr)) {
freemsg(mp);
return;
}
inire = (ire_t *)mp->b_rptr;
/*
* Got it, now take our best shot at an IRE.
*/
if (inire->ire_ipversion == IPV6_VERSION) {
ire = ire_route_lookup_v6(&inire->ire_addr_v6, 0, 0, 0,
NULL, &sire, zoneid, NULL,
(MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT));
} else {
ASSERT(inire->ire_ipversion == IPV4_VERSION);
ire = ire_route_lookup(inire->ire_addr, 0, 0, 0,
NULL, &sire, zoneid, NULL,
(MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT));
}
/*
* We prevent returning IRES with source address INADDR_ANY
* as these were temporarily created for sending packets
* from endpoints that have conn_unspec_src set.
*/
if (ire == NULL ||
(ire->ire_ipversion == IPV4_VERSION &&
ire->ire_src_addr == INADDR_ANY) ||
(ire->ire_ipversion == IPV6_VERSION &&
IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6))) {
inire->ire_type = 0;
} else {
bcopy(ire, inire, sizeof (ire_t));
/* Copy the route metrics from the parent. */
if (sire != NULL) {
bcopy(&(sire->ire_uinfo), &(inire->ire_uinfo),
sizeof (iulp_t));
}
/*
* As we don't lookup global policy here, we may not
* pass the right size if per-socket policy is not
* present. For these cases, path mtu discovery will
* do the right thing.
*/
inire->ire_ipsec_overhead = conn_ipsec_length(Q_TO_CONN(q));
/* Pass the latest setting of the ip_path_mtu_discovery */
inire->ire_frag_flag |= (ip_path_mtu_discovery) ? IPH_DF : 0;
}
if (ire != NULL)
ire_refrele(ire);
if (sire != NULL)
ire_refrele(sire);
mp->b_wptr = &mp->b_rptr[sizeof (ire_t)];
mp->b_datap->db_type = IRE_DB_TYPE;
/* Put the IRE_DB_TYPE mblk last in the chain */
mp1 = mp->b_cont;
if (mp1 != NULL) {
mp->b_cont = NULL;
linkb(mp1, mp);
mp = mp1;
}
qreply(q, mp);
}
/*
* Send a packet using the specified IRE.
* If ire_src_addr_v6 is all zero then discard the IRE after
* the packet has been sent.
*/
static void
ire_send(queue_t *q, mblk_t *pkt, ire_t *ire)
{
mblk_t *mp;
mblk_t *ipsec_mp;
boolean_t is_secure;
uint_t ifindex;
ill_t *ill;
ASSERT(ire->ire_ipversion == IPV4_VERSION);
ipsec_mp = pkt;
is_secure = (pkt->b_datap->db_type == M_CTL);
if (is_secure)
pkt = pkt->b_cont;
/* If the packet originated externally then */
if (pkt->b_prev) {
ire_refrele(ire);
/*
* Extract the ifindex from b_prev (set in ip_rput_noire).
* Look up interface to see if it still exists (it could have
* been unplumbed by the time the reply came back from ARP)
*/
ifindex = (uint_t)(uintptr_t)pkt->b_prev;
ill = ill_lookup_on_ifindex(ifindex, B_FALSE,
NULL, NULL, NULL, NULL);
if (ill == NULL) {
pkt->b_prev = NULL;
pkt->b_next = NULL;
freemsg(ipsec_mp);
return;
}
q = ill->ill_rq;
pkt->b_prev = NULL;
mp = allocb(0, BPRI_HI);
if (mp == NULL) {
ill_refrele(ill);
pkt->b_next = NULL;
freemsg(ipsec_mp);
return;
}
mp->b_datap->db_type = M_BREAK;
/*
* This packet has not gone through IPSEC processing
* and hence we should not have any IPSEC message
* prepended.
*/
ASSERT(ipsec_mp == pkt);
mp->b_cont = ipsec_mp;
put(q, mp);
ill_refrele(ill);
} else if (pkt->b_next) {
/* Packets from multicast router */
pkt->b_next = NULL;
/*
* We never get the IPSEC_OUT while forwarding the
* packet for multicast router.
*/
ASSERT(ipsec_mp == pkt);
ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, ipsec_mp, NULL);
ire_refrele(ire);
} else {
/* Locally originated packets */
boolean_t is_inaddr_any;
ipha_t *ipha = (ipha_t *)pkt->b_rptr;
/*
* We need to do an ire_delete below for which
* we need to make sure that the IRE will be
* around even after calling ip_wput_ire -
* which does ire_refrele. Otherwise somebody
* could potentially delete this ire and hence
* free this ire and we will be calling ire_delete
* on a freed ire below.
*/
is_inaddr_any = (ire->ire_src_addr == INADDR_ANY);
if (is_inaddr_any) {
IRE_REFHOLD(ire);
}
/*
* If we were resolving a router we can not use the
* routers IRE for sending the packet (since it would
* violate the uniqness of the IP idents) thus we
* make another pass through ip_wput to create the IRE_CACHE
* for the destination.
* When IRE_MARK_NOADD is set, ire_add() is not called.
* Thus ip_wput() will never find a ire and result in an
* infinite loop. Thus we check whether IRE_MARK_NOADD is
* is set. This also implies that IRE_MARK_NOADD can only be
* used to send packets to directly connected hosts.
*/
if (ipha->ipha_dst != ire->ire_addr &&
!(ire->ire_marks & IRE_MARK_NOADD)) {
ire_refrele(ire); /* Held in ire_add */
(void) ip_output(Q_TO_CONN(q), ipsec_mp, q, IRE_SEND);
} else {
if (is_secure) {
ipsec_out_t *oi;
ipha_t *ipha;
oi = (ipsec_out_t *)ipsec_mp->b_rptr;
ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr;
if (oi->ipsec_out_proc_begin) {
/*
* This is the case where
* ip_wput_ipsec_out could not find
* the IRE and recreated a new one.
* As ip_wput_ipsec_out does ire
* lookups, ire_refrele for the extra
* bump in ire_add.
*/
ire_refrele(ire);
ip_wput_ipsec_out(q, ipsec_mp, ipha,
NULL, NULL);
} else {
/*
* IRE_REFRELE will be done in
* ip_wput_ire.
*/
ip_wput_ire(q, ipsec_mp, ire, NULL,
IRE_SEND);
}
} else {
/*
* IRE_REFRELE will be done in ip_wput_ire.
*/
ip_wput_ire(q, ipsec_mp, ire, NULL,
IRE_SEND);
}
}
/*
* Special code to support sending a single packet with
* conn_unspec_src using an IRE which has no source address.
* The IRE is deleted here after sending the packet to avoid
* having other code trip on it. But before we delete the
* ire, somebody could have looked up this ire.
* We prevent returning/using this IRE by the upper layers
* by making checks to NULL source address in other places
* like e.g ip_ire_append, ip_ire_req and ip_bind_connected.
* Though, this does not completely prevent other threads
* from using this ire, this should not cause any problems.
*
* NOTE : We use is_inaddr_any instead of using ire_src_addr
* because for the normal case i.e !is_inaddr_any, ire_refrele
* above could have potentially freed the ire.
*/
if (is_inaddr_any) {
/*
* If this IRE has been deleted by another thread, then
* ire_bucket won't be NULL, but ire_ptpn will be NULL.
* Thus, ire_delete will do nothing. This check
* guards against calling ire_delete when the IRE was
* never inserted in the table, which is handled by
* ire_delete as dropping another reference.
*/
if (ire->ire_bucket != NULL) {
ip1dbg(("ire_send: delete IRE\n"));
ire_delete(ire);
}
ire_refrele(ire); /* Held above */
}
}
}
/*
* Send a packet using the specified IRE.
* If ire_src_addr_v6 is all zero then discard the IRE after
* the packet has been sent.
*/
static void
ire_send_v6(queue_t *q, mblk_t *pkt, ire_t *ire)
{
mblk_t *ipsec_mp;
boolean_t secure;
uint_t ifindex;
ASSERT(ire->ire_ipversion == IPV6_VERSION);
if (pkt->b_datap->db_type == M_CTL) {
ipsec_mp = pkt;
pkt = pkt->b_cont;
secure = B_TRUE;
} else {
ipsec_mp = pkt;
secure = B_FALSE;
}
/* If the packet originated externally then */
if (pkt->b_prev) {
ill_t *ill;
/*
* Extract the ifindex from b_prev (set in ip_rput_data_v6).
* Look up interface to see if it still exists (it could have
* been unplumbed by the time the reply came back from the
* resolver). Unlike IPv4 there is no need for a prepended
* M_BREAK since ip_rput_data_v6 does not process options
* before finding an IRE.
*/
ifindex = (uint_t)(uintptr_t)pkt->b_prev;
ill = ill_lookup_on_ifindex(ifindex, B_TRUE,
NULL, NULL, NULL, NULL);
if (ill == NULL) {
pkt->b_prev = NULL;
pkt->b_next = NULL;
freemsg(ipsec_mp);
ire_refrele(ire); /* Held in ire_add */
return;
}
q = ill->ill_rq;
pkt->b_prev = NULL;
/*
* This packet has not gone through IPSEC processing
* and hence we should not have any IPSEC message
* prepended.
*/
ASSERT(ipsec_mp == pkt);
put(q, pkt);
ill_refrele(ill);
} else if (pkt->b_next) {
/* Packets from multicast router */
pkt->b_next = NULL;
/*
* We never get the IPSEC_OUT while forwarding the
* packet for multicast router.
*/
ASSERT(ipsec_mp == pkt);
/*
* XXX TODO IPv6.
*/
freemsg(pkt);
#ifdef XXX
ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, pkt, NULL);
#endif
} else {
if (secure) {
ipsec_out_t *oi;
ip6_t *ip6h;
oi = (ipsec_out_t *)ipsec_mp->b_rptr;
ip6h = (ip6_t *)ipsec_mp->b_cont->b_rptr;
if (oi->ipsec_out_proc_begin) {
/*
* This is the case where
* ip_wput_ipsec_out could not find
* the IRE and recreated a new one.
*/
ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h,
NULL, NULL);
} else {
(void) ip_output_v6(Q_TO_CONN(q), ipsec_mp,
q, IRE_SEND);
}
} else {
/*
* Send packets through ip_output_v6 so that any
* ip6_info header can be processed again.
*/
(void) ip_output_v6(Q_TO_CONN(q), ipsec_mp, q,
IRE_SEND);
}
/*
* Special code to support sending a single packet with
* conn_unspec_src using an IRE which has no source address.
* The IRE is deleted here after sending the packet to avoid
* having other code trip on it. But before we delete the
* ire, somebody could have looked up this ire.
* We prevent returning/using this IRE by the upper layers
* by making checks to NULL source address in other places
* like e.g ip_ire_append_v6, ip_ire_req and
* ip_bind_connected_v6. Though, this does not completely
* prevent other threads from using this ire, this should
* not cause any problems.
*/
if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6)) {
ip1dbg(("ire_send_v6: delete IRE\n"));
ire_delete(ire);
}
}
ire_refrele(ire); /* Held in ire_add */
}
/*
* Make sure that IRE bucket does not get too long.
* This can cause lock up because ire_cache_lookup()
* may take "forever" to finish.
*
* We just remove cnt IREs each time. This means that
* the bucket length will stay approximately constant,
* depending on cnt. This should be enough to defend
* against DoS attack based on creating temporary IREs
* (for forwarding and non-TCP traffic).
*
* Note that new IRE is normally added at the tail of the
* bucket. This means that we are removing the "oldest"
* temporary IRE added. Only if there are IREs with
* the same ire_addr, do we not add it at the tail. Refer
* to ire_add_v*(). It should be OK for our purpose.
*
* For non-temporary cached IREs, we make sure that they
* have not been used for some time (defined below), they
* are non-local destinations, and there is no one using
* them at the moment (refcnt == 1).
*
* The above means that the IRE bucket length may become
* very long, consisting of mostly non-temporary IREs.
* This can happen when the hash function does a bad job
* so that most TCP connections cluster to a specific bucket.
* This "hopefully" should never happen. It can also
* happen if most TCP connections have very long lives.
* Even with the minimal hash table size of 256, there
* has to be a lot of such connections to make the bucket
* length unreasonably long. This should probably not
* happen either. The third can when this can happen is
* when the machine is under attack, such as SYN flooding.
* TCP should already have the proper mechanism to protect
* that. So we should be safe.
*
* This function is called by ire_add_then_send() after
* a new IRE is added and the packet is sent.
*
* The idle cutoff interval is set to 60s. It can be
* changed using /etc/system.
*/
uint32_t ire_idle_cutoff_interval = 60000;
static void
ire_cache_cleanup(irb_t *irb, uint32_t threshold, int cnt)
{
ire_t *ire;
int tmp_cnt = cnt;
clock_t cut_off = drv_usectohz(ire_idle_cutoff_interval * 1000);
/*
* irb is NULL if the IRE is not added to the hash. This
* happens when IRE_MARK_NOADD is set in ire_add_then_send()
* and when ires are returned from ire_update_srcif_v4() routine.
*/
if (irb == NULL)
return;
IRB_REFHOLD(irb);
if (irb->irb_tmp_ire_cnt > threshold) {
for (ire = irb->irb_ire; ire != NULL && tmp_cnt > 0;
ire = ire->ire_next) {
if (ire->ire_marks & IRE_MARK_CONDEMNED)
continue;
if (ire->ire_marks & IRE_MARK_TEMPORARY) {
ASSERT(ire->ire_type == IRE_CACHE);
ire_delete(ire);
tmp_cnt--;
}
}
}
if (irb->irb_ire_cnt - irb->irb_tmp_ire_cnt > threshold) {
for (ire = irb->irb_ire; ire != NULL && cnt > 0;
ire = ire->ire_next) {
if (ire->ire_marks & IRE_MARK_CONDEMNED ||
ire->ire_gateway_addr == 0) {
continue;
}
if ((ire->ire_type == IRE_CACHE) &&
(lbolt - ire->ire_last_used_time > cut_off) &&
(ire->ire_refcnt == 1)) {
ire_delete(ire);
cnt--;
}
}
}
IRB_REFRELE(irb);
}
/*
* ire_add_then_send is called when a new IRE has been created in order to
* route an outgoing packet. Typically, it is called from ip_wput when
* a response comes back down from a resolver. We add the IRE, and then
* possibly run the packet through ip_wput or ip_rput, as appropriate.
* However, we do not add the newly created IRE in the cache when
* IRE_MARK_NOADD is set in the IRE. IRE_MARK_NOADD is set at
* ip_newroute_ipif(). The ires with IRE_MARK_NOADD and ires returned
* by ire_update_srcif_v4() are ire_refrele'd by ip_wput_ire() and get
* deleted.
* Multirouting support: the packet is silently discarded when the new IRE
* holds the RTF_MULTIRT flag, but is not the first IRE to be added with the
* RTF_MULTIRT flag for the same destination address.
* In this case, we just want to register this additional ire without
* sending the packet, as it has already been replicated through
* existing multirt routes in ip_wput().
*/
void
ire_add_then_send(queue_t *q, ire_t *ire, mblk_t *mp)
{
irb_t *irb;
boolean_t drop = B_FALSE;
/* LINTED : set but not used in function */
boolean_t mctl_present;
mblk_t *first_mp = NULL;
mblk_t *save_mp = NULL;
ire_t *dst_ire;
ipha_t *ipha;
ip6_t *ip6h;
if (mp != NULL) {
/*
* We first have to retrieve the destination address carried
* by the packet.
* We can't rely on ire as it can be related to a gateway.
* The destination address will help in determining if
* other RTF_MULTIRT ires are already registered.
*
* We first need to know where we are going : v4 or V6.
* the ire version is enough, as there is no risk that
* we resolve an IPv6 address with an IPv4 ire
* or vice versa.
*/
if (ire->ire_ipversion == IPV4_VERSION) {
EXTRACT_PKT_MP(mp, first_mp, mctl_present);
ipha = (ipha_t *)mp->b_rptr;
save_mp = mp;
mp = first_mp;
dst_ire = ire_cache_lookup(ipha->ipha_dst,
ire->ire_zoneid, MBLK_GETLABEL(mp));
} else {
/*
* Get a pointer to the beginning of the IPv6 header.
* Ignore leading IPsec control mblks.
*/
first_mp = mp;
if (mp->b_datap->db_type == M_CTL) {
mp = mp->b_cont;
}
ip6h = (ip6_t *)mp->b_rptr;
save_mp = mp;
mp = first_mp;
dst_ire = ire_cache_lookup_v6(&ip6h->ip6_dst,
ire->ire_zoneid, MBLK_GETLABEL(mp));
}
if (dst_ire != NULL) {
if (dst_ire->ire_flags & RTF_MULTIRT) {
/*
* At least one resolved multirt route
* already exists for the destination,
* don't sent this packet: either drop it
* or complete the pending resolution,
* depending on the ire.
*/
drop = B_TRUE;
}
ip1dbg(("ire_add_then_send: dst_ire %p "
"[dst %08x, gw %08x], drop %d\n",
(void *)dst_ire,
(dst_ire->ire_ipversion == IPV4_VERSION) ? \
ntohl(dst_ire->ire_addr) : \
ntohl(V4_PART_OF_V6(dst_ire->ire_addr_v6)),
(dst_ire->ire_ipversion == IPV4_VERSION) ? \
ntohl(dst_ire->ire_gateway_addr) : \
ntohl(V4_PART_OF_V6(
dst_ire->ire_gateway_addr_v6)),
drop));
ire_refrele(dst_ire);
}
}
if (!(ire->ire_marks & IRE_MARK_NOADD)) {
/*
* Regular packets with cache bound ires and
* the packets from ARP response for ires which
* belong to the ire_srcif_v4 table, are here.
*/
if (ire->ire_in_ill == NULL) {
/* Add the ire */
(void) ire_add(&ire, NULL, NULL, NULL);
} else {
/*
* This must be ARP response for ire in interface based
* table. Note that we don't add them in cache table,
* instead we update the existing table with dlureq_mp
* information. The reverse tunnel ires do not come
* here, as reverse tunnel is non-resolver interface.
* XXX- another design alternative was to mark the
* ires in interface based table with a special mark to
* make absolutely sure that we operate in right ires.
* This idea was not implemented as part of code review
* suggestion, as ire_in_ill suffice to distinguish
* between the regular ires and interface based
* ires now and thus we save a bit in the ire_marks.
*/
ire = ire_update_srcif_v4(ire);
}
if (ire == NULL) {
mp->b_prev = NULL;
mp->b_next = NULL;
MULTIRT_DEBUG_UNTAG(mp);
freemsg(mp);
return;
}
if (mp == NULL) {
ire_refrele(ire); /* Held in ire_add_v4/v6 */
return;
}
}
if (drop) {
/*
* If we're adding an RTF_MULTIRT ire, the resolution
* is over: we just drop the packet.
*/
if (ire->ire_flags & RTF_MULTIRT) {
if (save_mp) {
save_mp->b_prev = NULL;
save_mp->b_next = NULL;
}
MULTIRT_DEBUG_UNTAG(mp);
freemsg(mp);
} else {
/*
* Otherwise, we're adding the ire to a gateway
* for a multirt route.
* Invoke ip_newroute() to complete the resolution
* of the route. We will then come back here and
* finally drop this packet in the above code.
*/
if (ire->ire_ipversion == IPV4_VERSION) {
/*
* TODO: in order for CGTP to work in non-global
* zones, ip_newroute() must create the IRE
* cache in the zone indicated by
* ire->ire_zoneid.
*/
ip_newroute(q, mp, ipha->ipha_dst, 0,
(CONN_Q(q) ? Q_TO_CONN(q) : NULL));
} else {
ip_newroute_v6(q, mp, &ip6h->ip6_dst, NULL,
NULL, ire->ire_zoneid);
}
}
ire_refrele(ire); /* As done by ire_send(). */
return;
}
/*
* Need to remember ire_bucket here as ire_send*() may delete
* the ire so we cannot reference it after that.
*/
irb = ire->ire_bucket;
if (ire->ire_ipversion == IPV6_VERSION) {
ire_send_v6(q, mp, ire);
/*
* Clean up more than 1 IRE so that the clean up does not
* need to be done every time when a new IRE is added and
* the threshold is reached.
*/
ire_cache_cleanup(irb, ip6_ire_max_bucket_cnt, 2);
} else {
ire_send(q, mp, ire);
ire_cache_cleanup(irb, ip_ire_max_bucket_cnt, 2);
}
}
/*
* Initialize the ire that is specific to IPv4 part and call
* ire_init_common to finish it.
*/
ire_t *
ire_init(ire_t *ire, uchar_t *addr, uchar_t *mask, uchar_t *src_addr,
uchar_t *gateway, uchar_t *in_src_addr, uint_t *max_fragp, mblk_t *fp_mp,
queue_t *rfq, queue_t *stq, ushort_t type, mblk_t *dlureq_mp, ipif_t *ipif,
ill_t *in_ill, ipaddr_t cmask, uint32_t phandle, uint32_t ihandle,
uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp)
{
/*
* Reject IRE security attribute creation/initialization
* if system is not running in Trusted mode.
*/
if ((gc != NULL || gcgrp != NULL) && !is_system_labeled())
return (NULL);
if (fp_mp != NULL) {
/*
* We can't dupb() here as multiple threads could be
* calling dupb on the same mp which is incorrect.
* First dupb() should be called only by one thread.
*/
fp_mp = copyb(fp_mp);
if (fp_mp == NULL)
return (NULL);
}
if (dlureq_mp != NULL) {
/*
* We can't dupb() here as multiple threads could be
* calling dupb on the same mp which is incorrect.
* First dupb() should be called only by one thread.
*/
dlureq_mp = copyb(dlureq_mp);
if (dlureq_mp == NULL) {
if (fp_mp != NULL)
freeb(fp_mp);
return (NULL);
}
}
/*
* Check that IRE_IF_RESOLVER and IRE_IF_NORESOLVER have a
* dlureq_mp which is the ill_resolver_mp for IRE_IF_RESOLVER
* and DL_UNITDATA_REQ for IRE_IF_NORESOLVER.
*/
if ((type & IRE_INTERFACE) &&
dlureq_mp == NULL) {
ASSERT(fp_mp == NULL);
ip0dbg(("ire_init: no dlureq_mp\n"));
return (NULL);
}
BUMP_IRE_STATS(ire_stats_v4, ire_stats_alloced);
if (addr != NULL)
bcopy(addr, &ire->ire_addr, IP_ADDR_LEN);
if (src_addr != NULL)
bcopy(src_addr, &ire->ire_src_addr, IP_ADDR_LEN);
if (mask != NULL) {
bcopy(mask, &ire->ire_mask, IP_ADDR_LEN);
ire->ire_masklen = ip_mask_to_plen(ire->ire_mask);
}
if (gateway != NULL) {
bcopy(gateway, &ire->ire_gateway_addr, IP_ADDR_LEN);
}
if (in_src_addr != NULL) {
bcopy(in_src_addr, &ire->ire_in_src_addr, IP_ADDR_LEN);
}
if (type == IRE_CACHE)
ire->ire_cmask = cmask;
/* ire_init_common will free the mblks upon encountering any failure */
if (!ire_init_common(ire, max_fragp, fp_mp, rfq, stq, type, dlureq_mp,
ipif, in_ill, phandle, ihandle, flags, IPV4_VERSION, ulp_info,
gc, gcgrp))
return (NULL);
return (ire);
}
/*
* Similar to ire_create except that it is called only when
* we want to allocate ire as an mblk e.g. we have an external
* resolver ARP.
*/
ire_t *
ire_create_mp(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway,
uchar_t *in_src_addr, uint_t max_frag, mblk_t *fp_mp, queue_t *rfq,
queue_t *stq, ushort_t type, mblk_t *dlureq_mp, ipif_t *ipif, ill_t *in_ill,
ipaddr_t cmask, uint32_t phandle, uint32_t ihandle, uint32_t flags,
const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp)
{
ire_t *ire;
ire_t *ret_ire;
mblk_t *mp;
/* Allocate the new IRE. */
mp = allocb(sizeof (ire_t), BPRI_MED);
if (mp == NULL) {
ip1dbg(("ire_create_mp: alloc failed\n"));
return (NULL);
}
ire = (ire_t *)mp->b_rptr;
mp->b_wptr = (uchar_t *)&ire[1];
/* Start clean. */
*ire = ire_null;
ire->ire_mp = mp;
mp->b_datap->db_type = IRE_DB_TYPE;
ret_ire = ire_init(ire, addr, mask, src_addr, gateway, in_src_addr,
NULL, fp_mp, rfq, stq, type, dlureq_mp, ipif, in_ill, cmask,
phandle, ihandle, flags, ulp_info, gc, gcgrp);
if (ret_ire == NULL) {
freeb(ire->ire_mp);
return (NULL);
}
ASSERT(ret_ire == ire);
/*
* ire_max_frag is normally zero here and is atomically set
* under the irebucket lock in ire_add_v[46] except for the
* case of IRE_MARK_NOADD. In that event the the ire_max_frag
* is non-zero here.
*/
ire->ire_max_frag = max_frag;
return (ire);
}
/*
* ire_create is called to allocate and initialize a new IRE.
*
* NOTE : This is called as writer sometimes though not required
* by this function.
*/
ire_t *
ire_create(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway,
uchar_t *in_src_addr, uint_t *max_fragp, mblk_t *fp_mp, queue_t *rfq,
queue_t *stq, ushort_t type, mblk_t *dlureq_mp, ipif_t *ipif, ill_t *in_ill,
ipaddr_t cmask, uint32_t phandle, uint32_t ihandle, uint32_t flags,
const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp)
{
ire_t *ire;
ire_t *ret_ire;
ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
if (ire == NULL) {
ip1dbg(("ire_create: alloc failed\n"));
return (NULL);
}
*ire = ire_null;
ret_ire = ire_init(ire, addr, mask, src_addr, gateway, in_src_addr,
max_fragp, fp_mp, rfq, stq, type, dlureq_mp, ipif, in_ill, cmask,
phandle, ihandle, flags, ulp_info, gc, gcgrp);
if (ret_ire == NULL) {
kmem_cache_free(ire_cache, ire);
return (NULL);
}
ASSERT(ret_ire == ire);
return (ire);
}
/*
* Common to IPv4 and IPv6
*/
boolean_t
ire_init_common(ire_t *ire, uint_t *max_fragp, mblk_t *fp_mp,
queue_t *rfq, queue_t *stq, ushort_t type,
mblk_t *dlureq_mp, ipif_t *ipif, ill_t *in_ill, uint32_t phandle,
uint32_t ihandle, uint32_t flags, uchar_t ipversion,
const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp)
{
ire->ire_max_fragp = max_fragp;
ire->ire_frag_flag |= (ip_path_mtu_discovery) ? IPH_DF : 0;
ASSERT(fp_mp == NULL || fp_mp->b_datap->db_type == M_DATA);
#ifdef DEBUG
if (ipif != NULL) {
if (ipif->ipif_isv6)
ASSERT(ipversion == IPV6_VERSION);
else
ASSERT(ipversion == IPV4_VERSION);
}
#endif /* DEBUG */
/*
* Create/initialize IRE security attribute only in Trusted mode;
* if the passed in gc/gcgrp is non-NULL, we expect that the caller
* has held a reference to it and will release it when this routine
* returns a failure, otherwise we own the reference. We do this
* prior to initializing the rest IRE fields.
*/
if (is_system_labeled()) {
if ((type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST |
IRE_INTERFACE)) != 0) {
/* release references on behalf of caller */
if (gc != NULL)
GC_REFRELE(gc);
if (gcgrp != NULL)
GCGRP_REFRELE(gcgrp);
} else if (tsol_ire_init_gwattr(ire, ipversion,
gc, gcgrp) != 0) {
/* free any caller-allocated mblks upon failure */
if (fp_mp != NULL)
freeb(fp_mp);
if (dlureq_mp != NULL)
freeb(dlureq_mp);
return (B_FALSE);
}
}
ire->ire_fp_mp = fp_mp;
ire->ire_dlureq_mp = dlureq_mp;
ire->ire_stq = stq;
ire->ire_rfq = rfq;
ire->ire_type = type;
ire->ire_flags = RTF_UP | flags;
ire->ire_ident = TICK_TO_MSEC(lbolt);
bcopy(ulp_info, &ire->ire_uinfo, sizeof (iulp_t));
ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count;
ire->ire_last_used_time = lbolt;
ire->ire_create_time = (uint32_t)gethrestime_sec();
/*
* If this IRE is an IRE_CACHE, inherit the handles from the
* parent IREs. For others in the forwarding table, assign appropriate
* new ones.
*
* The mutex protecting ire_handle is because ire_create is not always
* called as a writer.
*/
if (ire->ire_type & IRE_OFFSUBNET) {
mutex_enter(&ire_handle_lock);
ire->ire_phandle = (uint32_t)ire_handle++;
mutex_exit(&ire_handle_lock);
} else if (ire->ire_type & IRE_INTERFACE) {
mutex_enter(&ire_handle_lock);
ire->ire_ihandle = (uint32_t)ire_handle++;
mutex_exit(&ire_handle_lock);
} else if (ire->ire_type == IRE_CACHE) {
ire->ire_phandle = phandle;
ire->ire_ihandle = ihandle;
}
ire->ire_in_ill = in_ill;
ire->ire_ipif = ipif;
if (ipif != NULL) {
ire->ire_ipif_seqid = ipif->ipif_seqid;
ire->ire_zoneid = ipif->ipif_zoneid;
} else {
ire->ire_zoneid = GLOBAL_ZONEID;
}
ire->ire_ipversion = ipversion;
ire->ire_refcnt = 1;
mutex_init(&ire->ire_lock, NULL, MUTEX_DEFAULT, NULL);
#ifdef IRE_DEBUG
bzero(ire->ire_trace, sizeof (th_trace_t *) * IP_TR_HASH_MAX);
#endif
return (B_TRUE);
}
/*
* This routine is called repeatedly by ipif_up to create broadcast IREs.
* It is passed a pointer to a slot in an IRE pointer array into which to
* place the pointer to the new IRE, if indeed we create one. If the
* IRE corresponding to the address passed in would be a duplicate of an
* existing one, we don't create the new one. irep is incremented before
* return only if we do create a new IRE. (Always called as writer.)
*
* Note that with the "match_flags" parameter, we can match on either
* a particular logical interface (MATCH_IRE_IPIF) or for all logical
* interfaces for a given physical interface (MATCH_IRE_ILL). Currently,
* we only create broadcast ire's on a per physical interface basis. If
* someone is going to be mucking with logical interfaces, it is important
* to call "ipif_check_bcast_ires()" to make sure that any change to a
* logical interface will not cause critical broadcast IRE's to be deleted.
*/
ire_t **
ire_check_and_create_bcast(ipif_t *ipif, ipaddr_t addr, ire_t **irep,
int match_flags)
{
ire_t *ire;
uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST;
/*
* No broadcast IREs for the LOOPBACK interface
* or others such as point to point and IPIF_NOXMIT.
*/
if (!(ipif->ipif_flags & IPIF_BROADCAST) ||
(ipif->ipif_flags & IPIF_NOXMIT))
return (irep);
/* If this would be a duplicate, don't bother. */
if ((ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ipif,
ipif->ipif_zoneid, NULL, match_flags)) != NULL) {
/*
* We look for non-deprecated (and non-anycast, non-nolocal)
* ipifs as the best choice. ipifs with check_flags matching
* (deprecated, etc) are used only if non-deprecated ipifs
* are not available. if the existing ire's ipif is deprecated
* and the new ipif is non-deprecated, switch to the new ipif
*/
if ((!(ire->ire_ipif->ipif_flags & check_flags)) ||
(ipif->ipif_flags & check_flags)) {
ire_refrele(ire);
return (irep);
}
/*
* Bcast ires exist in pairs. Both have to be deleted,
* Since we are exclusive we can make the above assertion.
* The 1st has to be refrele'd since it was ctable_lookup'd.
*/
ASSERT(IAM_WRITER_IPIF(ipif));
ASSERT(ire->ire_next->ire_addr == ire->ire_addr);
ire_delete(ire->ire_next);
ire_delete(ire);
ire_refrele(ire);
}
irep = ire_create_bcast(ipif, addr, irep);
return (irep);
}
uint_t ip_loopback_mtu = IP_LOOPBACK_MTU;
/*
* This routine is called from ipif_check_bcast_ires and ire_check_bcast.
* It leaves all the verifying and deleting to those routines. So it always
* creates 2 bcast ires and chains them into the ire array passed in.
*/
ire_t **
ire_create_bcast(ipif_t *ipif, ipaddr_t addr, ire_t **irep)
{
*irep++ = ire_create(
(uchar_t *)&addr, /* dest addr */
(uchar_t *)&ip_g_all_ones, /* mask */
(uchar_t *)&ipif->ipif_src_addr, /* source addr */
NULL, /* no gateway */
NULL, /* no in_src_addr */
&ipif->ipif_mtu, /* max frag */
NULL, /* fast path header */
ipif->ipif_rq, /* recv-from queue */
ipif->ipif_wq, /* send-to queue */
IRE_BROADCAST,
ipif->ipif_bcast_mp, /* xmit header */
ipif,
NULL,
0,
0,
0,
0,
&ire_uinfo_null,
NULL,
NULL);
*irep++ = ire_create(
(uchar_t *)&addr, /* dest address */
(uchar_t *)&ip_g_all_ones, /* mask */
(uchar_t *)&ipif->ipif_src_addr, /* source address */
NULL, /* no gateway */
NULL, /* no in_src_addr */
&ip_loopback_mtu, /* max frag size */
NULL, /* Fast Path header */
ipif->ipif_rq, /* recv-from queue */
NULL, /* no send-to queue */
IRE_BROADCAST, /* Needed for fanout in wput */
NULL,
ipif,
NULL,
0,
0,
0,
0,
&ire_uinfo_null,
NULL,
NULL);
return (irep);
}
/*
* ire_walk routine to delete or update any IRE_CACHE that might contain
* stale information.
* The flags state which entries to delete or update.
* Garbage collection is done separately using kmem alloc callbacks to
* ip_trash_ire_reclaim.
* Used for both IPv4 and IPv6. However, IPv6 only uses FLUSH_MTU_TIME
* since other stale information is cleaned up using NUD.
*/
void
ire_expire(ire_t *ire, char *arg)
{
int flush_flags = (int)(uintptr_t)arg;
ill_t *stq_ill;
if ((flush_flags & FLUSH_REDIRECT_TIME) &&
ire->ire_type == IRE_HOST_REDIRECT) {
/* Make sure we delete the corresponding IRE_CACHE */
ip1dbg(("ire_expire: all redirects\n"));
ip_rts_rtmsg(RTM_DELETE, ire, 0);
ire_delete(ire);
return;
}
if (ire->ire_type != IRE_CACHE)
return;
if (flush_flags & FLUSH_ARP_TIME) {
/*
* Remove all IRE_CACHE.
* Verify that create time is more than
* ip_ire_arp_interval milliseconds ago.
*/
if (((uint32_t)gethrestime_sec() - ire->ire_create_time) *
MILLISEC > ip_ire_arp_interval) {
ip1dbg(("ire_expire: all IRE_CACHE\n"));
ire_delete(ire);
return;
}
}
if (ip_path_mtu_discovery && (flush_flags & FLUSH_MTU_TIME) &&
(ire->ire_ipif != NULL)) {
/* Increase pmtu if it is less than the interface mtu */
mutex_enter(&ire->ire_lock);
/*
* If the ipif is a vni (whose mtu is 0, since it's virtual)
* get the mtu from the sending interfaces' ipif
*/
if (IS_VNI(ire->ire_ipif->ipif_ill)) {
stq_ill = ire->ire_stq->q_ptr;
ire->ire_max_frag = MIN(stq_ill->ill_ipif->ipif_mtu,
IP_MAXPACKET);
} else {
ire->ire_max_frag = MIN(ire->ire_ipif->ipif_mtu,
IP_MAXPACKET);
}
ire->ire_frag_flag |= IPH_DF;
mutex_exit(&ire->ire_lock);
}
}
/*
* Do fast path probing if necessary.
*/
static void
ire_fastpath(ire_t *ire)
{
ill_t *ill;
int res;
if (ire->ire_fp_mp != NULL || ire->ire_dlureq_mp == NULL ||
(ire->ire_stq == NULL)) {
/*
* Already contains fastpath info or
* doesn't have DL_UNITDATA_REQ header
* or is a loopback broadcast ire i.e. no stq.
*/
return;
}
ill = ire_to_ill(ire);
if (ill == NULL)
return;
ire_fastpath_list_add(ill, ire);
res = ill_fastpath_probe(ill, ire->ire_dlureq_mp);
/*
* EAGAIN is an indication of a transient error
* i.e. allocation failure etc. leave the ire in the list it will
* be updated when another probe happens for another ire if not
* it will be taken out of the list when the ire is deleted.
*/
if (res != 0 && res != EAGAIN)
ire_fastpath_list_delete(ill, ire);
}
/*
* Update all IRE's that are not in fastpath mode and
* have an dlureq_mp that matches mp. mp->b_cont contains
* the fastpath header.
*
* Returns TRUE if entry should be dequeued, or FALSE otherwise.
*/
boolean_t
ire_fastpath_update(ire_t *ire, void *arg)
{
mblk_t *mp, *fp_mp;
uchar_t *up, *up2;
ptrdiff_t cmplen;
ASSERT((ire->ire_type & (IRE_CACHE | IRE_BROADCAST |
IRE_MIPRTUN)) != 0);
/*
* Already contains fastpath info or doesn't have
* DL_UNITDATA_REQ header.
*/
if (ire->ire_fp_mp != NULL || ire->ire_dlureq_mp == NULL)
return (B_TRUE);
ip2dbg(("ire_fastpath_update: trying\n"));
mp = (mblk_t *)arg;
up = mp->b_rptr;
cmplen = mp->b_wptr - up;
/* Serialize multiple fast path updates */
mutex_enter(&ire->ire_lock);
up2 = ire->ire_dlureq_mp->b_rptr;
ASSERT(cmplen >= 0);
if (ire->ire_dlureq_mp->b_wptr - up2 != cmplen ||
bcmp(up, up2, cmplen) != 0) {
mutex_exit(&ire->ire_lock);
/*
* Don't take the ire off the fastpath list yet,
* since the response may come later.
*/
return (B_FALSE);
}
/* Matched - install mp as the ire_fp_mp */
ip1dbg(("ire_fastpath_update: match\n"));
fp_mp = dupb(mp->b_cont);
if (fp_mp) {
/*
* We checked ire_fp_mp above. Check it again with the
* lock. Update fp_mp only if it has not been done
* already.
*/
if (ire->ire_fp_mp == NULL) {
/*
* ire_ll_hdr_length is just an optimization to
* store the length. It is used to return the
* fast path header length to the upper layers.
*/
ire->ire_fp_mp = fp_mp;
ire->ire_ll_hdr_length =
(uint_t)(fp_mp->b_wptr - fp_mp->b_rptr);
} else {
freeb(fp_mp);
}
}
mutex_exit(&ire->ire_lock);
return (B_TRUE);
}
/*
* This function handles the DL_NOTE_FASTPATH_FLUSH notification from the
* driver.
*/
/* ARGSUSED */
void
ire_fastpath_flush(ire_t *ire, void *arg)
{
ill_t *ill;
int res;
/* No fastpath info? */
if (ire->ire_fp_mp == NULL || ire->ire_dlureq_mp == NULL)
return;
/*
* Just remove the IRE if it is for non-broadcast dest. Then
* we will create another one which will have the correct
* fastpath info.
*/
switch (ire->ire_type) {
case IRE_CACHE:
ire_delete(ire);
break;
case IRE_MIPRTUN:
case IRE_BROADCAST:
/*
* We can't delete the ire since it is difficult to
* recreate these ire's without going through the
* ipif down/up dance. The ire_fp_mp is protected by the
* ire_lock in the case of IRE_MIPRTUN and IRE_BROADCAST.
* All access to ire_fp_mp in the case of these 2 ire types
* is protected by ire_lock.
*/
mutex_enter(&ire->ire_lock);
if (ire->ire_fp_mp != NULL) {
freeb(ire->ire_fp_mp);
ire->ire_fp_mp = NULL;
mutex_exit(&ire->ire_lock);
/*
* No fastpath probe if there is no stq i.e.
* i.e. the case of loopback broadcast ire.
*/
if (ire->ire_stq == NULL)
break;
ill = (ill_t *)((ire->ire_stq)->q_ptr);
ire_fastpath_list_add(ill, ire);
res = ill_fastpath_probe(ill, ire->ire_dlureq_mp);
/*
* EAGAIN is an indication of a transient error
* i.e. allocation failure etc. leave the ire in the
* list it will be updated when another probe happens
* for another ire if not it will be taken out of the
* list when the ire is deleted.
*/
if (res != 0 && res != EAGAIN)
ire_fastpath_list_delete(ill, ire);
} else {
mutex_exit(&ire->ire_lock);
}
break;
default:
/* This should not happen! */
ip0dbg(("ire_fastpath_flush: Wrong ire type %s\n",
ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type)));
break;
}
}
/*
* Drain the list of ire's waiting for fastpath response.
*/
void
ire_fastpath_list_dispatch(ill_t *ill, boolean_t (*func)(ire_t *, void *),
void *arg)
{
ire_t *next_ire;
ire_t *current_ire;
ire_t *first_ire;
ire_t *prev_ire = NULL;
ASSERT(ill != NULL);
mutex_enter(&ill->ill_lock);
first_ire = current_ire = (ire_t *)ill->ill_fastpath_list;
while (current_ire != (ire_t *)&ill->ill_fastpath_list) {
next_ire = current_ire->ire_fastpath;
/*
* Take it off the list if we're flushing, or if the callback
* routine tells us to do so. Otherwise, leave the ire in the
* fastpath list to handle any pending response from the lower
* layer. We can't drain the list when the callback routine
* comparison failed, because the response is asynchronous in
* nature, and may not arrive in the same order as the list
* insertion.
*/
if (func == NULL || func(current_ire, arg)) {
current_ire->ire_fastpath = NULL;
if (current_ire == first_ire)
ill->ill_fastpath_list = first_ire = next_ire;
else
prev_ire->ire_fastpath = next_ire;
} else {
/* previous element that is still in the list */
prev_ire = current_ire;
}
current_ire = next_ire;
}
mutex_exit(&ill->ill_lock);
}
/*
* Add ire to the ire fastpath list.
*/
static void
ire_fastpath_list_add(ill_t *ill, ire_t *ire)
{
ASSERT(ill != NULL);
ASSERT(ire->ire_stq != NULL);
rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
mutex_enter(&ill->ill_lock);
/*
* if ire has not been deleted and
* is not already in the list add it.
*/
if (((ire->ire_marks & IRE_MARK_CONDEMNED) == 0) &&
(ire->ire_fastpath == NULL)) {
ire->ire_fastpath = (ire_t *)ill->ill_fastpath_list;
ill->ill_fastpath_list = ire;
}
mutex_exit(&ill->ill_lock);
rw_exit(&ire->ire_bucket->irb_lock);
}
/*
* remove ire from the ire fastpath list.
*/
void
ire_fastpath_list_delete(ill_t *ill, ire_t *ire)
{
ire_t *ire_ptr;
ASSERT(ire->ire_stq != NULL && ill != NULL);
mutex_enter(&ill->ill_lock);
if (ire->ire_fastpath == NULL)
goto done;
ASSERT(ill->ill_fastpath_list != &ill->ill_fastpath_list);
if (ill->ill_fastpath_list == ire) {
ill->ill_fastpath_list = ire->ire_fastpath;
} else {
ire_ptr = ill->ill_fastpath_list;
while (ire_ptr != (ire_t *)&ill->ill_fastpath_list) {
if (ire_ptr->ire_fastpath == ire) {
ire_ptr->ire_fastpath = ire->ire_fastpath;
break;
}
ire_ptr = ire_ptr->ire_fastpath;
}
}
ire->ire_fastpath = NULL;
done:
mutex_exit(&ill->ill_lock);
}
/*
* Find an IRE_INTERFACE for the multicast group.
* Allows different routes for multicast addresses
* in the unicast routing table (akin to 224.0.0.0 but could be more specific)
* which point at different interfaces. This is used when IP_MULTICAST_IF
* isn't specified (when sending) and when IP_ADD_MEMBERSHIP doesn't
* specify the interface to join on.
*
* Supports IP_BOUND_IF by following the ipif/ill when recursing.
*/
ire_t *
ire_lookup_multi(ipaddr_t group, zoneid_t zoneid)
{
ire_t *ire;
ipif_t *ipif = NULL;
int match_flags = MATCH_IRE_TYPE;
ipaddr_t gw_addr;
ire = ire_ftable_lookup(group, 0, 0, 0, NULL, NULL, zoneid,
0, NULL, MATCH_IRE_DEFAULT);
/* We search a resolvable ire in case of multirouting. */
if ((ire != NULL) && (ire->ire_flags & RTF_MULTIRT)) {
ire_t *cire = NULL;
/*
* If the route is not resolvable, the looked up ire
* may be changed here. In that case, ire_multirt_lookup()
* IRE_REFRELE the original ire and change it.
*/
(void) ire_multirt_lookup(&cire, &ire, MULTIRT_CACHEGW, NULL);
if (cire != NULL)
ire_refrele(cire);
}
if (ire == NULL)
return (NULL);
/*
* Make sure we follow ire_ipif.
*
* We need to determine the interface route through
* which the gateway will be reached. We don't really
* care which interface is picked if the interface is
* part of a group.
*/
if (ire->ire_ipif != NULL) {
ipif = ire->ire_ipif;
match_flags |= MATCH_IRE_ILL_GROUP;
}
switch (ire->ire_type) {
case IRE_DEFAULT:
case IRE_PREFIX:
case IRE_HOST:
gw_addr = ire->ire_gateway_addr;
ire_refrele(ire);
ire = ire_ftable_lookup(gw_addr, 0, 0,
IRE_INTERFACE, ipif, NULL, zoneid, 0,
NULL, match_flags);
return (ire);
case IRE_IF_NORESOLVER:
case IRE_IF_RESOLVER:
return (ire);
default:
ire_refrele(ire);
return (NULL);
}
}
/*
* Return any local address. We use this to target ourselves
* when the src address was specified as 'default'.
* Preference for IRE_LOCAL entries.
*/
ire_t *
ire_lookup_local(zoneid_t zoneid)
{
ire_t *ire;
irb_t *irb;
ire_t *maybe = NULL;
int i;
for (i = 0; i < ip_cache_table_size; i++) {
irb = &ip_cache_table[i];
if (irb->irb_ire == NULL)
continue;
rw_enter(&irb->irb_lock, RW_READER);
for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
if ((ire->ire_marks & IRE_MARK_CONDEMNED) ||
(ire->ire_zoneid != zoneid &&
ire->ire_zoneid != ALL_ZONES))
continue;
switch (ire->ire_type) {
case IRE_LOOPBACK:
if (maybe == NULL) {
IRE_REFHOLD(ire);
maybe = ire;
}
break;
case IRE_LOCAL:
if (maybe != NULL) {
ire_refrele(maybe);
}
IRE_REFHOLD(ire);
rw_exit(&irb->irb_lock);
return (ire);
}
}
rw_exit(&irb->irb_lock);
}
return (maybe);
}
/*
* If the specified IRE is associated with a particular ILL, return
* that ILL pointer (May be called as writer.).
*
* NOTE : This is not a generic function that can be used always.
* This function always returns the ill of the outgoing packets
* if this ire is used.
*/
ill_t *
ire_to_ill(const ire_t *ire)
{
ill_t *ill = NULL;
/*
* 1) For an IRE_CACHE, ire_ipif is the one where it obtained
* the source address from. ire_stq is the one where the
* packets will be sent out on. We return that here.
*
* 2) IRE_BROADCAST normally has a loopback and a non-loopback
* copy and they always exist next to each other with loopback
* copy being the first one. If we are called on the non-loopback
* copy, return the one pointed by ire_stq. If it was called on
* a loopback copy, we still return the one pointed by the next
* ire's ire_stq pointer i.e the one pointed by the non-loopback
* copy. We don't want use ire_ipif as it might represent the
* source address (if we borrow source addresses for
* IRE_BROADCASTS in the future).
* However if an interface is currently coming up, the above
* condition may not hold during that period since the ires
* are added one at a time. Thus one of the pair could have been
* added and the other not yet added.
* 3) For all others return the ones pointed by ire_ipif->ipif_ill.
*/
if (ire->ire_type == IRE_CACHE) {
ill = (ill_t *)ire->ire_stq->q_ptr;
} else if (ire->ire_type == IRE_BROADCAST) {
if (ire->ire_stq != NULL) {
ill = (ill_t *)ire->ire_stq->q_ptr;
} else {
ire_t *ire_next;
ire_next = ire->ire_next;
if (ire_next != NULL &&
ire_next->ire_type == IRE_BROADCAST &&
ire_next->ire_addr == ire->ire_addr &&
ire_next->ire_ipif == ire->ire_ipif) {
ill = (ill_t *)ire_next->ire_stq->q_ptr;
}
}
} else if (ire->ire_ipif != NULL) {
ill = ire->ire_ipif->ipif_ill;
}
return (ill);
}
/* Arrange to call the specified function for every IRE in the world. */
void
ire_walk(pfv_t func, void *arg)
{
ire_walk_ipvers(func, arg, 0, ALL_ZONES);
}
void
ire_walk_v4(pfv_t func, void *arg, zoneid_t zoneid)
{
ire_walk_ipvers(func, arg, IPV4_VERSION, zoneid);
}
void
ire_walk_v6(pfv_t func, void *arg, zoneid_t zoneid)
{
ire_walk_ipvers(func, arg, IPV6_VERSION, zoneid);
}
/*
* Walk a particular version. version == 0 means both v4 and v6.
*/
static void
ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, zoneid_t zoneid)
{
if (vers != IPV6_VERSION) {
ire_walk_ill_tables(0, 0, func, arg, IP_MASK_TABLE_SIZE,
ip_ftable_hash_size, ip_forwarding_table,
ip_cache_table_size, ip_cache_table, NULL, zoneid);
}
if (vers != IPV4_VERSION) {
ire_walk_ill_tables(0, 0, func, arg, IP6_MASK_TABLE_SIZE,
ip6_ftable_hash_size, ip_forwarding_table_v6,
ip6_cache_table_size, ip_cache_table_v6, NULL, zoneid);
}
}
/*
* Arrange to call the specified
* function for every IRE that matches the ill.
*/
void
ire_walk_ill(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg,
ill_t *ill)
{
ire_walk_ill_ipvers(match_flags, ire_type, func, arg, 0, ill);
}
void
ire_walk_ill_v4(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg,
ill_t *ill)
{
ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV4_VERSION,
ill);
}
void
ire_walk_ill_v6(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg,
ill_t *ill)
{
ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV6_VERSION,
ill);
}
/*
* Walk a particular ill and version. version == 0 means both v4 and v6.
*/
static void
ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, pfv_t func,
void *arg, uchar_t vers, ill_t *ill)
{
if (vers != IPV6_VERSION) {
ire_walk_ill_tables(match_flags, ire_type, func, arg,
IP_MASK_TABLE_SIZE, ip_ftable_hash_size,
ip_forwarding_table, ip_cache_table_size,
ip_cache_table, ill, ALL_ZONES);
}
if (vers != IPV4_VERSION) {
ire_walk_ill_tables(match_flags, ire_type, func, arg,
IP6_MASK_TABLE_SIZE, ip6_ftable_hash_size,
ip_forwarding_table_v6, ip6_cache_table_size,
ip_cache_table_v6, ill, ALL_ZONES);
}
}
static boolean_t
ire_walk_ill_match(uint_t match_flags, uint_t ire_type, ire_t *ire,
ill_t *ill, zoneid_t zoneid)
{
ill_t *ire_stq_ill = NULL;
ill_t *ire_ipif_ill = NULL;
ill_group_t *ire_ill_group = NULL;
ASSERT(match_flags != 0 || zoneid != ALL_ZONES);
/*
* 1) MATCH_IRE_WQ : Used specifically to match on ire_stq.
* The fast path update uses this to make sure it does not
* update the fast path header of interface X with the fast
* path updates it recieved on interface Y. It is similar
* in handling DL_NOTE_FASTPATH_FLUSH.
*
* 2) MATCH_IRE_ILL/MATCH_IRE_ILL_GROUP : We match both on ill
* pointed by ire_stq and ire_ipif. Only in the case of
* IRE_CACHEs can ire_stq and ire_ipif be pointing to
* different ills. But we want to keep this function generic
* enough for future use. So, we always try to match on both.
* The only caller of this function ire_walk_ill_tables, will
* call "func" after we return from this function. We expect
* "func" to do the right filtering of ires in this case.
*
* NOTE : In the case of MATCH_IRE_ILL_GROUP, groups
* pointed by ire_stq and ire_ipif should always be the same.
* So, we just match on only one of them.
*/
if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) {
if (ire->ire_stq != NULL)
ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr;
if (ire->ire_ipif != NULL)
ire_ipif_ill = ire->ire_ipif->ipif_ill;
if (ire_stq_ill != NULL)
ire_ill_group = ire_stq_ill->ill_group;
if ((ire_ill_group == NULL) && (ire_ipif_ill != NULL))
ire_ill_group = ire_ipif_ill->ill_group;
}
if (zoneid != ALL_ZONES) {
/*
* We're walking the IREs for a specific zone. The only relevant
* IREs are:
* - all IREs with a matching ire_zoneid
* - all IRE_OFFSUBNETs as they're shared across all zones
* - IRE_INTERFACE IREs for interfaces with a usable source addr
* with a matching zone
* - IRE_DEFAULTs with a gateway reachable from the zone
* We should really match on IRE_OFFSUBNETs and IRE_DEFAULTs
* using the same rule; but the above rules are consistent with
* the behavior of ire_ftable_lookup[_v6]() so that all the
* routes that can be matched during lookup are also matched
* here.
*/
if (zoneid != ire->ire_zoneid && ire->ire_zoneid != ALL_ZONES) {
/*
* Note, IRE_INTERFACE can have the stq as NULL. For
* example, if the default multicast route is tied to
* the loopback address.
*/
if ((ire->ire_type & IRE_INTERFACE) &&
(ire->ire_stq != NULL)) {
ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr;
if (ire->ire_ipversion == IPV4_VERSION) {
if (!ipif_usesrc_avail(ire_stq_ill,
zoneid))
/* No usable src addr in zone */
return (B_FALSE);
} else if (ire_stq_ill->ill_usesrc_ifindex
!= 0) {
/*
* For IPv6 use ipif_select_source_v6()
* so the right scope selection is done
*/
ipif_t *src_ipif;
src_ipif =
ipif_select_source_v6(ire_stq_ill,
&ire->ire_addr_v6, B_FALSE,
IPV6_PREFER_SRC_DEFAULT,
zoneid);
if (src_ipif != NULL) {
ipif_refrele(src_ipif);
} else {
return (B_FALSE);
}
} else {
return (B_FALSE);
}
} else if (!(ire->ire_type & IRE_OFFSUBNET)) {
return (B_FALSE);
}
}
/*
* Match all default routes from the global zone, irrespective
* of reachability.
*/
if (ire->ire_type == IRE_DEFAULT && zoneid != GLOBAL_ZONEID) {
int ire_match_flags = 0;
in6_addr_t gw_addr_v6;
ire_t *rire;
if (ire->ire_ipif != NULL) {
ire_match_flags |= MATCH_IRE_ILL_GROUP;
}
if (ire->ire_ipversion == IPV4_VERSION) {
rire = ire_route_lookup(ire->ire_gateway_addr,
0, 0, 0, ire->ire_ipif, NULL, zoneid, NULL,
ire_match_flags);
} else {
ASSERT(ire->ire_ipversion == IPV6_VERSION);
mutex_enter(&ire->ire_lock);
gw_addr_v6 = ire->ire_gateway_addr_v6;
mutex_exit(&ire->ire_lock);
rire = ire_route_lookup_v6(&gw_addr_v6,
NULL, NULL, 0, ire->ire_ipif, NULL, zoneid,
NULL, ire_match_flags);
}
if (rire == NULL) {
return (B_FALSE);
}
ire_refrele(rire);
}
}
if (((!(match_flags & MATCH_IRE_TYPE)) ||
(ire->ire_type & ire_type)) &&
((!(match_flags & MATCH_IRE_WQ)) ||
(ire->ire_stq == ill->ill_wq)) &&
((!(match_flags & MATCH_IRE_ILL)) ||
(ire_stq_ill == ill || ire_ipif_ill == ill)) &&
((!(match_flags & MATCH_IRE_ILL_GROUP)) ||
(ire_stq_ill == ill) || (ire_ipif_ill == ill) ||
(ire_ill_group != NULL &&
ire_ill_group == ill->ill_group))) {
return (B_TRUE);
}
return (B_FALSE);
}
/*
* Walk the ftable and the ctable entries that match the ill.
*/
static void
ire_walk_ill_tables(uint_t match_flags, uint_t ire_type, pfv_t func,
void *arg, size_t ftbl_sz, size_t htbl_sz, irb_t **ipftbl,
size_t ctbl_sz, irb_t *ipctbl, ill_t *ill, zoneid_t zoneid)
{
irb_t *irb_ptr;
irb_t *irb;
ire_t *ire;
int i, j;
boolean_t ret;
ASSERT((!(match_flags & (MATCH_IRE_WQ | MATCH_IRE_ILL |
MATCH_IRE_ILL_GROUP))) || (ill != NULL));
ASSERT(!(match_flags & MATCH_IRE_TYPE) || (ire_type != 0));
/*
* Optimize by not looking at the forwarding table if there
* is a MATCH_IRE_TYPE specified with no IRE_FORWARDTABLE
* specified in ire_type.
*/
if (!(match_flags & MATCH_IRE_TYPE) ||
((ire_type & IRE_FORWARDTABLE) != 0)) {
for (i = (ftbl_sz - 1); i >= 0; i--) {
if ((irb_ptr = ipftbl[i]) == NULL)
continue;
for (j = 0; j < htbl_sz; j++) {
irb = &irb_ptr[j];
if (irb->irb_ire == NULL)
continue;
IRB_REFHOLD(irb);
for (ire = irb->irb_ire; ire != NULL;
ire = ire->ire_next) {
if (match_flags == 0 &&
zoneid == ALL_ZONES) {
ret = B_TRUE;
} else {
ret = ire_walk_ill_match(
match_flags, ire_type,
ire, ill, zoneid);
}
if (ret)
(*func)(ire, arg);
}
IRB_REFRELE(irb);
}
}
}
/*
* Optimize by not looking at the cache table if there
* is a MATCH_IRE_TYPE specified with no IRE_CACHETABLE
* specified in ire_type.
*/
if (!(match_flags & MATCH_IRE_TYPE) ||
((ire_type & IRE_CACHETABLE) != 0)) {
for (i = 0; i < ctbl_sz; i++) {
irb = &ipctbl[i];
if (irb->irb_ire == NULL)
continue;
IRB_REFHOLD(irb);
for (ire = irb->irb_ire; ire != NULL;
ire = ire->ire_next) {
if (match_flags == 0 && zoneid == ALL_ZONES) {
ret = B_TRUE;
} else {
ret = ire_walk_ill_match(
match_flags, ire_type,
ire, ill, zoneid);
}
if (ret)
(*func)(ire, arg);
}
IRB_REFRELE(irb);
}
}
}
/*
* This routine walks through the ill chain to find if there is any
* ire linked to the ill's interface based forwarding table
* The arg could be ill or mp. This routine is called when a ill goes
* down/deleted or the 'ipv4_ire_srcif_status' report is printed.
*/
void
ire_walk_srcif_table_v4(pfv_t func, void *arg)
{
irb_t *irb;
ire_t *ire;
ill_t *ill, *next_ill;
int i;
int total_count;
ill_walk_context_t ctx;
/*
* Take care of ire's in other ill's per-interface forwarding
* table. Check if any ire in any of the ill's ill_srcif_table
* is pointing to this ill.
*/
mutex_enter(&ire_