| /* |
| * CDDL HEADER START |
| * |
| * The contents of this file are subject to the terms of the |
| * Common Development and Distribution License (the "License"). |
| * You may not use this file except in compliance with the License. |
| * |
| * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE |
| * or http://www.opensolaris.org/os/licensing. |
| * See the License for the specific language governing permissions |
| * and limitations under the License. |
| * |
| * When distributing Covered Code, include this CDDL HEADER in each |
| * file and include the License file at usr/src/OPENSOLARIS.LICENSE. |
| * If applicable, add the following below this CDDL HEADER, with the |
| * fields enclosed by brackets "[]" replaced with your own identifying |
| * information: Portions Copyright [yyyy] [name of copyright owner] |
| * |
| * CDDL HEADER END |
| */ |
| /* |
| * Copyright 2006 Sun Microsystems, Inc. All rights reserved. |
| * Use is subject to license terms. |
| */ |
| /* |
| * Copyright (c) 1990 Mentat Inc. |
| */ |
| |
| #pragma ident "%Z%%M% %I% %E% SMI" |
| |
| /* |
| * This file contains the interface control functions for IPv6. |
| */ |
| |
| #include <sys/types.h> |
| #include <sys/sysmacros.h> |
| #include <sys/stream.h> |
| #include <sys/dlpi.h> |
| #include <sys/stropts.h> |
| #include <sys/ddi.h> |
| #include <sys/cmn_err.h> |
| #include <sys/kstat.h> |
| #include <sys/debug.h> |
| #include <sys/zone.h> |
| |
| #include <sys/systm.h> |
| #include <sys/param.h> |
| #include <sys/socket.h> |
| #include <sys/isa_defs.h> |
| #include <net/if.h> |
| #include <net/if_dl.h> |
| #include <net/route.h> |
| #include <netinet/in.h> |
| #include <netinet/igmp_var.h> |
| #include <netinet/ip6.h> |
| #include <netinet/icmp6.h> |
| #include <netinet/in.h> |
| |
| #include <inet/common.h> |
| #include <inet/nd.h> |
| #include <inet/mib2.h> |
| #include <inet/ip.h> |
| #include <inet/ip6.h> |
| #include <inet/ip_multi.h> |
| #include <inet/ip_ire.h> |
| #include <inet/ip_rts.h> |
| #include <inet/ip_ndp.h> |
| #include <inet/ip_if.h> |
| #include <inet/ip6_asp.h> |
| #include <inet/tun.h> |
| #include <inet/ipclassifier.h> |
| #include <inet/sctp_ip.h> |
| |
| #include <sys/tsol/tndb.h> |
| #include <sys/tsol/tnet.h> |
| |
| static in6_addr_t ipv6_ll_template = |
| {(uint32_t)V6_LINKLOCAL, 0x0, 0x0, 0x0}; |
| |
| static ipif_t * |
| ipif_lookup_interface_v6(const in6_addr_t *if_addr, const in6_addr_t *dst, |
| queue_t *q, mblk_t *mp, ipsq_func_t func, int *error); |
| |
| /* |
| * ipif_lookup_group_v6 |
| */ |
| ipif_t * |
| ipif_lookup_group_v6(const in6_addr_t *group, zoneid_t zoneid) |
| { |
| ire_t *ire; |
| ipif_t *ipif; |
| |
| ire = ire_lookup_multi_v6(group, zoneid); |
| if (ire == NULL) |
| return (NULL); |
| ipif = ire->ire_ipif; |
| ipif_refhold(ipif); |
| ire_refrele(ire); |
| return (ipif); |
| } |
| |
| /* |
| * ill_lookup_group_v6 |
| */ |
| ill_t * |
| ill_lookup_group_v6(const in6_addr_t *group, zoneid_t zoneid) |
| { |
| ire_t *ire; |
| ill_t *ill; |
| |
| ire = ire_lookup_multi_v6(group, zoneid); |
| if (ire == NULL) |
| return (NULL); |
| ill = ire->ire_ipif->ipif_ill; |
| ill_refhold(ill); |
| ire_refrele(ire); |
| return (ill); |
| } |
| |
| /* |
| * Look for an ipif with the specified interface address and destination. |
| * The destination address is used only for matching point-to-point interfaces. |
| */ |
| static ipif_t * |
| ipif_lookup_interface_v6(const in6_addr_t *if_addr, const in6_addr_t *dst, |
| queue_t *q, mblk_t *mp, ipsq_func_t func, int *error) |
| { |
| ipif_t *ipif; |
| ill_t *ill; |
| ipsq_t *ipsq; |
| ill_walk_context_t ctx; |
| |
| if (error != NULL) |
| *error = 0; |
| |
| /* |
| * First match all the point-to-point interfaces |
| * before looking at non-point-to-point interfaces. |
| * This is done to avoid returning non-point-to-point |
| * ipif instead of unnumbered point-to-point ipif. |
| */ |
| rw_enter(&ill_g_lock, RW_READER); |
| ill = ILL_START_WALK_V6(&ctx); |
| for (; ill != NULL; ill = ill_next(&ctx, ill)) { |
| GRAB_CONN_LOCK(q); |
| mutex_enter(&ill->ill_lock); |
| for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { |
| /* Allow the ipif to be down */ |
| if ((ipif->ipif_flags & IPIF_POINTOPOINT) && |
| (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, |
| if_addr)) && |
| (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, |
| dst))) { |
| if (IPIF_CAN_LOOKUP(ipif)) { |
| ipif_refhold_locked(ipif); |
| mutex_exit(&ill->ill_lock); |
| RELEASE_CONN_LOCK(q); |
| rw_exit(&ill_g_lock); |
| return (ipif); |
| } else if (IPIF_CAN_WAIT(ipif, q)) { |
| ipsq = ill->ill_phyint->phyint_ipsq; |
| mutex_enter(&ipsq->ipsq_lock); |
| mutex_exit(&ill->ill_lock); |
| rw_exit(&ill_g_lock); |
| ipsq_enq(ipsq, q, mp, func, NEW_OP, |
| ill); |
| mutex_exit(&ipsq->ipsq_lock); |
| RELEASE_CONN_LOCK(q); |
| *error = EINPROGRESS; |
| return (NULL); |
| } |
| } |
| } |
| mutex_exit(&ill->ill_lock); |
| RELEASE_CONN_LOCK(q); |
| } |
| rw_exit(&ill_g_lock); |
| /* lookup the ipif based on interface address */ |
| ipif = ipif_lookup_addr_v6(if_addr, NULL, ALL_ZONES, q, mp, func, |
| error); |
| ASSERT(ipif == NULL || ipif->ipif_isv6); |
| return (ipif); |
| } |
| |
| /* |
| * Look for an ipif with the specified address. For point-point links |
| * we look for matches on either the destination address and the local |
| * address, but we ignore the check on the local address if IPIF_UNNUMBERED |
| * is set. |
| * Matches on a specific ill if match_ill is set. |
| */ |
| /* ARGSUSED */ |
| ipif_t * |
| ipif_lookup_addr_v6(const in6_addr_t *addr, ill_t *match_ill, zoneid_t zoneid, |
| queue_t *q, mblk_t *mp, ipsq_func_t func, int *error) |
| { |
| ipif_t *ipif; |
| ill_t *ill; |
| boolean_t ptp = B_FALSE; |
| ipsq_t *ipsq; |
| ill_walk_context_t ctx; |
| |
| if (error != NULL) |
| *error = 0; |
| |
| rw_enter(&ill_g_lock, RW_READER); |
| /* |
| * Repeat twice, first based on local addresses and |
| * next time for pointopoint. |
| */ |
| repeat: |
| ill = ILL_START_WALK_V6(&ctx); |
| for (; ill != NULL; ill = ill_next(&ctx, ill)) { |
| if (match_ill != NULL && ill != match_ill) { |
| continue; |
| } |
| GRAB_CONN_LOCK(q); |
| mutex_enter(&ill->ill_lock); |
| for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { |
| if (zoneid != ALL_ZONES && |
| ipif->ipif_zoneid != zoneid && |
| ipif->ipif_zoneid != ALL_ZONES) |
| continue; |
| /* Allow the ipif to be down */ |
| if ((!ptp && (IN6_ARE_ADDR_EQUAL( |
| &ipif->ipif_v6lcl_addr, addr) && |
| (ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || |
| (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && |
| IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, |
| addr))) { |
| if (IPIF_CAN_LOOKUP(ipif)) { |
| ipif_refhold_locked(ipif); |
| mutex_exit(&ill->ill_lock); |
| RELEASE_CONN_LOCK(q); |
| rw_exit(&ill_g_lock); |
| return (ipif); |
| } else if (IPIF_CAN_WAIT(ipif, q)) { |
| ipsq = ill->ill_phyint->phyint_ipsq; |
| mutex_enter(&ipsq->ipsq_lock); |
| mutex_exit(&ill->ill_lock); |
| rw_exit(&ill_g_lock); |
| ipsq_enq(ipsq, q, mp, func, NEW_OP, |
| ill); |
| mutex_exit(&ipsq->ipsq_lock); |
| RELEASE_CONN_LOCK(q); |
| *error = EINPROGRESS; |
| return (NULL); |
| } |
| } |
| } |
| mutex_exit(&ill->ill_lock); |
| RELEASE_CONN_LOCK(q); |
| } |
| |
| /* Repeat once more if needed */ |
| if (ptp) { |
| rw_exit(&ill_g_lock); |
| if (error != NULL) |
| *error = ENXIO; |
| return (NULL); |
| } |
| ptp = B_TRUE; |
| goto repeat; |
| } |
| |
| /* |
| * Perform various checks to verify that an address would make sense as a local |
| * interface address. This is currently only called when an attempt is made |
| * to set a local address. |
| * |
| * Does not allow a v4-mapped address, an address that equals the subnet |
| * anycast address, ... a multicast address, ... |
| */ |
| boolean_t |
| ip_local_addr_ok_v6(const in6_addr_t *addr, const in6_addr_t *subnet_mask) |
| { |
| in6_addr_t subnet; |
| |
| if (IN6_IS_ADDR_UNSPECIFIED(addr)) |
| return (B_TRUE); /* Allow all zeros */ |
| |
| /* |
| * Don't allow all zeroes or host part, but allow |
| * all ones netmask. |
| */ |
| V6_MASK_COPY(*addr, *subnet_mask, subnet); |
| if (IN6_IS_ADDR_V4MAPPED(addr) || |
| (IN6_ARE_ADDR_EQUAL(addr, &subnet) && |
| !IN6_ARE_ADDR_EQUAL(subnet_mask, &ipv6_all_ones)) || |
| (IN6_IS_ADDR_V4COMPAT(addr) && CLASSD(V4_PART_OF_V6((*addr)))) || |
| IN6_IS_ADDR_MULTICAST(addr)) |
| return (B_FALSE); |
| |
| return (B_TRUE); |
| } |
| |
| /* |
| * Perform various checks to verify that an address would make sense as a |
| * remote/subnet interface address. |
| */ |
| boolean_t |
| ip_remote_addr_ok_v6(const in6_addr_t *addr, const in6_addr_t *subnet_mask) |
| { |
| in6_addr_t subnet; |
| |
| if (IN6_IS_ADDR_UNSPECIFIED(addr)) |
| return (B_TRUE); /* Allow all zeros */ |
| |
| V6_MASK_COPY(*addr, *subnet_mask, subnet); |
| if (IN6_IS_ADDR_V4MAPPED(addr) || |
| (IN6_ARE_ADDR_EQUAL(addr, &subnet) && |
| !IN6_ARE_ADDR_EQUAL(subnet_mask, &ipv6_all_ones)) || |
| IN6_IS_ADDR_MULTICAST(addr) || |
| (IN6_IS_ADDR_V4COMPAT(addr) && CLASSD(V4_PART_OF_V6((*addr))))) |
| return (B_FALSE); |
| |
| return (B_TRUE); |
| } |
| |
| /* |
| * ip_rt_add_v6 is called to add an IPv6 route to the forwarding table. |
| * ipif_arg is passed in to associate it with the correct interface |
| * (for link-local destinations and gateways). |
| */ |
| /* ARGSUSED1 */ |
| int |
| ip_rt_add_v6(const in6_addr_t *dst_addr, const in6_addr_t *mask, |
| const in6_addr_t *gw_addr, const in6_addr_t *src_addr, int flags, |
| ipif_t *ipif_arg, ire_t **ire_arg, queue_t *q, mblk_t *mp, ipsq_func_t func, |
| struct rtsa_s *sp) |
| { |
| ire_t *ire; |
| ire_t *gw_ire = NULL; |
| ipif_t *ipif; |
| boolean_t ipif_refheld = B_FALSE; |
| uint_t type; |
| int match_flags = MATCH_IRE_TYPE; |
| int error; |
| tsol_gc_t *gc = NULL; |
| tsol_gcgrp_t *gcgrp = NULL; |
| boolean_t gcgrp_xtraref = B_FALSE; |
| |
| if (ire_arg != NULL) |
| *ire_arg = NULL; |
| |
| /* |
| * Prevent routes with a zero gateway from being created (since |
| * interfaces can currently be plumbed and brought up with no assigned |
| * address). |
| */ |
| if (IN6_IS_ADDR_UNSPECIFIED(gw_addr)) |
| return (ENETUNREACH); |
| |
| /* |
| * If this is the case of RTF_HOST being set, then we set the netmask |
| * to all ones (regardless if one was supplied). |
| */ |
| if (flags & RTF_HOST) |
| mask = &ipv6_all_ones; |
| |
| /* |
| * Get the ipif, if any, corresponding to the gw_addr |
| */ |
| ipif = ipif_lookup_interface_v6(gw_addr, dst_addr, q, mp, func, |
| &error); |
| if (ipif != NULL) |
| ipif_refheld = B_TRUE; |
| else if (error == EINPROGRESS) { |
| ip1dbg(("ip_rt_add_v6: null and EINPROGRESS")); |
| return (error); |
| } |
| |
| /* |
| * GateD will attempt to create routes with a loopback interface |
| * address as the gateway and with RTF_GATEWAY set. We allow |
| * these routes to be added, but create them as interface routes |
| * since the gateway is an interface address. |
| */ |
| if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) |
| flags &= ~RTF_GATEWAY; |
| |
| /* |
| * Traditionally, interface routes are ones where RTF_GATEWAY isn't set |
| * and the gateway address provided is one of the system's interface |
| * addresses. By using the routing socket interface and supplying an |
| * RTA_IFP sockaddr with an interface index, an alternate method of |
| * specifying an interface route to be created is available which uses |
| * the interface index that specifies the outgoing interface rather than |
| * the address of an outgoing interface (which may not be able to |
| * uniquely identify an interface). When coupled with the RTF_GATEWAY |
| * flag, routes can be specified which not only specify the next-hop to |
| * be used when routing to a certain prefix, but also which outgoing |
| * interface should be used. |
| * |
| * Previously, interfaces would have unique addresses assigned to them |
| * and so the address assigned to a particular interface could be used |
| * to identify a particular interface. One exception to this was the |
| * case of an unnumbered interface (where IPIF_UNNUMBERED was set). |
| * |
| * With the advent of IPv6 and its link-local addresses, this |
| * restriction was relaxed and interfaces could share addresses between |
| * themselves. In fact, typically all of the link-local interfaces on |
| * an IPv6 node or router will have the same link-local address. In |
| * order to differentiate between these interfaces, the use of an |
| * interface index is necessary and this index can be carried inside a |
| * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction |
| * of using the interface index, however, is that all of the ipif's that |
| * are part of an ill have the same index and so the RTA_IFP sockaddr |
| * cannot be used to differentiate between ipif's (or logical |
| * interfaces) that belong to the same ill (physical interface). |
| * |
| * For example, in the following case involving IPv4 interfaces and |
| * logical interfaces |
| * |
| * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 |
| * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 |
| * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 |
| * |
| * the ipif's corresponding to each of these interface routes can be |
| * uniquely identified by the "gateway" (actually interface address). |
| * |
| * In this case involving multiple IPv6 default routes to a particular |
| * link-local gateway, the use of RTA_IFP is necessary to specify which |
| * default route is of interest: |
| * |
| * default fe80::123:4567:89ab:cdef U if0 |
| * default fe80::123:4567:89ab:cdef U if1 |
| */ |
| |
| /* RTF_GATEWAY not set */ |
| if (!(flags & RTF_GATEWAY)) { |
| queue_t *stq; |
| |
| if (sp != NULL) { |
| ip2dbg(("ip_rt_add_v6: gateway security attributes " |
| "cannot be set with interface route\n")); |
| if (ipif_refheld) |
| ipif_refrele(ipif); |
| return (EINVAL); |
| } |
| |
| /* |
| * As the interface index specified with the RTA_IFP sockaddr is |
| * the same for all ipif's off of an ill, the matching logic |
| * below uses MATCH_IRE_ILL if such an index was specified. |
| * This means that routes sharing the same prefix when added |
| * using a RTA_IFP sockaddr must have distinct interface |
| * indices (namely, they must be on distinct ill's). |
| * |
| * On the other hand, since the gateway address will usually be |
| * different for each ipif on the system, the matching logic |
| * uses MATCH_IRE_IPIF in the case of a traditional interface |
| * route. This means that interface routes for the same prefix |
| * can be created if they belong to distinct ipif's and if a |
| * RTA_IFP sockaddr is not present. |
| */ |
| if (ipif_arg != NULL) { |
| if (ipif_refheld) { |
| ipif_refrele(ipif); |
| ipif_refheld = B_FALSE; |
| } |
| ipif = ipif_arg; |
| match_flags |= MATCH_IRE_ILL; |
| } else { |
| /* |
| * Check the ipif corresponding to the gw_addr |
| */ |
| if (ipif == NULL) |
| return (ENETUNREACH); |
| match_flags |= MATCH_IRE_IPIF; |
| } |
| |
| ASSERT(ipif != NULL); |
| /* |
| * We check for an existing entry at this point. |
| */ |
| match_flags |= MATCH_IRE_MASK; |
| ire = ire_ftable_lookup_v6(dst_addr, mask, 0, IRE_INTERFACE, |
| ipif, NULL, ALL_ZONES, 0, NULL, match_flags); |
| if (ire != NULL) { |
| ire_refrele(ire); |
| if (ipif_refheld) |
| ipif_refrele(ipif); |
| return (EEXIST); |
| } |
| |
| stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) |
| ? ipif->ipif_rq : ipif->ipif_wq; |
| |
| /* |
| * Create a copy of the IRE_LOOPBACK, IRE_IF_NORESOLVER or |
| * IRE_IF_RESOLVER with the modified address and netmask. |
| */ |
| ire = ire_create_v6( |
| dst_addr, |
| mask, |
| &ipif->ipif_v6src_addr, |
| NULL, |
| &ipif->ipif_mtu, |
| NULL, |
| NULL, |
| stq, |
| ipif->ipif_net_type, |
| ipif->ipif_resolver_mp, |
| ipif, |
| NULL, |
| 0, |
| 0, |
| flags, |
| &ire_uinfo_null, |
| NULL, |
| NULL); |
| if (ire == NULL) { |
| if (ipif_refheld) |
| ipif_refrele(ipif); |
| return (ENOMEM); |
| } |
| |
| /* |
| * Some software (for example, GateD and Sun Cluster) attempts |
| * to create (what amount to) IRE_PREFIX routes with the |
| * loopback address as the gateway. This is primarily done to |
| * set up prefixes with the RTF_REJECT flag set (for example, |
| * when generating aggregate routes.) |
| * |
| * If the IRE type (as defined by ipif->ipif_net_type) is |
| * IRE_LOOPBACK, then we map the request into a |
| * IRE_IF_NORESOLVER. |
| * |
| * Needless to say, the real IRE_LOOPBACK is NOT created by this |
| * routine, but rather using ire_create_v6() directly. |
| */ |
| if (ipif->ipif_net_type == IRE_LOOPBACK) |
| ire->ire_type = IRE_IF_NORESOLVER; |
| error = ire_add(&ire, q, mp, func); |
| if (error == 0) |
| goto save_ire; |
| /* |
| * In the result of failure, ire_add() will have already |
| * deleted the ire in question, so there is no need to |
| * do that here. |
| */ |
| if (ipif_refheld) |
| ipif_refrele(ipif); |
| return (error); |
| } |
| if (ipif_refheld) { |
| ipif_refrele(ipif); |
| ipif_refheld = B_FALSE; |
| } |
| |
| /* |
| * Get an interface IRE for the specified gateway. |
| * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the |
| * gateway, it is currently unreachable and we fail the request |
| * accordingly. |
| */ |
| ipif = ipif_arg; |
| if (ipif_arg != NULL) |
| match_flags |= MATCH_IRE_ILL; |
| gw_ire = ire_ftable_lookup_v6(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, |
| NULL, ALL_ZONES, 0, NULL, match_flags); |
| if (gw_ire == NULL) |
| return (ENETUNREACH); |
| |
| /* |
| * We create one of three types of IREs as a result of this request |
| * based on the netmask. A netmask of all ones (which is automatically |
| * assumed when RTF_HOST is set) results in an IRE_HOST being created. |
| * An all zeroes netmask implies a default route so an IRE_DEFAULT is |
| * created. Otherwise, an IRE_PREFIX route is created for the |
| * destination prefix. |
| */ |
| if (IN6_ARE_ADDR_EQUAL(mask, &ipv6_all_ones)) |
| type = IRE_HOST; |
| else if (IN6_IS_ADDR_UNSPECIFIED(mask)) |
| type = IRE_DEFAULT; |
| else |
| type = IRE_PREFIX; |
| |
| /* check for a duplicate entry */ |
| ire = ire_ftable_lookup_v6(dst_addr, mask, gw_addr, type, ipif_arg, |
| NULL, ALL_ZONES, 0, NULL, |
| match_flags | MATCH_IRE_MASK | MATCH_IRE_GW); |
| if (ire != NULL) { |
| ire_refrele(gw_ire); |
| ire_refrele(ire); |
| return (EEXIST); |
| } |
| |
| /* Security attribute exists */ |
| if (sp != NULL) { |
| tsol_gcgrp_addr_t ga; |
| |
| /* find or create the gateway credentials group */ |
| ga.ga_af = AF_INET6; |
| ga.ga_addr = *gw_addr; |
| |
| /* we hold reference to it upon success */ |
| gcgrp = gcgrp_lookup(&ga, B_TRUE); |
| if (gcgrp == NULL) { |
| ire_refrele(gw_ire); |
| return (ENOMEM); |
| } |
| |
| /* |
| * Create and add the security attribute to the group; a |
| * reference to the group is made upon allocating a new |
| * entry successfully. If it finds an already-existing |
| * entry for the security attribute in the group, it simply |
| * returns it and no new reference is made to the group. |
| */ |
| gc = gc_create(sp, gcgrp, &gcgrp_xtraref); |
| if (gc == NULL) { |
| /* release reference held by gcgrp_lookup */ |
| GCGRP_REFRELE(gcgrp); |
| ire_refrele(gw_ire); |
| return (ENOMEM); |
| } |
| } |
| |
| /* Create the IRE. */ |
| ire = ire_create_v6( |
| dst_addr, /* dest address */ |
| mask, /* mask */ |
| /* src address assigned by the caller? */ |
| (((flags & RTF_SETSRC) && !IN6_IS_ADDR_UNSPECIFIED(src_addr)) ? |
| src_addr : NULL), |
| gw_addr, /* gateway address */ |
| &gw_ire->ire_max_frag, |
| NULL, /* no Fast Path header */ |
| NULL, /* no recv-from queue */ |
| NULL, /* no send-to queue */ |
| (ushort_t)type, /* IRE type */ |
| NULL, |
| ipif_arg, |
| NULL, |
| 0, |
| 0, |
| flags, |
| &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ |
| gc, /* security attribute */ |
| NULL); |
| /* |
| * The ire holds a reference to the 'gc' and the 'gc' holds a |
| * reference to the 'gcgrp'. We can now release the extra reference |
| * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. |
| */ |
| if (gcgrp_xtraref) |
| GCGRP_REFRELE(gcgrp); |
| if (ire == NULL) { |
| if (gc != NULL) |
| GC_REFRELE(gc); |
| ire_refrele(gw_ire); |
| return (ENOMEM); |
| } |
| |
| /* |
| * POLICY: should we allow an RTF_HOST with address INADDR_ANY? |
| * SUN/OS socket stuff does but do we really want to allow ::0 ? |
| */ |
| |
| /* Add the new IRE. */ |
| error = ire_add(&ire, q, mp, func); |
| /* |
| * In the result of failure, ire_add() will have already |
| * deleted the ire in question, so there is no need to |
| * do that here. |
| */ |
| if (error != 0) { |
| ire_refrele(gw_ire); |
| return (error); |
| } |
| |
| if (flags & RTF_MULTIRT) { |
| /* |
| * Invoke the CGTP (multirouting) filtering module |
| * to add the dst address in the filtering database. |
| * Replicated inbound packets coming from that address |
| * will be filtered to discard the duplicates. |
| * It is not necessary to call the CGTP filter hook |
| * when the dst address is a multicast, because an |
| * IP source address cannot be a multicast. |
| */ |
| if ((ip_cgtp_filter_ops != NULL) && |
| !IN6_IS_ADDR_MULTICAST(&(ire->ire_addr_v6))) { |
| int res = ip_cgtp_filter_ops->cfo_add_dest_v6( |
| &ire->ire_addr_v6, |
| &ire->ire_gateway_addr_v6, |
| &ire->ire_src_addr_v6, |
| &gw_ire->ire_src_addr_v6); |
| if (res != 0) { |
| ire_refrele(gw_ire); |
| ire_delete(ire); |
| return (res); |
| } |
| } |
| } |
| |
| /* |
| * Now that the prefix IRE entry has been created, delete any |
| * existing gateway IRE cache entries as well as any IRE caches |
| * using the gateway, and force them to be created through |
| * ip_newroute_v6. |
| */ |
| if (gc != NULL) { |
| ASSERT(gcgrp != NULL); |
| ire_clookup_delete_cache_gw_v6(gw_addr, ALL_ZONES); |
| } |
| |
| save_ire: |
| if (gw_ire != NULL) { |
| ire_refrele(gw_ire); |
| } |
| if (ipif != NULL) { |
| mblk_t *save_mp; |
| |
| /* |
| * Save enough information so that we can recreate the IRE if |
| * the interface goes down and then up. The metrics associated |
| * with the route will be saved as well when rts_setmetrics() is |
| * called after the IRE has been created. In the case where |
| * memory cannot be allocated, none of this information will be |
| * saved. |
| */ |
| save_mp = allocb(sizeof (ifrt_t), BPRI_MED); |
| if (save_mp != NULL) { |
| ifrt_t *ifrt; |
| |
| save_mp->b_wptr += sizeof (ifrt_t); |
| ifrt = (ifrt_t *)save_mp->b_rptr; |
| bzero(ifrt, sizeof (ifrt_t)); |
| ifrt->ifrt_type = ire->ire_type; |
| ifrt->ifrt_v6addr = ire->ire_addr_v6; |
| mutex_enter(&ire->ire_lock); |
| ifrt->ifrt_v6gateway_addr = ire->ire_gateway_addr_v6; |
| ifrt->ifrt_v6src_addr = ire->ire_src_addr_v6; |
| mutex_exit(&ire->ire_lock); |
| ifrt->ifrt_v6mask = ire->ire_mask_v6; |
| ifrt->ifrt_flags = ire->ire_flags; |
| ifrt->ifrt_max_frag = ire->ire_max_frag; |
| mutex_enter(&ipif->ipif_saved_ire_lock); |
| save_mp->b_cont = ipif->ipif_saved_ire_mp; |
| ipif->ipif_saved_ire_mp = save_mp; |
| ipif->ipif_saved_ire_cnt++; |
| mutex_exit(&ipif->ipif_saved_ire_lock); |
| } |
| } |
| if (ire_arg != NULL) { |
| /* |
| * Store the ire that was successfully added into where ire_arg |
| * points to so that callers don't have to look it up |
| * themselves (but they are responsible for ire_refrele()ing |
| * the ire when they are finished with it). |
| */ |
| *ire_arg = ire; |
| } else { |
| ire_refrele(ire); /* Held in ire_add */ |
| } |
| if (ipif_refheld) |
| ipif_refrele(ipif); |
| return (0); |
| } |
| |
| /* |
| * ip_rt_delete_v6 is called to delete an IPv6 route. |
| * ipif_arg is passed in to associate it with the correct interface |
| * (for link-local destinations and gateways). |
| */ |
| /* ARGSUSED4 */ |
| int |
| ip_rt_delete_v6(const in6_addr_t *dst_addr, const in6_addr_t *mask, |
| const in6_addr_t *gw_addr, uint_t rtm_addrs, int flags, ipif_t *ipif_arg, |
| queue_t *q, mblk_t *mp, ipsq_func_t func) |
| { |
| ire_t *ire = NULL; |
| ipif_t *ipif; |
| uint_t type; |
| uint_t match_flags = MATCH_IRE_TYPE; |
| int err = 0; |
| boolean_t ipif_refheld = B_FALSE; |
| |
| /* |
| * If this is the case of RTF_HOST being set, then we set the netmask |
| * to all ones. Otherwise, we use the netmask if one was supplied. |
| */ |
| if (flags & RTF_HOST) { |
| mask = &ipv6_all_ones; |
| match_flags |= MATCH_IRE_MASK; |
| } else if (rtm_addrs & RTA_NETMASK) { |
| match_flags |= MATCH_IRE_MASK; |
| } |
| |
| /* |
| * Note that RTF_GATEWAY is never set on a delete, therefore |
| * we check if the gateway address is one of our interfaces first, |
| * and fall back on RTF_GATEWAY routes. |
| * |
| * This makes it possible to delete an original |
| * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. |
| * |
| * As the interface index specified with the RTA_IFP sockaddr is the |
| * same for all ipif's off of an ill, the matching logic below uses |
| * MATCH_IRE_ILL if such an index was specified. This means a route |
| * sharing the same prefix and interface index as the the route |
| * intended to be deleted might be deleted instead if a RTA_IFP sockaddr |
| * is specified in the request. |
| * |
| * On the other hand, since the gateway address will usually be |
| * different for each ipif on the system, the matching logic |
| * uses MATCH_IRE_IPIF in the case of a traditional interface |
| * route. This means that interface routes for the same prefix can be |
| * uniquely identified if they belong to distinct ipif's and if a |
| * RTA_IFP sockaddr is not present. |
| * |
| * For more detail on specifying routes by gateway address and by |
| * interface index, see the comments in ip_rt_add_v6(). |
| */ |
| ipif = ipif_lookup_interface_v6(gw_addr, dst_addr, q, mp, func, &err); |
| if (ipif != NULL) { |
| ipif_refheld = B_TRUE; |
| if (ipif_arg != NULL) { |
| ipif_refrele(ipif); |
| ipif_refheld = B_FALSE; |
| ipif = ipif_arg; |
| match_flags |= MATCH_IRE_ILL; |
| } else { |
| match_flags |= MATCH_IRE_IPIF; |
| } |
| |
| if (ipif->ipif_ire_type == IRE_LOOPBACK) |
| ire = ire_ctable_lookup_v6(dst_addr, 0, IRE_LOOPBACK, |
| ipif, ALL_ZONES, NULL, match_flags); |
| if (ire == NULL) |
| ire = ire_ftable_lookup_v6(dst_addr, mask, 0, |
| IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, |
| match_flags); |
| } else if (err == EINPROGRESS) { |
| return (err); |
| } else { |
| err = 0; |
| } |
| if (ire == NULL) { |
| /* |
| * At this point, the gateway address is not one of our own |
| * addresses or a matching interface route was not found. We |
| * set the IRE type to lookup based on whether |
| * this is a host route, a default route or just a prefix. |
| * |
| * If an ipif_arg was passed in, then the lookup is based on an |
| * interface index so MATCH_IRE_ILL is added to match_flags. |
| * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is |
| * set as the route being looked up is not a traditional |
| * interface route. |
| */ |
| match_flags &= ~MATCH_IRE_IPIF; |
| match_flags |= MATCH_IRE_GW; |
| if (ipif_arg != NULL) |
| match_flags |= MATCH_IRE_ILL; |
| if (IN6_ARE_ADDR_EQUAL(mask, &ipv6_all_ones)) |
| type = IRE_HOST; |
| else if (IN6_IS_ADDR_UNSPECIFIED(mask)) |
| type = IRE_DEFAULT; |
| else |
| type = IRE_PREFIX; |
| ire = ire_ftable_lookup_v6(dst_addr, mask, gw_addr, type, |
| ipif_arg, NULL, ALL_ZONES, 0, NULL, match_flags); |
| if (ire == NULL && type == IRE_HOST) { |
| ire = ire_ftable_lookup_v6(dst_addr, mask, gw_addr, |
| IRE_HOST_REDIRECT, ipif_arg, NULL, ALL_ZONES, 0, |
| NULL, match_flags); |
| } |
| } |
| |
| if (ipif_refheld) { |
| ipif_refrele(ipif); |
| ipif_refheld = B_FALSE; |
| } |
| if (ire == NULL) |
| return (ESRCH); |
| |
| if (ire->ire_flags & RTF_MULTIRT) { |
| /* |
| * Invoke the CGTP (multirouting) filtering module |
| * to remove the dst address from the filtering database. |
| * Packets coming from that address will no longer be |
| * filtered to remove duplicates. |
| */ |
| if (ip_cgtp_filter_ops != NULL) { |
| err = ip_cgtp_filter_ops->cfo_del_dest_v6( |
| &ire->ire_addr_v6, &ire->ire_gateway_addr_v6); |
| } |
| } |
| |
| ipif = ire->ire_ipif; |
| if (ipif != NULL) { |
| mblk_t **mpp; |
| mblk_t *mp; |
| ifrt_t *ifrt; |
| in6_addr_t gw_addr_v6; |
| |
| /* Remove from ipif_saved_ire_mp list if it is there */ |
| mutex_enter(&ire->ire_lock); |
| gw_addr_v6 = ire->ire_gateway_addr_v6; |
| mutex_exit(&ire->ire_lock); |
| mutex_enter(&ipif->ipif_saved_ire_lock); |
| for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; |
| mpp = &(*mpp)->b_cont) { |
| /* |
| * On a given ipif, the triple of address, gateway and |
| * mask is unique for each saved IRE (in the case of |
| * ordinary interface routes, the gateway address is |
| * all-zeroes). |
| */ |
| mp = *mpp; |
| ifrt = (ifrt_t *)mp->b_rptr; |
| if (IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr, |
| &ire->ire_addr_v6) && |
| IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr, |
| &gw_addr_v6) && |
| IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask, |
| &ire->ire_mask_v6)) { |
| *mpp = mp->b_cont; |
| ipif->ipif_saved_ire_cnt--; |
| freeb(mp); |
| break; |
| } |
| } |
| mutex_exit(&ipif->ipif_saved_ire_lock); |
| } |
| ire_delete(ire); |
| ire_refrele(ire); |
| return (err); |
| } |
| |
| /* |
| * Derive a token from the link layer address. |
| */ |
| boolean_t |
| ill_setdefaulttoken(ill_t *ill) |
| { |
| int i; |
| in6_addr_t v6addr, v6mask; |
| |
| /* |
| * Though we execute on the ipsq, we need to hold the ill_lock |
| * to prevent readers from seeing partially updated values |
| * while we do the update. |
| */ |
| mutex_enter(&ill->ill_lock); |
| if (!MEDIA_V6INTFID(ill->ill_media, ill->ill_phys_addr_length, |
| ill->ill_phys_addr, &v6addr)) { |
| mutex_exit(&ill->ill_lock); |
| return (B_FALSE); |
| } |
| |
| (void) ip_plen_to_mask_v6(IPV6_TOKEN_LEN, &v6mask); |
| |
| for (i = 0; i < 4; i++) |
| v6mask.s6_addr32[i] = v6mask.s6_addr32[i] ^ |
| (uint32_t)0xffffffff; |
| |
| V6_MASK_COPY(v6addr, v6mask, ill->ill_token); |
| ill->ill_token_length = IPV6_TOKEN_LEN; |
| mutex_exit(&ill->ill_lock); |
| return (B_TRUE); |
| } |
| |
| /* |
| * Create a link-local address from a token. |
| */ |
| static void |
| ipif_get_linklocal(in6_addr_t *dest, const in6_addr_t *token) |
| { |
| int i; |
| |
| for (i = 0; i < 4; i++) { |
| dest->s6_addr32[i] = |
| token->s6_addr32[i] | ipv6_ll_template.s6_addr32[i]; |
| } |
| } |
| |
| /* |
| * Set a nice default address for either automatic tunnels tsrc/96 or |
| * 6to4 tunnels 2002:<tsrc>::1/64 |
| */ |
| static void |
| ipif_set_tun_auto_addr(ipif_t *ipif, struct iftun_req *ta) |
| { |
| sin6_t sin6; |
| sin_t *sin; |
| ill_t *ill = ipif->ipif_ill; |
| tun_t *tp = (tun_t *)ill->ill_wq->q_next->q_ptr; |
| |
| if (ta->ifta_saddr.ss_family != AF_INET || |
| (ipif->ipif_flags & IPIF_UP) || !ipif->ipif_isv6 || |
| (ta->ifta_flags & IFTUN_SRC) == 0) |
| return; |
| |
| /* |
| * Check the tunnel type by examining q_next->q_ptr |
| */ |
| if (tp->tun_flags & TUN_AUTOMATIC) { |
| /* this is an automatic tunnel */ |
| (void) ip_plen_to_mask_v6(IPV6_ABITS - IP_ABITS, |
| &ipif->ipif_v6net_mask); |
| bzero(&sin6, sizeof (sin6_t)); |
| sin = (sin_t *)&ta->ifta_saddr; |
| V4_PART_OF_V6(sin6.sin6_addr) = sin->sin_addr.s_addr; |
| sin6.sin6_family = AF_INET6; |
| (void) ip_sioctl_addr(ipif, (sin_t *)&sin6, |
| NULL, NULL, NULL, NULL); |
| } else if (tp->tun_flags & TUN_6TO4) { |
| /* this is a 6to4 tunnel */ |
| (void) ip_plen_to_mask_v6(IPV6_PREFIX_LEN, |
| &ipif->ipif_v6net_mask); |
| sin = (sin_t *)&ta->ifta_saddr; |
| /* create a 6to4 address from the IPv4 tsrc */ |
| IN6_V4ADDR_TO_6TO4(&sin->sin_addr, &sin6.sin6_addr); |
| sin6.sin6_family = AF_INET6; |
| (void) ip_sioctl_addr(ipif, (sin_t *)&sin6, |
| NULL, NULL, NULL, NULL); |
| } else { |
| ip1dbg(("ipif_set_tun_auto_addr: Unknown tunnel type")); |
| return; |
| } |
| } |
| |
| /* |
| * Set link local for ipif_id 0 of a configured tunnel based on the |
| * tsrc or tdst parameter |
| * For tunnels over IPv4 use the IPv4 address prepended with 32 zeros as |
| * the token. |
| * For tunnels over IPv6 use the low-order 64 bits of the "inner" IPv6 address |
| * as the token for the "outer" link. |
| */ |
| void |
| ipif_set_tun_llink(ill_t *ill, struct iftun_req *ta) |
| { |
| ipif_t *ipif; |
| sin_t *sin; |
| in6_addr_t *s6addr; |
| |
| ASSERT(IAM_WRITER_ILL(ill)); |
| |
| /* The first ipif must be id zero. */ |
| ipif = ill->ill_ipif; |
| ASSERT(ipif->ipif_id == 0); |
| |
| /* no link local for automatic tunnels */ |
| if (!(ipif->ipif_flags & IPIF_POINTOPOINT)) { |
| ipif_set_tun_auto_addr(ipif, ta); |
| return; |
| } |
| |
| if ((ta->ifta_flags & IFTUN_DST) && |
| IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)) { |
| sin6_t sin6; |
| |
| ASSERT(!(ipif->ipif_flags & IPIF_UP)); |
| bzero(&sin6, sizeof (sin6_t)); |
| if ((ta->ifta_saddr.ss_family == AF_INET)) { |
| sin = (sin_t *)&ta->ifta_daddr; |
| V4_PART_OF_V6(sin6.sin6_addr) = |
| sin->sin_addr.s_addr; |
| } else { |
| s6addr = |
| &((sin6_t *)&ta->ifta_daddr)->sin6_addr; |
| sin6.sin6_addr.s6_addr32[3] = s6addr->s6_addr32[3]; |
| sin6.sin6_addr.s6_addr32[2] = s6addr->s6_addr32[2]; |
| } |
| ipif_get_linklocal(&ipif->ipif_v6pp_dst_addr, |
| &sin6.sin6_addr); |
| ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; |
| } |
| if ((ta->ifta_flags & IFTUN_SRC)) { |
| ASSERT(!(ipif->ipif_flags & IPIF_UP)); |
| |
| /* Set the token if it isn't already set */ |
| if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) { |
| if ((ta->ifta_saddr.ss_family == AF_INET)) { |
| sin = (sin_t *)&ta->ifta_saddr; |
| V4_PART_OF_V6(ill->ill_token) = |
| sin->sin_addr.s_addr; |
| } else { |
| s6addr = |
| &((sin6_t *)&ta->ifta_saddr)->sin6_addr; |
| ill->ill_token.s6_addr32[3] = |
| s6addr->s6_addr32[3]; |
| ill->ill_token.s6_addr32[2] = |
| s6addr->s6_addr32[2]; |
| } |
| ill->ill_token_length = IPV6_TOKEN_LEN; |
| } |
| /* |
| * Attempt to set the link local address if it isn't set. |
| */ |
| if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) |
| (void) ipif_setlinklocal(ipif); |
| } |
| } |
| |
| /* |
| * Is it not possible to set the link local address? |
| * The address can be set if the token is set, and the token |
| * isn't too long. |
| * Return B_TRUE if the address can't be set, or B_FALSE if it can. |
| */ |
| boolean_t |
| ipif_cant_setlinklocal(ipif_t *ipif) |
| { |
| ill_t *ill = ipif->ipif_ill; |
| |
| if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token) || |
| ill->ill_token_length > IPV6_ABITS - IPV6_LL_PREFIXLEN) |
| return (B_TRUE); |
| |
| return (B_FALSE); |
| } |
| |
| /* |
| * Generate a link-local address from the token. |
| * Return zero if the address was set, or non-zero if it couldn't be set. |
| */ |
| int |
| ipif_setlinklocal(ipif_t *ipif) |
| { |
| ill_t *ill = ipif->ipif_ill; |
| |
| ASSERT(IAM_WRITER_ILL(ill)); |
| |
| if (ipif_cant_setlinklocal(ipif)) |
| return (-1); |
| |
| ipif_get_linklocal(&ipif->ipif_v6lcl_addr, &ill->ill_token); |
| (void) ip_plen_to_mask_v6(IPV6_LL_PREFIXLEN, &ipif->ipif_v6net_mask); |
| V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, |
| ipif->ipif_v6subnet); |
| |
| if (ipif->ipif_flags & IPIF_NOLOCAL) { |
| ipif->ipif_v6src_addr = ipv6_all_zeros; |
| } else { |
| ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; |
| } |
| return (0); |
| } |
| |
| /* |
| * This function sets up the multicast mappings in NDP. |
| * Unlike ARP, there are no mapping_mps here. We delete the |
| * mapping nces and add a new one. |
| * |
| * Returns non-zero on error and 0 on success. |
| */ |
| int |
| ipif_ndp_setup_multicast(ipif_t *ipif, nce_t **ret_nce) |
| { |
| ill_t *ill = ipif->ipif_ill; |
| in6_addr_t v6_mcast_addr = {(uint32_t)V6_MCAST, 0, 0, 0}; |
| in6_addr_t v6_mcast_mask = {(uint32_t)V6_MCAST, 0, 0, 0}; |
| in6_addr_t v6_extract_mask; |
| uchar_t *phys_addr, *bphys_addr, *alloc_phys; |
| nce_t *mnce = NULL; |
| int err = 0; |
| phyint_t *phyi = ill->ill_phyint; |
| uint32_t hw_extract_start; |
| dl_unitdata_req_t *dlur; |
| |
| if (ret_nce != NULL) |
| *ret_nce = NULL; |
| /* |
| * Delete the mapping nce. Normally these should not exist |
| * as a previous ipif_down -> ipif_ndp_down should have deleted |
| * all the nces. But they can exist if ip_rput_dlpi_writer |
| * calls this when PHYI_MULTI_BCAST is set. |
| */ |
| mnce = ndp_lookup(ill, &v6_mcast_addr, B_FALSE); |
| if (mnce != NULL) { |
| ndp_delete(mnce); |
| NCE_REFRELE(mnce); |
| mnce = NULL; |
| } |
| |
| /* |
| * Get media specific v6 mapping information. Note that |
| * nd_lla_len can be 0 for tunnels. |
| */ |
| alloc_phys = kmem_alloc(ill->ill_nd_lla_len, KM_NOSLEEP); |
| if ((alloc_phys == NULL) && (ill->ill_nd_lla_len != 0)) |
| return (ENOMEM); |
| /* |
| * Determine the broadcast address. |
| */ |
| dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; |
| if (ill->ill_sap_length < 0) |
| bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; |
| else |
| bphys_addr = (uchar_t *)dlur + |
| dlur->dl_dest_addr_offset + ill->ill_sap_length; |
| |
| /* |
| * Check PHYI_MULTI_BCAST and possible length of physical |
| * address to determine if we use the mapping or the |
| * broadcast address. |
| */ |
| if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || |
| (!MEDIA_V6MINFO(ill->ill_media, ill->ill_nd_lla_len, |
| bphys_addr, alloc_phys, &hw_extract_start, |
| &v6_extract_mask))) { |
| if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) { |
| kmem_free(alloc_phys, ill->ill_nd_lla_len); |
| return (E2BIG); |
| } |
| /* Use the link-layer broadcast address for MULTI_BCAST */ |
| phys_addr = bphys_addr; |
| bzero(&v6_extract_mask, sizeof (v6_extract_mask)); |
| hw_extract_start = ill->ill_nd_lla_len; |
| } else { |
| phys_addr = alloc_phys; |
| } |
| if ((ipif->ipif_flags & IPIF_BROADCAST) || |
| (ill->ill_flags & ILLF_MULTICAST) || |
| (phyi->phyint_flags & PHYI_MULTI_BCAST)) { |
| mutex_enter(&ndp_g_lock); |
| err = ndp_add(ill, |
| phys_addr, |
| &v6_mcast_addr, /* v6 address */ |
| &v6_mcast_mask, /* v6 mask */ |
| &v6_extract_mask, |
| hw_extract_start, |
| NCE_F_MAPPING | NCE_F_PERMANENT | NCE_F_NONUD, |
| ND_REACHABLE, |
| &mnce); |
| mutex_exit(&ndp_g_lock); |
| if (err == 0) { |
| if (ret_nce != NULL) { |
| *ret_nce = mnce; |
| } else { |
| NCE_REFRELE(mnce); |
| } |
| } |
| } |
| kmem_free(alloc_phys, ill->ill_nd_lla_len); |
| return (err); |
| } |
| |
| /* |
| * Get the resolver set up for a new interface address. (Always called |
| * as writer.) |
| */ |
| int |
| ipif_ndp_up(ipif_t *ipif, const in6_addr_t *addr, boolean_t macaddr_change) |
| { |
| ill_t *ill = ipif->ipif_ill; |
| int err = 0; |
| nce_t *nce = NULL; |
| nce_t *mnce = NULL; |
| |
| ip1dbg(("ipif_ndp_up(%s:%u)\n", |
| ipif->ipif_ill->ill_name, ipif->ipif_id)); |
| |
| /* |
| * ND not supported on XRESOLV interfaces. If ND support (multicast) |
| * added later, take out this check. |
| */ |
| if (ill->ill_flags & ILLF_XRESOLV) |
| return (0); |
| |
| if (IN6_IS_ADDR_UNSPECIFIED(addr) || |
| (!(ill->ill_net_type & IRE_INTERFACE))) |
| return (0); |
| |
| /* |
| * Need to setup multicast mapping only when the first |
| * interface is coming UP. |
| */ |
| if (ill->ill_ipif_up_count == 0 && |
| (ill->ill_flags & ILLF_MULTICAST)) { |
| /* |
| * We set the multicast before setting up the mapping for |
| * local address because ipif_ndp_setup_multicast does |
| * ndp_walk to delete nces which will delete the mapping |
| * for local address also if we added the mapping for |
| * local address first. |
| */ |
| err = ipif_ndp_setup_multicast(ipif, &mnce); |
| if (err != 0) |
| return (err); |
| } |
| |
| if ((ipif->ipif_flags & (IPIF_UNNUMBERED|IPIF_NOLOCAL)) == 0) { |
| uint16_t flags; |
| uchar_t *hw_addr = NULL; |
| |
| /* Permanent entries don't need NUD */ |
| flags = NCE_F_PERMANENT; |
| flags |= NCE_F_NONUD; |
| if (ill->ill_flags & ILLF_ROUTER) |
| flags |= NCE_F_ISROUTER; |
| |
| if (ipif->ipif_flags & IPIF_ANYCAST) |
| flags |= NCE_F_ANYCAST; |
| |
| if (ill->ill_net_type == IRE_IF_RESOLVER) { |
| hw_addr = ill->ill_nd_lla; |
| |
| if (ill->ill_move_in_progress || macaddr_change) { |
| /* |
| * Addresses are failing over to this ill. |
| * Don't wait for NUD to see this change. |
| * Publish our new link-layer address. |
| */ |
| flags |= NCE_F_UNSOL_ADV; |
| } |
| } |
| err = ndp_lookup_then_add(ill, |
| hw_addr, |
| addr, |
| &ipv6_all_ones, |
| &ipv6_all_zeros, |
| 0, |
| flags, |
| ND_REACHABLE, |
| &nce); |
| switch (err) { |
| case 0: |
| ip1dbg(("ipif_ndp_up: NCE created for %s\n", |
| ill->ill_name)); |
| break; |
| case EEXIST: |
| NCE_REFRELE(nce); |
| ip1dbg(("ipif_ndp_up: NCE already exists for %s\n", |
| ill->ill_name)); |
| if (mnce != NULL) { |
| ndp_delete(mnce); |
| NCE_REFRELE(mnce); |
| } |
| return (err); |
| default: |
| ip1dbg(("ipif_ndp_up: NCE creation failed %s\n", |
| ill->ill_name)); |
| if (mnce != NULL) { |
| ndp_delete(mnce); |
| NCE_REFRELE(mnce); |
| } |
| return (err); |
| } |
| } |
| if (nce != NULL) |
| NCE_REFRELE(nce); |
| if (mnce != NULL) |
| NCE_REFRELE(mnce); |
| return (0); |
| } |
| |
| /* Remove all cache entries for this logical interface */ |
| void |
| ipif_ndp_down(ipif_t *ipif) |
| { |
| nce_t *nce; |
| |
| nce = ndp_lookup(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE); |
| if (nce != NULL) { |
| ndp_delete(nce); |
| NCE_REFRELE(nce); |
| } |
| /* |
| * Remove mapping and all other nces dependent on this ill |
| * when the last ipif is going away. |
| */ |
| if (ipif->ipif_ill->ill_ipif_up_count == 0) { |
| ndp_walk(ipif->ipif_ill, (pfi_t)ndp_delete_per_ill, |
| (uchar_t *)ipif->ipif_ill); |
| } |
| } |
| |
| /* |
| * Used when an interface comes up to recreate any extra routes on this |
| * interface. |
| */ |
| static ire_t ** |
| ipif_recover_ire_v6(ipif_t *ipif) |
| { |
| mblk_t *mp; |
| ire_t **ipif_saved_irep; |
| ire_t **irep; |
| |
| ip1dbg(("ipif_recover_ire_v6(%s:%u)", ipif->ipif_ill->ill_name, |
| ipif->ipif_id)); |
| |
| ASSERT(ipif->ipif_isv6); |
| |
| mutex_enter(&ipif->ipif_saved_ire_lock); |
| ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * |
| ipif->ipif_saved_ire_cnt, KM_NOSLEEP); |
| if (ipif_saved_irep == NULL) { |
| mutex_exit(&ipif->ipif_saved_ire_lock); |
| return (NULL); |
| } |
| |
| irep = ipif_saved_irep; |
| |
| for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { |
| ire_t *ire; |
| queue_t *rfq; |
| queue_t *stq; |
| ifrt_t *ifrt; |
| in6_addr_t *src_addr; |
| in6_addr_t *gateway_addr; |
| mblk_t *resolver_mp; |
| char buf[INET6_ADDRSTRLEN]; |
| ushort_t type; |
| |
| /* |
| * When the ire was initially created and then added in |
| * ip_rt_add_v6(), it was created either using |
| * ipif->ipif_net_type in the case of a traditional interface |
| * route, or as one of the IRE_OFFSUBNET types (with the |
| * exception of IRE_HOST_REDIRECT which is created by |
| * icmp_redirect_v6() and which we don't need to save or |
| * recover). In the case where ipif->ipif_net_type was |
| * IRE_LOOPBACK, ip_rt_add_v6() will update the ire_type to |
| * IRE_IF_NORESOLVER before calling ire_add_v6() to satisfy |
| * software like GateD and Sun Cluster which creates routes |
| * using the the loopback interface's address as a gateway. |
| * |
| * As ifrt->ifrt_type reflects the already updated ire_type and |
| * since ire_create_v6() expects that IRE_IF_NORESOLVER will |
| * have a valid ire_dlureq_mp field (which doesn't make sense |
| * for a IRE_LOOPBACK), ire_create_v6() will be called in the |
| * same way here as in ip_rt_add_v6(), namely using |
| * ipif->ipif_net_type when the route looks like a traditional |
| * interface route (where ifrt->ifrt_type & IRE_INTERFACE is |
| * true) and otherwise using the saved ifrt->ifrt_type. This |
| * means that in the case where ipif->ipif_net_type is |
| * IRE_LOOPBACK, the ire created by ire_create_v6() will be an |
| * IRE_LOOPBACK, it will then be turned into an |
| * IRE_IF_NORESOLVER and then added by ire_add_v6(). |
| */ |
| ifrt = (ifrt_t *)mp->b_rptr; |
| if (ifrt->ifrt_type & IRE_INTERFACE) { |
| rfq = NULL; |
| stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) |
| ? ipif->ipif_rq : ipif->ipif_wq; |
| src_addr = (ifrt->ifrt_flags & RTF_SETSRC) |
| ? &ifrt->ifrt_v6src_addr |
| : &ipif->ipif_v6src_addr; |
| gateway_addr = NULL; |
| resolver_mp = ipif->ipif_resolver_mp; |
| type = ipif->ipif_net_type; |
| } else { |
| rfq = NULL; |
| stq = NULL; |
| src_addr = (ifrt->ifrt_flags & RTF_SETSRC) |
| ? &ifrt->ifrt_v6src_addr : NULL; |
| gateway_addr = &ifrt->ifrt_v6gateway_addr; |
| resolver_mp = NULL; |
| type = ifrt->ifrt_type; |
| } |
| |
| /* |
| * Create a copy of the IRE with the saved address and netmask. |
| */ |
| ip1dbg(("ipif_recover_ire_v6: creating IRE %s (%d) for %s/%d\n", |
| ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, |
| inet_ntop(AF_INET6, &ifrt->ifrt_v6addr, buf, sizeof (buf)), |
| ip_mask_to_plen_v6(&ifrt->ifrt_v6mask))); |
| ire = ire_create_v6( |
| &ifrt->ifrt_v6addr, |
| &ifrt->ifrt_v6mask, |
| src_addr, |
| gateway_addr, |
| &ifrt->ifrt_max_frag, |
| NULL, |
| rfq, |
| stq, |
| type, |
| resolver_mp, |
| ipif, |
| NULL, |
| 0, |
| 0, |
| ifrt->ifrt_flags, |
| &ifrt->ifrt_iulp_info, |
| NULL, |
| NULL); |
| if (ire == NULL) { |
| mutex_exit(&ipif->ipif_saved_ire_lock); |
| kmem_free(ipif_saved_irep, |
| ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); |
| return (NULL); |
| } |
| |
| /* |
| * Some software (for example, GateD and Sun Cluster) attempts |
| * to create (what amount to) IRE_PREFIX routes with the |
| * loopback address as the gateway. This is primarily done to |
| * set up prefixes with the RTF_REJECT flag set (for example, |
| * when generating aggregate routes.) |
| * |
| * If the IRE type (as defined by ipif->ipif_net_type) is |
| * IRE_LOOPBACK, then we map the request into a |
| * IRE_IF_NORESOLVER. |
| */ |
| if (ipif->ipif_net_type == IRE_LOOPBACK) |
| ire->ire_type = IRE_IF_NORESOLVER; |
| /* |
| * ire held by ire_add, will be refreled' in ipif_up_done |
| * towards the end |
| */ |
| (void) ire_add(&ire, NULL, NULL, NULL); |
| *irep = ire; |
| irep++; |
| ip1dbg(("ipif_recover_ire_v6: added ire %p\n", (void *)ire)); |
| } |
| mutex_exit(&ipif->ipif_saved_ire_lock); |
| return (ipif_saved_irep); |
| } |
| |
| /* |
| * Return the scope of the given IPv6 address. If the address is an |
| * IPv4 mapped IPv6 address, return the scope of the corresponding |
| * IPv4 address. |
| */ |
| in6addr_scope_t |
| ip_addr_scope_v6(const in6_addr_t *addr) |
| { |
| static in6_addr_t ipv6loopback = IN6ADDR_LOOPBACK_INIT; |
| |
| if (IN6_IS_ADDR_V4MAPPED(addr)) { |
| in_addr_t v4addr_h = ntohl(V4_PART_OF_V6((*addr))); |
| if ((v4addr_h >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || |
| (v4addr_h & IN_AUTOCONF_MASK) == IN_AUTOCONF_NET) |
| return (IP6_SCOPE_LINKLOCAL); |
| if ((v4addr_h & IN_PRIVATE8_MASK) == IN_PRIVATE8_NET || |
| (v4addr_h & IN_PRIVATE12_MASK) == IN_PRIVATE12_NET || |
| (v4addr_h & IN_PRIVATE16_MASK) == IN_PRIVATE16_NET) |
| return (IP6_SCOPE_SITELOCAL); |
| return (IP6_SCOPE_GLOBAL); |
| } |
| |
| if (IN6_IS_ADDR_MULTICAST(addr)) |
| return (IN6_ADDR_MC_SCOPE(addr)); |
| |
| /* link-local and loopback addresses are of link-local scope */ |
| if (IN6_IS_ADDR_LINKLOCAL(addr) || |
| IN6_ARE_ADDR_EQUAL(addr, &ipv6loopback)) |
| return (IP6_SCOPE_LINKLOCAL); |
| if (IN6_IS_ADDR_SITELOCAL(addr)) |
| return (IP6_SCOPE_SITELOCAL); |
| return (IP6_SCOPE_GLOBAL); |
| } |
| |
| |
| /* |
| * Calculates the xor of a1 and a2, and stores the result in res. |
| */ |
| static void |
| ip_addr_xor_v6(const in6_addr_t *a1, const in6_addr_t *a2, in6_addr_t *res) |
| { |
| int i; |
| |
| for (i = 0; i < 4; i++) |
| res->s6_addr32[i] = a1->s6_addr32[i] ^ a2->s6_addr32[i]; |
| } |
| |
| #define IPIF_VALID_IPV6_SOURCE(ipif) \ |
| (((ipif)->ipif_flags & IPIF_UP) && \ |
| !((ipif)->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))) |
| |
| /* source address candidate */ |
| typedef struct candidate { |
| ipif_t *cand_ipif; |
| /* The properties of this candidate */ |
| boolean_t cand_isdst; |
| boolean_t cand_isdst_set; |
| in6addr_scope_t cand_scope; |
| boolean_t cand_scope_set; |
| boolean_t cand_isdeprecated; |
| boolean_t cand_isdeprecated_set; |
| boolean_t cand_ispreferred; |
| boolean_t cand_ispreferred_set; |
| boolean_t cand_matchedinterface; |
| boolean_t cand_matchedinterface_set; |
| boolean_t cand_matchedlabel; |
| boolean_t cand_matchedlabel_set; |
| boolean_t cand_istmp; |
| boolean_t cand_istmp_set; |
| in6_addr_t cand_xor; |
| boolean_t cand_xor_set; |
| } cand_t; |
| #define cand_srcaddr cand_ipif->ipif_v6lcl_addr |
| #define cand_flags cand_ipif->ipif_flags |
| #define cand_ill cand_ipif->ipif_ill |
| #define cand_zoneid cand_ipif->ipif_zoneid |
| |
| /* information about the destination for source address selection */ |
| typedef struct dstinfo { |
| const in6_addr_t *dst_addr; |
| ill_t *dst_ill; |
| boolean_t dst_restrict_ill; |
| boolean_t dst_prefer_src_tmp; |
| in6addr_scope_t dst_scope; |
| char *dst_label; |
| } dstinfo_t; |
| |
| /* |
| * The following functions are rules used to select a source address in |
| * ipif_select_source_v6(). Each rule compares a current candidate (cc) |
| * against the best candidate (bc). Each rule has three possible outcomes; |
| * the candidate is preferred over the best candidate (CAND_PREFER), the |
| * candidate is not preferred over the best candidate (CAND_AVOID), or the |
| * candidate is of equal value as the best candidate (CAND_TIE). |
| * |
| * These rules are part of a greater "Default Address Selection for IPv6" |
| * sheme, which is standards based work coming out of the IETF ipv6 working |
| * group. The IETF document defines both IPv6 source address selection and |
| * destination address ordering. The rules defined here implement the IPv6 |
| * source address selection. Destination address ordering is done by |
| * libnsl, and uses a similar set of rules to implement the sorting. |
| */ |
| typedef enum {CAND_AVOID, CAND_TIE, CAND_PREFER} rule_res_t; |
| typedef rule_res_t (*rulef_t)(cand_t *, cand_t *, const dstinfo_t *); |
| |
| /* Prefer an address if it is equal to the destination address. */ |
| static rule_res_t |
| rule_isdst(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo) |
| { |
| if (!bc->cand_isdst_set) { |
| bc->cand_isdst = |
| IN6_ARE_ADDR_EQUAL(&bc->cand_srcaddr, dstinfo->dst_addr); |
| bc->cand_isdst_set = B_TRUE; |
| } |
| |
| cc->cand_isdst = |
| IN6_ARE_ADDR_EQUAL(&cc->cand_srcaddr, dstinfo->dst_addr); |
| cc->cand_isdst_set = B_TRUE; |
| |
| if (cc->cand_isdst == bc->cand_isdst) |
| return (CAND_TIE); |
| else if (cc->cand_isdst) |
| return (CAND_PREFER); |
| else |
| return (CAND_AVOID); |
| } |
| |
| /* |
| * Prefer addresses that are of closest scope to the destination. Always |
| * prefer addresses that are of greater scope than the destination over |
| * those that are of lesser scope than the destination. |
| */ |
| static rule_res_t |
| rule_scope(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo) |
| { |
| if (!bc->cand_scope_set) { |
| bc->cand_scope = ip_addr_scope_v6(&bc->cand_srcaddr); |
| bc->cand_scope_set = B_TRUE; |
| } |
| |
| cc->cand_scope = ip_addr_scope_v6(&cc->cand_srcaddr); |
| cc->cand_scope_set = B_TRUE; |
| |
| if (cc->cand_scope < bc->cand_scope) { |
| if (cc->cand_scope < dstinfo->dst_scope) |
| return (CAND_AVOID); |
| else |
| return (CAND_PREFER); |
| } else if (bc->cand_scope < cc->cand_scope) { |
| if (bc->cand_scope < dstinfo->dst_scope) |
| return (CAND_PREFER); |
| else |
| return (CAND_AVOID); |
| } else { |
| return (CAND_TIE); |
| } |
| } |
| |
| /* |
| * Prefer non-deprecated source addresses. |
| */ |
| /* ARGSUSED2 */ |
| static rule_res_t |
| rule_deprecated(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo) |
| { |
| if (!bc->cand_isdeprecated_set) { |
| bc->cand_isdeprecated = |
| ((bc->cand_flags & IPIF_DEPRECATED) != 0); |
| bc->cand_isdeprecated_set = B_TRUE; |
| } |
| |
| cc->cand_isdeprecated = ((cc->cand_flags & IPIF_DEPRECATED) != 0); |
| cc->cand_isdeprecated_set = B_TRUE; |
| |
| if (bc->cand_isdeprecated == cc->cand_isdeprecated) |
| return (CAND_TIE); |
| else if (cc->cand_isdeprecated) |
| return (CAND_AVOID); |
| else |
| return (CAND_PREFER); |
| } |
| |
| /* |
| * Prefer source addresses that have the IPIF_PREFERRED flag set. This |
| * rule must be before rule_interface because the flag could be set on any |
| * interface, not just the interface being used for outgoing packets (for |
| * example, the IFF_PREFERRED could be set on an address assigned to the |
| * loopback interface). |
| */ |
| /* ARGSUSED2 */ |
| static rule_res_t |
| rule_preferred(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo) |
| { |
| if (!bc->cand_ispreferred_set) { |
| bc->cand_ispreferred = ((bc->cand_flags & IPIF_PREFERRED) != 0); |
| bc->cand_ispreferred_set = B_TRUE; |
| } |
| |
| cc->cand_ispreferred = ((cc->cand_flags & IPIF_PREFERRED) != 0); |
| cc->cand_ispreferred_set = B_TRUE; |
| |
| if (bc->cand_ispreferred == cc->cand_ispreferred) |
| return (CAND_TIE); |
| else if (cc->cand_ispreferred) |
| return (CAND_PREFER); |
| else |
| return (CAND_AVOID); |
| } |
| |
| /* |
| * Prefer source addresses that are assigned to the outgoing interface, or |
| * to an interface that is in the same IPMP group as the outgoing |
| * interface. |
| */ |
| static rule_res_t |
| rule_interface(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo) |
| { |
| ill_t *dstill = dstinfo->dst_ill; |
| |
| /* |
| * If dstinfo->dst_restrict_ill is set, this rule is unnecessary |
| * since we know all candidates will be on the same link. |
| */ |
| if (dstinfo->dst_restrict_ill) |
| return (CAND_TIE); |
| |
| if (!bc->cand_matchedinterface_set) { |
| bc->cand_matchedinterface = (bc->cand_ill == dstill || |
| (dstill->ill_group != NULL && |
| dstill->ill_group == bc->cand_ill->ill_group)); |
| bc->cand_matchedinterface_set = B_TRUE; |
| } |
| |
| cc->cand_matchedinterface = (cc->cand_ill == dstill || |
| (dstill->ill_group != NULL && |
| dstill->ill_group == cc->cand_ill->ill_group)); |
| cc->cand_matchedinterface_set = B_TRUE; |
| |
| if (bc->cand_matchedinterface == cc->cand_matchedinterface) |
| return (CAND_TIE); |
| else if (cc->cand_matchedinterface) |
| return (CAND_PREFER); |
| else |
| return (CAND_AVOID); |
| } |
| |
| /* |
| * Prefer source addresses whose label matches the destination's label. |
| */ |
| static rule_res_t |
| rule_label(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo) |
| { |
| char *label; |
| |
| if (!bc->cand_matchedlabel_set) { |
| label = ip6_asp_lookup(&bc->cand_srcaddr, NULL); |
| bc->cand_matchedlabel = |
| ip6_asp_labelcmp(label, dstinfo->dst_label); |
| bc->cand_matchedlabel_set = B_TRUE; |
| } |
| |
| label = ip6_asp_lookup(&cc->cand_srcaddr, NULL); |
| cc->cand_matchedlabel = ip6_asp_labelcmp(label, dstinfo->dst_label); |
| cc->cand_matchedlabel_set = B_TRUE; |
| |
| if (bc->cand_matchedlabel == cc->cand_matchedlabel) |
| return (CAND_TIE); |
| else if (cc->cand_matchedlabel) |
| return (CAND_PREFER); |
| else |
| return (CAND_AVOID); |
| } |
| |
| /* |
| * Prefer public addresses over temporary ones. An application can reverse |
| * the logic of this rule and prefer temporary addresses by using the |
| * IPV6_SRC_PREFERENCES socket option. |
| */ |
| static rule_res_t |
| rule_temporary(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo) |
| { |
| if (!bc->cand_istmp_set) { |
| bc->cand_istmp = ((bc->cand_flags & IPIF_TEMPORARY) != 0); |
| bc->cand_istmp_set = B_TRUE; |
| } |
| |
| cc->cand_istmp = ((cc->cand_flags & IPIF_TEMPORARY) != 0); |
| cc->cand_istmp_set = B_TRUE; |
| |
| if (bc->cand_istmp == cc->cand_istmp) |
| return (CAND_TIE); |
| |
| if (dstinfo->dst_prefer_src_tmp && cc->cand_istmp) |
| return (CAND_PREFER); |
| else if (!dstinfo->dst_prefer_src_tmp && !cc->cand_istmp) |
| return (CAND_PREFER); |
| else |
| return (CAND_AVOID); |
| } |
| |
| /* |
| * Prefer source addresses with longer matching prefix with the |
| * destination. Since this is the last rule, it must not produce a tie. |
| * We do the longest matching prefix calculation and the tie break in one |
| * calculation by doing an xor of both addresses with the destination, and |
| * pick the address with the smallest xor value. That way, we're both |
| * picking the address with the longest matching prefix, and breaking the |
| * tie if they happen to have both have equal mathing prefixes. |
| */ |
| static rule_res_t |
| rule_prefix(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo) |
| { |
| int i; |
| |
| if (!bc->cand_xor_set) { |
| ip_addr_xor_v6(&bc->cand_srcaddr, |
| dstinfo->dst_addr, &bc->cand_xor); |
| bc->cand_xor_set = B_TRUE; |
| } |
| |
| ip_addr_xor_v6(&cc->cand_srcaddr, dstinfo->dst_addr, &cc->cand_xor); |
| cc->cand_xor_set = B_TRUE; |
| |
| for (i = 0; i < 4; i++) { |
| if (bc->cand_xor.s6_addr32[i] != cc->cand_xor.s6_addr32[i]) |
| break; |
| } |
| |
| if (cc->cand_xor.s6_addr32[i] < bc->cand_xor.s6_addr32[i]) |
| return (CAND_PREFER); |
| else |
| return (CAND_AVOID); |
| } |
| |
| /* |
| * Prefer to use zone-specific addresses when possible instead of all-zones |
| * addresses. |
| */ |
| /* ARGSUSED2 */ |
| static rule_res_t |
| rule_zone_specific(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo) |
| { |
| if ((bc->cand_zoneid == ALL_ZONES) == |
| (cc->cand_zoneid == ALL_ZONES)) |
| return (CAND_TIE); |
| else if (cc->cand_zoneid == ALL_ZONES) |
| return (CAND_AVOID); |
| else |
| return (CAND_PREFER); |
| } |
| |
| /* |
| * Determine the best source address given a destination address and a |
| * destination ill. If no suitable source address is found, it returns |
| * NULL. If there is a usable address pointed to by the usesrc |
| * (i.e ill_usesrc_ifindex != 0) then return that first since it is more |
| * fine grained (i.e per interface) |
| * |
| * This implementation is based on the "Default Address Selection for IPv6" |
| * specification produced by the IETF IPv6 working group. It has been |
| * implemented so that the list of addresses is only traversed once (the |
| * specification's algorithm could traverse the list of addresses once for |
| * every rule). |
| * |
| * The restrict_ill argument restricts the algorithm to chose a source |
| * address that is assigned to the destination ill or an ill in the same |
| * IPMP group as the destination ill. This is used when the destination |
| * address is a link-local or multicast address, and when |
| * ipv6_strict_dst_multihoming is turned on. |
| * |
| * src_prefs is the caller's set of source address preferences. If source |
| * address selection is being called to determine the source address of a |
| * connected socket (from ip_bind_connected_v6()), then the preferences are |
| * taken from conn_src_preferences. These preferences can be set on a |
| * per-socket basis using the IPV6_SRC_PREFERENCES socket option. The only |
| * preference currently implemented is for rfc3041 temporary addresses. |
| */ |
| ipif_t * |
| ipif_select_source_v6(ill_t *dstill, const in6_addr_t *dst, |
| boolean_t restrict_ill, uint32_t src_prefs, zoneid_t zoneid) |
| { |
| dstinfo_t dstinfo; |
| char dstr[INET6_ADDRSTRLEN]; |
| char sstr[INET6_ADDRSTRLEN]; |
| ipif_t *ipif; |
| ill_t *ill, *usesrc_ill = NULL; |
| ill_walk_context_t ctx; |
| cand_t best_c; /* The best candidate */ |
| cand_t curr_c; /* The current candidate */ |
| uint_t index; |
| boolean_t first_candidate = B_TRUE; |
| rule_res_t rule_result; |
| phyint_t *phyi; |
| tsol_tpc_t *src_rhtp, *dst_rhtp; |
| |
| /* |
| * The list of ordering rules. They are applied in the order they |
| * appear in the list. |
| * |
| * XXX rule_mipv6 will need to be implemented (the specification's |
| * rules 4) if a mobile IPv6 node is ever implemented. |
| */ |
| rulef_t rules[] = { |
| rule_isdst, |
| rule_scope, |
| rule_deprecated, |
| rule_preferred, |
| rule_interface, |
| rule_label, |
| rule_temporary, |
| rule_prefix, |
| rule_zone_specific, |
| NULL |
| }; |
| |
| ASSERT(dstill->ill_isv6); |
| ASSERT(!IN6_IS_ADDR_V4MAPPED(dst)); |
| |
| /* |
| * Check if there is a usable src address pointed to by the |
| * usesrc ifindex. This has higher precedence since it is |
| * finer grained (i.e per interface) v/s being system wide. |
| */ |
| if (dstill->ill_usesrc_ifindex != 0) { |
| if ((usesrc_ill = |
| ill_lookup_on_ifindex(dstill->ill_usesrc_ifindex, B_TRUE, |
| NULL, NULL, NULL, NULL)) != NULL) { |
| dstinfo.dst_ill = usesrc_ill; |
| } else { |
| return (NULL); |
| } |
| } else { |
| dstinfo.dst_ill = dstill; |
| } |
| |
| /* |
| * If we're dealing with an unlabeled destination on a labeled system, |
| * make sure that we ignore source addresses that are incompatible with |
| * the destination's default label. That destination's default label |
| * must dominate the minimum label on the source address. |
| * |
| * (Note that this has to do with Trusted Solaris. It's not related to |
| * the labels described by ip6_asp_lookup.) |
| */ |
| dst_rhtp = NULL; |
| if (is_system_labeled()) { |
| dst_rhtp = find_tpc(dst, IPV6_VERSION, B_FALSE); |
| if (dst_rhtp == NULL) |
| return (NULL); |
| if (dst_rhtp->tpc_tp.host_type != UNLABELED) { |
| TPC_RELE(dst_rhtp); |
| dst_rhtp = NULL; |
| } |
| } |
| |
| dstinfo.dst_addr = dst; |
| dstinfo.dst_scope = ip_addr_scope_v6(dst); |
| dstinfo.dst_label = ip6_asp_lookup(dst, NULL); |
| dstinfo.dst_prefer_src_tmp = ((src_prefs & IPV6_PREFER_SRC_TMP) != 0); |
| |
| rw_enter(&ill_g_lock, RW_READER); |
| /* |
| * Section three of the I-D states that for multicast and |
| * link-local destinations, the candidate set must be restricted to |
| * an interface that is on the same link as the outgoing interface. |
| * Also, when ipv6_strict_dst_multihoming is turned on, always |
| * restrict the source address to the destination link as doing |
| * otherwise will almost certainly cause problems. |
| */ |
| if (IN6_IS_ADDR_LINKLOCAL(dst) || IN6_IS_ADDR_MULTICAST(dst) || |
| ipv6_strict_dst_multihoming || usesrc_ill != NULL) |
| dstinfo.dst_restrict_ill = B_TRUE; |
| else |
| dstinfo.dst_restrict_ill = restrict_ill; |
| |
| bzero(&best_c, sizeof (cand_t)); |
| |
| /* |
| * Take a pass through the list of IPv6 interfaces to chose the |
| * best possible source address. If restrict_ill is true, we only |
| * iterate through the ill's that are in the same IPMP group as the |
| * destination's outgoing ill. If restrict_ill is false, we walk |
| * the entire list of IPv6 ill's. |
| */ |
| if (dstinfo.dst_restrict_ill) { |
| if (dstinfo.dst_ill->ill_group != NULL) { |
| /* |
| * Try to avoid FAILED/OFFLINE ills. Global and |
| * site local addresses will failover and are not |
| * an issue even if we select them. (i.e. this is |
| * a race where we hit this path before in.mpathd |
| * moves them. But link local addresses don't move. |
| * This creates a problem for NUD. If NUD ends up |
| * (nce_xmit) using the src addr from a failed |
| * interface NUD will fail and end up deleting the nce |
| * This will cause performance issues where ires |
| * are frequently created and deleted every few secs. |
| */ |
| for (ill = dstinfo.dst_ill->ill_group->illgrp_ill; |
| ill != NULL; ill = ill->ill_group_next) { |
| phyi = ill->ill_phyint; |
| if (!(phyi->phyint_flags & |
| (PHYI_OFFLINE | PHYI_FAILED))) |
| break; |
| } |
| if (ill == NULL) |
| ill = dstinfo.dst_ill->ill_group->illgrp_ill; |
| } else { |
| ill = dstinfo.dst_ill; |
| } |
| } else { |
| ill = ILL_START_WALK_V6(&ctx); |
| } |
| |
| while (ill != NULL) { |
| ASSERT(ill->ill_isv6); |
| |
| for (ipif = ill->ill_ipif; ipif != NULL; |
| ipif = ipif->ipif_next) { |
| |
| if (!IPIF_VALID_IPV6_SOURCE(ipif)) |
| continue; |
| |
| if (zoneid != ALL_ZONES && |
| ipif->ipif_zoneid != zoneid && |
| ipif->ipif_zoneid != ALL_ZONES) |
| continue; |
| |
| /* |
| * Check compatibility of local address for |
| * destination's default label if we're on a labeled |
| * system. Incompatible addresses can't be used at |
| * all and must be skipped over. |
| */ |
| if (dst_rhtp != NULL) { |
| boolean_t incompat; |
| |
| src_rhtp = find_tpc(&ipif->ipif_v6lcl_addr, |
| IPV6_VERSION, B_FALSE); |
| if (src_rhtp == NULL) |
| continue; |
| incompat = |
| src_rhtp->tpc_tp.host_type != SUN_CIPSO || |
| src_rhtp->tpc_tp.tp_doi != |
| dst_rhtp->tpc_tp.tp_doi || |
| (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, |
| &src_rhtp->tpc_tp.tp_sl_range_cipso) && |
| !blinlset(&dst_rhtp->tpc_tp.tp_def_label, |
| src_rhtp->tpc_tp.tp_sl_set_cipso)); |
| TPC_RELE(src_rhtp); |
| if (incompat) |
| continue; |
| } |
| |
| if (first_candidate) { |
| /* |
| * This is first valid address in the list. |
| * It is automatically the best candidate |
| * so far. |
| */ |
| best_c.cand_ipif = ipif; |
| first_candidate = B_FALSE; |
| continue; |
| } |
| |
| bzero(&curr_c, sizeof (cand_t)); |
| curr_c.cand_ipif = ipif; |
| |
| /* |
| * Compare this current candidate (curr_c) with the |
| * best candidate (best_c) by applying the |
| * comparison rules in order until one breaks the |
| * tie. |
| */ |
| for (index = 0; rules[index] != NULL; index++) { |
| /* Apply a comparison rule. */ |
| rule_result = |
| (rules[index])(&best_c, &curr_c, &dstinfo); |
| if (rule_result == CAND_AVOID) { |
| /* |
| * The best candidate is still the |
| * best candidate. Forget about |
| * this current candidate and go on |
| * to the next one. |
| */ |
| break; |
| } else if (rule_result == CAND_PREFER) { |
| /* |
| * This candidate is prefered. It |
| * becomes the best candidate so |
| * far. Go on to the next address. |
| */ |
| best_c = curr_c; |
| break; |
| } |
| /* We have a tie, apply the next rule. */ |
| } |
| |
| /* |
| * The last rule must be a tie breaker rule and |
| * must never produce a tie. At this point, the |
| * candidate should have either been rejected, or |
| * have been prefered as the best candidate so far. |
| */ |
| ASSERT(rule_result != CAND_TIE); |
| } |
| |
| /* |
| * We may be walking the linked-list of ill's in an |
| * IPMP group or traversing the IPv6 ill avl tree. If it is a |
| * usesrc ILL then it can't be part of IPMP group and we |
| * will exit the while loop. |
| */ |
| if (dstinfo.dst_restrict_ill) |
| ill = ill->ill_group_next; |
| else |
| ill = ill_next(&ctx, ill); |
| } |
| |
| ipif = best_c.cand_ipif; |
| ip1dbg(("ipif_select_source_v6(%s, %s) -> %s\n", |
| dstinfo.dst_ill->ill_name, |
| inet_ntop(AF_INET6, dstinfo.dst_addr, dstr, sizeof (dstr)), |
| (ipif == NULL ? "NULL" : |
| inet_ntop(AF_INET6, &ipif->ipif_v6lcl_addr, sstr, sizeof (sstr))))); |
| |
| if (usesrc_ill != NULL) |
| ill_refrele(usesrc_ill); |
| |
| if (dst_rhtp != NULL) |
| TPC_RELE(dst_rhtp); |
| |
| if (ipif == NULL) { |
| rw_exit(&ill_g_lock); |
| return (NULL); |
| } |
| |
| mutex_enter(&ipif->ipif_ill->ill_lock); |
| if (IPIF_CAN_LOOKUP(ipif)) { |
| ipif_refhold_locked(ipif); |
| mutex_exit(&ipif->ipif_ill->ill_lock); |
| rw_exit(&ill_g_lock); |
| return (ipif); |
| } |
| mutex_exit(&ipif->ipif_ill->ill_lock); |
| rw_exit(&ill_g_lock); |
| ip1dbg(("ipif_select_source_v6 cannot lookup ipif %p" |
| " returning null \n", (void *)ipif)); |
| |
| return (NULL); |
| } |
| |
| /* |
| * If old_ipif is not NULL, see if ipif was derived from old |
| * ipif and if so, recreate the interface route by re-doing |
| * source address selection. This happens when ipif_down -> |
| * ipif_update_other_ipifs calls us. |
| * |
| * If old_ipif is NULL, just redo the source address selection |
| * if needed. This happens when illgrp_insert or ipif_up_done_v6 |
| * calls us. |
| */ |
| void |
| ipif_recreate_interface_routes_v6(ipif_t *old_ipif, ipif_t *ipif) |
| { |
| ire_t *ire; |
| ire_t *ipif_ire; |
| queue_t *stq; |
| ill_t *ill; |
| ipif_t *nipif = NULL; |
| boolean_t nipif_refheld = B_FALSE; |
| boolean_t ip6_asp_table_held = B_FALSE; |
| |
| ill = ipif->ipif_ill; |
| |
| if (!(ipif->ipif_flags & |
| (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { |
| /* |
| * Can't possibly have borrowed the source |
| * from old_ipif. |
| */ |
| return; |
| } |
| |
| /* |
| * Is there any work to be done? No work if the address |
| * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( |
| * ipif_select_source_v6() does not borrow addresses from |
| * NOLOCAL and ANYCAST interfaces). |
| */ |
| if ((old_ipif != NULL) && |
| ((IN6_IS_ADDR_UNSPECIFIED(&old_ipif->ipif_v6lcl_addr)) || |
| (old_ipif->ipif_ill->ill_wq == NULL) || |
| (old_ipif->ipif_flags & |
| (IPIF_NOLOCAL|IPIF_ANYCAST)))) { |
| return; |
| } |
| |
| /* |
| * Perform the same checks as when creating the |
| * IRE_INTERFACE in ipif_up_done_v6. |
| */ |
| if (!(ipif->ipif_flags & IPIF_UP)) |
| return; |
| |
| if ((ipif->ipif_flags & IPIF_NOXMIT)) |
| return; |
| |
| if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet) && |
| IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) |
| return; |
| |
| /* |
| * We know that ipif uses some other source for its |
| * IRE_INTERFACE. Is it using the source of this |
| * old_ipif? |
| */ |
| ipif_ire = ipif_to_ire_v6(ipif); |
| if (ipif_ire == NULL) |
| return; |
| |
| if (old_ipif != NULL && |
| !IN6_ARE_ADDR_EQUAL(&old_ipif->ipif_v6lcl_addr, |
| &ipif_ire->ire_src_addr_v6)) { |
| ire_refrele(ipif_ire); |
| return; |
| } |
| |
| if (ip_debug > 2) { |
| /* ip1dbg */ |
| pr_addr_dbg("ipif_recreate_interface_routes_v6: deleting IRE" |
| " for src %s\n", AF_INET6, &ipif_ire->ire_src_addr_v6); |
| } |
| |
| stq = ipif_ire->ire_stq; |
| |
| /* |
| * Can't use our source address. Select a different source address |
| * for the IRE_INTERFACE. We restrict interface route source |
| * address selection to ipif's assigned to the same link as the |
| * interface. |
| */ |
| if (ip6_asp_can_lookup()) { |
| ip6_asp_table_held = B_TRUE; |
| nipif = ipif_select_source_v6(ill, &ipif->ipif_v6subnet, |
| B_TRUE, IPV6_PREFER_SRC_DEFAULT, ipif->ipif_zoneid); |
| } |
| if (nipif == NULL) { |
| /* Last resort - all ipif's have IPIF_NOLOCAL */ |
| nipif = ipif; |
| } else { |
| nipif_refheld = B_TRUE; |
| } |
| |
| ire = ire_create_v6( |
| &ipif->ipif_v6subnet, /* dest pref */ |
| &ipif->ipif_v6net_mask, /* mask */ |
| &nipif->ipif_v6src_addr, /* src addr */ |
| NULL, /* no gateway */ |
| &ipif->ipif_mtu, /* max frag */ |
| NULL, /* no Fast path header */ |
| NULL, /* no recv from queue */ |
| stq, /* send-to queue */ |
| ill->ill_net_type, /* IF_[NO]RESOLVER */ |
| ill->ill_resolver_mp, /* xmit header */ |
| ipif, |
| NULL, |
| 0, |
| 0, |
| 0, |
| &ire_uinfo_null, |
| NULL, |
| NULL); |
| |
| if (ire != NULL) { |
| ire_t *ret_ire; |
| int error; |
| |
| /* |
| * We don't need ipif_ire anymore. We need to delete |
| * before we add so that ire_add does not detect |
| * duplicates. |
| */ |
| ire_delete(ipif_ire); |
| ret_ire = ire; |
| error = ire_add(&ret_ire, NULL, NULL, NULL); |
| ASSERT(error == 0); |
| ASSERT(ret_ire == ire); |
| if (ret_ire != NULL) { |
| /* Held in ire_add */ |
| ire_refrele(ret_ire); |
| } |
| } |
| /* |
| * Either we are falling through from above or could not |
| * allocate a replacement. |
| */ |
| ire_refrele(ipif_ire); |
| if (ip6_asp_table_held) |
| ip6_asp_table_refrele(); |
| if (nipif_refheld) |
| ipif_refrele(nipif); |
| } |
| |
| /* |
| * This old_ipif is going away. |
| * |
| * Determine if any other ipif's are using our address as |
| * ipif_v6lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or |
| * IPIF_DEPRECATED). |
| * Find the IRE_INTERFACE for such ipif's and recreate them |
| * to use an different source address following the rules in |
| * ipif_up_done_v6. |
| * |
| * This function takes an illgrp as an argument so that illgrp_delete |
| * can call this to update source address even after deleting the |
| * old_ipif->ipif_ill from the ill group. |
| */ |
| void |
| ipif_update_other_ipifs_v6(ipif_t *old_ipif, ill_group_t *illgrp) |
| { |
| ipif_t *ipif; |
| ill_t *ill; |
| char buf[INET6_ADDRSTRLEN]; |
| |
| ASSERT(IAM_WRITER_IPIF(old_ipif)); |
| |
| ill = old_ipif->ipif_ill; |
| |
| ip1dbg(("ipif_update_other_ipifs_v6(%s, %s)\n", |
| ill->ill_name, |
| inet_ntop(AF_INET6, &old_ipif->ipif_v6lcl_addr, |
| buf, sizeof (buf)))); |
| |
| /* |
| * If this part of a group, look at all ills as ipif_select_source |
| * borrows a source address across all the ills in the group. |
| */ |
| if (illgrp != NULL) |
| ill = illgrp->illgrp_ill; |
| |
| /* Don't need a lock since this is a writer */ |
| for (; ill != NULL; ill = ill->ill_group_next) { |
| for (ipif = ill->ill_ipif; ipif != NULL; |
| ipif = ipif->ipif_next) { |
| |
| if (ipif == old_ipif) |
| continue; |
| |
| ipif_recreate_interface_routes_v6(old_ipif, ipif); |
| } |
| } |
| } |
| |
| /* |
| * Perform an attach and bind to get phys addr plus info_req for |
| * the physical device. |
| * q and mp represents an ioctl which will be queued waiting for |
| * completion of the DLPI message exchange. |
| * MUST be called on an ill queue. Can not set conn_pending_ill for that |
| * reason thus the DL_PHYS_ADDR_ACK code does not assume ill_pending_q. |
| * |
| * Returns EINPROGRESS when mp has been consumed by queueing it on |
| * ill_pending_mp and the ioctl will complete in ip_rput. |
| */ |
| int |
| ill_dl_phys(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) |
| { |
| mblk_t *v6token_mp = NULL; |
| mblk_t *v6lla_mp = NULL; |
| mblk_t *phys_mp = NULL; |
| mblk_t *info_mp = NULL; |
| mblk_t *attach_mp = NULL; |
| mblk_t *detach_mp = NULL; |
| mblk_t *bind_mp = NULL; |
| mblk_t *unbind_mp = NULL; |
| mblk_t *notify_mp = NULL; |
| |
| ip1dbg(("ill_dl_phys(%s:%u)\n", ill->ill_name, ipif->ipif_id)); |
| ASSERT(ill->ill_dlpi_style_set); |
| ASSERT(WR(q)->q_next != NULL); |
| |
| if (ill->ill_isv6) { |
| v6token_mp = ip_dlpi_alloc(sizeof (dl_phys_addr_req_t) + |
| sizeof (t_scalar_t), DL_PHYS_ADDR_REQ); |
| if (v6token_mp == NULL) |
| goto bad; |
| ((dl_phys_addr_req_t *)v6token_mp->b_rptr)->dl_addr_type = |
| DL_IPV6_TOKEN; |
| |
| v6lla_mp = ip_dlpi_alloc(sizeof (dl_phys_addr_req_t) + |
| sizeof (t_scalar_t), DL_PHYS_ADDR_REQ); |
| if (v6lla_mp == NULL) |
| goto bad; |
| ((dl_phys_addr_req_t *)v6lla_mp->b_rptr)->dl_addr_type = |
| DL_IPV6_LINK_LAYER_ADDR; |
| } |
| |
| /* |
| * Allocate a DL_NOTIFY_REQ and set the notifications we want. |
| */ |
| notify_mp = ip_dlpi_alloc(sizeof (dl_notify_req_t) + sizeof (long), |
| DL_NOTIFY_REQ); |
| if (notify_mp == NULL) |
| goto bad; |
| ((dl_notify_req_t *)notify_mp->b_rptr)->dl_notifications = |
| (DL_NOTE_PHYS_ADDR | DL_NOTE_SDU_SIZE | DL_NOTE_FASTPATH_FLUSH | |
| DL_NOTE_LINK_UP | DL_NOTE_LINK_DOWN | DL_NOTE_CAPAB_RENEG); |
| |
| phys_mp = ip_dlpi_alloc(sizeof (dl_phys_addr_req_t) + |
| sizeof (t_scalar_t), DL_PHYS_ADDR_REQ); |
| if (phys_mp == NULL) |
| goto bad; |
| ((dl_phys_addr_req_t *)phys_mp->b_rptr)->dl_addr_type = |
| DL_CURR_PHYS_ADDR; |
| |
| info_mp = ip_dlpi_alloc( |
| sizeof (dl_info_req_t) + sizeof (dl_info_ack_t), |
| DL_INFO_REQ); |
| if (info_mp == NULL) |
| goto bad; |
| |
| bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), |
| DL_BIND_REQ); |
| if (bind_mp == NULL) |
| goto bad; |
| ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; |
| ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; |
| |
| unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); |
| if (unbind_mp == NULL) |
| goto bad; |
| |
| /* If we need to attach/detach, pre-alloc and initialize the mblks */ |
| if (ill->ill_needs_attach) { |
| attach_mp = ip_dlpi_alloc(sizeof (dl_attach_req_t), |
| DL_ATTACH_REQ); |
| if (attach_mp == NULL) |
| goto bad; |
| ((dl_attach_req_t *)attach_mp->b_rptr)->dl_ppa = ill->ill_ppa; |
| |
| detach_mp = ip_dlpi_alloc(sizeof (dl_detach_req_t), |
| DL_DETACH_REQ); |
| if (detach_mp == NULL) |
| goto bad; |
| } |
| |
| /* |
| * Here we are going to delay the ioctl ack until after |
| * ACKs from DL_PHYS_ADDR_REQ. So need to save the |
| * original ioctl message before sending the requests |
| */ |
| mutex_enter(&ill->ill_lock); |
| /* ipsq_pending_mp_add won't fail since we pass in a NULL connp */ |
| (void) ipsq_pending_mp_add(NULL, ipif, ill->ill_wq, mp, 0); |
| /* |
| * Set ill_phys_addr_pend to zero. It will be set to the addr_type of |
| * the DL_PHYS_ADDR_REQ in ill_dlpi_send() and ill_dlpi_done(). It will |
| * be used to track which DL_PHYS_ADDR_REQ is being ACK'd/NAK'd. |
| */ |
| ill->ill_phys_addr_pend = 0; |
| mutex_exit(&ill->ill_lock); |
| |
| if (attach_mp != NULL) { |
| ip1dbg(("ill_dl_phys: attach\n")); |
| ill_dlpi_send(ill, attach_mp); |
| } |
| ill_dlpi_send(ill, bind_mp); |
| ill_dlpi_send(ill, info_mp); |
| if (ill->ill_isv6) { |
| ill_dlpi_send(ill, v6token_mp); |
| ill_dlpi_send(ill, v6lla_mp); |
| } |
| ill_dlpi_send(ill, phys_mp); |
| ill_dlpi_send(ill, notify_mp); |
| ill_dlpi_send(ill, unbind_mp); |
| |
| /* |
| * Save the DL_DETACH_REQ (if there is one) for use in ill_delete(). |
| */ |
| ASSERT(ill->ill_detach_mp == NULL); |
| ill->ill_detach_mp = detach_mp; |
| |
| /* |
| * This operation will complete in ip_rput_dlpi_writer with either |
| * a DL_PHYS_ADDR_ACK or DL_ERROR_ACK. |
| */ |
| return (EINPROGRESS); |
| bad: |
| if (v6token_mp != NULL) |
| freemsg(v6token_mp); |
| if (v6lla_mp != NULL) |
| freemsg(v6lla_mp); |
| if (phys_mp != NULL) |
| freemsg(phys_mp); |
| if (info_mp != NULL) |
| freemsg(info_mp); |
| if (attach_mp != NULL) |
| freemsg(attach_mp); |
| if (detach_mp != NULL) |
| freemsg(detach_mp); |
| if (bind_mp != NULL) |
| freemsg(bind_mp); |
| if (unbind_mp != NULL) |
| freemsg(unbind_mp); |
| if (notify_mp != NULL) |
| freemsg(notify_mp); |
| return (ENOMEM); |
| } |
| |
| uint_t ip_loopback_mtu_v6plus = IP_LOOPBACK_MTU + IPV6_HDR_LEN + 20; |
| |
| /* |
| * DLPI is up. |
| * Create all the IREs associated with an interface bring up multicast. |
| * Set the interface flag and finish other initialization |
| * that potentially had to be differed to after DL_BIND_ACK. |
| */ |
| int |
| ipif_up_done_v6(ipif_t *ipif) |
| { |
| ire_t *ire_array[20]; |
| ire_t **irep = ire_array; |
| ire_t **irep1; |
| ill_t *ill = ipif->ipif_ill; |
| queue_t *stq; |
| in6_addr_t v6addr; |
| in6_addr_t route_mask; |
| ipif_t *src_ipif = NULL; |
| ipif_t *tmp_ipif; |
| boolean_t flush_ire_cache = B_TRUE; |
| int err; |
| char buf[INET6_ADDRSTRLEN]; |
| phyint_t *phyi; |
| ire_t **ipif_saved_irep = NULL; |
| int ipif_saved_ire_cnt; |
| int cnt; |
| boolean_t src_ipif_held = B_FALSE; |
| boolean_t ire_added = B_FALSE; |
| boolean_t loopback = B_FALSE; |
| boolean_t ip6_asp_table_held = B_FALSE; |
| |
| ip1dbg(("ipif_up_done_v6(%s:%u)\n", |
| ipif->ipif_ill->ill_name, ipif->ipif_id)); |
| |
| /* Check if this is a loopback interface */ |
| if (ipif->ipif_ill->ill_wq == NULL) |
| loopback = B_TRUE; |
| |
| ASSERT(ipif->ipif_isv6); |
| ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); |
| |
| /* |
| * If all other interfaces for this ill are down or DEPRECATED, |
| * or otherwise unsuitable for source address selection, remove |
| * any IRE_CACHE entries for this ill to make sure source |
| * address selection gets to take this new ipif into account. |
| * No need to hold ill_lock while traversing the ipif list since |
| * we are writer |
| */ |
| for (tmp_ipif = ill->ill_ipif; tmp_ipif; |
| tmp_ipif = tmp_ipif->ipif_next) { |
| if (((tmp_ipif->ipif_flags & |
| (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || |
| !(tmp_ipif->ipif_flags & IPIF_UP)) || |
| (tmp_ipif == ipif)) |
| continue; |
| /* first useable pre-existing interface */ |
| flush_ire_cache = B_FALSE; |
| break; |
| } |
| if (flush_ire_cache) |
| ire_walk_ill_v6(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, |
| IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); |
| |
| /* |
| * Figure out which way the send-to queue should go. Only |
| * IRE_IF_RESOLVER or IRE_IF_NORESOLVER should show up here. |
| */ |
| switch (ill->ill_net_type) { |
| case IRE_IF_RESOLVER: |
| stq = ill->ill_rq; |
| break; |
| case IRE_IF_NORESOLVER: |
| case IRE_LOOPBACK: |
| stq = ill->ill_wq; |
| break; |
| default: |
| return (EINVAL); |
| } |
| |
| if (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) { |
| /* |
| * lo0:1 and subsequent ipifs were marked IRE_LOCAL in |
| * ipif_lookup_on_name(), but in the case of zones we can have |
| * several loopback addresses on lo0. So all the interfaces with |
| * loopback addresses need to be marked IRE_LOOPBACK. |
| */ |
| if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, &ipv6_loopback)) |
| ipif->ipif_ire_type = IRE_LOOPBACK; |
| else |
| ipif->ipif_ire_type = IRE_LOCAL; |
| } |
| |
| if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { |
| /* |
| * Can't use our source address. Select a different |
| * source address for the IRE_INTERFACE and IRE_LOCAL |
| */ |
| if (ip6_asp_can_lookup()) { |
| ip6_asp_table_held = B_TRUE; |
| src_ipif = ipif_select_source_v6(ipif->ipif_ill, |
| &ipif->ipif_v6subnet, B_FALSE, |
| IPV6_PREFER_SRC_DEFAULT, ipif->ipif_zoneid); |
| } |
| if (src_ipif == NULL) |
| src_ipif = ipif; /* Last resort */ |
| else |
| src_ipif_held = B_TRUE; |
| } else { |
| src_ipif = ipif; |
| } |
| |
| if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && |
| !(ipif->ipif_flags & IPIF_NOLOCAL)) { |
| |
| /* |
| * If we're on a labeled system then make sure that zone- |
| * private addresses have proper remote host database entries. |
| */ |
| if (is_system_labeled() && |
| ipif->ipif_ire_type != IRE_LOOPBACK) { |
| if (ip6opt_ls == 0) { |
| cmn_err(CE_WARN, "IPv6 not enabled " |
| "via /etc/system"); |
| return (EINVAL); |
| } |
| if (!tsol_check_interface_address(ipif)) |
| return (EINVAL); |
| } |
| |
| /* Register the source address for __sin6_src_id */ |
| err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, |
| ipif->ipif_zoneid); |
| if (err != 0) { |
| ip0dbg(("ipif_up_done_v6: srcid_insert %d\n", err)); |
| if (src_ipif_held) |
| ipif_refrele(src_ipif); |
| if (ip6_asp_table_held) |
| ip6_asp_table_refrele(); |
| return (err); |
| } |
| /* |
| * If the interface address is set, create the LOCAL |
| * or LOOPBACK IRE. |
| */ |
| ip1dbg(("ipif_up_done_v6: creating IRE %d for %s\n", |
| ipif->ipif_ire_type, |
| inet_ntop(AF_INET6, &ipif->ipif_v6lcl_addr, |
| buf, sizeof (buf)))); |
| |
| *irep++ = ire_create_v6( |
| &ipif->ipif_v6lcl_addr, /* dest address */ |
| &ipv6_all_ones, /* mask */ |
| &src_ipif->ipif_v6src_addr, /* source address */ |
| NULL, /* no gateway */ |
| &ip_loopback_mtu_v6plus, /* max frag size */ |
| NULL, |
| ipif->ipif_rq, /* recv-from queue */ |
| NULL, /* no send-to queue */ |
| ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ |
| NULL, |
| ipif, /* interface */ |
| NULL, |
| 0, |
| 0, |
| (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0, |
| &ire_uinfo_null, |
| NULL, |
| NULL); |
| } |
| |
| /* |
| * Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. |
| * Note that atun interfaces have an all-zero ipif_v6subnet. |
| * Thus we allow a zero subnet as long as the mask is non-zero. |
| */ |
| if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && |
| !(IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet) && |
| IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask))) { |
| /* ipif_v6subnet is ipif_v6pp_dst_addr for pt-pt */ |
| v6addr = ipif->ipif_v6subnet; |
| |
| if (ipif->ipif_flags & IPIF_POINTOPOINT) { |
| route_mask = ipv6_all_ones; |
| } else { |
| route_mask = ipif->ipif_v6net_mask; |
| } |
| |
| ip1dbg(("ipif_up_done_v6: creating if IRE %d for %s\n", |
| ill->ill_net_type, |
| inet_ntop(AF_INET6, &v6addr, buf, sizeof (buf)))); |
| |
| *irep++ = ire_create_v6( |
| &v6addr, /* dest pref */ |
| &route_mask, /* mask */ |
| &src_ipif->ipif_v6src_addr, /* src addr */ |
| NULL, /* no gateway */ |
| &ipif->ipif_mtu, /* max frag */ |
| NULL, /* no Fast path header */ |
| NULL, /* no recv from queue */ |
| stq, /* send-to queue */ |
| ill->ill_net_type, /* IF_[NO]RESOLVER */ |
| ill->ill_resolver_mp, /* xmit header */ |
| ipif, |
| NULL, |
| 0, |
| 0, |
| (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0, |
| &ire_uinfo_null, |
| NULL, |
| NULL); |
| } |
| |
| /* |
| * Setup 2002::/16 route, if this interface is a 6to4 tunnel |
| */ |
| if (IN6_IS_ADDR_6TO4(&ipif->ipif_v6lcl_addr) && |
| (ill->ill_is_6to4tun)) { |
| /* |
| * Destination address is 2002::/16 |
| */ |
| #ifdef _BIG_ENDIAN |
| const in6_addr_t prefix_addr = { 0x20020000U, 0, 0, 0 }; |
| const in6_addr_t prefix_mask = { 0xffff0000U, 0, 0, 0 }; |
| #else |
| const in6_addr_t prefix_addr = { 0x00000220U, 0, 0, 0 }; |
| const in6_addr_t prefix_mask = { 0x0000ffffU, 0, 0, 0 }; |
| #endif /* _BIG_ENDIAN */ |
| char buf2[INET6_ADDRSTRLEN]; |
| ire_t *isdup; |
| in6_addr_t *first_addr = &ill->ill_ipif->ipif_v6lcl_addr; |
| |
| /* |
| * check to see if this route has already been added for |
| * this tunnel interface. |
| */ |
| isdup = ire_ftable_lookup_v6(first_addr, &prefix_mask, 0, |
| IRE_IF_NORESOLVER, ill->ill_ipif, NULL, ALL_ZONES, 0, NULL, |
| (MATCH_IRE_SRC | MATCH_IRE_MASK)); |
| |
| if (isdup == NULL) { |
| ip1dbg(("ipif_up_done_v6: creating if IRE %d for %s", |
| IRE_IF_NORESOLVER, inet_ntop(AF_INET6, &v6addr, |
| buf2, sizeof (buf2)))); |
| |
| *irep++ = ire_create_v6( |
| &prefix_addr, /* 2002:: */ |
| &prefix_mask, /* ffff:: */ |
| &ipif->ipif_v6lcl_addr, /* src addr */ |
| NULL, /* gateway */ |
| &ipif->ipif_mtu, /* max_frag */ |
| NULL, /* no Fast Path hdr */ |
| NULL, /* no rfq */ |
| ill->ill_wq, /* stq */ |
| IRE_IF_NORESOLVER, /* type */ |
| ill->ill_resolver_mp, /* dlureq_mp */ |
| ipif, /* interface */ |
| NULL, /* v6cmask */ |
| 0, |
| 0, |
| RTF_UP, |
| &ire_uinfo_null, |
| NULL, |
| NULL); |
| } else { |
| ire_refrele(isdup); |
| } |
| } |
| |
| /* If an earlier ire_create failed, get out now */ |
| for (irep1 = irep; irep1 > ire_array; ) { |
| irep1--; |
| if (*irep1 == NULL) { |
| ip1dbg(("ipif_up_done_v6: NULL ire found in" |
| " ire_array\n")); |
| err = ENOMEM; |
| goto bad; |
| } |
| } |
| |
| ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); |
| |
| /* |
| * Need to atomically check for ip_addr_availablity_check |
| * now under ill_g_lock, and if it fails got bad, and remove |
| * from group also |
| */ |
| rw_enter(&ill_g_lock, RW_READER); |
| mutex_enter(&ip_addr_avail_lock); |
| ill->ill_ipif_up_count++; |
| ipif->ipif_flags |= IPIF_UP; |
| err = ip_addr_availability_check(ipif); |
| mutex_exit(&ip_addr_avail_lock); |
| rw_exit(&ill_g_lock); |
| |
| if (err != 0) { |
| /* |
| * Our address may already be up on the same ill. In this case, |
| * the external resolver entry for our ipif replaced the one for |
| * the other ipif. So we don't want to delete it (otherwise the |
| * other ipif would be unable to send packets). |
| * ip_addr_availability_check() identifies this case for us and |
| * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL |
| * which is the expected error code. |
| */ |
| if (err == EADDRINUSE) { |
| if (ipif->ipif_ill->ill_flags & ILLF_XRESOLV) { |
| freemsg(ipif->ipif_arp_del_mp); |
| ipif->ipif_arp_del_mp = NULL; |
| } |
| err = EADDRNOTAVAIL; |
| } |
| ill->ill_ipif_up_count--; |
| ipif->ipif_flags &= ~IPIF_UP; |
| goto bad; |
| } |
| |
| /* |
| * Add in all newly created IREs. We want to add before |
| * we call ifgrp_insert which wants to know whether |
| * IRE_IF_RESOLVER exists or not. |
| * |
| * NOTE : We refrele the ire though we may branch to "bad" |
| * later on where we do ire_delete. This is okay |
| * because nobody can delete it as we are running |
| * exclusively. |
| */ |
| for (irep1 = irep; irep1 > ire_array; ) { |
| irep1--; |
| /* Shouldn't be adding any bcast ire's */ |
| ASSERT((*irep1)->ire_type != IRE_BROADCAST); |
| ASSERT(!MUTE
|