| /* |
| * Copyright 2006 Sun Microsystems, Inc. All rights reserved. |
| * Use is subject to license terms. |
| * |
| * Copyright (c) 1983, 1988, 1993 |
| * The Regents of the University of California. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgment: |
| * This product includes software developed by the University of |
| * California, Berkeley and its contributors. |
| * 4. Neither the name of the University nor the names of its contributors |
| * may be used to endorse or promote products derived from this software |
| * without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * $FreeBSD: src/sbin/routed/table.c,v 1.15 2000/08/11 08:24:38 sheldonh Exp $ |
| */ |
| |
| #pragma ident "%Z%%M% %I% %E% SMI" |
| |
| #include "defs.h" |
| #include <fcntl.h> |
| #include <stropts.h> |
| #include <sys/tihdr.h> |
| #include <inet/mib2.h> |
| #include <inet/ip.h> |
| |
| /* This structure is used to store a disassembled routing socket message. */ |
| struct rt_addrinfo { |
| int rti_addrs; |
| struct sockaddr_storage *rti_info[RTAX_MAX]; |
| }; |
| |
| static struct rt_spare *rts_better(struct rt_entry *); |
| static struct rt_spare rts_empty = EMPTY_RT_SPARE; |
| static void set_need_flash(void); |
| static void rtbad(struct rt_entry *, struct interface *); |
| static int rt_xaddrs(struct rt_addrinfo *, struct sockaddr_storage *, |
| char *, int); |
| static struct interface *gwkludge_iflookup(in_addr_t, in_addr_t, in_addr_t); |
| |
| struct radix_node_head *rhead; /* root of the radix tree */ |
| |
| /* Flash update needed. _B_TRUE to suppress the 1st. */ |
| boolean_t need_flash = _B_TRUE; |
| |
| struct timeval age_timer; /* next check of old routes */ |
| struct timeval need_kern = { /* need to update kernel table */ |
| EPOCH+MIN_WAITTIME-1, 0 |
| }; |
| |
| static uint32_t total_routes; |
| |
| #define ROUNDUP_LONG(a) \ |
| ((a) > 0 ? (1 + (((a) - 1) | (sizeof (long) - 1))) : sizeof (long)) |
| |
| /* |
| * It is desirable to "aggregate" routes, to combine differing routes of |
| * the same metric and next hop into a common route with a smaller netmask |
| * or to suppress redundant routes, routes that add no information to |
| * routes with smaller netmasks. |
| * |
| * A route is redundant if and only if any and all routes with smaller |
| * but matching netmasks and nets are the same. Since routes are |
| * kept sorted in the radix tree, redundant routes always come second. |
| * |
| * There are two kinds of aggregations. First, two routes of the same bit |
| * mask and differing only in the least significant bit of the network |
| * number can be combined into a single route with a coarser mask. |
| * |
| * Second, a route can be suppressed in favor of another route with a more |
| * coarse mask provided no incompatible routes with intermediate masks |
| * are present. The second kind of aggregation involves suppressing routes. |
| * A route must not be suppressed if an incompatible route exists with |
| * an intermediate mask, since the suppressed route would be covered |
| * by the intermediate. |
| * |
| * This code relies on the radix tree walk encountering routes |
| * sorted first by address, with the smallest address first. |
| */ |
| |
| static struct ag_info ag_slots[NUM_AG_SLOTS], *ag_avail, *ag_corsest, |
| *ag_finest; |
| |
| #ifdef DEBUG_AG |
| #define CHECK_AG() do { int acnt = 0; struct ag_info *cag; \ |
| for (cag = ag_avail; cag != NULL; cag = cag->ag_fine) \ |
| acnt++; \ |
| for (cag = ag_corsest; cag != NULL; cag = cag->ag_fine) \ |
| acnt++; \ |
| if (acnt != NUM_AG_SLOTS) \ |
| abort(); \ |
| } while (_B_FALSE) |
| #else |
| #define CHECK_AG() (void)0 |
| #endif |
| |
| |
| /* |
| * Output the contents of an aggregation table slot. |
| * This function must always be immediately followed with the deletion |
| * of the target slot. |
| */ |
| static void |
| ag_out(struct ag_info *ag, void (*out)(struct ag_info *)) |
| { |
| struct ag_info *ag_cors; |
| uint32_t bit; |
| |
| |
| /* Forget it if this route should not be output for split-horizon. */ |
| if (ag->ag_state & AGS_SPLIT_HZ) |
| return; |
| |
| /* |
| * If we output both the even and odd twins, then the immediate parent, |
| * if it is present, is redundant, unless the parent manages to |
| * aggregate into something coarser. |
| * On successive calls, this code detects the even and odd twins, |
| * and marks the parent. |
| * |
| * Note that the order in which the radix tree code emits routes |
| * ensures that the twins are seen before the parent is emitted. |
| */ |
| ag_cors = ag->ag_cors; |
| if (ag_cors != NULL && |
| ag_cors->ag_mask == (ag->ag_mask << 1) && |
| ag_cors->ag_dst_h == (ag->ag_dst_h & ag_cors->ag_mask)) { |
| ag_cors->ag_state |= ((ag_cors->ag_dst_h == ag->ag_dst_h) ? |
| AGS_REDUN0 : AGS_REDUN1); |
| } |
| |
| /* |
| * Skip it if this route is itself redundant. |
| * |
| * It is ok to change the contents of the slot here, since it is |
| * always deleted next. |
| */ |
| if (ag->ag_state & AGS_REDUN0) { |
| if (ag->ag_state & AGS_REDUN1) |
| return; /* quit if fully redundant */ |
| /* make it finer if it is half-redundant */ |
| bit = (-ag->ag_mask) >> 1; |
| ag->ag_dst_h |= bit; |
| ag->ag_mask |= bit; |
| |
| } else if (ag->ag_state & AGS_REDUN1) { |
| /* make it finer if it is half-redundant */ |
| bit = (-ag->ag_mask) >> 1; |
| ag->ag_mask |= bit; |
| } |
| out(ag); |
| } |
| |
| |
| static void |
| ag_del(struct ag_info *ag) |
| { |
| CHECK_AG(); |
| |
| if (ag->ag_cors == NULL) |
| ag_corsest = ag->ag_fine; |
| else |
| ag->ag_cors->ag_fine = ag->ag_fine; |
| |
| if (ag->ag_fine == NULL) |
| ag_finest = ag->ag_cors; |
| else |
| ag->ag_fine->ag_cors = ag->ag_cors; |
| |
| ag->ag_fine = ag_avail; |
| ag_avail = ag; |
| |
| CHECK_AG(); |
| } |
| |
| |
| /* Look for a route that can suppress the given route. */ |
| static struct ag_info * |
| ag_find_suppressor(struct ag_info *ag) |
| { |
| struct ag_info *ag_cors; |
| in_addr_t dst_h = ag->ag_dst_h; |
| |
| for (ag_cors = ag->ag_cors; ag_cors != NULL; |
| ag_cors = ag_cors->ag_cors) { |
| |
| if ((dst_h & ag_cors->ag_mask) == ag_cors->ag_dst_h) { |
| /* |
| * We found a route with a coarser mask that covers |
| * the given target. It can suppress the target |
| * only if it has a good enough metric and it |
| * either has the same (gateway, ifp), or if its state |
| * includes AGS_CORS_GATE or the target's state |
| * includes AGS_FINE_GATE. |
| */ |
| if (ag_cors->ag_pref <= ag->ag_pref && |
| (((ag->ag_nhop == ag_cors->ag_nhop) && |
| (ag->ag_ifp == ag_cors->ag_ifp)) || |
| ag_cors->ag_state & AGS_CORS_GATE || |
| ag->ag_state & AGS_FINE_GATE)) { |
| return (ag_cors); |
| } |
| } |
| } |
| |
| return (NULL); |
| } |
| |
| |
| /* |
| * Flush routes waiting for aggregation. |
| * This must not suppress a route unless it is known that among all routes |
| * with coarser masks that match it, the one with the longest mask is |
| * appropriate. This is ensured by scanning the routes in lexical order, |
| * and with the most restrictive mask first among routes to the same |
| * destination. |
| */ |
| void |
| ag_flush(in_addr_t lim_dst_h, /* flush routes to here */ |
| in_addr_t lim_mask, /* matching this mask */ |
| void (*out)(struct ag_info *)) |
| { |
| struct ag_info *ag, *ag_cors, *ag_supr; |
| in_addr_t dst_h; |
| |
| |
| for (ag = ag_finest; ag != NULL && ag->ag_mask >= lim_mask; |
| ag = ag_cors) { |
| /* Get the next route now, before we delete ag. */ |
| ag_cors = ag->ag_cors; |
| |
| /* Work on only the specified routes. */ |
| dst_h = ag->ag_dst_h; |
| if ((dst_h & lim_mask) != lim_dst_h) |
| continue; |
| |
| /* |
| * Don't try to suppress the route if its state doesn't |
| * include AGS_SUPPRESS. |
| */ |
| if (!(ag->ag_state & AGS_SUPPRESS)) { |
| ag_out(ag, out); |
| ag_del(ag); |
| continue; |
| } |
| |
| ag_supr = ag_find_suppressor(ag); |
| if (ag_supr == NULL) { |
| /* |
| * We didn't find a route which suppresses the |
| * target, so the target can go out. |
| */ |
| ag_out(ag, out); |
| } else { |
| /* |
| * We found a route which suppresses the target, so |
| * don't output the target. |
| */ |
| if (TRACEACTIONS) { |
| trace_misc("aggregated away %s", |
| rtname(htonl(ag->ag_dst_h), ag->ag_mask, |
| ag->ag_nhop)); |
| trace_misc("on coarser route %s", |
| rtname(htonl(ag_supr->ag_dst_h), |
| ag_supr->ag_mask, ag_supr->ag_nhop)); |
| } |
| /* |
| * If the suppressed target was redundant, then |
| * mark the suppressor as redundant. |
| */ |
| if (AG_IS_REDUN(ag->ag_state) && |
| ag_supr->ag_mask == (ag->ag_mask<<1)) { |
| if (ag_supr->ag_dst_h == dst_h) |
| ag_supr->ag_state |= AGS_REDUN0; |
| else |
| ag_supr->ag_state |= AGS_REDUN1; |
| } |
| if (ag->ag_tag != ag_supr->ag_tag) |
| ag_supr->ag_tag = 0; |
| if (ag->ag_nhop != ag_supr->ag_nhop) |
| ag_supr->ag_nhop = 0; |
| } |
| |
| /* The route has either been output or suppressed */ |
| ag_del(ag); |
| } |
| |
| CHECK_AG(); |
| } |
| |
| |
| /* Try to aggregate a route with previous routes. */ |
| void |
| ag_check(in_addr_t dst, |
| in_addr_t mask, |
| in_addr_t gate, |
| struct interface *ifp, |
| in_addr_t nhop, |
| uint8_t metric, |
| uint8_t pref, |
| uint32_t seqno, |
| uint16_t tag, |
| uint16_t state, |
| void (*out)(struct ag_info *)) /* output using this */ |
| { |
| struct ag_info *ag, *nag, *ag_cors; |
| in_addr_t xaddr; |
| int tmp; |
| struct interface *xifp; |
| |
| dst = ntohl(dst); |
| |
| /* |
| * Don't bother trying to aggregate routes with non-contiguous |
| * subnet masks. |
| * |
| * (X & -X) contains a single bit if and only if X is a power of 2. |
| * (X + (X & -X)) == 0 if and only if X is a power of 2. |
| */ |
| if ((mask & -mask) + mask != 0) { |
| struct ag_info nc_ag; |
| |
| nc_ag.ag_dst_h = dst; |
| nc_ag.ag_mask = mask; |
| nc_ag.ag_gate = gate; |
| nc_ag.ag_ifp = ifp; |
| nc_ag.ag_nhop = nhop; |
| nc_ag.ag_metric = metric; |
| nc_ag.ag_pref = pref; |
| nc_ag.ag_tag = tag; |
| nc_ag.ag_state = state; |
| nc_ag.ag_seqno = seqno; |
| out(&nc_ag); |
| return; |
| } |
| |
| /* Search for the right slot in the aggregation table. */ |
| ag_cors = NULL; |
| ag = ag_corsest; |
| while (ag != NULL) { |
| if (ag->ag_mask >= mask) |
| break; |
| |
| /* |
| * Suppress old routes (i.e. combine with compatible routes |
| * with coarser masks) as we look for the right slot in the |
| * aggregation table for the new route. |
| * A route to an address less than the current destination |
| * will not be affected by the current route or any route |
| * seen hereafter. That means it is safe to suppress it. |
| * This check keeps poor routes (e.g. with large hop counts) |
| * from preventing suppression of finer routes. |
| */ |
| if (ag_cors != NULL && ag->ag_dst_h < dst && |
| (ag->ag_state & AGS_SUPPRESS) && |
| ag_cors->ag_pref <= ag->ag_pref && |
| (ag->ag_dst_h & ag_cors->ag_mask) == ag_cors->ag_dst_h && |
| ((ag_cors->ag_nhop == ag->ag_nhop && |
| (ag_cors->ag_ifp == ag->ag_ifp))|| |
| (ag->ag_state & AGS_FINE_GATE) || |
| (ag_cors->ag_state & AGS_CORS_GATE))) { |
| /* |
| * If the suppressed target was redundant, |
| * then mark the suppressor redundant. |
| */ |
| if (AG_IS_REDUN(ag->ag_state) && |
| ag_cors->ag_mask == (ag->ag_mask << 1)) { |
| if (ag_cors->ag_dst_h == dst) |
| ag_cors->ag_state |= AGS_REDUN0; |
| else |
| ag_cors->ag_state |= AGS_REDUN1; |
| } |
| if (ag->ag_tag != ag_cors->ag_tag) |
| ag_cors->ag_tag = 0; |
| if (ag->ag_nhop != ag_cors->ag_nhop) |
| ag_cors->ag_nhop = 0; |
| ag_del(ag); |
| CHECK_AG(); |
| } else { |
| ag_cors = ag; |
| } |
| ag = ag_cors->ag_fine; |
| } |
| |
| /* |
| * If we find the even/odd twin of the new route, and if the |
| * masks and so forth are equal, we can aggregate them. |
| * We can probably promote one of the pair. |
| * |
| * Since the routes are encountered in lexical order, |
| * the new route must be odd. However, the second or later |
| * times around this loop, it could be the even twin promoted |
| * from the even/odd pair of twins of the finer route. |
| */ |
| while (ag != NULL && ag->ag_mask == mask && |
| ((ag->ag_dst_h ^ dst) & (mask<<1)) == 0) { |
| |
| /* |
| * Here we know the target route and the route in the current |
| * slot have the same netmasks and differ by at most the |
| * last bit. They are either for the same destination, or |
| * for an even/odd pair of destinations. |
| */ |
| if (ag->ag_dst_h == dst) { |
| if (ag->ag_nhop == nhop && ag->ag_ifp == ifp) { |
| /* |
| * We have two routes to the same destination, |
| * with the same nexthop and interface. |
| * Routes are encountered in lexical order, |
| * so a route is never promoted until the |
| * parent route is already present. So we |
| * know that the new route is a promoted (or |
| * aggregated) pair and the route already in |
| * the slot is the explicit route. |
| * |
| * Prefer the best route if their metrics |
| * differ, or the aggregated one if not, |
| * following a sort of longest-match rule. |
| */ |
| if (pref <= ag->ag_pref) { |
| ag->ag_gate = gate; |
| ag->ag_ifp = ifp; |
| ag->ag_nhop = nhop; |
| ag->ag_tag = tag; |
| ag->ag_metric = metric; |
| ag->ag_pref = pref; |
| if (seqno > ag->ag_seqno) |
| ag->ag_seqno = seqno; |
| tmp = ag->ag_state; |
| ag->ag_state = state; |
| state = tmp; |
| } |
| |
| /* |
| * Some bits are set if they are set on |
| * either route, except when the route is |
| * for an interface. |
| */ |
| if (!(ag->ag_state & AGS_IF)) |
| ag->ag_state |= |
| (state & (AGS_AGGREGATE_EITHER | |
| AGS_REDUN0 | AGS_REDUN1)); |
| |
| return; |
| } else { |
| /* |
| * multiple routes to same dest/mask with |
| * differing gate nexthop/or ifp. Flush |
| * both out. |
| */ |
| break; |
| } |
| } |
| |
| /* |
| * If one of the routes can be promoted and the other can |
| * be suppressed, it may be possible to combine them or |
| * worthwhile to promote one. |
| * |
| * Any route that can be promoted is always |
| * marked to be eligible to be suppressed. |
| */ |
| if (!((state & AGS_AGGREGATE) && |
| (ag->ag_state & AGS_SUPPRESS)) && |
| !((ag->ag_state & AGS_AGGREGATE) && (state & AGS_SUPPRESS))) |
| break; |
| |
| /* |
| * A pair of even/odd twin routes can be combined |
| * if either is redundant, or if they are via the |
| * same gateway and have the same metric. |
| */ |
| if (AG_IS_REDUN(ag->ag_state) || AG_IS_REDUN(state) || |
| (ag->ag_nhop == nhop && ag->ag_ifp == ifp && |
| ag->ag_pref == pref && |
| (state & ag->ag_state & AGS_AGGREGATE) != 0)) { |
| |
| /* |
| * We have both the even and odd pairs. |
| * Since the routes are encountered in order, |
| * the route in the slot must be the even twin. |
| * |
| * Combine and promote (aggregate) the pair of routes. |
| */ |
| if (seqno < ag->ag_seqno) |
| seqno = ag->ag_seqno; |
| if (!AG_IS_REDUN(state)) |
| state &= ~AGS_REDUN1; |
| if (AG_IS_REDUN(ag->ag_state)) |
| state |= AGS_REDUN0; |
| else |
| state &= ~AGS_REDUN0; |
| state |= (ag->ag_state & AGS_AGGREGATE_EITHER); |
| if (ag->ag_tag != tag) |
| tag = 0; |
| if (ag->ag_nhop != nhop) |
| nhop = 0; |
| |
| /* |
| * Get rid of the even twin that was already |
| * in the slot. |
| */ |
| ag_del(ag); |
| |
| } else if (ag->ag_pref >= pref && |
| (ag->ag_state & AGS_AGGREGATE)) { |
| /* |
| * If we cannot combine the pair, maybe the route |
| * with the worse metric can be promoted. |
| * |
| * Promote the old, even twin, by giving its slot |
| * in the table to the new, odd twin. |
| */ |
| ag->ag_dst_h = dst; |
| |
| xaddr = ag->ag_gate; |
| ag->ag_gate = gate; |
| gate = xaddr; |
| |
| xifp = ag->ag_ifp; |
| ag->ag_ifp = ifp; |
| ifp = xifp; |
| |
| xaddr = ag->ag_nhop; |
| ag->ag_nhop = nhop; |
| nhop = xaddr; |
| |
| tmp = ag->ag_tag; |
| ag->ag_tag = tag; |
| tag = tmp; |
| |
| /* |
| * The promoted route is even-redundant only if the |
| * even twin was fully redundant. It is not |
| * odd-redundant because the odd-twin will still be |
| * in the table. |
| */ |
| tmp = ag->ag_state; |
| if (!AG_IS_REDUN(tmp)) |
| tmp &= ~AGS_REDUN0; |
| tmp &= ~AGS_REDUN1; |
| ag->ag_state = state; |
| state = tmp; |
| |
| tmp = ag->ag_metric; |
| ag->ag_metric = metric; |
| metric = tmp; |
| |
| tmp = ag->ag_pref; |
| ag->ag_pref = pref; |
| pref = tmp; |
| |
| /* take the newest sequence number */ |
| if (seqno <= ag->ag_seqno) |
| seqno = ag->ag_seqno; |
| else |
| ag->ag_seqno = seqno; |
| |
| } else { |
| if (!(state & AGS_AGGREGATE)) |
| break; /* cannot promote either twin */ |
| |
| /* |
| * Promote the new, odd twin by shaving its |
| * mask and address. |
| * The promoted route is odd-redundant only if the |
| * odd twin was fully redundant. It is not |
| * even-redundant because the even twin is still in |
| * the table. |
| */ |
| if (!AG_IS_REDUN(state)) |
| state &= ~AGS_REDUN1; |
| state &= ~AGS_REDUN0; |
| if (seqno < ag->ag_seqno) |
| seqno = ag->ag_seqno; |
| else |
| ag->ag_seqno = seqno; |
| } |
| |
| mask <<= 1; |
| dst &= mask; |
| |
| if (ag_cors == NULL) { |
| ag = ag_corsest; |
| break; |
| } |
| ag = ag_cors; |
| ag_cors = ag->ag_cors; |
| } |
| |
| /* |
| * When we can no longer promote and combine routes, |
| * flush the old route in the target slot. Also flush |
| * any finer routes that we know will never be aggregated by |
| * the new route. |
| * |
| * In case we moved toward coarser masks, |
| * get back where we belong |
| */ |
| if (ag != NULL && ag->ag_mask < mask) { |
| ag_cors = ag; |
| ag = ag->ag_fine; |
| } |
| |
| /* Empty the target slot */ |
| if (ag != NULL && ag->ag_mask == mask) { |
| ag_flush(ag->ag_dst_h, ag->ag_mask, out); |
| ag = (ag_cors == NULL) ? ag_corsest : ag_cors->ag_fine; |
| } |
| |
| #ifdef DEBUG_AG |
| if (ag == NULL && ag_cors != ag_finest) |
| abort(); |
| if (ag_cors == NULL && ag != ag_corsest) |
| abort(); |
| if (ag != NULL && ag->ag_cors != ag_cors) |
| abort(); |
| if (ag_cors != NULL && ag_cors->ag_fine != ag) |
| abort(); |
| CHECK_AG(); |
| #endif |
| |
| /* Save the new route on the end of the table. */ |
| nag = ag_avail; |
| ag_avail = nag->ag_fine; |
| |
| nag->ag_dst_h = dst; |
| nag->ag_mask = mask; |
| nag->ag_ifp = ifp; |
| nag->ag_gate = gate; |
| nag->ag_nhop = nhop; |
| nag->ag_metric = metric; |
| nag->ag_pref = pref; |
| nag->ag_tag = tag; |
| nag->ag_state = state; |
| nag->ag_seqno = seqno; |
| |
| nag->ag_fine = ag; |
| if (ag != NULL) |
| ag->ag_cors = nag; |
| else |
| ag_finest = nag; |
| nag->ag_cors = ag_cors; |
| if (ag_cors == NULL) |
| ag_corsest = nag; |
| else |
| ag_cors->ag_fine = nag; |
| CHECK_AG(); |
| } |
| |
| |
| static const char * |
| rtm_type_name(uchar_t type) |
| { |
| static const char *rtm_types[] = { |
| "RTM_ADD", |
| "RTM_DELETE", |
| "RTM_CHANGE", |
| "RTM_GET", |
| "RTM_LOSING", |
| "RTM_REDIRECT", |
| "RTM_MISS", |
| "RTM_LOCK", |
| "RTM_OLDADD", |
| "RTM_OLDDEL", |
| "RTM_RESOLVE", |
| "RTM_NEWADDR", |
| "RTM_DELADDR", |
| "RTM_IFINFO", |
| "RTM_NEWMADDR", |
| "RTM_DELMADDR" |
| }; |
| #define NEW_RTM_PAT "RTM type %#x" |
| static char name0[sizeof (NEW_RTM_PAT) + 2]; |
| |
| if (type > sizeof (rtm_types) / sizeof (rtm_types[0]) || type == 0) { |
| (void) snprintf(name0, sizeof (name0), NEW_RTM_PAT, type); |
| return (name0); |
| } else { |
| return (rtm_types[type-1]); |
| } |
| #undef NEW_RTM_PAT |
| } |
| |
| |
| static void |
| dump_rt_msg(const char *act, struct rt_msghdr *rtm, int mlen) |
| { |
| const char *mtype; |
| uchar_t *cp; |
| int i, j; |
| char buffer[16*3 + 1], *ibs; |
| struct ifa_msghdr *ifam; |
| struct if_msghdr *ifm; |
| |
| switch (rtm->rtm_type) { |
| case RTM_NEWADDR: |
| case RTM_DELADDR: |
| mtype = "ifam"; |
| break; |
| case RTM_IFINFO: |
| mtype = "ifm"; |
| break; |
| default: |
| mtype = "rtm"; |
| break; |
| } |
| trace_misc("%s %s %d bytes", act, mtype, mlen); |
| if (mlen > rtm->rtm_msglen) { |
| trace_misc("%s: extra %d bytes ignored", mtype, |
| mlen - rtm->rtm_msglen); |
| mlen = rtm->rtm_msglen; |
| } else if (mlen < rtm->rtm_msglen) { |
| trace_misc("%s: truncated by %d bytes", mtype, |
| rtm->rtm_msglen - mlen); |
| } |
| switch (rtm->rtm_type) { |
| case RTM_NEWADDR: |
| case RTM_DELADDR: |
| ifam = (struct ifa_msghdr *)rtm; |
| trace_misc("ifam: msglen %d version %d type %d addrs %X", |
| ifam->ifam_msglen, ifam->ifam_version, ifam->ifam_type, |
| ifam->ifam_addrs); |
| trace_misc("ifam: flags %X index %d metric %d", |
| ifam->ifam_flags, ifam->ifam_index, ifam->ifam_metric); |
| cp = (uchar_t *)(ifam + 1); |
| break; |
| case RTM_IFINFO: |
| ifm = (struct if_msghdr *)rtm; |
| trace_misc("ifm: msglen %d version %d type %d addrs %X", |
| ifm->ifm_msglen, ifm->ifm_version, ifm->ifm_type, |
| ifm->ifm_addrs); |
| ibs = if_bit_string(ifm->ifm_flags, _B_TRUE); |
| if (ibs == NULL) { |
| trace_misc("ifm: flags %#x index %d", ifm->ifm_flags, |
| ifm->ifm_index); |
| } else { |
| trace_misc("ifm: flags %s index %d", ibs, |
| ifm->ifm_index); |
| free(ibs); |
| } |
| cp = (uchar_t *)(ifm + 1); |
| break; |
| default: |
| trace_misc("rtm: msglen %d version %d type %d index %d", |
| rtm->rtm_msglen, rtm->rtm_version, rtm->rtm_type, |
| rtm->rtm_index); |
| trace_misc("rtm: flags %X addrs %X pid %d seq %d", |
| rtm->rtm_flags, rtm->rtm_addrs, rtm->rtm_pid, rtm->rtm_seq); |
| trace_misc("rtm: errno %d use %d inits %X", rtm->rtm_errno, |
| rtm->rtm_use, rtm->rtm_inits); |
| cp = (uchar_t *)(rtm + 1); |
| break; |
| } |
| i = mlen - (cp - (uint8_t *)rtm); |
| while (i > 0) { |
| buffer[0] = '\0'; |
| ibs = buffer; |
| for (j = 0; j < 16 && i > 0; j++, i--) |
| ibs += sprintf(ibs, " %02X", *cp++); |
| trace_misc("addr%s", buffer); |
| } |
| } |
| |
| /* |
| * Tell the kernel to add, delete or change a route |
| * Pass k_state from khash in for diagnostic info. |
| */ |
| static void |
| rtioctl(int action, /* RTM_DELETE, etc */ |
| in_addr_t dst, |
| in_addr_t gate, |
| in_addr_t mask, |
| struct interface *ifp, |
| uint8_t metric, |
| int flags) |
| { |
| static int rt_sock_seqno = 0; |
| struct { |
| struct rt_msghdr w_rtm; |
| struct sockaddr_in w_dst; |
| struct sockaddr_in w_gate; |
| uint8_t w_space[512]; |
| } w; |
| struct sockaddr_in w_mask; |
| struct sockaddr_dl w_ifp; |
| uint8_t *cp; |
| long cc; |
| #define PAT " %-10s %s metric=%d flags=%#x" |
| #define ARGS rtm_type_name(action), rtname(dst, mask, gate), metric, flags |
| |
| again: |
| (void) memset(&w, 0, sizeof (w)); |
| (void) memset(&w_mask, 0, sizeof (w_mask)); |
| (void) memset(&w_ifp, 0, sizeof (w_ifp)); |
| cp = w.w_space; |
| w.w_rtm.rtm_msglen = sizeof (struct rt_msghdr) + |
| 2 * ROUNDUP_LONG(sizeof (struct sockaddr_in)); |
| w.w_rtm.rtm_version = RTM_VERSION; |
| w.w_rtm.rtm_type = action; |
| w.w_rtm.rtm_flags = flags; |
| w.w_rtm.rtm_seq = ++rt_sock_seqno; |
| w.w_rtm.rtm_addrs = RTA_DST|RTA_GATEWAY; |
| if (metric != 0 || action == RTM_CHANGE) { |
| w.w_rtm.rtm_rmx.rmx_hopcount = metric; |
| w.w_rtm.rtm_inits |= RTV_HOPCOUNT; |
| } |
| w.w_dst.sin_family = AF_INET; |
| w.w_dst.sin_addr.s_addr = dst; |
| w.w_gate.sin_family = AF_INET; |
| w.w_gate.sin_addr.s_addr = gate; |
| if (mask == HOST_MASK) { |
| w.w_rtm.rtm_flags |= RTF_HOST; |
| } else { |
| w.w_rtm.rtm_addrs |= RTA_NETMASK; |
| w_mask.sin_family = AF_INET; |
| w_mask.sin_addr.s_addr = htonl(mask); |
| (void) memmove(cp, &w_mask, sizeof (w_mask)); |
| cp += ROUNDUP_LONG(sizeof (struct sockaddr_in)); |
| w.w_rtm.rtm_msglen += ROUNDUP_LONG(sizeof (struct sockaddr_in)); |
| } |
| if (ifp == NULL) |
| ifp = iflookup(gate); |
| |
| if ((ifp == NULL) || (ifp->int_phys == NULL)) { |
| trace_misc("no ifp for" PAT, ARGS); |
| } else { |
| if (ifp->int_phys->phyi_index > UINT16_MAX) { |
| trace_misc("ifindex %d is too big for sdl_index", |
| ifp->int_phys->phyi_index); |
| } else { |
| w_ifp.sdl_family = AF_LINK; |
| w.w_rtm.rtm_addrs |= RTA_IFP; |
| w_ifp.sdl_index = ifp->int_phys->phyi_index; |
| (void) memmove(cp, &w_ifp, sizeof (w_ifp)); |
| w.w_rtm.rtm_msglen += |
| ROUNDUP_LONG(sizeof (struct sockaddr_dl)); |
| } |
| } |
| |
| |
| if (!no_install) { |
| if (TRACERTS) |
| dump_rt_msg("write", &w.w_rtm, w.w_rtm.rtm_msglen); |
| cc = write(rt_sock, &w, w.w_rtm.rtm_msglen); |
| if (cc < 0) { |
| if (errno == ESRCH && (action == RTM_CHANGE || |
| action == RTM_DELETE)) { |
| trace_act("route disappeared before" PAT, ARGS); |
| if (action == RTM_CHANGE) { |
| action = RTM_ADD; |
| goto again; |
| } |
| return; |
| } |
| writelog(LOG_WARNING, "write(rt_sock)" PAT ": %s ", |
| ARGS, rip_strerror(errno)); |
| return; |
| } else if (cc != w.w_rtm.rtm_msglen) { |
| msglog("write(rt_sock) wrote %ld instead of %d for" PAT, |
| cc, w.w_rtm.rtm_msglen, ARGS); |
| return; |
| } |
| } |
| if (TRACEKERNEL) |
| trace_misc("write kernel" PAT, ARGS); |
| #undef PAT |
| #undef ARGS |
| } |
| |
| |
| /* Hash table containing our image of the kernel forwarding table. */ |
| #define KHASH_SIZE 71 /* should be prime */ |
| #define KHASH(a, m) khash_bins[((a) ^ (m)) % KHASH_SIZE] |
| static struct khash *khash_bins[KHASH_SIZE]; |
| |
| #define K_KEEP_LIM 30 /* k_keep */ |
| |
| static struct khash * |
| kern_find(in_addr_t dst, in_addr_t mask, in_addr_t gate, |
| struct interface *ifp, struct khash ***ppk) |
| { |
| struct khash *k, **pk; |
| |
| for (pk = &KHASH(dst, mask); (k = *pk) != NULL; pk = &k->k_next) { |
| if (k->k_dst == dst && k->k_mask == mask && |
| (gate == 0 || k->k_gate == gate) && |
| (ifp == NULL || k->k_ifp == ifp)) { |
| break; |
| } |
| } |
| if (ppk != NULL) |
| *ppk = pk; |
| return (k); |
| } |
| |
| |
| /* |
| * Find out if there is an alternate route to a given destination |
| * off of a given interface. |
| */ |
| static struct khash * |
| kern_alternate(in_addr_t dst, in_addr_t mask, in_addr_t gate, |
| struct interface *ifp, struct khash ***ppk) |
| { |
| struct khash *k, **pk; |
| |
| for (pk = &KHASH(dst, mask); (k = *pk) != NULL; pk = &k->k_next) { |
| if (k->k_dst == dst && k->k_mask == mask && |
| (k->k_gate != gate) && |
| (k->k_ifp == ifp)) { |
| break; |
| } |
| } |
| if (ppk != NULL) |
| *ppk = pk; |
| return (k); |
| } |
| |
| static struct khash * |
| kern_add(in_addr_t dst, uint32_t mask, in_addr_t gate, struct interface *ifp) |
| { |
| struct khash *k, **pk; |
| |
| k = kern_find(dst, mask, gate, ifp, &pk); |
| if (k != NULL) |
| return (k); |
| |
| k = rtmalloc(sizeof (*k), "kern_add"); |
| |
| (void) memset(k, 0, sizeof (*k)); |
| k->k_dst = dst; |
| k->k_mask = mask; |
| k->k_state = KS_NEW; |
| k->k_keep = now.tv_sec; |
| k->k_gate = gate; |
| k->k_ifp = ifp; |
| *pk = k; |
| |
| return (k); |
| } |
| |
| /* delete all khash entries that are wired through the interface ifp */ |
| void |
| kern_flush_ifp(struct interface *ifp) |
| { |
| struct khash *k, *kprev, *knext; |
| int i; |
| |
| for (i = 0; i < KHASH_SIZE; i++) { |
| kprev = NULL; |
| for (k = khash_bins[i]; k != NULL; k = knext) { |
| knext = k->k_next; |
| if (k->k_ifp == ifp) { |
| if (kprev != NULL) |
| kprev->k_next = k->k_next; |
| else |
| khash_bins[i] = k->k_next; |
| free(k); |
| continue; |
| } |
| kprev = k; |
| } |
| } |
| } |
| |
| /* |
| * rewire khash entries that currently go through oldifp to |
| * go through newifp. |
| */ |
| void |
| kern_rewire_ifp(struct interface *oldifp, struct interface *newifp) |
| { |
| struct khash *k; |
| int i; |
| |
| for (i = 0; i < KHASH_SIZE; i++) { |
| for (k = khash_bins[i]; k; k = k->k_next) { |
| if (k->k_ifp == oldifp) { |
| k->k_ifp = newifp; |
| trace_misc("kern_rewire_ifp k 0x%lx " |
| "from %s to %s", k, oldifp->int_name, |
| newifp->int_name); |
| } |
| } |
| } |
| } |
| |
| |
| /* |
| * Check that a static route it is still in the daemon table, and not |
| * deleted by interfaces coming and going. This is also the routine |
| * responsible for adding new static routes to the daemon table. |
| */ |
| static void |
| kern_check_static(struct khash *k, struct interface *ifp) |
| { |
| struct rt_entry *rt; |
| struct rt_spare new; |
| uint16_t rt_state = RS_STATIC; |
| |
| (void) memset(&new, 0, sizeof (new)); |
| new.rts_ifp = ifp; |
| new.rts_gate = k->k_gate; |
| new.rts_router = (ifp != NULL) ? ifp->int_addr : loopaddr; |
| new.rts_metric = k->k_metric; |
| new.rts_time = now.tv_sec; |
| new.rts_origin = RO_STATIC; |
| |
| rt = rtget(k->k_dst, k->k_mask); |
| if ((ifp != NULL && !IS_IFF_ROUTING(ifp->int_if_flags)) || |
| (k->k_state & KS_PRIVATE)) |
| rt_state |= RS_NOPROPAGATE; |
| |
| if (rt != NULL) { |
| if ((rt->rt_state & RS_STATIC) == 0) { |
| /* |
| * We are already tracking this dest/mask |
| * via RIP/RDISC. Ignore the static route, |
| * because we don't currently have a good |
| * way to compare metrics on static routes |
| * with rip metrics, and therefore cannot |
| * mix and match the two. |
| */ |
| return; |
| } |
| rt_state |= rt->rt_state; |
| if (rt->rt_state != rt_state) |
| rtchange(rt, rt_state, &new, 0); |
| } else { |
| rtadd(k->k_dst, k->k_mask, rt_state, &new); |
| } |
| } |
| |
| |
| /* operate on a kernel entry */ |
| static void |
| kern_ioctl(struct khash *k, |
| int action, /* RTM_DELETE, etc */ |
| int flags) |
| { |
| if (((k->k_state & (KS_IF|KS_PASSIVE)) == KS_IF) || |
| (k->k_state & KS_DEPRE_IF)) { |
| /* |
| * Prevent execution of RTM_DELETE, RTM_ADD or |
| * RTM_CHANGE of interface routes |
| */ |
| trace_act("Blocking execution of %s %s --> %s ", |
| rtm_type_name(action), |
| addrname(k->k_dst, k->k_mask, 0), naddr_ntoa(k->k_gate)); |
| return; |
| } |
| |
| switch (action) { |
| case RTM_DELETE: |
| k->k_state &= ~KS_DYNAMIC; |
| if (k->k_state & KS_DELETED) |
| return; |
| k->k_state |= KS_DELETED; |
| break; |
| case RTM_ADD: |
| k->k_state &= ~KS_DELETED; |
| break; |
| case RTM_CHANGE: |
| if (k->k_state & KS_DELETED) { |
| action = RTM_ADD; |
| k->k_state &= ~KS_DELETED; |
| } |
| break; |
| } |
| |
| rtioctl(action, k->k_dst, k->k_gate, k->k_mask, k->k_ifp, |
| k->k_metric, flags); |
| } |
| |
| |
| /* add a route the kernel told us */ |
| static void |
| rtm_add(struct rt_msghdr *rtm, |
| struct rt_addrinfo *info, |
| time_t keep, |
| boolean_t interf_route, |
| struct interface *ifptr) |
| { |
| struct khash *k; |
| struct interface *ifp = ifptr; |
| in_addr_t mask, gate = 0; |
| static struct msg_limit msg_no_ifp; |
| |
| if (rtm->rtm_flags & RTF_HOST) { |
| mask = HOST_MASK; |
| } else if (INFO_MASK(info) != 0) { |
| mask = ntohl(S_ADDR(INFO_MASK(info))); |
| } else { |
| writelog(LOG_WARNING, |
| "ignore %s without mask", rtm_type_name(rtm->rtm_type)); |
| return; |
| } |
| |
| /* |
| * Find the interface toward the gateway. |
| */ |
| if (INFO_GATE(info) != NULL) |
| gate = S_ADDR(INFO_GATE(info)); |
| |
| if (ifp == NULL) { |
| if (INFO_GATE(info) != NULL) |
| ifp = iflookup(gate); |
| if (ifp == NULL) |
| msglim(&msg_no_ifp, gate, |
| "route %s --> %s nexthop is not directly connected", |
| addrname(S_ADDR(INFO_DST(info)), mask, 0), |
| naddr_ntoa(gate)); |
| } |
| |
| k = kern_add(S_ADDR(INFO_DST(info)), mask, gate, ifp); |
| |
| if (k->k_state & KS_NEW) |
| k->k_keep = now.tv_sec+keep; |
| if (INFO_GATE(info) == 0) { |
| trace_act("note %s without gateway", |
| rtm_type_name(rtm->rtm_type)); |
| k->k_metric = HOPCNT_INFINITY; |
| } else if (INFO_GATE(info)->ss_family != AF_INET) { |
| trace_act("note %s with gateway AF=%d", |
| rtm_type_name(rtm->rtm_type), |
| INFO_GATE(info)->ss_family); |
| k->k_metric = HOPCNT_INFINITY; |
| } else { |
| k->k_gate = S_ADDR(INFO_GATE(info)); |
| k->k_metric = rtm->rtm_rmx.rmx_hopcount; |
| if (k->k_metric < 0) |
| k->k_metric = 0; |
| else if (k->k_metric > HOPCNT_INFINITY-1) |
| k->k_metric = HOPCNT_INFINITY-1; |
| } |
| |
| if ((k->k_state & KS_NEW) && interf_route) { |
| if (k->k_gate != 0 && findifaddr(k->k_gate) == NULL) |
| k->k_state |= KS_DEPRE_IF; |
| else |
| k->k_state |= KS_IF; |
| } |
| |
| k->k_state &= ~(KS_NEW | KS_DELETE | KS_ADD | KS_CHANGE | KS_DEL_ADD | |
| KS_STATIC | KS_GATEWAY | KS_DELETED | KS_PRIVATE | KS_CHECK); |
| if (rtm->rtm_flags & RTF_GATEWAY) |
| k->k_state |= KS_GATEWAY; |
| if (rtm->rtm_flags & RTF_STATIC) |
| k->k_state |= KS_STATIC; |
| if (rtm->rtm_flags & RTF_PRIVATE) |
| k->k_state |= KS_PRIVATE; |
| |
| |
| if (rtm->rtm_flags & (RTF_DYNAMIC | RTF_MODIFIED)) { |
| if (INFO_AUTHOR(info) != 0 && |
| INFO_AUTHOR(info)->ss_family == AF_INET) |
| ifp = iflookup(S_ADDR(INFO_AUTHOR(info))); |
| else |
| ifp = NULL; |
| if (should_supply(ifp) && (ifp == NULL || |
| !(ifp->int_state & IS_REDIRECT_OK))) { |
| /* |
| * Routers are not supposed to listen to redirects, |
| * so delete it if it came via an unknown interface |
| * or the interface does not have special permission. |
| */ |
| k->k_state &= ~KS_DYNAMIC; |
| k->k_state |= KS_DELETE; |
| LIM_SEC(need_kern, 0); |
| trace_act("mark for deletion redirected %s --> %s" |
| " via %s", |
| addrname(k->k_dst, k->k_mask, 0), |
| naddr_ntoa(k->k_gate), |
| ifp ? ifp->int_name : "unknown interface"); |
| } else { |
| k->k_state |= KS_DYNAMIC; |
| k->k_redirect_time = now.tv_sec; |
| trace_act("accept redirected %s --> %s via %s", |
| addrname(k->k_dst, k->k_mask, 0), |
| naddr_ntoa(k->k_gate), |
| ifp ? ifp->int_name : "unknown interface"); |
| } |
| return; |
| } |
| |
| /* |
| * If it is not a static route, quit until the next comparison |
| * between the kernel and daemon tables, when it will be deleted. |
| */ |
| if (!(k->k_state & KS_STATIC)) { |
| if (!(k->k_state & (KS_IF|KS_DEPRE_IF|KS_FILE))) |
| k->k_state |= KS_DELETE; |
| LIM_SEC(need_kern, k->k_keep); |
| return; |
| } |
| |
| /* |
| * Put static routes with real metrics into the daemon table so |
| * they can be advertised. |
| */ |
| |
| kern_check_static(k, ifp); |
| } |
| |
| |
| /* deal with packet loss */ |
| static void |
| rtm_lose(struct rt_msghdr *rtm, struct rt_addrinfo *info) |
| { |
| if (INFO_GATE(info) == NULL || INFO_GATE(info)->ss_family != AF_INET) { |
| trace_act("ignore %s without gateway", |
| rtm_type_name(rtm->rtm_type)); |
| age(0); |
| return; |
| } |
| |
| if (rdisc_ok) |
| rdisc_age(S_ADDR(INFO_GATE(info))); |
| age(S_ADDR(INFO_GATE(info))); |
| } |
| |
| |
| /* |
| * Make the gateway slot of an info structure point to something |
| * useful. If it is not already useful, but it specifies an interface, |
| * then fill in the sockaddr_in provided and point it there. |
| */ |
| static int |
| get_info_gate(struct sockaddr_storage **ssp, struct sockaddr_in *sin) |
| { |
| struct sockaddr_dl *sdl = (struct sockaddr_dl *)*ssp; |
| struct interface *ifp; |
| |
| if (sdl == NULL) |
| return (0); |
| if ((sdl)->sdl_family == AF_INET) |
| return (1); |
| if ((sdl)->sdl_family != AF_LINK) |
| return (0); |
| |
| ifp = ifwithindex(sdl->sdl_index, _B_TRUE); |
| if (ifp == NULL) |
| return (0); |
| |
| sin->sin_addr.s_addr = ifp->int_addr; |
| sin->sin_family = AF_INET; |
| /* LINTED */ |
| *ssp = (struct sockaddr_storage *)sin; |
| |
| return (1); |
| } |
| |
| |
| /* |
| * Clean the kernel table by copying it to the daemon image. |
| * Eventually the daemon will delete any extra routes. |
| */ |
| void |
| sync_kern(void) |
| { |
| int i; |
| struct khash *k; |
| struct { |
| struct T_optmgmt_req req; |
| struct opthdr hdr; |
| } req; |
| union { |
| struct T_optmgmt_ack ack; |
| unsigned char space[64]; |
| } ack; |
| struct opthdr *rh; |
| struct strbuf cbuf, dbuf; |
| int ipfd, nroutes, flags, r; |
| mib2_ipRouteEntry_t routes[8]; |
| mib2_ipRouteEntry_t *rp; |
| struct rt_msghdr rtm; |
| struct rt_addrinfo info; |
| struct sockaddr_in sin_dst; |
| struct sockaddr_in sin_gate; |
| struct sockaddr_in sin_mask; |
| struct sockaddr_in sin_author; |
| struct interface *ifp; |
| char ifname[LIFNAMSIZ + 1]; |
| |
| for (i = 0; i < KHASH_SIZE; i++) { |
| for (k = khash_bins[i]; k != NULL; k = k->k_next) { |
| if (!(k->k_state & (KS_IF|KS_DEPRE_IF))) |
| k->k_state |= KS_CHECK; |
| } |
| } |
| |
| ipfd = open(IP_DEV_NAME, O_RDWR); |
| if (ipfd == -1) { |
| msglog("open " IP_DEV_NAME ": %s", rip_strerror(errno)); |
| goto hash_clean; |
| } |
| |
| req.req.PRIM_type = T_OPTMGMT_REQ; |
| req.req.OPT_offset = (caddr_t)&req.hdr - (caddr_t)&req; |
| req.req.OPT_length = sizeof (req.hdr); |
| req.req.MGMT_flags = T_CURRENT; |
| |
| req.hdr.level = MIB2_IP; |
| req.hdr.name = 0; |
| req.hdr.len = 0; |
| |
| cbuf.buf = (caddr_t)&req; |
| cbuf.len = sizeof (req); |
| |
| if (putmsg(ipfd, &cbuf, NULL, 0) == -1) { |
| msglog("T_OPTMGMT_REQ putmsg: %s", rip_strerror(errno)); |
| goto hash_clean; |
| } |
| |
| for (;;) { |
| cbuf.buf = (caddr_t)&ack; |
| cbuf.maxlen = sizeof (ack); |
| dbuf.buf = (caddr_t)routes; |
| dbuf.maxlen = sizeof (routes); |
| flags = 0; |
| r = getmsg(ipfd, &cbuf, &dbuf, &flags); |
| if (r == -1) { |
| msglog("T_OPTMGMT_REQ getmsg: %s", rip_strerror(errno)); |
| goto hash_clean; |
| } |
| |
| if (cbuf.len < sizeof (struct T_optmgmt_ack) || |
| ack.ack.PRIM_type != T_OPTMGMT_ACK || |
| ack.ack.MGMT_flags != T_SUCCESS || |
| ack.ack.OPT_length < sizeof (struct opthdr)) { |
| msglog("bad T_OPTMGMT response; len=%d prim=%d " |
| "flags=%d optlen=%d", cbuf.len, ack.ack.PRIM_type, |
| ack.ack.MGMT_flags, ack.ack.OPT_length); |
| goto hash_clean; |
| } |
| /* LINTED */ |
| rh = (struct opthdr *)((caddr_t)&ack + ack.ack.OPT_offset); |
| if (rh->level == 0 && rh->name == 0) { |
| break; |
| } |
| if (rh->level != MIB2_IP || rh->name != MIB2_IP_21) { |
| while (r == MOREDATA) { |
| r = getmsg(ipfd, NULL, &dbuf, &flags); |
| } |
| continue; |
| } |
| break; |
| } |
| |
| (void) memset(&rtm, 0, sizeof (rtm)); |
| (void) memset(&info, 0, sizeof (info)); |
| (void) memset(&sin_dst, 0, sizeof (sin_dst)); |
| (void) memset(&sin_gate, 0, sizeof (sin_gate)); |
| (void) memset(&sin_mask, 0, sizeof (sin_mask)); |
| (void) memset(&sin_author, 0, sizeof (sin_author)); |
| sin_dst.sin_family = AF_INET; |
| /* LINTED */ |
| info.rti_info[RTAX_DST] = (struct sockaddr_storage *)&sin_dst; |
| sin_gate.sin_family = AF_INET; |
| /* LINTED */ |
| info.rti_info[RTAX_GATEWAY] = (struct sockaddr_storage *)&sin_gate; |
| sin_mask.sin_family = AF_INET; |
| /* LINTED */ |
| info.rti_info[RTAX_NETMASK] = (struct sockaddr_storage *)&sin_mask; |
| sin_dst.sin_family = AF_INET; |
| /* LINTED */ |
| info.rti_info[RTAX_AUTHOR] = (struct sockaddr_storage *)&sin_author; |
| |
| for (;;) { |
| nroutes = dbuf.len / sizeof (mib2_ipRouteEntry_t); |
| for (rp = routes; nroutes > 0; ++rp, nroutes--) { |
| |
| /* |
| * Ignore IRE cache, broadcast, and local address |
| * entries; they're not subject to routing socket |
| * control. |
| */ |
| if (rp->ipRouteInfo.re_ire_type & |
| (IRE_BROADCAST | IRE_CACHE | IRE_LOCAL)) |
| continue; |
| |
| /* ignore multicast addresses */ |
| if (IN_MULTICAST(ntohl(rp->ipRouteDest))) |
| continue; |
| |
| |
| #ifdef DEBUG_KERNEL_ROUTE_READ |
| (void) fprintf(stderr, "route type %d, ire type %08X, " |
| "flags %08X: %s", rp->ipRouteType, |
| rp->ipRouteInfo.re_ire_type, |
| rp->ipRouteInfo.re_flags, |
| naddr_ntoa(rp->ipRouteDest)); |
| (void) fprintf(stderr, " %s", |
| naddr_ntoa(rp->ipRouteMask)); |
| (void) fprintf(stderr, " %s\n", |
| naddr_ntoa(rp->ipRouteNextHop)); |
| #endif |
| |
| /* Fake up the needed entries */ |
| rtm.rtm_flags = rp->ipRouteInfo.re_flags; |
| rtm.rtm_type = RTM_GET; |
| rtm.rtm_rmx.rmx_hopcount = rp->ipRouteMetric1; |
| |
| (void) memset(ifname, 0, sizeof (ifname)); |
| if (rp->ipRouteIfIndex.o_length < |
| sizeof (rp->ipRouteIfIndex.o_bytes)) |
| rp->ipRouteIfIndex.o_bytes[ |
| rp->ipRouteIfIndex.o_length] = '\0'; |
| (void) strncpy(ifname, |
| rp->ipRouteIfIndex.o_bytes, |
| sizeof (ifname)); |
| |
| /* |
| * First try to match up on gwkludge entries |
| * before trying to match ifp by name. |
| */ |
| if ((ifp = gwkludge_iflookup(rp->ipRouteDest, |
| rp->ipRouteNextHop, |
| ntohl(rp->ipRouteMask))) == NULL) |
| ifp = ifwithname(ifname); |
| |
| info.rti_addrs = RTA_DST | RTA_GATEWAY | RTA_NETMASK; |
| if (rp->ipRouteInfo.re_ire_type & IRE_HOST_REDIRECT) |
| info.rti_addrs |= RTA_AUTHOR; |
| sin_dst.sin_addr.s_addr = rp->ipRouteDest; |
| sin_gate.sin_addr.s_addr = rp->ipRouteNextHop; |
| sin_mask.sin_addr.s_addr = rp->ipRouteMask; |
| sin_author.sin_addr.s_addr = |
| rp->ipRouteInfo.re_src_addr; |
| |
| /* |
| * Note static routes and interface routes, and also |
| * preload the image of the kernel table so that |
| * we can later clean it, as well as avoid making |
| * unneeded changes. Keep the old kernel routes for a |
| * few seconds to allow a RIP or router-discovery |
| * response to be heard. |
| */ |
| rtm_add(&rtm, &info, MAX_WAITTIME, |
| ((rp->ipRouteInfo.re_ire_type & |
| (IRE_INTERFACE|IRE_LOOPBACK)) != 0), ifp); |
| } |
| if (r == 0) { |
| break; |
| } |
| r = getmsg(ipfd, NULL, &dbuf, &flags); |
| } |
| |
| hash_clean: |
| if (ipfd != -1) |
| (void) close(ipfd); |
| for (i = 0; i < KHASH_SIZE; i++) { |
| for (k = khash_bins[i]; k != NULL; k = k->k_next) { |
| |
| /* |
| * KS_DELETED routes have been removed from the |
| * kernel, but we keep them around for reasons |
| * stated in del_static(), so we skip the check |
| * for KS_DELETED routes here. |
| */ |
| if ((k->k_state & (KS_CHECK|KS_DELETED)) == KS_CHECK) { |
| |
| if (!(k->k_state & KS_DYNAMIC)) |
| writelog(LOG_WARNING, |
| "%s --> %s disappeared from kernel", |
| addrname(k->k_dst, k->k_mask, 0), |
| naddr_ntoa(k->k_gate)); |
| del_static(k->k_dst, k->k_mask, k->k_gate, |
| k->k_ifp, 1); |
| |
| } |
| } |
| } |
| } |
| |
| |
| /* Listen to announcements from the kernel */ |
| void |
| read_rt(void) |
| { |
| long cc; |
| struct interface *ifp; |
| struct sockaddr_in gate_sin; |
| in_addr_t mask, gate; |
| union { |
| struct { |
| struct rt_msghdr rtm; |
| struct sockaddr_storage addrs[RTA_NUMBITS]; |
| } r; |
| struct if_msghdr ifm; |
| } m; |
| char str[100], *strp; |
| struct rt_addrinfo info; |
| |
| |
| for (;;) { |
| cc = read(rt_sock, &m, sizeof (m)); |
| if (cc <= 0) { |
| if (cc < 0 && errno != EWOULDBLOCK) |
| LOGERR("read(rt_sock)"); |
| return; |
| } |
| |
| if (TRACERTS) |
| dump_rt_msg("read", &m.r.rtm, cc); |
| |
| if (cc < m.r.rtm.rtm_msglen) { |
| msglog("routing message truncated (%d < %d)", |
| cc, m.r.rtm.rtm_msglen); |
| } |
| |
| if (m.r.rtm.rtm_version != RTM_VERSION) { |
| msglog("bogus routing message version %d", |
| m.r.rtm.rtm_version); |
| continue; |
| } |
| |
| ifp = NULL; |
| |
| if (m.r.rtm.rtm_type == RTM_IFINFO || |
| m.r.rtm.rtm_type == RTM_NEWADDR || |
| m.r.rtm.rtm_type == RTM_DELADDR) { |
| strp = if_bit_string(m.ifm.ifm_flags, _B_TRUE); |
| if (strp == NULL) { |
| strp = str; |
| (void) sprintf(str, "%#x", m.ifm.ifm_flags); |
| } |
| ifp = ifwithindex(m.ifm.ifm_index, |
| m.r.rtm.rtm_type != RTM_DELADDR); |
| if (ifp == NULL) { |
| char ifname[LIFNAMSIZ], *ifnamep; |
| |
| ifnamep = if_indextoname(m.ifm.ifm_index, |
| ifname); |
| if (ifnamep == NULL) { |
| trace_act("note %s with flags %s" |
| " for unknown interface index #%d", |
| rtm_type_name(m.r.rtm.rtm_type), |
| strp, m.ifm.ifm_index); |
| } else { |
| trace_act("note %s with flags %s" |
| " for unknown interface %s", |
| rtm_type_name(m.r.rtm.rtm_type), |
| strp, ifnamep); |
| } |
| } else { |
| trace_act("note %s with flags %s for %s", |
| rtm_type_name(m.r.rtm.rtm_type), |
| strp, ifp->int_name); |
| } |
| if (strp != str) |
| free(strp); |
| |
| /* |
| * After being informed of a change to an interface, |
| * check them all now if the check would otherwise |
| * be a long time from now, if the interface is |
| * not known, or if the interface has been turned |
| * off or on. |
| */ |
| if (ifscan_timer.tv_sec-now.tv_sec >= |
| CHECK_BAD_INTERVAL || ifp == NULL || |
| ((ifp->int_if_flags ^ m.ifm.ifm_flags) & |
| IFF_UP) != 0) |
| ifscan_timer.tv_sec = now.tv_sec; |
| continue; |
| } else { |
| if (m.r.rtm.rtm_index != 0) |
| ifp = ifwithindex(m.r.rtm.rtm_index, 1); |
| } |
| |
| (void) strlcpy(str, rtm_type_name(m.r.rtm.rtm_type), |
| sizeof (str)); |
| strp = &str[strlen(str)]; |
| if (m.r.rtm.rtm_type <= RTM_CHANGE) |
| strp += snprintf(strp, sizeof (str) - (strp - str), |
| " from pid %d", (int)m.r.rtm.rtm_pid); |
| |
| /* LINTED */ |
| (void) rt_xaddrs(&info, (struct sockaddr_storage *)(&m.r.rtm + |
| 1), (char *)&m + cc, m.r.rtm.rtm_addrs); |
| |
| if (INFO_DST(&info) == 0) { |
| trace_act("ignore %s without dst", str); |
| continue; |
| } |
| |
| if (INFO_DST(&info)->ss_family != AF_INET) { |
| trace_act("ignore %s for AF %d", str, |
| INFO_DST(&info)->ss_family); |
| continue; |
| } |
| |
| mask = ((INFO_MASK(&info) != 0) ? |
| ntohl(S_ADDR(INFO_MASK(&info))) : |
| (m.r.rtm.rtm_flags & RTF_HOST) ? |
| HOST_MASK : std_mask(S_ADDR(INFO_DST(&info)))); |
| |
| strp += snprintf(strp, sizeof (str) - (strp - str), ": %s", |
| addrname(S_ADDR(INFO_DST(&info)), mask, 0)); |
| |
| if (IN_MULTICAST(ntohl(S_ADDR(INFO_DST(&info))))) { |
| trace_act("ignore multicast %s", str); |
| continue; |
| } |
| |
| if (m.r.rtm.rtm_flags & RTF_LLINFO) { |
| trace_act("ignore ARP %s", str); |
| continue; |
| } |
| |
| if (get_info_gate(&INFO_GATE(&info), &gate_sin)) { |
| gate = S_ADDR(INFO_GATE(&info)); |
| strp += snprintf(strp, sizeof (str) - (strp - str), |
| " --> %s", naddr_ntoa(gate)); |
| } else { |
| gate = 0; |
| } |
| |
| if (INFO_AUTHOR(&info) != 0) |
| strp += snprintf(strp, sizeof (str) - (strp - str), |
| " by authority of %s", |
| saddr_ntoa(INFO_AUTHOR(&info))); |
| |
| switch (m.r.rtm.rtm_type) { |
| case RTM_ADD: |
| case RTM_CHANGE: |
| case RTM_REDIRECT: |
| if (m.r.rtm.rtm_errno != 0) { |
| trace_act("ignore %s with \"%s\" error", |
| str, rip_strerror(m.r.rtm.rtm_errno)); |
| } else { |
| trace_act("%s", str); |
| rtm_add(&m.r.rtm, &info, 0, |
| !(m.r.rtm.rtm_flags & RTF_GATEWAY) && |
| m.r.rtm.rtm_type != RTM_REDIRECT, ifp); |
| |
| } |
| break; |
| |
| case RTM_DELETE: |
| if (m.r.rtm.rtm_errno != 0 && |
| m.r.rtm.rtm_errno != ESRCH) { |
| trace_act("ignore %s with \"%s\" error", |
| str, rip_strerror(m.r.rtm.rtm_errno)); |
| } else { |
| trace_act("%s", str); |
| del_static(S_ADDR(INFO_DST(&info)), mask, |
| gate, ifp, 1); |
| } |
| break; |
| |
| case RTM_LOSING: |
| trace_act("%s", str); |
| rtm_lose(&m.r.rtm, &info); |
| break; |
| |
| default: |
| trace_act("ignore %s", str); |
| break; |
| } |
| } |
| } |
| |
| |
| /* |
| * Disassemble a routing message. The result is an array of pointers |
| * to sockaddr_storage structures stored in the info argument. |
| * |
| * ss is a pointer to the beginning of the data following the |
| * rt_msghdr contained in the routing socket message, which consists |
| * of a string of concatenated sockaddr structure of different types. |
| * |
| * Extended attributes can be appended at the end of the list. |
| */ |
| static int |
| rt_xaddrs(struct rt_addrinfo *info, |
| struct sockaddr_storage *ss, |
| char *lim, |
| int addrs) |
| { |
| int retv = 0; |
| int i; |
| int abit; |
| int complaints; |
| static int prev_complaints; |
| |
| #define XBAD_AF 0x1 |
| #define XBAD_SHORT 0x2 |
| #define XBAD_LONG 0x4 |
| |
| (void) memset(info, 0, sizeof (*info)); |
| info->rti_addrs = addrs; |
| complaints = 0; |
| for (i = 0, abit = 1; i < RTAX_MAX && (char *)ss < lim; |
| i++, abit <<= 1) { |
| if ((addrs & abit) == 0) |
| continue; |
| info->rti_info[i] = ss; |
| /* Horrible interface here */ |
| switch (ss->ss_family) { |
| case AF_UNIX: |
| /* LINTED */ |
| ss = (struct sockaddr_storage *)( |
| (struct sockaddr_un *)ss + 1); |
| break; |
| case AF_INET: |
| /* LINTED */ |
| ss = (struct sockaddr_storage *)( |
| (struct sockaddr_in *)ss + 1); |
| break; |
| case AF_LINK: |
| /* LINTED */ |
| ss = (struct sockaddr_storage *)( |
| (struct sockaddr_dl *)ss + 1); |
| break; |
| case AF_INET6: |
| /* LINTED */ |
| ss = (struct sockaddr_storage *)( |
| (struct sockaddr_in6 *)ss + 1); |
| break; |
| default: |
| if (!(prev_complaints & XBAD_AF)) |
| writelog(LOG_WARNING, |
| "unknown address family %d " |
| "encountered", ss->ss_family); |
| if (complaints & XBAD_AF) |
| goto xaddr_done; |
| /* LINTED */ |
| ss = (struct sockaddr_storage *)( |
| (struct sockaddr *)ss + 1); |
| complaints |= XBAD_AF; |
| info->rti_addrs &= abit - 1; |
| addrs = info->rti_addrs; |
| retv = -1; |
| break; |
| } |
| if ((char *)ss > lim) { |
| if (!(prev_complaints & XBAD_SHORT)) |
| msglog("sockaddr %d too short by %d " |
| "bytes", i + 1, (char *)ss - lim); |
| complaints |= XBAD_SHORT; |
| info->rti_info[i] = NULL; |
| info->rti_addrs &= abit - 1; |
| retv = -1; |
| goto xaddr_done; |
| } |
| } |
| |
| while (((char *)ss + sizeof (rtm_ext_t)) <= lim) { |
| rtm_ext_t *tp; |
| char *nxt; |
| |
| /* LINTED: alignment */ |
| tp = (rtm_ext_t *)ss; |
| nxt = (char *)(tp + 1) + tp->rtmex_len; |
| |
| if (!IS_P2ALIGNED(tp->rtmex_len, sizeof (uint32_t)) || |
| nxt > lim) { |
| break; |
| } |
| |
| /* LINTED: alignment */ |
| ss = (struct sockaddr_storage *)nxt; |
| } |
| |
| if ((char *)ss != lim) { |
| if ((char *)ss > lim) { |
| if (!(prev_complaints & XBAD_SHORT)) |
| msglog("routing message too short by %d bytes", |
| (char *)ss - lim); |
| complaints |= XBAD_SHORT; |
| } else if (!(prev_complaints & XBAD_LONG)) { |
| msglog("%d bytes of routing message left over", |
| lim - (char *)ss); |
| complaints |= XBAD_LONG; |
| } |
| retv = -1; |
| } |
| xaddr_done: |
| prev_complaints = complaints; |
| return (retv); |
| } |
| |
| |
| /* after aggregating, note routes that belong in the kernel */ |
| static void |
| kern_out(struct ag_info *ag) |
| { |
| struct khash *k; |
| |
| /* |
| * Do not install bad routes if they are not already present. |
| * This includes routes that had RS_NET_SYN for interfaces that |
| * recently died. |
| */ |
| if (ag->ag_metric == HOPCNT_INFINITY) { |
| k = kern_find(htonl(ag->ag_dst_h), ag->ag_mask, |
| ag->ag_nhop, ag->ag_ifp, NULL); |
| if (k == NULL) |
| return; |
| } else { |
| k = kern_add(htonl(ag->ag_dst_h), ag->ag_mask, ag->ag_nhop, |
| ag->ag_ifp); |
| } |
| |
| if (k->k_state & KS_NEW) { |
| /* will need to add new entry to the kernel table */ |
| k->k_state = KS_ADD; |
| if (ag->ag_state & AGS_GATEWAY) |
| k->k_state |= KS_GATEWAY; |
| if (ag->ag_state & AGS_IF) |
| k->k_state |= KS_IF; |
| if (ag->ag_state & AGS_PASSIVE) |
| k->k_state |= KS_PASSIVE; |
| if (ag->ag_state & AGS_FILE) |
| k->k_state |= KS_FILE; |
| k->k_gate = ag->ag_nhop; |
| k->k_ifp = ag->ag_ifp; |
| k->k_metric = ag->ag_metric; |
| return; |
| } |
| |
| if ((k->k_state & (KS_STATIC|KS_DEPRE_IF)) || |
| ((k->k_state & (KS_IF|KS_PASSIVE)) == KS_IF)) { |
| return; |
| } |
| |
| /* modify existing kernel entry if necessary */ |
| if (k->k_gate == ag->ag_nhop && k->k_ifp == ag->ag_ifp && |
| k->k_metric != ag->ag_metric) { |
| /* |
| * Must delete bad interface routes etc. |
| * to change them. |
| */ |
| if (k->k_metric == HOPCNT_INFINITY) |
| k->k_state |= KS_DEL_ADD; |
| k->k_gate = ag->ag_nhop; |
| k->k_metric = ag->ag_metric; |
| k->k_state |= KS_CHANGE; |
| } |
| |
| /* |
| * If the daemon thinks the route should exist, forget |
| * about any redirections. |
| * If the daemon thinks the route should exist, eventually |
| * override manual intervention by the operator. |
| */ |
| if ((k->k_state & (KS_DYNAMIC | KS_DELETED)) != 0) { |
| k->k_state &= ~KS_DYNAMIC; |
| k->k_state |= (KS_ADD | KS_DEL_ADD); |
| } |
| |
| if ((k->k_state & KS_GATEWAY) && !(ag->ag_state & AGS_GATEWAY)) { |
| k->k_state &= ~KS_GATEWAY; |
| k->k_state |= (KS_ADD | KS_DEL_ADD); |
| } else if (!(k->k_state & KS_GATEWAY) && (ag->ag_state & AGS_GATEWAY)) { |
| k->k_state |= KS_GATEWAY; |
| k->k_state |= (KS_ADD | KS_DEL_ADD); |
| } |
| |
| /* |
| * Deleting-and-adding is necessary to change aspects of a route. |
| * Just delete instead of deleting and then adding a bad route. |
| * Otherwise, we want to keep the route in the kernel. |
| */ |
| if (k->k_metric == HOPCNT_INFINITY && (k->k_state & KS_DEL_ADD)) |
| k->k_state |= KS_DELETE; |
| else |
| k->k_state &= ~KS_DELETE; |
| #undef RT |
| } |
| |
| /* |
| * Update our image of the kernel forwarding table using the given |
| * route from our internal routing table. |
| */ |
| |
| /*ARGSUSED1*/ |
| static int |
| walk_kern(struct radix_node *rn, void *argp) |
| { |
| #define RT ((struct rt_entry *)rn) |
| uint8_t metric, pref; |
| uint_t ags = 0; |
| int i; |
| struct rt_spare *rts; |
| |
| /* Do not install synthetic routes */ |
| if (RT->rt_state & RS_NET_SYN) |
| return (0); |
| |
| /* |
| * Do not install static routes here. Only |
| * read_rt->rtm_add->kern_add should install those |
| */ |
| if ((RT->rt_state & RS_STATIC) && |
| (RT->rt_spares[0].rts_origin != RO_FILE)) |
| return (0); |
| |
| /* Do not clobber kernel if this is a route for a dead interface */ |
| if (RT->rt_state & RS_BADIF) |
| return (0); |
| |
| if (!(RT->rt_state & RS_IF)) { |
| /* This is an ordinary route, not for an interface. */ |
| |
| /* |
| * aggregate, ordinary good routes without regard to |
| * their metric |
| */ |
| pref = 1; |
| ags |= (AGS_GATEWAY | AGS_SUPPRESS | AGS_AGGREGATE); |
| |
| /* |
| * Do not install host routes directly to hosts, to avoid |
| * interfering with ARP entries in the kernel table. |
| */ |
| if (RT_ISHOST(RT) && ntohl(RT->rt_dst) == RT->rt_gate) |
| return (0); |
| |
| } else { |
| /* |
| * This is an interface route. |
| * Do not install routes for "external" remote interfaces. |
| */ |
| if (RT->rt_ifp != NULL && (RT->rt_ifp->int_state & IS_EXTERNAL)) |
| return (0); |
| |
| /* Interfaces should override received routes. */ |
| pref = 0; |
| ags |= (AGS_IF | AGS_CORS_GATE); |
| if (RT->rt_ifp != NULL && |
| !(RT->rt_ifp->int_if_flags & IFF_LOOPBACK) && |
| (RT->rt_ifp->int_state & (IS_PASSIVE|IS_ALIAS)) == |
| IS_PASSIVE) { |
| ags |= AGS_PASSIVE; |
| } |
| |
| /* |
| * If it is not an interface, or an alias for an interface, |
| * it must be a "gateway." |
| * |
| * If it is a "remote" interface, it is also a "gateway" to |
| * the kernel if is not a alias. |
| */ |
| if (RT->rt_ifp == NULL || (RT->rt_ifp->int_state & IS_REMOTE)) { |
| |
| ags |= (AGS_GATEWAY | AGS_SUPPRESS); |
| |
| /* |
| * Do not aggregate IS_PASSIVE routes. |
| */ |
| if (!(RT->rt_ifp->int_state & IS_PASSIVE)) |
| ags |= AGS_AGGREGATE; |
| } |
| } |
| |
| metric = RT->rt_metric; |
| if (metric == HOPCNT_INFINITY) { |
| /* If the route is dead, try hard to aggregate. */ |
| pref = HOPCNT_INFINITY; |
| ags |= (AGS_FINE_GATE | AGS_SUPPRESS); |
| ags &= ~(AGS_IF | AGS_CORS_GATE); |
| } |
| |
| /* |
| * dump all routes that have the same metric as rt_spares[0] |
| * into the kern_table, to be added to the kernel. |
| */ |
| for (i = 0; i < RT->rt_num_spares; i++) { |
| rts = &RT->rt_spares[i]; |
| |
| /* Do not install external routes */ |
| if (rts->rts_flags & RTS_EXTERNAL) |
| continue; |
| |
| if (rts->rts_metric == metric) { |
| ag_check(RT->rt_dst, RT->rt_mask, |
| rts->rts_router, rts->rts_ifp, rts->rts_gate, |
| metric, pref, 0, 0, |
| (rts->rts_origin & RO_FILE) ? (ags|AGS_FILE) : ags, |
| kern_out); |
| } |
| } |
| return (0); |
| #undef RT |
| } |
| |
| |
| /* Update the kernel table to match the daemon table. */ |
| static void |
| fix_kern(void) |
| { |
| int i; |
| struct khash *k, *pk, *knext; |
| |
| |
| need_kern = age_timer; |
| |
| /* Walk daemon table, updating the copy of the kernel table. */ |
| (void) rn_walktree(rhead, walk_kern, NULL); |
| ag_flush(0, 0, kern_out); |
| |
| for (i = 0; i < KHASH_SIZE; i++) { |
| pk = NULL; |
| for (k = khash_bins[i]; k != NULL; k = knext) { |
| knext = k->k_next; |
| |
| /* Do not touch local interface routes */ |
| if ((k->k_state & KS_DEPRE_IF) || |
| (k->k_state & (KS_IF|KS_PASSIVE)) == KS_IF) { |
| pk = k; |
| continue; |
| } |
| |
| /* Do not touch static routes */ |
| if (k->k_state & KS_STATIC) { |
| kern_check_static(k, 0); |
| pk = k; |
| continue; |
| } |
| |
| /* check hold on routes deleted by the operator */ |
| if (k->k_keep > now.tv_sec) { |
| /* ensure we check when the hold is over */ |
| LIM_SEC(need_kern, k->k_keep); |
| pk = k; |
| continue; |
| } |
| |
| if ((k->k_state & KS_DELETE) && |
| !(k->k_state & KS_DYNAMIC)) { |
| if ((k->k_dst == RIP_DEFAULT) && |
| (k->k_ifp != NULL) && |
| (kern_alternate(RIP_DEFAULT, |
| k->k_mask, k->k_gate, k->k_ifp, |
| NULL) == NULL)) |
| rdisc_restore(k->k_ifp); |
| kern_ioctl(k, RTM_DELETE, 0); |
| if (pk != NULL) |
| pk->k_next = knext; |
| else |
| khash_bins[i] = knext; |
| free(k); |
| continue; |
| } |
| |
| if (k->k_state & KS_DEL_ADD) |
| kern_ioctl(k, RTM_DELETE, 0); |
| |
| if (k->k_state & KS_ADD) { |
| if ((k->k_dst == RIP_DEFAULT) && |
| (k->k_ifp != NULL)) |
| rdisc_suppress(k->k_ifp); |
| kern_ioctl(k, RTM_ADD, |
| ((0 != (k->k_state & (KS_GATEWAY | |
| KS_DYNAMIC))) ? RTF_GATEWAY : 0)); |
| } else if (k->k_state & KS_CHANGE) { |
| /* |
| * Should be using RTM_CHANGE here, but |
| * since RTM_CHANGE is currently |
| * not multipath-aware, and assumes |
| * that RTF_GATEWAY implies the gateway |
| * of the route for dst has to be |
| * changed, we play safe, and do a del + add. |
| */ |
| kern_ioctl(k, RTM_DELETE, 0); |
| kern_ioctl(k, RTM_ADD, |
| ((0 != (k->k_state & (KS_GATEWAY | |
| KS_DYNAMIC))) ? RTF_GATEWAY : 0)); |
| } |
| k->k_state &= ~(KS_ADD|KS_CHANGE|KS_DEL_ADD); |
| |
| /* |
| * Mark this route to be deleted in the next cycle. |
| * This deletes routes that disappear from the |
| * daemon table, since the normal aging code |
| * will clear the bit for routes that have not |
| * disappeared from the daemon table. |
| */ |
| k->k_state |= KS_DELETE; |
| pk = k; |
| } |
| } |
| } |
| |
| |
| /* Delete a static route in the image of the kernel table. */ |
| void |
| del_static(in_addr_t dst, in_addr_t mask, in_addr_t gate, |
| struct interface *ifp, int gone) |
| { |
| struct khash *k; |
| struct rt_entry *rt; |
| |
| /* |
| * Just mark it in the table to be deleted next time the kernel |
| * table is updated. |
| * If it has already been deleted, mark it as such, and set its |
| * keep-timer so that it will not be deleted again for a while. |
| * This lets the operator delete a route added by the daemon |
| * and add a replacement. |
| */ |
| k = kern_find(dst, mask, gate, ifp, NULL); |
| if (k != NULL && (gate == 0 || k->k_gate == gate)) { |
| k->k_state &= ~(KS_STATIC | KS_DYNAMIC | KS_CHECK); |
| k->k_state |= KS_DELETE; |
| if (gone) { |
| k->k_state |= KS_DELETED; |
| k->k_keep = now.tv_sec + K_KEEP_LIM; |
| } |
| } |
| |
| rt = rtget(dst, mask); |
| if (rt != NULL && (rt->rt_state & RS_STATIC)) |
| rtbad(rt, NULL); |
| } |
| |
| |
| /* |
| * Delete all routes generated from ICMP Redirects that use a given gateway, |
| * as well as old redirected routes. |
| */ |
| void |
| del_redirects(in_addr_t bad_gate, time_t old) |
| { |
| int i; |
| struct khash *k; |
| boolean_t dosupply = should_supply(NULL); |
| |
| for (i = 0; i < KHASH_SIZE; i++) { |
| for (k = khash_bins[i]; k != NULL; k = k->k_next) { |
| if (!(k->k_state & KS_DYNAMIC) || |
| (k->k_state & (KS_STATIC|KS_IF|KS_DEPRE_IF))) |
| continue; |
| |
| if (k->k_gate != bad_gate && k->k_redirect_time > old && |
| !dosupply) |
| continue; |
| |
| k->k_state |= KS_DELETE; |
| k->k_state &= ~KS_DYNAMIC; |
| need_kern.tv_sec = now.tv_sec; |
| trace_act("mark redirected %s --> %s for deletion", |
| addrname(k->k_dst, k->k_mask, 0), |
| naddr_ntoa(k->k_gate)); |
| } |
| } |
| } |
| |
| /* Start the daemon tables. */ |
| void |
| rtinit(void) |
| { |
| int i; |
| struct ag_info *ag; |
| |
| /* Initialize the radix trees */ |
| rn_init(); |
| (void) rn_inithead((void**)&rhead, 32); |
| |
| /* mark all of the slots in the table free */ |
| ag_avail = ag_slots; |
| for (ag = ag_slots, i = 1; i < NUM_AG_SLOTS; i++) { |
| ag->ag_fine = ag+1; |
| ag++; |
| } |
| } |
| |
| |
| static struct sockaddr_in dst_sock = {AF_INET}; |
| static struct sockaddr_in mask_sock = {AF_INET}; |
| |
| |
| static void |
| set_need_flash(void) |
| { |
| if (!need_flash) { |
| need_flash = _B_TRUE; |
| /* |
| * Do not send the flash update immediately. Wait a little |
| * while to hear from other routers. |
| */ |
| no_flash.tv_sec = now.tv_sec + MIN_WAITTIME; |
| } |
| } |
| |
| |
| /* Get a particular routing table entry */ |
| struct rt_entry * |
| rtget(in_addr_t dst, in_addr_t mask) |
| { |
| struct rt_entry *rt; |
| |
| dst_sock.sin_addr.s_addr = dst; |
| mask_sock.sin_addr.s_addr = htonl(mask); |
| rt = (struct rt_entry *)rhead->rnh_lookup(&dst_sock, &mask_sock, rhead); |
| if (rt == NULL || rt->rt_dst != dst || rt->rt_mask != mask) |
| return (NULL); |
| |
| return (rt); |
| } |
| |
| |
| /* Find a route to dst as the kernel would. */ |
| struct rt_entry * |
| rtfind(in_addr_t dst) |
| { |
| dst_sock.sin_addr.s_addr = dst; |
| return ((struct rt_entry *)rhead->rnh_matchaddr(&dst_sock, rhead)); |
| } |
| |
| |
| /* add a route to the table */ |
| void |
| rtadd(in_addr_t dst, |
| in_addr_t mask, |
| uint16_t state, /* rt_state for the entry */ |
| struct rt_spare *new) |
| { |
| struct rt_entry *rt; |
| in_addr_t smask; |
| int i; |
| struct rt_spare *rts; |
| |
| /* This is the only function that increments total_routes. */ |
| if (total_routes == MAX_ROUTES) { |
| msglog("have maximum (%d) routes", total_routes); |
| return; |
| } |
| |
| rt = rtmalloc(sizeof (*rt), "rtadd"); |
| (void) memset(rt, 0, sizeof (*rt)); |
| rt->rt_spares = rtmalloc(SPARE_INC * sizeof (struct rt_spare), |
| "rtadd"); |
| rt->rt_num_spares = SPARE_INC; |
| (void) memset(rt->rt_spares, 0, SPARE_INC * sizeof (struct rt_spare)); |
| for (rts = rt->rt_spares, i = rt->rt_num_spares; i != 0; i--, rts++) |
| rts->rts_metric = HOPCNT_INFINITY; |
| |
| rt->rt_nodes->rn_key = (uint8_t *)&rt->rt_dst_sock; |
| rt->rt_dst = dst; |
| rt->rt_dst_sock.sin_family = AF_INET; |
| if (mask != HOST_MASK) { |
| smask = std_mask(dst); |
| if ((smask & ~mask) == 0 && mask > smask) |
| state |= RS_SUBNET; |
| } |
| mask_sock.sin_addr.s_addr = htonl(mask); |
| rt->rt_mask = mask; |
| rt->rt_spares[0] = *new; |
| rt->rt_state = state; |
| rt->rt_time = now.tv_sec; |
| rt->rt_poison_metric = HOPCNT_INFINITY; |
| rt->rt_seqno = update_seqno; |
| |
| if (TRACEACTIONS) |
| trace_add_del("Add", rt); |
| |
| need_kern.tv_sec = now.tv_sec; |
| set_need_flash(); |
| |
| if (NULL == rhead->rnh_addaddr(&rt->rt_dst_sock, &mask_sock, rhead, |
| rt->rt_nodes)) { |
| msglog("rnh_addaddr() failed for %s mask=%s", |
| naddr_ntoa(dst), naddr_ntoa(htonl(mask))); |
| free(rt); |
| } |
| |
| total_routes++; |
| } |
| |
| |
| /* notice a changed route */ |
| void |
| rtchange(struct rt_entry *rt, |
| uint16_t state, /* new state bits */ |
| struct rt_spare *new, |
| char *label) |
| { |
| if (rt->rt_metric != new->rts_metric) { |
| /* |
| * Fix the kernel immediately if it seems the route |
| * has gone bad, since there may be a working route that |
| * aggregates this route. |
| */ |
| if (new->rts_metric == HOPCNT_INFINITY) { |
| need_kern.tv_sec = now.tv_sec; |
| if (new->rts_time >= now.tv_sec - EXPIRE_TIME) |
| new->rts_time = now.tv_sec - EXPIRE_TIME; |
| } |
| rt->rt_seqno = update_seqno; |
| set_need_flash(); |
| } |
| |
| if (rt->rt_gate != new->rts_gate) { |
| need_kern.tv_sec = now.tv_sec; |
| rt->rt_seqno = update_seqno; |
| set_need_flash(); |
| } |
| |
| state |= (rt->rt_state & RS_SUBNET); |
| |
| /* Keep various things from deciding ageless routes are stale. */ |
| if (!AGE_RT(state, rt->rt_spares[0].rts_origin, new->rts_ifp)) |
| new->rts_time = now.tv_sec; |
| |
| if (TRACEACTIONS) |
| trace_change(rt, state, new, |
| label ? label : "Chg "); |
| |
| rt->rt_state = state; |
| /* |
| * If the interface state of the new primary route is good, |
| * turn off RS_BADIF flag |
| */ |
| if ((rt->rt_state & RS_BADIF) && |
| IS_IFF_UP(new->rts_ifp->int_if_flags) && |
| !(new->rts_ifp->int_state & (IS_BROKE | IS_SICK))) |
| rt->rt_state &= ~(RS_BADIF); |
| |
| rt->rt_spares[0] = *new; |
| } |
| |
| |
| /* check for a better route among the spares */ |
| static struct rt_spare * |
| rts_better(struct rt_entry *rt) |
| { |
| struct rt_spare *rts, *rts1; |
| int i; |
| |
| /* find the best alternative among the spares */ |
| rts = rt->rt_spares+1; |
| for (i = rt->rt_num_spares, rts1 = rts+1; i > 2; i--, rts1++) { |
| if (BETTER_LINK(rt, rts1, rts)) |
| rts = rts1; |
| } |
| |
| return (rts); |
| } |
| |
| |
| /* switch to a backup route */ |
| void |
| rtswitch(struct rt_entry *rt, |
| struct rt_spare *rts) |
| { |
| struct rt_spare swap; |
| char label[10]; |
| |
| /* Do not change permanent routes */ |
| if (0 != (rt->rt_state & (RS_MHOME | RS_STATIC | |
| RS_NET_SYN | RS_IF))) |
| return; |
| |
| /* find the best alternative among the spares */ |
| if (rts == NULL) |
| rts = rts_better(rt); |
| |
| /* Do not bother if it is not worthwhile. */ |
| if (!BETTER_LINK(rt, rts, rt->rt_spares)) |
| return; |
| |
| swap = rt->rt_spares[0]; |
| (void) snprintf(label, sizeof (label), "Use #%d", |
| (int)(rts - rt->rt_spares)); |
| rtchange(rt, rt->rt_state & ~(RS_NET_SYN), rts, label); |
| |
| if (swap.rts_metric == HOPCNT_INFINITY) { |
| *rts = rts_empty; |
| } else { |
| *rts = swap; |
| } |
| |
| } |
| |
| |
| void |
| rtdelete(struct rt_entry *rt) |
| { |
| struct rt_entry *deleted_rt; |
| struct rt_spare *rts; |
| int i; |
| in_addr_t gate = rt->rt_gate; /* for debugging */ |
| |
| if (TRACEACTIONS) |
| trace_add_del("Del", rt); |
| |
| for (i = 0; i < rt->rt_num_spares; i++) { |
| rts = &rt->rt_spares[i]; |
| rts_delete(rt, rts); |
| } |
| |
| dst_sock.sin_addr.s_addr = rt->rt_dst; |
| mask_sock.sin_addr.s_addr = htonl(rt->rt_mask); |
| if (rt != (deleted_rt = |
| ((struct rt_entry *)rhead->rnh_deladdr(&dst_sock, &mask_sock, |
| rhead)))) { |
| msglog("rnh_deladdr(%s) failed; found rt 0x%lx", |
| rtname(rt->rt_dst, rt->rt_mask, gate), deleted_rt); |
| if (deleted_rt != NULL) |
| free(deleted_rt); |
| } |
| total_routes--; |
| free(rt); |
| |
| if (dst_sock.sin_addr.s_addr == RIP_DEFAULT) { |
| /* |
| * we just deleted the default route. Trigger rdisc_sort |
| * so that we can recover from any rdisc information that |
| * is valid |
| */ |
| rdisc_timer.tv_sec = 0; |
| } |
| } |
| |
| void |
| rts_delete(struct rt_entry *rt, struct rt_spare *rts) |
| { |
| struct khash *k; |
| |
| trace_upslot(rt, rts, &rts_empty); |
| k = kern_find(rt->rt_dst, rt->rt_mask, |
| rts->rts_gate, rts->rts_ifp, NULL); |
| if (k != NULL && |
| !(k->k_state & KS_DEPRE_IF) && |
| ((k->k_state & (KS_IF|KS_PASSIVE)) != KS_IF)) { |
| k->k_state |= KS_DELETE; |
| need_kern.tv_sec = now.tv_sec; |
| } |
| |
| *rts = rts_empty; |
| } |
| |
| /* |
| * Get rid of a bad route, and try to switch to a replacement. |
| * If the route has gone bad because of a bad interface, |
| * the information about the dead interface is available in badifp |
| * for the purpose of sanity checks, if_flags checks etc. |
| */ |
| static void |
| rtbad(struct rt_entry *rt, struct interface *badifp) |
| { |
| struct rt_spare new; |
| uint16_t rt_state; |
| |
| |
| if (badifp == NULL || (rt->rt_spares[0].rts_ifp == badifp)) { |
| /* Poison the route */ |
| new = rt->rt_spares[0]; |
| new.rts_metric = HOPCNT_INFINITY; |
| rt_state = rt->rt_state & ~(RS_IF | RS_LOCAL | RS_STATIC); |
| } |
| |
| if (badifp != NULL) { |
| /* |
| * Dont mark the rtentry bad unless the ifp for the primary |
| * route is the bad ifp |
| */ |
| if (rt->rt_spares[0].rts_ifp != badifp) |
| return; |
| /* |
| * badifp has just gone bad. We want to keep this |
| * rt_entry around so that we tell our rip-neighbors |
| * about the bad route, but we can't do anything |
| * to the kernel itself, so mark it as RS_BADIF |
| */ |
| trace_misc("rtbad:Setting RS_BADIF (%s)", badifp->int_name); |
| rt_state |= RS_BADIF; |
| new.rts_ifp = &dummy_ifp; |
| } |
| rtchange(rt, rt_state, &new, 0); |
| rtswitch(rt, 0); |
| } |
| |
| |
| /* |
| * Junk a RS_NET_SYN or RS_LOCAL route, |
| * unless it is needed by another interface. |
| */ |
| void |
| rtbad_sub(struct rt_entry *rt, struct interface *badifp) |
| { |
| struct interface *ifp, *ifp1; |
| struct intnet *intnetp; |
| uint_t state; |
| |
| |
| ifp1 = NULL; |
| state = 0; |
| |
| if (rt->rt_state & RS_LOCAL) { |
| /* |
| * Is this the route through loopback for the interface? |
| * If so, see if it is used by any other interfaces, such |
| * as a point-to-point interface with the same local address. |
| */ |
| for (ifp = ifnet; ifp != NULL; ifp = ifp->int_next) { |
| /* Retain it if another interface needs it. */ |
| if (ifp->int_addr == rt->rt_ifp->int_addr) { |
| state |= RS_LOCAL; |
| ifp1 = ifp; |
| break; |
| } |
| } |
| |
| } |
| |
| if (!(state & RS_LOCAL)) { |
| /* |
| * Retain RIPv1 logical network route if there is another |
| * interface that justifies it. |
| */ |
| if (rt->rt_state & RS_NET_SYN) { |
| for (ifp = ifnet; ifp != NULL; ifp = ifp->int_next) { |
| if ((ifp->int_state & IS_NEED_NET_SYN) && |
| rt->rt_mask == ifp->int_std_mask && |
| rt->rt_dst == ifp->int_std_addr) { |
| state |= RS_NET_SYN; |
| ifp1 = ifp; |
| break; |
| } |
| } |
| } |
| |
| /* or if there is an authority route that needs it. */ |
| for (intnetp = intnets; intnetp != NULL; |
| intnetp = intnetp->intnet_next) { |
| if (intnetp->intnet_addr == rt->rt_dst && |
| intnetp->intnet_mask == rt->rt_mask) { |
| state |= (RS_NET_SYN | RS_NET_INT); |
| break; |
| } |
| } |
| } |
| |
| if (ifp1 != NULL || (state & RS_NET_SYN)) { |
| struct rt_spare new = rt->rt_spares[0]; |
| new.rts_ifp = ifp1; |
| rtchange(rt, ((rt->rt_state & ~(RS_NET_SYN|RS_LOCAL)) | state), |
| &new, 0); |
| } else { |
| rtbad(rt, badifp); |
| } |
| } |
| |
| /* |
| * Called while walking the table looking for sick interfaces |
| * or after a time change. |
| */ |
| int |
| walk_bad(struct radix_node *rn, |
| void *argp) |
| { |
| #define RT ((struct rt_entry *)rn) |
| struct rt_spare *rts; |
| int i, j = -1; |
| |
| /* fix any spare routes through the interface */ |
| for (i = 1; i < RT->rt_num_spares; i++) { |
| rts = &((struct rt_entry *)rn)->rt_spares[i]; |
| |
| if (rts->rts_metric < HOPCNT_INFINITY && |
| (rts->rts_ifp == NULL || |
| (rts->rts_ifp->int_state & IS_BROKE))) |
| rts_delete(RT, rts); |
| else { |
| if (rts->rts_origin != RO_NONE) |
| j = i; |
| } |
| } |
| |
| /* |
| * Deal with the main route |
| * finished if it has been handled before or if its interface is ok |
| */ |
| if (RT->rt_ifp == NULL || !(RT->rt_ifp->int_state & IS_BROKE)) |
| return (0); |
| |
| /* Bad routes for other than interfaces are easy. */ |
| if (!(RT->rt_state & (RS_IF | RS_NET_SYN | RS_LOCAL))) { |
| if (j > 0) { |
| RT->rt_spares[0].rts_metric = HOPCNT_INFINITY; |
| rtswitch(RT, NULL); |
| } else { |
| rtbad(RT, (struct interface *)argp); |
| } |
| return (0); |
| } |
| |
| rtbad_sub(RT, (struct interface *)argp); |
| return (0); |
| #undef RT |
| } |
| |
| /* |
| * Called while walking the table to replace a duplicate interface |
| * with a backup. |
| */ |
| int |
| walk_rewire(struct radix_node *rn, void *argp) |
| { |
| struct rt_entry *RT = (struct rt_entry *)rn; |
| struct rewire_data *wire = (struct rewire_data *)argp; |
| struct rt_spare *rts; |
| int i; |
| |
| /* fix any spare routes through the interface */ |
| rts = RT->rt_spares; |
| for (i = RT->rt_num_spares; i > 0; i--, rts++) { |
| if (rts->rts_ifp == wire->if_old) { |
| rts->rts_ifp = wire->if_new; |
| if ((RT->rt_dst == RIP_DEFAULT) && |
| (wire->if_old->int_state & IS_SUPPRESS_RDISC)) |
| rdisc_suppress(rts->rts_ifp); |
| if ((rts->rts_metric += wire->metric_delta) > |
| HOPCNT_INFINITY) |
| rts->rts_metric = HOPCNT_INFINITY; |
| |
| /* |
| * If the main route is getting a worse metric, |
| * then it may be time to switch to a backup. |
| */ |
| if (i == RT->rt_num_spares && wire->metric_delta > 0) { |
| rtswitch(RT, NULL); |
| } |
| } |
| } |
| |
| return (0); |
| } |
| |
| /* Check the age of an individual route. */ |
| static int |
| walk_age(struct radix_node *rn, void *argp) |
| { |
| #define RT ((struct rt_entry *)rn) |
| struct interface *ifp; |
| struct rt_spare *rts; |
| int i; |
| in_addr_t age_bad_gate = *(in_addr_t *)argp; |
| |
| |
| /* |
| * age all of the spare routes, including the primary route |
| * currently in use |
| */ |
| rts = RT->rt_spares; |
| for (i = RT->rt_num_spares; i != 0; i--, rts++) { |
| |
| ifp = rts->rts_ifp; |
| if (i == RT->rt_num_spares) { |
| if (!AGE_RT(RT->rt_state, rts->rts_origin, ifp)) { |
| /* |
| * Keep various things from deciding ageless |
| * routes are stale |
| */ |
| rts->rts_time = now.tv_sec; |
| continue; |
| } |
| |
| /* forget RIP routes after RIP has been turned off. */ |
| if (rip_sock < 0) { |
| rts->rts_time = now_stale + 1; |
| } |
| } |
| |
| /* age failing routes */ |
| if (age_bad_gate == rts->rts_gate && |
| rts->rts_time >= now_stale) { |
| rts->rts_time -= SUPPLY_INTERVAL; |
| } |
| |
| /* trash the spare routes when they go bad */ |
| if (rts->rts_origin == RO_RIP && |
| ((rip_sock < 0) || |
| (rts->rts_metric < HOPCNT_INFINITY && |
| now_garbage > rts->rts_time)) && |
| i != RT->rt_num_spares) { |
| rts_delete(RT, rts); |
| } |
| } |
| |
| |
| /* finished if the active route is still fresh */ |
| if (now_stale <= RT->rt_time) |
| return (0); |
| |
| /* try to switch to an alternative */ |
| rtswitch(RT, NULL); |
| |
| /* Delete a dead route after it has been publically mourned. */ |
| if (now_garbage > RT->rt_time) { |
| rtdelete(RT); |
| return (0); |
| } |
| |
| /* Start poisoning a bad route before deleting it. */ |
| if (now.tv_sec - RT->rt_time > EXPIRE_TIME) { |
| struct rt_spare new = RT->rt_spares[0 |