| /* |
| * This file and its contents are supplied under the terms of the |
| * Common Development and Distribution License ("CDDL"), version 1.0. |
| * You may only use this file in accordance with the terms of version |
| * 1.0 of the CDDL. |
| * |
| * A full copy of the text of the CDDL should have accompanied this |
| * source. A copy of the CDDL is also available via the Internet at |
| * http://www.illumos.org/license/CDDL. |
| */ |
| |
| /* |
| * Copyright (c) 2016 The MathWorks, Inc. All rights reserved. |
| * Copyright 2019 Unix Software Ltd. |
| * Copyright 2020 Joyent, Inc. |
| * Copyright 2020 Racktop Systems. |
| * Copyright 2022 Oxide Computer Company. |
| * Copyright 2022 OmniOS Community Edition (OmniOSce) Association. |
| * Copyright 2022 Tintri by DDN, Inc. All rights reserved. |
| */ |
| |
| /* |
| * blkdev driver for NVMe compliant storage devices |
| * |
| * This driver targets and is designed to support all NVMe 1.x devices. |
| * Features are added to the driver as we encounter devices that require them |
| * and our needs, so some commands or log pages may not take advantage of newer |
| * features that devices support at this time. When you encounter such a case, |
| * it is generally fine to add that support to the driver as long as you take |
| * care to ensure that the requisite device version is met before using it. |
| * |
| * The driver has only been tested on x86 systems and will not work on big- |
| * endian systems without changes to the code accessing registers and data |
| * structures used by the hardware. |
| * |
| * |
| * Interrupt Usage: |
| * |
| * The driver will use a single interrupt while configuring the device as the |
| * specification requires, but contrary to the specification it will try to use |
| * a single-message MSI(-X) or FIXED interrupt. Later in the attach process it |
| * will switch to multiple-message MSI(-X) if supported. The driver wants to |
| * have one interrupt vector per CPU, but it will work correctly if less are |
| * available. Interrupts can be shared by queues, the interrupt handler will |
| * iterate through the I/O queue array by steps of n_intr_cnt. Usually only |
| * the admin queue will share an interrupt with one I/O queue. The interrupt |
| * handler will retrieve completed commands from all queues sharing an interrupt |
| * vector and will post them to a taskq for completion processing. |
| * |
| * |
| * Command Processing: |
| * |
| * NVMe devices can have up to 65535 I/O queue pairs, with each queue holding up |
| * to 65536 I/O commands. The driver will configure one I/O queue pair per |
| * available interrupt vector, with the queue length usually much smaller than |
| * the maximum of 65536. If the hardware doesn't provide enough queues, fewer |
| * interrupt vectors will be used. |
| * |
| * Additionally the hardware provides a single special admin queue pair that can |
| * hold up to 4096 admin commands. |
| * |
| * From the hardware perspective both queues of a queue pair are independent, |
| * but they share some driver state: the command array (holding pointers to |
| * commands currently being processed by the hardware) and the active command |
| * counter. Access to a submission queue and the shared state is protected by |
| * nq_mutex; completion queue is protected by ncq_mutex. |
| * |
| * When a command is submitted to a queue pair the active command counter is |
| * incremented and a pointer to the command is stored in the command array. The |
| * array index is used as command identifier (CID) in the submission queue |
| * entry. Some commands may take a very long time to complete, and if the queue |
| * wraps around in that time a submission may find the next array slot to still |
| * be used by a long-running command. In this case the array is sequentially |
| * searched for the next free slot. The length of the command array is the same |
| * as the configured queue length. Queue overrun is prevented by the semaphore, |
| * so a command submission may block if the queue is full. |
| * |
| * |
| * Polled I/O Support: |
| * |
| * For kernel core dump support the driver can do polled I/O. As interrupts are |
| * turned off while dumping the driver will just submit a command in the regular |
| * way, and then repeatedly attempt a command retrieval until it gets the |
| * command back. |
| * |
| * |
| * Namespace Support: |
| * |
| * NVMe devices can have multiple namespaces, each being a independent data |
| * store. The driver supports multiple namespaces and creates a blkdev interface |
| * for each namespace found. Namespaces can have various attributes to support |
| * protection information. This driver does not support any of this and ignores |
| * namespaces that have these attributes. |
| * |
| * As of NVMe 1.1 namespaces can have an 64bit Extended Unique Identifier |
| * (EUI64), and NVMe 1.2 introduced an additional 128bit Namespace Globally |
| * Unique Identifier (NGUID). This driver uses either the NGUID or the EUI64 |
| * if present to generate the devid, and passes the EUI64 to blkdev to use it |
| * in the device node names. |
| * |
| * We currently support only (2 << NVME_MINOR_INST_SHIFT) - 2 namespaces in a |
| * single controller. This is an artificial limit imposed by the driver to be |
| * able to address a reasonable number of controllers and namespaces using a |
| * 32bit minor node number. |
| * |
| * |
| * Minor nodes: |
| * |
| * For each NVMe device the driver exposes one minor node for the controller and |
| * one minor node for each namespace. The only operations supported by those |
| * minor nodes are open(9E), close(9E), and ioctl(9E). This serves as the |
| * interface for the nvmeadm(8) utility. |
| * |
| * Exclusive opens are required for certain ioctl(9E) operations that alter |
| * controller and/or namespace state. While different namespaces may be opened |
| * exclusively in parallel, an exclusive open of the controller minor node |
| * requires that no namespaces are currently open (exclusive or otherwise). |
| * Opening any namespace minor node (exclusive or otherwise) will fail while |
| * the controller minor node is opened exclusively by any other thread. Thus it |
| * is possible for one thread at a time to open the controller minor node |
| * exclusively, and keep it open while opening any namespace minor node of the |
| * same controller, exclusively or otherwise. |
| * |
| * |
| * |
| * Blkdev Interface: |
| * |
| * This driver uses blkdev to do all the heavy lifting involved with presenting |
| * a disk device to the system. As a result, the processing of I/O requests is |
| * relatively simple as blkdev takes care of partitioning, boundary checks, DMA |
| * setup, and splitting of transfers into manageable chunks. |
| * |
| * I/O requests coming in from blkdev are turned into NVM commands and posted to |
| * an I/O queue. The queue is selected by taking the CPU id modulo the number of |
| * queues. There is currently no timeout handling of I/O commands. |
| * |
| * Blkdev also supports querying device/media information and generating a |
| * devid. The driver reports the best block size as determined by the namespace |
| * format back to blkdev as physical block size to support partition and block |
| * alignment. The devid is either based on the namespace GUID or EUI64, if |
| * present, or composed using the device vendor ID, model number, serial number, |
| * and the namespace ID. |
| * |
| * |
| * Error Handling: |
| * |
| * Error handling is currently limited to detecting fatal hardware errors, |
| * either by asynchronous events, or synchronously through command status or |
| * admin command timeouts. In case of severe errors the device is fenced off, |
| * all further requests will return EIO. FMA is then called to fault the device. |
| * |
| * The hardware has a limit for outstanding asynchronous event requests. Before |
| * this limit is known the driver assumes it is at least 1 and posts a single |
| * asynchronous request. Later when the limit is known more asynchronous event |
| * requests are posted to allow quicker reception of error information. When an |
| * asynchronous event is posted by the hardware the driver will parse the error |
| * status fields and log information or fault the device, depending on the |
| * severity of the asynchronous event. The asynchronous event request is then |
| * reused and posted to the admin queue again. |
| * |
| * On command completion the command status is checked for errors. In case of |
| * errors indicating a driver bug the driver panics. Almost all other error |
| * status values just cause EIO to be returned. |
| * |
| * Command timeouts are currently detected for all admin commands except |
| * asynchronous event requests. If a command times out and the hardware appears |
| * to be healthy the driver attempts to abort the command. The original command |
| * timeout is also applied to the abort command. If the abort times out too the |
| * driver assumes the device to be dead, fences it off, and calls FMA to retire |
| * it. In all other cases the aborted command should return immediately with a |
| * status indicating it was aborted, and the driver will wait indefinitely for |
| * that to happen. No timeout handling of normal I/O commands is presently done. |
| * |
| * Any command that times out due to the controller dropping dead will be put on |
| * nvme_lost_cmds list if it references DMA memory. This will prevent the DMA |
| * memory being reused by the system and later be written to by a "dead" NVMe |
| * controller. |
| * |
| * |
| * Locking: |
| * |
| * Each queue pair has a nq_mutex and ncq_mutex. The nq_mutex must be held |
| * when accessing shared state and submission queue registers, ncq_mutex |
| * is held when accessing completion queue state and registers. |
| * Callers of nvme_unqueue_cmd() must make sure that nq_mutex is held, while |
| * nvme_submit_{admin,io}_cmd() and nvme_retrieve_cmd() take care of both |
| * mutexes themselves. |
| * |
| * Each command also has its own nc_mutex, which is associated with the |
| * condition variable nc_cv. It is only used on admin commands which are run |
| * synchronously. In that case it must be held across calls to |
| * nvme_submit_{admin,io}_cmd() and nvme_wait_cmd(), which is taken care of by |
| * nvme_admin_cmd(). It must also be held whenever the completion state of the |
| * command is changed or while a admin command timeout is handled. |
| * |
| * If both nc_mutex and nq_mutex must be held, nc_mutex must be acquired first. |
| * More than one nc_mutex may only be held when aborting commands. In this case, |
| * the nc_mutex of the command to be aborted must be held across the call to |
| * nvme_abort_cmd() to prevent the command from completing while the abort is in |
| * progress. |
| * |
| * If both nq_mutex and ncq_mutex need to be held, ncq_mutex must be |
| * acquired first. More than one nq_mutex is never held by a single thread. |
| * The ncq_mutex is only held by nvme_retrieve_cmd() and |
| * nvme_process_iocq(). nvme_process_iocq() is only called from the |
| * interrupt thread and nvme_retrieve_cmd() during polled I/O, so the |
| * mutex is non-contentious but is required for implementation completeness |
| * and safety. |
| * |
| * There is one mutex n_minor_mutex which protects all open flags nm_open and |
| * exclusive-open thread pointers nm_oexcl of each minor node associated with a |
| * controller and its namespaces. |
| * |
| * In addition, there is one mutex n_mgmt_mutex which must be held whenever the |
| * driver state for any namespace is changed, especially across calls to |
| * nvme_init_ns(), nvme_attach_ns() and nvme_detach_ns(). Except when detaching |
| * nvme, it should also be held across calls that modify the blkdev handle of a |
| * namespace. Command and queue mutexes may be acquired and released while |
| * n_mgmt_mutex is held, n_minor_mutex should not. |
| * |
| * |
| * Quiesce / Fast Reboot: |
| * |
| * The driver currently does not support fast reboot. A quiesce(9E) entry point |
| * is still provided which is used to send a shutdown notification to the |
| * device. |
| * |
| * |
| * NVMe Hotplug: |
| * |
| * The driver supports hot removal. The driver uses the NDI event framework |
| * to register a callback, nvme_remove_callback, to clean up when a disk is |
| * removed. In particular, the driver will unqueue outstanding I/O commands and |
| * set n_dead on the softstate to true so that other operations, such as ioctls |
| * and command submissions, fail as well. |
| * |
| * While the callback registration relies on the NDI event framework, the |
| * removal event itself is kicked off in the PCIe hotplug framework, when the |
| * PCIe bridge driver ("pcieb") gets a hotplug interrupt indicating that a |
| * device was removed from the slot. |
| * |
| * The NVMe driver instance itself will remain until the final close of the |
| * device. |
| * |
| * |
| * DDI UFM Support |
| * |
| * The driver supports the DDI UFM framework for reporting information about |
| * the device's firmware image and slot configuration. This data can be |
| * queried by userland software via ioctls to the ufm driver. For more |
| * information, see ddi_ufm(9E). |
| * |
| * |
| * Driver Configuration: |
| * |
| * The following driver properties can be changed to control some aspects of the |
| * drivers operation: |
| * - strict-version: can be set to 0 to allow devices conforming to newer |
| * major versions to be used |
| * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor |
| * specific command status as a fatal error leading device faulting |
| * - admin-queue-len: the maximum length of the admin queue (16-4096) |
| * - io-squeue-len: the maximum length of the I/O submission queues (16-65536) |
| * - io-cqueue-len: the maximum length of the I/O completion queues (16-65536) |
| * - async-event-limit: the maximum number of asynchronous event requests to be |
| * posted by the driver |
| * - volatile-write-cache-enable: can be set to 0 to disable the volatile write |
| * cache |
| * - min-phys-block-size: the minimum physical block size to report to blkdev, |
| * which is among other things the basis for ZFS vdev ashift |
| * - max-submission-queues: the maximum number of I/O submission queues. |
| * - max-completion-queues: the maximum number of I/O completion queues, |
| * can be less than max-submission-queues, in which case the completion |
| * queues are shared. |
| * |
| * In addition to the above properties, some device-specific tunables can be |
| * configured using the nvme-config-list global property. The value of this |
| * property is a list of triplets. The formal syntax is: |
| * |
| * nvme-config-list ::= <triplet> [, <triplet>]* ; |
| * <triplet> ::= "<model>" , "<rev-list>" , "<tuple-list>" |
| * <rev-list> ::= [ <fwrev> [, <fwrev>]*] |
| * <tuple-list> ::= <tunable> [, <tunable>]* |
| * <tunable> ::= <name> : <value> |
| * |
| * The <model> and <fwrev> are the strings in nvme_identify_ctrl_t`id_model and |
| * nvme_identify_ctrl_t`id_fwrev, respectively. The remainder of <tuple-list> |
| * contains one or more tunables to apply to all controllers that match the |
| * specified model number and optionally firmware revision. Each <tunable> is a |
| * <name> : <value> pair. Supported tunables are: |
| * |
| * - ignore-unknown-vendor-status: can be set to "on" to not handle any vendor |
| * specific command status as a fatal error leading device faulting |
| * |
| * - min-phys-block-size: the minimum physical block size to report to blkdev, |
| * which is among other things the basis for ZFS vdev ashift |
| * |
| * - volatile-write-cache: can be set to "on" or "off" to enable or disable the |
| * volatile write cache, if present |
| * |
| * |
| * TODO: |
| * - figure out sane default for I/O queue depth reported to blkdev |
| * - FMA handling of media errors |
| * - support for devices supporting very large I/O requests using chained PRPs |
| * - support for configuring hardware parameters like interrupt coalescing |
| * - support for media formatting and hard partitioning into namespaces |
| * - support for big-endian systems |
| * - support for fast reboot |
| * - support for NVMe Subsystem Reset (1.1) |
| * - support for Scatter/Gather lists (1.1) |
| * - support for Reservations (1.1) |
| * - support for power management |
| */ |
| |
| #include <sys/byteorder.h> |
| #ifdef _BIG_ENDIAN |
| #error nvme driver needs porting for big-endian platforms |
| #endif |
| |
| #include <sys/modctl.h> |
| #include <sys/conf.h> |
| #include <sys/devops.h> |
| #include <sys/ddi.h> |
| #include <sys/ddi_ufm.h> |
| #include <sys/sunddi.h> |
| #include <sys/sunndi.h> |
| #include <sys/bitmap.h> |
| #include <sys/sysmacros.h> |
| #include <sys/param.h> |
| #include <sys/varargs.h> |
| #include <sys/cpuvar.h> |
| #include <sys/disp.h> |
| #include <sys/blkdev.h> |
| #include <sys/atomic.h> |
| #include <sys/archsystm.h> |
| #include <sys/sata/sata_hba.h> |
| #include <sys/stat.h> |
| #include <sys/policy.h> |
| #include <sys/list.h> |
| #include <sys/dkio.h> |
| |
| #include <sys/nvme.h> |
| |
| #ifdef __x86 |
| #include <sys/x86_archext.h> |
| #endif |
| |
| #include "nvme_reg.h" |
| #include "nvme_var.h" |
| |
| /* |
| * Assertions to make sure that we've properly captured various aspects of the |
| * packed structures and haven't broken them during updates. |
| */ |
| CTASSERT(sizeof (nvme_identify_ctrl_t) == NVME_IDENTIFY_BUFSIZE); |
| CTASSERT(offsetof(nvme_identify_ctrl_t, id_oacs) == 256); |
| CTASSERT(offsetof(nvme_identify_ctrl_t, id_sqes) == 512); |
| CTASSERT(offsetof(nvme_identify_ctrl_t, id_oncs) == 520); |
| CTASSERT(offsetof(nvme_identify_ctrl_t, id_subnqn) == 768); |
| CTASSERT(offsetof(nvme_identify_ctrl_t, id_nvmof) == 1792); |
| CTASSERT(offsetof(nvme_identify_ctrl_t, id_psd) == 2048); |
| CTASSERT(offsetof(nvme_identify_ctrl_t, id_vs) == 3072); |
| |
| CTASSERT(sizeof (nvme_identify_nsid_t) == NVME_IDENTIFY_BUFSIZE); |
| CTASSERT(offsetof(nvme_identify_nsid_t, id_fpi) == 32); |
| CTASSERT(offsetof(nvme_identify_nsid_t, id_anagrpid) == 92); |
| CTASSERT(offsetof(nvme_identify_nsid_t, id_nguid) == 104); |
| CTASSERT(offsetof(nvme_identify_nsid_t, id_lbaf) == 128); |
| CTASSERT(offsetof(nvme_identify_nsid_t, id_vs) == 384); |
| |
| CTASSERT(sizeof (nvme_identify_nsid_list_t) == NVME_IDENTIFY_BUFSIZE); |
| CTASSERT(sizeof (nvme_identify_ctrl_list_t) == NVME_IDENTIFY_BUFSIZE); |
| |
| CTASSERT(sizeof (nvme_identify_primary_caps_t) == NVME_IDENTIFY_BUFSIZE); |
| CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vqfrt) == 32); |
| CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vifrt) == 64); |
| |
| CTASSERT(sizeof (nvme_nschange_list_t) == 4096); |
| |
| |
| /* NVMe spec version supported */ |
| static const int nvme_version_major = 1; |
| |
| /* tunable for admin command timeout in seconds, default is 1s */ |
| int nvme_admin_cmd_timeout = 1; |
| |
| /* tunable for FORMAT NVM command timeout in seconds, default is 600s */ |
| int nvme_format_cmd_timeout = 600; |
| |
| /* tunable for firmware commit with NVME_FWC_SAVE, default is 15s */ |
| int nvme_commit_save_cmd_timeout = 15; |
| |
| /* |
| * tunable for the size of arbitrary vendor specific admin commands, |
| * default is 16MiB. |
| */ |
| uint32_t nvme_vendor_specific_admin_cmd_size = 1 << 24; |
| |
| /* |
| * tunable for the max timeout of arbitary vendor specific admin commands, |
| * default is 60s. |
| */ |
| uint_t nvme_vendor_specific_admin_cmd_max_timeout = 60; |
| |
| static int nvme_attach(dev_info_t *, ddi_attach_cmd_t); |
| static int nvme_detach(dev_info_t *, ddi_detach_cmd_t); |
| static int nvme_quiesce(dev_info_t *); |
| static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *); |
| static int nvme_setup_interrupts(nvme_t *, int, int); |
| static void nvme_release_interrupts(nvme_t *); |
| static uint_t nvme_intr(caddr_t, caddr_t); |
| |
| static void nvme_shutdown(nvme_t *, int, boolean_t); |
| static boolean_t nvme_reset(nvme_t *, boolean_t); |
| static int nvme_init(nvme_t *); |
| static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int); |
| static void nvme_free_cmd(nvme_cmd_t *); |
| static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t, |
| bd_xfer_t *); |
| static void nvme_admin_cmd(nvme_cmd_t *, int); |
| static void nvme_submit_admin_cmd(nvme_qpair_t *, nvme_cmd_t *); |
| static int nvme_submit_io_cmd(nvme_qpair_t *, nvme_cmd_t *); |
| static void nvme_submit_cmd_common(nvme_qpair_t *, nvme_cmd_t *); |
| static nvme_cmd_t *nvme_unqueue_cmd(nvme_t *, nvme_qpair_t *, int); |
| static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *); |
| static void nvme_wait_cmd(nvme_cmd_t *, uint_t); |
| static void nvme_wakeup_cmd(void *); |
| static void nvme_async_event_task(void *); |
| |
| static int nvme_check_unknown_cmd_status(nvme_cmd_t *); |
| static int nvme_check_vendor_cmd_status(nvme_cmd_t *); |
| static int nvme_check_integrity_cmd_status(nvme_cmd_t *); |
| static int nvme_check_specific_cmd_status(nvme_cmd_t *); |
| static int nvme_check_generic_cmd_status(nvme_cmd_t *); |
| static inline int nvme_check_cmd_status(nvme_cmd_t *); |
| |
| static int nvme_abort_cmd(nvme_cmd_t *, uint_t); |
| static void nvme_async_event(nvme_t *); |
| static int nvme_format_nvm(nvme_t *, boolean_t, uint32_t, uint8_t, boolean_t, |
| uint8_t, boolean_t, uint8_t); |
| static int nvme_get_logpage(nvme_t *, boolean_t, void **, size_t *, uint8_t, |
| ...); |
| static int nvme_identify(nvme_t *, boolean_t, uint32_t, uint8_t, void **); |
| static int nvme_set_features(nvme_t *, boolean_t, uint32_t, uint8_t, uint32_t, |
| uint32_t *); |
| static int nvme_get_features(nvme_t *, boolean_t, uint32_t, uint8_t, uint32_t *, |
| void **, size_t *); |
| static int nvme_write_cache_set(nvme_t *, boolean_t); |
| static int nvme_set_nqueues(nvme_t *); |
| |
| static void nvme_free_dma(nvme_dma_t *); |
| static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *, |
| nvme_dma_t **); |
| static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t, |
| nvme_dma_t **); |
| static void nvme_free_qpair(nvme_qpair_t *); |
| static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, uint_t); |
| static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t); |
| |
| static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t); |
| static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t); |
| static inline uint64_t nvme_get64(nvme_t *, uintptr_t); |
| static inline uint32_t nvme_get32(nvme_t *, uintptr_t); |
| |
| static boolean_t nvme_check_regs_hdl(nvme_t *); |
| static boolean_t nvme_check_dma_hdl(nvme_dma_t *); |
| |
| static int nvme_fill_prp(nvme_cmd_t *, ddi_dma_handle_t); |
| |
| static void nvme_bd_xfer_done(void *); |
| static void nvme_bd_driveinfo(void *, bd_drive_t *); |
| static int nvme_bd_mediainfo(void *, bd_media_t *); |
| static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t); |
| static int nvme_bd_read(void *, bd_xfer_t *); |
| static int nvme_bd_write(void *, bd_xfer_t *); |
| static int nvme_bd_sync(void *, bd_xfer_t *); |
| static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *); |
| static int nvme_bd_free_space(void *, bd_xfer_t *); |
| |
| static int nvme_prp_dma_constructor(void *, void *, int); |
| static void nvme_prp_dma_destructor(void *, void *); |
| |
| static void nvme_prepare_devid(nvme_t *, uint32_t); |
| |
| /* DDI UFM callbacks */ |
| static int nvme_ufm_fill_image(ddi_ufm_handle_t *, void *, uint_t, |
| ddi_ufm_image_t *); |
| static int nvme_ufm_fill_slot(ddi_ufm_handle_t *, void *, uint_t, uint_t, |
| ddi_ufm_slot_t *); |
| static int nvme_ufm_getcaps(ddi_ufm_handle_t *, void *, ddi_ufm_cap_t *); |
| |
| static int nvme_open(dev_t *, int, int, cred_t *); |
| static int nvme_close(dev_t, int, int, cred_t *); |
| static int nvme_ioctl(dev_t, int, intptr_t, int, cred_t *, int *); |
| |
| static int nvme_init_ns(nvme_t *, int); |
| static int nvme_attach_ns(nvme_t *, int); |
| static int nvme_detach_ns(nvme_t *, int); |
| |
| #define NVME_NSID2NS(nvme, nsid) (&((nvme)->n_ns[(nsid) - 1])) |
| |
| static ddi_ufm_ops_t nvme_ufm_ops = { |
| NULL, |
| nvme_ufm_fill_image, |
| nvme_ufm_fill_slot, |
| nvme_ufm_getcaps |
| }; |
| |
| #define NVME_MINOR_INST_SHIFT 9 |
| #define NVME_MINOR(inst, nsid) (((inst) << NVME_MINOR_INST_SHIFT) | (nsid)) |
| #define NVME_MINOR_INST(minor) ((minor) >> NVME_MINOR_INST_SHIFT) |
| #define NVME_MINOR_NSID(minor) ((minor) & ((1 << NVME_MINOR_INST_SHIFT) - 1)) |
| #define NVME_MINOR_MAX (NVME_MINOR(1, 0) - 2) |
| #define NVME_IS_VENDOR_SPECIFIC_CMD(x) (((x) >= 0xC0) && ((x) <= 0xFF)) |
| #define NVME_VENDOR_SPECIFIC_LOGPAGE_MIN 0xC0 |
| #define NVME_VENDOR_SPECIFIC_LOGPAGE_MAX 0xFF |
| #define NVME_IS_VENDOR_SPECIFIC_LOGPAGE(x) \ |
| (((x) >= NVME_VENDOR_SPECIFIC_LOGPAGE_MIN) && \ |
| ((x) <= NVME_VENDOR_SPECIFIC_LOGPAGE_MAX)) |
| |
| /* |
| * NVMe versions 1.3 and later actually support log pages up to UINT32_MAX |
| * DWords in size. However, revision 1.3 also modified the layout of the Get Log |
| * Page command significantly relative to version 1.2, including changing |
| * reserved bits, adding new bitfields, and requiring the use of command DWord |
| * 11 to fully specify the size of the log page (the lower and upper 16 bits of |
| * the number of DWords in the page are split between DWord 10 and DWord 11, |
| * respectively). |
| * |
| * All of these impose significantly different layout requirements on the |
| * `nvme_getlogpage_t` type. This could be solved with two different types, or a |
| * complicated/nested union with the two versions as the overlying members. Both |
| * of these are reasonable, if a bit convoluted. However, these is no current |
| * need for such large pages, or a way to test them, as most log pages actually |
| * fit within the current size limit. So for simplicity, we retain the size cap |
| * from version 1.2. |
| * |
| * Note that the number of DWords is zero-based, so we add 1. It is subtracted |
| * to form a zero-based value in `nvme_get_logpage`. |
| */ |
| #define NVME_VENDOR_SPECIFIC_LOGPAGE_MAX_SIZE \ |
| (((1 << 12) + 1) * sizeof (uint32_t)) |
| |
| static void *nvme_state; |
| static kmem_cache_t *nvme_cmd_cache; |
| |
| /* |
| * DMA attributes for queue DMA memory |
| * |
| * Queue DMA memory must be page aligned. The maximum length of a queue is |
| * 65536 entries, and an entry can be 64 bytes long. |
| */ |
| static ddi_dma_attr_t nvme_queue_dma_attr = { |
| .dma_attr_version = DMA_ATTR_V0, |
| .dma_attr_addr_lo = 0, |
| .dma_attr_addr_hi = 0xffffffffffffffffULL, |
| .dma_attr_count_max = (UINT16_MAX + 1) * sizeof (nvme_sqe_t) - 1, |
| .dma_attr_align = 0x1000, |
| .dma_attr_burstsizes = 0x7ff, |
| .dma_attr_minxfer = 0x1000, |
| .dma_attr_maxxfer = (UINT16_MAX + 1) * sizeof (nvme_sqe_t), |
| .dma_attr_seg = 0xffffffffffffffffULL, |
| .dma_attr_sgllen = 1, |
| .dma_attr_granular = 1, |
| .dma_attr_flags = 0, |
| }; |
| |
| /* |
| * DMA attributes for transfers using Physical Region Page (PRP) entries |
| * |
| * A PRP entry describes one page of DMA memory using the page size specified |
| * in the controller configuration's memory page size register (CC.MPS). It uses |
| * a 64bit base address aligned to this page size. There is no limitation on |
| * chaining PRPs together for arbitrarily large DMA transfers. |
| */ |
| static ddi_dma_attr_t nvme_prp_dma_attr = { |
| .dma_attr_version = DMA_ATTR_V0, |
| .dma_attr_addr_lo = 0, |
| .dma_attr_addr_hi = 0xffffffffffffffffULL, |
| .dma_attr_count_max = 0xfff, |
| .dma_attr_align = 0x1000, |
| .dma_attr_burstsizes = 0x7ff, |
| .dma_attr_minxfer = 0x1000, |
| .dma_attr_maxxfer = 0x1000, |
| .dma_attr_seg = 0xfff, |
| .dma_attr_sgllen = -1, |
| .dma_attr_granular = 1, |
| .dma_attr_flags = 0, |
| }; |
| |
| /* |
| * DMA attributes for transfers using scatter/gather lists |
| * |
| * A SGL entry describes a chunk of DMA memory using a 64bit base address and a |
| * 32bit length field. SGL Segment and SGL Last Segment entries require the |
| * length to be a multiple of 16 bytes. |
| */ |
| static ddi_dma_attr_t nvme_sgl_dma_attr = { |
| .dma_attr_version = DMA_ATTR_V0, |
| .dma_attr_addr_lo = 0, |
| .dma_attr_addr_hi = 0xffffffffffffffffULL, |
| .dma_attr_count_max = 0xffffffffUL, |
| .dma_attr_align = 1, |
| .dma_attr_burstsizes = 0x7ff, |
| .dma_attr_minxfer = 0x10, |
| .dma_attr_maxxfer = 0xfffffffffULL, |
| .dma_attr_seg = 0xffffffffffffffffULL, |
| .dma_attr_sgllen = -1, |
| .dma_attr_granular = 0x10, |
| .dma_attr_flags = 0 |
| }; |
| |
| static ddi_device_acc_attr_t nvme_reg_acc_attr = { |
| .devacc_attr_version = DDI_DEVICE_ATTR_V0, |
| .devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC, |
| .devacc_attr_dataorder = DDI_STRICTORDER_ACC |
| }; |
| |
| static struct cb_ops nvme_cb_ops = { |
| .cb_open = nvme_open, |
| .cb_close = nvme_close, |
| .cb_strategy = nodev, |
| .cb_print = nodev, |
| .cb_dump = nodev, |
| .cb_read = nodev, |
| .cb_write = nodev, |
| .cb_ioctl = nvme_ioctl, |
| .cb_devmap = nodev, |
| .cb_mmap = nodev, |
| .cb_segmap = nodev, |
| .cb_chpoll = nochpoll, |
| .cb_prop_op = ddi_prop_op, |
| .cb_str = 0, |
| .cb_flag = D_NEW | D_MP, |
| .cb_rev = CB_REV, |
| .cb_aread = nodev, |
| .cb_awrite = nodev |
| }; |
| |
| static struct dev_ops nvme_dev_ops = { |
| .devo_rev = DEVO_REV, |
| .devo_refcnt = 0, |
| .devo_getinfo = ddi_no_info, |
| .devo_identify = nulldev, |
| .devo_probe = nulldev, |
| .devo_attach = nvme_attach, |
| .devo_detach = nvme_detach, |
| .devo_reset = nodev, |
| .devo_cb_ops = &nvme_cb_ops, |
| .devo_bus_ops = NULL, |
| .devo_power = NULL, |
| .devo_quiesce = nvme_quiesce, |
| }; |
| |
| static struct modldrv nvme_modldrv = { |
| .drv_modops = &mod_driverops, |
| .drv_linkinfo = "NVMe v1.1b", |
| .drv_dev_ops = &nvme_dev_ops |
| }; |
| |
| static struct modlinkage nvme_modlinkage = { |
| .ml_rev = MODREV_1, |
| .ml_linkage = { &nvme_modldrv, NULL } |
| }; |
| |
| static bd_ops_t nvme_bd_ops = { |
| .o_version = BD_OPS_CURRENT_VERSION, |
| .o_drive_info = nvme_bd_driveinfo, |
| .o_media_info = nvme_bd_mediainfo, |
| .o_devid_init = nvme_bd_devid, |
| .o_sync_cache = nvme_bd_sync, |
| .o_read = nvme_bd_read, |
| .o_write = nvme_bd_write, |
| .o_free_space = nvme_bd_free_space, |
| }; |
| |
| /* |
| * This list will hold commands that have timed out and couldn't be aborted. |
| * As we don't know what the hardware may still do with the DMA memory we can't |
| * free them, so we'll keep them forever on this list where we can easily look |
| * at them with mdb. |
| */ |
| static struct list nvme_lost_cmds; |
| static kmutex_t nvme_lc_mutex; |
| |
| int |
| _init(void) |
| { |
| int error; |
| |
| error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1); |
| if (error != DDI_SUCCESS) |
| return (error); |
| |
| nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache", |
| sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0); |
| |
| mutex_init(&nvme_lc_mutex, NULL, MUTEX_DRIVER, NULL); |
| list_create(&nvme_lost_cmds, sizeof (nvme_cmd_t), |
| offsetof(nvme_cmd_t, nc_list)); |
| |
| bd_mod_init(&nvme_dev_ops); |
| |
| error = mod_install(&nvme_modlinkage); |
| if (error != DDI_SUCCESS) { |
| ddi_soft_state_fini(&nvme_state); |
| mutex_destroy(&nvme_lc_mutex); |
| list_destroy(&nvme_lost_cmds); |
| bd_mod_fini(&nvme_dev_ops); |
| } |
| |
| return (error); |
| } |
| |
| int |
| _fini(void) |
| { |
| int error; |
| |
| if (!list_is_empty(&nvme_lost_cmds)) |
| return (DDI_FAILURE); |
| |
| error = mod_remove(&nvme_modlinkage); |
| if (error == DDI_SUCCESS) { |
| ddi_soft_state_fini(&nvme_state); |
| kmem_cache_destroy(nvme_cmd_cache); |
| mutex_destroy(&nvme_lc_mutex); |
| list_destroy(&nvme_lost_cmds); |
| bd_mod_fini(&nvme_dev_ops); |
| } |
| |
| return (error); |
| } |
| |
| int |
| _info(struct modinfo *modinfop) |
| { |
| return (mod_info(&nvme_modlinkage, modinfop)); |
| } |
| |
| static inline void |
| nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val) |
| { |
| ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0); |
| |
| /*LINTED: E_BAD_PTR_CAST_ALIGN*/ |
| ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val); |
| } |
| |
| static inline void |
| nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val) |
| { |
| ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0); |
| |
| /*LINTED: E_BAD_PTR_CAST_ALIGN*/ |
| ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val); |
| } |
| |
| static inline uint64_t |
| nvme_get64(nvme_t *nvme, uintptr_t reg) |
| { |
| uint64_t val; |
| |
| ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0); |
| |
| /*LINTED: E_BAD_PTR_CAST_ALIGN*/ |
| val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg)); |
| |
| return (val); |
| } |
| |
| static inline uint32_t |
| nvme_get32(nvme_t *nvme, uintptr_t reg) |
| { |
| uint32_t val; |
| |
| ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0); |
| |
| /*LINTED: E_BAD_PTR_CAST_ALIGN*/ |
| val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg)); |
| |
| return (val); |
| } |
| |
| static boolean_t |
| nvme_check_regs_hdl(nvme_t *nvme) |
| { |
| ddi_fm_error_t error; |
| |
| ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION); |
| |
| if (error.fme_status != DDI_FM_OK) |
| return (B_TRUE); |
| |
| return (B_FALSE); |
| } |
| |
| static boolean_t |
| nvme_check_dma_hdl(nvme_dma_t *dma) |
| { |
| ddi_fm_error_t error; |
| |
| if (dma == NULL) |
| return (B_FALSE); |
| |
| ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION); |
| |
| if (error.fme_status != DDI_FM_OK) |
| return (B_TRUE); |
| |
| return (B_FALSE); |
| } |
| |
| static void |
| nvme_free_dma_common(nvme_dma_t *dma) |
| { |
| if (dma->nd_dmah != NULL) |
| (void) ddi_dma_unbind_handle(dma->nd_dmah); |
| if (dma->nd_acch != NULL) |
| ddi_dma_mem_free(&dma->nd_acch); |
| if (dma->nd_dmah != NULL) |
| ddi_dma_free_handle(&dma->nd_dmah); |
| } |
| |
| static void |
| nvme_free_dma(nvme_dma_t *dma) |
| { |
| nvme_free_dma_common(dma); |
| kmem_free(dma, sizeof (*dma)); |
| } |
| |
| /* ARGSUSED */ |
| static void |
| nvme_prp_dma_destructor(void *buf, void *private) |
| { |
| nvme_dma_t *dma = (nvme_dma_t *)buf; |
| |
| nvme_free_dma_common(dma); |
| } |
| |
| static int |
| nvme_alloc_dma_common(nvme_t *nvme, nvme_dma_t *dma, |
| size_t len, uint_t flags, ddi_dma_attr_t *dma_attr) |
| { |
| if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL, |
| &dma->nd_dmah) != DDI_SUCCESS) { |
| /* |
| * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and |
| * the only other possible error is DDI_DMA_BADATTR which |
| * indicates a driver bug which should cause a panic. |
| */ |
| dev_err(nvme->n_dip, CE_PANIC, |
| "!failed to get DMA handle, check DMA attributes"); |
| return (DDI_FAILURE); |
| } |
| |
| /* |
| * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified |
| * or the flags are conflicting, which isn't the case here. |
| */ |
| (void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr, |
| DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp, |
| &dma->nd_len, &dma->nd_acch); |
| |
| if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp, |
| dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, |
| &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!failed to bind DMA memory"); |
| atomic_inc_32(&nvme->n_dma_bind_err); |
| nvme_free_dma_common(dma); |
| return (DDI_FAILURE); |
| } |
| |
| return (DDI_SUCCESS); |
| } |
| |
| static int |
| nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags, |
| ddi_dma_attr_t *dma_attr, nvme_dma_t **ret) |
| { |
| nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP); |
| |
| if (nvme_alloc_dma_common(nvme, dma, len, flags, dma_attr) != |
| DDI_SUCCESS) { |
| *ret = NULL; |
| kmem_free(dma, sizeof (nvme_dma_t)); |
| return (DDI_FAILURE); |
| } |
| |
| bzero(dma->nd_memp, dma->nd_len); |
| |
| *ret = dma; |
| return (DDI_SUCCESS); |
| } |
| |
| /* ARGSUSED */ |
| static int |
| nvme_prp_dma_constructor(void *buf, void *private, int flags) |
| { |
| nvme_dma_t *dma = (nvme_dma_t *)buf; |
| nvme_t *nvme = (nvme_t *)private; |
| |
| dma->nd_dmah = NULL; |
| dma->nd_acch = NULL; |
| |
| if (nvme_alloc_dma_common(nvme, dma, nvme->n_pagesize, |
| DDI_DMA_READ, &nvme->n_prp_dma_attr) != DDI_SUCCESS) { |
| return (-1); |
| } |
| |
| ASSERT(dma->nd_ncookie == 1); |
| |
| dma->nd_cached = B_TRUE; |
| |
| return (0); |
| } |
| |
| static int |
| nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len, |
| uint_t flags, nvme_dma_t **dma) |
| { |
| uint32_t len = nentry * qe_len; |
| ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr; |
| |
| len = roundup(len, nvme->n_pagesize); |
| |
| if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma) |
| != DDI_SUCCESS) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!failed to get DMA memory for queue"); |
| goto fail; |
| } |
| |
| if ((*dma)->nd_ncookie != 1) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!got too many cookies for queue DMA"); |
| goto fail; |
| } |
| |
| return (DDI_SUCCESS); |
| |
| fail: |
| if (*dma) { |
| nvme_free_dma(*dma); |
| *dma = NULL; |
| } |
| |
| return (DDI_FAILURE); |
| } |
| |
| static void |
| nvme_free_cq(nvme_cq_t *cq) |
| { |
| mutex_destroy(&cq->ncq_mutex); |
| |
| if (cq->ncq_cmd_taskq != NULL) |
| taskq_destroy(cq->ncq_cmd_taskq); |
| |
| if (cq->ncq_dma != NULL) |
| nvme_free_dma(cq->ncq_dma); |
| |
| kmem_free(cq, sizeof (*cq)); |
| } |
| |
| static void |
| nvme_free_qpair(nvme_qpair_t *qp) |
| { |
| int i; |
| |
| mutex_destroy(&qp->nq_mutex); |
| sema_destroy(&qp->nq_sema); |
| |
| if (qp->nq_sqdma != NULL) |
| nvme_free_dma(qp->nq_sqdma); |
| |
| if (qp->nq_active_cmds > 0) |
| for (i = 0; i != qp->nq_nentry; i++) |
| if (qp->nq_cmd[i] != NULL) |
| nvme_free_cmd(qp->nq_cmd[i]); |
| |
| if (qp->nq_cmd != NULL) |
| kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry); |
| |
| kmem_free(qp, sizeof (nvme_qpair_t)); |
| } |
| |
| /* |
| * Destroy the pre-allocated cq array, but only free individual completion |
| * queues from the given starting index. |
| */ |
| static void |
| nvme_destroy_cq_array(nvme_t *nvme, uint_t start) |
| { |
| uint_t i; |
| |
| for (i = start; i < nvme->n_cq_count; i++) |
| if (nvme->n_cq[i] != NULL) |
| nvme_free_cq(nvme->n_cq[i]); |
| |
| kmem_free(nvme->n_cq, sizeof (*nvme->n_cq) * nvme->n_cq_count); |
| } |
| |
| static int |
| nvme_alloc_cq(nvme_t *nvme, uint32_t nentry, nvme_cq_t **cqp, uint16_t idx, |
| uint_t nthr) |
| { |
| nvme_cq_t *cq = kmem_zalloc(sizeof (*cq), KM_SLEEP); |
| char name[64]; /* large enough for the taskq name */ |
| |
| mutex_init(&cq->ncq_mutex, NULL, MUTEX_DRIVER, |
| DDI_INTR_PRI(nvme->n_intr_pri)); |
| |
| if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t), |
| DDI_DMA_READ, &cq->ncq_dma) != DDI_SUCCESS) |
| goto fail; |
| |
| cq->ncq_cq = (nvme_cqe_t *)cq->ncq_dma->nd_memp; |
| cq->ncq_nentry = nentry; |
| cq->ncq_id = idx; |
| cq->ncq_hdbl = NVME_REG_CQHDBL(nvme, idx); |
| |
| /* |
| * Each completion queue has its own command taskq. |
| */ |
| (void) snprintf(name, sizeof (name), "%s%d_cmd_taskq%u", |
| ddi_driver_name(nvme->n_dip), ddi_get_instance(nvme->n_dip), idx); |
| |
| cq->ncq_cmd_taskq = taskq_create(name, nthr, minclsyspri, 64, INT_MAX, |
| TASKQ_PREPOPULATE); |
| |
| if (cq->ncq_cmd_taskq == NULL) { |
| dev_err(nvme->n_dip, CE_WARN, "!failed to create cmd " |
| "taskq for cq %u", idx); |
| goto fail; |
| } |
| |
| *cqp = cq; |
| return (DDI_SUCCESS); |
| |
| fail: |
| nvme_free_cq(cq); |
| *cqp = NULL; |
| |
| return (DDI_FAILURE); |
| } |
| |
| /* |
| * Create the n_cq array big enough to hold "ncq" completion queues. |
| * If the array already exists it will be re-sized (but only larger). |
| * The admin queue is included in this array, which boosts the |
| * max number of entries to UINT16_MAX + 1. |
| */ |
| static int |
| nvme_create_cq_array(nvme_t *nvme, uint_t ncq, uint32_t nentry, uint_t nthr) |
| { |
| nvme_cq_t **cq; |
| uint_t i, cq_count; |
| |
| ASSERT3U(ncq, >, nvme->n_cq_count); |
| |
| cq = nvme->n_cq; |
| cq_count = nvme->n_cq_count; |
| |
| nvme->n_cq = kmem_zalloc(sizeof (*nvme->n_cq) * ncq, KM_SLEEP); |
| nvme->n_cq_count = ncq; |
| |
| for (i = 0; i < cq_count; i++) |
| nvme->n_cq[i] = cq[i]; |
| |
| for (; i < nvme->n_cq_count; i++) |
| if (nvme_alloc_cq(nvme, nentry, &nvme->n_cq[i], i, nthr) != |
| DDI_SUCCESS) |
| goto fail; |
| |
| if (cq != NULL) |
| kmem_free(cq, sizeof (*cq) * cq_count); |
| |
| return (DDI_SUCCESS); |
| |
| fail: |
| nvme_destroy_cq_array(nvme, cq_count); |
| /* |
| * Restore the original array |
| */ |
| nvme->n_cq_count = cq_count; |
| nvme->n_cq = cq; |
| |
| return (DDI_FAILURE); |
| } |
| |
| static int |
| nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp, |
| uint_t idx) |
| { |
| nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP); |
| uint_t cq_idx; |
| |
| mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER, |
| DDI_INTR_PRI(nvme->n_intr_pri)); |
| |
| /* |
| * The NVMe spec defines that a full queue has one empty (unused) slot; |
| * initialize the semaphore accordingly. |
| */ |
| sema_init(&qp->nq_sema, nentry - 1, NULL, SEMA_DRIVER, NULL); |
| |
| if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t), |
| DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS) |
| goto fail; |
| |
| /* |
| * idx == 0 is adminq, those above 0 are shared io completion queues. |
| */ |
| cq_idx = idx == 0 ? 0 : 1 + (idx - 1) % (nvme->n_cq_count - 1); |
| qp->nq_cq = nvme->n_cq[cq_idx]; |
| qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp; |
| qp->nq_nentry = nentry; |
| |
| qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx); |
| |
| qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP); |
| qp->nq_next_cmd = 0; |
| |
| *nqp = qp; |
| return (DDI_SUCCESS); |
| |
| fail: |
| nvme_free_qpair(qp); |
| *nqp = NULL; |
| |
| return (DDI_FAILURE); |
| } |
| |
| static nvme_cmd_t * |
| nvme_alloc_cmd(nvme_t *nvme, int kmflag) |
| { |
| nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag); |
| |
| if (cmd == NULL) |
| return (cmd); |
| |
| bzero(cmd, sizeof (nvme_cmd_t)); |
| |
| cmd->nc_nvme = nvme; |
| |
| mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER, |
| DDI_INTR_PRI(nvme->n_intr_pri)); |
| cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL); |
| |
| return (cmd); |
| } |
| |
| static void |
| nvme_free_cmd(nvme_cmd_t *cmd) |
| { |
| /* Don't free commands on the lost commands list. */ |
| if (list_link_active(&cmd->nc_list)) |
| return; |
| |
| if (cmd->nc_dma) { |
| nvme_free_dma(cmd->nc_dma); |
| cmd->nc_dma = NULL; |
| } |
| |
| if (cmd->nc_prp) { |
| kmem_cache_free(cmd->nc_nvme->n_prp_cache, cmd->nc_prp); |
| cmd->nc_prp = NULL; |
| } |
| |
| cv_destroy(&cmd->nc_cv); |
| mutex_destroy(&cmd->nc_mutex); |
| |
| kmem_cache_free(nvme_cmd_cache, cmd); |
| } |
| |
| static void |
| nvme_submit_admin_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd) |
| { |
| sema_p(&qp->nq_sema); |
| nvme_submit_cmd_common(qp, cmd); |
| } |
| |
| static int |
| nvme_submit_io_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd) |
| { |
| if (cmd->nc_nvme->n_dead) { |
| return (EIO); |
| } |
| |
| if (sema_tryp(&qp->nq_sema) == 0) |
| return (EAGAIN); |
| |
| nvme_submit_cmd_common(qp, cmd); |
| return (0); |
| } |
| |
| static void |
| nvme_submit_cmd_common(nvme_qpair_t *qp, nvme_cmd_t *cmd) |
| { |
| nvme_reg_sqtdbl_t tail = { 0 }; |
| |
| mutex_enter(&qp->nq_mutex); |
| cmd->nc_completed = B_FALSE; |
| |
| /* |
| * Now that we hold the queue pair lock, we must check whether or not |
| * the controller has been listed as dead (e.g. was removed due to |
| * hotplug). This is necessary as otherwise we could race with |
| * nvme_remove_callback(). Because this has not been enqueued, we don't |
| * call nvme_unqueue_cmd(), which is why we must manually decrement the |
| * semaphore. |
| */ |
| if (cmd->nc_nvme->n_dead) { |
| taskq_dispatch_ent(qp->nq_cq->ncq_cmd_taskq, cmd->nc_callback, |
| cmd, TQ_NOSLEEP, &cmd->nc_tqent); |
| sema_v(&qp->nq_sema); |
| mutex_exit(&qp->nq_mutex); |
| return; |
| } |
| |
| /* |
| * Try to insert the cmd into the active cmd array at the nq_next_cmd |
| * slot. If the slot is already occupied advance to the next slot and |
| * try again. This can happen for long running commands like async event |
| * requests. |
| */ |
| while (qp->nq_cmd[qp->nq_next_cmd] != NULL) |
| qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry; |
| qp->nq_cmd[qp->nq_next_cmd] = cmd; |
| |
| qp->nq_active_cmds++; |
| |
| cmd->nc_sqe.sqe_cid = qp->nq_next_cmd; |
| bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t)); |
| (void) ddi_dma_sync(qp->nq_sqdma->nd_dmah, |
| sizeof (nvme_sqe_t) * qp->nq_sqtail, |
| sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV); |
| qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry; |
| |
| tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry; |
| nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r); |
| |
| mutex_exit(&qp->nq_mutex); |
| } |
| |
| static nvme_cmd_t * |
| nvme_unqueue_cmd(nvme_t *nvme, nvme_qpair_t *qp, int cid) |
| { |
| nvme_cmd_t *cmd; |
| |
| ASSERT(mutex_owned(&qp->nq_mutex)); |
| ASSERT3S(cid, <, qp->nq_nentry); |
| |
| cmd = qp->nq_cmd[cid]; |
| qp->nq_cmd[cid] = NULL; |
| ASSERT3U(qp->nq_active_cmds, >, 0); |
| qp->nq_active_cmds--; |
| sema_v(&qp->nq_sema); |
| |
| ASSERT3P(cmd, !=, NULL); |
| ASSERT3P(cmd->nc_nvme, ==, nvme); |
| ASSERT3S(cmd->nc_sqe.sqe_cid, ==, cid); |
| |
| return (cmd); |
| } |
| |
| /* |
| * Get the command tied to the next completed cqe and bump along completion |
| * queue head counter. |
| */ |
| static nvme_cmd_t * |
| nvme_get_completed(nvme_t *nvme, nvme_cq_t *cq) |
| { |
| nvme_qpair_t *qp; |
| nvme_cqe_t *cqe; |
| nvme_cmd_t *cmd; |
| |
| ASSERT(mutex_owned(&cq->ncq_mutex)); |
| |
| cqe = &cq->ncq_cq[cq->ncq_head]; |
| |
| /* Check phase tag of CQE. Hardware inverts it for new entries. */ |
| if (cqe->cqe_sf.sf_p == cq->ncq_phase) |
| return (NULL); |
| |
| qp = nvme->n_ioq[cqe->cqe_sqid]; |
| |
| mutex_enter(&qp->nq_mutex); |
| cmd = nvme_unqueue_cmd(nvme, qp, cqe->cqe_cid); |
| mutex_exit(&qp->nq_mutex); |
| |
| ASSERT(cmd->nc_sqid == cqe->cqe_sqid); |
| bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t)); |
| |
| qp->nq_sqhead = cqe->cqe_sqhd; |
| |
| cq->ncq_head = (cq->ncq_head + 1) % cq->ncq_nentry; |
| |
| /* Toggle phase on wrap-around. */ |
| if (cq->ncq_head == 0) |
| cq->ncq_phase = cq->ncq_phase ? 0 : 1; |
| |
| return (cmd); |
| } |
| |
| /* |
| * Process all completed commands on the io completion queue. |
| */ |
| static uint_t |
| nvme_process_iocq(nvme_t *nvme, nvme_cq_t *cq) |
| { |
| nvme_reg_cqhdbl_t head = { 0 }; |
| nvme_cmd_t *cmd; |
| uint_t completed = 0; |
| |
| if (ddi_dma_sync(cq->ncq_dma->nd_dmah, 0, 0, DDI_DMA_SYNC_FORKERNEL) != |
| DDI_SUCCESS) |
| dev_err(nvme->n_dip, CE_WARN, "!ddi_dma_sync() failed in %s", |
| __func__); |
| |
| mutex_enter(&cq->ncq_mutex); |
| |
| while ((cmd = nvme_get_completed(nvme, cq)) != NULL) { |
| taskq_dispatch_ent(cq->ncq_cmd_taskq, cmd->nc_callback, cmd, |
| TQ_NOSLEEP, &cmd->nc_tqent); |
| |
| completed++; |
| } |
| |
| if (completed > 0) { |
| /* |
| * Update the completion queue head doorbell. |
| */ |
| head.b.cqhdbl_cqh = cq->ncq_head; |
| nvme_put32(nvme, cq->ncq_hdbl, head.r); |
| } |
| |
| mutex_exit(&cq->ncq_mutex); |
| |
| return (completed); |
| } |
| |
| static nvme_cmd_t * |
| nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp) |
| { |
| nvme_cq_t *cq = qp->nq_cq; |
| nvme_reg_cqhdbl_t head = { 0 }; |
| nvme_cmd_t *cmd; |
| |
| if (ddi_dma_sync(cq->ncq_dma->nd_dmah, 0, 0, DDI_DMA_SYNC_FORKERNEL) != |
| DDI_SUCCESS) |
| dev_err(nvme->n_dip, CE_WARN, "!ddi_dma_sync() failed in %s", |
| __func__); |
| |
| mutex_enter(&cq->ncq_mutex); |
| |
| if ((cmd = nvme_get_completed(nvme, cq)) != NULL) { |
| head.b.cqhdbl_cqh = cq->ncq_head; |
| nvme_put32(nvme, cq->ncq_hdbl, head.r); |
| } |
| |
| mutex_exit(&cq->ncq_mutex); |
| |
| return (cmd); |
| } |
| |
| static int |
| nvme_check_unknown_cmd_status(nvme_cmd_t *cmd) |
| { |
| nvme_cqe_t *cqe = &cmd->nc_cqe; |
| |
| dev_err(cmd->nc_nvme->n_dip, CE_WARN, |
| "!unknown command status received: opc = %x, sqid = %d, cid = %d, " |
| "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc, |
| cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct, |
| cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m); |
| |
| if (cmd->nc_xfer != NULL) |
| bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); |
| |
| if (cmd->nc_nvme->n_strict_version) { |
| cmd->nc_nvme->n_dead = B_TRUE; |
| ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST); |
| } |
| |
| return (EIO); |
| } |
| |
| static int |
| nvme_check_vendor_cmd_status(nvme_cmd_t *cmd) |
| { |
| nvme_cqe_t *cqe = &cmd->nc_cqe; |
| |
| dev_err(cmd->nc_nvme->n_dip, CE_WARN, |
| "!unknown command status received: opc = %x, sqid = %d, cid = %d, " |
| "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc, |
| cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct, |
| cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m); |
| if (!cmd->nc_nvme->n_ignore_unknown_vendor_status) { |
| cmd->nc_nvme->n_dead = B_TRUE; |
| ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST); |
| } |
| |
| return (EIO); |
| } |
| |
| static int |
| nvme_check_integrity_cmd_status(nvme_cmd_t *cmd) |
| { |
| nvme_cqe_t *cqe = &cmd->nc_cqe; |
| |
| switch (cqe->cqe_sf.sf_sc) { |
| case NVME_CQE_SC_INT_NVM_WRITE: |
| /* write fail */ |
| /* TODO: post ereport */ |
| if (cmd->nc_xfer != NULL) |
| bd_error(cmd->nc_xfer, BD_ERR_MEDIA); |
| return (EIO); |
| |
| case NVME_CQE_SC_INT_NVM_READ: |
| /* read fail */ |
| /* TODO: post ereport */ |
| if (cmd->nc_xfer != NULL) |
| bd_error(cmd->nc_xfer, BD_ERR_MEDIA); |
| return (EIO); |
| |
| default: |
| return (nvme_check_unknown_cmd_status(cmd)); |
| } |
| } |
| |
| static int |
| nvme_check_generic_cmd_status(nvme_cmd_t *cmd) |
| { |
| nvme_cqe_t *cqe = &cmd->nc_cqe; |
| |
| switch (cqe->cqe_sf.sf_sc) { |
| case NVME_CQE_SC_GEN_SUCCESS: |
| return (0); |
| |
| /* |
| * Errors indicating a bug in the driver should cause a panic. |
| */ |
| case NVME_CQE_SC_GEN_INV_OPC: |
| /* Invalid Command Opcode */ |
| if (!cmd->nc_dontpanic) |
| dev_err(cmd->nc_nvme->n_dip, CE_PANIC, |
| "programming error: invalid opcode in cmd %p", |
| (void *)cmd); |
| return (EINVAL); |
| |
| case NVME_CQE_SC_GEN_INV_FLD: |
| /* Invalid Field in Command */ |
| if (!cmd->nc_dontpanic) |
| dev_err(cmd->nc_nvme->n_dip, CE_PANIC, |
| "programming error: invalid field in cmd %p", |
| (void *)cmd); |
| return (EIO); |
| |
| case NVME_CQE_SC_GEN_ID_CNFL: |
| /* Command ID Conflict */ |
| dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " |
| "cmd ID conflict in cmd %p", (void *)cmd); |
| return (0); |
| |
| case NVME_CQE_SC_GEN_INV_NS: |
| /* Invalid Namespace or Format */ |
| if (!cmd->nc_dontpanic) |
| dev_err(cmd->nc_nvme->n_dip, CE_PANIC, |
| "programming error: invalid NS/format in cmd %p", |
| (void *)cmd); |
| return (EINVAL); |
| |
| case NVME_CQE_SC_GEN_NVM_LBA_RANGE: |
| /* LBA Out Of Range */ |
| dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " |
| "LBA out of range in cmd %p", (void *)cmd); |
| return (0); |
| |
| /* |
| * Non-fatal errors, handle gracefully. |
| */ |
| case NVME_CQE_SC_GEN_DATA_XFR_ERR: |
| /* Data Transfer Error (DMA) */ |
| /* TODO: post ereport */ |
| atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err); |
| if (cmd->nc_xfer != NULL) |
| bd_error(cmd->nc_xfer, BD_ERR_NTRDY); |
| return (EIO); |
| |
| case NVME_CQE_SC_GEN_INTERNAL_ERR: |
| /* |
| * Internal Error. The spec (v1.0, section 4.5.1.2) says |
| * detailed error information is returned as async event, |
| * so we pretty much ignore the error here and handle it |
| * in the async event handler. |
| */ |
| atomic_inc_32(&cmd->nc_nvme->n_internal_err); |
| if (cmd->nc_xfer != NULL) |
| bd_error(cmd->nc_xfer, BD_ERR_NTRDY); |
| return (EIO); |
| |
| case NVME_CQE_SC_GEN_ABORT_REQUEST: |
| /* |
| * Command Abort Requested. This normally happens only when a |
| * command times out. |
| */ |
| /* TODO: post ereport or change blkdev to handle this? */ |
| atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err); |
| return (ECANCELED); |
| |
| case NVME_CQE_SC_GEN_ABORT_PWRLOSS: |
| /* Command Aborted due to Power Loss Notification */ |
| ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST); |
| cmd->nc_nvme->n_dead = B_TRUE; |
| return (EIO); |
| |
| case NVME_CQE_SC_GEN_ABORT_SQ_DEL: |
| /* Command Aborted due to SQ Deletion */ |
| atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del); |
| return (EIO); |
| |
| case NVME_CQE_SC_GEN_NVM_CAP_EXC: |
| /* Capacity Exceeded */ |
| atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc); |
| if (cmd->nc_xfer != NULL) |
| bd_error(cmd->nc_xfer, BD_ERR_MEDIA); |
| return (EIO); |
| |
| case NVME_CQE_SC_GEN_NVM_NS_NOTRDY: |
| /* Namespace Not Ready */ |
| atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy); |
| if (cmd->nc_xfer != NULL) |
| bd_error(cmd->nc_xfer, BD_ERR_NTRDY); |
| return (EIO); |
| |
| case NVME_CQE_SC_GEN_NVM_FORMATTING: |
| /* Format in progress (1.2) */ |
| if (!NVME_VERSION_ATLEAST(&cmd->nc_nvme->n_version, 1, 2)) |
| return (nvme_check_unknown_cmd_status(cmd)); |
| atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_formatting); |
| if (cmd->nc_xfer != NULL) |
| bd_error(cmd->nc_xfer, BD_ERR_NTRDY); |
| return (EIO); |
| |
| default: |
| return (nvme_check_unknown_cmd_status(cmd)); |
| } |
| } |
| |
| static int |
| nvme_check_specific_cmd_status(nvme_cmd_t *cmd) |
| { |
| nvme_cqe_t *cqe = &cmd->nc_cqe; |
| |
| switch (cqe->cqe_sf.sf_sc) { |
| case NVME_CQE_SC_SPC_INV_CQ: |
| /* Completion Queue Invalid */ |
| ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE); |
| atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err); |
| return (EINVAL); |
| |
| case NVME_CQE_SC_SPC_INV_QID: |
| /* Invalid Queue Identifier */ |
| ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE || |
| cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE || |
| cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE || |
| cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE); |
| atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err); |
| return (EINVAL); |
| |
| case NVME_CQE_SC_SPC_MAX_QSZ_EXC: |
| /* Max Queue Size Exceeded */ |
| ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE || |
| cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE); |
| atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc); |
| return (EINVAL); |
| |
| case NVME_CQE_SC_SPC_ABRT_CMD_EXC: |
| /* Abort Command Limit Exceeded */ |
| ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT); |
| dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " |
| "abort command limit exceeded in cmd %p", (void *)cmd); |
| return (0); |
| |
| case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC: |
| /* Async Event Request Limit Exceeded */ |
| ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT); |
| dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " |
| "async event request limit exceeded in cmd %p", |
| (void *)cmd); |
| return (0); |
| |
| case NVME_CQE_SC_SPC_INV_INT_VECT: |
| /* Invalid Interrupt Vector */ |
| ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE); |
| atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect); |
| return (EINVAL); |
| |
| case NVME_CQE_SC_SPC_INV_LOG_PAGE: |
| /* Invalid Log Page */ |
| ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE); |
| atomic_inc_32(&cmd->nc_nvme->n_inv_log_page); |
| return (EINVAL); |
| |
| case NVME_CQE_SC_SPC_INV_FORMAT: |
| /* Invalid Format */ |
| ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT); |
| atomic_inc_32(&cmd->nc_nvme->n_inv_format); |
| if (cmd->nc_xfer != NULL) |
| bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); |
| return (EINVAL); |
| |
| case NVME_CQE_SC_SPC_INV_Q_DEL: |
| /* Invalid Queue Deletion */ |
| ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE); |
| atomic_inc_32(&cmd->nc_nvme->n_inv_q_del); |
| return (EINVAL); |
| |
| case NVME_CQE_SC_SPC_NVM_CNFL_ATTR: |
| /* Conflicting Attributes */ |
| ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT || |
| cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ || |
| cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE); |
| atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr); |
| if (cmd->nc_xfer != NULL) |
| bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); |
| return (EINVAL); |
| |
| case NVME_CQE_SC_SPC_NVM_INV_PROT: |
| /* Invalid Protection Information */ |
| ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE || |
| cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ || |
| cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE); |
| atomic_inc_32(&cmd->nc_nvme->n_inv_prot); |
| if (cmd->nc_xfer != NULL) |
| bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); |
| return (EINVAL); |
| |
| case NVME_CQE_SC_SPC_NVM_READONLY: |
| /* Write to Read Only Range */ |
| ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE); |
| atomic_inc_32(&cmd->nc_nvme->n_readonly); |
| if (cmd->nc_xfer != NULL) |
| bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); |
| return (EROFS); |
| |
| case NVME_CQE_SC_SPC_INV_FW_SLOT: |
| /* Invalid Firmware Slot */ |
| ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE); |
| return (EINVAL); |
| |
| case NVME_CQE_SC_SPC_INV_FW_IMG: |
| /* Invalid Firmware Image */ |
| ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE); |
| return (EINVAL); |
| |
| case NVME_CQE_SC_SPC_FW_RESET: |
| /* Conventional Reset Required */ |
| ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE); |
| return (0); |
| |
| case NVME_CQE_SC_SPC_FW_NSSR: |
| /* NVMe Subsystem Reset Required */ |
| ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE); |
| return (0); |
| |
| case NVME_CQE_SC_SPC_FW_NEXT_RESET: |
| /* Activation Requires Reset */ |
| ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE); |
| return (0); |
| |
| case NVME_CQE_SC_SPC_FW_MTFA: |
| /* Activation Requires Maximum Time Violation */ |
| ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE); |
| return (EAGAIN); |
| |
| case NVME_CQE_SC_SPC_FW_PROHIBITED: |
| /* Activation Prohibited */ |
| ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE); |
| return (EINVAL); |
| |
| case NVME_CQE_SC_SPC_FW_OVERLAP: |
| /* Overlapping Firmware Ranges */ |
| ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_IMAGE_LOAD); |
| return (EINVAL); |
| |
| default: |
| return (nvme_check_unknown_cmd_status(cmd)); |
| } |
| } |
| |
| static inline int |
| nvme_check_cmd_status(nvme_cmd_t *cmd) |
| { |
| nvme_cqe_t *cqe = &cmd->nc_cqe; |
| |
| /* |
| * Take a shortcut if the controller is dead, or if |
| * command status indicates no error. |
| */ |
| if (cmd->nc_nvme->n_dead) |
| return (EIO); |
| |
| if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC && |
| cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS) |
| return (0); |
| |
| if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC) |
| return (nvme_check_generic_cmd_status(cmd)); |
| else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC) |
| return (nvme_check_specific_cmd_status(cmd)); |
| else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY) |
| return (nvme_check_integrity_cmd_status(cmd)); |
| else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR) |
| return (nvme_check_vendor_cmd_status(cmd)); |
| |
| return (nvme_check_unknown_cmd_status(cmd)); |
| } |
| |
| static int |
| nvme_abort_cmd(nvme_cmd_t *abort_cmd, uint_t sec) |
| { |
| nvme_t *nvme = abort_cmd->nc_nvme; |
| nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); |
| nvme_abort_cmd_t ac = { 0 }; |
| int ret = 0; |
| |
| sema_p(&nvme->n_abort_sema); |
| |
| ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid; |
| ac.b.ac_sqid = abort_cmd->nc_sqid; |
| |
| cmd->nc_sqid = 0; |
| cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT; |
| cmd->nc_callback = nvme_wakeup_cmd; |
| cmd->nc_sqe.sqe_cdw10 = ac.r; |
| |
| /* |
| * Send the ABORT to the hardware. The ABORT command will return _after_ |
| * the aborted command has completed (aborted or otherwise), but since |
| * we still hold the aborted command's mutex its callback hasn't been |
| * processed yet. |
| */ |
| nvme_admin_cmd(cmd, sec); |
| sema_v(&nvme->n_abort_sema); |
| |
| if ((ret = nvme_check_cmd_status(cmd)) != 0) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!ABORT failed with sct = %x, sc = %x", |
| cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); |
| atomic_inc_32(&nvme->n_abort_failed); |
| } else { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!ABORT of command %d/%d %ssuccessful", |
| abort_cmd->nc_sqe.sqe_cid, abort_cmd->nc_sqid, |
| cmd->nc_cqe.cqe_dw0 & 1 ? "un" : ""); |
| if ((cmd->nc_cqe.cqe_dw0 & 1) == 0) |
| atomic_inc_32(&nvme->n_cmd_aborted); |
| } |
| |
| nvme_free_cmd(cmd); |
| return (ret); |
| } |
| |
| /* |
| * nvme_wait_cmd -- wait for command completion or timeout |
| * |
| * In case of a serious error or a timeout of the abort command the hardware |
| * will be declared dead and FMA will be notified. |
| */ |
| static void |
| nvme_wait_cmd(nvme_cmd_t *cmd, uint_t sec) |
| { |
| clock_t timeout = ddi_get_lbolt() + drv_usectohz(sec * MICROSEC); |
| nvme_t *nvme = cmd->nc_nvme; |
| nvme_reg_csts_t csts; |
| nvme_qpair_t *qp; |
| |
| ASSERT(mutex_owned(&cmd->nc_mutex)); |
| |
| while (!cmd->nc_completed) { |
| if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1) |
| break; |
| } |
| |
| if (cmd->nc_completed) |
| return; |
| |
| /* |
| * The command timed out. |
| * |
| * Check controller for fatal status, any errors associated with the |
| * register or DMA handle, or for a double timeout (abort command timed |
| * out). If necessary log a warning and call FMA. |
| */ |
| csts.r = nvme_get32(nvme, NVME_REG_CSTS); |
| dev_err(nvme->n_dip, CE_WARN, "!command %d/%d timeout, " |
| "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_cid, cmd->nc_sqid, |
| cmd->nc_sqe.sqe_opc, csts.b.csts_cfs); |
| atomic_inc_32(&nvme->n_cmd_timeout); |
| |
| if (csts.b.csts_cfs || |
| nvme_check_regs_hdl(nvme) || |
| nvme_check_dma_hdl(cmd->nc_dma) || |
| cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) { |
| ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); |
| nvme->n_dead = B_TRUE; |
| } else if (nvme_abort_cmd(cmd, sec) == 0) { |
| /* |
| * If the abort succeeded the command should complete |
| * immediately with an appropriate status. |
| */ |
| while (!cmd->nc_completed) |
| cv_wait(&cmd->nc_cv, &cmd->nc_mutex); |
| |
| return; |
| } |
| |
| qp = nvme->n_ioq[cmd->nc_sqid]; |
| |
| mutex_enter(&qp->nq_mutex); |
| (void) nvme_unqueue_cmd(nvme, qp, cmd->nc_sqe.sqe_cid); |
| mutex_exit(&qp->nq_mutex); |
| |
| /* |
| * As we don't know what the presumed dead hardware might still do with |
| * the DMA memory, we'll put the command on the lost commands list if it |
| * has any DMA memory. |
| */ |
| if (cmd->nc_dma != NULL) { |
| mutex_enter(&nvme_lc_mutex); |
| list_insert_head(&nvme_lost_cmds, cmd); |
| mutex_exit(&nvme_lc_mutex); |
| } |
| } |
| |
| static void |
| nvme_wakeup_cmd(void *arg) |
| { |
| nvme_cmd_t *cmd = arg; |
| |
| mutex_enter(&cmd->nc_mutex); |
| cmd->nc_completed = B_TRUE; |
| cv_signal(&cmd->nc_cv); |
| mutex_exit(&cmd->nc_mutex); |
| } |
| |
| static void |
| nvme_async_event_task(void *arg) |
| { |
| nvme_cmd_t *cmd = arg; |
| nvme_t *nvme = cmd->nc_nvme; |
| nvme_error_log_entry_t *error_log = NULL; |
| nvme_health_log_t *health_log = NULL; |
| nvme_nschange_list_t *nslist = NULL; |
| size_t logsize = 0; |
| nvme_async_event_t event; |
| |
| /* |
| * Check for errors associated with the async request itself. The only |
| * command-specific error is "async event limit exceeded", which |
| * indicates a programming error in the driver and causes a panic in |
| * nvme_check_cmd_status(). |
| * |
| * Other possible errors are various scenarios where the async request |
| * was aborted, or internal errors in the device. Internal errors are |
| * reported to FMA, the command aborts need no special handling here. |
| * |
| * And finally, at least qemu nvme does not support async events, |
| * and will return NVME_CQE_SC_GEN_INV_OPC | DNR. If so, we |
| * will avoid posting async events. |
| */ |
| |
| if (nvme_check_cmd_status(cmd) != 0) { |
| dev_err(cmd->nc_nvme->n_dip, CE_WARN, |
| "!async event request returned failure, sct = %x, " |
| "sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct, |
| cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr, |
| cmd->nc_cqe.cqe_sf.sf_m); |
| |
| if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC && |
| cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) { |
| cmd->nc_nvme->n_dead = B_TRUE; |
| ddi_fm_service_impact(cmd->nc_nvme->n_dip, |
| DDI_SERVICE_LOST); |
| } |
| |
| if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC && |
| cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_OPC && |
| cmd->nc_cqe.cqe_sf.sf_dnr == 1) { |
| nvme->n_async_event_supported = B_FALSE; |
| } |
| |
| nvme_free_cmd(cmd); |
| return; |
| } |
| |
| event.r = cmd->nc_cqe.cqe_dw0; |
| |
| /* Clear CQE and re-submit the async request. */ |
| bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t)); |
| nvme_submit_admin_cmd(nvme->n_adminq, cmd); |
| |
| switch (event.b.ae_type) { |
| case NVME_ASYNC_TYPE_ERROR: |
| if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) { |
| (void) nvme_get_logpage(nvme, B_FALSE, |
| (void **)&error_log, &logsize, event.b.ae_logpage); |
| } else { |
| dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in " |
| "async event reply: %d", event.b.ae_logpage); |
| atomic_inc_32(&nvme->n_wrong_logpage); |
| } |
| |
| switch (event.b.ae_info) { |
| case NVME_ASYNC_ERROR_INV_SQ: |
| dev_err(nvme->n_dip, CE_PANIC, "programming error: " |
| "invalid submission queue"); |
| return; |
| |
| case NVME_ASYNC_ERROR_INV_DBL: |
| dev_err(nvme->n_dip, CE_PANIC, "programming error: " |
| "invalid doorbell write value"); |
| return; |
| |
| case NVME_ASYNC_ERROR_DIAGFAIL: |
| dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure"); |
| ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); |
| nvme->n_dead = B_TRUE; |
| atomic_inc_32(&nvme->n_diagfail_event); |
| break; |
| |
| case NVME_ASYNC_ERROR_PERSISTENT: |
| dev_err(nvme->n_dip, CE_WARN, "!persistent internal " |
| "device error"); |
| ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); |
| nvme->n_dead = B_TRUE; |
| atomic_inc_32(&nvme->n_persistent_event); |
| break; |
| |
| case NVME_ASYNC_ERROR_TRANSIENT: |
| dev_err(nvme->n_dip, CE_WARN, "!transient internal " |
| "device error"); |
| /* TODO: send ereport */ |
| atomic_inc_32(&nvme->n_transient_event); |
| break; |
| |
| case NVME_ASYNC_ERROR_FW_LOAD: |
| dev_err(nvme->n_dip, CE_WARN, |
| "!firmware image load error"); |
| atomic_inc_32(&nvme->n_fw_load_event); |
| break; |
| } |
| break; |
| |
| case NVME_ASYNC_TYPE_HEALTH: |
| if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) { |
| (void) nvme_get_logpage(nvme, B_FALSE, |
| (void **)&health_log, &logsize, event.b.ae_logpage, |
| -1); |
| } else { |
| dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in " |
| "async event reply: %d", event.b.ae_logpage); |
| atomic_inc_32(&nvme->n_wrong_logpage); |
| } |
| |
| switch (event.b.ae_info) { |
| case NVME_ASYNC_HEALTH_RELIABILITY: |
| dev_err(nvme->n_dip, CE_WARN, |
| "!device reliability compromised"); |
| /* TODO: send ereport */ |
| atomic_inc_32(&nvme->n_reliability_event); |
| break; |
| |
| case NVME_ASYNC_HEALTH_TEMPERATURE: |
| dev_err(nvme->n_dip, CE_WARN, |
| "!temperature above threshold"); |
| /* TODO: send ereport */ |
| atomic_inc_32(&nvme->n_temperature_event); |
| break; |
| |
| case NVME_ASYNC_HEALTH_SPARE: |
| dev_err(nvme->n_dip, CE_WARN, |
| "!spare space below threshold"); |
| /* TODO: send ereport */ |
| atomic_inc_32(&nvme->n_spare_event); |
| break; |
| } |
| break; |
| |
| case NVME_ASYNC_TYPE_NOTICE: |
| switch (event.b.ae_info) { |
| case NVME_ASYNC_NOTICE_NS_CHANGE: |
| dev_err(nvme->n_dip, CE_NOTE, |
| "namespace attribute change event, " |
| "logpage = %x", event.b.ae_logpage); |
| atomic_inc_32(&nvme->n_notice_event); |
| |
| if (event.b.ae_logpage != NVME_LOGPAGE_NSCHANGE) |
| break; |
| |
| if (nvme_get_logpage(nvme, B_FALSE, (void **)&nslist, |
| &logsize, event.b.ae_logpage, -1) != 0) { |
| break; |
| } |
| |
| if (nslist->nscl_ns[0] == UINT32_MAX) { |
| dev_err(nvme->n_dip, CE_CONT, |
| "more than %u namespaces have changed.\n", |
| NVME_NSCHANGE_LIST_SIZE); |
| break; |
| } |
| |
| mutex_enter(&nvme->n_mgmt_mutex); |
| for (uint_t i = 0; i < NVME_NSCHANGE_LIST_SIZE; i++) { |
| uint32_t nsid = nslist->nscl_ns[i]; |
| |
| if (nsid == 0) /* end of list */ |
| break; |
| |
| dev_err(nvme->n_dip, CE_NOTE, |
| "!namespace nvme%d/%u has changed.", |
| ddi_get_instance(nvme->n_dip), nsid); |
| |
| |
| if (nvme_init_ns(nvme, nsid) != DDI_SUCCESS) |
| continue; |
| |
| bd_state_change( |
| NVME_NSID2NS(nvme, nsid)->ns_bd_hdl); |
| } |
| mutex_exit(&nvme->n_mgmt_mutex); |
| |
| break; |
| |
| case NVME_ASYNC_NOTICE_FW_ACTIVATE: |
| dev_err(nvme->n_dip, CE_NOTE, |
| "firmware activation starting, " |
| "logpage = %x", event.b.ae_logpage); |
| atomic_inc_32(&nvme->n_notice_event); |
| break; |
| |
| case NVME_ASYNC_NOTICE_TELEMETRY: |
| dev_err(nvme->n_dip, CE_NOTE, |
| "telemetry log changed, " |
| "logpage = %x", event.b.ae_logpage); |
| atomic_inc_32(&nvme->n_notice_event); |
| break; |
| |
| case NVME_ASYNC_NOTICE_NS_ASYMM: |
| dev_err(nvme->n_dip, CE_NOTE, |
| "asymmetric namespace access change, " |
| "logpage = %x", event.b.ae_logpage); |
| atomic_inc_32(&nvme->n_notice_event); |
| break; |
| |
| case NVME_ASYNC_NOTICE_LATENCYLOG: |
| dev_err(nvme->n_dip, CE_NOTE, |
| "predictable latency event aggregate log change, " |
| "logpage = %x", event.b.ae_logpage); |
| atomic_inc_32(&nvme->n_notice_event); |
| break; |
| |
| case NVME_ASYNC_NOTICE_LBASTATUS: |
| dev_err(nvme->n_dip, CE_NOTE, |
| "LBA status information alert, " |
| "logpage = %x", event.b.ae_logpage); |
| atomic_inc_32(&nvme->n_notice_event); |
| break; |
| |
| case NVME_ASYNC_NOTICE_ENDURANCELOG: |
| dev_err(nvme->n_dip, CE_NOTE, |
| "endurance group event aggregate log page change, " |
| "logpage = %x", event.b.ae_logpage); |
| atomic_inc_32(&nvme->n_notice_event); |
| break; |
| |
| default: |
| dev_err(nvme->n_dip, CE_WARN, |
| "!unknown notice async event received, " |
| "info = %x, logpage = %x", event.b.ae_info, |
| event.b.ae_logpage); |
| atomic_inc_32(&nvme->n_unknown_event); |
| break; |
| } |
| break; |
| |
| case NVME_ASYNC_TYPE_VENDOR: |
| dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event " |
| "received, info = %x, logpage = %x", event.b.ae_info, |
| event.b.ae_logpage); |
| atomic_inc_32(&nvme->n_vendor_event); |
| break; |
| |
| default: |
| dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, " |
| "type = %x, info = %x, logpage = %x", event.b.ae_type, |
| event.b.ae_info, event.b.ae_logpage); |
| atomic_inc_32(&nvme->n_unknown_event); |
| break; |
| } |
| |
| if (error_log != NULL) |
| kmem_free(error_log, logsize); |
| |
| if (health_log != NULL) |
| kmem_free(health_log, logsize); |
| |
| if (nslist != NULL) |
| kmem_free(nslist, logsize); |
| } |
| |
| static void |
| nvme_admin_cmd(nvme_cmd_t *cmd, int sec) |
| { |
| mutex_enter(&cmd->nc_mutex); |
| nvme_submit_admin_cmd(cmd->nc_nvme->n_adminq, cmd); |
| nvme_wait_cmd(cmd, sec); |
| mutex_exit(&cmd->nc_mutex); |
| } |
| |
| static void |
| nvme_async_event(nvme_t *nvme) |
| { |
| nvme_cmd_t *cmd; |
| |
| cmd = nvme_alloc_cmd(nvme, KM_SLEEP); |
| cmd->nc_sqid = 0; |
| cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT; |
| cmd->nc_callback = nvme_async_event_task; |
| cmd->nc_dontpanic = B_TRUE; |
| |
| nvme_submit_admin_cmd(nvme->n_adminq, cmd); |
| } |
| |
| static int |
| nvme_format_nvm(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t lbaf, |
| boolean_t ms, uint8_t pi, boolean_t pil, uint8_t ses) |
| { |
| nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); |
| nvme_format_nvm_t format_nvm = { 0 }; |
| int ret; |
| |
| format_nvm.b.fm_lbaf = lbaf & 0xf; |
| format_nvm.b.fm_ms = ms ? 1 : 0; |
| format_nvm.b.fm_pi = pi & 0x7; |
| format_nvm.b.fm_pil = pil ? 1 : 0; |
| format_nvm.b.fm_ses = ses & 0x7; |
| |
| cmd->nc_sqid = 0; |
| cmd->nc_callback = nvme_wakeup_cmd; |
| cmd->nc_sqe.sqe_nsid = nsid; |
| cmd->nc_sqe.sqe_opc = NVME_OPC_NVM_FORMAT; |
| cmd->nc_sqe.sqe_cdw10 = format_nvm.r; |
| |
| /* |
| * Some devices like Samsung SM951 don't allow formatting of all |
| * namespaces in one command. Handle that gracefully. |
| */ |
| if (nsid == (uint32_t)-1) |
| cmd->nc_dontpanic = B_TRUE; |
| /* |
| * If this format request was initiated by the user, then don't allow a |
| * programmer error to panic the system. |
| */ |
| if (user) |
| cmd->nc_dontpanic = B_TRUE; |
| |
| nvme_admin_cmd(cmd, nvme_format_cmd_timeout); |
| |
| if ((ret = nvme_check_cmd_status(cmd)) != 0) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!FORMAT failed with sct = %x, sc = %x", |
| cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); |
| } |
| |
| nvme_free_cmd(cmd); |
| return (ret); |
| } |
| |
| /* |
| * The `bufsize` parameter is usually an output parameter, set by this routine |
| * when filling in the supported types of logpages from the device. However, for |
| * vendor-specific pages, it is an input parameter, and must be set |
| * appropriately by callers. |
| */ |
| static int |
| nvme_get_logpage(nvme_t *nvme, boolean_t user, void **buf, size_t *bufsize, |
| uint8_t logpage, ...) |
| { |
| nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); |
| nvme_getlogpage_t getlogpage = { 0 }; |
| va_list ap; |
| int ret; |
| |
| va_start(ap, logpage); |
| |
| cmd->nc_sqid = 0; |
| cmd->nc_callback = nvme_wakeup_cmd; |
| cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE; |
| |
| if (user) |
| cmd->nc_dontpanic = B_TRUE; |
| |
| getlogpage.b.lp_lid = logpage; |
| |
| switch (logpage) { |
| case NVME_LOGPAGE_ERROR: |
| cmd->nc_sqe.sqe_nsid = (uint32_t)-1; |
| *bufsize = MIN(NVME_VENDOR_SPECIFIC_LOGPAGE_MAX_SIZE, |
| nvme->n_error_log_len * sizeof (nvme_error_log_entry_t)); |
| break; |
| |
| case NVME_LOGPAGE_HEALTH: |
| cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t); |
| *bufsize = sizeof (nvme_health_log_t); |
| break; |
| |
| case NVME_LOGPAGE_FWSLOT: |
| cmd->nc_sqe.sqe_nsid = (uint32_t)-1; |
| *bufsize = sizeof (nvme_fwslot_log_t); |
| break; |
| |
| case NVME_LOGPAGE_NSCHANGE: |
| cmd->nc_sqe.sqe_nsid = (uint32_t)-1; |
| *bufsize = sizeof (nvme_nschange_list_t); |
| break; |
| |
| default: |
| /* |
| * This intentionally only checks against the minimum valid |
| * log page ID. `logpage` is a uint8_t, and `0xFF` is a valid |
| * page ID, so this one-sided check avoids a compiler error |
| * about a check that's always true. |
| */ |
| if (logpage < NVME_VENDOR_SPECIFIC_LOGPAGE_MIN) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!unknown log page requested: %d", logpage); |
| atomic_inc_32(&nvme->n_unknown_logpage); |
| ret = EINVAL; |
| goto fail; |
| } |
| cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t); |
| } |
| |
| va_end(ap); |
| |
| getlogpage.b.lp_numd = *bufsize / sizeof (uint32_t) - 1; |
| |
| cmd->nc_sqe.sqe_cdw10 = getlogpage.r; |
| |
| if (nvme_zalloc_dma(nvme, *bufsize, |
| DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!nvme_zalloc_dma failed for GET LOG PAGE"); |
| ret = ENOMEM; |
| goto fail; |
| } |
| |
| if ((ret = nvme_fill_prp(cmd, cmd->nc_dma->nd_dmah)) != 0) |
| goto fail; |
| nvme_admin_cmd(cmd, nvme_admin_cmd_timeout); |
| |
| if ((ret = nvme_check_cmd_status(cmd)) != 0) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!GET LOG PAGE failed with sct = %x, sc = %x", |
| cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); |
| goto fail; |
| } |
| |
| *buf = kmem_alloc(*bufsize, KM_SLEEP); |
| bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize); |
| |
| fail: |
| nvme_free_cmd(cmd); |
| |
| return (ret); |
| } |
| |
| static int |
| nvme_identify(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t cns, |
| void **buf) |
| { |
| nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); |
| int ret; |
| |
| if (buf == NULL) |
| return (EINVAL); |
| |
| cmd->nc_sqid = 0; |
| cmd->nc_callback = nvme_wakeup_cmd; |
| cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY; |
| cmd->nc_sqe.sqe_nsid = nsid; |
| cmd->nc_sqe.sqe_cdw10 = cns; |
| |
| if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ, |
| &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!nvme_zalloc_dma failed for IDENTIFY"); |
| ret = ENOMEM; |
| goto fail; |
| } |
| |
| if (cmd->nc_dma->nd_ncookie > 2) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!too many DMA cookies for IDENTIFY"); |
| atomic_inc_32(&nvme->n_too_many_cookies); |
| ret = ENOMEM; |
| goto fail; |
| } |
| |
| cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress; |
| if (cmd->nc_dma->nd_ncookie > 1) { |
| ddi_dma_nextcookie(cmd->nc_dma->nd_dmah, |
| &cmd->nc_dma->nd_cookie); |
| cmd->nc_sqe.sqe_dptr.d_prp[1] = |
| cmd->nc_dma->nd_cookie.dmac_laddress; |
| } |
| |
| if (user) |
| cmd->nc_dontpanic = B_TRUE; |
| |
| nvme_admin_cmd(cmd, nvme_admin_cmd_timeout); |
| |
| if ((ret = nvme_check_cmd_status(cmd)) != 0) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!IDENTIFY failed with sct = %x, sc = %x", |
| cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); |
| goto fail; |
| } |
| |
| *buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP); |
| bcopy(cmd->nc_dma->nd_memp, *buf, NVME_IDENTIFY_BUFSIZE); |
| |
| fail: |
| nvme_free_cmd(cmd); |
| |
| return (ret); |
| } |
| |
| static int |
| nvme_set_features(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t feature, |
| uint32_t val, uint32_t *res) |
| { |
| _NOTE(ARGUNUSED(nsid)); |
| nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); |
| int ret = EINVAL; |
| |
| ASSERT(res != NULL); |
| |
| cmd->nc_sqid = 0; |
| cmd->nc_callback = nvme_wakeup_cmd; |
| cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES; |
| cmd->nc_sqe.sqe_cdw10 = feature; |
| cmd->nc_sqe.sqe_cdw11 = val; |
| |
| if (user) |
| cmd->nc_dontpanic = B_TRUE; |
| |
| switch (feature) { |
| case NVME_FEAT_WRITE_CACHE: |
| if (!nvme->n_write_cache_present) |
| goto fail; |
| break; |
| |
| case NVME_FEAT_NQUEUES: |
| break; |
| |
| default: |
| goto fail; |
| } |
| |
| nvme_admin_cmd(cmd, nvme_admin_cmd_timeout); |
| |
| if ((ret = nvme_check_cmd_status(cmd)) != 0) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!SET FEATURES %d failed with sct = %x, sc = %x", |
| feature, cmd->nc_cqe.cqe_sf.sf_sct, |
| cmd->nc_cqe.cqe_sf.sf_sc); |
| goto fail; |
| } |
| |
| *res = cmd->nc_cqe.cqe_dw0; |
| |
| fail: |
| nvme_free_cmd(cmd); |
| return (ret); |
| } |
| |
| static int |
| nvme_get_features(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t feature, |
| uint32_t *res, void **buf, size_t *bufsize) |
| { |
| nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); |
| int ret = EINVAL; |
| |
| ASSERT(res != NULL); |
| |
| if (bufsize != NULL) |
| *bufsize = 0; |
| |
| cmd->nc_sqid = 0; |
| cmd->nc_callback = nvme_wakeup_cmd; |
| cmd->nc_sqe.sqe_opc = NVME_OPC_GET_FEATURES; |
| cmd->nc_sqe.sqe_cdw10 = feature; |
| cmd->nc_sqe.sqe_cdw11 = *res; |
| |
| /* |
| * For some of the optional features there doesn't seem to be a method |
| * of detecting whether it is supported other than using it. This will |
| * cause "Invalid Field in Command" error, which is normally considered |
| * a programming error. Set the nc_dontpanic flag to override the panic |
| * in nvme_check_generic_cmd_status(). |
| */ |
| switch (feature) { |
| case NVME_FEAT_ARBITRATION: |
| case NVME_FEAT_POWER_MGMT: |
| case NVME_FEAT_TEMPERATURE: |
| case NVME_FEAT_ERROR: |
| case NVME_FEAT_NQUEUES: |
| case NVME_FEAT_INTR_COAL: |
| case NVME_FEAT_INTR_VECT: |
| case NVME_FEAT_WRITE_ATOM: |
| case NVME_FEAT_ASYNC_EVENT: |
| break; |
| |
| case NVME_FEAT_WRITE_CACHE: |
| if (!nvme->n_write_cache_present) |
| goto fail; |
| break; |
| |
| case NVME_FEAT_LBA_RANGE: |
| if (!nvme->n_lba_range_supported) |
| goto fail; |
| |
| cmd->nc_dontpanic = B_TRUE; |
| cmd->nc_sqe.sqe_nsid = nsid; |
| ASSERT(bufsize != NULL); |
| *bufsize = NVME_LBA_RANGE_BUFSIZE; |
| break; |
| |
| case NVME_FEAT_AUTO_PST: |
| if (!nvme->n_auto_pst_supported) |
| goto fail; |
| |
| ASSERT(bufsize != NULL); |
| *bufsize = NVME_AUTO_PST_BUFSIZE; |
| break; |
| |
| case NVME_FEAT_PROGRESS: |
| if (!nvme->n_progress_supported) |
| goto fail; |
| |
| cmd->nc_dontpanic = B_TRUE; |
| break; |
| |
| default: |
| goto fail; |
| } |
| |
| if (user) |
| cmd->nc_dontpanic = B_TRUE; |
| |
| if (bufsize != NULL && *bufsize != 0) { |
| if (nvme_zalloc_dma(nvme, *bufsize, DDI_DMA_READ, |
| &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!nvme_zalloc_dma failed for GET FEATURES"); |
| ret = ENOMEM; |
| goto fail; |
| } |
| |
| if (cmd->nc_dma->nd_ncookie > 2) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!too many DMA cookies for GET FEATURES"); |
| atomic_inc_32(&nvme->n_too_many_cookies); |
| ret = ENOMEM; |
| goto fail; |
| } |
| |
| cmd->nc_sqe.sqe_dptr.d_prp[0] = |
| cmd->nc_dma->nd_cookie.dmac_laddress; |
| if (cmd->nc_dma->nd_ncookie > 1) { |
| ddi_dma_nextcookie(cmd->nc_dma->nd_dmah, |
| &cmd->nc_dma->nd_cookie); |
| cmd->nc_sqe.sqe_dptr.d_prp[1] = |
| cmd->nc_dma->nd_cookie.dmac_laddress; |
| } |
| } |
| |
| nvme_admin_cmd(cmd, nvme_admin_cmd_timeout); |
| |
| if ((ret = nvme_check_cmd_status(cmd)) != 0) { |
| boolean_t known = B_TRUE; |
| |
| /* Check if this is unsupported optional feature */ |
| if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC && |
| cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_FLD) { |
| switch (feature) { |
| case NVME_FEAT_LBA_RANGE: |
| nvme->n_lba_range_supported = B_FALSE; |
| break; |
| case NVME_FEAT_PROGRESS: |
| nvme->n_progress_supported = B_FALSE; |
| break; |
| default: |
| known = B_FALSE; |
| break; |
| } |
| } else { |
| known = B_FALSE; |
| } |
| |
| /* Report the error otherwise */ |
| if (!known) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!GET FEATURES %d failed with sct = %x, sc = %x", |
| feature, cmd->nc_cqe.cqe_sf.sf_sct, |
| cmd->nc_cqe.cqe_sf.sf_sc); |
| } |
| |
| goto fail; |
| } |
| |
| if (bufsize != NULL && *bufsize != 0) { |
| ASSERT(buf != NULL); |
| *buf = kmem_alloc(*bufsize, KM_SLEEP); |
| bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize); |
| } |
| |
| *res = cmd->nc_cqe.cqe_dw0; |
| |
| fail: |
| nvme_free_cmd(cmd); |
| return (ret); |
| } |
| |
| static int |
| nvme_write_cache_set(nvme_t *nvme, boolean_t enable) |
| { |
| nvme_write_cache_t nwc = { 0 }; |
| |
| if (enable) |
| nwc.b.wc_wce = 1; |
| |
| return (nvme_set_features(nvme, B_FALSE, 0, NVME_FEAT_WRITE_CACHE, |
| nwc.r, &nwc.r)); |
| } |
| |
| static int |
| nvme_set_nqueues(nvme_t *nvme) |
| { |
| nvme_nqueues_t nq = { 0 }; |
| int ret; |
| |
| /* |
| * The default is to allocate one completion queue per vector. |
| */ |
| if (nvme->n_completion_queues == -1) |
| nvme->n_completion_queues = nvme->n_intr_cnt; |
| |
| /* |
| * There is no point in having more completion queues than |
| * interrupt vectors. |
| */ |
| nvme->n_completion_queues = MIN(nvme->n_completion_queues, |
| nvme->n_intr_cnt); |
| |
| /* |
| * The default is to use one submission queue per completion queue. |
| */ |
| if (nvme->n_submission_queues == -1) |
| nvme->n_submission_queues = nvme->n_completion_queues; |
| |
| /* |
| * There is no point in having more compeletion queues than |
| * submission queues. |
| */ |
| nvme->n_completion_queues = MIN(nvme->n_completion_queues, |
| nvme->n_submission_queues); |
| |
| ASSERT(nvme->n_submission_queues > 0); |
| ASSERT(nvme->n_completion_queues > 0); |
| |
| nq.b.nq_nsq = nvme->n_submission_queues - 1; |
| nq.b.nq_ncq = nvme->n_completion_queues - 1; |
| |
| ret = nvme_set_features(nvme, B_FALSE, 0, NVME_FEAT_NQUEUES, nq.r, |
| &nq.r); |
| |
| if (ret == 0) { |
| /* |
| * Never use more than the requested number of queues. |
| */ |
| nvme->n_submission_queues = MIN(nvme->n_submission_queues, |
| nq.b.nq_nsq + 1); |
| nvme->n_completion_queues = MIN(nvme->n_completion_queues, |
| nq.b.nq_ncq + 1); |
| } |
| |
| return (ret); |
| } |
| |
| static int |
| nvme_create_completion_queue(nvme_t *nvme, nvme_cq_t *cq) |
| { |
| nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); |
| nvme_create_queue_dw10_t dw10 = { 0 }; |
| nvme_create_cq_dw11_t c_dw11 = { 0 }; |
| int ret; |
| |
| dw10.b.q_qid = cq->ncq_id; |
| dw10.b.q_qsize = cq->ncq_nentry - 1; |
| |
| c_dw11.b.cq_pc = 1; |
| c_dw11.b.cq_ien = 1; |
| c_dw11.b.cq_iv = cq->ncq_id % nvme->n_intr_cnt; |
| |
| cmd->nc_sqid = 0; |
| cmd->nc_callback = nvme_wakeup_cmd; |
| cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE; |
| cmd->nc_sqe.sqe_cdw10 = dw10.r; |
| cmd->nc_sqe.sqe_cdw11 = c_dw11.r; |
| cmd->nc_sqe.sqe_dptr.d_prp[0] = cq->ncq_dma->nd_cookie.dmac_laddress; |
| |
| nvme_admin_cmd(cmd, nvme_admin_cmd_timeout); |
| |
| if ((ret = nvme_check_cmd_status(cmd)) != 0) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!CREATE CQUEUE failed with sct = %x, sc = %x", |
| cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); |
| } |
| |
| nvme_free_cmd(cmd); |
| |
| return (ret); |
| } |
| |
| static int |
| nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx) |
| { |
| nvme_cq_t *cq = qp->nq_cq; |
| nvme_cmd_t *cmd; |
| nvme_create_queue_dw10_t dw10 = { 0 }; |
| nvme_create_sq_dw11_t s_dw11 = { 0 }; |
| int ret; |
| |
| /* |
| * It is possible to have more qpairs than completion queues, |
| * and when the idx > ncq_id, that completion queue is shared |
| * and has already been created. |
| */ |
| if (idx <= cq->ncq_id && |
| nvme_create_completion_queue(nvme, cq) != DDI_SUCCESS) |
| return (DDI_FAILURE); |
| |
| dw10.b.q_qid = idx; |
| dw10.b.q_qsize = qp->nq_nentry - 1; |
| |
| s_dw11.b.sq_pc = 1; |
| s_dw11.b.sq_cqid = cq->ncq_id; |
| |
| cmd = nvme_alloc_cmd(nvme, KM_SLEEP); |
| cmd->nc_sqid = 0; |
| cmd->nc_callback = nvme_wakeup_cmd; |
| cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE; |
| cmd->nc_sqe.sqe_cdw10 = dw10.r; |
| cmd->nc_sqe.sqe_cdw11 = s_dw11.r; |
| cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress; |
| |
| nvme_admin_cmd(cmd, nvme_admin_cmd_timeout); |
| |
| if ((ret = nvme_check_cmd_status(cmd)) != 0) { |
| dev_err(nvme->n_dip, CE_WARN, |
| "!CREATE SQUEUE failed with sct = %x, sc = %x", |
| cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); |
| } |
| |
| nvme_free_cmd(cmd); |
| |
| return (ret); |
| } |
| |
| static boolean_t |
| nvme_reset(nvme_t *nvme, boolean_t quiesce) |
| { |
| nvme_reg_csts_t csts; |
| int i; |
| |
| nvme_put32(nvme, NVME_REG_CC, 0); |
| |
| csts.r = nvme_get32(nvme, NVME_REG_CSTS); |
| if (csts.b.csts_rdy == 1) { |
| nvme_put32(nvme, NVME_REG_CC, 0); |
| for (i = 0; i != nvme->n_timeout * 10; i++) { |
| csts.r = nvme_get32(nvme, NVME_REG_CSTS); |
| if (csts.b.csts_rdy == 0) |
| break; |
| |
| if (quiesce) |
| drv_usecwait(50000); |
| else |
| delay(drv_usectohz(50000)); |
| } |
| } |
| |
| nvme_put32(nvme, NVME_REG_AQA, 0); |
| nvme_put32(nvme, NVME_REG_ASQ, 0); |
| nvme_put32(nvme, NVME_REG_ACQ, 0); |
| |
| csts.r = nvme_get32(nvme, NVME_REG_CSTS); |
| return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE); |
| } |
| |
| static void |
| nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce) |
| { |
| nvme_reg_cc_t cc; |
| nvme_reg_csts_t csts; |
| int i; |
| |
| ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT); |
| |
| cc.r = nvme_get32(nvme, NVME_REG_CC); |
| cc.b.cc_shn = mode & 0x3; |
| nvme_put32(nvme, NVME_REG_CC, cc.r); |
| |
| for (i = 0; i != 10; i++) { |
| csts.r = nvme_get32(nvme, NVME_REG_CSTS); |
| if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE) |
| break; |
| |
| if (quiesce) |
| drv_usecwait(100000); |
| else |
| delay(drv_usectohz(100000)); |
| } |
| } |
| |
| /* |
| * Return length of string without trailing spaces. |
| */ |
| static int |
| nvme_strlen(const char *str, int len) |
| { |
| if (len <= 0) |
| return (0); |
| |
| while (str[--len] == ' ') |
| ; |
| |
| return (++len); |
| } |
| |
| static void |
| nvme_config_min_block_size(nvme_t *nvme, char *model, char *val) |
| { |
| ulong_t bsize = 0; |
| char *msg = ""; |
| |
| if (ddi_strtoul(val, NULL, 0, &bsize) != 0) |
| goto err; |
| |
| if (!ISP2(bsize)) { |
|