| /* |
| * CDDL HEADER START |
| * |
| * The contents of this file are subject to the terms of the |
| * Common Development and Distribution License (the "License"). |
| * You may not use this file except in compliance with the License. |
| * |
| * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE |
| * or http://www.opensolaris.org/os/licensing. |
| * See the License for the specific language governing permissions |
| * and limitations under the License. |
| * |
| * When distributing Covered Code, include this CDDL HEADER in each |
| * file and include the License file at usr/src/OPENSOLARIS.LICENSE. |
| * If applicable, add the following below this CDDL HEADER, with the |
| * fields enclosed by brackets "[]" replaced with your own identifying |
| * information: Portions Copyright [yyyy] [name of copyright owner] |
| * |
| * CDDL HEADER END |
| */ |
| |
| /* |
| * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved. |
| */ |
| |
| /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ |
| /* All Rights Reserved */ |
| /* |
| * Copyright (c) 2013, Joyent, Inc. All rights reserved. |
| */ |
| |
| #include <sys/types.h> |
| #include <sys/param.h> |
| #include <sys/thread.h> |
| #include <sys/sysmacros.h> |
| #include <sys/signal.h> |
| #include <sys/cred.h> |
| #include <sys/user.h> |
| #include <sys/errno.h> |
| #include <sys/vnode.h> |
| #include <sys/mman.h> |
| #include <sys/kmem.h> |
| #include <sys/proc.h> |
| #include <sys/pathname.h> |
| #include <sys/cmn_err.h> |
| #include <sys/systm.h> |
| #include <sys/elf.h> |
| #include <sys/vmsystm.h> |
| #include <sys/debug.h> |
| #include <sys/auxv.h> |
| #include <sys/exec.h> |
| #include <sys/prsystm.h> |
| #include <vm/as.h> |
| #include <vm/rm.h> |
| #include <vm/seg.h> |
| #include <vm/seg_vn.h> |
| #include <sys/modctl.h> |
| #include <sys/systeminfo.h> |
| #include <sys/vmparam.h> |
| #include <sys/machelf.h> |
| #include <sys/shm_impl.h> |
| #include <sys/archsystm.h> |
| #include <sys/fasttrap.h> |
| #include <sys/brand.h> |
| #include "elf_impl.h" |
| #include <sys/sdt.h> |
| #include <sys/siginfo.h> |
| |
| extern int at_flags; |
| |
| #define ORIGIN_STR "ORIGIN" |
| #define ORIGIN_STR_SIZE 6 |
| |
| static int getelfhead(vnode_t *, cred_t *, Ehdr *, int *, int *, int *); |
| static int getelfphdr(vnode_t *, cred_t *, const Ehdr *, int, caddr_t *, |
| ssize_t *); |
| static int getelfshdr(vnode_t *, cred_t *, const Ehdr *, int, int, caddr_t *, |
| ssize_t *, caddr_t *, ssize_t *); |
| static size_t elfsize(Ehdr *, int, caddr_t, uintptr_t *); |
| static int mapelfexec(vnode_t *, Ehdr *, int, caddr_t, |
| Phdr **, Phdr **, Phdr **, Phdr **, Phdr *, |
| caddr_t *, caddr_t *, intptr_t *, intptr_t *, size_t, long *, size_t *); |
| |
| typedef enum { |
| STR_CTF, |
| STR_SYMTAB, |
| STR_DYNSYM, |
| STR_STRTAB, |
| STR_DYNSTR, |
| STR_SHSTRTAB, |
| STR_NUM |
| } shstrtype_t; |
| |
| static const char *shstrtab_data[] = { |
| ".SUNW_ctf", |
| ".symtab", |
| ".dynsym", |
| ".strtab", |
| ".dynstr", |
| ".shstrtab" |
| }; |
| |
| typedef struct shstrtab { |
| int sst_ndx[STR_NUM]; |
| int sst_cur; |
| } shstrtab_t; |
| |
| static void |
| shstrtab_init(shstrtab_t *s) |
| { |
| bzero(&s->sst_ndx, sizeof (s->sst_ndx)); |
| s->sst_cur = 1; |
| } |
| |
| static int |
| shstrtab_ndx(shstrtab_t *s, shstrtype_t type) |
| { |
| int ret; |
| |
| if ((ret = s->sst_ndx[type]) != 0) |
| return (ret); |
| |
| ret = s->sst_ndx[type] = s->sst_cur; |
| s->sst_cur += strlen(shstrtab_data[type]) + 1; |
| |
| return (ret); |
| } |
| |
| static size_t |
| shstrtab_size(const shstrtab_t *s) |
| { |
| return (s->sst_cur); |
| } |
| |
| static void |
| shstrtab_dump(const shstrtab_t *s, char *buf) |
| { |
| int i, ndx; |
| |
| *buf = '\0'; |
| for (i = 0; i < STR_NUM; i++) { |
| if ((ndx = s->sst_ndx[i]) != 0) |
| (void) strcpy(buf + ndx, shstrtab_data[i]); |
| } |
| } |
| |
| static int |
| dtrace_safe_phdr(Phdr *phdrp, struct uarg *args, uintptr_t base) |
| { |
| ASSERT(phdrp->p_type == PT_SUNWDTRACE); |
| |
| /* |
| * See the comment in fasttrap.h for information on how to safely |
| * update this program header. |
| */ |
| if (phdrp->p_memsz < PT_SUNWDTRACE_SIZE || |
| (phdrp->p_flags & (PF_R | PF_W | PF_X)) != (PF_R | PF_W | PF_X)) |
| return (-1); |
| |
| args->thrptr = phdrp->p_vaddr + base; |
| |
| return (0); |
| } |
| |
| /* |
| * Map in the executable pointed to by vp. Returns 0 on success. |
| */ |
| int |
| mapexec_brand(vnode_t *vp, uarg_t *args, Ehdr *ehdr, Addr *uphdr_vaddr, |
| intptr_t *voffset, caddr_t exec_file, int *interp, caddr_t *bssbase, |
| caddr_t *brkbase, size_t *brksize, uintptr_t *lddatap) |
| { |
| size_t len; |
| struct vattr vat; |
| caddr_t phdrbase = NULL; |
| ssize_t phdrsize; |
| int nshdrs, shstrndx, nphdrs; |
| int error = 0; |
| Phdr *uphdr = NULL; |
| Phdr *junk = NULL; |
| Phdr *dynphdr = NULL; |
| Phdr *dtrphdr = NULL; |
| uintptr_t lddata; |
| long execsz; |
| intptr_t minaddr; |
| |
| if (lddatap != NULL) |
| *lddatap = NULL; |
| |
| if (error = execpermissions(vp, &vat, args)) { |
| uprintf("%s: Cannot execute %s\n", exec_file, args->pathname); |
| return (error); |
| } |
| |
| if ((error = getelfhead(vp, CRED(), ehdr, &nshdrs, &shstrndx, |
| &nphdrs)) != 0 || |
| (error = getelfphdr(vp, CRED(), ehdr, nphdrs, &phdrbase, |
| &phdrsize)) != 0) { |
| uprintf("%s: Cannot read %s\n", exec_file, args->pathname); |
| return (error); |
| } |
| |
| if ((len = elfsize(ehdr, nphdrs, phdrbase, &lddata)) == 0) { |
| uprintf("%s: Nothing to load in %s", exec_file, args->pathname); |
| kmem_free(phdrbase, phdrsize); |
| return (ENOEXEC); |
| } |
| if (lddatap != NULL) |
| *lddatap = lddata; |
| |
| if (error = mapelfexec(vp, ehdr, nphdrs, phdrbase, &uphdr, &dynphdr, |
| &junk, &dtrphdr, NULL, bssbase, brkbase, voffset, &minaddr, |
| len, &execsz, brksize)) { |
| uprintf("%s: Cannot map %s\n", exec_file, args->pathname); |
| kmem_free(phdrbase, phdrsize); |
| return (error); |
| } |
| |
| /* |
| * Inform our caller if the executable needs an interpreter. |
| */ |
| *interp = (dynphdr == NULL) ? 0 : 1; |
| |
| /* |
| * If this is a statically linked executable, voffset should indicate |
| * the address of the executable itself (it normally holds the address |
| * of the interpreter). |
| */ |
| if (ehdr->e_type == ET_EXEC && *interp == 0) |
| *voffset = minaddr; |
| |
| if (uphdr != NULL) { |
| *uphdr_vaddr = uphdr->p_vaddr; |
| } else { |
| *uphdr_vaddr = (Addr)-1; |
| } |
| |
| kmem_free(phdrbase, phdrsize); |
| return (error); |
| } |
| |
| /*ARGSUSED*/ |
| int |
| elfexec(vnode_t *vp, execa_t *uap, uarg_t *args, intpdata_t *idatap, |
| int level, long *execsz, int setid, caddr_t exec_file, cred_t *cred, |
| int brand_action) |
| { |
| caddr_t phdrbase = NULL; |
| caddr_t bssbase = 0; |
| caddr_t brkbase = 0; |
| size_t brksize = 0; |
| ssize_t dlnsize; |
| aux_entry_t *aux; |
| int error; |
| ssize_t resid; |
| int fd = -1; |
| intptr_t voffset; |
| Phdr *dyphdr = NULL; |
| Phdr *stphdr = NULL; |
| Phdr *uphdr = NULL; |
| Phdr *junk = NULL; |
| size_t len; |
| ssize_t phdrsize; |
| int postfixsize = 0; |
| int i, hsize; |
| Phdr *phdrp; |
| Phdr *dataphdrp = NULL; |
| Phdr *dtrphdr; |
| Phdr *capphdr = NULL; |
| Cap *cap = NULL; |
| ssize_t capsize; |
| int hasu = 0; |
| int hasauxv = 0; |
| int hasdy = 0; |
| int branded = 0; |
| |
| struct proc *p = ttoproc(curthread); |
| struct user *up = PTOU(p); |
| struct bigwad { |
| Ehdr ehdr; |
| aux_entry_t elfargs[__KERN_NAUXV_IMPL]; |
| char dl_name[MAXPATHLEN]; |
| char pathbuf[MAXPATHLEN]; |
| struct vattr vattr; |
| struct execenv exenv; |
| } *bigwad; /* kmem_alloc this behemoth so we don't blow stack */ |
| Ehdr *ehdrp; |
| int nshdrs, shstrndx, nphdrs; |
| char *dlnp; |
| char *pathbufp; |
| rlim64_t limit; |
| rlim64_t roundlimit; |
| |
| ASSERT(p->p_model == DATAMODEL_ILP32 || p->p_model == DATAMODEL_LP64); |
| |
| bigwad = kmem_alloc(sizeof (struct bigwad), KM_SLEEP); |
| ehdrp = &bigwad->ehdr; |
| dlnp = bigwad->dl_name; |
| pathbufp = bigwad->pathbuf; |
| |
| /* |
| * Obtain ELF and program header information. |
| */ |
| if ((error = getelfhead(vp, CRED(), ehdrp, &nshdrs, &shstrndx, |
| &nphdrs)) != 0 || |
| (error = getelfphdr(vp, CRED(), ehdrp, nphdrs, &phdrbase, |
| &phdrsize)) != 0) |
| goto out; |
| |
| /* |
| * Prevent executing an ELF file that has no entry point. |
| */ |
| if (ehdrp->e_entry == 0) { |
| uprintf("%s: Bad entry point\n", exec_file); |
| goto bad; |
| } |
| |
| /* |
| * Put data model that we're exec-ing to into the args passed to |
| * exec_args(), so it will know what it is copying to on new stack. |
| * Now that we know whether we are exec-ing a 32-bit or 64-bit |
| * executable, we can set execsz with the appropriate NCARGS. |
| */ |
| #ifdef _LP64 |
| if (ehdrp->e_ident[EI_CLASS] == ELFCLASS32) { |
| args->to_model = DATAMODEL_ILP32; |
| *execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS32-1); |
| } else { |
| args->to_model = DATAMODEL_LP64; |
| args->stk_prot &= ~PROT_EXEC; |
| #if defined(__i386) || defined(__amd64) |
| args->dat_prot &= ~PROT_EXEC; |
| #endif |
| *execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS64-1); |
| } |
| #else /* _LP64 */ |
| args->to_model = DATAMODEL_ILP32; |
| *execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS-1); |
| #endif /* _LP64 */ |
| |
| /* |
| * We delay invoking the brand callback until we've figured out |
| * what kind of elf binary we're trying to run, 32-bit or 64-bit. |
| * We do this because now the brand library can just check |
| * args->to_model to see if the target is 32-bit or 64-bit without |
| * having do duplicate all the code above. |
| */ |
| if ((level < 2) && |
| (brand_action != EBA_NATIVE) && (PROC_IS_BRANDED(p))) { |
| error = BROP(p)->b_elfexec(vp, uap, args, |
| idatap, level + 1, execsz, setid, exec_file, cred, |
| brand_action); |
| goto out; |
| } |
| |
| /* |
| * Determine aux size now so that stack can be built |
| * in one shot (except actual copyout of aux image), |
| * determine any non-default stack protections, |
| * and still have this code be machine independent. |
| */ |
| hsize = ehdrp->e_phentsize; |
| phdrp = (Phdr *)phdrbase; |
| for (i = nphdrs; i > 0; i--) { |
| switch (phdrp->p_type) { |
| case PT_INTERP: |
| hasauxv = hasdy = 1; |
| break; |
| case PT_PHDR: |
| hasu = 1; |
| break; |
| case PT_SUNWSTACK: |
| args->stk_prot = PROT_USER; |
| if (phdrp->p_flags & PF_R) |
| args->stk_prot |= PROT_READ; |
| if (phdrp->p_flags & PF_W) |
| args->stk_prot |= PROT_WRITE; |
| if (phdrp->p_flags & PF_X) |
| args->stk_prot |= PROT_EXEC; |
| break; |
| case PT_LOAD: |
| dataphdrp = phdrp; |
| break; |
| case PT_SUNWCAP: |
| capphdr = phdrp; |
| break; |
| } |
| phdrp = (Phdr *)((caddr_t)phdrp + hsize); |
| } |
| |
| if (ehdrp->e_type != ET_EXEC) { |
| dataphdrp = NULL; |
| hasauxv = 1; |
| } |
| |
| /* Copy BSS permissions to args->dat_prot */ |
| if (dataphdrp != NULL) { |
| args->dat_prot = PROT_USER; |
| if (dataphdrp->p_flags & PF_R) |
| args->dat_prot |= PROT_READ; |
| if (dataphdrp->p_flags & PF_W) |
| args->dat_prot |= PROT_WRITE; |
| if (dataphdrp->p_flags & PF_X) |
| args->dat_prot |= PROT_EXEC; |
| } |
| |
| /* |
| * If a auxvector will be required - reserve the space for |
| * it now. This may be increased by exec_args if there are |
| * ISA-specific types (included in __KERN_NAUXV_IMPL). |
| */ |
| if (hasauxv) { |
| /* |
| * If a AUX vector is being built - the base AUX |
| * entries are: |
| * |
| * AT_BASE |
| * AT_FLAGS |
| * AT_PAGESZ |
| * AT_SUN_AUXFLAGS |
| * AT_SUN_HWCAP |
| * AT_SUN_HWCAP2 |
| * AT_SUN_PLATFORM (added in stk_copyout) |
| * AT_SUN_EXECNAME (added in stk_copyout) |
| * AT_NULL |
| * |
| * total == 9 |
| */ |
| if (hasdy && hasu) { |
| /* |
| * Has PT_INTERP & PT_PHDR - the auxvectors that |
| * will be built are: |
| * |
| * AT_PHDR |
| * AT_PHENT |
| * AT_PHNUM |
| * AT_ENTRY |
| * AT_LDDATA |
| * |
| * total = 5 |
| */ |
| args->auxsize = (9 + 5) * sizeof (aux_entry_t); |
| } else if (hasdy) { |
| /* |
| * Has PT_INTERP but no PT_PHDR |
| * |
| * AT_EXECFD |
| * AT_LDDATA |
| * |
| * total = 2 |
| */ |
| args->auxsize = (9 + 2) * sizeof (aux_entry_t); |
| } else { |
| args->auxsize = 9 * sizeof (aux_entry_t); |
| } |
| } else { |
| args->auxsize = 0; |
| } |
| |
| /* |
| * If this binary is using an emulator, we need to add an |
| * AT_SUN_EMULATOR aux entry. |
| */ |
| if (args->emulator != NULL) |
| args->auxsize += sizeof (aux_entry_t); |
| |
| if ((brand_action != EBA_NATIVE) && (PROC_IS_BRANDED(p))) { |
| branded = 1; |
| /* |
| * We will be adding 4 entries to the aux vectors. One for |
| * the the brandname and 3 for the brand specific aux vectors. |
| */ |
| args->auxsize += 4 * sizeof (aux_entry_t); |
| } |
| |
| /* Hardware/Software capabilities */ |
| if (capphdr != NULL && |
| (capsize = capphdr->p_filesz) > 0 && |
| capsize <= 16 * sizeof (*cap)) { |
| int ncaps = capsize / sizeof (*cap); |
| Cap *cp; |
| |
| cap = kmem_alloc(capsize, KM_SLEEP); |
| if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)cap, |
| capsize, (offset_t)capphdr->p_offset, |
| UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) != 0) { |
| uprintf("%s: Cannot read capabilities section\n", |
| exec_file); |
| goto out; |
| } |
| for (cp = cap; cp < cap + ncaps; cp++) { |
| if (cp->c_tag == CA_SUNW_SF_1 && |
| (cp->c_un.c_val & SF1_SUNW_ADDR32)) { |
| if (args->to_model == DATAMODEL_LP64) |
| args->addr32 = 1; |
| break; |
| } |
| } |
| } |
| |
| aux = bigwad->elfargs; |
| /* |
| * Move args to the user's stack. |
| * This can fill in the AT_SUN_PLATFORM and AT_SUN_EXECNAME aux entries. |
| */ |
| if ((error = exec_args(uap, args, idatap, (void **)&aux)) != 0) { |
| if (error == -1) { |
| error = ENOEXEC; |
| goto bad; |
| } |
| goto out; |
| } |
| /* we're single threaded after this point */ |
| |
| /* |
| * If this is an ET_DYN executable (shared object), |
| * determine its memory size so that mapelfexec() can load it. |
| */ |
| if (ehdrp->e_type == ET_DYN) |
| len = elfsize(ehdrp, nphdrs, phdrbase, NULL); |
| else |
| len = 0; |
| |
| dtrphdr = NULL; |
| |
| if ((error = mapelfexec(vp, ehdrp, nphdrs, phdrbase, &uphdr, &dyphdr, |
| &stphdr, &dtrphdr, dataphdrp, &bssbase, &brkbase, &voffset, NULL, |
| len, execsz, &brksize)) != 0) |
| goto bad; |
| |
| if (uphdr != NULL && dyphdr == NULL) |
| goto bad; |
| |
| if (dtrphdr != NULL && dtrace_safe_phdr(dtrphdr, args, voffset) != 0) { |
| uprintf("%s: Bad DTrace phdr in %s\n", exec_file, exec_file); |
| goto bad; |
| } |
| |
| if (dyphdr != NULL) { |
| size_t len; |
| uintptr_t lddata; |
| char *p; |
| struct vnode *nvp; |
| |
| dlnsize = dyphdr->p_filesz; |
| |
| if (dlnsize > MAXPATHLEN || dlnsize <= 0) |
| goto bad; |
| |
| /* |
| * Read in "interpreter" pathname. |
| */ |
| if ((error = vn_rdwr(UIO_READ, vp, dlnp, dyphdr->p_filesz, |
| (offset_t)dyphdr->p_offset, UIO_SYSSPACE, 0, (rlim64_t)0, |
| CRED(), &resid)) != 0) { |
| uprintf("%s: Cannot obtain interpreter pathname\n", |
| exec_file); |
| goto bad; |
| } |
| |
| if (resid != 0 || dlnp[dlnsize - 1] != '\0') |
| goto bad; |
| |
| /* |
| * Search for '$ORIGIN' token in interpreter path. |
| * If found, expand it. |
| */ |
| for (p = dlnp; p = strchr(p, '$'); ) { |
| uint_t len, curlen; |
| char *_ptr; |
| |
| if (strncmp(++p, ORIGIN_STR, ORIGIN_STR_SIZE)) |
| continue; |
| |
| curlen = 0; |
| len = p - dlnp - 1; |
| if (len) { |
| bcopy(dlnp, pathbufp, len); |
| curlen += len; |
| } |
| if (_ptr = strrchr(args->pathname, '/')) { |
| len = _ptr - args->pathname; |
| if ((curlen + len) > MAXPATHLEN) |
| break; |
| |
| bcopy(args->pathname, &pathbufp[curlen], len); |
| curlen += len; |
| } else { |
| /* |
| * executable is a basename found in the |
| * current directory. So - just substitue |
| * '.' for ORIGIN. |
| */ |
| pathbufp[curlen] = '.'; |
| curlen++; |
| } |
| p += ORIGIN_STR_SIZE; |
| len = strlen(p); |
| |
| if ((curlen + len) > MAXPATHLEN) |
| break; |
| bcopy(p, &pathbufp[curlen], len); |
| curlen += len; |
| pathbufp[curlen++] = '\0'; |
| bcopy(pathbufp, dlnp, curlen); |
| } |
| |
| /* |
| * /usr/lib/ld.so.1 is known to be a symlink to /lib/ld.so.1 |
| * (and /usr/lib/64/ld.so.1 is a symlink to /lib/64/ld.so.1). |
| * Just in case /usr is not mounted, change it now. |
| */ |
| if (strcmp(dlnp, USR_LIB_RTLD) == 0) |
| dlnp += 4; |
| error = lookupname(dlnp, UIO_SYSSPACE, FOLLOW, NULLVPP, &nvp); |
| if (error && dlnp != bigwad->dl_name) { |
| /* new kernel, old user-level */ |
| error = lookupname(dlnp -= 4, UIO_SYSSPACE, FOLLOW, |
| NULLVPP, &nvp); |
| } |
| if (error) { |
| uprintf("%s: Cannot find %s\n", exec_file, dlnp); |
| goto bad; |
| } |
| |
| /* |
| * Setup the "aux" vector. |
| */ |
| if (uphdr) { |
| if (ehdrp->e_type == ET_DYN) { |
| /* don't use the first page */ |
| bigwad->exenv.ex_brkbase = (caddr_t)PAGESIZE; |
| bigwad->exenv.ex_bssbase = (caddr_t)PAGESIZE; |
| } else { |
| bigwad->exenv.ex_bssbase = bssbase; |
| bigwad->exenv.ex_brkbase = brkbase; |
| } |
| bigwad->exenv.ex_brksize = brksize; |
| bigwad->exenv.ex_magic = elfmagic; |
| bigwad->exenv.ex_vp = vp; |
| setexecenv(&bigwad->exenv); |
| |
| ADDAUX(aux, AT_PHDR, uphdr->p_vaddr + voffset) |
| ADDAUX(aux, AT_PHENT, ehdrp->e_phentsize) |
| ADDAUX(aux, AT_PHNUM, nphdrs) |
| ADDAUX(aux, AT_ENTRY, ehdrp->e_entry + voffset) |
| } else { |
| if ((error = execopen(&vp, &fd)) != 0) { |
| VN_RELE(nvp); |
| goto bad; |
| } |
| |
| ADDAUX(aux, AT_EXECFD, fd) |
| } |
| |
| if ((error = execpermissions(nvp, &bigwad->vattr, args)) != 0) { |
| VN_RELE(nvp); |
| uprintf("%s: Cannot execute %s\n", exec_file, dlnp); |
| goto bad; |
| } |
| |
| /* |
| * Now obtain the ELF header along with the entire program |
| * header contained in "nvp". |
| */ |
| kmem_free(phdrbase, phdrsize); |
| phdrbase = NULL; |
| if ((error = getelfhead(nvp, CRED(), ehdrp, &nshdrs, |
| &shstrndx, &nphdrs)) != 0 || |
| (error = getelfphdr(nvp, CRED(), ehdrp, nphdrs, &phdrbase, |
| &phdrsize)) != 0) { |
| VN_RELE(nvp); |
| uprintf("%s: Cannot read %s\n", exec_file, dlnp); |
| goto bad; |
| } |
| |
| /* |
| * Determine memory size of the "interpreter's" loadable |
| * sections. This size is then used to obtain the virtual |
| * address of a hole, in the user's address space, large |
| * enough to map the "interpreter". |
| */ |
| if ((len = elfsize(ehdrp, nphdrs, phdrbase, &lddata)) == 0) { |
| VN_RELE(nvp); |
| uprintf("%s: Nothing to load in %s\n", exec_file, dlnp); |
| goto bad; |
| } |
| |
| dtrphdr = NULL; |
| |
| error = mapelfexec(nvp, ehdrp, nphdrs, phdrbase, &junk, &junk, |
| &junk, &dtrphdr, NULL, NULL, NULL, &voffset, NULL, len, |
| execsz, NULL); |
| if (error || junk != NULL) { |
| VN_RELE(nvp); |
| uprintf("%s: Cannot map %s\n", exec_file, dlnp); |
| goto bad; |
| } |
| |
| /* |
| * We use the DTrace program header to initialize the |
| * architecture-specific user per-LWP location. The dtrace |
| * fasttrap provider requires ready access to per-LWP scratch |
| * space. We assume that there is only one such program header |
| * in the interpreter. |
| */ |
| if (dtrphdr != NULL && |
| dtrace_safe_phdr(dtrphdr, args, voffset) != 0) { |
| VN_RELE(nvp); |
| uprintf("%s: Bad DTrace phdr in %s\n", exec_file, dlnp); |
| goto bad; |
| } |
| |
| VN_RELE(nvp); |
| ADDAUX(aux, AT_SUN_LDDATA, voffset + lddata) |
| } |
| |
| if (hasauxv) { |
| int auxf = AF_SUN_HWCAPVERIFY; |
| /* |
| * Note: AT_SUN_PLATFORM and AT_SUN_EXECNAME were filled in via |
| * exec_args() |
| */ |
| ADDAUX(aux, AT_BASE, voffset) |
| ADDAUX(aux, AT_FLAGS, at_flags) |
| ADDAUX(aux, AT_PAGESZ, PAGESIZE) |
| /* |
| * Linker flags. (security) |
| * p_flag not yet set at this time. |
| * We rely on gexec() to provide us with the information. |
| * If the application is set-uid but this is not reflected |
| * in a mismatch between real/effective uids/gids, then |
| * don't treat this as a set-uid exec. So we care about |
| * the EXECSETID_UGIDS flag but not the ...SETID flag. |
| */ |
| if ((setid &= ~EXECSETID_SETID) != 0) |
| auxf |= AF_SUN_SETUGID; |
| |
| /* |
| * If we're running a native process from within a branded |
| * zone under pfexec then we clear the AF_SUN_SETUGID flag so |
| * that the native ld.so.1 is able to link with the native |
| * libraries instead of using the brand libraries that are |
| * installed in the zone. We only do this for processes |
| * which we trust because we see they are already running |
| * under pfexec (where uid != euid). This prevents a |
| * malicious user within the zone from crafting a wrapper to |
| * run native suid commands with unsecure libraries interposed. |
| */ |
| if ((brand_action == EBA_NATIVE) && (PROC_IS_BRANDED(p) && |
| (setid &= ~EXECSETID_SETID) != 0)) |
| auxf &= ~AF_SUN_SETUGID; |
| |
| /* |
| * Record the user addr of the auxflags aux vector entry |
| * since brands may optionally want to manipulate this field. |
| */ |
| args->auxp_auxflags = |
| (char *)((char *)args->stackend + |
| ((char *)&aux->a_type - |
| (char *)bigwad->elfargs)); |
| ADDAUX(aux, AT_SUN_AUXFLAGS, auxf); |
| /* |
| * Hardware capability flag word (performance hints) |
| * Used for choosing faster library routines. |
| * (Potentially different between 32-bit and 64-bit ABIs) |
| */ |
| #if defined(_LP64) |
| if (args->to_model == DATAMODEL_NATIVE) { |
| ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap) |
| ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap_2) |
| } else { |
| ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap32) |
| ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap32_2) |
| } |
| #else |
| ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap) |
| ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap_2) |
| #endif |
| if (branded) { |
| /* |
| * Reserve space for the brand-private aux vectors, |
| * and record the user addr of that space. |
| */ |
| args->auxp_brand = |
| (char *)((char *)args->stackend + |
| ((char *)&aux->a_type - |
| (char *)bigwad->elfargs)); |
| ADDAUX(aux, AT_SUN_BRAND_AUX1, 0) |
| ADDAUX(aux, AT_SUN_BRAND_AUX2, 0) |
| ADDAUX(aux, AT_SUN_BRAND_AUX3, 0) |
| } |
| |
| ADDAUX(aux, AT_NULL, 0) |
| postfixsize = (char *)aux - (char *)bigwad->elfargs; |
| |
| /* |
| * We make assumptions above when we determine how many aux |
| * vector entries we will be adding. However, if we have an |
| * invalid elf file, it is possible that mapelfexec might |
| * behave differently (but not return an error), in which case |
| * the number of aux entries we actually add will be different. |
| * We detect that now and error out. |
| */ |
| if (postfixsize != args->auxsize) { |
| DTRACE_PROBE2(elfexec_badaux, int, postfixsize, |
| int, args->auxsize); |
| goto bad; |
| } |
| ASSERT(postfixsize <= __KERN_NAUXV_IMPL * sizeof (aux_entry_t)); |
| } |
| |
| /* |
| * For the 64-bit kernel, the limit is big enough that rounding it up |
| * to a page can overflow the 64-bit limit, so we check for btopr() |
| * overflowing here by comparing it with the unrounded limit in pages. |
| * If it hasn't overflowed, compare the exec size with the rounded up |
| * limit in pages. Otherwise, just compare with the unrounded limit. |
| */ |
| limit = btop(p->p_vmem_ctl); |
| roundlimit = btopr(p->p_vmem_ctl); |
| if ((roundlimit > limit && *execsz > roundlimit) || |
| (roundlimit < limit && *execsz > limit)) { |
| mutex_enter(&p->p_lock); |
| (void) rctl_action(rctlproc_legacy[RLIMIT_VMEM], p->p_rctls, p, |
| RCA_SAFE); |
| mutex_exit(&p->p_lock); |
| error = ENOMEM; |
| goto bad; |
| } |
| |
| bzero(up->u_auxv, sizeof (up->u_auxv)); |
| if (postfixsize) { |
| int num_auxv; |
| |
| /* |
| * Copy the aux vector to the user stack. |
| */ |
| error = execpoststack(args, bigwad->elfargs, postfixsize); |
| if (error) |
| goto bad; |
| |
| /* |
| * Copy auxv to the process's user structure for use by /proc. |
| * If this is a branded process, the brand's exec routine will |
| * copy it's private entries to the user structure later. It |
| * relies on the fact that the blank entries are at the end. |
| */ |
| num_auxv = postfixsize / sizeof (aux_entry_t); |
| ASSERT(num_auxv <= sizeof (up->u_auxv) / sizeof (auxv_t)); |
| aux = bigwad->elfargs; |
| for (i = 0; i < num_auxv; i++) { |
| up->u_auxv[i].a_type = aux[i].a_type; |
| up->u_auxv[i].a_un.a_val = (aux_val_t)aux[i].a_un.a_val; |
| } |
| } |
| |
| /* |
| * Pass back the starting address so we can set the program counter. |
| */ |
| args->entry = (uintptr_t)(ehdrp->e_entry + voffset); |
| |
| if (!uphdr) { |
| if (ehdrp->e_type == ET_DYN) { |
| /* |
| * If we are executing a shared library which doesn't |
| * have a interpreter (probably ld.so.1) then |
| * we don't set the brkbase now. Instead we |
| * delay it's setting until the first call |
| * via grow.c::brk(). This permits ld.so.1 to |
| * initialize brkbase to the tail of the executable it |
| * loads (which is where it needs to be). |
| */ |
| bigwad->exenv.ex_brkbase = (caddr_t)0; |
| bigwad->exenv.ex_bssbase = (caddr_t)0; |
| bigwad->exenv.ex_brksize = 0; |
| } else { |
| bigwad->exenv.ex_brkbase = brkbase; |
| bigwad->exenv.ex_bssbase = bssbase; |
| bigwad->exenv.ex_brksize = brksize; |
| } |
| bigwad->exenv.ex_magic = elfmagic; |
| bigwad->exenv.ex_vp = vp; |
| setexecenv(&bigwad->exenv); |
| } |
| |
| ASSERT(error == 0); |
| goto out; |
| |
| bad: |
| if (fd != -1) /* did we open the a.out yet */ |
| (void) execclose(fd); |
| |
| psignal(p, SIGKILL); |
| |
| if (error == 0) |
| error = ENOEXEC; |
| out: |
| if (phdrbase != NULL) |
| kmem_free(phdrbase, phdrsize); |
| if (cap != NULL) |
| kmem_free(cap, capsize); |
| kmem_free(bigwad, sizeof (struct bigwad)); |
| return (error); |
| } |
| |
| /* |
| * Compute the memory size requirement for the ELF file. |
| */ |
| static size_t |
| elfsize(Ehdr *ehdrp, int nphdrs, caddr_t phdrbase, uintptr_t *lddata) |
| { |
| size_t len; |
| Phdr *phdrp = (Phdr *)phdrbase; |
| int hsize = ehdrp->e_phentsize; |
| int first = 1; |
| int dfirst = 1; /* first data segment */ |
| uintptr_t loaddr = 0; |
| uintptr_t hiaddr = 0; |
| uintptr_t lo, hi; |
| int i; |
| |
| for (i = nphdrs; i > 0; i--) { |
| if (phdrp->p_type == PT_LOAD) { |
| lo = phdrp->p_vaddr; |
| hi = lo + phdrp->p_memsz; |
| if (first) { |
| loaddr = lo; |
| hiaddr = hi; |
| first = 0; |
| } else { |
| if (loaddr > lo) |
| loaddr = lo; |
| if (hiaddr < hi) |
| hiaddr = hi; |
| } |
| |
| /* |
| * save the address of the first data segment |
| * of a object - used for the AT_SUNW_LDDATA |
| * aux entry. |
| */ |
| if ((lddata != NULL) && dfirst && |
| (phdrp->p_flags & PF_W)) { |
| *lddata = lo; |
| dfirst = 0; |
| } |
| } |
| phdrp = (Phdr *)((caddr_t)phdrp + hsize); |
| } |
| |
| len = hiaddr - (loaddr & PAGEMASK); |
| len = roundup(len, PAGESIZE); |
| |
| return (len); |
| } |
| |
| /* |
| * Read in the ELF header and program header table. |
| * SUSV3 requires: |
| * ENOEXEC File format is not recognized |
| * EINVAL Format recognized but execution not supported |
| */ |
| static int |
| getelfhead(vnode_t *vp, cred_t *credp, Ehdr *ehdr, int *nshdrs, int *shstrndx, |
| int *nphdrs) |
| { |
| int error; |
| ssize_t resid; |
| |
| /* |
| * We got here by the first two bytes in ident, |
| * now read the entire ELF header. |
| */ |
| if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)ehdr, |
| sizeof (Ehdr), (offset_t)0, UIO_SYSSPACE, 0, |
| (rlim64_t)0, credp, &resid)) != 0) |
| return (error); |
| |
| /* |
| * Since a separate version is compiled for handling 32-bit and |
| * 64-bit ELF executables on a 64-bit kernel, the 64-bit version |
| * doesn't need to be able to deal with 32-bit ELF files. |
| */ |
| if (resid != 0 || |
| ehdr->e_ident[EI_MAG2] != ELFMAG2 || |
| ehdr->e_ident[EI_MAG3] != ELFMAG3) |
| return (ENOEXEC); |
| |
| if ((ehdr->e_type != ET_EXEC && ehdr->e_type != ET_DYN) || |
| #if defined(_ILP32) || defined(_ELF32_COMPAT) |
| ehdr->e_ident[EI_CLASS] != ELFCLASS32 || |
| #else |
| ehdr->e_ident[EI_CLASS] != ELFCLASS64 || |
| #endif |
| !elfheadcheck(ehdr->e_ident[EI_DATA], ehdr->e_machine, |
| ehdr->e_flags)) |
| return (EINVAL); |
| |
| *nshdrs = ehdr->e_shnum; |
| *shstrndx = ehdr->e_shstrndx; |
| *nphdrs = ehdr->e_phnum; |
| |
| /* |
| * If e_shnum, e_shstrndx, or e_phnum is its sentinel value, we need |
| * to read in the section header at index zero to acces the true |
| * values for those fields. |
| */ |
| if ((*nshdrs == 0 && ehdr->e_shoff != 0) || |
| *shstrndx == SHN_XINDEX || *nphdrs == PN_XNUM) { |
| Shdr shdr; |
| |
| if (ehdr->e_shoff == 0) |
| return (EINVAL); |
| |
| if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)&shdr, |
| sizeof (shdr), (offset_t)ehdr->e_shoff, UIO_SYSSPACE, 0, |
| (rlim64_t)0, credp, &resid)) != 0) |
| return (error); |
| |
| if (*nshdrs == 0) |
| *nshdrs = shdr.sh_size; |
| if (*shstrndx == SHN_XINDEX) |
| *shstrndx = shdr.sh_link; |
| if (*nphdrs == PN_XNUM && shdr.sh_info != 0) |
| *nphdrs = shdr.sh_info; |
| } |
| |
| return (0); |
| } |
| |
| #ifdef _ELF32_COMPAT |
| extern size_t elf_nphdr_max; |
| #else |
| size_t elf_nphdr_max = 1000; |
| #endif |
| |
| static int |
| getelfphdr(vnode_t *vp, cred_t *credp, const Ehdr *ehdr, int nphdrs, |
| caddr_t *phbasep, ssize_t *phsizep) |
| { |
| ssize_t resid, minsize; |
| int err; |
| |
| /* |
| * Since we're going to be using e_phentsize to iterate down the |
| * array of program headers, it must be 8-byte aligned or else |
| * a we might cause a misaligned access. We use all members through |
| * p_flags on 32-bit ELF files and p_memsz on 64-bit ELF files so |
| * e_phentsize must be at least large enough to include those |
| * members. |
| */ |
| #if !defined(_LP64) || defined(_ELF32_COMPAT) |
| minsize = offsetof(Phdr, p_flags) + sizeof (((Phdr *)NULL)->p_flags); |
| #else |
| minsize = offsetof(Phdr, p_memsz) + sizeof (((Phdr *)NULL)->p_memsz); |
| #endif |
| if (ehdr->e_phentsize < minsize || (ehdr->e_phentsize & 3)) |
| return (EINVAL); |
| |
| *phsizep = nphdrs * ehdr->e_phentsize; |
| |
| if (*phsizep > sizeof (Phdr) * elf_nphdr_max) { |
| if ((*phbasep = kmem_alloc(*phsizep, KM_NOSLEEP)) == NULL) |
| return (ENOMEM); |
| } else { |
| *phbasep = kmem_alloc(*phsizep, KM_SLEEP); |
| } |
| |
| if ((err = vn_rdwr(UIO_READ, vp, *phbasep, *phsizep, |
| (offset_t)ehdr->e_phoff, UIO_SYSSPACE, 0, (rlim64_t)0, |
| credp, &resid)) != 0) { |
| kmem_free(*phbasep, *phsizep); |
| *phbasep = NULL; |
| return (err); |
| } |
| |
| return (0); |
| } |
| |
| #ifdef _ELF32_COMPAT |
| extern size_t elf_nshdr_max; |
| extern size_t elf_shstrtab_max; |
| #else |
| size_t elf_nshdr_max = 10000; |
| size_t elf_shstrtab_max = 100 * 1024; |
| #endif |
| |
| |
| static int |
| getelfshdr(vnode_t *vp, cred_t *credp, const Ehdr *ehdr, |
| int nshdrs, int shstrndx, caddr_t *shbasep, ssize_t *shsizep, |
| char **shstrbasep, ssize_t *shstrsizep) |
| { |
| ssize_t resid, minsize; |
| int err; |
| Shdr *shdr; |
| |
| /* |
| * Since we're going to be using e_shentsize to iterate down the |
| * array of section headers, it must be 8-byte aligned or else |
| * a we might cause a misaligned access. We use all members through |
| * sh_entsize (on both 32- and 64-bit ELF files) so e_shentsize |
| * must be at least large enough to include that member. The index |
| * of the string table section must also be valid. |
| */ |
| minsize = offsetof(Shdr, sh_entsize) + sizeof (shdr->sh_entsize); |
| if (ehdr->e_shentsize < minsize || (ehdr->e_shentsize & 3) || |
| shstrndx >= nshdrs) |
| return (EINVAL); |
| |
| *shsizep = nshdrs * ehdr->e_shentsize; |
| |
| if (*shsizep > sizeof (Shdr) * elf_nshdr_max) { |
| if ((*shbasep = kmem_alloc(*shsizep, KM_NOSLEEP)) == NULL) |
| return (ENOMEM); |
| } else { |
| *shbasep = kmem_alloc(*shsizep, KM_SLEEP); |
| } |
| |
| if ((err = vn_rdwr(UIO_READ, vp, *shbasep, *shsizep, |
| (offset_t)ehdr->e_shoff, UIO_SYSSPACE, 0, (rlim64_t)0, |
| credp, &resid)) != 0) { |
| kmem_free(*shbasep, *shsizep); |
| return (err); |
| } |
| |
| /* |
| * Pull the section string table out of the vnode; fail if the size |
| * is zero. |
| */ |
| shdr = (Shdr *)(*shbasep + shstrndx * ehdr->e_shentsize); |
| if ((*shstrsizep = shdr->sh_size) == 0) { |
| kmem_free(*shbasep, *shsizep); |
| return (EINVAL); |
| } |
| |
| if (*shstrsizep > elf_shstrtab_max) { |
| if ((*shstrbasep = kmem_alloc(*shstrsizep, |
| KM_NOSLEEP)) == NULL) { |
| kmem_free(*shbasep, *shsizep); |
| return (ENOMEM); |
| } |
| } else { |
| *shstrbasep = kmem_alloc(*shstrsizep, KM_SLEEP); |
| } |
| |
| if ((err = vn_rdwr(UIO_READ, vp, *shstrbasep, *shstrsizep, |
| (offset_t)shdr->sh_offset, UIO_SYSSPACE, 0, (rlim64_t)0, |
| credp, &resid)) != 0) { |
| kmem_free(*shbasep, *shsizep); |
| kmem_free(*shstrbasep, *shstrsizep); |
| return (err); |
| } |
| |
| /* |
| * Make sure the strtab is null-terminated to make sure we |
| * don't run off the end of the table. |
| */ |
| (*shstrbasep)[*shstrsizep - 1] = '\0'; |
| |
| return (0); |
| } |
| |
| static int |
| mapelfexec( |
| vnode_t *vp, |
| Ehdr *ehdr, |
| int nphdrs, |
| caddr_t phdrbase, |
| Phdr **uphdr, |
| Phdr **dyphdr, |
| Phdr **stphdr, |
| Phdr **dtphdr, |
| Phdr *dataphdrp, |
| caddr_t *bssbase, |
| caddr_t *brkbase, |
| intptr_t *voffset, |
| intptr_t *minaddr, |
| size_t len, |
| long *execsz, |
| size_t *brksize) |
| { |
| Phdr *phdr; |
| int i, prot, error; |
| caddr_t addr = NULL; |
| size_t zfodsz; |
| int ptload = 0; |
| int page; |
| off_t offset; |
| int hsize = ehdr->e_phentsize; |
| caddr_t mintmp = (caddr_t)-1; |
| extern int use_brk_lpg; |
| |
| if (ehdr->e_type == ET_DYN) { |
| /* |
| * Obtain the virtual address of a hole in the |
| * address space to map the "interpreter". |
| */ |
| map_addr(&addr, len, (offset_t)0, 1, 0); |
| if (addr == NULL) |
| return (ENOMEM); |
| *voffset = (intptr_t)addr; |
| |
| /* |
| * Calculate the minimum vaddr so it can be subtracted out. |
| * According to the ELF specification, since PT_LOAD sections |
| * must be sorted by increasing p_vaddr values, this is |
| * guaranteed to be the first PT_LOAD section. |
| */ |
| phdr = (Phdr *)phdrbase; |
| for (i = nphdrs; i > 0; i--) { |
| if (phdr->p_type == PT_LOAD) { |
| *voffset -= (uintptr_t)phdr->p_vaddr; |
| break; |
| } |
| phdr = (Phdr *)((caddr_t)phdr + hsize); |
| } |
| |
| } else { |
| *voffset = 0; |
| } |
| phdr = (Phdr *)phdrbase; |
| for (i = nphdrs; i > 0; i--) { |
| switch (phdr->p_type) { |
| case PT_LOAD: |
| if ((*dyphdr != NULL) && (*uphdr == NULL)) |
| return (0); |
| |
| ptload = 1; |
| prot = PROT_USER; |
| if (phdr->p_flags & PF_R) |
| prot |= PROT_READ; |
| if (phdr->p_flags & PF_W) |
| prot |= PROT_WRITE; |
| if (phdr->p_flags & PF_X) |
| prot |= PROT_EXEC; |
| |
| addr = (caddr_t)((uintptr_t)phdr->p_vaddr + *voffset); |
| |
| /* |
| * Keep track of the segment with the lowest starting |
| * address. |
| */ |
| if (addr < mintmp) |
| mintmp = addr; |
| |
| zfodsz = (size_t)phdr->p_memsz - phdr->p_filesz; |
| |
| offset = phdr->p_offset; |
| if (((uintptr_t)offset & PAGEOFFSET) == |
| ((uintptr_t)addr & PAGEOFFSET) && |
| (!(vp->v_flag & VNOMAP))) { |
| page = 1; |
| } else { |
| page = 0; |
| } |
| |
| /* |
| * Set the heap pagesize for OOB when the bss size |
| * is known and use_brk_lpg is not 0. |
| */ |
| if (brksize != NULL && use_brk_lpg && |
| zfodsz != 0 && phdr == dataphdrp && |
| (prot & PROT_WRITE)) { |
| size_t tlen = P2NPHASE((uintptr_t)addr + |
| phdr->p_filesz, PAGESIZE); |
| |
| if (zfodsz > tlen) { |
| curproc->p_brkpageszc = |
| page_szc(map_pgsz(MAPPGSZ_HEAP, |
| curproc, addr + phdr->p_filesz + |
| tlen, zfodsz - tlen, 0)); |
| } |
| } |
| |
| if (curproc->p_brkpageszc != 0 && phdr == dataphdrp && |
| (prot & PROT_WRITE)) { |
| uint_t szc = curproc->p_brkpageszc; |
| size_t pgsz = page_get_pagesize(szc); |
| caddr_t ebss = addr + phdr->p_memsz; |
| size_t extra_zfodsz; |
| |
| ASSERT(pgsz > PAGESIZE); |
| |
| extra_zfodsz = P2NPHASE((uintptr_t)ebss, pgsz); |
| |
| if (error = execmap(vp, addr, phdr->p_filesz, |
| zfodsz + extra_zfodsz, phdr->p_offset, |
| prot, page, szc)) |
| goto bad; |
| if (brksize != NULL) |
| *brksize = extra_zfodsz; |
| } else { |
| if (error = execmap(vp, addr, phdr->p_filesz, |
| zfodsz, phdr->p_offset, prot, page, 0)) |
| goto bad; |
| } |
| |
| if (bssbase != NULL && addr >= *bssbase && |
| phdr == dataphdrp) { |
| *bssbase = addr + phdr->p_filesz; |
| } |
| if (brkbase != NULL && addr >= *brkbase) { |
| *brkbase = addr + phdr->p_memsz; |
| } |
| |
| *execsz += btopr(phdr->p_memsz); |
| break; |
| |
| case PT_INTERP: |
| if (ptload) |
| goto bad; |
| *dyphdr = phdr; |
| break; |
| |
| case PT_SHLIB: |
| *stphdr = phdr; |
| break; |
| |
| case PT_PHDR: |
| if (ptload) |
| goto bad; |
| *uphdr = phdr; |
| break; |
| |
| case PT_NULL: |
| case PT_DYNAMIC: |
| case PT_NOTE: |
| break; |
| |
| case PT_SUNWDTRACE: |
| if (dtphdr != NULL) |
| *dtphdr = phdr; |
| break; |
| |
| default: |
| break; |
| } |
| phdr = (Phdr *)((caddr_t)phdr + hsize); |
| } |
| |
| if (minaddr != NULL) { |
| ASSERT(mintmp != (caddr_t)-1); |
| *minaddr = (intptr_t)mintmp; |
| } |
| |
| return (0); |
| bad: |
| if (error == 0) |
| error = EINVAL; |
| return (error); |
| } |
| |
| int |
| elfnote(vnode_t *vp, offset_t *offsetp, int type, int descsz, void *desc, |
| rlim64_t rlimit, cred_t *credp) |
| { |
| Note note; |
| int error; |
| |
| bzero(¬e, sizeof (note)); |
| bcopy("CORE", note.name, 4); |
| note.nhdr.n_type = type; |
| /* |
| * The System V ABI states that n_namesz must be the length of the |
| * string that follows the Nhdr structure including the terminating |
| * null. The ABI also specifies that sufficient padding should be |
| * included so that the description that follows the name string |
| * begins on a 4- or 8-byte boundary for 32- and 64-bit binaries |
| * respectively. However, since this change was not made correctly |
| * at the time of the 64-bit port, both 32- and 64-bit binaries |
| * descriptions are only guaranteed to begin on a 4-byte boundary. |
| */ |
| note.nhdr.n_namesz = 5; |
| note.nhdr.n_descsz = roundup(descsz, sizeof (Word)); |
| |
| if (error = core_write(vp, UIO_SYSSPACE, *offsetp, ¬e, |
| sizeof (note), rlimit, credp)) |
| return (error); |
| |
| *offsetp += sizeof (note); |
| |
| if (error = core_write(vp, UIO_SYSSPACE, *offsetp, desc, |
| note.nhdr.n_descsz, rlimit, credp)) |
| return (error); |
| |
| *offsetp += note.nhdr.n_descsz; |
| return (0); |
| } |
| |
| /* |
| * Copy the section data from one vnode to the section of another vnode. |
| */ |
| static void |
| copy_scn(Shdr *src, vnode_t *src_vp, Shdr *dst, vnode_t *dst_vp, Off *doffset, |
| void *buf, size_t size, cred_t *credp, rlim64_t rlimit) |
| { |
| ssize_t resid; |
| size_t len, n = src->sh_size; |
| offset_t off = 0; |
| |
| while (n != 0) { |
| len = MIN(size, n); |
| if (vn_rdwr(UIO_READ, src_vp, buf, len, src->sh_offset + off, |
| UIO_SYSSPACE, 0, (rlim64_t)0, credp, &resid) != 0 || |
| resid >= len || |
| core_write(dst_vp, UIO_SYSSPACE, *doffset + off, |
| buf, len - resid, rlimit, credp) != 0) { |
| dst->sh_size = 0; |
| dst->sh_offset = 0; |
| return; |
| } |
| |
| ASSERT(n >= len - resid); |
| |
| n -= len - resid; |
| off += len - resid; |
| } |
| |
| *doffset += src->sh_size; |
| } |
| |
| #ifdef _ELF32_COMPAT |
| extern size_t elf_datasz_max; |
| #else |
| size_t elf_datasz_max = 1 * 1024 * 1024; |
| #endif |
| |
| /* |
| * This function processes mappings that correspond to load objects to |
| * examine their respective sections for elfcore(). It's called once with |
| * v set to NULL to count the number of sections that we're going to need |
| * and then again with v set to some allocated buffer that we fill in with |
| * all the section data. |
| */ |
| static int |
| process_scns(core_content_t content, proc_t *p, cred_t *credp, vnode_t *vp, |
| Shdr *v, int nv, rlim64_t rlimit, Off *doffsetp, int *nshdrsp) |
| { |
| vnode_t *lastvp = NULL; |
| struct seg *seg; |
| int i, j; |
| void *data = NULL; |
| size_t datasz = 0; |
| shstrtab_t shstrtab; |
| struct as *as = p->p_as; |
| int error = 0; |
| |
| if (v != NULL) |
| shstrtab_init(&shstrtab); |
| |
| i = 1; |
| for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { |
| uint_t prot; |
| vnode_t *mvp; |
| void *tmp = NULL; |
| caddr_t saddr = seg->s_base; |
| caddr_t naddr; |
| caddr_t eaddr; |
| size_t segsize; |
| |
| Ehdr ehdr; |
| int nshdrs, shstrndx, nphdrs; |
| caddr_t shbase; |
| ssize_t shsize; |
| char *shstrbase; |
| ssize_t shstrsize; |
| |
| Shdr *shdr; |
| const char *name; |
| size_t sz; |
| uintptr_t off; |
| |
| int ctf_ndx = 0; |
| int symtab_ndx = 0; |
| |
| /* |
| * Since we're just looking for text segments of load |
| * objects, we only care about the protection bits; we don't |
| * care about the actual size of the segment so we use the |
| * reserved size. If the segment's size is zero, there's |
| * something fishy going on so we ignore this segment. |
| */ |
| if (seg->s_ops != &segvn_ops || |
| SEGOP_GETVP(seg, seg->s_base, &mvp) != 0 || |
| mvp == lastvp || mvp == NULL || mvp->v_type != VREG || |
| (segsize = pr_getsegsize(seg, 1)) == 0) |
| continue; |
| |
| eaddr = saddr + segsize; |
| prot = pr_getprot(seg, 1, &tmp, &saddr, &naddr, eaddr); |
| pr_getprot_done(&tmp); |
| |
| /* |
| * Skip this segment unless the protection bits look like |
| * what we'd expect for a text segment. |
| */ |
| if ((prot & (PROT_WRITE | PROT_EXEC)) != PROT_EXEC) |
| continue; |
| |
| if (getelfhead(mvp, credp, &ehdr, &nshdrs, &shstrndx, |
| &nphdrs) != 0 || |
| getelfshdr(mvp, credp, &ehdr, nshdrs, shstrndx, |
| &shbase, &shsize, &shstrbase, &shstrsize) != 0) |
| continue; |
| |
| off = ehdr.e_shentsize; |
| for (j = 1; j < nshdrs; j++, off += ehdr.e_shentsize) { |
| Shdr *symtab = NULL, *strtab; |
| |
| shdr = (Shdr *)(shbase + off); |
| |
| if (shdr->sh_name >= shstrsize) |
| continue; |
| |
| name = shstrbase + shdr->sh_name; |
| |
| if (strcmp(name, shstrtab_data[STR_CTF]) == 0) { |
| if ((content & CC_CONTENT_CTF) == 0 || |
| ctf_ndx != 0) |
| continue; |
| |
| if (shdr->sh_link > 0 && |
| shdr->sh_link < nshdrs) { |
| symtab = (Shdr *)(shbase + |
| shdr->sh_link * ehdr.e_shentsize); |
| } |
| |
| if (v != NULL && i < nv - 1) { |
| if (shdr->sh_size > datasz && |
| shdr->sh_size <= elf_datasz_max) { |
| if (data != NULL) |
| kmem_free(data, datasz); |
| |
| datasz = shdr->sh_size; |
| data = kmem_alloc(datasz, |
| KM_SLEEP); |
| } |
| |
| v[i].sh_name = shstrtab_ndx(&shstrtab, |
| STR_CTF); |
| v[i].sh_addr = (Addr)(uintptr_t)saddr; |
| v[i].sh_type = SHT_PROGBITS; |
| v[i].sh_addralign = 4; |
| *doffsetp = roundup(*doffsetp, |
| v[i].sh_addralign); |
| v[i].sh_offset = *doffsetp; |
| v[i].sh_size = shdr->sh_size; |
| if (symtab == NULL) { |
| v[i].sh_link = 0; |
| } else if (symtab->sh_type == |
| SHT_SYMTAB && |
| symtab_ndx != 0) { |
| v[i].sh_link = |
| symtab_ndx; |
| } else { |
| v[i].sh_link = i + 1; |
| } |
| |
| copy_scn(shdr, mvp, &v[i], vp, |
| doffsetp, data, datasz, credp, |
| rlimit); |
| } |
| |
| ctf_ndx = i++; |
| |
| /* |
| * We've already dumped the symtab. |
| */ |
| if (symtab != NULL && |
| symtab->sh_type == SHT_SYMTAB && |
| symtab_ndx != 0) |
| continue; |
| |
| } else if (strcmp(name, |
| shstrtab_data[STR_SYMTAB]) == 0) { |
| if ((content & CC_CONTENT_SYMTAB) == 0 || |
| symtab != 0) |
| continue; |
| |
| symtab = shdr; |
| } |
| |
| if (symtab != NULL) { |
| if ((symtab->sh_type != SHT_DYNSYM && |
| symtab->sh_type != SHT_SYMTAB) || |
| symtab->sh_link == 0 || |
| symtab->sh_link >= nshdrs) |
| continue; |
| |
| strtab = (Shdr *)(shbase + |
| symtab->sh_link * ehdr.e_shentsize); |
| |
| if (strtab->sh_type != SHT_STRTAB) |
| continue; |
| |
| if (v != NULL && i < nv - 2) { |
| sz = MAX(symtab->sh_size, |
| strtab->sh_size); |
| if (sz > datasz && |
| sz <= elf_datasz_max) { |
| if (data != NULL) |
| kmem_free(data, datasz); |
| |
| datasz = sz; |
| data = kmem_alloc(datasz, |
| KM_SLEEP); |
| } |
| |
| if (symtab->sh_type == SHT_DYNSYM) { |
| v[i].sh_name = shstrtab_ndx( |
| &shstrtab, STR_DYNSYM); |
| v[i + 1].sh_name = shstrtab_ndx( |
| &shstrtab, STR_DYNSTR); |
| } else { |
| v[i].sh_name = shstrtab_ndx( |
| &shstrtab, STR_SYMTAB); |
| v[i + 1].sh_name = shstrtab_ndx( |
| &shstrtab, STR_STRTAB); |
| } |
| |
| v[i].sh_type = symtab->sh_type; |
| v[i].sh_addr = symtab->sh_addr; |
| if (ehdr.e_type == ET_DYN || |
| v[i].sh_addr == 0) |
| v[i].sh_addr += |
| (Addr)(uintptr_t)saddr; |
| v[i].sh_addralign = |
| symtab->sh_addralign; |
| *doffsetp = roundup(*doffsetp, |
| v[i].sh_addralign); |
| v[i].sh_offset = *doffsetp; |
| v[i].sh_size = symtab->sh_size; |
| v[i].sh_link = i + 1; |
| v[i].sh_entsize = symtab->sh_entsize; |
| v[i].sh_info = symtab->sh_info; |
| |
| copy_scn(symtab, mvp, &v[i], vp, |
| doffsetp, data, datasz, credp, |
| rlimit); |
| |
| v[i + 1].sh_type = SHT_STRTAB; |
| v[i + 1].sh_flags = SHF_STRINGS; |
| v[i + 1].sh_addr = symtab->sh_addr; |
| if (ehdr.e_type == ET_DYN || |
| v[i + 1].sh_addr == 0) |
| v[i + 1].sh_addr += |
| (Addr)(uintptr_t)saddr; |
| v[i + 1].sh_addralign = |
| strtab->sh_addralign; |
| *doffsetp = roundup(*doffsetp, |
| v[i + 1].sh_addralign); |
| v[i + 1].sh_offset = *doffsetp; |
| v[i + 1].sh_size = strtab->sh_size; |
| |
| copy_scn(strtab, mvp, &v[i + 1], vp, |
| doffsetp, data, datasz, credp, |
| rlimit); |
| } |
| |
| if (symtab->sh_type == SHT_SYMTAB) |
| symtab_ndx = i; |
| i += 2; |
| } |
| } |
| |
| kmem_free(shstrbase, shstrsize); |
| kmem_free(shbase, shsize); |
| |
| lastvp = mvp; |
| } |
| |
| if (v == NULL) { |
| if (i == 1) |
| *nshdrsp = 0; |
| else |
| *nshdrsp = i + 1; |
| goto done; |
| } |
| |
| if (i != nv - 1) { |
| cmn_err(CE_WARN, "elfcore: core dump failed for " |
| "process %d; address space is changing", p->p_pid); |
| error = EIO; |
| goto done; |
| } |
| |
| v[i].sh_name = shstrtab_ndx(&shstrtab, STR_SHSTRTAB); |
| v[i].sh_size = shstrtab_size(&shstrtab); |
| v[i].sh_addralign = 1; |
| *doffsetp = roundup(*doffsetp, v[i].sh_addralign); |
| v[i].sh_offset = *doffsetp; |
| v[i].sh_flags = SHF_STRINGS; |
| v[i].sh_type = SHT_STRTAB; |
| |
| if (v[i].sh_size > datasz) { |
| if (data != NULL) |
| kmem_free(data, datasz); |
| |
| datasz = v[i].sh_size; |
| data = kmem_alloc(datasz, |
| KM_SLEEP); |
| } |
| |
| shstrtab_dump(&shstrtab, data); |
| |
| if ((error = core_write(vp, UIO_SYSSPACE, *doffsetp, |
| data, v[i].sh_size, rlimit, credp)) != 0) |
| goto done; |
| |
| *doffsetp += v[i].sh_size; |
| |
| done: |
| if (data != NULL) |
| kmem_free(data, datasz); |
| |
| return (error); |
| } |
| |
| int |
| elfcore(vnode_t *vp, proc_t *p, cred_t *credp, rlim64_t rlimit, int sig, |
| core_content_t content) |
| { |
| offset_t poffset, soffset; |
| Off doffset; |
| int error, i, nphdrs, nshdrs; |
| int overflow = 0; |
| struct seg *seg; |
| struct as *as = p->p_as; |
| union { |
| Ehdr ehdr; |
| Phdr phdr[1]; |
| Shdr shdr[1]; |
| } *bigwad; |
| size_t bigsize; |
| size_t phdrsz, shdrsz; |
| Ehdr *ehdr; |
| Phdr *v; |
| caddr_t brkbase; |
| size_t brksize; |
| caddr_t stkbase; |
| size_t stksize; |
| int ntries = 0; |
| klwp_t *lwp = ttolwp(curthread); |
| |
| top: |
| /* |
| * Make sure we have everything we need (registers, etc.). |
| * All other lwps have already stopped and are in an orderly state. |
| */ |
| ASSERT(p == ttoproc(curthread)); |
| prstop(0, 0); |
| |
| AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); |
| nphdrs = prnsegs(as, 0) + 2; /* two CORE note sections */ |
| |
| /* |
| * Count the number of section headers we're going to need. |
| */ |
| nshdrs = 0; |
| if (content & (CC_CONTENT_CTF | CC_CONTENT_SYMTAB)) { |
| (void) process_scns(content, p, credp, NULL, NULL, NULL, 0, |
| NULL, &nshdrs); |
| } |
| AS_LOCK_EXIT(as, &as->a_lock); |
| |
| ASSERT(nshdrs == 0 || nshdrs > 1); |
| |
| /* |
| * The core file contents may required zero section headers, but if |
| * we overflow the 16 bits allotted to the program header count in |
| * the ELF header, we'll need that program header at index zero. |
| */ |
| if (nshdrs == 0 && nphdrs >= PN_XNUM) |
| nshdrs = 1; |
| |
| phdrsz = nphdrs * sizeof (Phdr); |
| shdrsz = nshdrs * sizeof (Shdr); |
| |
| bigsize = MAX(sizeof (*bigwad), MAX(phdrsz, shdrsz)); |
| bigwad = kmem_alloc(bigsize, KM_SLEEP); |
| |
| ehdr = &bigwad->ehdr; |
| bzero(ehdr, sizeof (*ehdr)); |
| |
| ehdr->e_ident[EI_MAG0] = ELFMAG0; |
| ehdr->e_ident[EI_MAG1] = ELFMAG1; |
| ehdr->e_ident[EI_MAG2] = ELFMAG2; |
| ehdr->e_ident[EI_MAG3] = ELFMAG3; |
| ehdr->e_ident[EI_CLASS] = ELFCLASS; |
| ehdr->e_type = ET_CORE; |
| |
| #if !defined(_LP64) || defined(_ELF32_COMPAT) |
| |
| #if defined(__sparc) |
| ehdr->e_ident[EI_DATA] = ELFDATA2MSB; |
| ehdr->e_machine = EM_SPARC; |
| #elif defined(__i386) || defined(__i386_COMPAT) |
| ehdr->e_ident[EI_DATA] = ELFDATA2LSB; |
| ehdr->e_machine = EM_386; |
| #else |
| #error "no recognized machine type is defined" |
| #endif |
| |
| #else /* !defined(_LP64) || defined(_ELF32_COMPAT) */ |
| |
| #if defined(__sparc) |
| ehdr->e_ident[EI_DATA] = ELFDATA2MSB; |
| ehdr->e_machine = EM_SPARCV9; |
| #elif defined(__amd64) |
| ehdr->e_ident[EI_DATA] = ELFDATA2LSB; |
| ehdr->e_machine = EM_AMD64; |
| #else |
| #error "no recognized 64-bit machine type is defined" |
| #endif |
| |
| #endif /* !defined(_LP64) || defined(_ELF32_COMPAT) */ |
| |
| /* |
| * If the count of program headers or section headers or the index |
| * of the section string table can't fit in the mere 16 bits |
| * shortsightedly allotted to them in the ELF header, we use the |
| * extended formats and put the real values in the section header |
| * as index 0. |
| */ |
| ehdr->e_version = EV_CURRENT; |
| ehdr->e_ehsize = sizeof (Ehdr); |
| |
| if (nphdrs >= PN_XNUM) |
| ehdr->e_phnum = PN_XNUM; |
| else |
| ehdr->e_phnum = (unsigned short)nphdrs; |
| |
| ehdr->e_phoff = sizeof (Ehdr); |
| ehdr->e_phentsize = sizeof (Phdr); |
| |
| if (nshdrs > 0) { |
| if (nshdrs >= SHN_LORESERVE) |
| ehdr->e_shnum = 0; |
| else |
| ehdr->e_shnum = (unsigned short)nshdrs; |
| |
| if (nshdrs - 1 >= SHN_LORESERVE) |
| ehdr->e_shstrndx = SHN_XINDEX; |
| else |
| ehdr->e_shstrndx = (unsigned short)(nshdrs - 1); |
| |
| ehdr->e_shoff = ehdr->e_phoff + ehdr->e_phentsize * nphdrs; |
| ehdr->e_shentsize = sizeof (Shdr); |
| } |
| |
| if (error = core_write(vp, UIO_SYSSPACE, (offset_t)0, ehdr, |
| sizeof (Ehdr), rlimit, credp)) |
| goto done; |
| |
| poffset = sizeof (Ehdr); |
| soffset = sizeof (Ehdr) + phdrsz; |
| doffset = sizeof (Ehdr) + phdrsz + shdrsz; |
| |
| v = &bigwad->phdr[0]; |
| bzero(v, phdrsz); |
| |
| setup_old_note_header(&v[0], p); |
| v[0].p_offset = doffset = roundup(doffset, sizeof (Word)); |
| doffset += v[0].p_filesz; |
| |
| setup_note_header(&v[1], p); |
| v[1].p_offset = doffset = roundup(doffset, sizeof (Word)); |
| doffset += v[1].p_filesz; |
| |
| mutex_enter(&p->p_lock); |
| |
| brkbase = p->p_brkbase; |
| brksize = p->p_brksize; |
| |
| stkbase = p->p_usrstack - p->p_stksize; |
| stksize = p->p_stksize; |
| |
| mutex_exit(&p->p_lock); |
| |
| AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); |
| i = 2; |
| for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { |
| caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0); |
| caddr_t saddr, naddr; |
| void *tmp = NULL; |
| extern struct seg_ops segspt_shmops; |
| |
| for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) { |
| uint_t prot; |
| size_t size; |
| int type; |
| vnode_t *mvp; |
| |
| prot = pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr); |
| prot &= PROT_READ | PROT_WRITE | PROT_EXEC; |
| if ((size = (size_t)(naddr - saddr)) == 0) |
| continue; |
| if (i == nphdrs) { |
| overflow++; |
| continue; |
| } |
| v[i].p_type = PT_LOAD; |
| v[i].p_vaddr = (Addr)(uintptr_t)saddr; |
| v[i].p_memsz = size; |
| if (prot & PROT_READ) |
| v[i].p_flags |= PF_R; |
| if (prot & PROT_WRITE) |
| v[i].p_flags |= PF_W; |
| if (prot & PROT_EXEC) |
| v[i].p_flags |= PF_X; |
| |
| /* |
| * Figure out which mappings to include in the core. |
| */ |
| type = SEGOP_GETTYPE(seg, saddr); |
| |
| if (saddr == stkbase && size == stksize) { |
| if (!(content & CC_CONTENT_STACK)) |
| goto exclude; |
| |
| } else if (saddr == brkbase && size == brksize) { |
| if (!(content & CC_CONTENT_HEAP)) |
| goto exclude; |
| |
| } else if (seg->s_ops == &segspt_shmops) { |
| if (type & MAP_NORESERVE) { |
| if (!(content & CC_CONTENT_DISM)) |
| goto exclude; |
| } else { |
| if (!(content & CC_CONTENT_ISM)) |
| goto exclude; |
| } |
| |
| } else if (seg->s_ops != &segvn_ops) { |
| goto exclude; |
| |
| } else if (type & MAP_SHARED) { |
| if (shmgetid(p, saddr) != SHMID_NONE) { |
| if (!(content & CC_CONTENT_SHM)) |
| goto exclude; |
| |
| } else if (SEGOP_GETVP(seg, seg->s_base, |
| &mvp) != 0 || mvp == NULL || |
| mvp->v_type != VREG) { |
| if (!(content & CC_CONTENT_SHANON)) |
| goto exclude; |
| |
| } else { |
| if (!(content & CC_CONTENT_SHFILE)) |
| goto exclude; |
| } |
| |
| } else if (SEGOP_GETVP(seg, seg->s_base, &mvp) != 0 || |
| mvp == NULL || mvp->v_type != VREG) { |
| if (!(content & CC_CONTENT_ANON)) |
| goto exclude; |
| |
| } else if (prot == (PROT_READ | PROT_EXEC)) { |
| if (!(content & CC_CONTENT_TEXT)) |
| goto exclude; |
| |
| } else if (prot == PROT_READ) { |
| if (!(content & CC_CONTENT_RODATA)) |
| goto exclude; |
| |
| } else { |
| if (!(content & CC_CONTENT_DATA)) |
| goto exclude; |
| } |
| |
| doffset = roundup(doffset, sizeof (Word)); |
| v[i].p_offset = doffset; |
| v[i].p_filesz = size; |
| doffset += size; |
| exclude: |
| i++; |
| } |
| ASSERT(tmp == NULL); |
| } |
| AS_LOCK_EXIT(as, &as->a_lock); |
| |
| if (overflow || i != nphdrs) { |
| if (ntries++ == 0) { |
| kmem_free(bigwad, bigsize); |
| overflow = 0; |
| goto top; |
| } |
| cmn_err(CE_WARN, "elfcore: core dump failed for " |
| "process %d; address space is changing", p->p_pid); |
| error = EIO; |
| goto done; |
| } |
| |
| if ((error = core_write(vp, UIO_SYSSPACE, poffset, |
| v, phdrsz, rlimit, credp)) != 0) |
| goto done; |
| |
| if ((error = write_old_elfnotes(p, sig, vp, v[0].p_offset, rlimit, |
| credp)) != 0) |
| goto done; |
| |
| if ((error = write_elfnotes(p, sig, vp, v[1].p_offset, rlimit, |
| credp, content)) != 0) |
| goto done; |
| |
| for (i = 2; i < nphdrs; i++) { |
| prkillinfo_t killinfo; |
| sigqueue_t *sq; |
| int sig, j; |
| |
| if (v[i].p_filesz == 0) |
| continue; |
| |
| /* |
| * If dumping out this segment fails, rather than failing |
| * the core dump entirely, we reset the size of the mapping |
| * to zero to indicate that the data is absent from the core |
| * file and or in the PF_SUNW_FAILURE flag to differentiate |
| * this from mappings that were excluded due to the core file |
| * content settings. |
| */ |
| if ((error = core_seg(p, vp, v[i].p_offset, |
| (caddr_t)(uintptr_t)v[i].p_vaddr, v[i].p_filesz, |
| rlimit, credp)) == 0) { |
| continue; |
| } |
| |
| if ((sig = lwp->lwp_cursig) == 0) { |
| /* |
| * We failed due to something other than a signal. |
| * Since the space reserved for the segment is now |
| * unused, we stash the errno in the first four |
| * bytes. This undocumented interface will let us |
| * understand the nature of the failure. |
| */ |
| (void) core_write(vp, UIO_SYSSPACE, v[i].p_offset, |
| &error, sizeof (error), rlimit, credp); |
| |
| v[i].p_filesz = 0; |
| v[i].p_flags |= PF_SUNW_FAILURE; |
| if ((error = core_write(vp, UIO_SYSSPACE, |
| poffset + sizeof (v[i]) * i, &v[i], sizeof (v[i]), |
| rlimit, credp)) != 0) |
| goto done; |
| |
| continue; |
| } |
| |
| /* |
| * We took a signal. We want to abort the dump entirely, but |
| * we also want to indicate what failed and why. We therefore |
| * use the space reserved for the first failing segment to |
| * write our error (which, for purposes of compatability with |
| * older core dump readers, we set to EINTR) followed by any |
| * siginfo associated with the signal. |
| */ |
| bzero(&killinfo, sizeof (killinfo)); |
| killinfo.prk_error = EINTR; |
| |
| sq = sig == SIGKILL ? curproc->p_killsqp : lwp->lwp_curinfo; |
| |
| if (sq != NULL) { |
| bcopy(&sq->sq_info, &killinfo.prk_info, |
| sizeof (sq->sq_info)); |
| } else { |
| killinfo.prk_info.si_signo = lwp->lwp_cursig; |
| killinfo.prk_info.si_code = SI_NOINFO; |
| } |
| |
| #if (defined(_SYSCALL32_IMPL) || defined(_LP64)) |
| /* |
| * If this is a 32-bit process, we need to translate from the |
| * native siginfo to the 32-bit variant. (Core readers must |
| * always have the same data model as their target or must |
| * be aware of -- and compensate for -- data model differences.) |
| */ |
| if (curproc->p_model == DATAMODEL_ILP32) { |
| siginfo32_t si32; |
| |
| siginfo_kto32((k_siginfo_t *)&killinfo.prk_info, &si32); |
| bcopy(&si32, &killinfo.prk_info, sizeof (si32)); |
| } |
| #endif |
| |
| (void) core_write(vp, UIO_SYSSPACE, v[i].p_offset, |
| &killinfo, sizeof (killinfo), rlimit, credp); |
| |
| /* |
| * For the segment on which we took the signal, indicate that |
| * its data now refers to a siginfo. |
| */ |
| v[i].p_filesz = 0; |
| v[i].p_flags |= PF_SUNW_FAILURE | PF_SUNW_KILLED | |
| PF_SUNW_SIGINFO; |
| |
| /* |
| * And for every other segment, indicate that its absence |
| * is due to a signal. |
| */ |
| for (j = i + 1; j < nphdrs; j++) { |
| v[j].p_filesz = 0; |
| v[j].p_flags |= PF_SUNW_FAILURE | PF_SUNW_KILLED; |
| } |
| |
| /* |
| * Finally, write out our modified program headers. |
| */ |
| if ((error = core_write(vp, UIO_SYSSPACE, |
| poffset + sizeof (v[i]) * i, &v[i], |
| sizeof (v[i]) * (nphdrs - i), rlimit, credp)) != 0) |
| goto done; |
| |
| break; |
| } |
| |
| if (nshdrs > 0) { |
| bzero(&bigwad->shdr[0], shdrsz); |
| |
| if (nshdrs >= SHN_LORESERVE) |
| bigwad->shdr[0].sh_size = nshdrs; |
| |
| if (nshdrs - 1 >= SHN_LORESERVE) |
| bigwad->shdr[0].sh_link = nshdrs - 1; |
| |
| if (nphdrs >= PN_XNUM) |
| bigwad->shdr[0].sh_info = nphdrs; |
| |
| if (nshdrs > 1) { |
| AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); |
| if ((error = process_scns(content, p, credp, vp, |
| &bigwad->shdr[0], nshdrs, rlimit, &doffset, |
| NULL)) != 0) { |
| AS_LOCK_EXIT(as, &as->a_lock); |
| goto done; |
| } |
| AS_LOCK_EXIT(as, &as->a_lock); |
| } |
| |
| if ((error = core_write(vp, UIO_SYSSPACE, soffset, |
| &bigwad->shdr[0], shdrsz, rlimit, credp)) != 0) |
| goto done; |
| } |
| |
| done: |
| kmem_free(bigwad, bigsize); |
| return (error); |
| } |
| |
| #ifndef _ELF32_COMPAT |
| |
| static struct execsw esw = { |
| #ifdef _LP64 |
| elf64magicstr, |
| #else /* _LP64 */ |
| elf32magicstr, |
| #endif /* _LP64 */ |
| 0, |
| 5, |
| elfexec, |
| elfcore |
| }; |
| |
| static struct modlexec modlexec = { |
| &mod_execops, "exec module for elf", &esw |
| }; |
| |
| #ifdef _LP64 |
| extern int elf32exec(vnode_t *vp, execa_t *uap, uarg_t *args, |
| intpdata_t *idatap, int level, long *execsz, |
| int setid, caddr_t exec_file, cred_t *cred, |
| int brand_action); |
| extern int elf32core(vnode_t *vp, proc_t *p, cred_t *credp, |
| rlim64_t rlimit, int sig, core_content_t content); |
| |
| static struct execsw esw32 = { |
| elf32magicstr, |
| 0, |
| 5, |
| elf32exec, |
| elf32core |
| }; |
| |
| static struct modlexec modlexec32 = { |
| &mod_execops, "32-bit exec module for elf", &esw32 |
| }; |
| #endif /* _LP64 */ |
| |
| static struct modlinkage modlinkage = { |
| MODREV_1, |
| (void *)&modlexec, |
| #ifdef _LP64 |
| (void *)&modlexec32, |
| #endif /* _LP64 */ |
| NULL |
| }; |
| |
| int |
| _init(void) |
| { |
| return (mod_install(&modlinkage)); |
| } |
| |
| int |
| _fini(void) |
| { |
| return (mod_remove(&modlinkage)); |
| } |
| |
| int |
| _info(struct modinfo *modinfop) |
| { |
| return (mod_info(&modlinkage, modinfop)); |
| } |
| |
| #endif /* !_ELF32_COMPAT */ |