| /* |
| * CDDL HEADER START |
| * |
| * The contents of this file are subject to the terms of the |
| * Common Development and Distribution License (the "License"). |
| * You may not use this file except in compliance with the License. |
| * |
| * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE |
| * or http://www.opensolaris.org/os/licensing. |
| * See the License for the specific language governing permissions |
| * and limitations under the License. |
| * |
| * When distributing Covered Code, include this CDDL HEADER in each |
| * file and include the License file at usr/src/OPENSOLARIS.LICENSE. |
| * If applicable, add the following below this CDDL HEADER, with the |
| * fields enclosed by brackets "[]" replaced with your own identifying |
| * information: Portions Copyright [yyyy] [name of copyright owner] |
| * |
| * CDDL HEADER END |
| */ |
| /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ |
| /* All Rights Reserved */ |
| |
| |
| /* |
| * Copyright 2008 Sun Microsystems, Inc. All rights reserved. |
| * Use is subject to license terms. |
| * |
| * Copyright 2013 Nexenta Systems, Inc. All rights reserved. |
| * |
| * Copyright 2018 Joyent Inc. |
| */ |
| |
| #ifndef _SYS_SYSMACROS_H |
| #define _SYS_SYSMACROS_H |
| |
| #include <sys/param.h> |
| #include <sys/stddef.h> |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| /* |
| * Some macros for units conversion |
| */ |
| /* |
| * Disk blocks (sectors) and bytes. |
| */ |
| #define dtob(DD) ((DD) << DEV_BSHIFT) |
| #define btod(BB) (((BB) + DEV_BSIZE - 1) >> DEV_BSHIFT) |
| #define btodt(BB) ((BB) >> DEV_BSHIFT) |
| #define lbtod(BB) (((offset_t)(BB) + DEV_BSIZE - 1) >> DEV_BSHIFT) |
| |
| /* common macros */ |
| #ifndef MIN |
| #define MIN(a, b) ((a) < (b) ? (a) : (b)) |
| #endif |
| #ifndef MAX |
| #define MAX(a, b) ((a) < (b) ? (b) : (a)) |
| #endif |
| #ifndef ABS |
| #define ABS(a) ((a) < 0 ? -(a) : (a)) |
| #endif |
| #ifndef SIGNOF |
| #define SIGNOF(a) ((a) < 0 ? -1 : (a) > 0) |
| #endif |
| |
| #ifdef _KERNEL |
| |
| /* |
| * Convert a single byte to/from binary-coded decimal (BCD). |
| */ |
| extern unsigned char byte_to_bcd[256]; |
| extern unsigned char bcd_to_byte[256]; |
| |
| #define BYTE_TO_BCD(x) byte_to_bcd[(x) & 0xff] |
| #define BCD_TO_BYTE(x) bcd_to_byte[(x) & 0xff] |
| |
| #endif /* _KERNEL */ |
| |
| /* |
| * WARNING: The device number macros defined here should not be used by device |
| * drivers or user software. Device drivers should use the device functions |
| * defined in the DDI/DKI interface (see also ddi.h). Application software |
| * should make use of the library routines available in makedev(3). A set of |
| * new device macros are provided to operate on the expanded device number |
| * format supported in SVR4. Macro versions of the DDI device functions are |
| * provided for use by kernel proper routines only. Macro routines bmajor(), |
| * major(), minor(), emajor(), eminor(), and makedev() will be removed or |
| * their definitions changed at the next major release following SVR4. |
| */ |
| |
| #define O_BITSMAJOR 7 /* # of SVR3 major device bits */ |
| #define O_BITSMINOR 8 /* # of SVR3 minor device bits */ |
| #define O_MAXMAJ 0x7f /* SVR3 max major value */ |
| #define O_MAXMIN 0xff /* SVR3 max minor value */ |
| |
| |
| #define L_BITSMAJOR32 14 /* # of SVR4 major device bits */ |
| #define L_BITSMINOR32 18 /* # of SVR4 minor device bits */ |
| #define L_MAXMAJ32 0x3fff /* SVR4 max major value */ |
| #define L_MAXMIN32 0x3ffff /* MAX minor for 3b2 software drivers. */ |
| /* For 3b2 hardware devices the minor is */ |
| /* restricted to 256 (0-255) */ |
| |
| #ifdef _LP64 |
| #define L_BITSMAJOR 32 /* # of major device bits in 64-bit Solaris */ |
| #define L_BITSMINOR 32 /* # of minor device bits in 64-bit Solaris */ |
| #define L_MAXMAJ 0xfffffffful /* max major value */ |
| #define L_MAXMIN 0xfffffffful /* max minor value */ |
| #else |
| #define L_BITSMAJOR L_BITSMAJOR32 |
| #define L_BITSMINOR L_BITSMINOR32 |
| #define L_MAXMAJ L_MAXMAJ32 |
| #define L_MAXMIN L_MAXMIN32 |
| #endif |
| |
| #ifdef _KERNEL |
| |
| /* major part of a device internal to the kernel */ |
| |
| #define major(x) (major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ) |
| #define bmajor(x) (major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ) |
| |
| /* get internal major part of expanded device number */ |
| |
| #define getmajor(x) (major_t)((((dev_t)(x)) >> L_BITSMINOR) & L_MAXMAJ) |
| |
| /* minor part of a device internal to the kernel */ |
| |
| #define minor(x) (minor_t)((x) & O_MAXMIN) |
| |
| /* get internal minor part of expanded device number */ |
| |
| #define getminor(x) (minor_t)((x) & L_MAXMIN) |
| |
| #else /* _KERNEL */ |
| |
| /* major part of a device external from the kernel (same as emajor below) */ |
| |
| #define major(x) (major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ) |
| |
| /* minor part of a device external from the kernel (same as eminor below) */ |
| |
| #define minor(x) (minor_t)((x) & O_MAXMIN) |
| |
| #endif /* _KERNEL */ |
| |
| /* create old device number */ |
| |
| #define makedev(x, y) (unsigned short)(((x) << O_BITSMINOR) | ((y) & O_MAXMIN)) |
| |
| /* make an new device number */ |
| |
| #define makedevice(x, y) (dev_t)(((dev_t)(x) << L_BITSMINOR) | ((y) & L_MAXMIN)) |
| |
| |
| /* |
| * emajor() allows kernel/driver code to print external major numbers |
| * eminor() allows kernel/driver code to print external minor numbers |
| */ |
| |
| #define emajor(x) \ |
| (major_t)(((unsigned int)(x) >> O_BITSMINOR) > O_MAXMAJ) ? \ |
| NODEV : (((unsigned int)(x) >> O_BITSMINOR) & O_MAXMAJ) |
| |
| #define eminor(x) \ |
| (minor_t)((x) & O_MAXMIN) |
| |
| /* |
| * get external major and minor device |
| * components from expanded device number |
| */ |
| #define getemajor(x) (major_t)((((dev_t)(x) >> L_BITSMINOR) > L_MAXMAJ) ? \ |
| NODEV : (((dev_t)(x) >> L_BITSMINOR) & L_MAXMAJ)) |
| #define geteminor(x) (minor_t)((x) & L_MAXMIN) |
| |
| /* |
| * These are versions of the kernel routines for compressing and |
| * expanding long device numbers that don't return errors. |
| */ |
| #if (L_BITSMAJOR32 == L_BITSMAJOR) && (L_BITSMINOR32 == L_BITSMINOR) |
| |
| #define DEVCMPL(x) (x) |
| #define DEVEXPL(x) (x) |
| |
| #else |
| |
| #define DEVCMPL(x) \ |
| (dev32_t)((((x) >> L_BITSMINOR) > L_MAXMAJ32 || \ |
| ((x) & L_MAXMIN) > L_MAXMIN32) ? NODEV32 : \ |
| ((((x) >> L_BITSMINOR) << L_BITSMINOR32) | ((x) & L_MAXMIN32))) |
| |
| #define DEVEXPL(x) \ |
| (((x) == NODEV32) ? NODEV : \ |
| makedevice(((x) >> L_BITSMINOR32) & L_MAXMAJ32, (x) & L_MAXMIN32)) |
| |
| #endif /* L_BITSMAJOR32 ... */ |
| |
| /* convert to old (SVR3.2) dev format */ |
| |
| #define cmpdev(x) \ |
| (o_dev_t)((((x) >> L_BITSMINOR) > O_MAXMAJ || \ |
| ((x) & L_MAXMIN) > O_MAXMIN) ? NODEV : \ |
| ((((x) >> L_BITSMINOR) << O_BITSMINOR) | ((x) & O_MAXMIN))) |
| |
| /* convert to new (SVR4) dev format */ |
| |
| #define expdev(x) \ |
| (dev_t)(((dev_t)(((x) >> O_BITSMINOR) & O_MAXMAJ) << L_BITSMINOR) | \ |
| ((x) & O_MAXMIN)) |
| |
| /* |
| * Macro for checking power of 2 address alignment. |
| */ |
| #define IS_P2ALIGNED(v, a) ((((uintptr_t)(v)) & ((uintptr_t)(a) - 1)) == 0) |
| |
| /* |
| * Macros for counting and rounding. |
| */ |
| #define howmany(x, y) (((x)+((y)-1))/(y)) |
| #define roundup(x, y) ((((x)+((y)-1))/(y))*(y)) |
| |
| /* |
| * Macro to determine if value is a power of 2 |
| */ |
| #define ISP2(x) (((x) & ((x) - 1)) == 0) |
| |
| /* |
| * Macros for various sorts of alignment and rounding. The "align" must |
| * be a power of 2. Often times it is a block, sector, or page. |
| */ |
| |
| /* |
| * return x rounded down to an align boundary |
| * eg, P2ALIGN(1200, 1024) == 1024 (1*align) |
| * eg, P2ALIGN(1024, 1024) == 1024 (1*align) |
| * eg, P2ALIGN(0x1234, 0x100) == 0x1200 (0x12*align) |
| * eg, P2ALIGN(0x5600, 0x100) == 0x5600 (0x56*align) |
| */ |
| #define P2ALIGN(x, align) ((x) & -(align)) |
| |
| /* |
| * return x % (mod) align |
| * eg, P2PHASE(0x1234, 0x100) == 0x34 (x-0x12*align) |
| * eg, P2PHASE(0x5600, 0x100) == 0x00 (x-0x56*align) |
| */ |
| #define P2PHASE(x, align) ((x) & ((align) - 1)) |
| |
| /* |
| * return how much space is left in this block (but if it's perfectly |
| * aligned, return 0). |
| * eg, P2NPHASE(0x1234, 0x100) == 0xcc (0x13*align-x) |
| * eg, P2NPHASE(0x5600, 0x100) == 0x00 (0x56*align-x) |
| */ |
| #define P2NPHASE(x, align) (-(x) & ((align) - 1)) |
| |
| /* |
| * return x rounded up to an align boundary |
| * eg, P2ROUNDUP(0x1234, 0x100) == 0x1300 (0x13*align) |
| * eg, P2ROUNDUP(0x5600, 0x100) == 0x5600 (0x56*align) |
| */ |
| #define P2ROUNDUP(x, align) (-(-(x) & -(align))) |
| |
| /* |
| * return the ending address of the block that x is in |
| * eg, P2END(0x1234, 0x100) == 0x12ff (0x13*align - 1) |
| * eg, P2END(0x5600, 0x100) == 0x56ff (0x57*align - 1) |
| */ |
| #define P2END(x, align) (-(~(x) & -(align))) |
| |
| /* |
| * return x rounded up to the next phase (offset) within align. |
| * phase should be < align. |
| * eg, P2PHASEUP(0x1234, 0x100, 0x10) == 0x1310 (0x13*align + phase) |
| * eg, P2PHASEUP(0x5600, 0x100, 0x10) == 0x5610 (0x56*align + phase) |
| */ |
| #define P2PHASEUP(x, align, phase) ((phase) - (((phase) - (x)) & -(align))) |
| |
| /* |
| * return TRUE if adding len to off would cause it to cross an align |
| * boundary. |
| * eg, P2BOUNDARY(0x1234, 0xe0, 0x100) == TRUE (0x1234 + 0xe0 == 0x1314) |
| * eg, P2BOUNDARY(0x1234, 0x50, 0x100) == FALSE (0x1234 + 0x50 == 0x1284) |
| */ |
| #define P2BOUNDARY(off, len, align) \ |
| (((off) ^ ((off) + (len) - 1)) > (align) - 1) |
| |
| /* |
| * Return TRUE if they have the same highest bit set. |
| * eg, P2SAMEHIGHBIT(0x1234, 0x1001) == TRUE (the high bit is 0x1000) |
| * eg, P2SAMEHIGHBIT(0x1234, 0x3010) == FALSE (high bit of 0x3010 is 0x2000) |
| */ |
| #define P2SAMEHIGHBIT(x, y) (((x) ^ (y)) < ((x) & (y))) |
| |
| /* |
| * Typed version of the P2* macros. These macros should be used to ensure |
| * that the result is correctly calculated based on the data type of (x), |
| * which is passed in as the last argument, regardless of the data |
| * type of the alignment. For example, if (x) is of type uint64_t, |
| * and we want to round it up to a page boundary using "PAGESIZE" as |
| * the alignment, we can do either |
| * P2ROUNDUP(x, (uint64_t)PAGESIZE) |
| * or |
| * P2ROUNDUP_TYPED(x, PAGESIZE, uint64_t) |
| */ |
| #define P2ALIGN_TYPED(x, align, type) \ |
| ((type)(x) & -(type)(align)) |
| #define P2PHASE_TYPED(x, align, type) \ |
| ((type)(x) & ((type)(align) - 1)) |
| #define P2NPHASE_TYPED(x, align, type) \ |
| (-(type)(x) & ((type)(align) - 1)) |
| #define P2ROUNDUP_TYPED(x, align, type) \ |
| (-(-(type)(x) & -(type)(align))) |
| #define P2END_TYPED(x, align, type) \ |
| (-(~(type)(x) & -(type)(align))) |
| #define P2PHASEUP_TYPED(x, align, phase, type) \ |
| ((type)(phase) - (((type)(phase) - (type)(x)) & -(type)(align))) |
| #define P2CROSS_TYPED(x, y, align, type) \ |
| (((type)(x) ^ (type)(y)) > (type)(align) - 1) |
| #define P2SAMEHIGHBIT_TYPED(x, y, type) \ |
| (((type)(x) ^ (type)(y)) < ((type)(x) & (type)(y))) |
| |
| /* |
| * Macros to atomically increment/decrement a variable. mutex and var |
| * must be pointers. |
| */ |
| #define INCR_COUNT(var, mutex) mutex_enter(mutex), (*(var))++, mutex_exit(mutex) |
| #define DECR_COUNT(var, mutex) mutex_enter(mutex), (*(var))--, mutex_exit(mutex) |
| |
| /* |
| * Macros to declare bitfields - the order in the parameter list is |
| * Low to High - that is, declare bit 0 first. We only support 8-bit bitfields |
| * because if a field crosses a byte boundary it's not likely to be meaningful |
| * without reassembly in its nonnative endianness. |
| */ |
| #if defined(_BIT_FIELDS_LTOH) |
| #define DECL_BITFIELD2(_a, _b) \ |
| uint8_t _a, _b |
| #define DECL_BITFIELD3(_a, _b, _c) \ |
| uint8_t _a, _b, _c |
| #define DECL_BITFIELD4(_a, _b, _c, _d) \ |
| uint8_t _a, _b, _c, _d |
| #define DECL_BITFIELD5(_a, _b, _c, _d, _e) \ |
| uint8_t _a, _b, _c, _d, _e |
| #define DECL_BITFIELD6(_a, _b, _c, _d, _e, _f) \ |
| uint8_t _a, _b, _c, _d, _e, _f |
| #define DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g) \ |
| uint8_t _a, _b, _c, _d, _e, _f, _g |
| #define DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h) \ |
| uint8_t _a, _b, _c, _d, _e, _f, _g, _h |
| #elif defined(_BIT_FIELDS_HTOL) |
| #define DECL_BITFIELD2(_a, _b) \ |
| uint8_t _b, _a |
| #define DECL_BITFIELD3(_a, _b, _c) \ |
| uint8_t _c, _b, _a |
| #define DECL_BITFIELD4(_a, _b, _c, _d) \ |
| uint8_t _d, _c, _b, _a |
| #define DECL_BITFIELD5(_a, _b, _c, _d, _e) \ |
| uint8_t _e, _d, _c, _b, _a |
| #define DECL_BITFIELD6(_a, _b, _c, _d, _e, _f) \ |
| uint8_t _f, _e, _d, _c, _b, _a |
| #define DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g) \ |
| uint8_t _g, _f, _e, _d, _c, _b, _a |
| #define DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h) \ |
| uint8_t _h, _g, _f, _e, _d, _c, _b, _a |
| #else |
| #error One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined |
| #endif /* _BIT_FIELDS_LTOH */ |
| |
| #if !defined(ARRAY_SIZE) |
| #define ARRAY_SIZE(x) (sizeof (x) / sizeof (x[0])) |
| #endif |
| |
| /* |
| * Add a value to a uint64_t that saturates at UINT64_MAX instead of wrapping |
| * around. |
| */ |
| #define UINT64_OVERFLOW_ADD(val, add) \ |
| ((val) > ((val) + (add)) ? (UINT64_MAX) : ((val) + (add))) |
| |
| /* |
| * Convert to an int64, saturating at INT64_MAX. |
| */ |
| #define UINT64_OVERFLOW_TO_INT64(uval) \ |
| (((uval) > INT64_MAX) ? INT64_MAX : (int64_t)(uval)) |
| |
| #ifdef __cplusplus |
| } |
| #endif |
| |
| #endif /* _SYS_SYSMACROS_H */ |