| /* |
| * CDDL HEADER START |
| * |
| * The contents of this file are subject to the terms of the |
| * Common Development and Distribution License (the "License"). |
| * You may not use this file except in compliance with the License. |
| * |
| * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE |
| * or http://www.opensolaris.org/os/licensing. |
| * See the License for the specific language governing permissions |
| * and limitations under the License. |
| * |
| * When distributing Covered Code, include this CDDL HEADER in each |
| * file and include the License file at usr/src/OPENSOLARIS.LICENSE. |
| * If applicable, add the following below this CDDL HEADER, with the |
| * fields enclosed by brackets "[]" replaced with your own identifying |
| * information: Portions Copyright [yyyy] [name of copyright owner] |
| * |
| * CDDL HEADER END |
| */ |
| /* |
| * Copyright 2006 Sun Microsystems, Inc. All rights reserved. |
| * Use is subject to license terms. |
| */ |
| /* Copyright (c) 1990 Mentat Inc. */ |
| |
| #pragma ident "%Z%%M% %I% %E% SMI" |
| |
| const char udp_version[] = "%Z%%M% %I% %E% SMI"; |
| |
| #include <sys/types.h> |
| #include <sys/stream.h> |
| #include <sys/dlpi.h> |
| #include <sys/pattr.h> |
| #include <sys/stropts.h> |
| #include <sys/strlog.h> |
| #include <sys/strsun.h> |
| #include <sys/time.h> |
| #define _SUN_TPI_VERSION 2 |
| #include <sys/tihdr.h> |
| #include <sys/timod.h> |
| #include <sys/ddi.h> |
| #include <sys/sunddi.h> |
| #include <sys/strsubr.h> |
| #include <sys/suntpi.h> |
| #include <sys/xti_inet.h> |
| #include <sys/cmn_err.h> |
| #include <sys/kmem.h> |
| #include <sys/policy.h> |
| #include <sys/ucred.h> |
| #include <sys/zone.h> |
| |
| #include <sys/socket.h> |
| #include <sys/sockio.h> |
| #include <sys/vtrace.h> |
| #include <sys/sdt.h> |
| #include <sys/debug.h> |
| #include <sys/isa_defs.h> |
| #include <sys/random.h> |
| #include <netinet/in.h> |
| #include <netinet/ip6.h> |
| #include <netinet/icmp6.h> |
| #include <netinet/udp.h> |
| #include <net/if.h> |
| #include <net/route.h> |
| |
| #include <inet/common.h> |
| #include <inet/ip.h> |
| #include <inet/ip_impl.h> |
| #include <inet/ip6.h> |
| #include <inet/ip_ire.h> |
| #include <inet/ip_if.h> |
| #include <inet/ip_multi.h> |
| #include <inet/ip_ndp.h> |
| #include <inet/mi.h> |
| #include <inet/mib2.h> |
| #include <inet/nd.h> |
| #include <inet/optcom.h> |
| #include <inet/snmpcom.h> |
| #include <inet/kstatcom.h> |
| #include <inet/udp_impl.h> |
| #include <inet/ipclassifier.h> |
| #include <inet/ipsec_impl.h> |
| #include <inet/ipp_common.h> |
| |
| /* |
| * The ipsec_info.h header file is here since it has the definition for the |
| * M_CTL message types used by IP to convey information to the ULP. The |
| * ipsec_info.h needs the pfkeyv2.h, hence the latter's presence. |
| */ |
| #include <net/pfkeyv2.h> |
| #include <inet/ipsec_info.h> |
| |
| #include <sys/tsol/label.h> |
| #include <sys/tsol/tnet.h> |
| #include <rpc/pmap_prot.h> |
| |
| /* |
| * Synchronization notes: |
| * |
| * UDP uses a combination of its internal perimeter, a global lock and |
| * a set of bind hash locks to protect its data structures. Please see |
| * the note above udp_mode_assertions for details about the internal |
| * perimeter. |
| * |
| * When a UDP endpoint is bound to a local port, it is inserted into |
| * a bind hash list. The list consists of an array of udp_fanout_t buckets. |
| * The size of the array is controlled by the udp_bind_fanout_size variable. |
| * This variable can be changed in /etc/system if the default value is |
| * not large enough. Each bind hash bucket is protected by a per bucket |
| * lock. It protects the udp_bind_hash and udp_ptpbhn fields in the udp_t |
| * structure. An UDP endpoint is removed from the bind hash list only |
| * when it is being unbound or being closed. The per bucket lock also |
| * protects a UDP endpoint's state changes. |
| * |
| * Plumbing notes: |
| * |
| * Both udp and ip are merged, but the streams plumbing is kept unchanged |
| * in that udp is always pushed atop /dev/ip. This is done to preserve |
| * backwards compatibility for certain applications which rely on such |
| * plumbing geometry to do things such as issuing I_POP on the stream |
| * in order to obtain direct access to /dev/ip, etc. |
| * |
| * All UDP processings happen in the /dev/ip instance; the udp module |
| * instance does not possess any state about the endpoint, and merely |
| * acts as a dummy module whose presence is to keep the streams plumbing |
| * appearance unchanged. At open time /dev/ip allocates a conn_t that |
| * happens to embed a udp_t. This stays dormant until the time udp is |
| * pushed, which indicates to /dev/ip that it must convert itself from |
| * an IP to a UDP endpoint. |
| * |
| * We only allow for the following plumbing cases: |
| * |
| * Normal: |
| * /dev/ip is first opened and later udp is pushed directly on top. |
| * This is the default action that happens when a udp socket or |
| * /dev/udp is opened. The conn_t created by /dev/ip instance is |
| * now shared and is marked with IPCL_UDP. |
| * |
| * SNMP-only: |
| * udp is pushed on top of a module other than /dev/ip. When this |
| * happens it will support only SNMP semantics. A new conn_t is |
| * allocated and marked with IPCL_UDPMOD. |
| * |
| * The above cases imply that we don't support any intermediate module to |
| * reside in between /dev/ip and udp -- in fact, we never supported such |
| * scenario in the past as the inter-layer communication semantics have |
| * always been private. Also note that the normal case allows for SNMP |
| * requests to be processed in addition to the rest of UDP operations. |
| * |
| * The normal case plumbing is depicted by the following diagram: |
| * |
| * +---------------+---------------+ |
| * | | | udp |
| * | udp_wq | udp_rq | |
| * | | UDP_RD | |
| * | | | |
| * +---------------+---------------+ |
| * | ^ |
| * v | |
| * +---------------+---------------+ |
| * | | | /dev/ip |
| * | ip_wq | ip_rq | conn_t |
| * | UDP_WR | | |
| * | | | |
| * +---------------+---------------+ |
| * |
| * Messages arriving at udp_wq from above will end up in ip_wq before |
| * it gets processed, i.e. udp write entry points will advance udp_wq |
| * and use its q_next value as ip_wq in order to use the conn_t that |
| * is stored in its q_ptr. Likewise, messages generated by ip to the |
| * module above udp will appear as if they are originated from udp_rq, |
| * i.e. putnext() calls to the module above udp is done using the |
| * udp_rq instead of ip_rq in order to avoid udp_rput() which does |
| * nothing more than calling putnext(). |
| * |
| * The above implies the following rule of thumb: |
| * |
| * 1. udp_t is obtained from conn_t, which is created by the /dev/ip |
| * instance and is stored in q_ptr of both ip_wq and ip_rq. There |
| * is no direct reference to conn_t from either udp_wq or udp_rq. |
| * |
| * 2. Write-side entry points of udp can obtain the conn_t via the |
| * Q_TO_CONN() macro, using the queue value obtain from UDP_WR(). |
| * |
| * 3. While in /dev/ip context, putnext() to the module above udp can |
| * be done by supplying the queue value obtained from UDP_RD(). |
| * |
| */ |
| |
| static queue_t *UDP_WR(queue_t *); |
| static queue_t *UDP_RD(queue_t *); |
| |
| udp_stat_t udp_statistics = { |
| { "udp_ip_send", KSTAT_DATA_UINT64 }, |
| { "udp_ip_ire_send", KSTAT_DATA_UINT64 }, |
| { "udp_ire_null", KSTAT_DATA_UINT64 }, |
| { "udp_drain", KSTAT_DATA_UINT64 }, |
| { "udp_sock_fallback", KSTAT_DATA_UINT64 }, |
| { "udp_rrw_busy", KSTAT_DATA_UINT64 }, |
| { "udp_rrw_msgcnt", KSTAT_DATA_UINT64 }, |
| { "udp_out_sw_cksum", KSTAT_DATA_UINT64 }, |
| { "udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, |
| { "udp_out_opt", KSTAT_DATA_UINT64 }, |
| { "udp_out_err_notconn", KSTAT_DATA_UINT64 }, |
| { "udp_out_err_output", KSTAT_DATA_UINT64 }, |
| { "udp_out_err_tudr", KSTAT_DATA_UINT64 }, |
| { "udp_in_pktinfo", KSTAT_DATA_UINT64 }, |
| { "udp_in_recvdstaddr", KSTAT_DATA_UINT64 }, |
| { "udp_in_recvopts", KSTAT_DATA_UINT64 }, |
| { "udp_in_recvif", KSTAT_DATA_UINT64 }, |
| { "udp_in_recvslla", KSTAT_DATA_UINT64 }, |
| { "udp_in_recvucred", KSTAT_DATA_UINT64 }, |
| { "udp_in_recvttl", KSTAT_DATA_UINT64 }, |
| { "udp_in_recvhopopts", KSTAT_DATA_UINT64 }, |
| { "udp_in_recvhoplimit", KSTAT_DATA_UINT64 }, |
| { "udp_in_recvdstopts", KSTAT_DATA_UINT64 }, |
| { "udp_in_recvrtdstopts", KSTAT_DATA_UINT64 }, |
| { "udp_in_recvrthdr", KSTAT_DATA_UINT64 }, |
| { "udp_in_recvpktinfo", KSTAT_DATA_UINT64 }, |
| { "udp_in_recvtclass", KSTAT_DATA_UINT64 }, |
| { "udp_in_timestamp", KSTAT_DATA_UINT64 }, |
| #ifdef DEBUG |
| { "udp_data_conn", KSTAT_DATA_UINT64 }, |
| { "udp_data_notconn", KSTAT_DATA_UINT64 }, |
| #endif |
| }; |
| |
| static kstat_t *udp_ksp; |
| struct kmem_cache *udp_cache; |
| |
| /* |
| * Bind hash list size and hash function. It has to be a power of 2 for |
| * hashing. |
| */ |
| #define UDP_BIND_FANOUT_SIZE 512 |
| #define UDP_BIND_HASH(lport) \ |
| ((ntohs((uint16_t)lport)) & (udp_bind_fanout_size - 1)) |
| |
| /* UDP bind fanout hash structure. */ |
| typedef struct udp_fanout_s { |
| udp_t *uf_udp; |
| kmutex_t uf_lock; |
| #if defined(_LP64) || defined(_I32LPx) |
| char uf_pad[48]; |
| #else |
| char uf_pad[56]; |
| #endif |
| } udp_fanout_t; |
| |
| uint_t udp_bind_fanout_size = UDP_BIND_FANOUT_SIZE; |
| /* udp_fanout_t *udp_bind_fanout. */ |
| static udp_fanout_t *udp_bind_fanout; |
| |
| /* |
| * This controls the rate some ndd info report functions can be used |
| * by non-privileged users. It stores the last time such info is |
| * requested. When those report functions are called again, this |
| * is checked with the current time and compare with the ndd param |
| * udp_ndd_get_info_interval. |
| */ |
| static clock_t udp_last_ndd_get_info_time; |
| #define NDD_TOO_QUICK_MSG \ |
| "ndd get info rate too high for non-privileged users, try again " \ |
| "later.\n" |
| #define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n" |
| |
| /* Option processing attrs */ |
| typedef struct udpattrs_s { |
| union { |
| ip6_pkt_t *udpattr_ipp6; /* For V6 */ |
| ip4_pkt_t *udpattr_ipp4; /* For V4 */ |
| } udpattr_ippu; |
| #define udpattr_ipp6 udpattr_ippu.udpattr_ipp6 |
| #define udpattr_ipp4 udpattr_ippu.udpattr_ipp4 |
| mblk_t *udpattr_mb; |
| boolean_t udpattr_credset; |
| } udpattrs_t; |
| |
| static void udp_addr_req(queue_t *q, mblk_t *mp); |
| static void udp_bind(queue_t *q, mblk_t *mp); |
| static void udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp); |
| static void udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock); |
| static int udp_build_hdrs(queue_t *q, udp_t *udp); |
| static void udp_capability_req(queue_t *q, mblk_t *mp); |
| static int udp_close(queue_t *q); |
| static void udp_connect(queue_t *q, mblk_t *mp); |
| static void udp_disconnect(queue_t *q, mblk_t *mp); |
| static void udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, |
| int sys_error); |
| static void udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive, |
| t_scalar_t tlierr, int unixerr); |
| static int udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, |
| cred_t *cr); |
| static int udp_extra_priv_ports_add(queue_t *q, mblk_t *mp, |
| char *value, caddr_t cp, cred_t *cr); |
| static int udp_extra_priv_ports_del(queue_t *q, mblk_t *mp, |
| char *value, caddr_t cp, cred_t *cr); |
| static void udp_icmp_error(queue_t *q, mblk_t *mp); |
| static void udp_icmp_error_ipv6(queue_t *q, mblk_t *mp); |
| static void udp_info_req(queue_t *q, mblk_t *mp); |
| static mblk_t *udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim, |
| t_scalar_t addr_length); |
| static int udp_open(queue_t *q, dev_t *devp, int flag, int sflag, |
| cred_t *credp); |
| static int udp_unitdata_opt_process(queue_t *q, mblk_t *mp, |
| int *errorp, udpattrs_t *udpattrs); |
| static boolean_t udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name); |
| static int udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); |
| static boolean_t udp_param_register(udpparam_t *udppa, int cnt); |
| static int udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, |
| cred_t *cr); |
| static void udp_report_item(mblk_t *mp, udp_t *udp); |
| static void udp_rput(queue_t *q, mblk_t *mp); |
| static void udp_rput_other(queue_t *, mblk_t *); |
| static int udp_rinfop(queue_t *q, infod_t *dp); |
| static int udp_rrw(queue_t *q, struiod_t *dp); |
| static void udp_rput_bind_ack(queue_t *q, mblk_t *mp); |
| static int udp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, |
| cred_t *cr); |
| static void udp_send_data(udp_t *udp, queue_t *q, mblk_t *mp, ipha_t *ipha); |
| static void udp_ud_err(queue_t *q, mblk_t *mp, uchar_t *destaddr, |
| t_scalar_t destlen, t_scalar_t err); |
| static void udp_unbind(queue_t *q, mblk_t *mp); |
| static in_port_t udp_update_next_port(udp_t *udp, in_port_t port, |
| boolean_t random); |
| static void udp_wput(queue_t *q, mblk_t *mp); |
| static mblk_t *udp_output_v4(conn_t *, mblk_t *mp, ipaddr_t v4dst, |
| uint16_t port, uint_t srcid, int *error); |
| static mblk_t *udp_output_v6(conn_t *connp, mblk_t *mp, sin6_t *sin6, |
| int *error); |
| static void udp_wput_other(queue_t *q, mblk_t *mp); |
| static void udp_wput_iocdata(queue_t *q, mblk_t *mp); |
| static void udp_output(conn_t *connp, mblk_t *mp, struct sockaddr *addr, |
| socklen_t addrlen); |
| static size_t udp_set_rcv_hiwat(udp_t *udp, size_t size); |
| |
| static void udp_kstat_init(void); |
| static void udp_kstat_fini(void); |
| static int udp_kstat_update(kstat_t *kp, int rw); |
| static void udp_input_wrapper(void *arg, mblk_t *mp, void *arg2); |
| static void udp_rput_other_wrapper(void *arg, mblk_t *mp, void *arg2); |
| static void udp_wput_other_wrapper(void *arg, mblk_t *mp, void *arg2); |
| static void udp_resume_bind_cb(void *arg, mblk_t *mp, void *arg2); |
| |
| static void udp_rcv_enqueue(queue_t *q, udp_t *udp, mblk_t *mp, |
| uint_t pkt_len); |
| static void udp_rcv_drain(queue_t *q, udp_t *udp, boolean_t closing); |
| static void udp_enter(conn_t *, mblk_t *, sqproc_t, uint8_t); |
| static void udp_exit(conn_t *); |
| static void udp_become_writer(conn_t *, mblk_t *, sqproc_t, uint8_t); |
| #ifdef DEBUG |
| static void udp_mode_assertions(udp_t *, int); |
| #endif /* DEBUG */ |
| |
| major_t UDP6_MAJ; |
| #define UDP6 "udp6" |
| |
| #define UDP_RECV_HIWATER (56 * 1024) |
| #define UDP_RECV_LOWATER 128 |
| #define UDP_XMIT_HIWATER (56 * 1024) |
| #define UDP_XMIT_LOWATER 1024 |
| |
| static struct module_info udp_info = { |
| UDP_MOD_ID, UDP_MOD_NAME, 1, INFPSZ, UDP_RECV_HIWATER, UDP_RECV_LOWATER |
| }; |
| |
| static struct qinit udp_rinit = { |
| (pfi_t)udp_rput, NULL, udp_open, udp_close, NULL, |
| &udp_info, NULL, udp_rrw, udp_rinfop, STRUIOT_STANDARD |
| }; |
| |
| static struct qinit udp_winit = { |
| (pfi_t)udp_wput, NULL, NULL, NULL, NULL, |
| &udp_info, NULL, NULL, NULL, STRUIOT_NONE |
| }; |
| |
| static struct qinit winit = { |
| (pfi_t)putnext, NULL, NULL, NULL, NULL, |
| &udp_info, NULL, NULL, NULL, STRUIOT_NONE |
| }; |
| |
| /* Support for just SNMP if UDP is not pushed directly over device IP */ |
| struct qinit udp_snmp_rinit = { |
| (pfi_t)putnext, NULL, udp_open, ip_snmpmod_close, NULL, |
| &udp_info, NULL, NULL, NULL, STRUIOT_NONE |
| }; |
| |
| struct qinit udp_snmp_winit = { |
| (pfi_t)ip_snmpmod_wput, NULL, udp_open, ip_snmpmod_close, NULL, |
| &udp_info, NULL, NULL, NULL, STRUIOT_NONE |
| }; |
| |
| struct streamtab udpinfo = { |
| &udp_rinit, &winit |
| }; |
| |
| static sin_t sin_null; /* Zero address for quick clears */ |
| static sin6_t sin6_null; /* Zero address for quick clears */ |
| |
| /* Hint not protected by any lock */ |
| static in_port_t udp_g_next_port_to_try; |
| |
| /* |
| * Extra privileged ports. In host byte order. |
| */ |
| #define UDP_NUM_EPRIV_PORTS 64 |
| static int udp_g_num_epriv_ports = UDP_NUM_EPRIV_PORTS; |
| static in_port_t udp_g_epriv_ports[UDP_NUM_EPRIV_PORTS] = { 2049, 4045 }; |
| |
| /* Only modified during _init and _fini thus no locking is needed. */ |
| static IDP udp_g_nd; /* Points to table of UDP ND variables. */ |
| |
| /* MIB-2 stuff for SNMP */ |
| static mib2_udp_t udp_mib; /* SNMP fixed size info */ |
| static kstat_t *udp_mibkp; /* kstat exporting udp_mib data */ |
| |
| #define UDP_MAXPACKET_IPV4 (IP_MAXPACKET - UDPH_SIZE - IP_SIMPLE_HDR_LENGTH) |
| |
| /* Default structure copied into T_INFO_ACK messages */ |
| static struct T_info_ack udp_g_t_info_ack_ipv4 = { |
| T_INFO_ACK, |
| UDP_MAXPACKET_IPV4, /* TSDU_size. Excl. headers */ |
| T_INVALID, /* ETSU_size. udp does not support expedited data. */ |
| T_INVALID, /* CDATA_size. udp does not support connect data. */ |
| T_INVALID, /* DDATA_size. udp does not support disconnect data. */ |
| sizeof (sin_t), /* ADDR_size. */ |
| 0, /* OPT_size - not initialized here */ |
| UDP_MAXPACKET_IPV4, /* TIDU_size. Excl. headers */ |
| T_CLTS, /* SERV_type. udp supports connection-less. */ |
| TS_UNBND, /* CURRENT_state. This is set from udp_state. */ |
| (XPG4_1|SENDZERO) /* PROVIDER_flag */ |
| }; |
| |
| #define UDP_MAXPACKET_IPV6 (IP_MAXPACKET - UDPH_SIZE - IPV6_HDR_LEN) |
| |
| static struct T_info_ack udp_g_t_info_ack_ipv6 = { |
| T_INFO_ACK, |
| UDP_MAXPACKET_IPV6, /* TSDU_size. Excl. headers */ |
| T_INVALID, /* ETSU_size. udp does not support expedited data. */ |
| T_INVALID, /* CDATA_size. udp does not support connect data. */ |
| T_INVALID, /* DDATA_size. udp does not support disconnect data. */ |
| sizeof (sin6_t), /* ADDR_size. */ |
| 0, /* OPT_size - not initialized here */ |
| UDP_MAXPACKET_IPV6, /* TIDU_size. Excl. headers */ |
| T_CLTS, /* SERV_type. udp supports connection-less. */ |
| TS_UNBND, /* CURRENT_state. This is set from udp_state. */ |
| (XPG4_1|SENDZERO) /* PROVIDER_flag */ |
| }; |
| |
| /* largest UDP port number */ |
| #define UDP_MAX_PORT 65535 |
| |
| /* |
| * Table of ND variables supported by udp. These are loaded into udp_g_nd |
| * in udp_open. |
| * All of these are alterable, within the min/max values given, at run time. |
| */ |
| /* BEGIN CSTYLED */ |
| udpparam_t udp_param_arr[] = { |
| /*min max value name */ |
| { 0L, 256, 32, "udp_wroff_extra" }, |
| { 1L, 255, 255, "udp_ipv4_ttl" }, |
| { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "udp_ipv6_hoplimit"}, |
| { 1024, (32 * 1024), 1024, "udp_smallest_nonpriv_port" }, |
| { 0, 1, 1, "udp_do_checksum" }, |
| { 1024, UDP_MAX_PORT, (32 * 1024), "udp_smallest_anon_port" }, |
| { 1024, UDP_MAX_PORT, UDP_MAX_PORT, "udp_largest_anon_port" }, |
| { UDP_XMIT_LOWATER, (1<<30), UDP_XMIT_HIWATER, "udp_xmit_hiwat"}, |
| { 0, (1<<30), UDP_XMIT_LOWATER, "udp_xmit_lowat"}, |
| { UDP_RECV_LOWATER, (1<<30), UDP_RECV_HIWATER, "udp_recv_hiwat"}, |
| { 65536, (1<<30), 2*1024*1024, "udp_max_buf"}, |
| { 100, 60000, 1000, "udp_ndd_get_info_interval"}, |
| }; |
| /* END CSTYLED */ |
| |
| /* |
| * The smallest anonymous port in the privileged port range which UDP |
| * looks for free port. Use in the option UDP_ANONPRIVBIND. |
| */ |
| static in_port_t udp_min_anonpriv_port = 512; |
| |
| /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ |
| uint32_t udp_random_anon_port = 1; |
| |
| /* |
| * Hook functions to enable cluster networking. |
| * On non-clustered systems these vectors must always be NULL |
| */ |
| |
| void (*cl_inet_bind)(uchar_t protocol, sa_family_t addr_family, |
| uint8_t *laddrp, in_port_t lport) = NULL; |
| void (*cl_inet_unbind)(uint8_t protocol, sa_family_t addr_family, |
| uint8_t *laddrp, in_port_t lport) = NULL; |
| |
| typedef union T_primitives *t_primp_t; |
| |
| #define UDP_ENQUEUE_MP(udp, mp, proc, tag) { \ |
| ASSERT((mp)->b_prev == NULL && (mp)->b_queue == NULL); \ |
| ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock)); \ |
| (mp)->b_queue = (queue_t *)((uintptr_t)tag); \ |
| (mp)->b_prev = (mblk_t *)proc; \ |
| if ((udp)->udp_mphead == NULL) \ |
| (udp)->udp_mphead = (mp); \ |
| else \ |
| (udp)->udp_mptail->b_next = (mp); \ |
| (udp)->udp_mptail = (mp); \ |
| (udp)->udp_mpcount++; \ |
| } |
| |
| #define UDP_READERS_INCREF(udp) { \ |
| ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock)); \ |
| (udp)->udp_reader_count++; \ |
| } |
| |
| #define UDP_READERS_DECREF(udp) { \ |
| ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock)); \ |
| (udp)->udp_reader_count--; \ |
| if ((udp)->udp_reader_count == 0) \ |
| cv_broadcast(&(udp)->udp_connp->conn_cv); \ |
| } |
| |
| #define UDP_SQUEUE_DECREF(udp) { \ |
| ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock)); \ |
| (udp)->udp_squeue_count--; \ |
| if ((udp)->udp_squeue_count == 0) \ |
| cv_broadcast(&(udp)->udp_connp->conn_cv); \ |
| } |
| |
| /* |
| * Notes on UDP endpoint synchronization: |
| * |
| * UDP needs exclusive operation on a per endpoint basis, when executing |
| * functions that modify the endpoint state. udp_rput_other() deals with |
| * packets with IP options, and processing these packets end up having |
| * to update the endpoint's option related state. udp_wput_other() deals |
| * with control operations from the top, e.g. connect() that needs to |
| * update the endpoint state. These could be synchronized using locks, |
| * but the current version uses squeues for this purpose. squeues may |
| * give performance improvement for certain cases such as connected UDP |
| * sockets; thus the framework allows for using squeues. |
| * |
| * The perimeter routines are described as follows: |
| * |
| * udp_enter(): |
| * Enter the UDP endpoint perimeter. |
| * |
| * udp_become_writer(): |
| * Become exclusive on the UDP endpoint. Specifies a function |
| * that will be called exclusively either immediately or later |
| * when the perimeter is available exclusively. |
| * |
| * udp_exit(): |
| * Exit the UDP perimeter. |
| * |
| * Entering UDP from the top or from the bottom must be done using |
| * udp_enter(). No lock must be held while attempting to enter the UDP |
| * perimeter. When finished, udp_exit() must be called to get out of |
| * the perimeter. |
| * |
| * UDP operates in either MT_HOT mode or in SQUEUE mode. In MT_HOT mode, |
| * multiple threads may enter a UDP endpoint concurrently. This is used |
| * for sending and/or receiving normal data. Control operations and other |
| * special cases call udp_become_writer() to become exclusive on a per |
| * endpoint basis and this results in transitioning to SQUEUE mode. squeue |
| * by definition serializes access to the conn_t. When there are no more |
| * pending messages on the squeue for the UDP connection, the endpoint |
| * reverts to MT_HOT mode. During the interregnum when not all MT threads |
| * of an endpoint have finished, messages are queued in the UDP endpoint |
| * and the UDP is in UDP_MT_QUEUED mode or UDP_QUEUED_SQUEUE mode. |
| * |
| * These modes have the following analogs: |
| * |
| * UDP_MT_HOT/udp_reader_count==0 none |
| * UDP_MT_HOT/udp_reader_count>0 RW_READ_LOCK |
| * UDP_MT_QUEUED RW_WRITE_WANTED |
| * UDP_SQUEUE or UDP_QUEUED_SQUEUE RW_WRITE_LOCKED |
| * |
| * Stable modes: UDP_MT_HOT, UDP_SQUEUE |
| * Transient modes: UDP_MT_QUEUED, UDP_QUEUED_SQUEUE |
| * |
| * While in stable modes, UDP keeps track of the number of threads |
| * operating on the endpoint. The udp_reader_count variable represents |
| * the number of threads entering the endpoint as readers while it is |
| * in UDP_MT_HOT mode. Transitioning to UDP_SQUEUE happens when there |
| * is only a single reader, i.e. when this counter drops to 1. Likewise, |
| * udp_squeue_count represents the number of threads operating on the |
| * endpoint's squeue while it is in UDP_SQUEUE mode. The mode transition |
| * to UDP_MT_HOT happens after the last thread exits the endpoint, i.e. |
| * when this counter drops to 0. |
| * |
| * The default mode is set to UDP_MT_HOT and UDP alternates between |
| * UDP_MT_HOT and UDP_SQUEUE as shown in the state transition below. |
| * |
| * Mode transition: |
| * ---------------------------------------------------------------- |
| * old mode Event New mode |
| * ---------------------------------------------------------------- |
| * UDP_MT_HOT Call to udp_become_writer() UDP_SQUEUE |
| * and udp_reader_count == 1 |
| * |
| * UDP_MT_HOT Call to udp_become_writer() UDP_MT_QUEUED |
| * and udp_reader_count > 1 |
| * |
| * UDP_MT_QUEUED udp_reader_count drops to zero UDP_QUEUED_SQUEUE |
| * |
| * UDP_QUEUED_SQUEUE All messages enqueued on the UDP_SQUEUE |
| * internal UDP queue successfully |
| * moved to squeue AND udp_squeue_count != 0 |
| * |
| * UDP_QUEUED_SQUEUE All messages enqueued on the UDP_MT_HOT |
| * internal UDP queue successfully |
| * moved to squeue AND udp_squeue_count |
| * drops to zero |
| * |
| * UDP_SQUEUE udp_squeue_count drops to zero UDP_MT_HOT |
| * ---------------------------------------------------------------- |
| */ |
| |
| static queue_t * |
| UDP_WR(queue_t *q) |
| { |
| ASSERT(q->q_ptr == NULL && _OTHERQ(q)->q_ptr == NULL); |
| ASSERT(WR(q)->q_next != NULL && WR(q)->q_next->q_ptr != NULL); |
| ASSERT(IPCL_IS_UDP(Q_TO_CONN(WR(q)->q_next))); |
| |
| return (_WR(q)->q_next); |
| } |
| |
| static queue_t * |
| UDP_RD(queue_t *q) |
| { |
| ASSERT(q->q_ptr != NULL && _OTHERQ(q)->q_ptr != NULL); |
| ASSERT(IPCL_IS_UDP(Q_TO_CONN(q))); |
| ASSERT(RD(q)->q_next != NULL && RD(q)->q_next->q_ptr == NULL); |
| |
| return (_RD(q)->q_next); |
| } |
| |
| #ifdef DEBUG |
| #define UDP_MODE_ASSERTIONS(udp, caller) udp_mode_assertions(udp, caller) |
| #else |
| #define UDP_MODE_ASSERTIONS(udp, caller) |
| #endif |
| |
| /* Invariants */ |
| #ifdef DEBUG |
| |
| uint32_t udp_count[4]; |
| |
| /* Context of udp_mode_assertions */ |
| #define UDP_ENTER 1 |
| #define UDP_BECOME_WRITER 2 |
| #define UDP_EXIT 3 |
| |
| static void |
| udp_mode_assertions(udp_t *udp, int caller) |
| { |
| ASSERT(MUTEX_HELD(&udp->udp_connp->conn_lock)); |
| |
| switch (udp->udp_mode) { |
| case UDP_MT_HOT: |
| /* |
| * Messages have not yet been enqueued on the internal queue, |
| * otherwise we would have switched to UDP_MT_QUEUED. Likewise |
| * by definition, there can't be any messages enqueued on the |
| * squeue. The UDP could be quiescent, so udp_reader_count |
| * could be zero at entry. |
| */ |
| ASSERT(udp->udp_mphead == NULL && udp->udp_mpcount == 0 && |
| udp->udp_squeue_count == 0); |
| ASSERT(caller == UDP_ENTER || udp->udp_reader_count != 0); |
| udp_count[0]++; |
| break; |
| |
| case UDP_MT_QUEUED: |
| /* |
| * The last MT thread to exit the udp perimeter empties the |
| * internal queue and then switches the UDP to |
| * UDP_QUEUED_SQUEUE mode. Since we are still in UDP_MT_QUEUED |
| * mode, it means there must be at least 1 MT thread still in |
| * the perimeter and at least 1 message on the internal queue. |
| */ |
| ASSERT(udp->udp_reader_count >= 1 && udp->udp_mphead != NULL && |
| udp->udp_mpcount != 0 && udp->udp_squeue_count == 0); |
| udp_count[1]++; |
| break; |
| |
| case UDP_QUEUED_SQUEUE: |
| /* |
| * The switch has happened from MT to SQUEUE. So there can't |
| * any MT threads. Messages could still pile up on the internal |
| * queue until the transition is complete and we move to |
| * UDP_SQUEUE mode. We can't assert on nonzero udp_squeue_count |
| * since the squeue could drain any time. |
| */ |
| ASSERT(udp->udp_reader_count == 0); |
| udp_count[2]++; |
| break; |
| |
| case UDP_SQUEUE: |
| /* |
| * The transition is complete. Thre can't be any messages on |
| * the internal queue. The udp could be quiescent or the squeue |
| * could drain any time, so we can't assert on nonzero |
| * udp_squeue_count during entry. Nor can we assert that |
| * udp_reader_count is zero, since, a reader thread could have |
| * directly become writer in line by calling udp_become_writer |
| * without going through the queued states. |
| */ |
| ASSERT(udp->udp_mphead == NULL && udp->udp_mpcount == 0); |
| ASSERT(caller == UDP_ENTER || udp->udp_squeue_count != 0); |
| udp_count[3]++; |
| break; |
| } |
| } |
| #endif |
| |
| #define _UDP_ENTER(connp, mp, proc, tag) { \ |
| udp_t *_udp = (connp)->conn_udp; \ |
| \ |
| mutex_enter(&(connp)->conn_lock); \ |
| if ((connp)->conn_state_flags & CONN_CLOSING) { \ |
| mutex_exit(&(connp)->conn_lock); \ |
| freemsg(mp); \ |
| } else { \ |
| UDP_MODE_ASSERTIONS(_udp, UDP_ENTER); \ |
| \ |
| switch (_udp->udp_mode) { \ |
| case UDP_MT_HOT: \ |
| /* We can execute as reader right away. */ \ |
| UDP_READERS_INCREF(_udp); \ |
| mutex_exit(&(connp)->conn_lock); \ |
| (*(proc))(connp, mp, (connp)->conn_sqp); \ |
| break; \ |
| \ |
| case UDP_SQUEUE: \ |
| /* \ |
| * We are in squeue mode, send the \ |
| * packet to the squeue \ |
| */ \ |
| _udp->udp_squeue_count++; \ |
| CONN_INC_REF_LOCKED(connp); \ |
| mutex_exit(&(connp)->conn_lock); \ |
| squeue_enter((connp)->conn_sqp, mp, proc, \ |
| connp, tag); \ |
| break; \ |
| \ |
| case UDP_MT_QUEUED: \ |
| case UDP_QUEUED_SQUEUE: \ |
| /* \ |
| * Some messages may have been enqueued \ |
| * ahead of us. Enqueue the new message \ |
| * at the tail of the internal queue to \ |
| * preserve message ordering. \ |
| */ \ |
| UDP_ENQUEUE_MP(_udp, mp, proc, tag); \ |
| mutex_exit(&(connp)->conn_lock); \ |
| break; \ |
| } \ |
| } \ |
| } |
| |
| static void |
| udp_enter(conn_t *connp, mblk_t *mp, sqproc_t proc, uint8_t tag) |
| { |
| _UDP_ENTER(connp, mp, proc, tag); |
| } |
| |
| static void |
| udp_become_writer(conn_t *connp, mblk_t *mp, sqproc_t proc, uint8_t tag) |
| { |
| udp_t *udp; |
| |
| udp = connp->conn_udp; |
| |
| mutex_enter(&connp->conn_lock); |
| |
| UDP_MODE_ASSERTIONS(udp, UDP_BECOME_WRITER); |
| |
| switch (udp->udp_mode) { |
| case UDP_MT_HOT: |
| if (udp->udp_reader_count == 1) { |
| /* |
| * We are the only MT thread. Switch to squeue mode |
| * immediately. |
| */ |
| udp->udp_mode = UDP_SQUEUE; |
| udp->udp_squeue_count = 1; |
| CONN_INC_REF_LOCKED(connp); |
| mutex_exit(&connp->conn_lock); |
| squeue_enter(connp->conn_sqp, mp, proc, connp, tag); |
| return; |
| } |
| /* FALLTHRU */ |
| |
| case UDP_MT_QUEUED: |
| /* Enqueue the packet internally in UDP */ |
| udp->udp_mode = UDP_MT_QUEUED; |
| UDP_ENQUEUE_MP(udp, mp, proc, tag); |
| mutex_exit(&connp->conn_lock); |
| return; |
| |
| case UDP_SQUEUE: |
| case UDP_QUEUED_SQUEUE: |
| /* |
| * We are already exclusive. i.e. we are already |
| * writer. Simply call the desired function. |
| */ |
| udp->udp_squeue_count++; |
| mutex_exit(&connp->conn_lock); |
| (*proc)(connp, mp, connp->conn_sqp); |
| return; |
| } |
| } |
| |
| /* |
| * Transition from MT mode to SQUEUE mode, when the last MT thread |
| * is exiting the UDP perimeter. Move all messages from the internal |
| * udp queue to the squeue. A better way would be to move all the |
| * messages in one shot, this needs more support from the squeue framework |
| */ |
| static void |
| udp_switch_to_squeue(udp_t *udp) |
| { |
| mblk_t *mp; |
| mblk_t *mp_next; |
| sqproc_t proc; |
| uint8_t tag; |
| conn_t *connp = udp->udp_connp; |
| |
| ASSERT(MUTEX_HELD(&connp->conn_lock)); |
| ASSERT(udp->udp_mode == UDP_MT_QUEUED); |
| while (udp->udp_mphead != NULL) { |
| mp = udp->udp_mphead; |
| udp->udp_mphead = NULL; |
| udp->udp_mptail = NULL; |
| udp->udp_mpcount = 0; |
| udp->udp_mode = UDP_QUEUED_SQUEUE; |
| mutex_exit(&connp->conn_lock); |
| /* |
| * It is best not to hold any locks across the calls |
| * to squeue functions. Since we drop the lock we |
| * need to go back and check the udp_mphead once again |
| * after the squeue_fill and hence the while loop at |
| * the top of this function |
| */ |
| for (; mp != NULL; mp = mp_next) { |
| mp_next = mp->b_next; |
| proc = (sqproc_t)mp->b_prev; |
| tag = (uint8_t)((uintptr_t)mp->b_queue); |
| mp->b_next = NULL; |
| mp->b_prev = NULL; |
| mp->b_queue = NULL; |
| CONN_INC_REF(connp); |
| udp->udp_squeue_count++; |
| squeue_fill(connp->conn_sqp, mp, proc, connp, |
| tag); |
| } |
| mutex_enter(&connp->conn_lock); |
| } |
| /* |
| * udp_squeue_count of zero implies that the squeue has drained |
| * even before we arrived here (i.e. after the squeue_fill above) |
| */ |
| udp->udp_mode = (udp->udp_squeue_count != 0) ? |
| UDP_SQUEUE : UDP_MT_HOT; |
| } |
| |
| #define _UDP_EXIT(connp) { \ |
| udp_t *_udp = (connp)->conn_udp; \ |
| \ |
| mutex_enter(&(connp)->conn_lock); \ |
| UDP_MODE_ASSERTIONS(_udp, UDP_EXIT); \ |
| \ |
| switch (_udp->udp_mode) { \ |
| case UDP_MT_HOT: \ |
| UDP_READERS_DECREF(_udp); \ |
| mutex_exit(&(connp)->conn_lock); \ |
| break; \ |
| \ |
| case UDP_SQUEUE: \ |
| UDP_SQUEUE_DECREF(_udp); \ |
| if (_udp->udp_squeue_count == 0) \ |
| _udp->udp_mode = UDP_MT_HOT; \ |
| mutex_exit(&(connp)->conn_lock); \ |
| break; \ |
| \ |
| case UDP_MT_QUEUED: \ |
| /* \ |
| * If this is the last MT thread, we need to \ |
| * switch to squeue mode \ |
| */ \ |
| UDP_READERS_DECREF(_udp); \ |
| if (_udp->udp_reader_count == 0) \ |
| udp_switch_to_squeue(_udp); \ |
| mutex_exit(&(connp)->conn_lock); \ |
| break; \ |
| \ |
| case UDP_QUEUED_SQUEUE: \ |
| UDP_SQUEUE_DECREF(_udp); \ |
| /* \ |
| * Even if the udp_squeue_count drops to zero, we \ |
| * don't want to change udp_mode to UDP_MT_HOT here. \ |
| * The thread in udp_switch_to_squeue will take care \ |
| * of the transition to UDP_MT_HOT, after emptying \ |
| * any more new messages that have been enqueued in \ |
| * udp_mphead. \ |
| */ \ |
| mutex_exit(&(connp)->conn_lock); \ |
| break; \ |
| } \ |
| } |
| |
| static void |
| udp_exit(conn_t *connp) |
| { |
| _UDP_EXIT(connp); |
| } |
| |
| /* |
| * Return the next anonymous port in the privileged port range for |
| * bind checking. |
| * |
| * Trusted Extension (TX) notes: TX allows administrator to mark or |
| * reserve ports as Multilevel ports (MLP). MLP has special function |
| * on TX systems. Once a port is made MLP, it's not available as |
| * ordinary port. This creates "holes" in the port name space. It |
| * may be necessary to skip the "holes" find a suitable anon port. |
| */ |
| static in_port_t |
| udp_get_next_priv_port(udp_t *udp) |
| { |
| static in_port_t next_priv_port = IPPORT_RESERVED - 1; |
| in_port_t nextport; |
| boolean_t restart = B_FALSE; |
| |
| retry: |
| if (next_priv_port < udp_min_anonpriv_port || |
| next_priv_port >= IPPORT_RESERVED) { |
| next_priv_port = IPPORT_RESERVED - 1; |
| if (restart) |
| return (0); |
| restart = B_TRUE; |
| } |
| |
| if (is_system_labeled() && |
| (nextport = tsol_next_port(crgetzone(udp->udp_connp->conn_cred), |
| next_priv_port, IPPROTO_UDP, B_FALSE)) != 0) { |
| next_priv_port = nextport; |
| goto retry; |
| } |
| |
| return (next_priv_port--); |
| } |
| |
| /* UDP bind hash report triggered via the Named Dispatch mechanism. */ |
| /* ARGSUSED */ |
| static int |
| udp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) |
| { |
| udp_fanout_t *udpf; |
| int i; |
| zoneid_t zoneid; |
| conn_t *connp; |
| udp_t *udp; |
| |
| connp = Q_TO_CONN(q); |
| udp = connp->conn_udp; |
| |
| /* Refer to comments in udp_status_report(). */ |
| if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { |
| if (ddi_get_lbolt() - udp_last_ndd_get_info_time < |
| drv_usectohz(udp_ndd_get_info_interval * 1000)) { |
| (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); |
| return (0); |
| } |
| } |
| if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { |
| /* The following may work even if we cannot get a large buf. */ |
| (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); |
| return (0); |
| } |
| |
| (void) mi_mpprintf(mp, |
| "UDP " MI_COL_HDRPAD_STR |
| /* 12345678[89ABCDEF] */ |
| " zone lport src addr dest addr port state"); |
| /* 1234 12345 xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 12345 UNBOUND */ |
| |
| zoneid = connp->conn_zoneid; |
| |
| for (i = 0; i < udp_bind_fanout_size; i++) { |
| udpf = &udp_bind_fanout[i]; |
| mutex_enter(&udpf->uf_lock); |
| |
| /* Print the hash index. */ |
| udp = udpf->uf_udp; |
| if (zoneid != GLOBAL_ZONEID) { |
| /* skip to first entry in this zone; might be none */ |
| while (udp != NULL && |
| udp->udp_connp->conn_zoneid != zoneid) |
| udp = udp->udp_bind_hash; |
| } |
| if (udp != NULL) { |
| uint_t print_len, buf_len; |
| |
| buf_len = mp->b_cont->b_datap->db_lim - |
| mp->b_cont->b_wptr; |
| print_len = snprintf((char *)mp->b_cont->b_wptr, |
| buf_len, "%d\n", i); |
| if (print_len < buf_len) { |
| mp->b_cont->b_wptr += print_len; |
| } else { |
| mp->b_cont->b_wptr += buf_len; |
| } |
| for (; udp != NULL; udp = udp->udp_bind_hash) { |
| if (zoneid == GLOBAL_ZONEID || |
| zoneid == udp->udp_connp->conn_zoneid) |
| udp_report_item(mp->b_cont, udp); |
| } |
| } |
| mutex_exit(&udpf->uf_lock); |
| } |
| udp_last_ndd_get_info_time = ddi_get_lbolt(); |
| return (0); |
| } |
| |
| /* |
| * Hash list removal routine for udp_t structures. |
| */ |
| static void |
| udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock) |
| { |
| udp_t *udpnext; |
| kmutex_t *lockp; |
| |
| if (udp->udp_ptpbhn == NULL) |
| return; |
| |
| /* |
| * Extract the lock pointer in case there are concurrent |
| * hash_remove's for this instance. |
| */ |
| ASSERT(udp->udp_port != 0); |
| if (!caller_holds_lock) { |
| lockp = &udp_bind_fanout[UDP_BIND_HASH(udp->udp_port)].uf_lock; |
| ASSERT(lockp != NULL); |
| mutex_enter(lockp); |
| } |
| if (udp->udp_ptpbhn != NULL) { |
| udpnext = udp->udp_bind_hash; |
| if (udpnext != NULL) { |
| udpnext->udp_ptpbhn = udp->udp_ptpbhn; |
| udp->udp_bind_hash = NULL; |
| } |
| *udp->udp_ptpbhn = udpnext; |
| udp->udp_ptpbhn = NULL; |
| } |
| if (!caller_holds_lock) { |
| mutex_exit(lockp); |
| } |
| } |
| |
| static void |
| udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp) |
| { |
| udp_t **udpp; |
| udp_t *udpnext; |
| |
| ASSERT(MUTEX_HELD(&uf->uf_lock)); |
| if (udp->udp_ptpbhn != NULL) { |
| udp_bind_hash_remove(udp, B_TRUE); |
| } |
| udpp = &uf->uf_udp; |
| udpnext = udpp[0]; |
| if (udpnext != NULL) { |
| /* |
| * If the new udp bound to the INADDR_ANY address |
| * and the first one in the list is not bound to |
| * INADDR_ANY we skip all entries until we find the |
| * first one bound to INADDR_ANY. |
| * This makes sure that applications binding to a |
| * specific address get preference over those binding to |
| * INADDR_ANY. |
| */ |
| if (V6_OR_V4_INADDR_ANY(udp->udp_bound_v6src) && |
| !V6_OR_V4_INADDR_ANY(udpnext->udp_bound_v6src)) { |
| while ((udpnext = udpp[0]) != NULL && |
| !V6_OR_V4_INADDR_ANY( |
| udpnext->udp_bound_v6src)) { |
| udpp = &(udpnext->udp_bind_hash); |
| } |
| if (udpnext != NULL) |
| udpnext->udp_ptpbhn = &udp->udp_bind_hash; |
| } else { |
| udpnext->udp_ptpbhn = &udp->udp_bind_hash; |
| } |
| } |
| udp->udp_bind_hash = udpnext; |
| udp->udp_ptpbhn = udpp; |
| udpp[0] = udp; |
| } |
| |
| /* |
| * This routine is called to handle each O_T_BIND_REQ/T_BIND_REQ message |
| * passed to udp_wput. |
| * It associates a port number and local address with the stream. |
| * The O_T_BIND_REQ/T_BIND_REQ is passed downstream to ip with the UDP |
| * protocol type (IPPROTO_UDP) placed in the message following the address. |
| * A T_BIND_ACK message is passed upstream when ip acknowledges the request. |
| * (Called as writer.) |
| * |
| * Note that UDP over IPv4 and IPv6 sockets can use the same port number |
| * without setting SO_REUSEADDR. This is needed so that they |
| * can be viewed as two independent transport protocols. |
| * However, anonymouns ports are allocated from the same range to avoid |
| * duplicating the udp_g_next_port_to_try. |
| */ |
| static void |
| udp_bind(queue_t *q, mblk_t *mp) |
| { |
| sin_t *sin; |
| sin6_t *sin6; |
| mblk_t *mp1; |
| in_port_t port; /* Host byte order */ |
| in_port_t requested_port; /* Host byte order */ |
| struct T_bind_req *tbr; |
| int count; |
| in6_addr_t v6src; |
| boolean_t bind_to_req_port_only; |
| int loopmax; |
| udp_fanout_t *udpf; |
| in_port_t lport; /* Network byte order */ |
| zoneid_t zoneid; |
| conn_t *connp; |
| udp_t *udp; |
| boolean_t is_inaddr_any; |
| mlp_type_t addrtype, mlptype; |
| |
| connp = Q_TO_CONN(q); |
| udp = connp->conn_udp; |
| if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { |
| (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, |
| "udp_bind: bad req, len %u", |
| (uint_t)(mp->b_wptr - mp->b_rptr)); |
| udp_err_ack(q, mp, TPROTO, 0); |
| return; |
| } |
| |
| if (udp->udp_state != TS_UNBND) { |
| (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, |
| "udp_bind: bad state, %u", udp->udp_state); |
| udp_err_ack(q, mp, TOUTSTATE, 0); |
| return; |
| } |
| /* |
| * Reallocate the message to make sure we have enough room for an |
| * address and the protocol type. |
| */ |
| mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); |
| if (!mp1) { |
| udp_err_ack(q, mp, TSYSERR, ENOMEM); |
| return; |
| } |
| |
| mp = mp1; |
| tbr = (struct T_bind_req *)mp->b_rptr; |
| switch (tbr->ADDR_length) { |
| case 0: /* Request for a generic port */ |
| tbr->ADDR_offset = sizeof (struct T_bind_req); |
| if (udp->udp_family == AF_INET) { |
| tbr->ADDR_length = sizeof (sin_t); |
| sin = (sin_t *)&tbr[1]; |
| *sin = sin_null; |
| sin->sin_family = AF_INET; |
| mp->b_wptr = (uchar_t *)&sin[1]; |
| } else { |
| ASSERT(udp->udp_family == AF_INET6); |
| tbr->ADDR_length = sizeof (sin6_t); |
| sin6 = (sin6_t *)&tbr[1]; |
| *sin6 = sin6_null; |
| sin6->sin6_family = AF_INET6; |
| mp->b_wptr = (uchar_t *)&sin6[1]; |
| } |
| port = 0; |
| break; |
| |
| case sizeof (sin_t): /* Complete IPv4 address */ |
| sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset, |
| sizeof (sin_t)); |
| if (sin == NULL || !OK_32PTR((char *)sin)) { |
| udp_err_ack(q, mp, TSYSERR, EINVAL); |
| return; |
| } |
| if (udp->udp_family != AF_INET || |
| sin->sin_family != AF_INET) { |
| udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT); |
| return; |
| } |
| port = ntohs(sin->sin_port); |
| break; |
| |
| case sizeof (sin6_t): /* complete IPv6 address */ |
| sin6 = (sin6_t *)mi_offset_param(mp, tbr->ADDR_offset, |
| sizeof (sin6_t)); |
| if (sin6 == NULL || !OK_32PTR((char *)sin6)) { |
| udp_err_ack(q, mp, TSYSERR, EINVAL); |
| return; |
| } |
| if (udp->udp_family != AF_INET6 || |
| sin6->sin6_family != AF_INET6) { |
| udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT); |
| return; |
| } |
| port = ntohs(sin6->sin6_port); |
| break; |
| |
| default: /* Invalid request */ |
| (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, |
| "udp_bind: bad ADDR_length length %u", tbr->ADDR_length); |
| udp_err_ack(q, mp, TBADADDR, 0); |
| return; |
| } |
| |
| requested_port = port; |
| |
| if (requested_port == 0 || tbr->PRIM_type == O_T_BIND_REQ) |
| bind_to_req_port_only = B_FALSE; |
| else /* T_BIND_REQ and requested_port != 0 */ |
| bind_to_req_port_only = B_TRUE; |
| |
| if (requested_port == 0) { |
| /* |
| * If the application passed in zero for the port number, it |
| * doesn't care which port number we bind to. Get one in the |
| * valid range. |
| */ |
| if (udp->udp_anon_priv_bind) { |
| port = udp_get_next_priv_port(udp); |
| } else { |
| port = udp_update_next_port(udp, |
| udp_g_next_port_to_try, B_TRUE); |
| } |
| } else { |
| /* |
| * If the port is in the well-known privileged range, |
| * make sure the caller was privileged. |
| */ |
| int i; |
| boolean_t priv = B_FALSE; |
| |
| if (port < udp_smallest_nonpriv_port) { |
| priv = B_TRUE; |
| } else { |
| for (i = 0; i < udp_g_num_epriv_ports; i++) { |
| if (port == udp_g_epriv_ports[i]) { |
| priv = B_TRUE; |
| break; |
| } |
| } |
| } |
| |
| if (priv) { |
| cred_t *cr = DB_CREDDEF(mp, connp->conn_cred); |
| |
| if (secpolicy_net_privaddr(cr, port) != 0) { |
| udp_err_ack(q, mp, TACCES, 0); |
| return; |
| } |
| } |
| } |
| |
| if (port == 0) { |
| udp_err_ack(q, mp, TNOADDR, 0); |
| return; |
| } |
| |
| /* |
| * Copy the source address into our udp structure. This address |
| * may still be zero; if so, IP will fill in the correct address |
| * each time an outbound packet is passed to it. |
| */ |
| if (udp->udp_family == AF_INET) { |
| ASSERT(sin != NULL); |
| ASSERT(udp->udp_ipversion == IPV4_VERSION); |
| udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE + |
| udp->udp_ip_snd_options_len; |
| IN6_IPADDR_TO_V4MAPPED(sin->sin_addr.s_addr, &v6src); |
| } else { |
| ASSERT(sin6 != NULL); |
| v6src = sin6->sin6_addr; |
| if (IN6_IS_ADDR_V4MAPPED(&v6src)) { |
| udp->udp_ipversion = IPV4_VERSION; |
| udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + |
| UDPH_SIZE + udp->udp_ip_snd_options_len; |
| } else { |
| udp->udp_ipversion = IPV6_VERSION; |
| udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len; |
| } |
| } |
| |
| /* |
| * If udp_reuseaddr is not set, then we have to make sure that |
| * the IP address and port number the application requested |
| * (or we selected for the application) is not being used by |
| * another stream. If another stream is already using the |
| * requested IP address and port, the behavior depends on |
| * "bind_to_req_port_only". If set the bind fails; otherwise we |
| * search for any an unused port to bind to the the stream. |
| * |
| * As per the BSD semantics, as modified by the Deering multicast |
| * changes, if udp_reuseaddr is set, then we allow multiple binds |
| * to the same port independent of the local IP address. |
| * |
| * This is slightly different than in SunOS 4.X which did not |
| * support IP multicast. Note that the change implemented by the |
| * Deering multicast code effects all binds - not only binding |
| * to IP multicast addresses. |
| * |
| * Note that when binding to port zero we ignore SO_REUSEADDR in |
| * order to guarantee a unique port. |
| */ |
| |
| count = 0; |
| if (udp->udp_anon_priv_bind) { |
| /* loopmax = (IPPORT_RESERVED-1) - udp_min_anonpriv_port + 1 */ |
| loopmax = IPPORT_RESERVED - udp_min_anonpriv_port; |
| } else { |
| loopmax = udp_largest_anon_port - udp_smallest_anon_port + 1; |
| } |
| |
| is_inaddr_any = V6_OR_V4_INADDR_ANY(v6src); |
| zoneid = connp->conn_zoneid; |
| |
| for (;;) { |
| udp_t *udp1; |
| boolean_t found_exclbind = B_FALSE; |
| |
| /* |
| * Walk through the list of udp streams bound to |
| * requested port with the same IP address. |
| */ |
| lport = htons(port); |
| udpf = &udp_bind_fanout[UDP_BIND_HASH(lport)]; |
| mutex_enter(&udpf->uf_lock); |
| for (udp1 = udpf->uf_udp; udp1 != NULL; |
| udp1 = udp1->udp_bind_hash) { |
| if (lport != udp1->udp_port) |
| continue; |
| |
| /* |
| * On a labeled system, we must treat bindings to ports |
| * on shared IP addresses by sockets with MAC exemption |
| * privilege as being in all zones, as there's |
| * otherwise no way to identify the right receiver. |
| */ |
| if (zoneid != udp1->udp_connp->conn_zoneid && |
| !udp->udp_mac_exempt && !udp1->udp_mac_exempt) |
| continue; |
| |
| /* |
| * If UDP_EXCLBIND is set for either the bound or |
| * binding endpoint, the semantics of bind |
| * is changed according to the following chart. |
| * |
| * spec = specified address (v4 or v6) |
| * unspec = unspecified address (v4 or v6) |
| * A = specified addresses are different for endpoints |
| * |
| * bound bind to allowed? |
| * ------------------------------------- |
| * unspec unspec no |
| * unspec spec no |
| * spec unspec no |
| * spec spec yes if A |
| * |
| * For labeled systems, SO_MAC_EXEMPT behaves the same |
| * as UDP_EXCLBIND, except that zoneid is ignored. |
| */ |
| if (udp1->udp_exclbind || udp->udp_exclbind || |
| udp1->udp_mac_exempt || udp->udp_mac_exempt) { |
| if (V6_OR_V4_INADDR_ANY( |
| udp1->udp_bound_v6src) || |
| is_inaddr_any || |
| IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src, |
| &v6src)) { |
| found_exclbind = B_TRUE; |
| break; |
| } |
| continue; |
| } |
| |
| /* |
| * Check ipversion to allow IPv4 and IPv6 sockets to |
| * have disjoint port number spaces. |
| */ |
| if (udp->udp_ipversion != udp1->udp_ipversion) { |
| |
| /* |
| * On the first time through the loop, if the |
| * the user intentionally specified a |
| * particular port number, then ignore any |
| * bindings of the other protocol that may |
| * conflict. This allows the user to bind IPv6 |
| * alone and get both v4 and v6, or bind both |
| * both and get each seperately. On subsequent |
| * times through the loop, we're checking a |
| * port that we chose (not the user) and thus |
| * we do not allow casual duplicate bindings. |
| */ |
| if (count == 0 && requested_port != 0) |
| continue; |
| } |
| |
| /* |
| * No difference depending on SO_REUSEADDR. |
| * |
| * If existing port is bound to a |
| * non-wildcard IP address and |
| * the requesting stream is bound to |
| * a distinct different IP addresses |
| * (non-wildcard, also), keep going. |
| */ |
| if (!is_inaddr_any && |
| !V6_OR_V4_INADDR_ANY(udp1->udp_bound_v6src) && |
| !IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src, |
| &v6src)) { |
| continue; |
| } |
| break; |
| } |
| |
| if (!found_exclbind && |
| (udp->udp_reuseaddr && requested_port != 0)) { |
| break; |
| } |
| |
| if (udp1 == NULL) { |
| /* |
| * No other stream has this IP address |
| * and port number. We can use it. |
| */ |
| break; |
| } |
| mutex_exit(&udpf->uf_lock); |
| if (bind_to_req_port_only) { |
| /* |
| * We get here only when requested port |
| * is bound (and only first of the for() |
| * loop iteration). |
| * |
| * The semantics of this bind request |
| * require it to fail so we return from |
| * the routine (and exit the loop). |
| * |
| */ |
| udp_err_ack(q, mp, TADDRBUSY, 0); |
| return; |
| } |
| |
| if (udp->udp_anon_priv_bind) { |
| port = udp_get_next_priv_port(udp); |
| } else { |
| if ((count == 0) && (requested_port != 0)) { |
| /* |
| * If the application wants us to find |
| * a port, get one to start with. Set |
| * requested_port to 0, so that we will |
| * update udp_g_next_port_to_try below. |
| */ |
| port = udp_update_next_port(udp, |
| udp_g_next_port_to_try, B_TRUE); |
| requested_port = 0; |
| } else { |
| port = udp_update_next_port(udp, port + 1, |
| B_FALSE); |
| } |
| } |
| |
| if (port == 0 || ++count >= loopmax) { |
| /* |
| * We've tried every possible port number and |
| * there are none available, so send an error |
| * to the user. |
| */ |
| udp_err_ack(q, mp, TNOADDR, 0); |
| return; |
| } |
| } |
| |
| /* |
| * Copy the source address into our udp structure. This address |
| * may still be zero; if so, ip will fill in the correct address |
| * each time an outbound packet is passed to it. |
| * If we are binding to a broadcast or multicast address udp_rput |
| * will clear the source address when it receives the T_BIND_ACK. |
| */ |
| udp->udp_v6src = udp->udp_bound_v6src = v6src; |
| udp->udp_port = lport; |
| /* |
| * Now reset the the next anonymous port if the application requested |
| * an anonymous port, or we handed out the next anonymous port. |
| */ |
| if ((requested_port == 0) && (!udp->udp_anon_priv_bind)) { |
| udp_g_next_port_to_try = port + 1; |
| } |
| |
| /* Initialize the O_T_BIND_REQ/T_BIND_REQ for ip. */ |
| if (udp->udp_family == AF_INET) { |
| sin->sin_port = udp->udp_port; |
| } else { |
| int error; |
| |
| sin6->sin6_port = udp->udp_port; |
| /* Rebuild the header template */ |
| error = udp_build_hdrs(q, udp); |
| if (error != 0) { |
| mutex_exit(&udpf->uf_lock); |
| udp_err_ack(q, mp, TSYSERR, error); |
| return; |
| } |
| } |
| udp->udp_state = TS_IDLE; |
| udp_bind_hash_insert(udpf, udp); |
| mutex_exit(&udpf->uf_lock); |
| |
| if (cl_inet_bind) { |
| /* |
| * Running in cluster mode - register bind information |
| */ |
| if (udp->udp_ipversion == IPV4_VERSION) { |
| (*cl_inet_bind)(IPPROTO_UDP, AF_INET, |
| (uint8_t *)(&V4_PART_OF_V6(udp->udp_v6src)), |
| (in_port_t)udp->udp_port); |
| } else { |
| (*cl_inet_bind)(IPPROTO_UDP, AF_INET6, |
| (uint8_t *)&(udp->udp_v6src), |
| (in_port_t)udp->udp_port); |
| } |
| |
| } |
| |
| connp->conn_anon_port = (is_system_labeled() && requested_port == 0); |
| if (is_system_labeled() && (!connp->conn_anon_port || |
| connp->conn_anon_mlp)) { |
| uint16_t mlpport; |
| cred_t *cr = connp->conn_cred; |
| zone_t *zone; |
| |
| connp->conn_mlp_type = udp->udp_recvucred ? mlptBoth : |
| mlptSingle; |
| addrtype = tsol_mlp_addr_type(zoneid, IPV6_VERSION, &v6src); |
| if (addrtype == mlptSingle) { |
| udp_err_ack(q, mp, TNOADDR, 0); |
| connp->conn_anon_port = B_FALSE; |
| connp->conn_mlp_type = mlptSingle; |
| return; |
| } |
| mlpport = connp->conn_anon_port ? PMAPPORT : port; |
| zone = crgetzone(cr); |
| mlptype = tsol_mlp_port_type(zone, IPPROTO_UDP, mlpport, |
| addrtype); |
| if (mlptype != mlptSingle && |
| (connp->conn_mlp_type == mlptSingle || |
| secpolicy_net_bindmlp(cr) != 0)) { |
| if (udp->udp_debug) { |
| (void) strlog(UDP_MOD_ID, 0, 1, |
| SL_ERROR|SL_TRACE, |
| "udp_bind: no priv for multilevel port %d", |
| mlpport); |
| } |
| udp_err_ack(q, mp, TACCES, 0); |
| connp->conn_anon_port = B_FALSE; |
| connp->conn_mlp_type = mlptSingle; |
| return; |
| } |
| |
| /* |
| * If we're specifically binding a shared IP address and the |
| * port is MLP on shared addresses, then check to see if this |
| * zone actually owns the MLP. Reject if not. |
| */ |
| if (mlptype == mlptShared && addrtype == mlptShared) { |
| zoneid_t mlpzone; |
| |
| mlpzone = tsol_mlp_findzone(IPPROTO_UDP, |
| htons(mlpport)); |
| if (connp->conn_zoneid != mlpzone) { |
| if (udp->udp_debug) { |
| (void) strlog(UDP_MOD_ID, 0, 1, |
| SL_ERROR|SL_TRACE, |
| "udp_bind: attempt to bind port " |
| "%d on shared addr in zone %d " |
| "(should be %d)", |
| mlpport, connp->conn_zoneid, |
| mlpzone); |
| } |
| udp_err_ack(q, mp, TACCES, 0); |
| connp->conn_anon_port = B_FALSE; |
| connp->conn_mlp_type = mlptSingle; |
| return; |
| } |
| } |
| if (connp->conn_anon_port) { |
| int error; |
| |
| error = tsol_mlp_anon(zone, mlptype, connp->conn_ulp, |
| port, B_TRUE); |
| if (error != 0) { |
| if (udp->udp_debug) { |
| (void) strlog(UDP_MOD_ID, 0, 1, |
| SL_ERROR|SL_TRACE, |
| "udp_bind: cannot establish anon " |
| "MLP for port %d", port); |
| } |
| udp_err_ack(q, mp, TACCES, 0); |
| connp->conn_anon_port = B_FALSE; |
| connp->conn_mlp_type = mlptSingle; |
| return; |
| } |
| } |
| connp->conn_mlp_type = mlptype; |
| } |
| |
| /* Pass the protocol number in the message following the address. */ |
| *mp->b_wptr++ = IPPROTO_UDP; |
| if (!V6_OR_V4_INADDR_ANY(udp->udp_v6src)) { |
| /* |
| * Append a request for an IRE if udp_v6src not |
| * zero (IPv4 - INADDR_ANY, or IPv6 - all-zeroes address). |
| */ |
| mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); |
| if (!mp->b_cont) { |
| udp_err_ack(q, mp, TSYSERR, ENOMEM); |
| return; |
| } |
| mp->b_cont->b_wptr += sizeof (ire_t); |
| mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; |
| } |
| if (udp->udp_family == AF_INET6) |
| mp = ip_bind_v6(q, mp, connp, NULL); |
| else |
| mp = ip_bind_v4(q, mp, connp); |
| |
| if (mp != NULL) |
| udp_rput_other(_RD(q), mp); |
| else |
| CONN_INC_REF(connp); |
| } |
| |
| |
| void |
| udp_resume_bind(conn_t *connp, mblk_t *mp) |
| { |
| udp_enter(connp, mp, udp_resume_bind_cb, SQTAG_BIND_RETRY); |
| } |
| |
| /* |
| * This is called from ip_wput_nondata to resume a deferred UDP bind. |
| */ |
| /* ARGSUSED */ |
| static void |
| udp_resume_bind_cb(void *arg, mblk_t *mp, void *arg2) |
| { |
| conn_t *connp = arg; |
| |
| ASSERT(connp != NULL && IPCL_IS_UDP(connp)); |
| |
| udp_rput_other(connp->conn_rq, mp); |
| |
| CONN_OPER_PENDING_DONE(connp); |
| udp_exit(connp); |
| } |
| |
| /* |
| * This routine handles each T_CONN_REQ message passed to udp. It |
| * associates a default destination address with the stream. |
| * |
| * This routine sends down a T_BIND_REQ to IP with the following mblks: |
| * T_BIND_REQ - specifying local and remote address/port |
| * IRE_DB_REQ_TYPE - to get an IRE back containing ire_type and src |
| * T_OK_ACK - for the T_CONN_REQ |
| * T_CONN_CON - to keep the TPI user happy |
| * |
| * The connect completes in udp_rput. |
| * When a T_BIND_ACK is received information is extracted from the IRE |
| * and the two appended messages are sent to the TPI user. |
| * Should udp_rput receive T_ERROR_ACK for the T_BIND_REQ it will convert |
| * it to an error ack for the appropriate primitive. |
| */ |
| static void |
| udp_connect(queue_t *q, mblk_t *mp) |
| { |
| sin6_t *sin6; |
| sin_t *sin; |
| struct T_conn_req *tcr; |
| in6_addr_t v6dst; |
| ipaddr_t v4dst; |
| uint16_t dstport; |
| uint32_t flowinfo; |
| mblk_t *mp1, *mp2; |
| udp_fanout_t *udpf; |
| udp_t *udp, *udp1; |
| |
| udp = Q_TO_UDP(q); |
| |
| tcr = (struct T_conn_req *)mp->b_rptr; |
| |
| /* A bit of sanity checking */ |
| if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_req)) { |
| udp_err_ack(q, mp, TPROTO, 0); |
| return; |
| } |
| /* |
| * This UDP must have bound to a port already before doing |
| * a connect. |
| */ |
| if (udp->udp_state == TS_UNBND) { |
| (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, |
| "udp_connect: bad state, %u", udp->udp_state); |
| udp_err_ack(q, mp, TOUTSTATE, 0); |
| return; |
| } |
| ASSERT(udp->udp_port != 0 && udp->udp_ptpbhn != NULL); |
| |
| udpf = &udp_bind_fanout[UDP_BIND_HASH(udp->udp_port)]; |
| |
| if (udp->udp_state == TS_DATA_XFER) { |
| /* Already connected - clear out state */ |
| mutex_enter(&udpf->uf_lock); |
| udp->udp_v6src = udp->udp_bound_v6src; |
| udp->udp_state = TS_IDLE; |
| mutex_exit(&udpf->uf_lock); |
| } |
| |
| if (tcr->OPT_length != 0) { |
| udp_err_ack(q, mp, TBADOPT, 0); |
| return; |
| } |
| |
| /* |
| * Determine packet type based on type of address passed in |
| * the request should contain an IPv4 or IPv6 address. |
| * Make sure that address family matches the type of |
| * family of the the address passed down |
| */ |
| switch (tcr->DEST_length) { |
| default: |
| udp_err_ack(q, mp, TBADADDR, 0); |
| return; |
| |
| case sizeof (sin_t): |
| sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, |
| sizeof (sin_t)); |
| if (sin == NULL || !OK_32PTR((char *)sin)) { |
| udp_err_ack(q, mp, TSYSERR, EINVAL); |
| return; |
| } |
| if (udp->udp_family != AF_INET || |
| sin->sin_family != AF_INET) { |
| udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT); |
| return; |
| } |
| v4dst = sin->sin_addr.s_addr; |
| dstport = sin->sin_port; |
| IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst); |
| ASSERT(udp->udp_ipversion == IPV4_VERSION); |
| udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE + |
| udp->udp_ip_snd_options_len; |
| break; |
| |
| case sizeof (sin6_t): |
| sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset, |
| sizeof (sin6_t)); |
| if (sin6 == NULL || !OK_32PTR((char *)sin6)) { |
| udp_err_ack(q, mp, TSYSERR, EINVAL); |
| return; |
| } |
| if (udp->udp_family != AF_INET6 || |
| sin6->sin6_family != AF_INET6) { |
| udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT); |
| return; |
| } |
| v6dst = sin6->sin6_addr; |
| if (IN6_IS_ADDR_V4MAPPED(&v6dst)) { |
| IN6_V4MAPPED_TO_IPADDR(&v6dst, v4dst); |
| udp->udp_ipversion = IPV4_VERSION; |
| udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + |
| UDPH_SIZE + udp->udp_ip_snd_options_len; |
| flowinfo = 0; |
| } else { |
| udp->udp_ipversion = IPV6_VERSION; |
| udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len; |
| flowinfo = sin6->sin6_flowinfo; |
| } |
| dstport = sin6->sin6_port; |
| break; |
| } |
| if (dstport == 0) { |
| udp_err_ack(q, mp, TBADADDR, 0); |
| return; |
| } |
| |
| /* |
| * Create a default IP header with no IP options. |
| */ |
| udp->udp_dstport = dstport; |
| if (udp->udp_ipversion == IPV4_VERSION) { |
| /* |
| * Interpret a zero destination to mean loopback. |
| * Update the T_CONN_REQ (sin/sin6) since it is used to |
| * generate the T_CONN_CON. |
| */ |
| if (v4dst == INADDR_ANY) { |
| v4dst = htonl(INADDR_LOOPBACK); |
| IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst); |
| if (udp->udp_family == AF_INET) { |
| sin->sin_addr.s_addr = v4dst; |
| } else { |
| sin6->sin6_addr = v6dst; |
| } |
| } |
| udp->udp_v6dst = v6dst; |
| udp->udp_flowinfo = 0; |
| |
| /* |
| * If the destination address is multicast and |
| * an outgoing multicast interface has been set, |
| * use the address of that interface as our |
| * source address if no source address has been set. |
| */ |
| if (V4_PART_OF_V6(udp->udp_v6src) == INADDR_ANY && |
| CLASSD(v4dst) && |
| udp->udp_multicast_if_addr != INADDR_ANY) { |
| IN6_IPADDR_TO_V4MAPPED(udp->udp_multicast_if_addr, |
| &udp->udp_v6src); |
| } |
| } else { |
| ASSERT(udp->udp_ipversion == IPV6_VERSION); |
| /* |
| * Interpret a zero destination to mean loopback. |
| * Update the T_CONN_REQ (sin/sin6) since it is used to |
| * generate the T_CONN_CON. |
| */ |
| if (IN6_IS_ADDR_UNSPECIFIED(&v6dst)) { |
| v6dst = ipv6_loopback; |
| sin6->sin6_addr = v6dst; |
| } |
| udp->udp_v6dst = v6dst; |
| udp->udp_flowinfo = flowinfo; |
| /* |
| * If the destination address is multicast and |
| * an outgoing multicast interface has been set, |
| * then the ip bind logic will pick the correct source |
| * address (i.e. matching the outgoing multicast interface). |
| */ |
| } |
| |
| /* |
| * Verify that the src/port/dst/port is unique for all |
| * connections in TS_DATA_XFER |
| */ |
| mutex_enter(&udpf->uf_lock); |
| for (udp1 = udpf->uf_udp; udp1 != NULL; udp1 = udp1->udp_bind_hash) { |
| if (udp1->udp_state != TS_DATA_XFER) |
| continue; |
| if (udp->udp_port != udp1->udp_port || |
| udp->udp_ipversion != udp1->udp_ipversion || |
| dstport != udp1->udp_dstport || |
| !IN6_ARE_ADDR_EQUAL(&udp->udp_v6src, &udp1->udp_v6src) || |
| !IN6_ARE_ADDR_EQUAL(&v6dst, &udp1->udp_v6dst)) |
| continue; |
| mutex_exit(&udpf->uf_lock); |
| udp_err_ack(q, mp, TBADADDR, 0); |
| return; |
| } |
| udp->udp_state = TS_DATA_XFER; |
| mutex_exit(&udpf->uf_lock); |
| |
| /* |
| * Send down bind to IP to verify that there is a route |
| * and to determine the source address. |
| * This will come back as T_BIND_ACK with an IRE_DB_TYPE in rput. |
| */ |
| if (udp->udp_family == AF_INET) |
| mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa_conn_t)); |
| else |
| mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa6_conn_t)); |
| if (mp1 == NULL) { |
| udp_err_ack(q, mp, TSYSERR, ENOMEM); |
| bind_failed: |
| mutex_enter(&udpf->uf_lock); |
| udp->udp_state = TS_IDLE; |
| mutex_exit(&udpf->uf_lock); |
| return; |
| } |
| |
| /* |
| * We also have to send a connection confirmation to |
| * keep TLI happy. Prepare it for udp_rput. |
| */ |
| if (udp->udp_family == AF_INET) |
| mp2 = mi_tpi_conn_con(NULL, (char *)sin, |
| sizeof (*sin), NULL, 0); |
| else |
| mp2 = mi_tpi_conn_con(NULL, (char *)sin6, |
| sizeof (*sin6), NULL, 0); |
| if (mp2 == NULL) { |
| freemsg(mp1); |
| udp_err_ack(q, mp, TSYSERR, ENOMEM); |
| goto bind_failed; |
| } |
| |
| mp = mi_tpi_ok_ack_alloc(mp); |
| if (mp == NULL) { |
| /* Unable to reuse the T_CONN_REQ for the ack. */ |
| freemsg(mp2); |
| udp_err_ack_prim(q, mp1, T_CONN_REQ, TSYSERR, ENOMEM); |
| goto bind_failed; |
| } |
| |
| /* Hang onto the T_OK_ACK and T_CONN_CON for later. */ |
| linkb(mp1, mp); |
| linkb(mp1, mp2); |
| |
| mblk_setcred(mp1, udp->udp_connp->conn_cred); |
| if (udp->udp_family == AF_INET) |
| mp1 = ip_bind_v4(q, mp1, udp->udp_connp); |
| else |
| mp1 = ip_bind_v6(q, mp1, udp->udp_connp, NULL); |
| |
| if (mp1 != NULL) |
| udp_rput_other(_RD(q), mp1); |
| else |
| CONN_INC_REF(udp->udp_connp); |
| } |
| |
| static int |
| udp_close(queue_t *q) |
| { |
| conn_t *connp = Q_TO_CONN(UDP_WR(q)); |
| udp_t *udp; |
| queue_t *ip_rq = RD(UDP_WR(q)); |
| |
| ASSERT(connp != NULL && IPCL_IS_UDP(connp)); |
| udp = connp->conn_udp; |
| |
| ip_quiesce_conn(connp); |
| /* |
| * Disable read-side synchronous stream |
| * interface and drain any queued data. |
| */ |
| udp_rcv_drain(q, udp, B_TRUE); |
| ASSERT(!udp->udp_direct_sockfs); |
| |
| qprocsoff(q); |
| |
| /* restore IP module's high and low water marks to default values */ |
| ip_rq->q_hiwat = ip_rq->q_qinfo->qi_minfo->mi_hiwat; |
| WR(ip_rq)->q_hiwat = WR(ip_rq)->q_qinfo->qi_minfo->mi_hiwat; |
| WR(ip_rq)->q_lowat = WR(ip_rq)->q_qinfo->qi_minfo->mi_lowat; |
| |
| ASSERT(udp->udp_rcv_cnt == 0); |
| ASSERT(udp->udp_rcv_msgcnt == 0); |
| ASSERT(udp->udp_rcv_list_head == NULL); |
| ASSERT(udp->udp_rcv_list_tail == NULL); |
| |
| udp_close_free(connp); |
| |
| /* |
| * Restore connp as an IP endpoint. |
| * Locking required to prevent a race with udp_snmp_get()/ |
| * ipcl_get_next_conn(), which selects conn_t which are |
| * IPCL_UDP and not CONN_CONDEMNED. |
| */ |
| mutex_enter(&connp->conn_lock); |
| connp->conn_flags &= ~IPCL_UDP; |
| connp->conn_state_flags &= |
| ~(CONN_CLOSING | CONN_CONDEMNED | CONN_QUIESCED); |
| connp->conn_ulp_labeled = B_FALSE; |
| mutex_exit(&connp->conn_lock); |
| |
| return (0); |
| } |
| |
| /* |
| * Called in the close path from IP (ip_quiesce_conn) to quiesce the conn |
| */ |
| void |
| udp_quiesce_conn(conn_t *connp) |
| { |
| udp_t *udp = connp->conn_udp; |
| |
| if (cl_inet_unbind != NULL && udp->udp_state == TS_IDLE) { |
| /* |
| * Running in cluster mode - register unbind information |
| */ |
| if (udp->udp_ipversion == IPV4_VERSION) { |
| (*cl_inet_unbind)(IPPROTO_UDP, AF_INET, |
| (uint8_t *)(&(V4_PART_OF_V6(udp->udp_v6src))), |
| (in_port_t)udp->udp_port); |
| } else { |
| (*cl_inet_unbind)(IPPROTO_UDP, AF_INET6, |
| (uint8_t *)(&(udp->udp_v6src)), |
| (in_port_t)udp->udp_port); |
| } |
| } |
| |
| udp_bind_hash_remove(udp, B_FALSE); |
| |
| mutex_enter(&connp->conn_lock); |
| while (udp->udp_reader_count != 0 || udp->udp_squeue_count != 0 || |
| udp->udp_mode != UDP_MT_HOT) { |
| cv_wait(&connp->conn_cv, &connp->conn_lock); |
| } |
| mutex_exit(&connp->conn_lock); |
| } |
| |
| void |
| udp_close_free(conn_t *connp) |
| { |
| udp_t *udp = connp->conn_udp; |
| |
| /* If there are any options associated with the stream, free them. */ |
| if (udp->udp_ip_snd_options) { |
| mi_free((char *)udp->udp_ip_snd_options); |
| udp->udp_ip_snd_options = NULL; |
| } |
| |
| if (udp->udp_ip_rcv_options) { |
| mi_free((char *)udp->udp_ip_rcv_options); |
| udp->udp_ip_rcv_options = NULL; |
| } |
| |
| /* Free memory associated with sticky options */ |
| if (udp->udp_sticky_hdrs_len != 0) { |
| kmem_free(udp->udp_sticky_hdrs, |
| udp->udp_sticky_hdrs_len); |
| udp->udp_sticky_hdrs = NULL; |
| udp->udp_sticky_hdrs_len = 0; |
| } |
| |
| ip6_pkt_free(&udp->udp_sticky_ipp); |
| |
| udp->udp_connp = NULL; |
| connp->conn_udp = NULL; |
| kmem_cache_free(udp_cache, udp); |
| } |
| |
| /* |
| * This routine handles each T_DISCON_REQ message passed to udp |
| * as an indicating that UDP is no longer connected. This results |
| * in sending a T_BIND_REQ to IP to restore the binding to just |
| * the local address/port. |
| * |
| * This routine sends down a T_BIND_REQ to IP with the following mblks: |
| * T_BIND_REQ - specifying just the local address/port |
| * T_OK_ACK - for the T_DISCON_REQ |
| * |
| * The disconnect completes in udp_rput. |
| * When a T_BIND_ACK is received the appended T_OK_ACK is sent to the TPI user. |
| * Should udp_rput receive T_ERROR_ACK for the T_BIND_REQ it will convert |
| * it to an error ack for the appropriate primitive. |
| */ |
| static void |
| udp_disconnect(queue_t *q, mblk_t *mp) |
| { |
| udp_t *udp = Q_TO_UDP(q); |
| mblk_t *mp1; |
| udp_fanout_t *udpf; |
| |
| if (udp->udp_state != TS_DATA_XFER) { |
| (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, |
| "udp_disconnect: bad state, %u", udp->udp_state); |
| udp_err_ack(q, mp, TOUTSTATE, 0); |
| return; |
| } |
| udpf = &udp_bind_fanout[UDP_BIND_HASH(udp->udp_port)]; |
| mutex_enter(&udpf->uf_lock); |
| udp->udp_v6src = udp->udp_bound_v6src; |
| udp->udp_state = TS_IDLE; |
| mutex_exit(&udpf->uf_lock); |
| |
| /* |
| * Send down bind to IP to remove the full binding and revert |
| * to the local address binding. |
| */ |
| if (udp->udp_family == AF_INET) |
| mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin_t)); |
| else |
| mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin6_t)); |
| if (mp1 == NULL) { |
| udp_err_ack(q, mp, TSYSERR, ENOMEM); |
| return; |
| } |
| mp = mi_tpi_ok_ack_alloc(mp); |
| if (mp == NULL) { |
| /* Unable to reuse the T_DISCON_REQ for the ack. */ |
| udp_err_ack_prim(q, mp1, T_DISCON_REQ, TSYSERR, ENOMEM); |
| return; |
| } |
| |
| if (udp->udp_family == AF_INET6) { |
| int error; |
| |
| /* Rebuild the header template */ |
| error = udp_build_hdrs(q, udp); |
| if (error != 0) { |
| udp_err_ack_prim(q, mp, T_DISCON_REQ, TSYSERR, error); |
| freemsg(mp1); |
| return; |
| } |
| } |
| mutex_enter(&udpf->uf_lock); |
| udp->udp_discon_pending = 1; |
| mutex_exit(&udpf->uf_lock); |
| |
| /* Append the T_OK_ACK to the T_BIND_REQ for udp_rput */ |
| linkb(mp1, mp); |
| |
| if (udp->udp_family == AF_INET6) |
| mp1 = ip_bind_v6(q, mp1, udp->udp_connp, NULL); |
| else |
| mp1 = ip_bind_v4(q, mp1, udp->udp_connp); |
| |
| if (mp1 != NULL) |
| udp_rput_other(_RD(q), mp1); |
| else |
| CONN_INC_REF(udp->udp_connp); |
| } |
| |
| /* This routine creates a T_ERROR_ACK message and passes it upstream. */ |
| static void |
| udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, int sys_error) |
| { |
| if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) |
| putnext(UDP_RD(q), mp); |
| } |
| |
| /* Shorthand to generate and send TPI error acks to our client */ |
| static void |
| udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive, t_scalar_t t_error, |
| int sys_error) |
| { |
| struct T_error_ack *teackp; |
| |
| if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), |
| M_PCPROTO, T_ERROR_ACK)) != NULL) { |
| teackp = (struct T_error_ack *)mp->b_rptr; |
| teackp->ERROR_prim = primitive; |
| teackp->TLI_error = t_error; |
| teackp->UNIX_error = sys_error; |
| putnext(UDP_RD(q), mp); |
| } |
| } |
| |
| /*ARGSUSED*/ |
| static int |
| udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) |
| { |
| int i; |
| |
| for (i = 0; i < udp_g_num_epriv_ports; i++) { |
| if (udp_g_epriv_ports[i] != 0) |
| (void) mi_mpprintf(mp, "%d ", udp_g_epriv_ports[i]); |
| } |
| return (0); |
| } |
| |
| /* ARGSUSED */ |
| static int |
| udp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, |
| cred_t *cr) |
| { |
| long new_value; |
| int i; |
| |
| /* |
| * Fail the request if the new value does not lie within the |
| * port number limits. |
| */ |
| if (ddi_strtol(value, NULL, 10, &new_value) != 0 || |
| new_value <= 0 || new_value >= 65536) { |
| return (EINVAL); |
| } |
| |
| /* Check if the value is already in the list */ |
| for (i = 0; i < udp_g_num_epriv_ports; i++) { |
| if (new_value == udp_g_epriv_ports[i]) { |
| return (EEXIST); |
| } |
| } |
| /* Find an empty slot */ |
| for (i = 0; i < udp_g_num_epriv_ports; i++) { |
| if (udp_g_epriv_ports[i] == 0) |
| break; |
| } |
| if (i == udp_g_num_epriv_ports) { |
| return (EOVERFLOW); |
| } |
| |
| /* Set the new value */ |
| udp_g_epriv_ports[i] = (in_port_t)new_value; |
| return (0); |
| } |
| |
| /* ARGSUSED */ |
| static int |
| udp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, |
| cred_t *cr) |
| { |
| long new_value; |
| int i; |
| |
| /* |
| * Fail the request if the new value does not lie within the |
| * port number limits. |
| */ |
| if (ddi_strtol(value, NULL, 10, &new_value) != 0 || |
| new_value <= 0 || new_value >= 65536) { |
| return (EINVAL); |
| } |
| |
| /* Check that the value is already in the list */ |
| for (i = 0; i < udp_g_num_epriv_ports; i++) { |
| if (udp_g_epriv_ports[i] == new_value) |
| break; |
| } |
| if (i == udp_g_num_epriv_ports) { |
| return (ESRCH); |
| } |
| |
| /* Clear the value */ |
| udp_g_epriv_ports[i] = 0; |
| return (0); |
| } |
| |
| /* At minimum we need 4 bytes of UDP header */ |
| #define ICMP_MIN_UDP_HDR 4 |
| |
| /* |
| * udp_icmp_error is called by udp_rput to process ICMP msgs. passed up by IP. |
| * Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors. |
| * Assumes that IP has pulled up everything up to and including the ICMP header. |
| * An M_CTL could potentially come here from some other module (i.e. if UDP |
| * is pushed on some module other than IP). Thus, if we find that the M_CTL |
| * does not have enough ICMP information , following STREAMS conventions, |
| * we send it upstream assuming it is an M_CTL we don't understand. |
| */ |
| static void |
| udp_icmp_error(queue_t *q, mblk_t *mp) |
| { |
| icmph_t *icmph; |
| ipha_t *ipha; |
| int iph_hdr_length; |
| udpha_t *udpha; |
| sin_t sin; |
| sin6_t sin6; |
| mblk_t *mp1; |
| int error = 0; |
| size_t mp_size = MBLKL(mp); |
| udp_t *udp = Q_TO_UDP(q); |
| |
| /* |
| * Assume IP provides aligned packets - otherwise toss |
| */ |
| if (!OK_32PTR(mp->b_rptr)) { |
| freemsg(mp); |
| return; |
| } |
| |
| /* |
| * Verify that we have a complete IP header and the application has |
| * asked for errors. If not, send it upstream. |
| */ |
| if (!udp->udp_dgram_errind || mp_size < sizeof (ipha_t)) { |
| noticmpv4: |
| putnext(UDP_RD(q), mp); |
| return; |
| } |
| |
| ipha = (ipha_t *)mp->b_rptr; |
| /* |
| * Verify IP version. Anything other than IPv4 or IPv6 packet is sent |
| * upstream. ICMPv6 is handled in udp_icmp_error_ipv6. |
| */ |
| switch (IPH_HDR_VERSION(ipha)) { |
| case IPV6_VERSION: |
| udp_icmp_error_ipv6(q, mp); |
| return; |
| case IPV4_VERSION: |
| break; |
| default: |
| goto noticmpv4; |
| } |
| |
| /* Skip past the outer IP and ICMP headers */ |
| iph_hdr_length = IPH_HDR_LENGTH(ipha); |
| icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; |
| /* |
| * If we don't have the correct outer IP header length or if the ULP |
| * is not IPPROTO_ICMP or if we don't have a complete inner IP header |
| * send the packet upstream. |
| */ |
| if (iph_hdr_length < sizeof (ipha_t) || |
| ipha->ipha_protocol != IPPROTO_ICMP || |
| (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { |
| goto noticmpv4; |
| } |
| ipha = (ipha_t *)&icmph[1]; |
| |
| /* Skip past the inner IP and find the ULP header */ |
| iph_hdr_length = IPH_HDR_LENGTH(ipha); |
| udpha = (udpha_t *)((char *)ipha + iph_hdr_length); |
| /* |
| * If we don't have the correct inner IP header length or if the ULP |
| * is not IPPROTO_UDP or if we don't have at least ICMP_MIN_UDP_HDR |
| * bytes of UDP header, send it upstream. |
| */ |
| if (iph_hdr_length < sizeof (ipha_t) || |
| ipha->ipha_protocol != IPPROTO_UDP || |
| (uchar_t *)udpha + ICMP_MIN_UDP_HDR > mp->b_wptr) { |
| goto noticmpv4; |
| } |
| |
| switch (icmph->icmph_type) { |
| case ICMP_DEST_UNREACHABLE: |
| switch (icmph->icmph_code) { |
| case ICMP_FRAGMENTATION_NEEDED: |
| /* |
| * IP has already adjusted the path MTU. |
| * XXX Somehow pass MTU indication to application? |
| */ |
| break; |
| case ICMP_PORT_UNREACHABLE: |
| case ICMP_PROTOCOL_UNREACHABLE: |
| error = ECONNREFUSED; |
| break; |
| default: |
| /* Transient errors */ |
| break; |
| } |
| break; |
| default: |
| /* Transient errors */ |
| break; |
| } |
| if (error == 0) { |
| freemsg(mp); |
| return; |
| } |
| |
| switch (udp->udp_family) { |
| case AF_INET: |
| sin = sin_null; |
| sin.sin_family = AF_INET; |
| sin.sin_addr.s_addr = ipha->ipha_dst; |
| sin.sin_port = udpha->uha_dst_port; |
| mp1 = mi_tpi_uderror_ind((char *)&sin, sizeof (sin_t), NULL, 0, |
| error); |
| break; |
| case AF_INET6: |
| sin6 = sin6_null; |
| sin6.sin6_family = AF_INET6; |
| IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &sin6.sin6_addr); |
| sin6.sin6_port = udpha->uha_dst_port; |
| |
| mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t), |
| NULL, 0, error); |
| break; |
| } |
| if (mp1) |
| putnext(UDP_RD(q), mp1); |
| freemsg(mp); |
| } |
| |
| /* |
| * udp_icmp_error_ipv6 is called by udp_icmp_error to process ICMP for IPv6. |
| * Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors. |
| * Assumes that IP has pulled up all the extension headers as well as the |
| * ICMPv6 header. |
| * An M_CTL could potentially come here from some other module (i.e. if UDP |
| * is pushed on some module other than IP). Thus, if we find that the M_CTL |
| * does not have enough ICMP information , following STREAMS conventions, |
| * we send it upstream assuming it is an M_CTL we don't understand. The reason |
| * it might get here is if the non-ICMP M_CTL accidently has 6 in the version |
| * field (when cast to ipha_t in udp_icmp_error). |
| */ |
| static void |
| udp_icmp_error_ipv6(queue_t *q, mblk_t *mp) |
| { |
| icmp6_t *icmp6; |
| ip6_t *ip6h, *outer_ip6h; |
| uint16_t hdr_length; |
| uint8_t *nexthdrp; |
| udpha_t *udpha; |
| sin6_t sin6; |
| mblk_t *mp1; |
| int error = 0; |
| size_t mp_size = MBLKL(mp); |
| udp_t *udp = Q_TO_UDP(q); |
| |
| /* |
| * Verify that we have a complete IP header. If not, send it upstream. |
| */ |
| if (mp_size < sizeof (ip6_t)) { |
| noticmpv6: |
| putnext(UDP_RD(q), mp); |
| return; |
| } |
| |
| outer_ip6h = (ip6_t *)mp->b_rptr; |
| /* |
| * Verify this is an ICMPV6 packet, else send it upstream |
| */ |
| if (outer_ip6h->ip6_nxt == IPPROTO_ICMPV6) { |
| hdr_length = IPV6_HDR_LEN; |
| } else if (!ip_hdr_length_nexthdr_v6(mp, outer_ip6h, &hdr_length, |
| &nexthdrp) || |
| *nexthdrp != IPPROTO_ICMPV6) { |
| goto noticmpv6; |
| } |
| icmp6 = (icmp6_t *)&mp->b_rptr[hdr_length]; |
| ip6h = (ip6_t *)&icmp6[1]; |
| /* |
| * Verify we have a complete ICMP and inner IP header. |
| */ |
| if ((uchar_t *)&ip6h[1] > mp->b_wptr) |
| goto noticmpv6; |
| |
| if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &hdr_length, &nexthdrp)) |
| goto noticmpv6; |
| udpha = (udpha_t *)((char *)ip6h + hdr_length); |
| /* |
| * Validate inner header. If the ULP is not IPPROTO_UDP or if we don't |
| * have at least ICMP_MIN_UDP_HDR bytes of UDP header send the |
| * packet upstream. |
| */ |
| if ((*nexthdrp != IPPROTO_UDP) || |
| ((uchar_t *)udpha + ICMP_MIN_UDP_HDR) > mp->b_wptr) { |
| goto noticmpv6; |
| } |
| |
| switch (icmp6->icmp6_type) { |
| case ICMP6_DST_UNREACH: |
| switch (icmp6->icmp6_code) { |
| case ICMP6_DST_UNREACH_NOPORT: |
| error = ECONNREFUSED; |
| break; |
| case ICMP6_DST_UNREACH_ADMIN: |
| case ICMP6_DST_UNREACH_NOROUTE: |
| case ICMP6_DST_UNREACH_BEYONDSCOPE: |
| case ICMP6_DST_UNREACH_ADDR: |
| /* Transient errors */ |
| break; |
| default: |
| break; |
| } |
| break; |
| case ICMP6_PACKET_TOO_BIG: { |
| struct T_unitdata_ind *tudi; |
| struct T_opthdr *toh; |
| size_t udi_size; |
| mblk_t *newmp; |
| t_scalar_t opt_length = sizeof (struct T_opthdr) + |
| sizeof (struct ip6_mtuinfo); |
| sin6_t *sin6; |
| struct ip6_mtuinfo *mtuinfo; |
| |
| /* |
| * If the application has requested to receive path mtu |
| * information, send up an empty message containing an |
| * IPV6_PATHMTU ancillary data item. |
| */ |
| if (!udp->udp_ipv6_recvpathmtu) |
| break; |
| |
| udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t) + |
| opt_length; |
| if ((newmp = allocb(udi_size, BPRI_MED)) == NULL) { |
| BUMP_MIB(&udp_mib, udpInErrors); |
| break; |
| } |
| |
| /* |
| * newmp->b_cont is left to NULL on purpose. This is an |
| * empty message containing only ancillary data. |
| */ |
| newmp->b_datap->db_type = M_PROTO; |
| tudi = (struct T_unitdata_ind *)newmp->b_rptr; |
| newmp->b_wptr = (uchar_t *)tudi + udi_size; |
| tudi->PRIM_type = T_UNITDATA_IND; |
| tudi->SRC_length = sizeof (sin6_t); |
| tudi->SRC_offset = sizeof (struct T_unitdata_ind); |
| tudi->OPT_offset = tudi->SRC_offset + sizeof (sin6_t); |
| tudi->OPT_length = opt_length; |
| |
| sin6 = (sin6_t *)&tudi[1]; |
| bzero(sin6, sizeof (sin6_t)); |
| sin6->sin6_family = AF_INET6; |
| sin6->sin6_addr = udp->udp_v6dst; |
| |
| toh = (struct T_opthdr *)&sin6[1]; |
| toh->level = IPPROTO_IPV6; |
| toh->name = IPV6_PATHMTU; |
| toh->len = opt_length; |
| toh->status = 0; |
| |
| mtuinfo = (struct ip6_mtuinfo *)&toh[1]; |
| bzero(mtuinfo, sizeof (struct ip6_mtuinfo)); |
| mtuinfo->ip6m_addr.sin6_family = AF_INET6; |
| mtuinfo->ip6m_addr.sin6_addr = ip6h->ip6_dst; |
| mtuinfo->ip6m_mtu = icmp6->icmp6_mtu; |
| /* |
| * We've consumed everything we need from the original |
| * message. Free it, then send our empty message. |
| */ |
| freemsg(mp); |
| putnext(UDP_RD(q), newmp); |
| return; |
| } |
| case ICMP6_TIME_EXCEEDED: |
| /* Transient errors */ |
| break; |
| case ICMP6_PARAM_PROB: |
| /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ |
| if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && |
| (uchar_t *)ip6h + icmp6->icmp6_pptr == |
| (uchar_t *)nexthdrp) { |
| error = ECONNREFUSED; |
| break; |
| } |
| break; |
| } |
| if (error == 0) { |
| freemsg(mp); |
| return; |
| } |
| |
| sin6 = sin6_null; |
| sin6.sin6_family = AF_INET6; |
| sin6.sin6_addr = ip6h->ip6_dst; |
| sin6.sin6_port = udpha->uha_dst_port; |
| sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; |
| |
| mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t), NULL, 0, |
| error); |
| if (mp1) |
| putnext(UDP_RD(q), mp1); |
| freemsg(mp); |
| } |
| |
| /* |
| * This routine responds to T_ADDR_REQ messages. It is called by udp_wput. |
| * The local address is filled in if endpoint is bound. The remote address |
| * is filled in if remote address has been precified ("connected endpoint") |
| * (The concept of connected CLTS sockets is alien to published TPI |
| * but we support it anyway). |
| */ |
| static void |
| udp_addr_req(queue_t *q, mblk_t *mp) |
| { |
| sin_t *sin; |
| sin6_t *sin6; |
| mblk_t *ackmp; |
| struct T_addr_ack *taa; |
| udp_t *udp = Q_TO_UDP(q); |
| |
| /* Make it large enough for worst case */ |
| ackmp = reallocb(mp, sizeof (struct T_addr_ack) + |
| 2 * sizeof (sin6_t), 1); |
| if (ackmp == NULL) { |
| udp_err_ack(q, mp, TSYSERR, ENOMEM); |
| return; |
| } |
| taa = (struct T_addr_ack *)ackmp->b_rptr; |
| |
| bzero(taa, sizeof (struct T_addr_ack)); |
| ackmp->b_wptr = (uchar_t *)&taa[1]; |
| |
| taa->PRIM_type = T_ADDR_ACK; |
| ackmp->b_datap->db_type = M_PCPROTO; |
| /* |
| * Note: Following code assumes 32 bit alignment of basic |
| * data structures like sin_t and struct T_addr_ack. |
| */ |
| if (udp->udp_state != TS_UNBND) { |
| /* |
| * Fill in local address first |
| */ |
| taa->LOCADDR_offset = sizeof (*taa); |
| if (udp->udp_family == AF_INET) { |
| taa->LOCADDR_length = sizeof (sin_t); |
| sin = (sin_t *)&taa[1]; |
| /* Fill zeroes and then initialize non-zero fields */ |
| *sin = sin_null; |
| sin->sin_family = AF_INET; |
| if (!IN6_IS_ADDR_V4MAPPED_ANY(&udp->udp_v6src) && |
| !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) { |
| IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6src, |
| sin->sin_addr.s_addr); |
| } else { |
| /* |
| * INADDR_ANY |
| * udp_v6src is not set, we might be bound to |
| * broadcast/multicast. Use udp_bound_v6src as |
| * local address instead (that could |
| * also still be INADDR_ANY) |
| */ |
| IN6_V4MAPPED_TO_IPADDR(&udp->udp_bound_v6src, |
| sin->sin_addr.s_addr); |
| } |
| sin->sin_port = udp->udp_port; |
| ackmp->b_wptr = (uchar_t *)&sin[1]; |
| if (udp->udp_state == TS_DATA_XFER) { |
| /* |
| * connected, fill remote address too |
| */ |
| taa->REMADDR_length = sizeof (sin_t); |
| /* assumed 32-bit alignment */ |
| taa->REMADDR_offset = taa->LOCADDR_offset + |
| taa->LOCADDR_length; |
| |
| sin = (sin_t *)(ackmp->b_rptr + |
| taa->REMADDR_offset); |
| /* initialize */ |
| *sin = sin_null; |
| sin->sin_family = AF_INET; |
| sin->sin_addr.s_addr = |
| V4_PART_OF_V6(udp->udp_v6dst); |
| sin->sin_port = udp->udp_dstport; |
| ackmp->b_wptr = (uchar_t *)&sin[1]; |
| } |
| } else { |
| taa->LOCADDR_length = sizeof (sin6_t); |
| sin6 = (sin6_t *)&taa[1]; |
| /* Fill zeroes and then initialize non-zero fields */ |
| *sin6 = sin6_null; |
| sin6->sin6_family = AF_INET6; |
| if (!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) { |
| sin6->sin6_addr = udp->udp_v6src; |
| } else { |
| /* |
| * UNSPECIFIED |
| * udp_v6src is not set, we might be bound to |
| * broadcast/multicast. Use udp_bound_v6src as |
| * local address instead (that could |
| * also still be UNSPECIFIED) |
| */ |
| sin6->sin6_addr = |
| udp->udp_bound_v6src; |
| } |
| sin6->sin6_port = udp->udp_port; |
| ackmp->b_wptr = (uchar_t *)&sin6[1]; |
| if (udp->udp_state == TS_DATA_XFER) { |
| /* |
| * connected, fill remote address too |
| */ |
| taa->REMADDR_length = sizeof (sin6_t); |
| /* assumed 32-bit alignment */ |
| taa->REMADDR_offset = taa->LOCADDR_offset + |
| taa->LOCADDR_length; |
| |
| sin6 = (sin6_t *)(ackmp->b_rptr + |
| taa->REMADDR_offset); |
| /* initialize */ |
| *sin6 = sin6_null; |
| sin6->sin6_family = AF_INET6; |
| sin6->sin6_addr = udp->udp_v6dst; |
| sin6->sin6_port = udp->udp_dstport; |
| ackmp->b_wptr = (uchar_t *)&sin6[1]; |
| } |
| ackmp->b_wptr = (uchar_t *)&sin6[1]; |
| } |
| } |
| ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim); |
| putnext(UDP_RD(q), ackmp); |
| } |
| |
| static void |
| udp_copy_info(struct T_info_ack *tap, udp_t *udp) |
| { |
| if (udp->udp_family == AF_INET) { |
| *tap = udp_g_t_info_ack_ipv4; |
| } else { |
| *tap = udp_g_t_info_ack_ipv6; |
| } |
| tap->CURRENT_state = udp->udp_state; |
| tap->OPT_size = udp_max_optsize; |
| } |
| |
| /* |
| * This routine responds to T_CAPABILITY_REQ messages. It is called by |
| * udp_wput. Much of the T_CAPABILITY_ACK information is copied from |
| * udp_g_t_info_ack. The current state of the stream is copied from |
| * udp_state. |
| */ |
| static void |
| udp_capability_req(queue_t *q, mblk_t *mp) |
| { |
| t_uscalar_t cap_bits1; |
| struct T_capability_ack *tcap; |
| udp_t *udp = Q_TO_UDP(q); |
| |
| cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; |
| |
| mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), |
| mp->b_datap->db_type, T_CAPABILITY_ACK); |
| if (!mp) |
| return; |
| |
| tcap = (struct T_capability_ack *)mp->b_rptr; |
| tcap->CAP_bits1 = 0; |
| |
| if (cap_bits1 & TC1_INFO) { |
| udp_copy_info(&tcap->INFO_ack, udp); |
| tcap->CAP_bits1 |= TC1_INFO; |
| } |
| |
| putnext(UDP_RD(q), mp); |
| } |
| |
| /* |
| * This routine responds to T_INFO_REQ messages. It is called by udp_wput. |
| * Most of the T_INFO_ACK information is copied from udp_g_t_info_ack. |
| * The current state of the stream is copied from udp_state. |
| */ |
| static void |
| udp_info_req(queue_t *q, mblk_t *mp) |
| { |
| udp_t *udp = Q_TO_UDP(q); |
| |
| /* Create a T_INFO_ACK message. */ |
| mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, |
| T_INFO_ACK); |
| if (!mp) |
| return; |
| udp_copy_info((struct T_info_ack *)mp->b_rptr, udp); |
| putnext(UDP_RD(q), mp); |
| } |
| |
| /* |
| * IP recognizes seven kinds of bind requests: |
| * |
| * - A zero-length address binds only to the protocol number. |
| * |
| * - A 4-byte address is treated as a request to |
| * validate that the address is a valid local IPv4 |
| * address, appropriate for an application to bind to. |
| * IP does the verification, but does not make any note |
| * of the address at this time. |
| * |
| * - A 16-byte address contains is treated as a request |
| * to validate a local IPv6 address, as the 4-byte |
| * address case above. |
| * |
| * - A 16-byte sockaddr_in to validate the local IPv4 address and also |
| * use it for the inbound fanout of packets. |
| * |
| * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also |
| * use it for the inbound fanout of packets. |
| * |
| * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout |
| * information consisting of local and remote addresses |
| * and ports. In this case, the addresses are both |
| * validated as appropriate for this operation, and, if |
| * so, the information is retained for use in the |
| * inbound fanout. |
| * |
| * - A 36-byte address address (ipa6_conn_t) containing complete IPv6 |
| * fanout information, like the 12-byte case above. |
| * |
| * IP will also fill in the IRE request mblk with information |
| * regarding our peer. In all cases, we notify IP of our protocol |
| * type by appending a single protocol byte to the bind request. |
| */ |
| static mblk_t * |
| udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim, t_scalar_t addr_length) |
| { |
| char *cp; |
| mblk_t *mp; |
| struct T_bind_req *tbr; |
| ipa_conn_t *ac; |
| ipa6_conn_t *ac6; |
| sin_t *sin; |
| sin6_t *sin6; |
| |
| ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_
|