| /* |
| * CDDL HEADER START |
| * |
| * The contents of this file are subject to the terms of the |
| * Common Development and Distribution License (the "License"). |
| * You may not use this file except in compliance with the License. |
| * |
| * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE |
| * or http://www.opensolaris.org/os/licensing. |
| * See the License for the specific language governing permissions |
| * and limitations under the License. |
| * |
| * When distributing Covered Code, include this CDDL HEADER in each |
| * file and include the License file at usr/src/OPENSOLARIS.LICENSE. |
| * If applicable, add the following below this CDDL HEADER, with the |
| * fields enclosed by brackets "[]" replaced with your own identifying |
| * information: Portions Copyright [yyyy] [name of copyright owner] |
| * |
| * CDDL HEADER END |
| */ |
| /* |
| * Copyright 2007 Sun Microsystems, Inc. All rights reserved. |
| * Use is subject to license terms. |
| */ |
| |
| #include <sys/cdefs.h> |
| |
| static uint64_t zfs_crc64_table[256]; |
| |
| #define ECKSUM 666 |
| |
| #define ASSERT3S(x, y, z) ((void)0) |
| #define ASSERT3U(x, y, z) ((void)0) |
| #define ASSERT3P(x, y, z) ((void)0) |
| #define ASSERT0(x) ((void)0) |
| #define ASSERT(x) ((void)0) |
| |
| #define panic(...) do { \ |
| printf(__VA_ARGS__); \ |
| for (;;) ; \ |
| } while (0) |
| |
| #define kmem_alloc(size, flag) zfs_alloc((size)) |
| #define kmem_free(ptr, size) zfs_free((ptr), (size)) |
| |
| static void |
| zfs_init_crc(void) |
| { |
| int i, j; |
| uint64_t *ct; |
| |
| /* |
| * Calculate the crc64 table (used for the zap hash |
| * function). |
| */ |
| if (zfs_crc64_table[128] != ZFS_CRC64_POLY) { |
| memset(zfs_crc64_table, 0, sizeof(zfs_crc64_table)); |
| for (i = 0; i < 256; i++) |
| for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) |
| *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); |
| } |
| } |
| |
| static void |
| zio_checksum_off(const void *buf, uint64_t size, |
| const void *ctx_template, zio_cksum_t *zcp) |
| { |
| ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0); |
| } |
| |
| /* |
| * Signature for checksum functions. |
| */ |
| typedef void zio_checksum_t(const void *data, uint64_t size, |
| const void *ctx_template, zio_cksum_t *zcp); |
| typedef void *zio_checksum_tmpl_init_t(const zio_cksum_salt_t *salt); |
| typedef void zio_checksum_tmpl_free_t(void *ctx_template); |
| |
| typedef enum zio_checksum_flags { |
| /* Strong enough for metadata? */ |
| ZCHECKSUM_FLAG_METADATA = (1 << 1), |
| /* ZIO embedded checksum */ |
| ZCHECKSUM_FLAG_EMBEDDED = (1 << 2), |
| /* Strong enough for dedup (without verification)? */ |
| ZCHECKSUM_FLAG_DEDUP = (1 << 3), |
| /* Uses salt value */ |
| ZCHECKSUM_FLAG_SALTED = (1 << 4), |
| /* Strong enough for nopwrite? */ |
| ZCHECKSUM_FLAG_NOPWRITE = (1 << 5) |
| } zio_checksum_flags_t; |
| |
| /* |
| * Information about each checksum function. |
| */ |
| typedef struct zio_checksum_info { |
| /* checksum function for each byteorder */ |
| zio_checksum_t *ci_func[2]; |
| zio_checksum_tmpl_init_t *ci_tmpl_init; |
| zio_checksum_tmpl_free_t *ci_tmpl_free; |
| zio_checksum_flags_t ci_flags; |
| const char *ci_name; /* descriptive name */ |
| } zio_checksum_info_t; |
| |
| #include "blkptr.c" |
| |
| #include "fletcher.c" |
| #include "sha256.c" |
| |
| static zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = { |
| {{NULL, NULL}, NULL, NULL, 0, "inherit"}, |
| {{NULL, NULL}, NULL, NULL, 0, "on"}, |
| {{zio_checksum_off, zio_checksum_off}, NULL, NULL, 0, "off"}, |
| {{zio_checksum_SHA256, zio_checksum_SHA256}, NULL, NULL, |
| ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_EMBEDDED, "label"}, |
| {{zio_checksum_SHA256, zio_checksum_SHA256}, NULL, NULL, |
| ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_EMBEDDED, "gang_header"}, |
| {{fletcher_2_native, fletcher_2_byteswap}, NULL, NULL, |
| ZCHECKSUM_FLAG_EMBEDDED, "zilog"}, |
| {{fletcher_2_native, fletcher_2_byteswap}, NULL, NULL, |
| 0, "fletcher2"}, |
| {{fletcher_4_native, fletcher_4_byteswap}, NULL, NULL, |
| ZCHECKSUM_FLAG_METADATA, "fletcher4"}, |
| {{zio_checksum_SHA256, zio_checksum_SHA256}, NULL, NULL, |
| ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP | |
| ZCHECKSUM_FLAG_NOPWRITE, "SHA256"}, |
| {{fletcher_4_native, fletcher_4_byteswap}, NULL, NULL, |
| ZCHECKSUM_FLAG_EMBEDDED, "zillog2"}, |
| {{zio_checksum_off, zio_checksum_off}, NULL, NULL, |
| 0, "noparity"}, |
| {{zio_checksum_SHA512_native, zio_checksum_SHA512_byteswap}, |
| NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP | |
| ZCHECKSUM_FLAG_NOPWRITE, "SHA512"}, |
| /* no skein and edonr for now */ |
| {{NULL, NULL}, NULL, NULL, ZCHECKSUM_FLAG_METADATA | |
| ZCHECKSUM_FLAG_DEDUP | ZCHECKSUM_FLAG_SALTED | |
| ZCHECKSUM_FLAG_NOPWRITE, "skein"}, |
| {{NULL, NULL}, NULL, NULL, ZCHECKSUM_FLAG_METADATA | |
| ZCHECKSUM_FLAG_SALTED | ZCHECKSUM_FLAG_NOPWRITE, "edonr"}, |
| }; |
| |
| /* |
| * Common signature for all zio compress/decompress functions. |
| */ |
| typedef size_t zio_compress_func_t(void *src, void *dst, |
| size_t s_len, size_t d_len, int); |
| typedef int zio_decompress_func_t(void *src, void *dst, |
| size_t s_len, size_t d_len, int); |
| |
| extern int gzip_decompress(void *src, void *dst, |
| size_t s_len, size_t d_len, int); |
| /* |
| * Information about each compression function. |
| */ |
| typedef struct zio_compress_info { |
| zio_compress_func_t *ci_compress; /* compression function */ |
| zio_decompress_func_t *ci_decompress; /* decompression function */ |
| int ci_level; /* level parameter */ |
| const char *ci_name; /* algorithm name */ |
| } zio_compress_info_t; |
| |
| #include "lzjb.c" |
| #include "zle.c" |
| #include "lz4.c" |
| |
| /* |
| * Compression vectors. |
| */ |
| static zio_compress_info_t zio_compress_table[ZIO_COMPRESS_FUNCTIONS] = { |
| {NULL, NULL, 0, "inherit"}, |
| {NULL, NULL, 0, "on"}, |
| {NULL, NULL, 0, "uncompressed"}, |
| {NULL, lzjb_decompress, 0, "lzjb"}, |
| {NULL, NULL, 0, "empty"}, |
| {NULL, gzip_decompress, 1, "gzip-1"}, |
| {NULL, gzip_decompress, 2, "gzip-2"}, |
| {NULL, gzip_decompress, 3, "gzip-3"}, |
| {NULL, gzip_decompress, 4, "gzip-4"}, |
| {NULL, gzip_decompress, 5, "gzip-5"}, |
| {NULL, gzip_decompress, 6, "gzip-6"}, |
| {NULL, gzip_decompress, 7, "gzip-7"}, |
| {NULL, gzip_decompress, 8, "gzip-8"}, |
| {NULL, gzip_decompress, 9, "gzip-9"}, |
| {NULL, zle_decompress, 64, "zle"}, |
| {NULL, lz4_decompress, 0, "lz4"}, |
| }; |
| |
| static void |
| byteswap_uint64_array(void *vbuf, size_t size) |
| { |
| uint64_t *buf = vbuf; |
| size_t count = size >> 3; |
| int i; |
| |
| ASSERT((size & 7) == 0); |
| |
| for (i = 0; i < count; i++) |
| buf[i] = BSWAP_64(buf[i]); |
| } |
| |
| /* |
| * Set the external verifier for a gang block based on <vdev, offset, txg>, |
| * a tuple which is guaranteed to be unique for the life of the pool. |
| */ |
| static void |
| zio_checksum_gang_verifier(zio_cksum_t *zcp, const blkptr_t *bp) |
| { |
| const dva_t *dva = BP_IDENTITY(bp); |
| uint64_t txg = BP_PHYSICAL_BIRTH(bp); |
| |
| ASSERT(BP_IS_GANG(bp)); |
| |
| ZIO_SET_CHECKSUM(zcp, DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), txg, 0); |
| } |
| |
| /* |
| * Set the external verifier for a label block based on its offset. |
| * The vdev is implicit, and the txg is unknowable at pool open time -- |
| * hence the logic in vdev_uberblock_load() to find the most recent copy. |
| */ |
| static void |
| zio_checksum_label_verifier(zio_cksum_t *zcp, uint64_t offset) |
| { |
| ZIO_SET_CHECKSUM(zcp, offset, 0, 0, 0); |
| } |
| |
| /* |
| * Calls the template init function of a checksum which supports context |
| * templates and installs the template into the spa_t. |
| */ |
| static void |
| zio_checksum_template_init(enum zio_checksum checksum, const spa_t *spa) |
| { |
| zio_checksum_info_t *ci = &zio_checksum_table[checksum]; |
| |
| if (ci->ci_tmpl_init == NULL) |
| return; |
| #if 0 /* for now we dont have anything here */ |
| if (spa->spa_cksum_tmpls[checksum] != NULL) |
| return; |
| |
| VERIFY(ci->ci_tmpl_free != NULL); |
| mutex_enter(&spa->spa_cksum_tmpls_lock); |
| if (spa->spa_cksum_tmpls[checksum] == NULL) { |
| spa->spa_cksum_tmpls[checksum] = |
| ci->ci_tmpl_init(&spa->spa_cksum_salt); |
| VERIFY(spa->spa_cksum_tmpls[checksum] != NULL); |
| } |
| mutex_exit(&spa->spa_cksum_tmpls_lock); |
| #endif |
| } |
| |
| static int |
| zio_checksum_verify(const blkptr_t *bp, void *data) |
| { |
| uint64_t size; |
| unsigned int checksum; |
| zio_checksum_info_t *ci; |
| zio_cksum_t actual_cksum, expected_cksum, verifier; |
| int byteswap; |
| |
| checksum = BP_GET_CHECKSUM(bp); |
| size = BP_GET_PSIZE(bp); |
| |
| if (checksum >= ZIO_CHECKSUM_FUNCTIONS) |
| return (EINVAL); |
| ci = &zio_checksum_table[checksum]; |
| if (ci->ci_func[0] == NULL || ci->ci_func[1] == NULL) |
| return (EINVAL); |
| |
| zio_checksum_template_init(checksum, NULL); |
| if (ci->ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { |
| zio_eck_t *eck; |
| |
| ASSERT(checksum == ZIO_CHECKSUM_GANG_HEADER || |
| checksum == ZIO_CHECKSUM_LABEL); |
| |
| eck = (zio_eck_t *)((char *)data + size) - 1; |
| |
| if (checksum == ZIO_CHECKSUM_GANG_HEADER) |
| zio_checksum_gang_verifier(&verifier, bp); |
| else if (checksum == ZIO_CHECKSUM_LABEL) |
| zio_checksum_label_verifier(&verifier, |
| DVA_GET_OFFSET(BP_IDENTITY(bp))); |
| else |
| verifier = bp->blk_cksum; |
| |
| byteswap = (eck->zec_magic == BSWAP_64(ZEC_MAGIC)); |
| |
| if (byteswap) |
| byteswap_uint64_array(&verifier, sizeof (zio_cksum_t)); |
| |
| expected_cksum = eck->zec_cksum; |
| eck->zec_cksum = verifier; |
| ci->ci_func[byteswap](data, size, NULL, &actual_cksum); |
| eck->zec_cksum = expected_cksum; |
| |
| if (byteswap) |
| byteswap_uint64_array(&expected_cksum, |
| sizeof (zio_cksum_t)); |
| } else { |
| expected_cksum = bp->blk_cksum; |
| ci->ci_func[0](data, size, NULL, &actual_cksum); |
| } |
| |
| if (!ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum)) { |
| /*printf("ZFS: read checksum failed\n");*/ |
| return (EIO); |
| } |
| |
| return (0); |
| } |
| |
| static int |
| zio_decompress_data(int cpfunc, void *src, uint64_t srcsize, |
| void *dest, uint64_t destsize) |
| { |
| zio_compress_info_t *ci; |
| |
| if (cpfunc >= ZIO_COMPRESS_FUNCTIONS) { |
| printf("ZFS: unsupported compression algorithm %u\n", cpfunc); |
| return (EIO); |
| } |
| |
| ci = &zio_compress_table[cpfunc]; |
| if (!ci->ci_decompress) { |
| printf("ZFS: unsupported compression algorithm %s\n", |
| ci->ci_name); |
| return (EIO); |
| } |
| |
| return (ci->ci_decompress(src, dest, srcsize, destsize, ci->ci_level)); |
| } |
| |
| static uint64_t |
| zap_hash(uint64_t salt, const char *name) |
| { |
| const uint8_t *cp; |
| uint8_t c; |
| uint64_t crc = salt; |
| |
| ASSERT(crc != 0); |
| ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); |
| for (cp = (const uint8_t *)name; (c = *cp) != '\0'; cp++) |
| crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ c) & 0xFF]; |
| |
| /* |
| * Only use 28 bits, since we need 4 bits in the cookie for the |
| * collision differentiator. We MUST use the high bits, since |
| * those are the onces that we first pay attention to when |
| * chosing the bucket. |
| */ |
| crc &= ~((1ULL << (64 - ZAP_HASHBITS)) - 1); |
| |
| return (crc); |
| } |
| |
| static void *zfs_alloc(size_t size); |
| static void zfs_free(void *ptr, size_t size); |
| |
| typedef struct raidz_col { |
| uint64_t rc_devidx; /* child device index for I/O */ |
| uint64_t rc_offset; /* device offset */ |
| uint64_t rc_size; /* I/O size */ |
| void *rc_data; /* I/O data */ |
| int rc_error; /* I/O error for this device */ |
| uint8_t rc_tried; /* Did we attempt this I/O column? */ |
| uint8_t rc_skipped; /* Did we skip this I/O column? */ |
| } raidz_col_t; |
| |
| typedef struct raidz_map { |
| uint64_t rm_cols; /* Regular column count */ |
| uint64_t rm_scols; /* Count including skipped columns */ |
| uint64_t rm_bigcols; /* Number of oversized columns */ |
| uint64_t rm_asize; /* Actual total I/O size */ |
| uint64_t rm_missingdata; /* Count of missing data devices */ |
| uint64_t rm_missingparity; /* Count of missing parity devices */ |
| uint64_t rm_firstdatacol; /* First data column/parity count */ |
| uint64_t rm_nskip; /* Skipped sectors for padding */ |
| uint64_t rm_skipstart; /* Column index of padding start */ |
| uintptr_t rm_reports; /* # of referencing checksum reports */ |
| uint8_t rm_freed; /* map no longer has referencing ZIO */ |
| uint8_t rm_ecksuminjected; /* checksum error was injected */ |
| raidz_col_t rm_col[1]; /* Flexible array of I/O columns */ |
| } raidz_map_t; |
| |
| #define VDEV_RAIDZ_P 0 |
| #define VDEV_RAIDZ_Q 1 |
| #define VDEV_RAIDZ_R 2 |
| |
| #define VDEV_RAIDZ_MUL_2(x) (((x) << 1) ^ (((x) & 0x80) ? 0x1d : 0)) |
| #define VDEV_RAIDZ_MUL_4(x) (VDEV_RAIDZ_MUL_2(VDEV_RAIDZ_MUL_2(x))) |
| |
| /* |
| * We provide a mechanism to perform the field multiplication operation on a |
| * 64-bit value all at once rather than a byte at a time. This works by |
| * creating a mask from the top bit in each byte and using that to |
| * conditionally apply the XOR of 0x1d. |
| */ |
| #define VDEV_RAIDZ_64MUL_2(x, mask) \ |
| { \ |
| (mask) = (x) & 0x8080808080808080ULL; \ |
| (mask) = ((mask) << 1) - ((mask) >> 7); \ |
| (x) = (((x) << 1) & 0xfefefefefefefefeULL) ^ \ |
| ((mask) & 0x1d1d1d1d1d1d1d1dULL); \ |
| } |
| |
| #define VDEV_RAIDZ_64MUL_4(x, mask) \ |
| { \ |
| VDEV_RAIDZ_64MUL_2((x), mask); \ |
| VDEV_RAIDZ_64MUL_2((x), mask); \ |
| } |
| |
| /* |
| * These two tables represent powers and logs of 2 in the Galois field defined |
| * above. These values were computed by repeatedly multiplying by 2 as above. |
| */ |
| static const uint8_t vdev_raidz_pow2[256] = { |
| 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, |
| 0x1d, 0x3a, 0x74, 0xe8, 0xcd, 0x87, 0x13, 0x26, |
| 0x4c, 0x98, 0x2d, 0x5a, 0xb4, 0x75, 0xea, 0xc9, |
| 0x8f, 0x03, 0x06, 0x0c, 0x18, 0x30, 0x60, 0xc0, |
| 0x9d, 0x27, 0x4e, 0x9c, 0x25, 0x4a, 0x94, 0x35, |
| 0x6a, 0xd4, 0xb5, 0x77, 0xee, 0xc1, 0x9f, 0x23, |
| 0x46, 0x8c, 0x05, 0x0a, 0x14, 0x28, 0x50, 0xa0, |
| 0x5d, 0xba, 0x69, 0xd2, 0xb9, 0x6f, 0xde, 0xa1, |
| 0x5f, 0xbe, 0x61, 0xc2, 0x99, 0x2f, 0x5e, 0xbc, |
| 0x65, 0xca, 0x89, 0x0f, 0x1e, 0x3c, 0x78, 0xf0, |
| 0xfd, 0xe7, 0xd3, 0xbb, 0x6b, 0xd6, 0xb1, 0x7f, |
| 0xfe, 0xe1, 0xdf, 0xa3, 0x5b, 0xb6, 0x71, 0xe2, |
| 0xd9, 0xaf, 0x43, 0x86, 0x11, 0x22, 0x44, 0x88, |
| 0x0d, 0x1a, 0x34, 0x68, 0xd0, 0xbd, 0x67, 0xce, |
| 0x81, 0x1f, 0x3e, 0x7c, 0xf8, 0xed, 0xc7, 0x93, |
| 0x3b, 0x76, 0xec, 0xc5, 0x97, 0x33, 0x66, 0xcc, |
| 0x85, 0x17, 0x2e, 0x5c, 0xb8, 0x6d, 0xda, 0xa9, |
| 0x4f, 0x9e, 0x21, 0x42, 0x84, 0x15, 0x2a, 0x54, |
| 0xa8, 0x4d, 0x9a, 0x29, 0x52, 0xa4, 0x55, 0xaa, |
| 0x49, 0x92, 0x39, 0x72, 0xe4, 0xd5, 0xb7, 0x73, |
| 0xe6, 0xd1, 0xbf, 0x63, 0xc6, 0x91, 0x3f, 0x7e, |
| 0xfc, 0xe5, 0xd7, 0xb3, 0x7b, 0xf6, 0xf1, 0xff, |
| 0xe3, 0xdb, 0xab, 0x4b, 0x96, 0x31, 0x62, 0xc4, |
| 0x95, 0x37, 0x6e, 0xdc, 0xa5, 0x57, 0xae, 0x41, |
| 0x82, 0x19, 0x32, 0x64, 0xc8, 0x8d, 0x07, 0x0e, |
| 0x1c, 0x38, 0x70, 0xe0, 0xdd, 0xa7, 0x53, 0xa6, |
| 0x51, 0xa2, 0x59, 0xb2, 0x79, 0xf2, 0xf9, 0xef, |
| 0xc3, 0x9b, 0x2b, 0x56, 0xac, 0x45, 0x8a, 0x09, |
| 0x12, 0x24, 0x48, 0x90, 0x3d, 0x7a, 0xf4, 0xf5, |
| 0xf7, 0xf3, 0xfb, 0xeb, 0xcb, 0x8b, 0x0b, 0x16, |
| 0x2c, 0x58, 0xb0, 0x7d, 0xfa, 0xe9, 0xcf, 0x83, |
| 0x1b, 0x36, 0x6c, 0xd8, 0xad, 0x47, 0x8e, 0x01 |
| }; |
| static const uint8_t vdev_raidz_log2[256] = { |
| 0x00, 0x00, 0x01, 0x19, 0x02, 0x32, 0x1a, 0xc6, |
| 0x03, 0xdf, 0x33, 0xee, 0x1b, 0x68, 0xc7, 0x4b, |
| 0x04, 0x64, 0xe0, 0x0e, 0x34, 0x8d, 0xef, 0x81, |
| 0x1c, 0xc1, 0x69, 0xf8, 0xc8, 0x08, 0x4c, 0x71, |
| 0x05, 0x8a, 0x65, 0x2f, 0xe1, 0x24, 0x0f, 0x21, |
| 0x35, 0x93, 0x8e, 0xda, 0xf0, 0x12, 0x82, 0x45, |
| 0x1d, 0xb5, 0xc2, 0x7d, 0x6a, 0x27, 0xf9, 0xb9, |
| 0xc9, 0x9a, 0x09, 0x78, 0x4d, 0xe4, 0x72, 0xa6, |
| 0x06, 0xbf, 0x8b, 0x62, 0x66, 0xdd, 0x30, 0xfd, |
| 0xe2, 0x98, 0x25, 0xb3, 0x10, 0x91, 0x22, 0x88, |
| 0x36, 0xd0, 0x94, 0xce, 0x8f, 0x96, 0xdb, 0xbd, |
| 0xf1, 0xd2, 0x13, 0x5c, 0x83, 0x38, 0x46, 0x40, |
| 0x1e, 0x42, 0xb6, 0xa3, 0xc3, 0x48, 0x7e, 0x6e, |
| 0x6b, 0x3a, 0x28, 0x54, 0xfa, 0x85, 0xba, 0x3d, |
| 0xca, 0x5e, 0x9b, 0x9f, 0x0a, 0x15, 0x79, 0x2b, |
| 0x4e, 0xd4, 0xe5, 0xac, 0x73, 0xf3, 0xa7, 0x57, |
| 0x07, 0x70, 0xc0, 0xf7, 0x8c, 0x80, 0x63, 0x0d, |
| 0x67, 0x4a, 0xde, 0xed, 0x31, 0xc5, 0xfe, 0x18, |
| 0xe3, 0xa5, 0x99, 0x77, 0x26, 0xb8, 0xb4, 0x7c, |
| 0x11, 0x44, 0x92, 0xd9, 0x23, 0x20, 0x89, 0x2e, |
| 0x37, 0x3f, 0xd1, 0x5b, 0x95, 0xbc, 0xcf, 0xcd, |
| 0x90, 0x87, 0x97, 0xb2, 0xdc, 0xfc, 0xbe, 0x61, |
| 0xf2, 0x56, 0xd3, 0xab, 0x14, 0x2a, 0x5d, 0x9e, |
| 0x84, 0x3c, 0x39, 0x53, 0x47, 0x6d, 0x41, 0xa2, |
| 0x1f, 0x2d, 0x43, 0xd8, 0xb7, 0x7b, 0xa4, 0x76, |
| 0xc4, 0x17, 0x49, 0xec, 0x7f, 0x0c, 0x6f, 0xf6, |
| 0x6c, 0xa1, 0x3b, 0x52, 0x29, 0x9d, 0x55, 0xaa, |
| 0xfb, 0x60, 0x86, 0xb1, 0xbb, 0xcc, 0x3e, 0x5a, |
| 0xcb, 0x59, 0x5f, 0xb0, 0x9c, 0xa9, 0xa0, 0x51, |
| 0x0b, 0xf5, 0x16, 0xeb, 0x7a, 0x75, 0x2c, 0xd7, |
| 0x4f, 0xae, 0xd5, 0xe9, 0xe6, 0xe7, 0xad, 0xe8, |
| 0x74, 0xd6, 0xf4, 0xea, 0xa8, 0x50, 0x58, 0xaf, |
| }; |
| |
| /* |
| * Multiply a given number by 2 raised to the given power. |
| */ |
| static uint8_t |
| vdev_raidz_exp2(uint8_t a, int exp) |
| { |
| if (a == 0) |
| return (0); |
| |
| ASSERT(exp >= 0); |
| ASSERT(vdev_raidz_log2[a] > 0 || a == 1); |
| |
| exp += vdev_raidz_log2[a]; |
| if (exp > 255) |
| exp -= 255; |
| |
| return (vdev_raidz_pow2[exp]); |
| } |
| |
| static void |
| vdev_raidz_generate_parity_p(raidz_map_t *rm) |
| { |
| uint64_t *p, *src, pcount __attribute__((unused)), ccount, i; |
| int c; |
| |
| pcount = rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (src[0]); |
| |
| for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) { |
| src = rm->rm_col[c].rc_data; |
| p = rm->rm_col[VDEV_RAIDZ_P].rc_data; |
| ccount = rm->rm_col[c].rc_size / sizeof (src[0]); |
| |
| if (c == rm->rm_firstdatacol) { |
| ASSERT(ccount == pcount); |
| for (i = 0; i < ccount; i++, src++, p++) { |
| *p = *src; |
| } |
| } else { |
| ASSERT(ccount <= pcount); |
| for (i = 0; i < ccount; i++, src++, p++) { |
| *p ^= *src; |
| } |
| } |
| } |
| } |
| |
| static void |
| vdev_raidz_generate_parity_pq(raidz_map_t *rm) |
| { |
| uint64_t *p, *q, *src, pcnt, ccnt, mask, i; |
| int c; |
| |
| pcnt = rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (src[0]); |
| ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size == |
| rm->rm_col[VDEV_RAIDZ_Q].rc_size); |
| |
| for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) { |
| src = rm->rm_col[c].rc_data; |
| p = rm->rm_col[VDEV_RAIDZ_P].rc_data; |
| q = rm->rm_col[VDEV_RAIDZ_Q].rc_data; |
| |
| ccnt = rm->rm_col[c].rc_size / sizeof (src[0]); |
| |
| if (c == rm->rm_firstdatacol) { |
| ASSERT(ccnt == pcnt || ccnt == 0); |
| for (i = 0; i < ccnt; i++, src++, p++, q++) { |
| *p = *src; |
| *q = *src; |
| } |
| for (; i < pcnt; i++, src++, p++, q++) { |
| *p = 0; |
| *q = 0; |
| } |
| } else { |
| ASSERT(ccnt <= pcnt); |
| |
| /* |
| * Apply the algorithm described above by multiplying |
| * the previous result and adding in the new value. |
| */ |
| for (i = 0; i < ccnt; i++, src++, p++, q++) { |
| *p ^= *src; |
| |
| VDEV_RAIDZ_64MUL_2(*q, mask); |
| *q ^= *src; |
| } |
| |
| /* |
| * Treat short columns as though they are full of 0s. |
| * Note that there's therefore nothing needed for P. |
| */ |
| for (; i < pcnt; i++, q++) { |
| VDEV_RAIDZ_64MUL_2(*q, mask); |
| } |
| } |
| } |
| } |
| |
| static void |
| vdev_raidz_generate_parity_pqr(raidz_map_t *rm) |
| { |
| uint64_t *p, *q, *r, *src, pcnt, ccnt, mask, i; |
| int c; |
| |
| pcnt = rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (src[0]); |
| ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size == |
| rm->rm_col[VDEV_RAIDZ_Q].rc_size); |
| ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size == |
| rm->rm_col[VDEV_RAIDZ_R].rc_size); |
| |
| for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) { |
| src = rm->rm_col[c].rc_data; |
| p = rm->rm_col[VDEV_RAIDZ_P].rc_data; |
| q = rm->rm_col[VDEV_RAIDZ_Q].rc_data; |
| r = rm->rm_col[VDEV_RAIDZ_R].rc_data; |
| |
| ccnt = rm->rm_col[c].rc_size / sizeof (src[0]); |
| |
| if (c == rm->rm_firstdatacol) { |
| ASSERT(ccnt == pcnt || ccnt == 0); |
| for (i = 0; i < ccnt; i++, src++, p++, q++, r++) { |
| *p = *src; |
| *q = *src; |
| *r = *src; |
| } |
| for (; i < pcnt; i++, src++, p++, q++, r++) { |
| *p = 0; |
| *q = 0; |
| *r = 0; |
| } |
| } else { |
| ASSERT(ccnt <= pcnt); |
| |
| /* |
| * Apply the algorithm described above by multiplying |
| * the previous result and adding in the new value. |
| */ |
| for (i = 0; i < ccnt; i++, src++, p++, q++, r++) { |
| *p ^= *src; |
| |
| VDEV_RAIDZ_64MUL_2(*q, mask); |
| *q ^= *src; |
| |
| VDEV_RAIDZ_64MUL_4(*r, mask); |
| *r ^= *src; |
| } |
| |
| /* |
| * Treat short columns as though they are full of 0s. |
| * Note that there's therefore nothing needed for P. |
| */ |
| for (; i < pcnt; i++, q++, r++) { |
| VDEV_RAIDZ_64MUL_2(*q, mask); |
| VDEV_RAIDZ_64MUL_4(*r, mask); |
| } |
| } |
| } |
| } |
| |
| /* |
| * Generate RAID parity in the first virtual columns according to the number of |
| * parity columns available. |
| */ |
| static void |
| vdev_raidz_generate_parity(raidz_map_t *rm) |
| { |
| switch (rm->rm_firstdatacol) { |
| case 1: |
| vdev_raidz_generate_parity_p(rm); |
| break; |
| case 2: |
| vdev_raidz_generate_parity_pq(rm); |
| break; |
| case 3: |
| vdev_raidz_generate_parity_pqr(rm); |
| break; |
| default: |
| panic("invalid RAID-Z configuration"); |
| } |
| } |
| |
| /* BEGIN CSTYLED */ |
| /* |
| * In the general case of reconstruction, we must solve the system of linear |
| * equations defined by the coeffecients used to generate parity as well as |
| * the contents of the data and parity disks. This can be expressed with |
| * vectors for the original data (D) and the actual data (d) and parity (p) |
| * and a matrix composed of the identity matrix (I) and a dispersal matrix (V): |
| * |
| * __ __ __ __ |
| * | | __ __ | p_0 | |
| * | V | | D_0 | | p_m-1 | |
| * | | x | : | = | d_0 | |
| * | I | | D_n-1 | | : | |
| * | | ~~ ~~ | d_n-1 | |
| * ~~ ~~ ~~ ~~ |
| * |
| * I is simply a square identity matrix of size n, and V is a vandermonde |
| * matrix defined by the coeffecients we chose for the various parity columns |
| * (1, 2, 4). Note that these values were chosen both for simplicity, speedy |
| * computation as well as linear separability. |
| * |
| * __ __ __ __ |
| * | 1 .. 1 1 1 | | p_0 | |
| * | 2^n-1 .. 4 2 1 | __ __ | : | |
| * | 4^n-1 .. 16 4 1 | | D_0 | | p_m-1 | |
| * | 1 .. 0 0 0 | | D_1 | | d_0 | |
| * | 0 .. 0 0 0 | x | D_2 | = | d_1 | |
| * | : : : : | | : | | d_2 | |
| * | 0 .. 1 0 0 | | D_n-1 | | : | |
| * | 0 .. 0 1 0 | ~~ ~~ | : | |
| * | 0 .. 0 0 1 | | d_n-1 | |
| * ~~ ~~ ~~ ~~ |
| * |
| * Note that I, V, d, and p are known. To compute D, we must invert the |
| * matrix and use the known data and parity values to reconstruct the unknown |
| * data values. We begin by removing the rows in V|I and d|p that correspond |
| * to failed or missing columns; we then make V|I square (n x n) and d|p |
| * sized n by removing rows corresponding to unused parity from the bottom up |
| * to generate (V|I)' and (d|p)'. We can then generate the inverse of (V|I)' |
| * using Gauss-Jordan elimination. In the example below we use m=3 parity |
| * columns, n=8 data columns, with errors in d_1, d_2, and p_1: |
| * __ __ |
| * | 1 1 1 1 1 1 1 1 | |
| * | 128 64 32 16 8 4 2 1 | <-----+-+-- missing disks |
| * | 19 205 116 29 64 16 4 1 | / / |
| * | 1 0 0 0 0 0 0 0 | / / |
| * | 0 1 0 0 0 0 0 0 | <--' / |
| * (V|I) = | 0 0 1 0 0 0 0 0 | <---' |
| * | 0 0 0 1 0 0 0 0 | |
| * | 0 0 0 0 1 0 0 0 | |
| * | 0 0 0 0 0 1 0 0 | |
| * | 0 0 0 0 0 0 1 0 | |
| * | 0 0 0 0 0 0 0 1 | |
| * ~~ ~~ |
| * __ __ |
| * | 1 1 1 1 1 1 1 1 | |
| * | 128 64 32 16 8 4 2 1 | |
| * | 19 205 116 29 64 16 4 1 | |
| * | 1 0 0 0 0 0 0 0 | |
| * | 0 1 0 0 0 0 0 0 | |
| * (V|I)' = | 0 0 1 0 0 0 0 0 | |
| * | 0 0 0 1 0 0 0 0 | |
| * | 0 0 0 0 1 0 0 0 | |
| * | 0 0 0 0 0 1 0 0 | |
| * | 0 0 0 0 0 0 1 0 | |
| * | 0 0 0 0 0 0 0 1 | |
| * ~~ ~~ |
| * |
| * Here we employ Gauss-Jordan elimination to find the inverse of (V|I)'. We |
| * have carefully chosen the seed values 1, 2, and 4 to ensure that this |
| * matrix is not singular. |
| * __ __ |
| * | 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 | |
| * | 19 205 116 29 64 16 4 1 0 1 0 0 0 0 0 0 | |
| * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | |
| * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 | |
| * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 | |
| * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 | |
| * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 | |
| * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | |
| * ~~ ~~ |
| * __ __ |
| * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | |
| * | 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 | |
| * | 19 205 116 29 64 16 4 1 0 1 0 0 0 0 0 0 | |
| * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 | |
| * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 | |
| * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 | |
| * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 | |
| * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | |
| * ~~ ~~ |
| * __ __ |
| * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | |
| * | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 | |
| * | 0 205 116 0 0 0 0 0 0 1 19 29 64 16 4 1 | |
| * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 | |
| * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 | |
| * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 | |
| * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 | |
| * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | |
| * ~~ ~~ |
| * __ __ |
| * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | |
| * | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 | |
| * | 0 0 185 0 0 0 0 0 205 1 222 208 141 221 201 204 | |
| * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 | |
| * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 | |
| * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 | |
| * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 | |
| * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | |
| * ~~ ~~ |
| * __ __ |
| * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | |
| * | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 | |
| * | 0 0 1 0 0 0 0 0 166 100 4 40 158 168 216 209 | |
| * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 | |
| * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 | |
| * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 | |
| * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 | |
| * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | |
| * ~~ ~~ |
| * __ __ |
| * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | |
| * | 0 1 0 0 0 0 0 0 167 100 5 41 159 169 217 208 | |
| * | 0 0 1 0 0 0 0 0 166 100 4 40 158 168 216 209 | |
| * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 | |
| * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 | |
| * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 | |
| * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 | |
| * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | |
| * ~~ ~~ |
| * __ __ |
| * | 0 0 1 0 0 0 0 0 | |
| * | 167 100 5 41 159 169 217 208 | |
| * | 166 100 4 40 158 168 216 209 | |
| * (V|I)'^-1 = | 0 0 0 1 0 0 0 0 | |
| * | 0 0 0 0 1 0 0 0 | |
| * | 0 0 0 0 0 1 0 0 | |
| * | 0 0 0 0 0 0 1 0 | |
| * | 0 0 0 0 0 0 0 1 | |
| * ~~ ~~ |
| * |
| * We can then simply compute D = (V|I)'^-1 x (d|p)' to discover the values |
| * of the missing data. |
| * |
| * As is apparent from the example above, the only non-trivial rows in the |
| * inverse matrix correspond to the data disks that we're trying to |
| * reconstruct. Indeed, those are the only rows we need as the others would |
| * only be useful for reconstructing data known or assumed to be valid. For |
| * that reason, we only build the coefficients in the rows that correspond to |
| * targeted columns. |
| */ |
| /* END CSTYLED */ |
| |
| static void |
| vdev_raidz_matrix_init(raidz_map_t *rm, int n, int nmap, int *map, |
| uint8_t **rows) |
| { |
| int i, j; |
| int pow; |
| |
| ASSERT(n == rm->rm_cols - rm->rm_firstdatacol); |
| |
| /* |
| * Fill in the missing rows of interest. |
| */ |
| for (i = 0; i < nmap; i++) { |
| ASSERT3S(0, <=, map[i]); |
| ASSERT3S(map[i], <=, 2); |
| |
| pow = map[i] * n; |
| if (pow > 255) |
| pow -= 255; |
| ASSERT(pow <= 255); |
| |
| for (j = 0; j < n; j++) { |
| pow -= map[i]; |
| if (pow < 0) |
| pow += 255; |
| rows[i][j] = vdev_raidz_pow2[pow]; |
| } |
| } |
| } |
| |
| static void |
| vdev_raidz_matrix_invert(raidz_map_t *rm, int n, int nmissing, int *missing, |
| uint8_t **rows, uint8_t **invrows, const uint8_t *used) |
| { |
| int i, j, ii, jj; |
| uint8_t log; |
| |
| /* |
| * Assert that the first nmissing entries from the array of used |
| * columns correspond to parity columns and that subsequent entries |
| * correspond to data columns. |
| */ |
| for (i = 0; i < nmissing; i++) { |
| ASSERT3S(used[i], <, rm->rm_firstdatacol); |
| } |
| for (; i < n; i++) { |
| ASSERT3S(used[i], >=, rm->rm_firstdatacol); |
| } |
| |
| /* |
| * First initialize the storage where we'll compute the inverse rows. |
| */ |
| for (i = 0; i < nmissing; i++) { |
| for (j = 0; j < n; j++) { |
| invrows[i][j] = (i == j) ? 1 : 0; |
| } |
| } |
| |
| /* |
| * Subtract all trivial rows from the rows of consequence. |
| */ |
| for (i = 0; i < nmissing; i++) { |
| for (j = nmissing; j < n; j++) { |
| ASSERT3U(used[j], >=, rm->rm_firstdatacol); |
| jj = used[j] - rm->rm_firstdatacol; |
| ASSERT3S(jj, <, n); |
| invrows[i][j] = rows[i][jj]; |
| rows[i][jj] = 0; |
| } |
| } |
| |
| /* |
| * For each of the rows of interest, we must normalize it and subtract |
| * a multiple of it from the other rows. |
| */ |
| for (i = 0; i < nmissing; i++) { |
| for (j = 0; j < missing[i]; j++) { |
| ASSERT3U(rows[i][j], ==, 0); |
| } |
| ASSERT3U(rows[i][missing[i]], !=, 0); |
| |
| /* |
| * Compute the inverse of the first element and multiply each |
| * element in the row by that value. |
| */ |
| log = 255 - vdev_raidz_log2[rows[i][missing[i]]]; |
| |
| for (j = 0; j < n; j++) { |
| rows[i][j] = vdev_raidz_exp2(rows[i][j], log); |
| invrows[i][j] = vdev_raidz_exp2(invrows[i][j], log); |
| } |
| |
| for (ii = 0; ii < nmissing; ii++) { |
| if (i == ii) |
| continue; |
| |
| ASSERT3U(rows[ii][missing[i]], !=, 0); |
| |
| log = vdev_raidz_log2[rows[ii][missing[i]]]; |
| |
| for (j = 0; j < n; j++) { |
| rows[ii][j] ^= |
| vdev_raidz_exp2(rows[i][j], log); |
| invrows[ii][j] ^= |
| vdev_raidz_exp2(invrows[i][j], log); |
| } |
| } |
| } |
| |
| /* |
| * Verify that the data that is left in the rows are properly part of |
| * an identity matrix. |
| */ |
| for (i = 0; i < nmissing; i++) { |
| for (j = 0; j < n; j++) { |
| if (j == missing[i]) { |
| ASSERT3U(rows[i][j], ==, 1); |
| } else { |
| ASSERT3U(rows[i][j], ==, 0); |
| } |
| } |
| } |
| } |
| |
| static void |
| vdev_raidz_matrix_reconstruct(raidz_map_t *rm, int n, int nmissing, |
| int *missing, uint8_t **invrows, const uint8_t *used) |
| { |
| int i, j, x, cc, c; |
| uint8_t *src; |
| uint64_t ccount; |
| uint8_t *dst[VDEV_RAIDZ_MAXPARITY]; |
| uint64_t dcount[VDEV_RAIDZ_MAXPARITY]; |
| uint8_t log, val; |
| int ll; |
| uint8_t *invlog[VDEV_RAIDZ_MAXPARITY]; |
| uint8_t *p, *pp; |
| size_t psize; |
| |
| log = 0; /* gcc */ |
| psize = sizeof (invlog[0][0]) * n * nmissing; |
| p = zfs_alloc(psize); |
| |
| for (pp = p, i = 0; i < nmissing; i++) { |
| invlog[i] = pp; |
| pp += n; |
| } |
| |
| for (i = 0; i < nmissing; i++) { |
| for (j = 0; j < n; j++) { |
| ASSERT3U(invrows[i][j], !=, 0); |
| invlog[i][j] = vdev_raidz_log2[invrows[i][j]]; |
| } |
| } |
| |
| for (i = 0; i < n; i++) { |
| c = used[i]; |
| ASSERT3U(c, <, rm->rm_cols); |
| |
| src = rm->rm_col[c].rc_data; |
| ccount = rm->rm_col[c].rc_size; |
| for (j = 0; j < nmissing; j++) { |
| cc = missing[j] + rm->rm_firstdatacol; |
| ASSERT3U(cc, >=, rm->rm_firstdatacol); |
| ASSERT3U(cc, <, rm->rm_cols); |
| ASSERT3U(cc, !=, c); |
| |
| dst[j] = rm->rm_col[cc].rc_data; |
| dcount[j] = rm->rm_col[cc].rc_size; |
| } |
| |
| ASSERT(ccount >= rm->rm_col[missing[0]].rc_size || i > 0); |
| |
| for (x = 0; x < ccount; x++, src++) { |
| if (*src != 0) |
| log = vdev_raidz_log2[*src]; |
| |
| for (cc = 0; cc < nmissing; cc++) { |
| if (x >= dcount[cc]) |
| continue; |
| |
| if (*src == 0) { |
| val = 0; |
| } else { |
| if ((ll = log + invlog[cc][i]) >= 255) |
| ll -= 255; |
| val = vdev_raidz_pow2[ll]; |
| } |
| |
| if (i == 0) |
| dst[cc][x] = val; |
| else |
| dst[cc][x] ^= val; |
| } |
| } |
| } |
| |
| zfs_free(p, psize); |
| } |
| |
| static int |
| vdev_raidz_reconstruct_general(raidz_map_t *rm, int *tgts, int ntgts) |
| { |
| int n, i, c, t, tt; |
| int nmissing_rows; |
| int missing_rows[VDEV_RAIDZ_MAXPARITY]; |
| int parity_map[VDEV_RAIDZ_MAXPARITY]; |
| |
| uint8_t *p, *pp; |
| size_t psize; |
| |
| uint8_t *rows[VDEV_RAIDZ_MAXPARITY]; |
| uint8_t *invrows[VDEV_RAIDZ_MAXPARITY]; |
| uint8_t *used; |
| |
| int code = 0; |
| |
| |
| n = rm->rm_cols - rm->rm_firstdatacol; |
| |
| /* |
| * Figure out which data columns are missing. |
| */ |
| nmissing_rows = 0; |
| for (t = 0; t < ntgts; t++) { |
| if (tgts[t] >= rm->rm_firstdatacol) { |
| missing_rows[nmissing_rows++] = |
| tgts[t] - rm->rm_firstdatacol; |
| } |
| } |
| |
| /* |
| * Figure out which parity columns to use to help generate the missing |
| * data columns. |
| */ |
| for (tt = 0, c = 0, i = 0; i < nmissing_rows; c++) { |
| ASSERT(tt < ntgts); |
| ASSERT(c < rm->rm_firstdatacol); |
| |
| /* |
| * Skip any targeted parity columns. |
| */ |
| if (c == tgts[tt]) { |
| tt++; |
| continue; |
| } |
| |
| code |= 1 << c; |
| |
| parity_map[i] = c; |
| i++; |
| } |
| |
| ASSERT(code != 0); |
| ASSERT3U(code, <, 1 << VDEV_RAIDZ_MAXPARITY); |
| |
| psize = (sizeof (rows[0][0]) + sizeof (invrows[0][0])) * |
| nmissing_rows * n + sizeof (used[0]) * n; |
| p = kmem_alloc(psize, KM_SLEEP); |
| |
| for (pp = p, i = 0; i < nmissing_rows; i++) { |
| rows[i] = pp; |
| pp += n; |
| invrows[i] = pp; |
| pp += n; |
| } |
| used = pp; |
| |
| for (i = 0; i < nmissing_rows; i++) { |
| used[i] = parity_map[i]; |
| } |
| |
| for (tt = 0, c = rm->rm_firstdatacol; c < rm->rm_cols; c++) { |
| if (tt < nmissing_rows && |
| c == missing_rows[tt] + rm->rm_firstdatacol) { |
| tt++; |
| continue; |
| } |
| |
| ASSERT3S(i, <, n); |
| used[i] = c; |
| i++; |
| } |
| |
| /* |
| * Initialize the interesting rows of the matrix. |
| */ |
| vdev_raidz_matrix_init(rm, n, nmissing_rows, parity_map, rows); |
| |
| /* |
| * Invert the matrix. |
| */ |
| vdev_raidz_matrix_invert(rm, n, nmissing_rows, missing_rows, rows, |
| invrows, used); |
| |
| /* |
| * Reconstruct the missing data using the generated matrix. |
| */ |
| vdev_raidz_matrix_reconstruct(rm, n, nmissing_rows, missing_rows, |
| invrows, used); |
| |
| kmem_free(p, psize); |
| |
| return (code); |
| } |
| |
| static int |
| vdev_raidz_reconstruct(raidz_map_t *rm, int *t, int nt) |
| { |
| int tgts[VDEV_RAIDZ_MAXPARITY]; |
| int ntgts; |
| int i, c; |
| int code; |
| int nbadparity, nbaddata; |
| |
| /* |
| * The tgts list must already be sorted. |
| */ |
| for (i = 1; i < nt; i++) { |
| ASSERT(t[i] > t[i - 1]); |
| } |
| |
| nbadparity = rm->rm_firstdatacol; |
| nbaddata = rm->rm_cols - nbadparity; |
| ntgts = 0; |
| for (i = 0, c = 0; c < rm->rm_cols; c++) { |
| if (i < nt && c == t[i]) { |
| tgts[ntgts++] = c; |
| i++; |
| } else if (rm->rm_col[c].rc_error != 0) { |
| tgts[ntgts++] = c; |
| } else if (c >= rm->rm_firstdatacol) { |
| nbaddata--; |
| } else { |
| nbadparity--; |
| } |
| } |
| |
| ASSERT(ntgts >= nt); |
| ASSERT(nbaddata >= 0); |
| ASSERT(nbaddata + nbadparity == ntgts); |
| |
| code = vdev_raidz_reconstruct_general(rm, tgts, ntgts); |
| ASSERT(code < (1 << VDEV_RAIDZ_MAXPARITY)); |
| ASSERT(code > 0); |
| return (code); |
| } |
| |
| static raidz_map_t * |
| vdev_raidz_map_alloc(void *data, off_t offset, size_t size, uint64_t unit_shift, |
| uint64_t dcols, uint64_t nparity) |
| { |
| raidz_map_t *rm; |
| uint64_t b = offset >> unit_shift; |
| uint64_t s = size >> unit_shift; |
| uint64_t f = b % dcols; |
| uint64_t o = (b / dcols) << unit_shift; |
| uint64_t q, r, c, bc, col, acols, scols, coff, devidx, asize, tot; |
| |
| q = s / (dcols - nparity); |
| r = s - q * (dcols - nparity); |
| bc = (r == 0 ? 0 : r + nparity); |
| tot = s + nparity * (q + (r == 0 ? 0 : 1)); |
| |
| if (q == 0) { |
| acols = bc; |
| scols = MIN(dcols, roundup(bc, nparity + 1)); |
| } else { |
| acols = dcols; |
| scols = dcols; |
| } |
| |
| ASSERT3U(acols, <=, scols); |
| |
| rm = zfs_alloc(offsetof(raidz_map_t, rm_col[scols])); |
| |
| rm->rm_cols = acols; |
| rm->rm_scols = scols; |
| rm->rm_bigcols = bc; |
| rm->rm_skipstart = bc; |
| rm->rm_missingdata = 0; |
| rm->rm_missingparity = 0; |
| rm->rm_firstdatacol = nparity; |
| rm->rm_reports = 0; |
| rm->rm_freed = 0; |
| rm->rm_ecksuminjected = 0; |
| |
| asize = 0; |
| |
| for (c = 0; c < scols; c++) { |
| col = f + c; |
| coff = o; |
| if (col >= dcols) { |
| col -= dcols; |
| coff += 1ULL << unit_shift; |
| } |
| rm->rm_col[c].rc_devidx = col; |
| rm->rm_col[c].rc_offset = coff; |
| rm->rm_col[c].rc_data = NULL; |
| rm->rm_col[c].rc_error = 0; |
| rm->rm_col[c].rc_tried = 0; |
| rm->rm_col[c].rc_skipped = 0; |
| |
| if (c >= acols) |
| rm->rm_col[c].rc_size = 0; |
| else if (c < bc) |
| rm->rm_col[c].rc_size = (q + 1) << unit_shift; |
| else |
| rm->rm_col[c].rc_size = q << unit_shift; |
| |
| asize += rm->rm_col[c].rc_size; |
| } |
| |
| ASSERT3U(asize, ==, tot << unit_shift); |
| rm->rm_asize = roundup(asize, (nparity + 1) << unit_shift); |
| rm->rm_nskip = roundup(tot, nparity + 1) - tot; |
| ASSERT3U(rm->rm_asize - asize, ==, rm->rm_nskip << unit_shift); |
| ASSERT3U(rm->rm_nskip, <=, nparity); |
| |
| for (c = 0; c < rm->rm_firstdatacol; c++) |
| rm->rm_col[c].rc_data = zfs_alloc(rm->rm_col[c].rc_size); |
| |
| rm->rm_col[c].rc_data = data; |
| |
| for (c = c + 1; c < acols; c++) |
| rm->rm_col[c].rc_data = (char *)rm->rm_col[c - 1].rc_data + |
| rm->rm_col[c - 1].rc_size; |
| |
| /* |
| * If all data stored spans all columns, there's a danger that parity |
| * will always be on the same device and, since parity isn't read |
| * during normal operation, that that device's I/O bandwidth won't be |
| * used effectively. We therefore switch the parity every 1MB. |
| * |
| * ... at least that was, ostensibly, the theory. As a practical |
| * matter unless we juggle the parity between all devices evenly, we |
| * won't see any benefit. Further, occasional writes that aren't a |
| * multiple of the LCM of the number of children and the minimum |
| * stripe width are sufficient to avoid pessimal behavior. |
| * Unfortunately, this decision created an implicit on-disk format |
| * requirement that we need to support for all eternity, but only |
| * for single-parity RAID-Z. |
| * |
| * If we intend to skip a sector in the zeroth column for padding |
| * we must make sure to note this swap. We will never intend to |
| * skip the first column since at least one data and one parity |
| * column must appear in each row. |
| */ |
| ASSERT(rm->rm_cols >= 2); |
| ASSERT(rm->rm_col[0].rc_size == rm->rm_col[1].rc_size); |
| |
| if (rm->rm_firstdatacol == 1 && (offset & (1ULL << 20))) { |
| devidx = rm->rm_col[0].rc_devidx; |
| o = rm->rm_col[0].rc_offset; |
| rm->rm_col[0].rc_devidx = rm->rm_col[1].rc_devidx; |
| rm->rm_col[0].rc_offset = rm->rm_col[1].rc_offset; |
| rm->rm_col[1].rc_devidx = devidx; |
| rm->rm_col[1].rc_offset = o; |
| |
| if (rm->rm_skipstart == 0) |
| rm->rm_skipstart = 1; |
| } |
| |
| return (rm); |
| } |
| |
| static void |
| vdev_raidz_map_free(raidz_map_t *rm) |
| { |
| int c; |
| |
| for (c = rm->rm_firstdatacol - 1; c >= 0; c--) |
| zfs_free(rm->rm_col[c].rc_data, rm->rm_col[c].rc_size); |
| |
| zfs_free(rm, offsetof(raidz_map_t, rm_col[rm->rm_scols])); |
| } |
| |
| static vdev_t * |
| vdev_child(vdev_t *pvd, uint64_t devidx) |
| { |
| vdev_t *cvd; |
| |
| STAILQ_FOREACH(cvd, &pvd->v_children, v_childlink) { |
| if (cvd->v_id == devidx) |
| break; |
| } |
| |
| return (cvd); |
| } |
| |
| /* |
| * We keep track of whether or not there were any injected errors, so that |
| * any ereports we generate can note it. |
| */ |
| static int |
| raidz_checksum_verify(const blkptr_t *bp, void *data, uint64_t size) |
| { |
| |
| return (zio_checksum_verify(bp, data)); |
| } |
| |
| /* |
| * Generate the parity from the data columns. If we tried and were able to |
| * read the parity without error, verify that the generated parity matches the |
| * data we read. If it doesn't, we fire off a checksum error. Return the |
| * number such failures. |
| */ |
| static int |
| raidz_parity_verify(raidz_map_t *rm) |
| { |
| void *orig[VDEV_RAIDZ_MAXPARITY]; |
| int c, ret = 0; |
| raidz_col_t *rc; |
| |
| for (c = 0; c < rm->rm_firstdatacol; c++) { |
| rc = &rm->rm_col[c]; |
| if (!rc->rc_tried || rc->rc_error != 0) |
| continue; |
| orig[c] = zfs_alloc(rc->rc_size); |
| bcopy(rc->rc_data, orig[c], rc->rc_size); |
| } |
| |
| vdev_raidz_generate_parity(rm); |
| |
| for (c = rm->rm_firstdatacol - 1; c >= 0; c--) { |
| rc = &rm->rm_col[c]; |
| if (!rc->rc_tried || rc->rc_error != 0) |
| continue; |
| if (bcmp(orig[c], rc->rc_data, rc->rc_size) != 0) { |
| rc->rc_error = ECKSUM; |
| ret++; |
| } |
| zfs_free(orig[c], rc->rc_size); |
| } |
| |
| return (ret); |
| } |
| |
| /* |
| * Iterate over all combinations of bad data and attempt a reconstruction. |
| * Note that the algorithm below is non-optimal because it doesn't take into |
| * account how reconstruction is actually performed. For example, with |
| * triple-parity RAID-Z the reconstruction procedure is the same if column 4 |
| * is targeted as invalid as if columns 1 and 4 are targeted since in both |
| * cases we'd only use parity information in column 0. |
| */ |
| static int |
| vdev_raidz_combrec(raidz_map_t *rm, const blkptr_t *bp, void *data, |
| off_t offset, uint64_t bytes, int total_errors, int data_errors) |
| { |
| raidz_col_t *rc; |
| void *orig[VDEV_RAIDZ_MAXPARITY]; |
| int tstore[VDEV_RAIDZ_MAXPARITY + 2]; |
| int *tgts = &tstore[1]; |
| int current, next, i, c, n; |
| int code, ret = 0; |
| |
| ASSERT(total_errors < rm->rm_firstdatacol); |
| |
| /* |
| * This simplifies one edge condition. |
| */ |
| tgts[-1] = -1; |
| |
| for (n = 1; n <= rm->rm_firstdatacol - total_errors; n++) { |
| /* |
| * Initialize the targets array by finding the first n columns |
| * that contain no error. |
| * |
| * If there were no data errors, we need to ensure that we're |
| * always explicitly attempting to reconstruct at least one |
| * data column. To do this, we simply push the highest target |
| * up into the data columns. |
| */ |
| for (c = 0, i = 0; i < n; i++) { |
| if (i == n - 1 && data_errors == 0 && |
| c < rm->rm_firstdatacol) { |
| c = rm->rm_firstdatacol; |
| } |
| |
| while (rm->rm_col[c].rc_error != 0) { |
| c++; |
| ASSERT3S(c, <, rm->rm_cols); |
| } |
| |
| tgts[i] = c++; |
| } |
| |
| /* |
| * Setting tgts[n] simplifies the other edge condition. |
| */ |
| tgts[n] = rm->rm_cols; |
| |
| /* |
| * These buffers were allocated in previous iterations. |
| */ |
| for (i = 0; i < n - 1; i++) { |
| ASSERT(orig[i] != NULL); |
| } |
| |
| orig[n - 1] = zfs_alloc(rm->rm_col[0].rc_size); |
| |
| current = 0; |
| next = tgts[current]; |
| |
| while (current != n) { |
| tgts[current] = next; |
| current = 0; |
| |
| /* |
| * Save off the original data that we're going to |
| * attempt to reconstruct. |
| */ |
| for (i = 0; i < n; i++) { |
| ASSERT(orig[i] != NULL); |
| c = tgts[i]; |
| ASSERT3S(c, >=, 0); |
| ASSERT3S(c, <, rm->rm_cols); |
| rc = &rm->rm_col[c]; |
| bcopy(rc->rc_data, orig[i], rc->rc_size); |
| } |
| |
| /* |
| * Attempt a reconstruction and exit the outer loop on |
| * success. |
| */ |
| code = vdev_raidz_reconstruct(rm, tgts, n); |
| if (raidz_checksum_verify(bp, data, bytes) == 0) { |
| for (i = 0; i < n; i++) { |
| c = tgts[i]; |
| rc = &rm->rm_col[c]; |
| ASSERT(rc->rc_error == 0); |
| rc->rc_error = ECKSUM; |
| } |
| |
| ret = code; |
| goto done; |
| } |
| |
| /* |
| * Restore the original data. |
| */ |
| for (i = 0; i < n; i++) { |
| c = tgts[i]; |
| rc = &rm->rm_col[c]; |
| bcopy(orig[i], rc->rc_data, rc->rc_size); |
| } |
| |
| do { |
| /* |
| * Find the next valid column after the current |
| * position.. |
| */ |
| for (next = tgts[current] + 1; |
| next < rm->rm_cols && |
| rm->rm_col[next].rc_error != 0; next++) |
| continue; |
| |
| ASSERT(next <= tgts[current + 1]); |
| |
| /* |
| * If that spot is available, we're done here. |
| */ |
| if (next != tgts[current + 1]) |
| break; |
| |
| /* |
| * Otherwise, find the next valid column after |
| * the previous position. |
| */ |
| for (c = tgts[current - 1] + 1; |
| rm->rm_col[c].rc_error != 0; c++) |
| continue; |
| |
| tgts[current] = c; |
| current++; |
| |
| } while (current != n); |
| } |
| } |
| n--; |
| done: |
| for (i = n - 1; i >= 0; i--) { |
| zfs_free(orig[i], rm->rm_col[0].rc_size); |
| } |
| |
| return (ret); |
| } |
| |
| static int |
| vdev_raidz_read(vdev_t *vd, const blkptr_t *bp, void *data, |
| off_t offset, size_t bytes) |
| { |
| vdev_t *tvd = vd->v_top; |
| vdev_t *cvd; |
| raidz_map_t *rm; |
| raidz_col_t *rc; |
| int c, error; |
| int unexpected_errors; |
| int parity_errors; |
| int parity_untried; |
| int data_errors; |
| int total_errors; |
| int n; |
| int tgts[VDEV_RAIDZ_MAXPARITY]; |
| int code; |
| |
| rc = NULL; /* gcc */ |
| error = 0; |
| |
| rm = vdev_raidz_map_alloc(data, offset, bytes, tvd->v_ashift, |
| vd->v_nchildren, vd->v_nparity); |
| |
| /* |
| * Iterate over the columns in reverse order so that we hit the parity |
| * last -- any errors along the way will force us to read the parity. |
| */ |
| for (c = rm->rm_cols - 1; c >= 0; c--) { |
| rc = &rm->rm_col[c]; |
| cvd = vdev_child(vd, rc->rc_devidx); |
| if (cvd == NULL || cvd->v_state != VDEV_STATE_HEALTHY) { |
| if (c >= rm->rm_firstdatacol) |
| rm->rm_missingdata++; |
| else |
| rm->rm_missingparity++; |
| rc->rc_error = ENXIO; |
| rc->rc_tried = 1; /* don't even try */ |
| rc->rc_skipped = 1; |
| continue; |
| } |
| #if 0 /* XXX: Too hard for the boot code. */ |
| if (vdev_dtl_contains(cvd, DTL_MISSING, zio->io_txg, 1)) { |
| if (c >= rm->rm_firstdatacol) |
| rm->rm_missingdata++; |
| else |
| rm->rm_missingparity++; |
| rc->rc_error = ESTALE; |
| rc->rc_skipped = 1; |
| continue; |
| } |
| #endif |
| if (c >= rm->rm_firstdatacol || rm->rm_missingdata > 0) { |
| rc->rc_error = cvd->v_read(cvd, NULL, rc->rc_data, |
| rc->rc_offset, rc->rc_size); |
| rc->rc_tried = 1; |
| rc->rc_skipped = 0; |
| } |
| } |
| |
| reconstruct: |
| unexpected_errors = 0; |
| parity_errors = 0; |
| parity_untried = 0; |
| data_errors = 0; |
| total_errors = 0; |
| |
| ASSERT(rm->rm_missingparity <= rm->rm_firstdatacol); |
| ASSERT(rm->rm_missingdata <= rm->rm_cols - rm->rm_firstdatacol); |
| |
| for (c = 0; c < rm->rm_cols; c++) { |
| rc = &rm->rm_col[c]; |
| |
| if (rc->rc_error) { |
| ASSERT(rc->rc_error != ECKSUM); /* child has no bp */ |
| |
| if (c < rm->rm_firstdatacol) |
| parity_errors++; |
| else |
| data_errors++; |
| |
| if (!rc->rc_skipped) |
| unexpected_errors++; |
| |
| total_errors++; |
| } else if (c < rm->rm_firstdatacol && !rc->rc_tried) { |
| parity_untried++; |
| } |
| } |
| |
| /* |
| * There are three potential phases for a read: |
| * 1. produce valid data from the columns read |
| * 2. read all disks and try again |
| * 3. perform combinatorial reconstruction |
| * |
| * Each phase is progressively both more expensive and less likely to |
| * occur. If we encounter more errors than we can repair or all phases |
| * fail, we have no choice but to return an error. |
| */ |
| |
| /* |
| * If the number of errors we saw was correctable -- less than or equal |
| * to the number of parity disks read -- attempt to produce data that |
| * has a valid checksum. Naturally, this case applies in the absence of |
| * any errors. |
| */ |
| if (total_errors <= rm->rm_firstdatacol - parity_untried) { |
| if (data_errors == 0) { |
| if (raidz_checksum_verify(bp, data, bytes) == 0) { |
| /* |
| * If we read parity information (unnecessarily |
| * as it happens since no reconstruction was |
| * needed) regenerate and verify the parity. |
| * We also regenerate parity when resilvering |
| * so we can write it out to the failed device |
| * later. |
| */ |
| if (parity_errors + parity_untried < |
| rm->rm_firstdatacol) { |
| n = raidz_parity_verify(rm); |
| unexpected_errors += n; |
| ASSERT(parity_errors + n <= |
| rm->rm_firstdatacol); |
| } |
| goto done; |
| } |
| } else { |
| /* |
| * We either attempt to read all the parity columns or |
| * none of them. If we didn't try to read parity, we |
| * wouldn't be here in the correctable case. There must |
| * also have been fewer parity errors than parity |
| * columns or, again, we wouldn't be in this code path. |
| */ |
| ASSERT(parity_untried == 0); |
| ASSERT(parity_errors < rm->rm_firstdatacol); |
| |
| /* |
| * Identify the data columns that reported an error. |
| */ |
| n = 0; |
| for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) { |
| rc = &rm->rm_col[c]; |
| if (rc->rc_error != 0) { |
| ASSERT(n < VDEV_RAIDZ_MAXPARITY); |
| tgts[n++] = c; |
| } |
| } |
| |
| ASSERT(rm->rm_firstdatacol >= n); |
| |
| code = vdev_raidz_reconstruct(rm, tgts, n); |
| |
| if (raidz_checksum_verify(bp, data, bytes) == 0) { |
| /* |
| * If we read more parity disks than were used |
| * for reconstruction, confirm that the other |
| * parity disks produced correct data. This |
| * routine is suboptimal in that it regenerates |
| * the parity that we already used in addition |
| * to the parity that we're attempting to |
| * verify, but this should be a relatively |
| * uncommon case, and can be optimized if it |
| * becomes a problem. Note that we regenerate |
| * parity when resilvering so we can write it |
| * out to failed devices later. |
| */ |
| if (parity_errors < rm->rm_firstdatacol - n) { |
| n = raidz_parity_verify(rm); |
| unexpected_errors += n; |
| ASSERT(parity_errors + n <= |
| rm->rm_firstdatacol); |
| } |
| |
| goto done; |
| } |
| } |
| } |
| |
| /* |
| * This isn't a typical situation -- either we got a read |
| * error or a child silently returned bad data. Read every |
| * block so we can try again with as much data and parity as |
| * we can track down. If we've already been through once |
| * before, all children will be marked as tried so we'll |
| * proceed to combinatorial reconstruction. |
| */ |
| unexpected_errors = 1; |
| rm->rm_missingdata = 0; |
| rm->rm_missingparity = 0; |
| |
| n = 0; |
| for (c = 0; c < rm->rm_cols; c++) { |
| rc = &rm->rm_col[c]; |
| |
| if (rc->rc_tried) |
| continue; |
| |
| cvd = vdev_child(vd, rc->rc_devidx); |
| ASSERT(cvd != NULL); |
| rc->rc_error = cvd->v_read(cvd, NULL, |
| rc->rc_data, rc->rc_offset, rc->rc_size); |
| if (rc->rc_error == 0) |
| n++; |
| rc->rc_tried = 1; |
| rc->rc_skipped = 0; |
| } |
| /* |
| * If we managed to read anything more, retry the |
| * reconstruction. |
| */ |
| if (n > 0) |
| goto reconstruct; |
| |
| /* |
| * At this point we've attempted to reconstruct the data given the |
| * errors we detected, and we've attempted to read all columns. There |
| * must, therefore, be one or more additional problems -- silent errors |
| * resulting in invalid data rather than explicit I/O errors resulting |
| * in absent data. We check if there is enough additional data to |
| * possibly reconstruct the data and then perform combinatorial |
| * reconstruction over all possible combinations. If that fails, |
| * we're cooked. |
| */ |
| if (total_errors > rm->rm_firstdatacol) { |
| error = EIO; |
| } else if (total_errors < rm->rm_firstdatacol && |
| (code = vdev_raidz_combrec(rm, bp, data, offset, bytes, |
| total_errors, data_errors)) != 0) { |
| /* |
| * If we didn't use all the available parity for the |
| * combinatorial reconstruction, verify that the remaining |
| * parity is correct. |
| */ |
| if (code != (1 << rm->rm_firstdatacol) - 1) |
| (void) raidz_parity_verify(rm); |
| } else { |
| /* |
| * We're here because either: |
| * |
| * total_errors == rm_first_datacol, or |
| * vdev_raidz_combrec() failed |
| * |
| * In either case, there is enough bad data to prevent |
| * reconstruction. |
| * |
| * Start checksum ereports for all children which haven't |
| * failed, and the IO wasn't speculative. |
| */ |
| error = ECKSUM; |
| } |
| |
| done: |
| vdev_raidz_map_free(rm); |
| |
| return (error); |
| } |