| /*- |
| * Copyright (c) 2007 Doug Rabson |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| */ |
| |
| #include <sys/cdefs.h> |
| |
| /* |
| * Stand-alone ZFS file reader. |
| */ |
| |
| #include <sys/stat.h> |
| #include <sys/stdint.h> |
| |
| #include "zfsimpl.h" |
| #include "zfssubr.c" |
| |
| |
| struct zfsmount { |
| const spa_t *spa; |
| objset_phys_t objset; |
| uint64_t rootobj; |
| }; |
| |
| /* |
| * List of all vdevs, chained through v_alllink. |
| */ |
| static vdev_list_t zfs_vdevs; |
| |
| /* |
| * List of ZFS features supported for read |
| */ |
| static const char *features_for_read[] = { |
| "org.illumos:lz4_compress", |
| "com.delphix:hole_birth", |
| "com.delphix:extensible_dataset", |
| "com.delphix:embedded_data", |
| "org.open-zfs:large_blocks", |
| "org.illumos:sha512", |
| NULL |
| }; |
| |
| /* |
| * List of all pools, chained through spa_link. |
| */ |
| static spa_list_t zfs_pools; |
| |
| static uint64_t zfs_crc64_table[256]; |
| static const dnode_phys_t *dnode_cache_obj = 0; |
| static uint64_t dnode_cache_bn; |
| static char *dnode_cache_buf; |
| static char *zap_scratch; |
| static char *zfs_temp_buf, *zfs_temp_end, *zfs_temp_ptr; |
| |
| #define TEMP_SIZE (1024 * 1024) |
| |
| static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf); |
| static int zfs_get_root(const spa_t *spa, uint64_t *objid); |
| static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result); |
| |
| static void |
| zfs_init(void) |
| { |
| STAILQ_INIT(&zfs_vdevs); |
| STAILQ_INIT(&zfs_pools); |
| |
| zfs_temp_buf = malloc(TEMP_SIZE); |
| zfs_temp_end = zfs_temp_buf + TEMP_SIZE; |
| zfs_temp_ptr = zfs_temp_buf; |
| dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE); |
| zap_scratch = malloc(SPA_MAXBLOCKSIZE); |
| |
| zfs_init_crc(); |
| } |
| |
| static void * |
| zfs_alloc(size_t size) |
| { |
| char *ptr; |
| |
| if (zfs_temp_ptr + size > zfs_temp_end) { |
| printf("ZFS: out of temporary buffer space\n"); |
| for (;;) ; |
| } |
| ptr = zfs_temp_ptr; |
| zfs_temp_ptr += size; |
| |
| return (ptr); |
| } |
| |
| static void |
| zfs_free(void *ptr, size_t size) |
| { |
| |
| zfs_temp_ptr -= size; |
| if (zfs_temp_ptr != ptr) { |
| printf("ZFS: zfs_alloc()/zfs_free() mismatch\n"); |
| for (;;) ; |
| } |
| } |
| |
| static int |
| xdr_int(const unsigned char **xdr, int *ip) |
| { |
| *ip = ((*xdr)[0] << 24) |
| | ((*xdr)[1] << 16) |
| | ((*xdr)[2] << 8) |
| | ((*xdr)[3] << 0); |
| (*xdr) += 4; |
| return (0); |
| } |
| |
| static int |
| xdr_u_int(const unsigned char **xdr, u_int *ip) |
| { |
| *ip = ((*xdr)[0] << 24) |
| | ((*xdr)[1] << 16) |
| | ((*xdr)[2] << 8) |
| | ((*xdr)[3] << 0); |
| (*xdr) += 4; |
| return (0); |
| } |
| |
| static int |
| xdr_uint64_t(const unsigned char **xdr, uint64_t *lp) |
| { |
| u_int hi, lo; |
| |
| xdr_u_int(xdr, &hi); |
| xdr_u_int(xdr, &lo); |
| *lp = (((uint64_t) hi) << 32) | lo; |
| return (0); |
| } |
| |
| static int |
| nvlist_find(const unsigned char *nvlist, const char *name, int type, |
| int* elementsp, void *valuep) |
| { |
| const unsigned char *p, *pair; |
| int junk; |
| int encoded_size, decoded_size; |
| |
| p = nvlist; |
| xdr_int(&p, &junk); |
| xdr_int(&p, &junk); |
| |
| pair = p; |
| xdr_int(&p, &encoded_size); |
| xdr_int(&p, &decoded_size); |
| while (encoded_size && decoded_size) { |
| int namelen, pairtype, elements; |
| const char *pairname; |
| |
| xdr_int(&p, &namelen); |
| pairname = (const char*) p; |
| p += roundup(namelen, 4); |
| xdr_int(&p, &pairtype); |
| |
| if (!memcmp(name, pairname, namelen) && type == pairtype) { |
| xdr_int(&p, &elements); |
| if (elementsp) |
| *elementsp = elements; |
| if (type == DATA_TYPE_UINT64) { |
| xdr_uint64_t(&p, (uint64_t *) valuep); |
| return (0); |
| } else if (type == DATA_TYPE_STRING) { |
| int len; |
| xdr_int(&p, &len); |
| (*(const char**) valuep) = (const char*) p; |
| return (0); |
| } else if (type == DATA_TYPE_NVLIST |
| || type == DATA_TYPE_NVLIST_ARRAY) { |
| (*(const unsigned char**) valuep) = |
| (const unsigned char*) p; |
| return (0); |
| } else { |
| return (EIO); |
| } |
| } else { |
| /* |
| * Not the pair we are looking for, skip to the next one. |
| */ |
| p = pair + encoded_size; |
| } |
| |
| pair = p; |
| xdr_int(&p, &encoded_size); |
| xdr_int(&p, &decoded_size); |
| } |
| |
| return (EIO); |
| } |
| |
| static int |
| nvlist_check_features_for_read(const unsigned char *nvlist) |
| { |
| const unsigned char *p, *pair; |
| int junk; |
| int encoded_size, decoded_size; |
| int rc; |
| |
| rc = 0; |
| |
| p = nvlist; |
| xdr_int(&p, &junk); |
| xdr_int(&p, &junk); |
| |
| pair = p; |
| xdr_int(&p, &encoded_size); |
| xdr_int(&p, &decoded_size); |
| while (encoded_size && decoded_size) { |
| int namelen, pairtype; |
| const char *pairname; |
| int i, found; |
| |
| found = 0; |
| |
| xdr_int(&p, &namelen); |
| pairname = (const char*) p; |
| p += roundup(namelen, 4); |
| xdr_int(&p, &pairtype); |
| |
| for (i = 0; features_for_read[i] != NULL; i++) { |
| if (!memcmp(pairname, features_for_read[i], namelen)) { |
| found = 1; |
| break; |
| } |
| } |
| |
| if (!found) { |
| printf("ZFS: unsupported feature: %s\n", pairname); |
| rc = EIO; |
| } |
| |
| p = pair + encoded_size; |
| |
| pair = p; |
| xdr_int(&p, &encoded_size); |
| xdr_int(&p, &decoded_size); |
| } |
| |
| return (rc); |
| } |
| |
| /* |
| * Return the next nvlist in an nvlist array. |
| */ |
| static const unsigned char * |
| nvlist_next(const unsigned char *nvlist) |
| { |
| const unsigned char *p, *pair; |
| int junk; |
| int encoded_size, decoded_size; |
| |
| p = nvlist; |
| xdr_int(&p, &junk); |
| xdr_int(&p, &junk); |
| |
| pair = p; |
| xdr_int(&p, &encoded_size); |
| xdr_int(&p, &decoded_size); |
| while (encoded_size && decoded_size) { |
| p = pair + encoded_size; |
| |
| pair = p; |
| xdr_int(&p, &encoded_size); |
| xdr_int(&p, &decoded_size); |
| } |
| |
| return p; |
| } |
| |
| #ifdef TEST |
| |
| static const unsigned char * |
| nvlist_print(const unsigned char *nvlist, unsigned int indent) |
| { |
| static const char* typenames[] = { |
| "DATA_TYPE_UNKNOWN", |
| "DATA_TYPE_BOOLEAN", |
| "DATA_TYPE_BYTE", |
| "DATA_TYPE_INT16", |
| "DATA_TYPE_UINT16", |
| "DATA_TYPE_INT32", |
| "DATA_TYPE_UINT32", |
| "DATA_TYPE_INT64", |
| "DATA_TYPE_UINT64", |
| "DATA_TYPE_STRING", |
| "DATA_TYPE_BYTE_ARRAY", |
| "DATA_TYPE_INT16_ARRAY", |
| "DATA_TYPE_UINT16_ARRAY", |
| "DATA_TYPE_INT32_ARRAY", |
| "DATA_TYPE_UINT32_ARRAY", |
| "DATA_TYPE_INT64_ARRAY", |
| "DATA_TYPE_UINT64_ARRAY", |
| "DATA_TYPE_STRING_ARRAY", |
| "DATA_TYPE_HRTIME", |
| "DATA_TYPE_NVLIST", |
| "DATA_TYPE_NVLIST_ARRAY", |
| "DATA_TYPE_BOOLEAN_VALUE", |
| "DATA_TYPE_INT8", |
| "DATA_TYPE_UINT8", |
| "DATA_TYPE_BOOLEAN_ARRAY", |
| "DATA_TYPE_INT8_ARRAY", |
| "DATA_TYPE_UINT8_ARRAY" |
| }; |
| |
| unsigned int i, j; |
| const unsigned char *p, *pair; |
| int junk; |
| int encoded_size, decoded_size; |
| |
| p = nvlist; |
| xdr_int(&p, &junk); |
| xdr_int(&p, &junk); |
| |
| pair = p; |
| xdr_int(&p, &encoded_size); |
| xdr_int(&p, &decoded_size); |
| while (encoded_size && decoded_size) { |
| int namelen, pairtype, elements; |
| const char *pairname; |
| |
| xdr_int(&p, &namelen); |
| pairname = (const char*) p; |
| p += roundup(namelen, 4); |
| xdr_int(&p, &pairtype); |
| |
| for (i = 0; i < indent; i++) |
| printf(" "); |
| printf("%s %s", typenames[pairtype], pairname); |
| |
| xdr_int(&p, &elements); |
| switch (pairtype) { |
| case DATA_TYPE_UINT64: { |
| uint64_t val; |
| xdr_uint64_t(&p, &val); |
| printf(" = 0x%jx\n", (uintmax_t)val); |
| break; |
| } |
| |
| case DATA_TYPE_STRING: { |
| int len; |
| xdr_int(&p, &len); |
| printf(" = \"%s\"\n", p); |
| break; |
| } |
| |
| case DATA_TYPE_NVLIST: |
| printf("\n"); |
| nvlist_print(p, indent + 1); |
| break; |
| |
| case DATA_TYPE_NVLIST_ARRAY: |
| for (j = 0; j < elements; j++) { |
| printf("[%d]\n", j); |
| p = nvlist_print(p, indent + 1); |
| if (j != elements - 1) { |
| for (i = 0; i < indent; i++) |
| printf(" "); |
| printf("%s %s", typenames[pairtype], pairname); |
| } |
| } |
| break; |
| |
| default: |
| printf("\n"); |
| } |
| |
| p = pair + encoded_size; |
| |
| pair = p; |
| xdr_int(&p, &encoded_size); |
| xdr_int(&p, &decoded_size); |
| } |
| |
| return p; |
| } |
| |
| #endif |
| |
| static int |
| vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf, |
| off_t offset, size_t size) |
| { |
| size_t psize; |
| int rc; |
| |
| if (!vdev->v_phys_read) |
| return (EIO); |
| |
| if (bp) { |
| psize = BP_GET_PSIZE(bp); |
| } else { |
| psize = size; |
| } |
| |
| /*printf("ZFS: reading %d bytes at 0x%jx to %p\n", psize, (uintmax_t)offset, buf);*/ |
| rc = vdev->v_phys_read(vdev, vdev->v_read_priv, offset, buf, psize); |
| if (rc) |
| return (rc); |
| if (bp && zio_checksum_verify(bp, buf)) |
| return (EIO); |
| |
| return (0); |
| } |
| |
| static int |
| vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf, |
| off_t offset, size_t bytes) |
| { |
| |
| return (vdev_read_phys(vdev, bp, buf, |
| offset + VDEV_LABEL_START_SIZE, bytes)); |
| } |
| |
| |
| static int |
| vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf, |
| off_t offset, size_t bytes) |
| { |
| vdev_t *kid; |
| int rc; |
| |
| rc = EIO; |
| STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { |
| if (kid->v_state != VDEV_STATE_HEALTHY) |
| continue; |
| rc = kid->v_read(kid, bp, buf, offset, bytes); |
| if (!rc) |
| return (0); |
| } |
| |
| return (rc); |
| } |
| |
| static int |
| vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf, |
| off_t offset, size_t bytes) |
| { |
| vdev_t *kid; |
| |
| /* |
| * Here we should have two kids: |
| * First one which is the one we are replacing and we can trust |
| * only this one to have valid data, but it might not be present. |
| * Second one is that one we are replacing with. It is most likely |
| * healthy, but we can't trust it has needed data, so we won't use it. |
| */ |
| kid = STAILQ_FIRST(&vdev->v_children); |
| if (kid == NULL) |
| return (EIO); |
| if (kid->v_state != VDEV_STATE_HEALTHY) |
| return (EIO); |
| return (kid->v_read(kid, bp, buf, offset, bytes)); |
| } |
| |
| static vdev_t * |
| vdev_find(uint64_t guid) |
| { |
| vdev_t *vdev; |
| |
| STAILQ_FOREACH(vdev, &zfs_vdevs, v_alllink) |
| if (vdev->v_guid == guid) |
| return (vdev); |
| |
| return (0); |
| } |
| |
| static vdev_t * |
| vdev_create(uint64_t guid, vdev_read_t *vdev_read) |
| { |
| vdev_t *vdev; |
| |
| vdev = malloc(sizeof(vdev_t)); |
| memset(vdev, 0, sizeof(vdev_t)); |
| STAILQ_INIT(&vdev->v_children); |
| vdev->v_guid = guid; |
| vdev->v_state = VDEV_STATE_OFFLINE; |
| vdev->v_read = vdev_read; |
| vdev->v_phys_read = 0; |
| vdev->v_read_priv = 0; |
| STAILQ_INSERT_TAIL(&zfs_vdevs, vdev, v_alllink); |
| |
| return (vdev); |
| } |
| |
| static int |
| vdev_init_from_nvlist(const unsigned char *nvlist, vdev_t *pvdev, |
| vdev_t **vdevp, int is_newer) |
| { |
| int rc; |
| uint64_t guid, id, ashift, nparity; |
| const char *type; |
| const char *path; |
| vdev_t *vdev, *kid; |
| const unsigned char *kids; |
| int nkids, i, is_new; |
| uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present; |
| |
| if (nvlist_find(nvlist, ZPOOL_CONFIG_GUID, |
| DATA_TYPE_UINT64, 0, &guid) |
| || nvlist_find(nvlist, ZPOOL_CONFIG_ID, |
| DATA_TYPE_UINT64, 0, &id) |
| || nvlist_find(nvlist, ZPOOL_CONFIG_TYPE, |
| DATA_TYPE_STRING, 0, &type)) { |
| printf("ZFS: can't find vdev details\n"); |
| return (ENOENT); |
| } |
| |
| if (strcmp(type, VDEV_TYPE_MIRROR) |
| && strcmp(type, VDEV_TYPE_DISK) |
| #ifdef ZFS_TEST |
| && strcmp(type, VDEV_TYPE_FILE) |
| #endif |
| && strcmp(type, VDEV_TYPE_RAIDZ) |
| && strcmp(type, VDEV_TYPE_REPLACING)) { |
| printf("ZFS: can only boot from disk, mirror, raidz1, raidz2 and raidz3 vdevs\n"); |
| return (EIO); |
| } |
| |
| is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0; |
| |
| nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, 0, |
| &is_offline); |
| nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, 0, |
| &is_removed); |
| nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, 0, |
| &is_faulted); |
| nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64, 0, |
| &is_degraded); |
| nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64, 0, |
| &isnt_present); |
| |
| vdev = vdev_find(guid); |
| if (!vdev) { |
| is_new = 1; |
| |
| if (!strcmp(type, VDEV_TYPE_MIRROR)) |
| vdev = vdev_create(guid, vdev_mirror_read); |
| else if (!strcmp(type, VDEV_TYPE_RAIDZ)) |
| vdev = vdev_create(guid, vdev_raidz_read); |
| else if (!strcmp(type, VDEV_TYPE_REPLACING)) |
| vdev = vdev_create(guid, vdev_replacing_read); |
| else |
| vdev = vdev_create(guid, vdev_disk_read); |
| |
| vdev->v_id = id; |
| vdev->v_top = pvdev != NULL ? pvdev : vdev; |
| if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT, |
| DATA_TYPE_UINT64, 0, &ashift) == 0) |
| vdev->v_ashift = ashift; |
| else |
| vdev->v_ashift = 0; |
| if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY, |
| DATA_TYPE_UINT64, 0, &nparity) == 0) |
| vdev->v_nparity = nparity; |
| else |
| vdev->v_nparity = 0; |
| if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH, |
| DATA_TYPE_STRING, 0, &path) == 0) { |
| if (strncmp(path, "/dev/dsk/", 9) == 0) |
| path += 9; |
| vdev->v_name = strdup(path); |
| if (nvlist_find(nvlist, ZPOOL_CONFIG_PHYS_PATH, |
| DATA_TYPE_STRING, 0, &path) == 0) |
| vdev->v_phys_path = strdup(path); |
| else |
| vdev->v_phys_path = NULL; |
| if (nvlist_find(nvlist, ZPOOL_CONFIG_DEVID, |
| DATA_TYPE_STRING, 0, &path) == 0) |
| vdev->v_devid = strdup(path); |
| else |
| vdev->v_devid = NULL; |
| } else { |
| if (!strcmp(type, "raidz")) { |
| if (vdev->v_nparity == 1) |
| vdev->v_name = "raidz1"; |
| else if (vdev->v_nparity == 2) |
| vdev->v_name = "raidz2"; |
| else if (vdev->v_nparity == 3) |
| vdev->v_name = "raidz3"; |
| else { |
| printf("ZFS: can only boot from disk, mirror, raidz1, raidz2 and raidz3 vdevs\n"); |
| return (EIO); |
| } |
| } else { |
| vdev->v_name = strdup(type); |
| } |
| } |
| } else { |
| is_new = 0; |
| } |
| |
| if (is_new || is_newer) { |
| /* |
| * This is either new vdev or we've already seen this vdev, |
| * but from an older vdev label, so let's refresh its state |
| * from the newer label. |
| */ |
| if (is_offline) |
| vdev->v_state = VDEV_STATE_OFFLINE; |
| else if (is_removed) |
| vdev->v_state = VDEV_STATE_REMOVED; |
| else if (is_faulted) |
| vdev->v_state = VDEV_STATE_FAULTED; |
| else if (is_degraded) |
| vdev->v_state = VDEV_STATE_DEGRADED; |
| else if (isnt_present) |
| vdev->v_state = VDEV_STATE_CANT_OPEN; |
| } |
| |
| rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, |
| DATA_TYPE_NVLIST_ARRAY, &nkids, &kids); |
| /* |
| * Its ok if we don't have any kids. |
| */ |
| if (rc == 0) { |
| vdev->v_nchildren = nkids; |
| for (i = 0; i < nkids; i++) { |
| rc = vdev_init_from_nvlist(kids, vdev, &kid, is_newer); |
| if (rc) |
| return (rc); |
| if (is_new) |
| STAILQ_INSERT_TAIL(&vdev->v_children, kid, |
| v_childlink); |
| kids = nvlist_next(kids); |
| } |
| } else { |
| vdev->v_nchildren = 0; |
| } |
| |
| if (vdevp) |
| *vdevp = vdev; |
| return (0); |
| } |
| |
| static void |
| vdev_set_state(vdev_t *vdev) |
| { |
| vdev_t *kid; |
| int good_kids; |
| int bad_kids; |
| |
| /* |
| * A mirror or raidz is healthy if all its kids are healthy. A |
| * mirror is degraded if any of its kids is healthy; a raidz |
| * is degraded if at most nparity kids are offline. |
| */ |
| if (STAILQ_FIRST(&vdev->v_children)) { |
| good_kids = 0; |
| bad_kids = 0; |
| STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { |
| if (kid->v_state == VDEV_STATE_HEALTHY) |
| good_kids++; |
| else |
| bad_kids++; |
| } |
| if (bad_kids == 0) { |
| vdev->v_state = VDEV_STATE_HEALTHY; |
| } else { |
| if (vdev->v_read == vdev_mirror_read) { |
| if (good_kids) { |
| vdev->v_state = VDEV_STATE_DEGRADED; |
| } else { |
| vdev->v_state = VDEV_STATE_OFFLINE; |
| } |
| } else if (vdev->v_read == vdev_raidz_read) { |
| if (bad_kids > vdev->v_nparity) { |
| vdev->v_state = VDEV_STATE_OFFLINE; |
| } else { |
| vdev->v_state = VDEV_STATE_DEGRADED; |
| } |
| } |
| } |
| } |
| } |
| |
| static spa_t * |
| spa_find_by_guid(uint64_t guid) |
| { |
| spa_t *spa; |
| |
| STAILQ_FOREACH(spa, &zfs_pools, spa_link) |
| if (spa->spa_guid == guid) |
| return (spa); |
| |
| return (0); |
| } |
| |
| static spa_t * |
| spa_find_by_name(const char *name) |
| { |
| spa_t *spa; |
| |
| STAILQ_FOREACH(spa, &zfs_pools, spa_link) |
| if (!strcmp(spa->spa_name, name)) |
| return (spa); |
| |
| return (0); |
| } |
| |
| spa_t * |
| spa_get_primary(void) |
| { |
| return (STAILQ_FIRST(&zfs_pools)); |
| } |
| |
| vdev_t * |
| spa_get_primary_vdev(const spa_t *spa) |
| { |
| vdev_t *vdev; |
| vdev_t *kid; |
| |
| if (spa == NULL) |
| spa = spa_get_primary(); |
| if (spa == NULL) |
| return (NULL); |
| vdev = STAILQ_FIRST(&spa->spa_vdevs); |
| if (vdev == NULL) |
| return (NULL); |
| for (kid = STAILQ_FIRST(&vdev->v_children); kid != NULL; |
| kid = STAILQ_FIRST(&vdev->v_children)) |
| vdev = kid; |
| return (vdev); |
| } |
| |
| static spa_t * |
| spa_create(uint64_t guid) |
| { |
| spa_t *spa; |
| |
| spa = malloc(sizeof(spa_t)); |
| memset(spa, 0, sizeof(spa_t)); |
| STAILQ_INIT(&spa->spa_vdevs); |
| spa->spa_guid = guid; |
| STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link); |
| |
| return (spa); |
| } |
| |
| static const char * |
| state_name(vdev_state_t state) |
| { |
| static const char* names[] = { |
| "UNKNOWN", |
| "CLOSED", |
| "OFFLINE", |
| "REMOVED", |
| "CANT_OPEN", |
| "FAULTED", |
| "DEGRADED", |
| "ONLINE" |
| }; |
| return names[state]; |
| } |
| |
| static int |
| pager_printf(const char *fmt, ...) |
| { |
| char line[80]; |
| va_list args; |
| |
| va_start(args, fmt); |
| vsnprintf(line, sizeof (line), fmt, args); |
| va_end(args); |
| return (pager_output(line)); |
| } |
| |
| #define STATUS_FORMAT " %s %s\n" |
| |
| static int |
| print_state(int indent, const char *name, vdev_state_t state) |
| { |
| int i; |
| char buf[512]; |
| |
| buf[0] = 0; |
| for (i = 0; i < indent; i++) |
| strcat(buf, " "); |
| strcat(buf, name); |
| return (pager_printf(STATUS_FORMAT, buf, state_name(state))); |
| } |
| |
| static int |
| vdev_status(vdev_t *vdev, int indent) |
| { |
| vdev_t *kid; |
| int ret; |
| ret = print_state(indent, vdev->v_name, vdev->v_state); |
| if (ret != 0) |
| return (ret); |
| |
| STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { |
| ret = vdev_status(kid, indent + 1); |
| if (ret != 0) |
| return (ret); |
| } |
| return (ret); |
| } |
| |
| static int |
| spa_status(spa_t *spa) |
| { |
| static char bootfs[ZFS_MAXNAMELEN]; |
| uint64_t rootid; |
| vdev_t *vdev; |
| int good_kids, bad_kids, degraded_kids, ret; |
| vdev_state_t state; |
| |
| ret = pager_printf(" pool: %s\n", spa->spa_name); |
| if (ret != 0) |
| return (ret); |
| |
| if (zfs_get_root(spa, &rootid) == 0 && |
| zfs_rlookup(spa, rootid, bootfs) == 0) { |
| if (bootfs[0] == '\0') |
| ret = pager_printf("bootfs: %s\n", spa->spa_name); |
| else |
| ret = pager_printf("bootfs: %s/%s\n", spa->spa_name, |
| bootfs); |
| if (ret != 0) |
| return (ret); |
| } |
| ret = pager_printf("config:\n\n"); |
| if (ret != 0) |
| return (ret); |
| ret = pager_printf(STATUS_FORMAT, "NAME", "STATE"); |
| if (ret != 0) |
| return (ret); |
| |
| good_kids = 0; |
| degraded_kids = 0; |
| bad_kids = 0; |
| STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) { |
| if (vdev->v_state == VDEV_STATE_HEALTHY) |
| good_kids++; |
| else if (vdev->v_state == VDEV_STATE_DEGRADED) |
| degraded_kids++; |
| else |
| bad_kids++; |
| } |
| |
| state = VDEV_STATE_CLOSED; |
| if (good_kids > 0 && (degraded_kids + bad_kids) == 0) |
| state = VDEV_STATE_HEALTHY; |
| else if ((good_kids + degraded_kids) > 0) |
| state = VDEV_STATE_DEGRADED; |
| |
| ret = print_state(0, spa->spa_name, state); |
| if (ret != 0) |
| return (ret); |
| STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) { |
| ret = vdev_status(vdev, 1); |
| if (ret != 0) |
| return (ret); |
| } |
| return (ret); |
| } |
| |
| int |
| spa_all_status(void) |
| { |
| spa_t *spa; |
| int first = 1, ret = 0; |
| |
| STAILQ_FOREACH(spa, &zfs_pools, spa_link) { |
| if (!first) { |
| ret = pager_printf("\n"); |
| if (ret != 0) |
| return (ret); |
| } |
| first = 0; |
| ret = spa_status(spa); |
| if (ret != 0) |
| return (ret); |
| } |
| return (ret); |
| } |
| |
| static int |
| vdev_probe(vdev_phys_read_t *phys_read, void *read_priv, spa_t **spap) |
| { |
| vdev_t vtmp; |
| vdev_phys_t *vdev_label = (vdev_phys_t *) zap_scratch; |
| spa_t *spa; |
| vdev_t *vdev, *top_vdev, *pool_vdev; |
| off_t off; |
| blkptr_t bp; |
| const unsigned char *nvlist; |
| uint64_t val; |
| uint64_t guid; |
| uint64_t pool_txg, pool_guid; |
| uint64_t is_log; |
| const char *pool_name; |
| const unsigned char *vdevs; |
| const unsigned char *features; |
| int i, rc, is_newer; |
| char *upbuf; |
| const struct uberblock *up; |
| |
| /* |
| * Load the vdev label and figure out which |
| * uberblock is most current. |
| */ |
| memset(&vtmp, 0, sizeof(vtmp)); |
| vtmp.v_phys_read = phys_read; |
| vtmp.v_read_priv = read_priv; |
| off = offsetof(vdev_label_t, vl_vdev_phys); |
| BP_ZERO(&bp); |
| BP_SET_LSIZE(&bp, sizeof(vdev_phys_t)); |
| BP_SET_PSIZE(&bp, sizeof(vdev_phys_t)); |
| BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL); |
| BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF); |
| DVA_SET_OFFSET(BP_IDENTITY(&bp), off); |
| ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0); |
| if (vdev_read_phys(&vtmp, &bp, vdev_label, off, 0)) |
| return (EIO); |
| |
| if (vdev_label->vp_nvlist[0] != NV_ENCODE_XDR) { |
| return (EIO); |
| } |
| |
| nvlist = (const unsigned char *) vdev_label->vp_nvlist + 4; |
| |
| if (nvlist_find(nvlist, |
| ZPOOL_CONFIG_VERSION, |
| DATA_TYPE_UINT64, 0, &val)) { |
| return (EIO); |
| } |
| |
| if (!SPA_VERSION_IS_SUPPORTED(val)) { |
| printf("ZFS: unsupported ZFS version %u (should be %u)\n", |
| (unsigned) val, (unsigned) SPA_VERSION); |
| return (EIO); |
| } |
| |
| /* Check ZFS features for read */ |
| if (nvlist_find(nvlist, |
| ZPOOL_CONFIG_FEATURES_FOR_READ, |
| DATA_TYPE_NVLIST, 0, &features) == 0 |
| && nvlist_check_features_for_read(features) != 0) |
| return (EIO); |
| |
| if (nvlist_find(nvlist, |
| ZPOOL_CONFIG_POOL_STATE, |
| DATA_TYPE_UINT64, 0, &val)) { |
| return (EIO); |
| } |
| |
| if (val == POOL_STATE_DESTROYED) { |
| /* We don't boot only from destroyed pools. */ |
| return (EIO); |
| } |
| |
| if (nvlist_find(nvlist, |
| ZPOOL_CONFIG_POOL_TXG, |
| DATA_TYPE_UINT64, 0, &pool_txg) |
| || nvlist_find(nvlist, |
| ZPOOL_CONFIG_POOL_GUID, |
| DATA_TYPE_UINT64, 0, &pool_guid) |
| || nvlist_find(nvlist, |
| ZPOOL_CONFIG_POOL_NAME, |
| DATA_TYPE_STRING, 0, &pool_name)) { |
| /* |
| * Cache and spare devices end up here - just ignore |
| * them. |
| */ |
| /*printf("ZFS: can't find pool details\n");*/ |
| return (EIO); |
| } |
| |
| is_log = 0; |
| (void) nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, 0, |
| &is_log); |
| if (is_log) |
| return (EIO); |
| |
| /* |
| * Create the pool if this is the first time we've seen it. |
| */ |
| spa = spa_find_by_guid(pool_guid); |
| if (!spa) { |
| spa = spa_create(pool_guid); |
| spa->spa_name = strdup(pool_name); |
| } |
| if (pool_txg > spa->spa_txg) { |
| spa->spa_txg = pool_txg; |
| is_newer = 1; |
| } else |
| is_newer = 0; |
| |
| /* |
| * Get the vdev tree and create our in-core copy of it. |
| * If we already have a vdev with this guid, this must |
| * be some kind of alias (overlapping slices, dangerously dedicated |
| * disks etc). |
| */ |
| if (nvlist_find(nvlist, |
| ZPOOL_CONFIG_GUID, |
| DATA_TYPE_UINT64, 0, &guid)) { |
| return (EIO); |
| } |
| vdev = vdev_find(guid); |
| if (vdev && vdev->v_phys_read) /* Has this vdev already been inited? */ |
| return (EIO); |
| |
| if (nvlist_find(nvlist, |
| ZPOOL_CONFIG_VDEV_TREE, |
| DATA_TYPE_NVLIST, 0, &vdevs)) { |
| return (EIO); |
| } |
| |
| rc = vdev_init_from_nvlist(vdevs, NULL, &top_vdev, is_newer); |
| if (rc) |
| return (rc); |
| |
| /* |
| * Add the toplevel vdev to the pool if its not already there. |
| */ |
| STAILQ_FOREACH(pool_vdev, &spa->spa_vdevs, v_childlink) |
| if (top_vdev == pool_vdev) |
| break; |
| if (!pool_vdev && top_vdev) |
| STAILQ_INSERT_TAIL(&spa->spa_vdevs, top_vdev, v_childlink); |
| |
| /* |
| * We should already have created an incomplete vdev for this |
| * vdev. Find it and initialise it with our read proc. |
| */ |
| vdev = vdev_find(guid); |
| if (vdev) { |
| vdev->v_phys_read = phys_read; |
| vdev->v_read_priv = read_priv; |
| vdev->v_state = VDEV_STATE_HEALTHY; |
| } else { |
| printf("ZFS: inconsistent nvlist contents\n"); |
| return (EIO); |
| } |
| |
| /* |
| * Re-evaluate top-level vdev state. |
| */ |
| vdev_set_state(top_vdev); |
| |
| /* |
| * Ok, we are happy with the pool so far. Lets find |
| * the best uberblock and then we can actually access |
| * the contents of the pool. |
| */ |
| upbuf = zfs_alloc(VDEV_UBERBLOCK_SIZE(vdev)); |
| up = (const struct uberblock *)upbuf; |
| for (i = 0; |
| i < VDEV_UBERBLOCK_COUNT(vdev); |
| i++) { |
| off = VDEV_UBERBLOCK_OFFSET(vdev, i); |
| BP_ZERO(&bp); |
| DVA_SET_OFFSET(&bp.blk_dva[0], off); |
| BP_SET_LSIZE(&bp, VDEV_UBERBLOCK_SIZE(vdev)); |
| BP_SET_PSIZE(&bp, VDEV_UBERBLOCK_SIZE(vdev)); |
| BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL); |
| BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF); |
| ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0); |
| |
| if (vdev_read_phys(vdev, &bp, upbuf, off, 0)) |
| continue; |
| |
| if (up->ub_magic != UBERBLOCK_MAGIC) |
| continue; |
| if (up->ub_txg < spa->spa_txg) |
| continue; |
| if (up->ub_txg > spa->spa_uberblock.ub_txg) { |
| spa->spa_uberblock = *up; |
| } else if (up->ub_txg == spa->spa_uberblock.ub_txg) { |
| if (up->ub_timestamp > spa->spa_uberblock.ub_timestamp) |
| spa->spa_uberblock = *up; |
| } |
| } |
| zfs_free(upbuf, VDEV_UBERBLOCK_SIZE(vdev)); |
| |
| if (spap) |
| *spap = spa; |
| return (0); |
| } |
| |
| static int |
| ilog2(int n) |
| { |
| int v; |
| |
| for (v = 0; v < 32; v++) |
| if (n == (1 << v)) |
| return v; |
| return -1; |
| } |
| |
| static int |
| zio_read_gang(const spa_t *spa, const blkptr_t *bp, void *buf) |
| { |
| blkptr_t gbh_bp; |
| zio_gbh_phys_t zio_gb; |
| char *pbuf; |
| int i; |
| |
| /* Artificial BP for gang block header. */ |
| gbh_bp = *bp; |
| BP_SET_PSIZE(&gbh_bp, SPA_GANGBLOCKSIZE); |
| BP_SET_LSIZE(&gbh_bp, SPA_GANGBLOCKSIZE); |
| BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER); |
| BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF); |
| for (i = 0; i < SPA_DVAS_PER_BP; i++) |
| DVA_SET_GANG(&gbh_bp.blk_dva[i], 0); |
| |
| /* Read gang header block using the artificial BP. */ |
| if (zio_read(spa, &gbh_bp, &zio_gb)) |
| return (EIO); |
| |
| pbuf = buf; |
| for (i = 0; i < SPA_GBH_NBLKPTRS; i++) { |
| blkptr_t *gbp = &zio_gb.zg_blkptr[i]; |
| |
| if (BP_IS_HOLE(gbp)) |
| continue; |
| if (zio_read(spa, gbp, pbuf)) |
| return (EIO); |
| pbuf += BP_GET_PSIZE(gbp); |
| } |
| |
| if (zio_checksum_verify(bp, buf)) |
| return (EIO); |
| return (0); |
| } |
| |
| static int |
| zio_read(const spa_t *spa, const blkptr_t *bp, void *buf) |
| { |
| int cpfunc = BP_GET_COMPRESS(bp); |
| uint64_t align, size; |
| void *pbuf; |
| int i, error; |
| |
| /* |
| * Process data embedded in block pointer |
| */ |
| if (BP_IS_EMBEDDED(bp)) { |
| ASSERT(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); |
| |
| size = BPE_GET_PSIZE(bp); |
| ASSERT(size <= BPE_PAYLOAD_SIZE); |
| |
| if (cpfunc != ZIO_COMPRESS_OFF) |
| pbuf = zfs_alloc(size); |
| else |
| pbuf = buf; |
| |
| decode_embedded_bp_compressed(bp, pbuf); |
| error = 0; |
| |
| if (cpfunc != ZIO_COMPRESS_OFF) { |
| error = zio_decompress_data(cpfunc, pbuf, |
| size, buf, BP_GET_LSIZE(bp)); |
| zfs_free(pbuf, size); |
| } |
| if (error != 0) |
| printf("ZFS: i/o error - unable to decompress block pointer data, error %d\n", |
| error); |
| return (error); |
| } |
| |
| error = EIO; |
| |
| for (i = 0; i < SPA_DVAS_PER_BP; i++) { |
| const dva_t *dva = &bp->blk_dva[i]; |
| vdev_t *vdev; |
| int vdevid; |
| off_t offset; |
| |
| if (!dva->dva_word[0] && !dva->dva_word[1]) |
| continue; |
| |
| vdevid = DVA_GET_VDEV(dva); |
| offset = DVA_GET_OFFSET(dva); |
| STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) { |
| if (vdev->v_id == vdevid) |
| break; |
| } |
| if (!vdev || !vdev->v_read) |
| continue; |
| |
| size = BP_GET_PSIZE(bp); |
| if (vdev->v_read == vdev_raidz_read) { |
| align = 1ULL << vdev->v_top->v_ashift; |
| if (P2PHASE(size, align) != 0) |
| size = P2ROUNDUP(size, align); |
| } |
| if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF) |
| pbuf = zfs_alloc(size); |
| else |
| pbuf = buf; |
| |
| if (DVA_GET_GANG(dva)) |
| error = zio_read_gang(spa, bp, pbuf); |
| else |
| error = vdev->v_read(vdev, bp, pbuf, offset, size); |
| if (error == 0) { |
| if (cpfunc != ZIO_COMPRESS_OFF) |
| error = zio_decompress_data(cpfunc, pbuf, |
| BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp)); |
| else if (size != BP_GET_PSIZE(bp)) |
| bcopy(pbuf, buf, BP_GET_PSIZE(bp)); |
| } |
| if (buf != pbuf) |
| zfs_free(pbuf, size); |
| if (error == 0) |
| break; |
| } |
| if (error != 0) |
| printf("ZFS: i/o error - all block copies unavailable\n"); |
| return (error); |
| } |
| |
| static int |
| dnode_read(const spa_t *spa, const dnode_phys_t *dnode, off_t offset, void *buf, size_t buflen) |
| { |
| int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT; |
| int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; |
| int nlevels = dnode->dn_nlevels; |
| int i, rc; |
| |
| if (bsize > SPA_MAXBLOCKSIZE) { |
| printf("ZFS: I/O error - blocks larger than %llu are not " |
| "supported\n", SPA_MAXBLOCKSIZE); |
| return (EIO); |
| } |
| |
| /* |
| * Note: bsize may not be a power of two here so we need to do an |
| * actual divide rather than a bitshift. |
| */ |
| while (buflen > 0) { |
| uint64_t bn = offset / bsize; |
| int boff = offset % bsize; |
| int ibn; |
| const blkptr_t *indbp; |
| blkptr_t bp; |
| |
| if (bn > dnode->dn_maxblkid) { |
| printf("warning: zfs bug: bn %llx > dn_maxblkid %llx\n", |
| (unsigned long long)bn, |
| (unsigned long long)dnode->dn_maxblkid); |
| /* |
| * zfs bug, will not return error |
| * return (EIO); |
| */ |
| } |
| |
| if (dnode == dnode_cache_obj && bn == dnode_cache_bn) |
| goto cached; |
| |
| indbp = dnode->dn_blkptr; |
| for (i = 0; i < nlevels; i++) { |
| /* |
| * Copy the bp from the indirect array so that |
| * we can re-use the scratch buffer for multi-level |
| * objects. |
| */ |
| ibn = bn >> ((nlevels - i - 1) * ibshift); |
| ibn &= ((1 << ibshift) - 1); |
| bp = indbp[ibn]; |
| if (BP_IS_HOLE(&bp)) { |
| memset(dnode_cache_buf, 0, bsize); |
| break; |
| } |
| rc = zio_read(spa, &bp, dnode_cache_buf); |
| if (rc) |
| return (rc); |
| indbp = (const blkptr_t *) dnode_cache_buf; |
| } |
| dnode_cache_obj = dnode; |
| dnode_cache_bn = bn; |
| cached: |
| |
| /* |
| * The buffer contains our data block. Copy what we |
| * need from it and loop. |
| */ |
| i = bsize - boff; |
| if (i > buflen) i = buflen; |
| memcpy(buf, &dnode_cache_buf[boff], i); |
| buf = ((char*) buf) + i; |
| offset += i; |
| buflen -= i; |
| } |
| |
| return (0); |
| } |
| |
| /* |
| * Lookup a value in a microzap directory. Assumes that the zap |
| * scratch buffer contains the directory contents. |
| */ |
| static int |
| mzap_lookup(const dnode_phys_t *dnode, const char *name, uint64_t *value) |
| { |
| const mzap_phys_t *mz; |
| const mzap_ent_phys_t *mze; |
| size_t size; |
| int chunks, i; |
| |
| /* |
| * Microzap objects use exactly one block. Read the whole |
| * thing. |
| */ |
| size = dnode->dn_datablkszsec * 512; |
| |
| mz = (const mzap_phys_t *) zap_scratch; |
| chunks = size / MZAP_ENT_LEN - 1; |
| |
| for (i = 0; i < chunks; i++) { |
| mze = &mz->mz_chunk[i]; |
| if (!strcmp(mze->mze_name, name)) { |
| *value = mze->mze_value; |
| return (0); |
| } |
| } |
| |
| return (ENOENT); |
| } |
| |
| /* |
| * Compare a name with a zap leaf entry. Return non-zero if the name |
| * matches. |
| */ |
| static int |
| fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, const char *name) |
| { |
| size_t namelen; |
| const zap_leaf_chunk_t *nc; |
| const char *p; |
| |
| namelen = zc->l_entry.le_name_numints; |
| |
| nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk); |
| p = name; |
| while (namelen > 0) { |
| size_t len; |
| len = namelen; |
| if (len > ZAP_LEAF_ARRAY_BYTES) |
| len = ZAP_LEAF_ARRAY_BYTES; |
| if (memcmp(p, nc->l_array.la_array, len)) |
| return (0); |
| p += len; |
| namelen -= len; |
| nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next); |
| } |
| |
| return 1; |
| } |
| |
| /* |
| * Extract a uint64_t value from a zap leaf entry. |
| */ |
| static uint64_t |
| fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc) |
| { |
| const zap_leaf_chunk_t *vc; |
| int i; |
| uint64_t value; |
| const uint8_t *p; |
| |
| vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk); |
| for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) { |
| value = (value << 8) | p[i]; |
| } |
| |
| return value; |
| } |
| |
| /* |
| * Lookup a value in a fatzap directory. Assumes that the zap scratch |
| * buffer contains the directory header. |
| */ |
| static int |
| fzap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name, uint64_t *value) |
| { |
| int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; |
| zap_phys_t zh = *(zap_phys_t *) zap_scratch; |
| fat_zap_t z; |
| uint64_t *ptrtbl; |
| uint64_t hash; |
| int rc; |
| |
| if (zh.zap_magic != ZAP_MAGIC) |
| return (EIO); |
| |
| z.zap_block_shift = ilog2(bsize); |
| z.zap_phys = (zap_phys_t *) zap_scratch; |
| |
| /* |
| * Figure out where the pointer table is and read it in if necessary. |
| */ |
| if (zh.zap_ptrtbl.zt_blk) { |
| rc = dnode_read(spa, dnode, zh.zap_ptrtbl.zt_blk * bsize, |
| zap_scratch, bsize); |
| if (rc) |
| return (rc); |
| ptrtbl = (uint64_t *) zap_scratch; |
| } else { |
| ptrtbl = &ZAP_EMBEDDED_PTRTBL_ENT(&z, 0); |
| } |
| |
| hash = zap_hash(zh.zap_salt, name); |
| |
| zap_leaf_t zl; |
| zl.l_bs = z.zap_block_shift; |
| |
| off_t off = ptrtbl[hash >> (64 - zh.zap_ptrtbl.zt_shift)] << zl.l_bs; |
| zap_leaf_chunk_t *zc; |
| |
| rc = dnode_read(spa, dnode, off, zap_scratch, bsize); |
| if (rc) |
| return (rc); |
| |
| zl.l_phys = (zap_leaf_phys_t *) zap_scratch; |
| |
| /* |
| * Make sure this chunk matches our hash. |
| */ |
| if (zl.l_phys->l_hdr.lh_prefix_len > 0 |
| && zl.l_phys->l_hdr.lh_prefix |
| != hash >> (64 - zl.l_phys->l_hdr.lh_prefix_len)) |
| return (ENOENT); |
| |
| /* |
| * Hash within the chunk to find our entry. |
| */ |
| int shift = (64 - ZAP_LEAF_HASH_SHIFT(&zl) - zl.l_phys->l_hdr.lh_prefix_len); |
| int h = (hash >> shift) & ((1 << ZAP_LEAF_HASH_SHIFT(&zl)) - 1); |
| h = zl.l_phys->l_hash[h]; |
| if (h == 0xffff) |
| return (ENOENT); |
| zc = &ZAP_LEAF_CHUNK(&zl, h); |
| while (zc->l_entry.le_hash != hash) { |
| if (zc->l_entry.le_next == 0xffff) { |
| zc = 0; |
| break; |
| } |
| zc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_next); |
| } |
| if (fzap_name_equal(&zl, zc, name)) { |
| if (zc->l_entry.le_value_intlen * zc->l_entry.le_value_numints > 8) |
| return (E2BIG); |
| *value = fzap_leaf_value(&zl, zc); |
| return (0); |
| } |
| |
| return (ENOENT); |
| } |
| |
| /* |
| * Lookup a name in a zap object and return its value as a uint64_t. |
| */ |
| static int |
| zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name, uint64_t *value) |
| { |
| int rc; |
| uint64_t zap_type; |
| size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; |
| |
| rc = dnode_read(spa, dnode, 0, zap_scratch, size); |
| if (rc) |
| return (rc); |
| |
| zap_type = *(uint64_t *) zap_scratch; |
| if (zap_type == ZBT_MICRO) |
| return mzap_lookup(dnode, name, value); |
| else if (zap_type == ZBT_HEADER) |
| return fzap_lookup(spa, dnode, name, value); |
| printf("ZFS: invalid zap_type=%d\n", (int)zap_type); |
| return (EIO); |
| } |
| |
| /* |
| * List a microzap directory. Assumes that the zap scratch buffer contains |
| * the directory contents. |
| */ |
| static int |
| mzap_list(const dnode_phys_t *dnode, int (*callback)(const char *, uint64_t)) |
| { |
| const mzap_phys_t *mz; |
| const mzap_ent_phys_t *mze; |
| size_t size; |
| int chunks, i, rc; |
| |
| /* |
| * Microzap objects use exactly one block. Read the whole |
| * thing. |
| */ |
| size = dnode->dn_datablkszsec * 512; |
| mz = (const mzap_phys_t *) zap_scratch; |
| chunks = size / MZAP_ENT_LEN - 1; |
| |
| for (i = 0; i < chunks; i++) { |
| mze = &mz->mz_chunk[i]; |
| if (mze->mze_name[0]) { |
| rc = callback(mze->mze_name, mze->mze_value); |
| if (rc != 0) |
| return (rc); |
| } |
| } |
| |
| return (0); |
| } |
| |
| /* |
| * List a fatzap directory. Assumes that the zap scratch buffer contains |
| * the directory header. |
| */ |
| static int |
| fzap_list(const spa_t *spa, const dnode_phys_t *dnode, int (*callback)(const char *, uint64_t)) |
| { |
| int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; |
| zap_phys_t zh = *(zap_phys_t *) zap_scratch; |
| fat_zap_t z; |
| int i, j, rc; |
| |
| if (zh.zap_magic != ZAP_MAGIC) |
| return (EIO); |
| |
| z.zap_block_shift = ilog2(bsize); |
| z.zap_phys = (zap_phys_t *) zap_scratch; |
| |
| /* |
| * This assumes that the leaf blocks start at block 1. The |
| * documentation isn't exactly clear on this. |
| */ |
| zap_leaf_t zl; |
| zl.l_bs = z.zap_block_shift; |
| for (i = 0; i < zh.zap_num_leafs; i++) { |
| off_t off = (i + 1) << zl.l_bs; |
| char name[256], *p; |
| uint64_t value; |
| |
| if (dnode_read(spa, dnode, off, zap_scratch, bsize)) |
| return (EIO); |
| |
| zl.l_phys = (zap_leaf_phys_t *) zap_scratch; |
| |
| for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) { |
| zap_leaf_chunk_t *zc, *nc; |
| int namelen; |
| |
| zc = &ZAP_LEAF_CHUNK(&zl, j); |
| if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY) |
| continue; |
| namelen = zc->l_entry.le_name_numints; |
| if (namelen > sizeof(name)) |
| namelen = sizeof(name); |
| |
| /* |
| * Paste the name back together. |
| */ |
| nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk); |
| p = name; |
| while (namelen > 0) { |
| int len; |
| len = namelen; |
| if (len > ZAP_LEAF_ARRAY_BYTES) |
| len = ZAP_LEAF_ARRAY_BYTES; |
| memcpy(p, nc->l_array.la_array, len); |
| p += len; |
| namelen -= len; |
| nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next); |
| } |
| |
| /* |
| * Assume the first eight bytes of the value are |
| * a uint64_t. |
| */ |
| value = fzap_leaf_value(&zl, zc); |
| |
| //printf("%s 0x%jx\n", name, (uintmax_t)value); |
| rc = callback((const char *)name, value); |
| if (rc != 0) |
| return (rc); |
| } |
| } |
| |
| return (0); |
| } |
| |
| static int zfs_printf(const char *name, uint64_t value __unused) |
| { |
| |
| printf("%s\n", name); |
| |
| return (0); |
| } |
| |
| /* |
| * List a zap directory. |
| */ |
| static int |
| zap_list(const spa_t *spa, const dnode_phys_t *dnode) |
| { |
| uint64_t zap_type; |
| size_t size = dnode->dn_datablkszsec * 512; |
| |
| if (dnode_read(spa, dnode, 0, zap_scratch, size)) |
| return (EIO); |
| |
| zap_type = *(uint64_t *) zap_scratch; |
| if (zap_type == ZBT_MICRO) |
| return mzap_list(dnode, zfs_printf); |
| else |
| return fzap_list(spa, dnode, zfs_printf); |
| } |
| |
| static int |
| objset_get_dnode(const spa_t *spa, const objset_phys_t *os, uint64_t objnum, dnode_phys_t *dnode) |
| { |
| off_t offset; |
| |
| offset = objnum * sizeof(dnode_phys_t); |
| return dnode_read(spa, &os->os_meta_dnode, offset, |
| dnode, sizeof(dnode_phys_t)); |
| } |
| |
| static int |
| mzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value) |
| { |
| const mzap_phys_t *mz; |
| const mzap_ent_phys_t *mze; |
| size_t size; |
| int chunks, i; |
| |
| /* |
| * Microzap objects use exactly one block. Read the whole |
| * thing. |
| */ |
| size = dnode->dn_datablkszsec * 512; |
| |
| mz = (const mzap_phys_t *) zap_scratch; |
| chunks = size / MZAP_ENT_LEN - 1; |
| |
| for (i = 0; i < chunks; i++) { |
| mze = &mz->mz_chunk[i]; |
| if (value == mze->mze_value) { |
| strcpy(name, mze->mze_name); |
| return (0); |
| } |
| } |
| |
| return (ENOENT); |
| } |
| |
| static void |
| fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name) |
| { |
| size_t namelen; |
| const zap_leaf_chunk_t *nc; |
| char *p; |
| |
| namelen = zc->l_entry.le_name_numints; |
| |
| nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk); |
| p = name; |
| while (namelen > 0) { |
| size_t len; |
| len = namelen; |
| if (len > ZAP_LEAF_ARRAY_BYTES) |
| len = ZAP_LEAF_ARRAY_BYTES; |
| memcpy(p, nc->l_array.la_array, len); |
| p += len; |
| namelen -= len; |
| nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next); |
| } |
| |
| *p = '\0'; |
| } |
| |
| static int |
| fzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value) |
| { |
| int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; |
| zap_phys_t zh = *(zap_phys_t *) zap_scratch; |
| fat_zap_t z; |
| int i, j; |
| |
| if (zh.zap_magic != ZAP_MAGIC) |
| return (EIO); |
| |
| z.zap_block_shift = ilog2(bsize); |
| z.zap_phys = (zap_phys_t *) zap_scratch; |
| |
| /* |
| * This assumes that the leaf blocks start at block 1. The |
| * documentation isn't exactly clear on this. |
| */ |
| zap_leaf_t zl; |
| zl.l_bs = z.zap_block_shift; |
| for (i = 0; i < zh.zap_num_leafs; i++) { |
| off_t off = (i + 1) << zl.l_bs; |
| |
| if (dnode_read(spa, dnode, off, zap_scratch, bsize)) |
| return (EIO); |
| |
| zl.l_phys = (zap_leaf_phys_t *) zap_scratch; |
| |
| for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) { |
| zap_leaf_chunk_t *zc; |
| |
| zc = &ZAP_LEAF_CHUNK(&zl, j); |
| if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY) |
| continue; |
| if (zc->l_entry.le_value_intlen != 8 || |
| zc->l_entry.le_value_numints != 1) |
| continue; |
| |
| if (fzap_leaf_value(&zl, zc) == value) { |
| fzap_name_copy(&zl, zc, name); |
| return (0); |
| } |
| } |
| } |
| |
| return (ENOENT); |
| } |
| |
| static int |
| zap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value) |
| { |
| int rc; |
| uint64_t zap_type; |
| size_t size = dnode->dn_datablkszsec * 512; |
| |
| rc = dnode_read(spa, dnode, 0, zap_scratch, size); |
| if (rc) |
| return (rc); |
| |
| zap_type = *(uint64_t *) zap_scratch; |
| if (zap_type == ZBT_MICRO) |
| return mzap_rlookup(spa, dnode, name, value); |
| else |
| return fzap_rlookup(spa, dnode, name, value); |
| } |
| |
| static int |
| zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result) |
| { |
| char name[256]; |
| char component[256]; |
| uint64_t dir_obj, parent_obj, child_dir_zapobj; |
| dnode_phys_t child_dir_zap, dataset, dir, parent; |
| dsl_dir_phys_t *dd; |
| dsl_dataset_phys_t *ds; |
| char *p; |
| int len; |
| |
| p = &name[sizeof(name) - 1]; |
| *p = '\0'; |
| |
| if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { |
| printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); |
| return (EIO); |
| } |
| ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; |
| dir_obj = ds->ds_dir_obj; |
| |
| for (;;) { |
| if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir) != 0) |
| return (EIO); |
| dd = (dsl_dir_phys_t *)&dir.dn_bonus; |
| |
| /* Actual loop condition. */ |
| parent_obj = dd->dd_parent_obj; |
| if (parent_obj == 0) |
| break; |
| |
| if (objset_get_dnode(spa, &spa->spa_mos, parent_obj, &parent) != 0) |
| return (EIO); |
| dd = (dsl_dir_phys_t *)&parent.dn_bonus; |
| child_dir_zapobj = dd->dd_child_dir_zapobj; |
| if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0) |
| return (EIO); |
| if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0) |
| return (EIO); |
| |
| len = strlen(component); |
| p -= len; |
| memcpy(p, component, len); |
| --p; |
| *p = '/'; |
| |
| /* Actual loop iteration. */ |
| dir_obj = parent_obj; |
| } |
| |
| if (*p != '\0') |
| ++p; |
| strcpy(result, p); |
| |
| return (0); |
| } |
| |
| static int |
| zfs_lookup_dataset(const spa_t *spa, const char *name, uint64_t *objnum) |
| { |
| char element[256]; |
| uint64_t dir_obj, child_dir_zapobj; |
| dnode_phys_t child_dir_zap, dir; |
| dsl_dir_phys_t *dd; |
| const char *p, *q; |
| |
| if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, &dir)) |
| return (EIO); |
| if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, &dir_obj)) |
| return (EIO); |
| |
| p = name; |
| for (;;) { |
| if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) |
| return (EIO); |
| dd = (dsl_dir_phys_t *)&dir.dn_bonus; |
| |
| while (*p == '/') |
| p++; |
| /* Actual loop condition #1. */ |
| if (*p == '\0') |
| break; |
| |
| q = strchr(p, '/'); |
| if (q) { |
| memcpy(element, p, q - p); |
| element[q - p] = '\0'; |
| p = q + 1; |
| } else { |
| strcpy(element, p); |
| p += strlen(p); |
| } |
| |
| child_dir_zapobj = dd->dd_child_dir_zapobj; |
| if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0) |
| return (EIO); |
| |
| /* Actual loop condition #2. */ |
| if (zap_lookup(spa, &child_dir_zap, element, &dir_obj) != 0) |
| return (ENOENT); |
| } |
| |
| *objnum = dd->dd_head_dataset_obj; |
| return (0); |
| } |
| |
| #pragma GCC diagnostic ignored "-Wstrict-aliasing" |
| static int |
| zfs_list_dataset(const spa_t *spa, uint64_t objnum/*, int pos, char *entry*/) |
| { |
| uint64_t dir_obj, child_dir_zapobj; |
| dnode_phys_t child_dir_zap, dir, dataset; |
| dsl_dataset_phys_t *ds; |
| dsl_dir_phys_t *dd; |
| |
| if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { |
| printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); |
| return (EIO); |
| } |
| ds = (dsl_dataset_phys_t *) &dataset.dn_bonus; |
| dir_obj = ds->ds_dir_obj; |
| |
| if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) { |
| printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj); |
| return (EIO); |
| } |
| dd = (dsl_dir_phys_t *)&dir.dn_bonus; |
| |
| child_dir_zapobj = dd->dd_child_dir_zapobj; |
| if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0) { |
| printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj); |
| return (EIO); |
| } |
| |
| return (zap_list(spa, &child_dir_zap) != 0); |
| } |
| |
| int |
| zfs_callback_dataset(const spa_t *spa, uint64_t objnum, int (*callback)(const char *, uint64_t)) |
| { |
| uint64_t dir_obj, child_dir_zapobj, zap_type; |
| dnode_phys_t child_dir_zap, dir, dataset; |
| dsl_dataset_phys_t *ds; |
| dsl_dir_phys_t *dd; |
| int err; |
| |
| err = objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset); |
| if (err != 0) { |
| printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); |
| return (err); |
| } |
| ds = (dsl_dataset_phys_t *) &dataset.dn_bonus; |
| dir_obj = ds->ds_dir_obj; |
| |
| err = objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir); |
| if (err != 0) { |
| printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj); |
| return (err); |
| } |
| dd = (dsl_dir_phys_t *)&dir.dn_bonus; |
| |
| child_dir_zapobj = dd->dd_child_dir_zapobj; |
| err = objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap); |
| if (err != 0) { |
| printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj); |
| return (err); |
| } |
| |
| err = dnode_read(spa, &child_dir_zap, 0, zap_scratch, child_dir_zap.dn_datablkszsec * 512); |
| if (err != 0) |
| return (err); |
| |
| zap_type = *(uint64_t *) zap_scratch; |
| if (zap_type == ZBT_MICRO) |
| return mzap_list(&child_dir_zap, callback); |
| else |
| return fzap_list(spa, &child_dir_zap, callback); |
| } |
| |
| /* |
| * Find the object set given the object number of its dataset object |
| * and return its details in *objset |
| */ |
| static int |
| zfs_mount_dataset(const spa_t *spa, uint64_t objnum, objset_phys_t *objset) |
| { |
| dnode_phys_t dataset; |
| dsl_dataset_phys_t *ds; |
| |
| if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { |
| printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); |
| return (EIO); |
| } |
| |
| ds = (dsl_dataset_phys_t *) &dataset.dn_bonus; |
| if (zio_read(spa, &ds->ds_bp, objset)) { |
| printf("ZFS: can't read object set for dataset %ju\n", |
| (uintmax_t)objnum); |
| return (EIO); |
| } |
| |
| return (0); |
| } |
| |
| /* |
| * Find the object set pointed to by the BOOTFS property or the root |
| * dataset if there is none and return its details in *objset |
| */ |
| static int |
| zfs_get_root(const spa_t *spa, uint64_t *objid) |
| { |
| dnode_phys_t dir, propdir; |
| uint64_t props, bootfs, root; |
| |
| *objid = 0; |
| |
| /* |
| * Start with the MOS directory object. |
| */ |
| if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, &dir)) { |
| printf("ZFS: can't read MOS object directory\n"); |
| return (EIO); |
| } |
| |
| /* |
| * Lookup the pool_props and see if we can find a bootfs. |
| */ |
| if (zap_lookup(spa, &dir, DMU_POOL_PROPS, &props) == 0 |
| && objset_get_dnode(spa, &spa->spa_mos, props, &propdir) == 0 |
| && zap_lookup(spa, &propdir, "bootfs", &bootfs) == 0 |
| && bootfs != 0) |
| { |
| *objid = bootfs; |
| return (0); |
| } |
| /* |
| * Lookup the root dataset directory |
| */ |
| if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, &root) |
| || objset_get_dnode(spa, &spa->spa_mos, root, &dir)) { |
| printf("ZFS: can't find root dsl_dir\n"); |
| return (EIO); |
| } |
| |
| /* |
| * Use the information from the dataset directory's bonus buffer |
| * to find the dataset object and from that the object set itself. |
| */ |
| dsl_dir_phys_t *dd = (dsl_dir_phys_t *) &dir.dn_bonus; |
| *objid = dd->dd_head_dataset_obj; |
| return (0); |
| } |
| |
| static int |
| zfs_mount(const spa_t *spa, uint64_t rootobj, struct zfsmount *mnt) |
| { |
| |
| mnt->spa = spa; |
| |
| /* |
| * Find the root object set if not explicitly provided |
| */ |
| if (rootobj == 0 && zfs_get_root(spa, &rootobj)) { |
| printf("ZFS: can't find root filesystem\n"); |
| return (EIO); |
| } |
| |
| if (zfs_mount_dataset(spa, rootobj, &mnt->objset)) { |
| printf("ZFS: can't open root filesystem\n"); |
| return (EIO); |
| } |
| |
| mnt->rootobj = rootobj; |
| |
| return (0); |
| } |
| |
| /* |
| * callback function for feature name checks. |
| */ |
| static int |
| check_feature(const char *name, uint64_t value) |
| { |
| int i; |
| |
| if (value == 0) |
| return (0); |
| if (name[0] == '\0') |
| return (0); |
| |
| for (i = 0; features_for_read[i] != NULL; i++) { |
| if (strcmp(name, features_for_read[i]) == 0) |
| return (0); |
| } |
| printf("ZFS: unsupported feature: %s\n", name); |
| return (EIO); |
| } |
| |
| /* |
| * Checks whether the MOS features that are active are supported. |
| */ |
| static int |
| check_mos_features(const spa_t *spa) |
| { |
| dnode_phys_t dir; |
| uint64_t objnum, zap_type; |
| size_t size; |
| int rc; |
| |
| if ((rc = objset_get_dnode(spa, &spa->spa_mos, DMU_OT_OBJECT_DIRECTORY, |
| &dir)) != 0) |
| return (rc); |
| if ((rc = zap_lookup(spa, &dir, DMU_POOL_FEATURES_FOR_READ, &objnum)) != 0) |
| return (rc); |
| |
| if ((rc = objset_get_dnode(spa, &spa->spa_mos, objnum, &dir)) != 0) |
| return (rc); |
| |
| if (dir.dn_type != DMU_OTN_ZAP_METADATA) |
| return (EIO); |
| |
| size = dir.dn_datablkszsec * 512; |
| if (dnode_read(spa, &dir, 0, zap_scratch, size)) |
| return (EIO); |
| |
| zap_type = *(uint64_t *) zap_scratch; |
| if (zap_type == ZBT_MICRO) |
| rc = mzap_list(&dir, check_feature); |
| else |
| rc = fzap_list(spa, &dir, check_feature); |
| |
| return (rc); |
| } |
| |
| static int |
| zfs_spa_init(spa_t *spa) |
| { |
| int rc; |
| |
| if (zio_read(spa, &spa->spa_uberblock.ub_rootbp, &spa->spa_mos)) { |
| printf("ZFS: can't read MOS of pool %s\n", spa->spa_name); |
| return (EIO); |
| } |
| if (spa->spa_mos.os_type != DMU_OST_META) { |
| printf("ZFS: corrupted MOS of pool %s\n", spa->spa_name); |
| return (EIO); |
| } |
| |
| rc = check_mos_features(spa); |
| if (rc != 0) { |
| printf("ZFS: pool %s is not supported\n", spa->spa_name); |
| } |
| |
| return (rc); |
| } |
| |
| static int |
| zfs_dnode_stat(const spa_t *spa, dnode_phys_t *dn, struct stat *sb) |
| { |
| |
| if (dn->dn_bonustype != DMU_OT_SA) { |
| znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus; |
| |
| sb->st_mode = zp->zp_mode; |
| sb->st_uid = zp->zp_uid; |
| sb->st_gid = zp->zp_gid; |
| sb->st_size = zp->zp_size; |
| } else { |
| sa_hdr_phys_t *sahdrp; |
| int hdrsize; |
| size_t size = 0; |
| void *buf = NULL; |
| |
| if (dn->dn_bonuslen != 0) |
| sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn); |
| else { |
| if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) { |
| blkptr_t *bp = &dn->dn_spill; |
| int error; |
| |
| size = BP_GET_LSIZE(bp); |
| buf = zfs_alloc(size); |
| error = zio_read(spa, bp, buf); |
| if (error != 0) { |
| zfs_free(buf, size); |
| return (error); |
| } |
| sahdrp = buf; |
| } else { |
| return (EIO); |
| } |
| } |
| hdrsize = SA_HDR_SIZE(sahdrp); |
| sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize + |
| SA_MODE_OFFSET); |
| sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize + |
| SA_UID_OFFSET); |
| sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize + |
| SA_GID_OFFSET); |
| sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize + |
| SA_SIZE_OFFSET); |
| if (buf != NULL) |
| zfs_free(buf, size); |
| } |
| |
| return (0); |
| } |
| |
| /* |
| * Lookup a file and return its dnode. |
| */ |
| static int |
| zfs_lookup(const struct zfsmount *mnt, const char *upath, dnode_phys_t *dnode) |
| { |
| int rc; |
| uint64_t objnum, rootnum, parentnum; |
| const spa_t *spa; |
| dnode_phys_t dn; |
| const char *p, *q; |
| char element[256]; |
| char path[1024]; |
| int symlinks_followed = 0; |
| struct stat sb; |
| |
| spa = mnt->spa; |
| if (mnt->objset.os_type != DMU_OST_ZFS) { |
| printf("ZFS: unexpected object set type %ju\n", |
| (uintmax_t)mnt->objset.os_type); |
| return (EIO); |
| } |
| |
| /* |
| * Get the root directory dnode. |
| */ |
| rc = objset_get_dnode(spa, &mnt->objset, MASTER_NODE_OBJ, &dn); |
| if (rc) |
| return (rc); |
| |
| rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, &rootnum); |
| if (rc) |
| return (rc); |
| |
| rc = objset_get_dnode(spa, &mnt->objset, rootnum, &dn); |
| if (rc) |
| return (rc); |
| |
| objnum = rootnum; |
| p = upath; |
| while (p && *p) { |
| while (*p == '/') |
| p++; |
| if (!*p) |
| break; |
| q = strchr(p, '/'); |
| if (q) { |
| memcpy(element, p, q - p); |
| element[q - p] = 0; |
| p = q; |
| } else { |
| strcpy(element, p); |
| p = 0; |
| } |
| |
| rc = zfs_dnode_stat(spa, &dn, &sb); |
| if (rc) |
| return (rc); |
| if (!S_ISDIR(sb.st_mode)) |
| return (ENOTDIR); |
| |
| parentnum = objnum; |
| rc = zap_lookup(spa, &dn, element, &objnum); |
| if (rc) |
| return (rc); |
| objnum = ZFS_DIRENT_OBJ(objnum); |
| |
| rc = objset_get_dnode(spa, &mnt->objset, objnum, &dn); |
| if (rc) |
| return (rc); |
| |
| /* |
| * Check for symlink. |
| */ |
| rc = zfs_dnode_stat(spa, &dn, &sb); |
| if (rc) |
| return (rc); |
| if (S_ISLNK(sb.st_mode)) { |
| if (symlinks_followed > 10) |
| return (EMLINK); |
| symlinks_followed++; |
| |
| /* |
| * Read the link value and copy the tail of our |
| * current path onto the end. |
| */ |
| if (p) |
| strcpy(&path[sb.st_size], p); |
| else |
| path[sb.st_size] = 0; |
| /* |
| * Second test is purely to silence bogus compiler |
| * warning about accessing past the end of dn_bonus. |
| */ |
| if (sb.st_size + sizeof(znode_phys_t) <= |
| dn.dn_bonuslen && sizeof(znode_phys_t) <= |
| sizeof(dn.dn_bonus)) { |
| memcpy(path, &dn.dn_bonus[sizeof(znode_phys_t)], |
| sb.st_size); |
| } else { |
| rc = dnode_read(spa, &dn, 0, path, sb.st_size); |
| if (rc) |
| return (rc); |
| } |
| |
| /* |
| * Restart with the new path, starting either at |
| * the root or at the parent depending whether or |
| * not the link is relative. |
| */ |
| p = path; |
| if (*p == '/') |
| objnum = rootnum; |
| else |
| objnum = parentnum; |
| objset_get_dnode(spa, &mnt->objset, objnum, &dn); |
| } |
| } |
| |
| *dnode = dn; |
| return (0); |
| } |